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Almost invariant subspaces and operators
David Kazhdan and Alexander Polishchuk

∗

Abstract: We prove an efficient version of the Wagner’s theorem
on almost invariant subspaces (see [5]) and deduce some conse-
quences in the context of Galois extensions.

1. Introduction

The goal of this note is to present an elementary proof of the following lin-
ear algebra result and to consider its consequences in the context of Galois
extensions (see Theorem B). In [3] this result is applied to the study of the
Schmidt rank of quartic polynomials.

Theorem A. Let V be a vector space over a field k, X a collection of
subspaces of V , G a group acting linearly on V and preserving X setwise.
For x ∈ X we denote by Ax ⊂ V the corresponding subspace. Assume that
for some r ≥ 1 the following condition holds: for any x, y ∈ X one has
dimAx/(Ax ∩ Ay) ≤ r. Then there exists a G-invariant subspace W ⊂ V ,
which is a finite sum of some finite intersections of subspaces from X, such
that

dimW/(W ∩ Ax) ≤ r, dimAx/(W ∩ Ax) ≤ r · (r + 1)r+1.

Originally, this theorem was proved by Wagner [5], using model theory
and without an explicit bound on dimAx/(W ∩Ax). To get an explicit bound
we combine Wagner’s proof with the idea of the proof of Neumann’s explicit
bound in Bergman-Lenstra’s theorem on almost normal subgroups (see [1]).
We conjecture that it should be possible to improve the bound r · (r + 1)r+1

to a polynomial (possibly linear) function of r, at least in the case when G is
finite.

In Section 3 we show that in the special case when X = G, G is a finite
group interchanging vectors of a basis, subspaces are spanned by subsets of
this basis, one can replace r · (r + 1)r+1 by 2r. This reduces to the known
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set-theoretic result (see [4, 2]), for which we give a new short proof assuming
that G is finite (see Theorem 3.1). Our version of this result suggests a for-
mula for the approximating G-invariant subspace, for which a better bound
(polynomial or even linear in r) might hold, see Section 3 for a discussion.

As a corollary of Theorem A, we obtain the following result about linear
subspaces and linear operators that are almost invariant under the action of
the Galois group. This result is used in our study of the Schmidt rank of
quartics over non-closed fields (see [3]).

Theorem B. Let E/k be a finite Galois extension with Galois group G, and
let V0 be a finite dimensional k-vector space. Let us set V = V0 ⊗k E. We
consider the natural action of G on V and the induced action of G on the set
of E-linear subspaces of V and on EndE(V ).

(i) Suppose A ⊂ V is an E-linear subspace such that for each σ ∈ G, one
has

dimE

(
A/(A ∩ σA)

)
≤ r,

for some r ≥ 0. Then there exists a k-linear subspace W0 ⊂ V0 such
that for W = W0 ⊗k E ⊂ V one has

dimE

(
W/(W ∩ A)

)
≤ r, dimE

(
A/(W ∩ A)

)
≤ r · (r + 1)r+1.

(ii) Suppose V ′
0 is another finite dimensional k-vector space, V ′ = V ′

0 ⊗k E,
and T : V → V ′ is an E-linear operator such that for any σ ∈ G, one
has

rkE

(
σ(T ) − T

)
≤ r,

for some r ≥ 0. Then there exists a k-linear operator T0 : V0 → V ′
0 ,

such that
rkE

(
T − (T0)E

)
≤ 2r + r · (r + 1)r+1,

where (T0)E : V → V ′ is obtained from T0 by the extension of scalars.

2. Linear algebra results

2.1. Proof of Theorem A

Notation For a subset S ⊂ X we set AS := ∩x∈SAx.
For each m, 0 ≤ m ≤ r, let Sm denote the set of all nonempty subsets

S ⊂ X such that

dim(AS + Ax)/Ax ≤ m for any x ∈ X.
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Note that S = X is contained in S0 and Sm−1 ⊂ Sm. Set

h(m) = min
S∈Sm

|S|

which is either a natural number or ∞. Note that by assumption h(r) = 1.
We also have h(m− 1) ≥ h(m).

We consider separately two cases.

Case 1. There exists m, 1 ≤ m ≤ r, such that h(m) is finite and h(m− 1) >
(r + 1)h(m) + 1. Let us take the maximal m with this property and set

W :=
∑

S∈Sm:|S|=h(m)
AS .

Note that W is clearly G-invariant. Since for all m′ > m we have h(m′−1) ≤
(r + 1)h(m′) + 1, we get

h(m) ≤ (r + 1)r−m + · · · + (r + 1)2 + (r + 1) + 1 ≤ (r + 1)r.

Note that since AS ⊂ W for some S ∈ Sm with |S| = h(m), we have for
any x ∈ X,

dimAx/Ax ∩W ≤ dimAx/Ax ∩ AS ≤ r · h(m) ≤ r · (r + 1)r.

Next, we claim that for any x ∈ X one has dimW/W ∩ Ax ≤ r. Indeed,
suppose there exists x ∈ X such that dim(W + Ax)/Ax ≥ r + 1. Then there
exist r + 1 subsets S1, . . . , Sr+1 ∈ Sm with |Si| = h(m), such that

dim
(

r+1∑
i=1

ASi + Ax

)
/Ax ≥ r + 1.

Let us consider the subset

T := {x} ∪ S1 ∪ · · · ∪ Sr+1 ⊂ X.

Then we have |T | ≤ (r + 1)h(m) + 1 < h(m− 1). Hence, T �∈ Sm−1, so there
exists an element y ∈ X such that

dim(AT + Ay)/Ay ≥ m.

But for any i = 1 . . . , r + 1, we have

(AT + Ay)/Ay ⊂ (ASi + Ay)/Ay,



1978 David Kazhdan and Alexander Polishchuk

and the latter space has dimension ≤ m by the definition of Sm. Hence, we
have AT + Ay = ASi + Ay for any i. Therefore,

r+1∑
i=1

ASi ⊂ AT + Ay ⊂ Ax + Ay,

so

dim
(

r+1∑
i=1

ASi + Ax

)
/Ax ≤ dim(Ax + Ay)/Ax ≤ r,

which is a contradiction.
Finally, we note that since W/(W ∩ AS) is finite dimensional, for any

S ∈ Sm, W can be written as a finite sum of some intersections AS .

Case 2. For each m = 1, . . . , r one has h(m − 1) ≤ (r + 1)h(m) + 1. This
implies that

h(0) ≤ (r + 1)r + · · · + (r + 1)2 + (r + 1) + 1 ≤ (r + 1)r+1.

Note that S0 consists of S such that AS = ∩x∈XAx. In this case we set

W := ∩x∈XAx.

Then W is G-invariant, and since there exists a subset S ∈ S0 with |S| = h(0),
we get

dimAx/Ax ∩W = dimAx/Ax ∩ AS ≤ r · h(0) ≤ r(r + 1)r+1.

This ends the proof.

2.2. Almost invariant operators

In this section we use Theorem A to approximate almost G-invariant opera-
tors by G-invariant ones by considering their graphs.

Lemma 2.1. Let V and V ′ be linear representations of a group G, such that
any G-invariant subspace W ⊂ V (resp., W ′ ⊂ V ′) of finite codimension
(resp., dimension) admits a G-invariant complement. Assume that T : V →
V ′ is a linear operator such that for any g ∈ G, one has rk(gTg−1 − T ) ≤ r,
for some r ≥ 0. Then there exists a G-invariant operator T0 : V → V ′ such
that

rk(T − T0) ≤ 2r + r · (r + 1)r+1.
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Proof. Let A = AT ⊂ V ⊕ V ′ denote the graph of T , i.e., A = {(v, Tv)}.
Note that if A and A′ are graphs of T and T ′ then A ∩ A′ = {(v, Tv) | v ∈
ker(T − T ′)}, so

dimA/A ∩ A′ = rk
(
T − T ′).

Thus, the assumption on T implies that dim(A/(A ∩ gA)) ≤ r for all
g ∈ G. Applying Theorem A, we obtain a G-invariant subspace A0 ⊂ V ⊕ V ′

such that

dimA0/(A0 ∩ A) ≤ r, dimA/(A0 ∩ A) ≤ r(r + 1)r+1.

Let p1 : V ⊕V ′ → V and p2 : V ⊕V ′ → V ′ be the projections. Set K := {v′ ∈
V ′ | (0, v′) ∈ A0} ⊂ V ′ and I := p1(A0) ⊂ V . Note that the subspaces K and
I are G-invariant, and p2 : A0 → V ′ induces a well defined G-invariant linear
map

T 0 : I → V ′/K,

such that A0 is the pull-back of the graph A0 ⊂ I ⊕ V ′/K of T 0 under the
projection π : I ⊕ V ′ → I ⊕ V ′/K. Furthermore, we have

dimK ≤ r, dimV/I ≤ r(r + 1)r+1.

Hence, we can find a G-linear projector pI : V → I and a G-linear projector
pC : V ′ → C ⊂ V ′, where C is a G-invariant complement to K, such that
pC(K) = 0. Now we set

T0 = pC ◦ T 0 ◦ pI .

Note that T 0 is obtained as the composition of T0|I with the projection
V ′ → V ′/K. Let T : I → V ′/K denote the composition of T |I with the
projection V ′ → V ′/K, and let A ⊂ I ⊕ V ′/K denote the graph of T . It is
easy to see that π induces a surjection

A0/(A0 ∩ A) → A0/(A0 ∩ A),

so we get
rk(T − T 0) = dimA0/(A0 ∩ A) ≤ r.

But T −T 0 is obtained from T −T0 by restricting to the subspace I ⊂ V and
composing with the projection V ′ → V ′/K, so we get

rk(T − T0) ≤ dimK + dimV/I + rk(T − T 0) ≤ 2r + r(r + 1)r+1.
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2.3. Proof of Theorem B

(i) Let us apply Theorem A to the collection (σA) of all Galois conjugates of A.
Note that the action of G is only k-linear, so we should view this is a collection
of k-linear subspaces, and use the dimension function dimk = [E : k] · dimE .
However, the resulting G-invariant k-subspace W is in the lattice generated
by (σA), so it is actually an E-linear subspace. But G-invariant E-linear
subspaces of V are precisely subspaces obtained by extension of scalars from
k-linear subspaces of V0. This gives the statement.

(ii) We apply the same strategy as in the proof of Lemma 2.1. First, we find
a G-invariant E-subspace W approximating the graph A of T . Then we use
the fact that W is an extension of scalars from W0 ⊂ V0 ⊕ V ′

0 and construct
k-linear projectors pC : V ′

0 → C ⊂ V ′
0 and pI : V0 → I, as in the proof of

Lemma 2.1, where I = p1(W0) and C is a complement in V ′
0 to (0⊕V ′

0)∩W0.
This gives the required operator defined over k.

3. Almost invariant subsets

The following result is a more concrete version of a theorem of Neumann
[4] (see also [2] for related results), stating that if a subset A in a G-set X
satisfies |A \ gA| ≤ r for every g ∈ G and some r > 0, then there exists a
G-invariant subset A0 ⊂ X such that

|A \ A0| + |A0 \ A| < 2r.

We make an extra assumption that G is finite but as a bonus we get an
explicit construction of A0.

Theorem 3.1. Let X be a set with action of a finite group G. Let A ⊂ X be
a subset such that for any g ∈ G one has |A \ gA| ≤ r for some r > 0. For
every subset S ⊂ G we denote AS := ∩g∈SgA. Now consider the G-invariant
subset

A0 :=
⋃

|S|>|G|/2
AS .

Then
|A \ A0| + |A0 \ A| ≤ 2r.

Proof. We have

A \ A0 =
⋂

|S|>|G|/2
A \ AS =

{
a ∈ A | |{g ∈ G | ga ∈ A}| ≤ |G|/2

}
.
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Now let us consider the set

P :=
{
(a ∈ A, g ∈ G) | ga �∈ A

}
.

Considering the fibers of the projection of P to G and using the assumption,
we see that

|P | ≤ r · |G|.

Now, let us consider the projection pA : P → A. For every a ∈ A \A0, we
have

|p−1
A (a)| = |{g ∈ G | ga �∈ A}| ≥ |G|

2 .

Hence, setting
P1 := p−1

A (A \ A0),

we get

(1) |G|
2 · |A \ A0| ≤ |P1|.

Next, setting B = X \ A, we observe that

A0 \ A = A0 ∩B =
⋃

|S|>|G|/2
AS ∩B =

{
b ∈ B | |{g ∈ G | gb ∈ A}| > |G|/2

}
.

Let us consider the projection

pB : P → B : (a, g) �→ ga

and set
P2 := p−1

B (A0 ∩B).

Since for every b ∈ A0 ∩B, we have

|p−1
B (b)| = |

{
g ∈ G | g−1b ∈ A

}
| > |G|

2 ,

we deduce that

(2) |G|
2 · |A0 ∩B| ≤ |P2|.
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Finally, we claim that P1 and P2 do not intersect. Indeed, suppose (a, g0) ∈
P1 ∩ P2. Then

|{g ∈ G | ga �∈ A}| ≥ |G|
2

and

|{g ∈ G | gg0a ∈ A}| > |G|
2 ,

which is impossible since

|{g ∈ G | gg0a ∈ A}| = |{g ∈ G | ga ∈ A}| = |G| − |{g ∈ G | gg0a ∈ A}|.

Thus, combining (1) and (2), we get

|G|
2 · (|A \ A0| + |A0 \ A|) ≤ |P1| + |P2| ≤ |P | ≤ r · |G|,

which gives
|A \ A0| + |A0 \ A| ≤ 2r.

Remark 3.2. One can see from the proof that the only case when we possibly
do not get a strict inequality

|A \ A0| + |A0 \ A| < 2r

is when A0 ⊂ A and P1 = P , which is equivalent to AS = ∩g∈GgA whenever
|S| > |G|/2. In this case we can replace A0 with

A′
0 :=

⋃
|S|≥|G|/2

AS .

Since for any S ⊂ G \ {1} with |S| ≥ |G|/2, we have A ∩ AS = ∩g∈GgA,
assuming that A is not G-invariant, we get A \A′

0 �= ∅. In this case, running
the similar argument to the above proof, we get that

|A \ A′
0| + |A′

0 \ A| < 2r.

Theorem 3.1 suggests that in the linear algebra setup with A a linear
subspace of a G-representation V , such that dim(A/A ∩ gA) ≤ r, for finite
G, one can try to define the approximating G-invariant subspace as

(3) A0 :=
∑

|S|>|G|/2
AS ,

where AS = ∩g∈SgA.
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Question. Does there exist a polynomial (or even a linear) function c(r) such
that for (V,G,A) as above and A0 given by (3) we have

dimA/(A0 ∩ A) ≤ c(r) and dimA0/(A0 ∩ A) ≤ c(r)?
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