
Pure and Applied Mathematics Quarterly
Volume 19, Number 4, 1985–2036, 2023

Seismic imaging with generalized Radon transforms:
stability of the Bolker condition∗

Peer Christian Kunstmann
†
,

Eric Todd Quinto
‡
, and Andreas Rieder

§

Dedicated to Professor Victor Guillemin on the occasion of his 85th birthday

Abstract: Generalized Radon transforms are Fourier integral op-
erators which are used, for instance, as imaging models in geophys-
ical exploration. They appear naturally when linearizing about a
known background compression wave speed. In this work we first
consider a linearly increasing background velocity in two spatial di-
mensions. We verify the Bolker condition for the zero-offset scan-
ning geometry and provide meaningful arguments for it to hold
even if the common offset is positive. Based on this result we sug-
gest an imaging operator for which we calculate the top order sym-
bol in the zero-offset case to study how it maps singularities. Sec-
ond, to support the usage of background models obtained from
linear regression we present a stability result for the Bolker con-
dition under perturbations of the background velocity and of the
offset.
Keywords: Generalized Radon transforms, Fourier integral op-
erators, microlocal analysis, seismic imaging.

Received December 15, 2021.
2010 Mathematics Subject Classification: Primary 58J40, 44A12, 86A22,

35S30.
∗The second author is indebted to Victor Guillemin for his inspiration as a

Ph.D. advisor, his warmth as a person, and his beautiful mathematics. The authors
thank the referees and editor for thoughtful comments that improve the article.
The authors received no financial benefit from this work.

†Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - Project-ID 258734477 - SFB 1173.

‡Partially funded by the DFG Project-ID 258734477 - SFB 1173, U.S. NSF grant
DMS 1712207, and Simons Foundation award 708556.

§Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - Project-ID 258734477 - SFB 1173.

1985

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


1986 Peer Christian Kunstmann et al.

1. Introduction

Generalized Radon transforms serve, for instance, as linear models in seismic
imaging in the acoustic regime. To this end the nonlinear inverse problem
of recovering the wave speed from reflected wave fields is linearized about a
known background velocity: We start from the acoustic wave equation

(1.1) 1
ν2
p
∂2
t u− Δxu = δ(x − xs)δ(t), u|t=0 = ∂tu|t=0 = 0,

where νp = νp(x) is the velocity (sound speed) and xs denotes the position
of the source. So, the pressure wave u = u(t;x,xs), x ∈ R

d, d ∈ {2, 3}, at
time t ≥ 0 is initiated solely by the source at time t = 0. The corresponding
nonlinear inverse problem entails the recovery of νp from measurements of
u(·;xr,xs) over a time interval at several pairs (xs,xr) of source and receiver
positions.

For the linearization we make the ansatz

1
ν2
p(x) = 1 + n(x)

v2(x)

with an a priori known background velocity v = v(x) which satisfies the
geometric optics assumption, i.e., points on the surface are connected to points
in the subsurface by unique characteristic rays. Now, n is the object we seek.
It is a dimensionless quantity which records the high frequency content of νp.

Using the principles of wave propagation in geometric optics one derives
the following linear integral equation for n,

(1.2) Fn(t;xr,xs) =
∫ t

0
(t− s)d−2(ũ− u)(s;xr,xs)ds,

where the operator F is given by

(1.3) Fw(t;xr,xs) =
∫

w(x)
v2(x)A(x,xs)A(x,xr)δ

(
t− τ(x,xs) − τ(x,xr)

)
dx

with the amplitude A and the travel time τ from the progressing wave expan-
sion of the reference solution ũ which solves (1.1), however, with νp replaced
by v. So, the right hand side of (1.2) is available from the measurements and
the computed reference solution. Further, τ and A can be computed as well,
the former from the eikonal equation

(1.4) |∇xτ(·,xs)| = 1
v
, τ(xs,xs) = 0,
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and the latter from the transport equation

(1.5) div(A2∇xτ) = 0.

The operator F is a generalized Radon transform as Fn(t;xr,xs) is an integral
mean over the reflection isochrone connecting points of equal travel time t to
source and to receiver. We recall the representation of F as Fourier integral
operator (for a definition see next section). Assuming that pairs of source and
receiver points are parametrized by a variable s we have that

(1.6) Fw(s, t) = 1
2π

∫
w(x)
v2(x)A(x,xs(s))A(x,xr(s))eıω(t−ϕ(s,x)) dxdω

with
ϕ(s,x) := τ(x,xs(s)) + τ(x,xr(s)).

Hence, {x : t = ϕ(s,x)} is the reflection isochrone at time t with respect to
xs(s) and xr(s). For all the details we refer to, e.g., [23, Sec. 6] or [13]. See
also [2, Appendix E] and [5, 7].

As there is no inversion formula known for F one defines imaging opera-
tors mimicking well-known reconstruction formulas of filtered backprojection
type from X-ray computerized tomography, see, e.g., [18]. For instance, given
the data y (right hand side of (1.2)), the output of Kirchhoff migration, the
traditional inversion procedure in geophysics, can be written as F †Ky where
K is a convolution filter and F † denotes a dual transform (generalized back-
projection). The corresponding imaging operator F †KF is a kind of low pass
filter superimposed with a smoothing operator, see [1]. Hence, prominent fea-
tures of n are in fact visible in F †KFn.

In a series of papers [12, 13, 14] we have demonstrated the potential of
imaging operators of the type KF ∗ψF from an analytical as well as a nu-
merical point of view. Here, F ∗ is a backprojection operator (i.e., the formal,
possibly weighted, L2 adjoint of F ), K is a suitable pseudodifferential oper-
ator and ψ is a smooth cutoff function. Under a technical assumption (the
Bolker condition (2.3)) these imaging operators are pseudodifferential opera-
tors and we have computed their top order symbols to understand how they
map singularities. In case of a constant background velocity v and if source
and receiver positions are offset by a constant vector (common offset data
acquisition geometry), we have thus been able to construct explicit K’s such
that KF ∗ψFn enhances features (discontinuities) of n relatively independent
of location and offset.
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In the present work we extend our results to the linear background veloc-
ity model in two spatial dimensions. This velocity model approximates well
seismic wave propagation in Tertiary basins [22, Lesson 37] and is, for that
reason, also derived by linear regression from well log measurements for other
geological formations, see, e.g., [4]. Moreover, sound velocity in the oceans
can be calculated by an empirical formula which depends on temperature,
salinity and depth [17]. For depths below 1000 m, salinity and temperature
can be considered constant and the formula is then essentially linear in depth.

First, for the common zero offset scanning geometry, we verify the Bolker
condition, compute and study the top order symbol of KF ∗ψF which re-
veals a fundamentally different mapping property compared to the constant
background velocity model: singularities of n with a vertical tangent are vis-
ible in KF ∗ψFn (for an adequate choice of ψ). If the offset is positive we
provide overwhelming numerical combined with analytical evidence for the
Bolker condition to hold. Second, to strengthen the usage of linear models
obtained by regression we explore how stable the properties of KF ∗ψF are
under perturbations of the velocity model. This will be done in a rather gen-
eral framework which even covers stability of the Bolker condition under a
perturbation of the offset.

The layout of the paper is as follows. In the following section we compile
background material on Fourier integral operators and microlocal analysis on
which our accomplishments are based. The experienced reader can skip it.
Section 3 is then devoted to the study of the linear velocity model where we
first validate the Bolker condition for zero offset. We succeed here because we
find an explicit parameterization of the reflection isochrones. Unfortunately,
in the positive offset case, we only have an implicit parameterization which
prevents a complete rigorous proof. We are nevertheless able to show that the
Bolker condition cannot hold near the surface. In the last part of Section 3 we
study the top order symbol of Λ = KF †ψF for zero offset and where K = Δ
is the Laplacian. We characterize visible and invisible singularities and find
how the top order symbol depends asymptotically on increasing depth. The
latter result leads to the definition of K’s counteracting the depth dependence.
A first numerical experiment illustrates these findings.

The Bolker condition actually is a condition on the phase function of a
Fourier integral operator. The phase function of our operator (1.6) depends
on the travel time. Therefore, Section 4 prepares our stability results by pro-
viding a stability analysis for the travel time as a solution of the eikonal
equation (1.4) under perturbation of the wave speed. To this end we study
the corresponding characteristic system (ray system). Finally, we show in
Section 5 that if the phase functions of two Fourier integral operators are
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sufficiently close and one of them satisfies the Bolker condition, so does the
other. This is then applied twice to our seismic situation: once for a small
offset and once for a perturbation in the wave speed, using the insight from
Section 4.

In three appendices we have outsourced calculations which would other-
wise make Section 3 overly technical.

2. Basic material

In this section we not only collect essential standard textbook material on
Fourier integral and pseudodifferential operators but we also introduce our
notation. See, e.g., [16, 19, 24, 25] for proofs and further details.

If X is an open subset of R
d and f : X → R, then we define ∇xf =(

∂f
∂x1

, ∂f
∂x2

, . . . ∂f
∂xd

)
. We let N0 = {0, 1, 2, . . .} and if α = (α1, α2, . . . , αd) ∈ N

d
0,

we use the standard notation for the differential operator Dα by Dαf =
∂α1

∂x
α1
1

∂α2

∂x
α2
2

. . . ∂αd

∂x
αd
d

f .

2.1. Fourier integral operators

For positive integers dX and dY let X ⊂ R
dX and Y ⊂ R

dY be open subsets.
Let N be a positive integer.

Definition 2.1 (Symbol). A function p ∈ C∞(Y ×X × R
N\{0}) is a sym-

bol of order m ∈ Z if for every compact set K ⊂ Y × X and all multi-
indices α ∈ N

N
0 , β ∈ N

dX
0 , and γ ∈ N

dY
0 there exists a positive constant

C = C(K, α, β, γ) such that

|Dα
ξ D

β
xD

γ
yp(y,x, ξ)| ≤ C(1 + |ξ|)m−|α|

holds for all (y,x) ∈ K and all ξ with |ξ| ≥ 1. The set of all symbols of order
m is denoted by Sm(Y ×X × R

N ).
The symbol p of order m is elliptic if for each compact subset K of Y ×X

there are positive constants c and M such that

(2.1) |p(y,x, ξ)| ≥ c (1 + |ξ|)m

for all (y,x) ∈ K and all ξ with |ξ| ≥ M .
Let (y0,x0, ξ0) ∈ Y ×X × (RN\{0}). Then, the symbol p is microlocally

elliptic near (x0, ξ0) if there are an open neighborhood U of x0, a conic open
neighborhood V of ξ0, and positive constants C and M such that (2.1) holds
for all x ∈ U and ξ ∈ V with |ξ| ≥ M .
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Definition 2.2 (Phase function). A real-valued function Φ ∈ C∞(Y ×X ×
R

N\{0}) with arguments (y,x, ξ) is called a phase function if it is positively
homogeneous of degree 1 in ξ and (∇yΦ,∇ξΦ) as well as (∇xΦ,∇ξΦ) do not
vanish on Y ×X × R

N\{0}.
The phase function is nondegenerate if the set {∇(y,x,ξ)∂ξjΦ:j=1, . . . , N}

is linearly independent on the manifold

ΣΦ = {(y,x, ξ) ∈ Y ×X × R
N\{0} : ∇ξΦ(y,x, ξ) = 0}.

Definition 2.3 (Fourier integral operator). Given a symbol p ∈ Sm(Y ×X×
R

N\{0}) and a nondegenerate phase function Φ ∈ C∞(Y ×X×R
N\{0}) we

define the Fourier integral operator (FIO) F applied to u ∈ C∞
0 (X) by

Fu(y) =
∫
RN

∫
X
p(y,x, ξ)u(x)eıΦ(y,x,ξ) dx dξ

where the integral exists as an oscillatory integral which represents a distri-
bution in general, see [16, Chap. I]. The operator F has order k := m −
(dx+dY

4 − N
2 ) and maps C∞

0 (X) continuously to C∞(Y ); it can be extended as
a continuous map from E ′(X) to D′(Y ).

To simplify notation, and because the sets we consider are all subsets of
Euclidean space, we will identify cotangent bundles with subsets of Euclidean
space; if Ω is an open subset of Rd, we identify T ∗(Ω) with Ω × R

d.
With the FIO F we associate the set

C =
{(

y,∇yΦ(y,x, ξ);x,−∇xΦ(y,x, ξ)
)

: (y,x, ξ) ∈ ΣΦ
}
⊂ T ∗(Y ) × T ∗(X)

which is called the canonical relation of F .
The canonical relation encodes how the FIO propagates singularities. To

describe this more precisely, we define singularities of a distribution as the
elements of the distribution’s wave front set.

Definition 2.4. Let Ω ⊆ R
d be open and let u ∈ D′(Ω) be a distribution.

a) u is microlocally C∞ at (x0, ξ0) ∈ T ∗(Ω) if for some φ ∈ C∞
0 (Ω) with

φ(x0) 
= 0 and some conic neighborhood V of ξ0 in R
d\{0}, the Fourier

transform φ̂u is rapidly decaying on V , that is, for every M ∈ N exists
a constant C = C(M) > 0 such that

|φ̂u(ξ)| ≤ C(1 + |ξ|)−M for all ξ ∈ V.
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b) The wave front set WF(u) of u is given by

WF(u) = {(x, ξ) ∈ T ∗(Ω) : u is not microlocally C∞ at (x, ξ)}.

For any u ∈ E ′(X) we have

(2.2)
WF(Fu) ⊂ ΠLΠ−1

R WF(u)
= {(y, η) ∈ T ∗(Y ) : ∃(x, ξ) ∈ WF(u) : (y, η;x, ξ) ∈ C}

which is the statement of the Hörmander-Sato lemma. Above we used the
two canonical projections ΠL : C → T ∗(Y ) and ΠR : C → T ∗(X) onto the left
and right components of C, respectively. The Bolker condition is satisfied if
the left projection

(2.3) ΠL : C → T ∗(Y )\{0} is an injective immersion.

Assume that F ∗F , the composition of F with its formal L2-adjoint operator
F ∗, is well defined. Then, under (2.3), F ∗F is a pseudodifferential operator,
see [15]. Pseudodifferential operators are introduced in the next subsection:
they are FIOs with favorable qualities for imaging.

2.2. Pseudodifferential operators

Pseudodifferential operators are FIOs where X = Y , dX = N , and

Φ(y,x, ξ) = (y − x) · ξ

is the nondegenerate phase function.
In the applications we consider in the next sections, the symbols of the

pseudodifferential operators depend only on the two variables x and ξ. All
concepts and results of the previous subsection carry over. Since X ⊂ R

N we
write Sm(X) instead of Sm(X ×R

N ). Hence, for p ∈ Sm(X), the linear map
P : E ′(X) → D′(X),

(2.4) Pu(y) =
∫
RN

∫
X
p(x, ξ)u(x)eı(y−x)·ξ dx dξ,

is a pseudodifferential operator (ΨDO) of order m. Here, p is called the full
symbol of the operator P . The principal symbol σ(P ) of P is the equivalence
class of p in the quotient space Sm(X)/Sm−1(X).
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Since ΨDOs are FIOs with specific phase functions, one might expect
the symbol p in (2.4) to be a function of (x,y, ξ) as in Definition 2.3. How-
ever, ΨDOs with symbol p(x, ξ) generate the same class of operators mod-
ulo smoothing operators1 as those with symbol p(x,y, ξ) [19, Theorem 4.5,
p. 188].

The ΨDO P is elliptic (respectively: microlocally elliptic) if its symbol is
elliptic (respectively: microlocally elliptic).

Let P be a ΨDO of order m. When we write σ(P ) as a function, we
understand this as the equivalence class of the function modulo Sm−1(X).
We will introduce some more technical terminology in Section 5.

ΨDOs do not create singularities: The Hörmander-Sato inclusion (2.2) for
a ΨDO P reads

WF(Pu) ⊂ WF(u) for any u ∈ E ′(X)

and is known as pseudo local property of ΨDOs. In case P is elliptic we even
have equality:

WF(Pu) = WF(u) for any u ∈ E ′(X).
A finer analysis of how ΨDOs affect singularities allows a microlocalization
with respect to the Sobolev space Hr, r ∈ R. A distribution u ∈ D′(X) is
microlocally Hr at (x0, ξ0) ∈ T ∗(X) if there are a neighborhood U ⊂ X of x0
and a conic neighborhood V ⊂ R

d\{0} of ξ0 such that∫
V
|φ̂u(ξ)|2(1 + |ξ|2)r dξ < ∞ for all φ ∈ C∞

0 (U).

Now, we define the Hr-wave front set of u by

WFr(u) = {(x, ξ) ∈ T ∗(X) : u is not microlocally Hr at (x, ξ)},

see [19]. Note that Hr-wave front sets are indeed a refinement of wave front
sets: WF(u) = cl

(
∪r∈R WFr(u)

)
.

Theorem 2.5. Let P be a ΨDO of order m. If P is microlocally elliptic at
(x0, ξ0) ∈ T ∗(X), we have

(x0, ξ0) ∈ WFr(u) if and only if (x0, ξ0) ∈ WFr−m(Pu)

for u ∈ E ′(Ω) and r ∈ R.

The proof of the theorem above is given by the same argument as in [3,
Proposition A.6] which is based on [16, Theorem 4.3.2].

1Smoothing operators map E ′ into C∞.
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3. Linear velocity model

In this section we restrict ourselves to two spatial dimensions, i.e., d = 2, and
consider the background wave speed

(3.1) v(x) = b + ax2, x2 > 0,

where a and b are positive constants (the positive direction of the x2-axis
points downwards to the interior of the earth). Finally, we position sources
and receivers according to the common offset data acquisition geometry on
the line x2 = 0 with common offset α ≥ 0. Thus, source and receiver positions
are determined by a real parameter s via

xs(s) = (s− α, 0)�, xr(s) = (s + α, 0)�.

Under those assumptions F from (1.3) can be represented as the FIO

(3.2) Fw(s, t) =
∫
R

∫
X

1
2π Θ(s,x)w(x)eı ω (t−ϕ(s,x))dxdω,

compare (1.6). For defining the preimage and image spaces of F we set

(3.3) X = {x ∈ R
2 : x2 > xmin} and Y = S× ]tmin,∞[

where

(3.4) xmin := b

a

(√
1 + a2α2

b2
− 1
)
, tmin := 2

a
asinh

(aα
b

)
,

and S ⊂ R being the bounded open set which contains the parameters of
the source/receiver pairs used for data recording. Note that xmin and tmin
are both zero in the zero-offset case, α = 0. The lower bounds xmin and tmin
in the definitions of X and Y , respectively, are needed to ensure the Bolker
condition (2.3) for F : E ′(X) → D′(Y ). If X contains points with x2 < xmin
the Bolker condition is violated, as we will show.

Further,

(3.5) Θ(s,x) := A(x,xs(s))A(x,xr(s))/v2(x)

is a symbol in S0(Y × X × R). An explicit representation of A is given in
Appendix A, see (A.2) and (A.3). Moreover, the travel time from point x to
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source and receiver is also explicitly known to be

ϕ(s,x) := τ(x,xs(s)) + τ(x,xr(s))

= 1
a

acosh
(

1 + a2

2b
(x1 + α− s)2 + x2

2
b + ax2

)

+ 1
a

acosh
(

1 + a2

2b
(x1 − α− s)2 + x2

2
b + ax2

)
,

see [22, Lesson 41].
In the notation of Section 2.1 we have N = 1, dX = dY = 2, and the

nondegenerate phase function Φ(y,x, ξ) = ω(t−ϕ(s,x)) where y = (s, t) and
ξ = ω. Note that ∇xϕ is never zero for α ≥ 0 and x2 > xmin. This is easy
to see for α = 0 and we refer to Remark 3.2 below for α > 0. Hence, the
canonical relation of F is the subset of T ∗(Y ) × T ∗(X):

(3.6) C =
{
(s, ϕ(s,x),−ω∂sϕ, ω;x, ω∇xϕ) : s ∈ R, x ∈ X, ω 
= 0

}
and note that

(3.7) R×X × R\{0} � (s, ω,x) �→ (s, ϕ(s,x),−ω∂sϕ, ω;x, ω∇xϕ)

define smooth global coordinates on C.
To prove the necessary injectivity we need to recover (x, ω∇xϕ) ∈ T ∗(X)

uniquely from any given (s, ϕ(s,x),−ω∂sϕ, ω) ∈ ΠLC ⊂ T ∗(Y ). Since s and
ω are immediately known from the projection, the goal is to find x ∈ X using
that s, t = ϕ(s,x), and ∂sϕ(s,x) are known.

In the following two subsections we will investigate the Bolker condition,
first we will verify it for α = 0 and then provide overwhelming evidence for
it to hold even for α > 0.

3.1. Bolker condition for the zero offset case

We explore the zero offset situation (α = 0 yielding xmin = tmin = 0) where
source and receiver locations coincide: xs(s) = xr(s) = (s, 0)�. We then have

(3.8) ϕ(s,x) = 2
a

acosh
(

1 + a2

2b
(x1 − s)2 + x2

2
b + ax2

)
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with partial derivative

∂sϕ = − 2a
b(b + ax2)

x1 − s√
H
√
H + 2

(3.9)

where

(3.10) H = a2

2b
(x1 − s)2 + x2

2
b + ax2

.

As (s, ω,x) parametrize C, see (3.7), we obtain

ΠL(s, ω,x) =
(
s,

2
a

acosh(1 + H), ω 2a
b(b + ax2)

x1 − s√
H
√
H + 2

, ω

)
.

To show injectivity let t > 0 be given. We introduce new (polar-)coordinates

x1 = s + r cosϑ, x2 = c + r sinϑ,

with ϑ ∈ [−π/2, 3π/2[,

(3.11) c = b

a

(
cosh at

2 − 1
)
> 0, and r =

√
c2 + 2b

a
c = b

a
sinh at

2 .

Observe that x2 > 0 iff ϑ ∈ I(c) := ]− δ(c), π + δ(c)[ with δ(c) = arcsin(c/r).
In the new coordinates we have

Ls,t =
{
x(ϑ) : ϑ ∈ I(c)

}
as the expression H is independent of ϑ:

(3.12) H = ac

b
= cosh at

2 − 1

yielding

(3.13)
√
H
√
H + 2 = sinh at

2 = a

b
r.

It remains to determine ϑ ∈ I(c) smoothly from knowing

d = 2a
b(b + ax2)

x1 − s√
H
√
H + 2

= 2 cosϑ
b + ac + ar sinϑ

=: f(ϑ).
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We show that f is strictly decreasing in I(c) by studying its derivative

f ′(ϑ) =
−2
(
(ac + b) sinϑ + ar

)
(b + ac + ar sinϑ)2 .

Since sinϑ > −c/r for ϑ ∈ I(c) we obtain

−(ac + b) sinϑ− ar < (ac + b) c
r
− ar < 0.

Hence, f ′ is negative and f is strictly decreasing. Therefore ΠL is injective.

Remark 3.1. The level sets Ls,t are circles with centers and radii depending
on s, t, and a, b: (

s,
b

a

(
cosh at

2 − 1
))

,
b

a
sinh at

2 .

In the limit t → ∞ the “north pole” of the circle converges to (s,−b/a).

To show that ΠL is an immersion we compute the determinant of the
Jacobian DΠL. We rearrange the components of ΠL and use the identity
∂sϕ = −∂x1ϕ:

ΠL(s, ω,x) =
(
s, ω, ϕ, ω∂x1ϕ

)
.

Thus,

DΠL =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 ∂x1ϕ

0 0 ∂x1ϕ ∂x2ϕ

0 0 ω∂2
x1ϕ ω∂x2∂x1ϕ

⎞⎟⎟⎟⎟⎠
and

(3.14) detDΠL = ω
(
∂x1ϕ∂x2∂x1ϕ− ∂x2ϕ∂2

x1ϕ
)
.

Using the Symbolic Math Toolbox of MATLAB (R2017b) we find that

detDΠL = −8ω a(x1 − s)2 + x2(ax2 + 2b)
(b + ax2)

(
(x1 − s)2 + x2

2
)(
a2(x1 − s)2 + (2b + ax2)2

) .
The determinant does not vanish since ω 
= 0 and x2, a, and b are positive,
that is, ΠL is an injective immersion. Thus, the Bolker condition (2.3) holds.
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3.2. Bolker condition for the positive offset case

Let α > 0 be the offset. In a first step towards the proof of Bolker we derive
a parametrization of the isochrone

Ls,t =
{
x ∈ R

2 : ϕ(s,x) = t
}
∩X.

W.l.o.g. set s = 0. The idea to obtain a parametrization of L0,t is to intersect
two isochrones of the previous setting where source and receiver are located
at the same position (zero offset). To be precise: we intersect the zero offset
isochrone about (−α, 0) for travel time ϑ ∈ [0, t] with the zero offset isochrone
about (α, 0) for travel time t − ϑ. All intersection points are in L0,t and by
letting ϑ vary in [0, t] we get finally all of L0,t.

The resulting system of nonlinear equations is

(x1 + α)2 + (x2 − c1)2 = r2
1 = c21 + 2bc1/a,(3.15)

(x1 − α)2 + (x2 − c2)2 = r2
2 = c22 + 2bc2/a,(3.16)

where

c1 = c1(ϑ) = b(cosh aϑ− 1)/a and c2 = c2(ϑ) = b(cosh a(t− ϑ) − 1)/a,

compare (3.11). Subtracting (3.16) from (3.15) and assuming ϑ 
= t/2, i.e.
c1 
= c2, lead to

(3.17) x2 = −b/a− 2αx1/(c2 − c1).

This expression for x2 plugged into (3.16) yields the quadratic equation

(
1 + 4α2

(c1 − c2)2
)
x2

1 + 2α
(2α(b/a + c2)

c2 − c1
− 1
)
x1 + b2

a2 + α2 = 0

having the two solutions

x±1 = x±1 (ϑ) = (c1 − c2) dx±

with

dx± := α(2b + a(c1 + c2)) ±
√
�

a
(
(c1 − c2)2 + 4α2)

where
� = 4a2α2(c1c2 − α2) + 4abα2(c1 + c2) − b2(c1 − c2)2.
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If � < 0 then there exist no intersection points. We have that � ≥ 0 if and
only if t ≥ tmin and ϑ ∈ [ϑmin, ϑmax] where

ϑmin /max = t

2 ∓ tmin

2 ,

see first paragraph of Appendix B. In view of (3.17) we finally obtain

x±2 = x±2 (ϑ) = − b

a
+ 2α dx±

which also holds in case c1 = c2.
By construction the pairs (x±1 , x±2 ) solve (3.16) but (3.15) as well because

we obtain the same pairs when we replace c2 by c1 and α by −α.

Remark 3.2. The isochrone L0,t, t > tmin, is the set of intersection points
of two circles. These circles intersect at two points (Δ > 0) with normal
directions that are not collinear. Hence, ∇xϕ 
= 0. For t = tmin the circles
touch at one point (Δ = 0). Thus, ∇xϕ = 0.

In Remark 4.5 below the situation of a more general wave speed is dis-
cussed.

From symmetry arguments we know two points explicitly on L0,t, namely
(0, p±) where

p± = b

a

(
cosh at

2 − 1
)
±
√

b2

a2 sinh2 at

2 − α2 for t > tmin.

These points correspond to the parameter value ϑ = t/2. In case

t < t = 4
a

asinh
(a
b

α

2
)

these two points are positive and because of the symmetry of L0,t with respect
to the line x1 = 0 the curve L0,t has a horizontal tangent at (0, p±). As a
consequence the equation ω∂sϕ(0, ·) = 0, ω 
= 0, has the two solutions (0, p±)
and ΠL would fail to be injective if X contained points with depth-coordinates
x2 less than

(3.18) xmin = b

a

(
cosh a tmin

2 − 1
)
.

Observe that xmin is the common limit of p+ and p− as t ↘ tmin.
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Figure 1: Isochrones L0,t for t ∈ {8.4, 10, 12.5} for wave speed v(x) = 0.5 +
0.6x2, x2 > 0. Source and receiver positions are indicated by black dots.
The offset is α = 5. Here, tmin ≈ 8.31, t ≈ 12.12 and xmin ≈ 4.24 which is
indicated by the dashed horizontal line.

Further, for t ≥ tmin and ϑ ∈ [ϑmin, ϑmax],

(3.19) 2α a

b
dx− =

2α
(
α(2b + a(c1 + c2)) −

√
�
)

b
(
(c1 − c2)2 + 4α2) < cosh a tmin

2 ,

see Appendix B. Thus, for t > tmin,

(3.20) x−2 = − b

a
+ 2α dx− = − b

a
+ b

a

2α
(
α(2b + a(c1 + c2)) −

√
�
)

b
(
(c1 − c2)2 + 4α2) < xmin.

We conclude that

L0,t =
{
x+
t (ϑ) := (x+

1 (ϑ), x+
2 (ϑ)) : ϑ ∈ [ϑmin, ϑmax]

}
∩X for t > tmin,

2

see Figure 1 for an illustration.3 Recalling the geometric definition of x+
t (ϑ)

as intersections of circles, see (3.15) and (3.16), it is obvious that there is a
proper subinterval [ϑmin,2, ϑmax,2] of [ϑmin, ϑmax] such that

(3.21) L0,t =
{
x+
t (ϑ) : ϑ ∈ [ϑmin,2, ϑmax,2]

}
for t > tmin.

2We use the subscript t in x+
t to emphasize the dependence on t.

3Under http://www.math.kit.edu/ianm3/~rieder/media/plot_isochrones.m we
provide a Matlab-function to plot isochrones for different a, b, α and t.

http://www.math.kit.edu/ianm3/~rieder/media/plot_isochrones.m
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Analytic expressions for ϑmin,2 = ϑmin,2(t) and ϑmax,2 = ϑmax,2(t) are
hard, if not even impossible, to find. One has to solve x+

2 (·) = xmin with xmin
from (3.4).

To finish the proof for the injectivity of ΠL, to determine the value of ϑ for
each preimage (which will determine the one preimage with x in L0,t), we have
to solve the following task: Given d ∈ {∂sϕ(0,x+

t (θ)) : θ ∈ [ϑmin,2, ϑmax,2]}
determine smoothly a unique ϑ such that d = ∂sϕ(0,x+

t (ϑ)).
In view of (3.10), (3.12), and (3.13) we obtain

(3.22) ∂sϕ(0,x+
t (ϑ)) = 2

b + a x+
2 (ϑ)

(
x+

1 (ϑ) + α

r1
+ x+

1 (ϑ) − α

r2

)
.

This is an odd function in ϑ with respect to t/2. Numerous numerical ex-
periments confirm ∂sϕ(0,x+

t (·)) to be strictly increasing in [ϑmin,2, ϑmax,2],
however, an analytic proof is still missing. But consult Appendix C for ana-
lytic arguments in case t is sufficiently large. Further, see Figure 2 for some
plots of ∂sϕ(0,x+

t (·)). The numerical values used for a, b, α, and t are noted
on top of the plots.4

Conclusion 3.3. We have overwhelming numerical and some analytical ev-
idence that the left projection ΠL for α > 0 is injective.

To show that ΠL is an immersion we recall the zero offset situation. The
representation (3.14) for detDΠL holds true also for non-zero offset. Since
the explicit expression of detDΠL computed by the Symbolic Math Toolbox
of MATLAB is complicated and involved, we take a different route.

Define the mapping

P : X → R
2, x �→

(
ϕ(0,x), ∂x1ϕ(0,x)

)�
,

and observe that detDΠL = ω detDP . Further, we have previously shown
that X is the disjoint union of level sets: X =

⋃
t>tmin L0,t ∩X, see (3.21). In

other words, the mapping

X :
{
(t, ϑ) : t > tmin, ϑ ∈ [ϑmin,2(t), ϑmax,2(t)]

}
→ X, (t, ϑ) �→ x+

t (ϑ),

is one-to-one and onto. For Q := P ◦ X we find that

Q(t, ϑ) =
(
t, ∂x1ϕ(0,x+

t (ϑ))
)� =

(
t,−∂sϕ(0,x+

t (ϑ))
)�

.

4For the reader’s own experiments, the Matlab-function used to plot the
graphs of ∂sϕ(0,x+

t (·)) shown in Figure 2 can be downloaded following this link:
http://www.math.kit.edu/ianm3/~rieder/media/plot_partial_s_phi3.m.

http://www.math.kit.edu/ianm3/~rieder/media/plot_partial_s_phi3.m
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Figure 2: The function ∂sϕ(0,x+
t (·)) in different scenarios. Left: over

[t/2, ϑmax], the (red) horizontal segment indicates [t/2, ϑmax,2]. Right: over
[t/2, ϑmax,2] where it is always strictly increasing. The value for ϑmax,2 has
been determined by solving equation (C.2) numerically.
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Hence,

DQ(t, ϑ) =
(

1 0
−∂t∂sϕ(0,x+

t (ϑ)) −∂ϑ∂sϕ(0,x+
t (ϑ))

)
yielding

detDQ(t, ϑ) = −∂ϑ∂sϕ(0,x+
t (ϑ)).

Above we gave numerical evidence that ∂sϕ(0,x+
t (·)) is strictly increasing on

the interval [ϑmin,2(t), ϑmax,2(t)] for all t ≥ tmin, see Figure 2 right column.
Thus,

detDQ(t, ϑ) < 0.

Since,
0 > detDQ(t, ϑ) = (detDP )(X(t, ϑ)) detDX(t, ϑ)

for all t > tmin and ϑ ∈ [ϑmin,2(t), ϑmax,2(t)], (detDP )(X(t, ϑ)) 
= 0. Thus,
detDP and, hence, detDΠL cannot vanish on X.

Conclusion 3.4. We have overwhelming numerical and some analytical ev-
idence that the Bolker condition (2.3) is satisfied for the FIO F : E ′(X) →
D′(Y ) as defined by (3.2) and (3.3) for α > 0.

3.3. An analysis of the top order symbol for the zero offset case

In this section, we calculate the top order symbol of our imaging operator

(3.23) Λ := ΔF †ψF

for offset α = 0 where ψ : Y → [0,∞) is a smooth compactly supported cutoff
function and Δ is the (negative) Laplacian with symbol | · |2. Further, F † is
a generalized backprojection operator:

F †u(x) =
∫∫
Y

W (s,x)u(s, t)δ(t− ϕ(s,x))dt ds =
∫
R

W (s,x)u(s, ϕ(s,x))ds
(3.24)

with a smooth positive weight W . The formal L2-adjoint F ∗ has weight W =
Θ and the generalized backprojection used by Beylkin [1] has weight W =
1/Θ. In view of (3.5), (A.2), and (A.3), Θ is a smooth positive function.
We include the smooth cutoff function ψ : Y → [0,∞) because F : E ′(X) →
D′(Y ) but F † : E ′(Y ) → D′(X), so they cannot be composed directly.
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To calculate this symbol, we first analyze the preimages of ΠR : C →
T ∗(X). This will allow us to calculate the symbol of the imaging operator at
(x, ξ) ∈ T ∗(X)\{0} by multiplying the symbols of ψF and of ΔF † at each
preimage and then adding the results. The natural projection is

(3.25) ΠR : C → T ∗(X)\{0}, (s, ω,x) �→ (x, ω∇xϕ)

where we are using coordinates of (3.6) on C.
We show that (x, ξ) ∈ T ∗(X)\{0}, has exactly two preimages in C under

ΠR unless ξ1 = 0. To this end we need to find (s, ω) from ω∇xϕ = ξ, i.e.,
from

(3.26) ω∂x1ϕ = ξ1 and ω∂x2ϕ = ξ2.

First, assume ξ1 = 0. Using (3.9) and that ∂sϕ = −∂x1ϕ, one sees there
is only one solution, s = x1. Using (3.26) one sees that ω = ξ2/∂x2ϕ(x1,x)
(note that ∂x2ϕ(x1,x) 
= 0, since ξ2 
= 0 and ω 
= 0). Therefore, there is only
one preimage in this case: Π−1

R (x, ξ) = {(x1, ξ2/∂x2ϕ(x1,x),x)}
Now, assume ξ1 
= 0 and let q := ξ2/ξ1. Using (3.26) yields that

∂x2ϕ

∂x1ϕ
= ξ2

ξ1
= q.

Since ∂x1ϕ = −∂sϕ, see (3.9), and

∂x2ϕ = 2
b(b + ax2)

ax2/b−H√
H
√
H + 2

where H is given by (3.12), we obtain

q = x2(2b + ax2) − a�2

2�(b + ax2)
with � := x1 − s.

Completing the square we find the two solutions s+ and s− for � where

(3.27)
s± = s±(x, q) := x1 − �1,2

= x1 + q(b + ax2)
a

±
√

x2

a
(2b + ax2) +

(
q(b + ax2)

a

)2
.
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Finally, using the coordinates (3.7) on C, we have the preimage of (x, ξ):

Π−1
R (x, ξ) =

⎧⎨⎩
{(
x1, ξ2/∂x2ϕ(x1,x),x

)}
: ξ1 = 0, ξ2 
= 0,{(

s, ξ1/∂x1ϕ(s,x),x
)
: s ∈ {s+, s−}

}
: ξ1 
= 0.

(3.28)

Since ϕ from (3.8) satisfies the Bolker condition, Λ is a ΨDO of order 1,
see [13, Theorem 3.3].5 Further, our representation of the top order symbol
σ(Λ) given in [13, Theorem 3.7] for a constant v is valid also for any Radon
transform (3.2) defined by a function ϕ for which the Bolker condition holds.
Thus,

(3.29) σ(Λ)(x, ξ) = 2π |ξ|2
∑

(s,ω,x)∈Π−1
R (x,ξ)

ψ(s, ϕ(s,x))W (s,x)Θ(s,x)
|ωB(s,x)|

where

B(s,x) = det
(

∇xϕ(s,x)
∂s∇xϕ(s,x)

)
is the Beylkin determinant (which does not vanish). This calculation is done
in generality in [20, pp. 337–338], and one argues microlocally around each
preimage then takes the sum over the finite number of preimages of (x, ξ)
under ΠR.

To analyze the symbol of the imaging operator near ξ1 = 0, we note the
following limits, which follow from (3.27):

(3.30)
s+(x, q) q→∞−−−→ ∞, s−(x, q) q→∞−−−→ x1,

s+(x, q) q→−∞−−−−→ x1, s−(x, q) q→−∞−−−−→ −∞.

We emphasize that the sum on the right of (3.29) is smooth even at (x, (0, ξ2))
because, by (3.30), one of the two values s±(x, ξ2/ξ1) for (x, ξ), ξ1 
= 0, grows
without bound as ξ1 → 0 (the other value converges to x1 by (3.30)). Hence,
the cutoff function ψ becomes zero as the one value of s± becomes unbounded.
Put differently, the sum in (3.29) transitions continuously from two terms to

5Here is a quick explanation of the order: under the Bolker assumption any
hypersurface Radon transform R in a d-dimensional space and its (formal, smoothly
weighted) L2-adjoint R† are FIOs of order (1− d)/2, see [15]. Hence, Λ as in (3.23)
has order 2 + 1 − d = 1.
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one term as ξ1 → 0 because one of the values of s in the sum becomes
unbounded and the other converges to the preimage for ξ1 = 0.

Next we explore properties of Λ by inspecting its top order symbol: In view
of Theorem 2.5 we want to know where is it microlocally elliptic? Further,
how does it behave asymptotically as x2 → ∞?

To this end we first consider 1/|ωB(s,x)|. Using ξ� = ω∇xϕ(s,x) for
(s, ω,x) ∈ Π−1

R (x, ξ) and ∂sϕ = −∂x1ϕ we find that

|ωB(s,x)| =
∣∣∣ det
(
ω∇xϕ(s,x)
∂s∇xϕ(s,x)

) ∣∣∣ = ∣∣∣ det
(

ξ�

∂x1∇xϕ(s,x)

) ∣∣∣
= |ξ1 ∂2

x1,x2ϕ(s,x) − ξ2 ∂
2
x1ϕ(s,x)

∣∣.
Further,

∂2
x1,x2ϕ(s,x) = a3

b3
(s− x1)

(
a(s− x1)2 + x2(ax2 + b)

)
(ax2 + b)2(H + 2)3/2H3/2

and

∂2
x1ϕ(s,x) = 1

2
a3

b3
x2

2(ax2 + 2b)2 − a2(s− x1)4

(ax2 + b)3(H + 2)3/2H3/2

with H from (3.10).
In case ξ1 = 0 and ξ2 
= 0 we have s = x1 leading to

1
|ωB(s,x)| = 1∣∣ξ2| |∂2

x1ϕ(x1,x)
∣∣ .

The situation is a bit more involved in the general situation of ξ1 
= 0.
Setting

S± := s±(x, q) − x1 = q(b + ax2)
a

±
√

x2

a
(2b + ax2) +

(
q(b + ax2)

a

)2(3.31)

we have
1

|ωB(s±,x)| = N±(x, ξ)

where

N±(x, ξ) := b3

a3
(H + 2)3/2H3/2(ax2 + b)3

|12(x2
2(ax2+2b)2−a2S4

±)ξ2 − (ax2 + b)S±(aS2
±+x2(ax2+b))ξ1|
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using the abbreviation H from (3.10).
The following result characterizes visible and invisible singularities with

respect to Λ.

Proposition 3.5. Let (y, η) ∈ T ∗(X) and define

C(y) := C+(y) ∪ C−(y) ∪
{
ξ ∈ R

2 : ξ1 = 0, ψ
(
y1, ϕ(y1,y)

)
> 0
}

where

C±(y) =
{
ξ ∈ R

2 : ξ1 
= 0, ψ
(
s±(y, ξ2/ξ1), ϕ(s±(y, ξ2/ξ1)),y)

)
> 0
}
.

a) (visible singularity) If η ∈ C(y) then Λ is microlocally elliptic of order
1 at (y, η) which yields

(y, η) ∈ WFr(u) ⇐⇒ (y, η) ∈ WFr−1(Λu)

for any u ∈ E ′(X) and any r ∈ R.
b) (invisible singularity) If η 
∈ C(y) then Λu is microlocally C∞ at (y, η)

for any u ∈ E ′(X).

Proof. a) According to Theorem 2.5 we only need to validate the statement
about the microlocal ellipticity of Λ.

First, let η1 > 0. Define m := η2/η1 and the cone

Vε =
{
(λ,mλ)� : λ ≥ 0,m ∈ [m− ε,m + ε]

}
where ε > 0. Obviously, Vε is a conic neighborhood of η and

(3.32) ∀ ξ ∈ Vε\{0} : m− ε ≤ ξ2
ξ1

≤ m + ε.

Let Bρ ⊂ X be a closed ball centered at y with a sufficiently small radius
ρ > 0. Since η ∈ C(y) and η1 
= 0 we have η ∈ C+(y) or η ∈ C−(y), say,
η ∈ C+(y). Using

1
|ωB(s+,x)| =

N+
(
x, (1, ξ2/ξ1)

)
|ξ1|

we obtain

σ(Λ)(x, ξ) ≥ |ξ|2 Σ(x, ξ)
|ξ1|

with numerator
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Σ(x, ξ) = ψ
(
s+(x, ξ2/ξ1), ϕ(s+(x, ξ2/ξ1),x)

)
W
(
s+(x, ξ2/ξ1),x

)
× Θ
(
s+(x, ξ2/ξ1),x

)
N+
(
x, (1, ξ2/ξ1)

)
.

In view of (3.32) and by continuity we may decrease ε and ρ such that Σ
attains a positive minimum in Bρ × Vε\{0}:

cε,ρ := min
{
Σ(x, ξ) : x ∈ Bρ, ξ ∈ Vε\{0}

}
> 0.

Hence,

∀ ξ ∈ Vε\{0}, ∀x ∈ Bρ : σ(Λ)(x, ξ) ≥ cε,ρ
|ξ|
|ξ1|

|ξ| ≥ cε,ρ |ξ|.

The case η1 < 0 can be handled similarly.
Finally, we consider η ∈ C(y) with η1 = 0. Assume η2 > 0. Here, we

choose ε > 0 and

Vε =
{
(mλ, λ)� : λ ≥ 0,m ∈ [−ε, ε]

}
as conic neighborhood of η with the property that

(3.33) ∀ ξ ∈ Vε\{0} :
∣∣∣ξ1
ξ2

∣∣∣ ≤ ε.

Let ξ ∈ Vε\{0}. Note that |ξ2/ξ1| ≥ 1/ε (where 1/0 := ∞). Consider for
the time being ξ1 ≥ 0. Then, for any δ > 0 we can find ε = ε(δ) > 0 and
ρ = ρ(δ) > 0 such that

(3.34)
∀ ξ ∈ Vε\{0}, ∀x ∈ Bρ : s−(x, ξ2/ξ1) ∈ [x1 − δ, x1 + δ]

and s+(x, ξ2/ξ1) ≥ 1/δ

where Bρ is as above (in case of ξ1 ≤ 0: s+(x, ξ2/ξ1) ∈ [x1 − δ, x1 + δ] and
s−(x, ξ2/ξ1) ≤ −1/δ). Thus, for δ sufficiently small

ψ
(
s−(x, ξ2/ξ1), ϕ(s−(x, ξ2/ξ1),x)

)
> 0

and ψ
(
s+(x, ξ2/ξ1), ϕ(s+(x, ξ2/ξ1),x)

)
= 0

for any ξ ∈ Vε\{0}, ξ1 ≥ 0, and x ∈ Bρ. Now, σ(Λ)(x, ξ) consists of one term
only (namely the one with s = s−). We write

1
|ωB(s−,x)| =

N−
(
x, (ξ1/ξ2, 1)

)
|ξ2|
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to get

σ(Λ)(x, ξ) ≥ |ξ|2 Σ(x, ξ)
|ξ2|

with

Σ(x, ξ) = ψ
(
s−(x, ξ2/ξ1), ϕ(s−(x, ξ2/ξ1)),x)

)
W
(
s−(x, ξ2/ξ1),x

)
× Θ
(
s−(x, ξ2/ξ1),x

)
N−
(
x, (ξ1/ξ2, 1)

)
.

By continuity, (3.33), and (3.34) we may decrease δ such that

cε,ρ := min
{
Σ(x, ξ) : x ∈ Bρ, ξ ∈ Vε\{0}

}
> 0.

Similar arguments in case ξ1 ≤ 0 let us conclude with

∀ ξ ∈ Vε\{0}, ∀x ∈ Bρ : σ(Λ)(x, ξ) ≥ cε,ρ
|ξ|
|ξ2|

|ξ| ≥ cε,ρ |ξ|.

The case η2 < 0 can be treated analogously.
The proof of part b) follows the lines of [21, Rem. 3.3].

The result of the above proposition differs fundamentally from a similar
result in the situation of a constant sound speed v(·) = b where singularities
(y, η) of n with η2 = 0 are not visible in Λn (whatever the choice of ψ and
S is), see [11]. The increasing sound speed (3.1), however, allows to recover
those singularities, in principle.

Now we investigate how the top order symbol σ(Λ)(x, ξ) behaves as depth
increases, that is, as x2 → ∞ while x1 and ξ are kept fixed. In case ξ1 = 0
and ξ2 
= 0 we have s = x1 leading to

(3.35) 1
|ωB(s,x)| = 1∣∣ξ2 ∂2

x1ϕ(s,x)
∣∣ � a4

4
x2

2
|ξ2|

as x2 → ∞

where � indicates that the terms are asymptotically equal. The situation is
a bit more involved in the general situation of ξ1 
= 0. From (3.31) we obtain

S± � q̃± x2 as x2 → ∞

with q̃± := q ±
√

1 + q2 and q = ξ2/ξ1. Using

(H + 2)3/2H3/2 � a3

8b3
(
1 + q̃2

±
)3

x3
2 as x2 → ∞
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we arrive at

(3.36) 1
|ωB(s±,x)| �

a

8
(1 + q̃2

±)2

|(1 − q̃2
±)q/2 − q̃±|

x2
2

|ξ1|
as x2 → ∞.

Next, we investigate the asymptotics of Θ(s,x) as x2 → ∞. Now let (s, ω,x) ∈
Π−1

R (x, ξ), ξ1 
= 0. By, (3.5), (A.2), (A.3), and (3.31),

(3.37) Θ(s±,x) � C2
A

1 + q̃2
±

2b
a2

1
x3

2
as x2 → ∞.

In case ξ1 = 0 we have s = x1 and

(3.38) Θ(s,x) � 2b2

a2
C2

A

x3
2

as x2 → ∞.

We summarize our results in the following proposition. For its compact for-
mulation we introduce new notation:

Ψ±(x, q) := ψ
(
s±(x, q), ϕ(s±(x, q),x)

)
.

Proposition 3.6. Let (x, ξ) ∈ T ∗(X). Set q = ξ2/ξ1 for ξ1 
= 0, q̃± =
q ±
√

1 + q2, and Ξ± = |(1 − q̃2
±)q − 2q̃±|.

If W = Θ in (3.24) (i.e. F † = F ∗) then

σ(Λ)(x, ξ) �

⎧⎪⎨⎪⎩
2π b2

a3
C4

A

x4
2

(
Ψ+(x,q)

Ξ+
+ Ψ−(x,q)

Ξ−

)
|ξ|2
|ξ1| : ξ1 
= 0,

2π b4
C4

A

x4
2
ψ
(
x1, ϕ(x1,x)

) |ξ|2
|ξ2| : ξ1 = 0,

as x2 → ∞.
If W = 1/Θ in (3.24) then

σ(Λ)(x, ξ) �

⎧⎪⎨⎪⎩
π
4 a x2

2

(
Ψ+(x, q) (1+q̃2

+)2
Ξ+

+ Ψ−(x, q) (1+q̃2
−)2

Ξ−

)
|ξ|2
|ξ1| : ξ1 
= 0,

π
2 a4x2

2 ψ
(
x1, ϕ(x1,x)

) |ξ|2
|ξ2| : ξ1 = 0,

as x2 → ∞.

Proof. We only need to combine (3.29) with (3.35), (3.36), (3.37), and (3.38).

The above proposition clearly reveals that the top order symbols for both
weights depend on x2. Hence, jumps in n having the same height but being
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located at different depths should be reconstructed with different jump height
in Λn. While the weight W = Θ diminishes, the weight W = 1/Θ magnifies
jumps. These shortcomings can be overcome by a slight modification of Λ.
Indeed, let M2 be the operator which multiplies a distribution in D′(X) by
the monomial x2. Then, the imaging operators

Λmod,1 = ΔM4
2F

∗ψF for W = Θ and Λmod,2 = ΔM−2
2 F †ψF for W = 1/Θ

are still ΨDOs of order 1 with top order symbols which are asymptotically
independent of the depth variable. Hence, jumps in n should be reconstructed
relatively independently of their depths (provided the jumps of n are visible
in Λmod,in, compare Proposition 3.5).

Remark 3.7. We expect statements analogous to Propositions 3.5 and 3.6
to hold even for α > 0 because the geometry of the isochrones (3.21) that
determine the visible singularities are similar to those spheres which are the
isochrones for α = 0, compare Remark 3.1 and see Figure 1.

We finish this section with a numerical example where the underlying
background sound speed is v(x) = 0.5 + 0.1x2 and the used common offset is
α = 5. Thus, the characteristic values are

tmin ≈ 17.63 and xmin ≈ 2.07,

that is, the Bolker condition is satisfied in the sense of Conclusion 3.4 for
X = {x ∈ R

2 : x2 > xmin} and Y = S × (tmin,∞) but it is violated off
these sets. We use the phantom n shown in the left of Figure 3 together with
some isochrones to travel times close to tmin. The isochrone for t = tmin is the
geodesic connecting source with receiver.

The numerical approach of [12] has been adapted to non-constant back-
ground velocity and yields the numerical approximations to Λn = ΔF ∗ψg
and Λmod,1n = ΔM2

2F
∗ψg presented in the bottom of Figure 3 from discrete

data g = Fn. The reconstructions exhibit some cutoff-artifacts but the parts
of the singular support of n with horizontal normal directions are visible as
predicted by Proposition 3.5. Moreover, while the ellipticity of Λ deteriorates
with depth, the ellipticity of Λmod,1 is asymptotically independent of it.

The illustration and numerical approximations in Figure 3 were kindly
provided by Kevin Ganster.6 The underlying algorithm and further examples
can be found in [9].

6Department of Mathematics, Karlsruhe Institute of Technology,
kevin.ganster@kit.edu

mailto:kevin.ganster@kit.edu
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Figure 3: Top: Illustration of phantom n. It consists of a superposition of
indicator functions of circular disks and a half-space. The colors white, grey,
and black represent the numerical values 0, 1, and 2 respectively. Moreover,
the colored curves are isochrones L0,t for ten selected travel times as specified
in the legend. The black dots mark source and receiver positions.
Bottom: Numerical approximations of Λn = ΔF ∗ψg (left) and Λmod,1n =
ΔM4

2F
∗ψg (right) computed from g(s, t) = Fn(s, t) for discrete values s ∈

[−10, 10] and t ∈ [17.628, 47.628]. Both reconstructions show those parts of
the singular support of n with horizontal normal directions (indicated by red
dots in the top image).

4. Stability of the travel time with respect to sound speed

In this section we study the dependence of the phase function Φ in the FIO
representation (1.6) of the operator F on the background sound speed v =
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v(x). We recall that the phase function is given by

Φ(s, t,x, ω) = ω(t− ϕ(s,x)),

where
ϕ(s,x) = τ(x,xs(s)) + τ(x,xr(s))

and τ(x,xs) is the solution to the eikonal equation (1.4). Hence we first
consider this equation in the following section.

4.1. Solving the eikonal equation

We denote by R
d
+ = {x = (x1, . . . , xd) ∈ R

d : xd > 0} the subsurface (here
d = 2 or d = 3). In R

d
+ we consider the eikonal equation

(4.1) |∇τ(x)|2 = 1
v(x)2

for the travel time τ of rays starting from a fixed point x0 ∈ ∂Rd
+ on

the surface. Here v ∈ C∞(cl(Rd
+)) denotes the smooth and positive sound

speed in the subsurface, and we write C∞(cl(R+)) for the set of all functions
g : cl(Rd

+) → R that are C∞ in R
d
+ and, together with all derivatives, have

continuous extensions to cl(Rd
+).

We also need that the solution τ is a smooth function of the initial condi-
tion x0 ∈ ∂Rd

+ in order to get a smooth phase function, but we will suppress
this dependence for the moment.

We study (4.1) as a special case of the equation

H(x, u,∇u) = 0

for a real-valued function u = u(x) on a subset of Rd where the Hamiltonian
is given by

H(x, u,p) = 1
2
(
p · p − 1

v(x)2
)

for p ∈ R
d.

Note that H(x, u,p) = H(x,p) does not depend on u in our case.
According to [10, Chapter 10], solutions are thus obtained via solving the

characteristic system

ẋ = ∂pH(x,p) = p,

ṗ = −∂xH(x,p) = −∇v(x)
v(x)3 ,(4.2)
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u̇ = p · ∂pH(x,p) −H(x,p),= 1
2
(
|p|2 + 1

v(x)2
)
.

We see that u is obtained by simple integration and thus we can concentrate
on the (x,p)-subsystem.

The initial conditions corresponding to those in (1.4) are

(4.3) x(0, ξ) = x0, p(0, ξ) = 1
v(x0)

ξ, u(0, ξ) = 0,

where ξ ∈ Sd−1
+ = {ξ ∈ R

d : |ξ| = 1, ξd > 0} as we are considering the
subsurface.

Remark 4.1. If there is an ε0 > 0 such that v(x) = v0 > 0 for x ∈ cl(Rd
+)

with xd ∈ [0, ε0], then if a ray starts from x0 ∈ ∂Rd
+ in a direction ξ ∈ Sd−1

+ ,
we have an explicit formula for t ∈ [0, ε0v0], namely

x(t, ξ) = x0 + t

v0
ξ, p(t, ξ) = 1

v0
ξ, u(t, ξ) = t

v2
0
,

which, for x ∈ R
d
+ with |x−x0| ≤ ε0, leads via v0(x−x0) = tξ to t = v0|x−x0|

and the well-known τ(x) = u(x) = |x−x0|
v0

.

We want to solve the system (4.2) for t ≥ 0 with initial conditions (4.3).
Assuming

(4.4) v(x) is bounded away from 0 and ∇v is bounded,

the system (4.2) with initial conditions (4.3) has a unique global solution:
local existence and uniqueness hold by Picard-Lindelöf, and since the right
hand side of the (x,p)-subsystem has linear growth in p the solution exists
globally (this is an application of the Gronwall lemma). Since v is defined
on cl(Rd

+), “globally” means here that, for fixed ξ ∈ Sd−1
+ , the maximal t-

interval is either [0,∞) and we set Tmax(ξ) := ∞ or it is a compact interval
[0, Tmax(ξ)] with x(Tmax(ξ), ξ) ∈ ∂Rd

+, which means that the ray resurfaces.
In order to obtain a solution τ of the eikonal equation (4.1) we parametrize

Sd−1
+ by ξ′ in the open unit ball Bd−1 in R

d−1 via ξ =
(
ξ′,
√

1 − |ξ′|2
)
. We let

Tmax(ξ′) := Tmax(ξ) for ξ′ ∈ Bd−1 and denote by

Qmax := {(t, ξ′) ∈ (0,∞) ×Bd−1 : t ∈ (0, Tmax(ξ′))}
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the (open) parameter set for the family of maximal solutions of (4.2) with
(4.3). We introduce the map

Ψx0 : Qmax → R
d
+, (t, ξ′) �→ x(t, ξ),

where the subscript x0 refers to the point x0 ∈ ∂Rd
+ we fixed at the beginning.

(Of course, also the solutions x, u, p, and the maximal existence time Tmax(ξ′)
depend on x0 but we skip this dependence in notation.)

If the sound speed is constant, v = v0, then Qmax = (0,∞) × Bd−1 and
Ψx0 : (0,∞) × Bd−1 → R

d
+ is a diffeomorphism (see Remark 4.1 above with

ε0 → ∞). For our linear velocity model only the ray with ξ′ = 0 does not
resurface and we have Tmax(ξ′) → 0 for |ξ′| → 1 (see Appendix A), but also
here the map Ψx0 above is a diffeomorphism. Observe in both cases that the
diffeomorphism Ψ−1

x0 “degenerates” as we approach the initial point x0 from
the subsurface.

In the general case, rays may intersect in the subsurface, and this is some-
thing we want to exclude. So we let

Quniq := {(t, ξ′) ∈ Qmax : (Ψx0)−1 (Ψx0(t, ξ′)) = (t, ξ′)}.

This means that Ψx0(Quniq) is the set of points in the subsurface that are hit
(exactly once) by a unique ray from x0. In the two examples of a constant
v = v0 or a linearly growing v we clearly have Quniq = Qmax.

In the following we thus consider Ψx0 : Quniq → R
d
+. We might only have

that a suitable restriction of this map Ψx0 is a diffeomorphism. Hence we
assume for the sound speed v:

(4.5)
there exists a continuous T : Bd−1 → (0,∞) such that
the restriction of Ψx0 to Q := {(t, ξ′) : ξ′ ∈ Bd−1, t ∈ (0, T (ξ′))}
is a diffeomorphism onto Ψx0(Q).

Since Q ⊂ Quniq, in particular each point x in the subset Ψx0(Q) of the
subsurface is hit exactly once by a unique ray emanating from the fixed point
x0 on the surface. Under (4.5) the function

τ(x) := τ(x,x0) := u(Ψ−1
x0 (x)), x ∈ Ψx0(Q),

is the desired solution to the eikonal equation (4.1), existing on Ψx0(Q). As
explained above, in our linear velocity model, we can take Q = Qmax and
have Ψx0(Qmax) = R

d
+. Varying the source point x0 of the rays in an open set

L ⊂ bd(Rd
+) we assume moreover

(4.6) v is such that the map Ψx0 : Q → R
d
+ depends smoothly on x0 ∈ L.
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Here we assume for simplicity that the same Q can be used for all x0 ∈ L.
In particular, this means that the Q in (4.5) has to be a subset of Quniq for
every x0 ∈ L. Obviously, this is no restriction if v only depends on depth,
i.e., only depends on xd. The assumption (4.6) is clearly satisfied for the
linear velocity model where (x,x0) �→ τ(x,x0) is smooth on R

d
+ × ∂Rd

+ (see
Appendix A).

4.2. Perturbation of the sound speed

Let v0 be a given sound speed satisfying (4.4), (4.5), and (4.6) in place of v.
We now assume that v1 ∈ C∞(cl(Rd

+)) is another sound speed satisfying (4.4)
such that

the support of v1 − v0 is contained in {x ∈ R
d
+ : xd ≥ ε0} for some ε0 > 0.

(4.7)

For j = 0, 1, we denote by xj ,pj , uj the solution to the characteristic sys-
tem (4.2) with sound speed v replaced by vj and with the same initial val-
ues (4.3), which then induces a function T j

max : Bd−1 → (0,∞], parameter sets
Qj

max and Qj
uniq and a map Ψj

x0 : Qj
uniq → R

d
+ as before. We denote by τ0(·)

the solution to (4.1) with sound speed v0 for a fixed initial value x0 ∈ ∂Rd
+

(which exists by assumption (4.5) for v0). By a perturbation argument, we
shall obtain a solution τ1(·) to (4.1) with sound speed v1. The assumption
ε0 > 0 guarantees that Ψ0

x0 and Ψ1
x0 coincide for small values of t. For the

perturbation argument we thus can stay away from x0 where the diffeomor-
phism Ψ0

x0 degenerates. More precisely, we shall consider compact subsets
K ⊂ Q of the form

(4.8) K = {(t, ξ′) : ξ′ ∈ K0, t ∈ [a(ξ′), b(ξ′)]}

where K0 ⊂ Bd−1 is the compact closure of a smooth domain and a, b : K0 →
(0,∞) are smooth and satisfy, for any ξ′ ∈ K0,

0 < a(ξ′) < b(ξ′) < T (ξ′) and

{x(t, ξ′) : t ∈ (0, a(ξ′)]} ⊂ {x ∈ R
d
+ : xd ∈ (0, ε0)}.

The following is the main part of the perturbation result.

Proposition 4.2. Let v0 ∈ C∞(cl(Rd
+)) be a sound speed satisfying (4.4),

(4.5), and (4.6) in place of v. Let K ⊂ Q be compact and of the form (4.8)
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above. Let δ > 0 and let K1 ⊂ R
d
+ be the compact closure of an open neigh-

borhood of Ψ0
x0(K). If v1 ∈ C∞(cl(Rd

+)) satisfies (4.4) and (4.7) and is suffi-
ciently close to v0 in C2-norm on K1 then K ⊂ Q1

max and Ψ1
x0 : Q1

max → R
d
+,

(t, ξ′) �→ x1(t, ξ′), gives rise to a diffeomorphism of an open set U ⊃ K
with cl(U) ⊂ Q and Ψ0

x0(K) ⊂ Ψ1
x0(U) and the solutions τ0 and τ1(x) :=

u1((Ψ1
x0)

−1(x)) satisfy

(4.9) |τ0(x) − τ1(x)| ≤ δ,

for all x ∈ Ψ0
x0(K).

If C ⊂ ∂Rd
+ is compact, then K2 is the compact closure of an open neigh-

borhood of
⋃

x0∈C Ψ0
x0(K), and if v0 and v1 are sufficiently close in C2-norm

on K2 then, for x0 ∈ C, τ1(·,x0) exists on Ψ0
x0(K) and we have

|τ0(x,x0) − τ1(x,x0)| ≤ δ

for all x ∈ Ψ0
x0(K) and x0 ∈ C.

Proof. Clearly we obtain the solutions x1,p1, u1 by letting, for ξ′ ∈ K0 and
t ∈ [0, a(ξ′)],

x1(t, ξ) = x0(t, ξ), p1(t, ξ) = p0(t, ξ), u1(t, ξ) = u0(t, ξ),

and then solving (4.2) with initial conditions

x1(a(ξ′), ξ) = x0(a(ξ′), ξ), p1(a(ξ′), ξ) = p0(a(ξ′), ξ),
u1(a(ξ′), ξ) = u0(a(ξ′), ξ),

which are non-degenerate. Here we have used assumption (4.7).
If v1−v0 is sufficiently small in C1-norm on K1 then the solutions x0(t, ξ′)

and x1(t, ξ′), as well as u0(t, ξ′) and u1(t, ξ′) can be made arbitrarily close in
sup-norm on K, since solutions to ODE systems depend continuously on the
right hand side and on parameters.

Here we need also that derivatives of Ψ0
x0 and Ψ1

x0 with respect to t and the
parameter ξ′ are close to each other. This follows by the same arguments, as
∂tΨ0

x0 and ∂ξ′Ψ0
x0 are given as solutions to ODE systems involving derivatives

of the right hand side of (4.2). We thus need that v1 is close to v0 in C2-norm
on K1.

On the compact set K we have inf |detDΨ0
x0(t, ξ

′)| > 0, and if DΨ0
x0(t, ξ

′)
and DΨ1

x0(t, ξ
′) are sufficiently close on K we infer that DΨ1

x0(t, ξ
′) ∈ R

d×d

is regular for each (t, ξ′) ∈ K. Hence Ψ1
x0 is locally an isomorphism on an
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open superset U of K and we may assume cl(U) ⊂ Q. Thus it only remains
to show that Ψ1

x0 is injective on K.
By smoothness of a and b on the compact set K0, the set K has a Lipschitz

boundary and there exists c > 0 such that, for any two points (t1, ξ′1), (t2, ξ′2) ∈
K, we find a C1-curve γ : [0, 1] → K connecting these two points with length
L ≤ c|(t1, ξ′1) − (t2, ξ′2)|. Then we have

Ψ1
x0(t2, ξ

′
2) − Ψ1

x0(t1, ξ
′
1) =

∫ 1

0
(DΨ1

x0)
(
γ(r)
)
γ̇(r) dr

= Ψ0
x0(t2, ξ

′
2) − Ψ0

x0(t1, ξ
′
1) +
∫ 1

0

(
DΨ1

x0 −DΨ0
x0

)(
γ(r)
)
γ̇(r) dr.

By compactness of K we obtain a constant η0 > 0 such that

|Ψ0
x0(t2, ξ

′
2) − Ψ0

x0(t1, ξ
′
1)| ≥ η0|(t2, ξ′2) − (t1, ξ′1)| for all (t1, ξ′1), (t2, ξ′2) ∈ K.

Since∣∣∣ ∫ 1

0

(
DΨ1

x0 −DΨ0
x0

)(
γ(r)
)
γ̇(r) dr

∣∣∣
≤ sup

(t,ξ′)∈K

∣∣(DΨ1
x0 −DΨ0

x0

)
(t, ξ′)

∣∣L |(t2, ξ′2) − (t1, ξ′1)|,

we thus obtain, if DΨ1
x0 and DΨ0

x0 are sufficiently close on K,

|Ψ1
x0(t2, ξ

′
2)−Ψ1

x0(t1, ξ
′
1)| ≥

η0

2 |(t2, ξ′2)− (t1, ξ′1)| for all (t1, ξ′1), (t2, ξ′2) ∈ K.

In particular, Ψ1
x0 is injective on K, and we find U as desired.

We may run the same arguments with a superset K ′ ⊃ K of the form (4.8)
satisfying K ⊂ int(K ′) and Ψ0

x0(K
′) ⊂ int(K1). The boundary points of

Ψ0
x0(K

′) and Ψ1
x0(K

′) are close if v0 and v1 are close in C2-norm on K1.
Hence we can arrange for Ψ0

x0(K) ⊂ Ψ0
x0(K

′) ∩ Ψ1
x0(K

′).
Letting τ1(x) := u1((Ψ1

x0)
−1(x)) for x ∈ Ψ1

x0(K
′) we have, for x ∈

Ψx0(K ′) ∩ Ψ1
x0(K

′),

|τ0(x) − τ1(x)| ≤ |u1((Ψ1
x0)

−1(x)) − u0((Ψ1
x0)

−1(x))|
+ |u0((Ψ1

x0)
−1(x)) − u0((Ψ0

x0)
−1(x))|

≤ sup
(t,ξ′)∈K′

|∇u0(t, ξ′)| |(Ψ1
x0)

−1(x) − (Ψ0
x0)

−1(x)|

+ sup
(t,ξ′)∈K′

|(u1 − u0)(t, ξ′)|.



2018 Peer Christian Kunstmann et al.

We know that u1 − u0 can be made small in sup-norm on K ′, and from the
arguments above it is clear that (Ψ1

x0)
−1 and (Ψ0

x0)
−1 are as close as we wish

on Ψ0
x0(K) if v0 and v1 are sufficiently close in C2-norm on K1.

Using (4.6) and another compactness argument we prove the last asser-
tion.

For application of Theorem 5.2 below to our situation, we need closeness
of the corresponding phase functions ϕ0 and ϕ1 in C3-norm, see (5.14) and
the definition of Pj , (5.4). We recall that, e.g., ϕ0 is given by

ϕ0(s,x) = τ0(x,xs(s)) + τ0(x,xr(s))

where xs,xr : S′ → ∂Rd
+ are smooth parameterizations of the source/receiver

pairs over an open set S′ ⊂ R
d−1. In the situation of Proposition 4.2, i.e. if

v0 satisfies (4.4), (4.5), and (4.6), and

(4.10) xs(S′) ∪ xr(S′) ⊂ L,

we have that ϕ0 is defined at least on the set

(4.11) U0 := {(s,x) ∈ S′ × R
d
+ : x ∈ Ψ0

xs(s)(Q) ∩ Ψ0
xr(s)(Q)},

this set is open, and ϕ0 : U0 → R is smooth.
The following notion seems natural in the given situation.

Definition 4.3. For a subset K ⊂ U0 we define the ray closure r(K) ⊂ cl(Rd
+)

(with respect to v0) to be the union of all trajectories of the parts of rays
connecting xs(s) or xr(s) and x where (s,x) ∈ K.

The motivation for this definition is that, for any (s,x) ∈ K, the travel
time from xs(s) or xr(s) to the point x is affected by the values of the velocity
on the trajectory of the ray that hits x before it hits x. Observe that the ray
closure of a compact set K is a compact subset of cl(Rd

+).

Theorem 4.4. Let v0 satisfy (4.4), (4.5), and (4.6). Let S′ ⊂ R
d−1 be open

and assume that xs,xr : S′ → ∂Rd
+ are smooth and satisfy (4.10). Let v1 ∈

C∞(cl(Rd
+)) satisfy (4.4) and (4.7). Let K ⊂ U0 be compact and δ0 > 0. If

v1 − v0 is sufficiently small in C5-norm on the compact closure M ⊂ cl(Rd
+)

of an open neighborhood of the ray closure of K then

‖ϕ1 − ϕ0‖C3(K) ≤ δ0.

Moreover, if ∇xϕ0 
= 0 on K and ‖v1 − v0‖C5(M) is sufficiently small, then
we have in addition that ∇xϕ1 
= 0 on K.
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Proof. Applying Proposition 4.2 we obtain ϕ1. We have to look at derivatives
of ϕ0 and ϕ1 with respect to x and the parameter s, i.e. at derivatives of
solutions to the eikonal equation (4.1) with respect to x and initial values x0.
Hence we need derivatives of solutions u0 (and u1) to (4.2) with respect to
t, ξ′ and x0 as well as derivatives of the diffeomorphisms (Ψ0)−1 and (Ψ1)−1.
The latter boils down to derivatives of Ψ0 and Ψ1. All these derivatives are
solutions to ODE systems involving derivatives of the right hand side in (4.2).
The first claim now follows by the same arguments as in the proof of Propo-
sition 4.2.

For the proof of the second claim we put

δ1 := inf
{

max
j=1,...,d

|∂xjϕ0(s,x)| : (s,x) ∈ K

}
.

By compactness of K and assumption we have δ1 > 0. Now we choose 0 <
δ̃0 < min{δ0, δ1} and apply the first claim with δ̃0 in place of δ0. Then we
have, for (s,x) ∈ K,

max
j=1,...,d

|∂xjϕ1(s,x)| ≥ max
j=1,...,d

|∂xjϕ0(s,x)| − δ̃0 ≥ δ1 − δ̃0 > 0,

which proves the claim.

Recall that ϕ0 is just a part of the phase function

Φ0(s, t,x, ω) = ω (t− ϕ0(s,x)) ,

and in order to satisfy Definition 2.2 we need ϕ0 defined on a set S′ × X0,
where X0 ⊂ R

d
+ is open, and we need that −∇xΦ0 = ω∇xϕ0(s,x) does not

vanish on S′ ×X0 where ω 
= 0, i.e. we need ∇xϕ0 
= 0 on S′ ×X0. In a first
step we let

(4.12) Ξ0 :=
⋂
s∈S′

Ψ0
xs(s)(Q) ∩ Ψ0

xr(s)(Q).

Observe that S′ × Ξ0 ⊂ U0. Then we set

(4.13) X0 := int ({x ∈ Ξ0 : ∇xϕ0(s,x) 
= 0 for all s ∈ S′ }) .

Finally, for our applications below, the second claim in Theorem 4.4, applied
to a compact subset K ⊂ S′ ×X0 makes sure that in the situation of Theo-
rem 4.4 also the perturbed function ϕ1 gives rise to a phase function

Φ1(s, t,x, ω) = ω (t− ϕ1(s,x)) ,

in the sense of Definition 2.2.
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Remark 4.5. The condition ∇xϕ0(s,x) 
= 0 means

∇xτ0(xs(s),x) 
= −∇xτ0(xr(s),x).

By construction via the characteristic system (4.2),

∇xτ0(xs(s),x) = −∇xτ0(xr(s),x)

means that the ray emanating from xs(s) and the ray emanating from xr(s)
meet smoothly at x (cp. [23, p. 35]) or, in other words, it means that the
prolongation of the ray from xs(s) to x eventually hits xr(s). So we have to
exclude points of Ξ0 lying on trajectories of rays that directly connect source
xs(s) and receiver xr(s). We mention here that the argument [23, p. 35],
where no points have to be excluded, relies on the assumption that the velocity
v0 is constant close to the surface (and on uniqueness of connecting rays).

In our linear velocity model, where all (but one) of the rays starting from
a fixed point x0 resurface, and in the common offset geometry with parameter
α > 0 source xs(s) and receiver xr(s) have a fixed distance 2α. Rays con-
necting xs(s) and xr(s) only reach a certain maximal depth. In other words,
points in X0 need to have a certain minimal depth, given by xmin in (3.4).

5. Stability of the imaging operator with respect to phase
function

Our first theorem, Theorem 5.2, asserts that if the phase functions of FIOs
F0 and F1 are close enough in a precise way and if F0 satisfies the Bolker con-
dition, then F1 also satisfies the Bolker condition. The principle that maps
close enough to diffeomorphisms can be diffeomorphisms, at least above pre-
compact sets, is known, but we are not aware of a proof, so we provide one for
our case. In Section 5.3, we will apply this to the seismic operator with small
offset and to operators with travel time close to ones for which the forward
operator satisfies the Bolker condition.

5.1. The setup

First we provide some notation. Let U and V be subsets of Rd. If cl(U) is
compact, then we say U is precompact. If U is precompact and cl(U) ⊂ V ,
then we write U � V .

If M is a matrix in R
m×n, we define the sup norm of M , ‖M‖, to be the

maximum of the absolute values of the entries of M .
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If G is a differentiable map with domain B and cl(A) ⊂ B, then we will
say G is an immersion (respectively, injective) on A if G is an immersion
(respectively, injective) on some open neighborhood of cl(A). Let X be an
open subset of Rd and � ∈ N. Finally, let G be a C function from X to either
R

n or R
m×n for some m,n. If A � X, then for m ∈ N, we let ‖G‖Cm(A)

denote the maximum of the sup norm of the component functions of G and
their derivatives up to order m on A.

Let X be an open subset of R2
+, and let S′ be an open subset of R. For

j = 0, 1, assume that Fj is an FIO from E ′(X) to D′(S′ × (0,∞)) with phase
function

(5.1) Φj(s, t,x, ω) = ω(t− ϕj(s,x)),

where ϕj : S′ ×X → (0,∞) is smooth.
In this case, Fj is a FIO given by

(5.2) Fjn(s, t) =
∫

exp (ıΦj(s, t,x, ω)) Θj(s, t,x)n(x) dx dω

where Θj is a symbol satisfying Definition 2.1.
The canonical relation for Fj is

Cj =
{

(s, t,−ω∂sϕj , ω;x, ω∇xϕj)
: (s,x) ∈ S′ ×X,ω ∈ R\{0}, t = ϕj(s,x)

}
,

and it can be given global coordinates

(5.3)
S′ ×X×R\{0} � (s,x, ω) �→

(s, ϕj(s,x),−ω∂sϕj(s,x), ω;x, ω∇xϕj(s,x)) ∈ Cj .

For j = 0, 1, we will let Πj
L be the left projection from Cj to T ∗(S′×(0,∞))

and Πj
R be the corresponding right projection. Let A be a subset of S′ ×X.

Then the projection Πj
L is injective (or an immersion) on A × R\{0} (using

coordinates (5.3)) if and only if

(5.4) Pj(s,x) = (s, ϕj(s,x), ∂sϕj(s,x))

has the same property for (s,x) ∈ A. We introduce the function Pj to simplify
the calculations since ω is given by the dt coordinate of ΠL in (5.3).

Note that if A � S′ ×X, then

(5.5) ‖ϕ1 − ϕ0‖C3(A) ≥ ‖P1 − P0‖C2(A) .
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Our next proposition is a key to the proof of Theorem 5.2 below.

Proposition 5.1. Let S � S′ and Ω � X both be open and let Pj be as given
in (5.4) where Fj and ϕj are as given in (5.1) and (5.2) for j = 0, 1. Assume
F0 satisfies the Bolker condition. Then, there is a δ1 > 0 such that if

(5.6) ‖ϕ1 − ϕ0‖C3(S′×X) < δ1,

then,

(1) P1 is an immersion above cl(S × Ω), so C1 is a local canonical graph,
and

(2) There is an ε1 > 0 depending on δ1 (and ϕ0, S, S
′,Ω and X) such that

for all (s,x) ∈ cl(S × Ω), the function P1 : Bε1(s,x) → R
3 is injective.

Proof. We need to take some estimates on a superset of S ×Ω with compact
closure in S′ × X, so let S̃ and Ω̃ be open sets such that S � S̃ � S′ and
Ω � Ω̃ � X.

First, we prove part (1). Because F0 satisfies the Bolker condition and
cl(S̃ × Ω̃) is compact, there is an m > 0 such that the derivative matrix
satisfies

(5.7) |det (DP0(s,x))| ≥ m for all (s,x) ∈ cl(S̃ × Ω̃).

The determinant function is continuous on the space of 3× 3 matrices in sup
norm, so there is a δ1 > 0 such that

(5.8)
if ‖ϕ1 − ϕ0‖C3(cl(S̃×Ω̃)) < 2δ1, then

∀(s,x) ∈ cl(S̃ × Ω̃), |det (DP1(s,x)) − det (DP0(s,x))| < m/2.

Therefore, |det (DP1(s,x))| ≥ m/2 for all (s,x) ∈ cl(S̃ × Ω̃), so P1 is an
immersion on a neighborhood of cl(S̃ × Ω̃) and Π1

L is an immersion above
S̃ × Ω̃. Then, Π1

R must be an immersion above this set by [16, Proposition
4.1.4] because C1 is a Lagrangian manifold. Therefore, C1 is a local canonical
graph above S̃ × Ω̃ × R\{0}.

Without loss of generality, we will assume δ1 ≤ 1.
Now, we prove part (2). For A ∈ R

3×3, let ‖A‖Op denote the operator
norm of the map R

3 � y �→ Ay. Then, A �→ ‖A‖Op is a continuous map in
the sup norm on R

3×3. This is true because all norms are equivalent on finite
dimensional normed linear spaces, due to the Heine Borel Theorem.
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Since the map A �→ A−1 is continuous on Gl(3), we see that

(5.9) A �→
∥∥∥A−1

∥∥∥
Op

is continuous on Gl(3).

We now prove that there is a d > 0 such that
∥∥∥DP−1

1 (s,x)
∥∥∥

Op
≤ d for all

(s,x) ∈ cl(S̃ × Ω̃) and all ϕ1 satisfying (5.6).
Let C0 = DP0(cl(S̃× Ω̃)). As the derivative DP0 is a continuous function,

C0 is a compact subset of Gl(3). Now, let C be the union of all closed balls of
radius

√
3δ1 in R

3×3 centered at points of C0. Since C0 is a compact subset
of Gl(3), we may assume C ⊂ Gl(3) (by making δ1 smaller if needed).

By (5.5), for each (s,x) ∈ cl(S̃ × Ω̃), |DP1(s,x) − DP0(s,x)| ≤
√

3δ1.
Therefore, DP1(cl(S̃ × Ω̃)) ⊂ C. By (5.9), there is a maximum d > 0 on the
compact set C to the continuous function A �→

∥∥A−1∥∥
Op. Therefore, for all

(s,x) ∈ cl(S̃ × Ω̃),
∥∥∥DP−1

1 (s,x)
∥∥∥

Op
≤ d.

Let c = 1/d, then

(5.10) ∀(s,x) ∈ cl(S̃ × Ω̃),∀y ∈ R
3, ‖(DP1(s,x))y‖ ≥ c ‖y‖ .

For the rest of the proof let pkij(s,x) denote the ij entry of the 3 × 3
matrix DP k

j (s,x) for k = 0, 1.
We claim there is an L > 0 depending only S̃ × Ω̃ and ϕ0 such that all

first and second derivatives of ϕ1 have Lipschitz norm bounded by L on any
convex subset of cl(S̃ × Ω̃). First, by compactness of cl(S̃ × Ω̃), there is an
L′ > 0 such that all second and third derivatives of ϕ0 are bounded above
in sup norm by L′. Then, since (5.5) holds and δ1 ≤ 1, all second and third
derivatives of ϕ1 are bounded above in absolute value by L = L′ + 1. Then,
a straightforward Mean Value Theorem argument shows that all first and
second derivatives of ϕ1 have Lipschitz norms bounded above by L on any
convex subset of cl(S̃ × Ω̃).

This implies that

(5.11)
∣∣∣p1

ij(s,x) − p1
ij(t,y)

∣∣∣ ≤ L |(s,x) − (t,y)|

for all (s,x) and (t,y) in any convex subset of cl(S̃ × Ω̃).
Let

(5.12) ε1 = c

6L.
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Perhaps by making ε1 smaller, we can assume that the open ball Bε1(s,x) ⊂
S̃ × Ω̃ for all (s,x) ∈ cl(S × Ω). By (5.11), if (s,x) ∈ cl(S × Ω) and (t,y) is
in the convex set Bε1(s,x) ⊂ S̃ × Ω̃, then

(5.13) |(s,x) − (t,y)| < ε1 =⇒
∣∣∣p1

ij(s,x) − p1
ij(t,y)

∣∣∣ < c

6 .

This is exactly inequality (16.14) in the proof of Theorem 16.9 in [6] where the
c in (5.10) is exactly the constant in inequality (16.13) in [6]. The rest of our
proof follows word for word the proof of Theorem 16.9 in [6]. The conclusion
of that theorem is that P1 is injective on Bε1(s,x). Since (s,x) ∈ cl(S × Ω)
is arbitrary, ε1 is independent of (s,x), and for every (s,x) ∈ cl(S × Ω), P1
is injective on Bε1(s,x).

5.2. Nearby travel times and the Bolker condition

We now state the theorem we will use in our applications in Section 5.3.

Theorem 5.2. Let F0 and F1 be FIO from domain E ′(X) to D′(S′ × R+)
given by (5.2). We assume F0 : E ′(X) → D′(S′ × R+) satisfies the Bolker
condition.

Let Ω � X and S � S′ both be open. Then, there is a δ0 > 0 such that if

(5.14) ‖ϕ1 − ϕ0‖C3(S′×X) < δ0

then F1 : E ′(Ω) → D′(S × R+) satisfies the Bolker condition.

Proof. Our assumptions allow us to use Proposition 5.1 for S ×Ω ⊂ S′ ×X.
Let δ1 be as in (5.8) and let ε1 > 0 be as in part (2) of Proposition 5.1 for
S × Ω. Then, there is a δ0 ∈]0, δ1] such that

(5.15)
for all s ∈ S and x and y in Ω,

|P0(s,x) − P0(s,y)| < 2δ0 =⇒ |(s,x) − (s,y)| < ε1.

This is an immediate consequence of the fact that P−1
0 is uniformly continuous

from the compact set P0 (cl(S × Ω)) to cl(S × Ω) because P0 is a smooth
injection on S′ ×X and therefore P−1

0 is also a smooth injection.
Now assume ‖ϕ1 − ϕ0‖C3(S′×X) < δ0. Let (s,x) and (t,y) be in Ω and

assume P1(s,x) = P1(t,y). By the definition of P1, s = t. Now, using (5.14)
and the triangle inequality, one sees that |P0(s,x)−P0(s,y)| < 2δ0. By (5.15),
|x − y| < ε1, so (s,y) ∈ Bε1(s,x). Since P1 is injective on this ball by
Proposition 5.1, x = y. Therefore, P1 is injective on S × Ω and F1 : E ′(Ω) →
D′(S × R+) satisfies the Bolker condition.
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Somewhat related estimates have been used to prove injectivity of Radon
transforms with measures that are close to real analytic measures using the
injectivity of Radon transforms with those real analytic measures [8, Sec-
tion 5].

5.3. Applications of our stability results

In this section, we apply the results of the previous sections to show that the
Bolker condition holds for a broader range of operators than just those for the
linear velocity model, as long as they are close to operators satisfying Bolker.

5.3.1. Small offset In Section 3, we showed that the seismic operator with
linear wave speed in dimension two satisfies the Bolker condition for zero
offset, α = 0. We now show that the operator with sufficiently small offset
α > 0 also satisfies this condition. However, our theorem is more general, and
we will prove it for any travel time for which the zero-offset operator satisfies
the Bolker condition. The proof rests on the fact that ϕα for small offset, α,
is close to ϕ0 (which satisfies the Bolker condition), and this allows the use
of Theorem 5.2.

Assume that the travel time τ is smooth from R
2
+ × ∂(R2

+) to (0,∞). For
α ≥ 0 define

(5.16)
Φα(s, t,x, ω) = ω(t− ϕα(s,x)),

where
ϕα(s,x) = τ(x, (s− α, 0)) + τ(x, (s + α, 0))

and let

(5.17) Fαn(s, t) =
∫

exp (ıΦα(s, t,x, ω)) Θα(s, t,x)n(x) dx dω

where Θα is a symbol according to Definition 2.1.

Theorem 5.3. Let X be an open subset of R2
+. Using the notation of (5.16)–

(5.17), assume F0 : E ′(X) → D′(R × (0,∞)) is an FIO satisfying the Bolker
condition. Let Ω � X be open and let S � R be open.

Then, there is an α0 > 0 that depends on τ, S, X, and Ω, such that
Fα : E ′(Ω) → D′(S × (0,∞) satisfies the Bolker condition for all α ∈ [0, α0].

Remark 5.4. Our theorem is valid in a somewhat more general setting. As-
sume that t0 ≥ 0, α > 0, and Fα : E ′(X) → D′(S′×(t0,∞)) is an FIO satisfy-
ing the Bolker condition (assuming the function A(x,xs) in (1.6) is smooth).
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Then, our proof below shows there is a δ > 0 depending on ϕα, S
′, X, S, and Ω

such that Fα : E ′(Ω) → D′(S × (t0,∞)) also satisfies Bolker for |α− α| < δ.
This is true because our proof rests on compactness and uniform continu-
ity arguments that can be used to show ϕα is sufficiently close to ϕα if α is
sufficiently close to α.

Theorem 5.3 can be applied to linear, increasing wave speed, (3.1) as we
now discuss. We will write the constant xmin in (3.4) as xmin = xmin(α) since
its dependence on α is important.

To apply Theorem 5.3, we first recall that F0 satisfies the Bolker con-
dition as shown in Section 3.1. Then, we choose an α2 > 0 and choose
x0 > xmin(α2). We let

X =
{
(x1, x2)

∣∣ x2 > x0
}
.

Therefore, isochrones intersect X only for t > tmin(α2). This allows us to use
the arguments in Section 3, including Remark 3.2, to assert Fα is an FIO for
α ∈ [0, α2]. Next, we apply Theorem 5.3 to conclude, for some α0 ∈ (0, α2],
that

(5.18)
For all α ∈ [0, α0], Fα : E ′(Ω) → D′(S × (0,∞))

satisfies the Bolker condition.

The statement (5.18) includes no specific condition on x, but there is
an implicit condition since Ω � X, so x2 is bounded away from x0 for all
points in Ω. By the discussion in Section 3.2 for linear wave speed, the Bolker
condition holds only if x2 > xmin(α0) for all x ∈ Ω. Once Ω is chosen, this
gives an implicit restriction on α0, namely xmin(α0) < x2 for all x ∈ Ω.

Proof of Theorem 5.3. As mentioned at the beginning of this section, all we
need to show is that ϕα is sufficiently close to ϕ0 for α sufficiently close to
zero.

We first show that Fα is an FIO for sufficiently small α. When Fα is an
FIO, its canonical relation is

Cα = {(s, t,−ω∂sϕα, ω;x, ω∇xϕα) : (s,x) ∈ S × Ω, ω ∈ R\{0}, t = ϕα(s,x)}

and Cα can be given coordinates

(5.19) (s,x, ω) �→ (s, ϕα(s,x),−ω∂sϕα, ω;x, ω∇xϕα) .

Let α2 > 0. Let X be an open, precompact, convex set containing cl(Ω)
and let S′ be an open, precompact, convex set containing cl(S + [−α2, α2]).
Then, S′ ×X is an open, precompact, convex set in R

3.



Seismic imaging with generalized Radon transforms 2027

Note that the symbol of F0, A(x,xs)2
v2(x) (see (1.6)) is smooth by assumption.

This means that the function A(x,xs) must be smooth for s ∈ R and x ∈ X,
and all α. Therefore, the symbol of Fα is smooth.

To show that Φα is a nondegenerate phase function on S′× (0,∞)×X ×
R\{0} for small α, we note that ∂

∂tΦα = ω is nonzero for all α. Therefore, we
only need to check the x derivative. As F0 is assumed to be an FIO satisfying
Definition 2.2, −∇xΦ0 = ω∇xϕ0(s,x) is nowhere zero on R× R

2
+.

Note that the differentiable map

[−α2, α2] × (cl(S′) + [−α2, α2]) × cl(X) � (α, s,x) �→ ∇xτ(x, (s− α,x)

is uniformly continuous because this domain is compact. Therefore, the map
(α, s,x) �→ ∇xϕα(s,x) is uniformly continuous on [0, α2] × cl(S′ ×X). Now,
using uniform continuity and that ∇xϕ0 is bounded away from zero on the
compact set cl(S′ × X), there is an α1 ∈ (0, α2] such that ∇xϕα(s,x) is
bounded away from zero for all (α, s,x) ∈ [0, α1]×S′×X. This shows for α ∈
[0, α1] that Φα is a nondegenerate phase function according to Definition 2.2,
and Fα is an FIO from E ′(X) to D′(S′ × (0,∞)) satisfying Definition 2.3.

Let δ0 be as in Theorem 5.2 for this ϕ0, S, S
′,Ω, and X. We now show

that for some α0 ∈ (0, α1],

(5.20) ∀α ∈ [0, α0], ‖ϕα − ϕ0‖C3(cl(S′×X)) < δ0.

This follows immediately since the function (α, s,x) �→ ϕα(s,x) and its
derivatives up to order 3 in (s,x) are uniformly continuous on the compact
set [0, α1] × cl(S′ ×X), therefore there is an α0 ∈ (0, α1] such that∣∣∣∂βϕα(s,x) − ∂βϕ0(s,x)

∣∣∣ < δ0, for α ∈ [0, α0] and (s,x) ∈ cl(S × Ω)

for all partial derivatives in (s,x) up to order three, i.e., for |β| ≤ 3. Taking
the sup over all these derivatives shows that (5.20) holds for all α ∈ [0, α0].

By Theorem 5.2, this implies that Fα : E ′(Ω) → D′(S × (0,∞) satisfies
the Bolker condition for all α ∈ [0, α0].

5.3.2. Seismic operators with close traveltimes In this section we
show that, if the velocities for two seismic experiments are close and the
associated seismic operator for one satisfies the Bolker condition, then the
other seismic operator does, too, as long as the operators agree near the sur-
face, ∂Rd. We use the results of Section 4 to relate the velocities to the travel
time and then use Theorem 5.2.
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Theorem 5.5. Let v0 ∈ C∞(cl(Rd
+)) satisfy (4.4), (4.5), and (4.6). Let

S′ ⊂ R
d−1 be open and assume that xs,xr : S′ → ∂Rd

+ are smooth and sat-
isfy (4.10). Let Ξ0 be given by (4.12), assume that X0 defined in (4.13) is not
empty, and that v0 induces an FIO F0 : E ′(X0) → D′(S′ × (0,∞)) satisfying
the Bolker condition.

Let v1 ∈ C∞(cl(Rd
+)) satisfy (4.4) and (4.7). Let S � S′ and Ω � X0 be

open.
If v1−v0 is sufficiently small in C5-norm on the compact closure M of an

open neighborhood M̃ of the ray closure (Definition 4.3) of cl(S × Ω) and if
the amplitude function A0 is smooth on (M̃ ∩R

d
+)×L, where L is from (4.6)

and (4.10), then v1 induces an FIO F1 : E ′(Ω) → D′(S× (0,∞)) that satisfies
the Bolker condition.

Proof. We choose S̃′ and X such that S � S̃′ � S′, Ω ⊂ X � X0, and M is
still the closure of an open neighborhood of the ray closure of cl(S̃′ ×X). We
shall apply Theorem 5.2 to Fj : E ′(X) → D′(S̃′ × (0,∞)), j = 0, 1. Clearly,
F0 : E ′(X) → D′(S̃′ × (0,∞)) is an FIO that satisfies the Bolker condition.

We have to check that v1 induces an FIO F1 : E ′(X) → D′(S̃′ × (0,∞))
and we have to make ϕ1 − ϕ0 small in C3-norm on cl(S̃′ × X), which is a
compact subset of S′×X0. To this end we use Theorem 4.4, which asserts the
required smallness of ϕ1 − ϕ0, if v1 − v0 is sufficiently small in C5-norm on
M , which is the compact closure of an open neighborhood of the ray closure
of cl(S̃′ ×X).

Moreover, by Theorem 4.4 we also have that v1 induces a phase function
Φ1 on cl(S̃′×X). For the amplitude function A1(x,x0) we solve the transport
equation (1.5) (with A1 and τ1 in place of A and τ , respectively) as in [2,
eq. (E3.9)], see also (A.1). Observe that the ray Jacobian appearing there is
just the determinant of DΨj

x0(t, ξ
′) in our situation. As initial values we can

take those of A0(x,x0) for x with xd ∈ (0, ε0) since v1(x) = v0(x) for such x.
Hence we conclude that v1 gives rise to an FIO F1 : E ′(X) → D′(S̃′× (0,∞)).
Now application of Theorem 5.2 finishes the proof.

Appendix A. The amplitude function

To find an explicit representation of the function Θ = Θ(s,x), see (3.5), we
will use (1.5) to get hold of A along seismic rays which are the characteristic
curves of the eikonal equation (1.4), see, e.g., [2, Appendix E2]. We rely on
the ray system (4.2) (t ≥ 0 is the running parameter)

dr
dt = p, r(0) = xs;

dp
dt = −∇v(r)

v3(r) , p(0) = ξ

v(r(0)) ,
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with a unit vector ξ = (ξ1, ξ2)� ∈ R
2 (we denote the rays here by r rather

than by x as in (4.2) to comply with the notation of (3.5)). Note that
p(t) = ∇τ(r(t)). Before we proceed with solving the system we establish the
connection of the rays to the amplitude: via the divergence theorem follows
from (1.5) that

(A.1) A2(r(t), r(0)) = C2
A

| det Jr(t)|

where CA > 0 is a suitable constant and Jr is the Jacobian of r with respect
to t and a variable which parameterizes ξ, the initial directions of the rays,
see [2, eq. (E3.9)].

For the time being let r(0) = 0 yielding p(0) = ξ/b. Then, the ray system
has the following explicit solution

r1(t) = p1(0)t = ξ1
b
t, r2(t) = b

a

(√
1 − a2

b4
ξ2
1 t

2 + 2 a

b2
ξ2 t− 1

)
,

which can be verified by plugging in. We are only interested in down-going
rays, so that ξ2 > 0. Further, r2 ≥ 0 for t ∈ [0, tmax] where tmax = 2b2

a
ξ2
ξ2
1
,

ξ1 
= 0 (these rays re-surface at tmax). In case ξ1 
= 0, the orbits of the rays
are arcs on the circles with centers z =

(
b
a

ξ2
ξ1
,− b

a

)
and radii R = |z|. This

fact was already reported in [22].
As ξ2 =

√
1 − ξ2

1 we use ξ1 as additional parameter for the rays, that is,
r = r(t, ξ1). Hence,

| det Jr| = |∂tr1∂ξ1r2 − ∂tr2∂ξ1r1| = t

ξ2
√
b4 − a2ξ2

1 t
2 + 2 ab2ξ2 t

.

For given x ∈ X, x1 
= 0, we now find the unique ray connecting 0 with x. To
this end we need to determine the corresponding ξ1 where we use the feature
that rays follow circular arcs with centers z as explained above. For symmetry
reasons we may assume that x1 > 0. Thus,

(
x2 + b

a

)2
+ (x1 − z1)2 = b2

a2 + z2
1

yielding

z1 = 1
2x1

((
x2 + b

a

)2
+ x2

1 −
b2

a2

)
.
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Since z1 = b
a

√
1−ξ2

1
ξ1

we get

ξ1 = ξ1(x) = 1√
1 + a2

4b2 x2
1

(
(x2 + b

a)2 + x2
1 − b2

a2

)2
= x1

|x|
√

1 + a
bx2 + a2

4b2 |x|2
.

Further,

r(t(x), ξ1(x)) = x for t(x) = b x1

ξ1(x) = b |x|
√

1 + a

b
x2 + a2

4b2 |x|
2.

We conclude that

(A.2) A2(x,0) = C2
A

ξ2(x)
√
b4 − a2ξ2

1(x) t2(x) + 2 ab2ξ2(x) t(x)
t(x) .

For arbitrary source position we get

(A.3) A(x,xs(s)) = A(x − xs(s),0).

Remark A.1. We do have that lima↘0 A(x,0) = CA

√
b
√
x2/|x|. This limit is

an amplitude belonging to the wave speed v(x) = b with travel time τ(x,0) =
|x|/b. Indeed, √

x2/|x| solves (1.5) for that τ . Another solution is 1/
√
|x|.

Observe that the quotient of both amplitudes is bounded from above and from
below by positive constants on each cone given by |x1| ≤ cx2 where c > 0.
In particular, both amplitudes have the same asymptotic behavior as x2 → ∞
while x1 remains bounded.

Appendix B. Proof of (3.19)

We set ε = ϑ− t/2 ∈ [−t/2, t/2] and express c1 as well as c2 as functions of ε.
Then,

c1 + c2 = 2b(cosh(at/2) cosh(aε) − 1)/a,
c1c2 = b2(cosh(aε) − cosh(at/2))2/a2.

Further,

(c1 − c2)2 = R2 sinh2(aε) with R = 2b sinh(at/2)/a.
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It follows that

Δ = b2(R2 − 4α2)
(
1 + a2α2

b2
− cosh2(aε)

)
.

Hence, Δ ≥ 0 if and only if t ≥ tmin and ε ∈ [−ε∗, ε∗] where cosh2(aε∗) =
1 + a2α2/b2, that is, ε∗ = tmin/2.

In this notation, (3.19) is equivalent to

(B.1) 2bα cosh(at/2) cosh(aε) −
√

Δ
4α2 + R2 sinh2(aε)

<
b

2α cosh(aε∗) for ε ∈ [−ε∗, ε∗].

As the left hand side is even in ε we restrict our attention to [0, ε∗]. We
observe (B.1) to hold for ε = 0 since

2α cosh(at/2) −
√
R2 − 4α2 aα/b < 2α cosh(aε∗)

⇐⇒ b(cosh(at/2) − cosh(aε∗)) < a
√
R2/4 − α2

which is true for t > tmin. Further, (B.1) is also true for ε = ε∗ and t > tmin
according to

4α2 cosh(at/2) cosh(aε∗) < 4α2 + 4α2( cosh2(at/2) − cosh2(aε∗)
)

⇐⇒ cosh(at/2) cosh(aε∗) < 1 + cosh2(at/2) − cosh2(aε∗).

To validate the general case we rewrite (B.1) equivalently into

R2 cosh(aε∗) ≤ f(ε)

with
f(ε) :=R2 cosh(aε∗) cosh2(aε) + 2α

√
Δ/b

− 4α2( cosh(at/2) − cosh(aε∗)
)
cosh(aε).

We have just established that

f(0) ≥ R2 cosh(aε∗) and f(ε∗) ≥ R2 cosh(aε∗).

To finish the proof of (B.1) we consider the derivative of f :

f ′(ε) = 2a sinh(aε)
(
g(ε) + h(ε)

)
where

g(ε) = R2 cosh(aε∗) cosh(aε) − 2α2( cosh(at/2) − cosh(aε∗)
)
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and

h(ε) = − α
√
R2 − 4α2 cosh(aε)√

cosh2(aε∗) − cosh2(aε)
.

The function g is positive and strictly increasing whereas h is negative and
strictly decreasing to −∞ in [0, ε∗[. Further, there is at most one ε̃ ∈ ]0, ε∗[
such that g(ε̃) = −h(ε̃).

We distinguish three cases.

1. g(0) + h(0) > 0: Then, g + h > 0 in a neighborhood of ε = 0 and
ε̃ exists, that is, g + h ≥ 0 on [0, ε̃]. Hence, f ′|[0,ε̃] ≥ 0 on [0, ε̃] and
f |[0,ε̃] ≥ R2 cosh(aε∗) since f(0) ≥ R2 cosh(aε∗). However, f |[ε̃,ε∗] ≥
R2 cosh(aε∗) as well since g+h is negative on [ε̃, ε∗[ implying f ′|[ε̃,ε∗[ ≤ 0
which yields the stated estimate by f(ε∗) ≥ R2 cosh(aε∗).

2. g(0)+h(0) < 0: Then, g+h < 0 in a neighborhood of ε = 0 which readily
implies that g+h ≤ 0 on all of [0, ε∗] because g+h has one zero at most
and has to approach −∞. Hence, f ′|[0,ε∗[ ≤ 0 and f |[0,ε∗] ≤ R2 cosh(aε∗)
by f(ε∗) ≥ R2 cosh(aε∗).

3. g(0) + h(0) = 0: Then, either g + h > 0 or g + h < 0 in a neighborhood
of ε = 0 and we can proceed as in (1) or (2), respectively.

Appendix C. On the injectivity of ΠL for positive offset

Here we prove injectivity of the function ∂sϕ(0,x+
t (·)) over [ϑmin,2, ϑmax,2],

see (3.22), if t is sufficiently large.
Using the notation of Appendix B we get, for ε ∈ [−ε∗, ε∗],

f(ε) := ∂sϕ
(
0,x+

t (t/2 + ε)
)

= 4 sinh(aε)
(R2 − T 2) sinh2(aε) + R2

(
R2

aα
cosh(aε)

− T (4α2 + R2 sinh2(aε))

aαT cosh(aε) + b
√
R2 − 4α2

√
cosh2(aε∗) − cosh2(aε)

)

= 4 sinh(aε)/a/α
(1 − T 2/R2) sinh2(aε) + 1︸ ︷︷ ︸

=: g(ε)

×
aαT (R2 − 4α2) + cosh(aε)bR2√R2 − 4α2

√
cosh2(aε∗) − cosh2(aε)

aαTR2 cosh(aε) + bR2
√
R2 − 4α2

√
cosh2(aε∗) − cosh2(aε)︸ ︷︷ ︸

=: h(ε)
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where T = 2b cosh(at/2)/a. Since T/R ≥ 1 the function g is strictly increasing
in [0, ε∗] with g(ε∗) = 4/((1 − T 2/R2)a2α2/b + b). Further, the function h is
strictly decreasing in [0, ε∗] from h(0) = 1 − 4α2T/(T +

√
R2 − 4α2)/R2 to

h(ε∗) = (R2−4α2)/R2/
√

1 + a2α2/b2. Further, h′(0) = 0 and limε→ε∗ h
′(ε) =

−∞. Hence, f strictly increases to its maximal value attained at an εmax ∈
]0, ε∗[ and then decreases strictly on [εmax, ε∗].

To validate the required injectivity we need to show that ε∗,2 := ϑmax,2 −
t/2 is less or equal to εmax. However, explicit values for both, εmax and ε∗,2,
are hard to find. We can, nevertheless, guarantee that ε∗,2 ≤ εmax for large t.
Indeed, by limt→∞ T/R = 1 and limt→∞R = ∞ we find f to converge uni-
formly on [0, ε∗] to

f∞(ε) := 4 sinh(aε)
aα

aα + cosh(aε)b
√

cosh2(aε∗) − cosh2(aε)

aα cosh(aε) + b
√

cosh2(aε∗) − cosh2(aε)
.

This limit function attains its maximum, say, at ε∞max and εmax ≈ ε∞max for
large t. Since

(C.1) ε∗,2 → 0 for t → ∞

and ε∞max only depends on a, b, and α, we have the claimed injectivity for
large t.

We close this section with a proof of (C.1). Recall that ε∗,2 is the posi-
tive solution of x+

2 (t/2 + ε) = xmin with xmin from (3.18). In view of (3.19)
and (3.20) (where the minus sign in front of the square root has to be replaced
by a plus sign) this equation reads

√
1 + a2α2

b2
= 2α

aαT cosh(aε)/b +
√
R2 − 4α2

√
cosh2(aε∗) − cosh2(aε)

R2 sinh2(aε) + 4α2︸ ︷︷ ︸
=: D(ε)

.

(C.2)

For D we have D(0) = cosh(at/2) +
√

sinh2(at/2) − a2α2/b2 → ∞ as t → ∞
but D(ε) → 0 as t → ∞ for any ε 
= 0. Hence, (C.1) holds true.
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