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Abstract: We introduce a Bohr-Sommerfeld quantization for b-
symplectic toric manifolds and show that it coincides with the for-
mal geometric quantization of [GMW18b]. In particular, we prove
that its dimension is given by a signed count of the integral points
in the moment polytope of the torus action on the manifold.
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1. Introduction

Singular symplectic manifolds appear in the investigation of geometrical and
dynamical facets of non-compact manifolds as their natural compactifica-
tions. One example is the work undertaken by [KMS16] and [MO21] on the
restricted three-body problem. They also appear in the realm of quantiza-
tion, where new procedures are required to extend classic ideas of geometric
quantization.

One approach by Guillemin, Miranda and Weitsman used the formal
geometric quantization of [Wei01] and [Par09]. They proved in [GMW18b]
that the formal geometric quantization of a b-symplectic manifold is a finite-
dimensional vector space. This raised the natural question of whether there is
a true geometric quantization of such a space. An answer was given in the af-
firmative in [BLS21] and [LLSS21], where virtual modules agreeing with the
formal geometric quantization of [GMW18b] were constructed analytically
using index theory.
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The purpose of this paper is to revisit the question in the context of
Bohr-Sommerfeld quantization, following [GS83] but restricting ourselves to
the case of toric manifolds.

We start by revisiting a result of Guillemin and Sternberg [GS83], which
identifies the Bohr-Sommerfeld leaves of a symplectic manifold endowed with
a densely defined torus action with the integer points in the image of its
moment map. This allows us to read the geometric quantization of a sym-
plectic toric manifold from its Delzant polytope. Then, we prove that the
same method applies to b-symplectic toric manifolds.

The main result of this paper, Theorem 5.2, states that, for any integral b-
symplectic toric manifold, the Bohr-Sommerfeld quantization with sign agrees
with the formal geometric quantization of [GMW18b]. For this, we need to
introduce the definition of Bohr-Sommerfeld quantization with sign.

This paper is organized as follows. In Section 2 we briefly review the ge-
ometry of b-symplectic manifolds, Bohr-Sommerfeld quantization and formal
geometric quantization. In Section 3, following the idea of [GS83], we prove
that the Bohr-Sommerfeld leaves of an integral b-symplectic toric manifold
can be obtained from the image of the moment map of the torus action. In
Section 4 we introduce the Bohr-Sommerfeld quantization with sign via T -
modules. In Section 5 we prove the equivalence between Bohr-Sommerfeld
quantization and formal geometric quantization both for integral symplectic
and integral b-symplectic toric manifolds.

2. Preliminaries. b-Symplectic manifolds, Bohr-Sommerfeld
quantization and formal geometric quantization

In this section we review the definitions of b-symplectic manifolds, Bohr-
Sommerfeld quantization and formal geometric quantization.

2.1. b-Symplectic manifolds

b-Symplectic geometry is a generalization of symplectic geometry to Poisson
manifolds which are symplectic on the complement of a hypersurface Z. It is
possible to associate a tangent and a cotangent bundle to such b-manifolds
and apply classical symplectic tools. We briefly review the work of Guillemin,
Miranda, Pires and Scott in [GMP11], [GMP14] and [GMPS15], we summa-
rize the necessary definitions in b-symplectic geometry and we refer to the
three articles for details.

Recall that a b-manifold is a pair (M,Z) where Z is a hypersurface in
a manifold M and a b-map is a map f : (M1, Z1) −→ (M2, Z2) between
b-manifolds with f transverse to Z2 and Z1 = f−1(Z2).
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Definition 2.1 (b-vector field). A vector field on a b-manifold (M,Z) is called
a b-vector field if it is tangent to Z at every point p ∈ Z.

Let (Mn, Z) be a b-manifold. If x is a local defining function for Z on an
open set U ⊂ M and (x, y1, . . . , yn−1) is a chart on U , then the set of b-vector
fields on U is a free C∞(M)-module with basis

(
x
∂

∂x
,
∂

∂y1
, . . . ,

∂

∂yn

)
.

There exists a vector bundle associated to this module called the b-tangent
bundle and denoted by bTM . The b-cotangent bundle bT ∗M of M is defined
to be the vector bundle dual to bTM .

For each k > 0, let bΩk(M) denote the space of sections of the vector
bundle Λk(bT ∗M), called b-de Rham k-forms. For any defining function f of
Z, every b-de Rham k-form can be written as

(1) ω = α ∧ df

f
+ β, with α ∈ Ωk−1(M) and β ∈ Ωk(M).

This decomposition enables us to extend the exterior operator d to bΩ(M)
by setting

dω = dα ∧ df

f
+ dβ.

The right hand side agrees with the usual exterior operator d on M \ Z
and extends smoothly over M as a section of Λk+1(bT ∗M). The fact that
d2 = 0 allows us to define a complex of b-forms, the b-de Rham complex.
The cohomology associated to this complex is the b-cohomology and it is
denoted by bH∗(M). The elements of bΩ0(M) are also called b-functions and
the following definition characterizes them.

Definition 2.2 (b-function). The set of b-functions bC∞(M) consists of func-
tions with values in R ∪ {∞} of the form

c log|f | + g,

where c ∈ R, f is a defining function for Z and g is a smooth function on M .
The differential operator d is defined as:

d(c log|f | + g) := c df

f
+ dg ∈ bΩ1(M),

where dg and df are the standard de Rham derivatives.

A special class of closed 2-forms of the complex of b-forms is the class of
b-symplectic forms as defined in [GMP14].
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Definition 2.3 (b-symplectic manifold). Let (M2n, Z) be a b-manifold and
ω ∈ bΩ2(M) a closed b-form. We say that ω is b-symplectic if ωp is of maximal
rank as an element of Λ2( bT ∗

pM) for all p ∈ M . The triple (M,Z, ω) is called
a b-symplectic manifold.

The Mazzeo-Melrose Theorem describes the relationship that exists be-
tween b-cohomology and de Rham cohomology. In particular, it gives rise to
a natural definition of integrality for b-forms.

Theorem 2.4 (Mazzeo-Melrose). The b-cohomology groups of (M2n, Z) sat-
isfy

bH∗(M) ∼= H∗(M) ⊕H∗−1(Z).

Remark 2.5. The integrality of a b-form ω in the sense of [GMW18b] implies
the integrality of the form on M \Z. Since we will work with a line bundle on
M whose Chern class is given by the projection of [ω] to H∗(M), its restriction
to M \ Z has Chern class [ωM\Z ].

2.2. Symplectic and b-symplectic toric manifolds

Delzant’s Theorem gives a classification of symplectic toric manifolds. It char-
acterizes any such manifold via its Delzant polytope, the convex polytope
given by the image of the moment map for the torus action.

Theorem 2.6 (Delzant, [Del88]). There is a bijective correspondence between
the following two sets, which is given by the image of the moment map μ:

{toric manifolds} −→ {Delzant polytopes}
(M2n, ω, μ) −→ μ(M)

In a symplectic toric manifold (M2n, ω, μ), the singularities of the moment
map μ can only be of elliptic type, in the sense of Williamson [Wil36]. In fact,
the singular leaves of the toric foliation correspond to points in the boundary
of Delzant polytope, as is detailed in the following observation.
Remark 2.7. Let (M2n, ω, μ) be a symplectic toric manifold and Δ its Delzant
polytope. For k = 1, . . . , n, the points in the intersection of k ≤ n facets of Δ
correspond to the leaves of M where μ has k singular elliptic components. In
particular, the vertices of Δ correspond to the fixed points of μ. On the other
hand, and in the appropriate coordinates, the elliptic singular components
of the moment map at any singular leaf can be written as a sum of squares
[Eli90].
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In [GMPS15], Guillemin, Miranda, Pires and Scott established the clas-
sification of b-symplectic toric surfaces. Their result is that any b-symplectic
surface is either a b-symplectic sphere or a b-symplectic torus.

Theorem 2.8 (Guillemin-Miranda-Pires-Scott, [GMPS15]). A b-symplectic
surface with a toric S1-action is equivariantly b-symplectomorphic to either
(S2, Z) or (T 2, Z), where Z is a collection of latitude circles (in the T 2 case,
an even number of such circles), the action is the standard rotation, and the
b-symplectic form is determined by the modular periods of the critical curves
and the regularized Liouville volume.

The theorem above comes from the following result on the classification of
higher-dimensional b-symplectic toric manifolds also carried out in [GMPS15].

Proposition 2.9 (Guillemin-Miranda-Pires-Scott, Remark 38 in [GMPS15]).
Every b-symplectic toric manifold is either the product of a b-symplectic T 2

and a symplectic toric manifold, or it can be obtained from the product of a
b-symplectic S2 and a symplectic toric manifold by a sequence of symplectic
cuts performed at the north and south “polar caps”, away from the critical
hypersurface Z.

The image of the moment map of a b-symplectic toric manifold is a b-
Delzant polytope and the classification of Proposition 2.9 is a consequence
of the b-Delzant theorem (Theorem 35 of [GMPS15]). The main idea of the
proof is contained in the proposition below (Proposition 18 in [GMPS15]).

Proposition 2.10. Let (M2n, Z, ω, μ) be a b-symplectic toric manifold, L a
leaf of its symplectic foliation and vZ the modular weight of Z. Pick a lattice
element X ∈ t that represents a generator of t/tZ and pairs positively with
vZ . Then, there is a neighbourhood L×S1 × (−ε, ε) ∼= U ⊆ M of Z such that
the T n-action on U \ Z has moment map

μU\Z : L× S1 × ((−ε, ε) \ {0}) → t∗ ∼= t∗Z × R, (�, ρ, t) �→ (μL(�), c log |t|),

where c is the modular period of Z, the map μL : L → t∗Z is a moment map
for the T n−1

Z -action on L, and the isomorphism t∗ ∼= t∗Z ×R is induced by the
splitting t ∼= tZ ⊕ 〈X〉.

Since the moment map of a group action over a b-symplectic manifold is a
b-function (see Definition 2.2), it can be unbounded due to the logarithm term.
Hence, in general, its image is not convex (in the sense of classical analysis,
for a more sophisticated notion of convexity see [GMPS17]) and unbounded
(see Figure 1). This is the main issue when one tries to obtain a finite Bohr-
Sommerfeld quantization of a b-symplectic toric manifold and the reason why
we introduce Bohr-Sommerfeld quantization with sign in Section 4.
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Figure 1: The moment map of the rotation action over the canonical b-
symplectic sphere is unbounded in any neighbourhood of Z.

2.3. Bohr-Sommerfeld quantization

Let us recall the Bohr-Sommerfeld quantization of a compact symplectic toric
manifold using the definitions of Kostant [Kos70] and Guillemin-Sternberg
[GS82]. Let (M,ω) be an integral symplectic manifold and let L be a complex
line bundle with connection ∇ whose curvature is ω. Geometric quantization
is a process which associates to the quadruple (M,ω,L,∇) a Hilbert space
Q(M).

Following [Kos70], we define the quantization using the additional data
given by a real polarization of M , that is, a foliation of M by Lagrangian
submanifolds. This foliation may be given by the fibres of a map π : M → B
and, in this case, the quantization is given by sections s ∈ Γ(L) satisfying

(2) ∇Xs = 0,

for any X tangent to the fibres of π. If (M,ω, μ) is a toric manifold, a La-
grangian foliation is given by the fibres of the moment map μ : M → t∗.

When M is compact, there are no smooth sections satisfying equation
(2) defined globally on all M . Instead, such leafwise constant sections or flat
sections are concentrated on the fibres π−1(b) such that b ∈ Im(π) and L|π−1(b)
is a trivial bundle. The quantization space is defined as

(3) Q(M) =
⊕

b∈BBS

C〈sb〉,

where BBS is the Bohr-Sommerfeld set, namely,

BBS = {b ∈ Im(π) ⊂ B : L|π−1(b) is trivial},

and sb is the corresponding flat section of L|π−1(b).
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This definition of quantization is called Bohr-Sommerfeld quantization.
See [Ś77] or [Ham08] for an alternative definition using sheaf theory.

2.4. Formal geometric quantization

We take the basic definitions of formal geometric quantization of Hamiltonian
T -spaces from [GMW18b]. See also [Wei01], [HM16] and [Par09].

Let (M,ω) be a compact symplectic manifold and let (L,∇) be a com-
plex line bundle with connection of curvature ω. By twisting the spin-C Dirac
operator on M by L, we obtain an elliptic operator ∂̄L. The geometric quan-
tization Q(M) of M is defined by

Q(M) = ind(∂̄L),

and it is a virtual vector space.
If (M,ω) is a compact integral symplectic manifold, one can always find a

complex line bundle L with connection ∇ of curvature ω and the quantization
Q(M) is independent of this choice.

If M is equipped with a Hamiltonian action of a torus T , the action can
be lifted to L and the almost complex structure of L can be chosen to be T -
invariant. In this case, the quantization Q(M) is a finite-dimensional virtual
T -module.

For ξ ∈ t∗, denote by M//ξT the reduced space of M at ξ. For α a weight
of T and V a virtual T -module, denote by V α the sub-module of V of weight
α.

The following result states that the component of weight α of the quan-
tization of M equals the quantization of the reduced space of M at α.

Theorem 2.11 (Quantization commutes with reduction, [Mei96]). Consider
a compact integral symplectic manifold (M,ω). Suppose M is equipped with a
Hamiltonian action of a torus T and let α be a weight of T . Then

(4) Q(M)α = Q(M//αT ).

In other words,

(5) Q(M) =
⊕
α

Q(M//αT )α.

Theorem 2.11 and equation (5) are valid only for regular values of the
moment map of the Hamiltonian T -action. In the case where α is a singular
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value of the moment map, the singular quotient must be replaced by a slightly
different construction using a shift of α [Mei96]. A similar caution applies in
the case of Hamiltonian T -spaces which are non-compact and in the case of
b-symplectic manifolds.

2.4.1. FGQ of non-compact Hamiltonian T -spaces In the case where
M is non-compact, equation (4) may be used to define the quantization of
such Hamiltonian T -spaces.

Definition 2.12 (Weitsman, [Wei01]). Let M be a Hamiltonian T -space with
integral symplectic form. Suppose the moment map for the T -action is proper.
Let V be an infinite-dimensional virtual T -module with finite multiplicities.
We say

V = Q(M)

if for any compact Hamiltonian T -space N with integral symplectic form, we
have

(6) (V ⊗Q(N))T = Q((M ×N)//0T ).

In other words, as in (5),

Q(M) =
⊕
α

Q(M//αT )α,

where the sum is taken over all weights α of T .

The fact that the moment map is proper implies that the reduced space
(M × N)//0T is compact for any compact Hamiltonian T -space N , so that
the right hand side of equation (6) is well-defined.

2.4.2. FGQ of b-symplectic manifolds Suppose now that (M,ω,Z) is
a compact, connected, oriented, integral b-symplectic manifold. Suppose that
it is equipped with a Hamiltonian action of a torus T , with nonzero modular
weight [GMW18a]. Let L be a complex line bundle on M with connection ∇
on L|M\Z whose curvature is ω|M\Z .

In [GMW21], the formal geometric quantization Q(M) is defined as fol-
lows.

Definition 2.13. Let V be a virtual T -module with finite multiplicities. We
say

V = Q(M)
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if for any compact Hamiltonian T -space N with integral symplectic form, we
have

(7) (V ⊗Q(N))T = εQ((M ×N)//0T ),

where Q(N) denotes the standard geometric quantization of N , Q((M ×
N)//0T ) is the geometric quantization of the compact integral symplectic
manifold (M × N)//0T , and ε is +1 if the symplectic orientation on the
symplectic quotient (M ×N)//0T agrees with the orientation inherited from
M ×N and −1 otherwise.

This means that Q(M) = Q(M\Z) = ⊕iεiQ((M\Z)i), where the (M\Z)i
are the connected components of M \ Z, Q(M \ Z) is the formal geometric
quantization of the non-compact Hamiltonian T -space M \ Z, and the εi ∈
{±1} are determined by the relative orientations of the symplectic forms on
the components of M \ Z and the overall orientation of M . Alternatively,

(8) Q(M) =
⊕
α

ε(α)Q(M//αT )α,

where Q(M//αT ) must be defined using the shifting trick if α is not a regular
value of the moment map, and each ε(α) ∈ {±1} is determined by the relative
orientations of M and M//αT .

In the b-symplectic case, the condition that the modular weight is non-zero
guarantees that the reduced space (M ×N)//0T is compact and symplectic
for any compact Hamiltonian T -space N , so that Q((M × N)//0T ) is well-
defined.

3. Bohr-Sommerfeld leaves via the moment map

In this section we prove that, for an integral symplectic toric manifold, the
Bohr-Sommerfeld set coincides with the set of integer points in the image of
the moment map of the torus action. We prove that the same result also holds
for integral b-symplectic toric manifolds.

First, let us recall a result from Guillemin and Sternberg [GS83] that
identifies the Bohr-Sommerfeld leaves in a symplectic manifold using the mo-
ment map of an integrable system. In particular, it proves that the count of
Bohr-Sommerfeld leaves of an integral symplectic manifold equals the count
of the integer points in the image of the moment map.

Theorem 3.1 (Guillemin-Sternberg, Theorem 2.4 in [GS83]). Let (M,ω) be
a 2n-dimensional symplectic manifold endowed with an integrable system with
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moment map μ : M → B. Let p and q be two distinct points of B contained
in an open simply connected subset B0 of B. Then:

• There exists a globally defined system of action coordinates f1, . . . , fn
on B0 such that f1(p) = · · · = fn(p) = 0.

• If p ∈ B is in the Bohr-Sommerfeld set, then q ∈ B is in the Bohr-
Sommerfeld set if and only if f1(q), . . . , fn(q) are integers.

In Theorem 3.1, the correspondence between the Bohr-Sommerfeld leaves
and the integer points of the moment map is established after the election of
a globally defined system of action coordinates. Once a Bohr-Sommerfeld leaf
is identified at a point p ∈ B, the origin of all the action coordinates is set
there and the other Bohr-Sommerfeld leaves correspond to the integer points
in these coordinates.

As a consequence, the integer condition that Bohr-Sommerfeld leaves have
to satisfy can be shifted by an additive constant as long as it is the same
constant for all the leaves, since the essential implication of Theorem 3.1 is
that the difference between the action variables at any two Bohr-Sommerfeld
leaves is an integer. In view of this, a value of the moment map has to be
fixed at some point (and leaf) of M or, equivalently, a choice of the constant
in the moment map has to be made.

We will prove that this choice of a constant in the moment map is also
equivalent to the choice of the connection 1-form Θ with curvature ω.

3.1. Dependence on the connection

In the following statements we show that we can always find a connection
1-form Θ with curvature ω such that the Bohr-Sommerfeld set coincides with
the integer points in the image of the moment map in the appropriate coor-
dinates.1

Lemma 3.2. Let (M,ω, μ) be a toric symplectic manifold. Let L be a complex
line bundle over M with connection ∇ whose curvature is ω. The connection
1-form Θ can always be chosen to be T -invariant.

1Let L → M be a complex line bundle. A choice of a Hermitian metric on L

gives a principal S1-bundle P → M , the unit circle bundle in L. The complex
line bundle is then the bundle associated to P by the fundamental representation
of S1. A connection on this principal S1-bundle is an element Θ ∈ Ω1(P ) satisfying
iXΘ = 1 and LXΘ = 0, where X is the vector field on P generating the action of S1.
The form dΘ is the pullback under the bundle projection of the curvature form ω
of the bundle P with connection Θ. Such a connection gives rise to a connection ∇
on L and this construction is functorial under bundle morphisms. For any section
s ∈ Γ(L), ∇2s = ωs. See page 20 of [Kob14] or page 486 of [Hal13] for details.
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Proof. Since the group G = T n acting on M is compact, there exists a Haar
measure dg such that

∫
G dg = 1. Then, the averaging of a form Θ via

∫
G L∗

gΘdg

gives a G-invariant form Θ̃.

Proposition 3.3. Let (M,ω, μ) be a symplectic toric manifold. Let L be a
complex line bundle over M with connection ∇ whose curvature is ω. If Θ1
and Θ2 are two invariant connection 1-forms, the function 〈Θ1 − Θ2, X〉 is
constant when X is a vector field tangent to the polarization of M by μ.

Proof. By definition, the connection 1-forms Θi satisfy μ = Θi(X), where μ
is a moment map of the torus action and X is a vector field tangent to the
polarization given by μ.

Take α such that π∗α = Θ1 − Θ2, where π is the projection π : L →
M . By Lemma 3.2, Θ1 and Θ2 can be chosen invariant so that LXα = 0,
since α is invariant under X. Then, by Cartan’s magic formula, we have that
dα(X) = diXα = LXα− iXdα.

If we have two invariant connection 1-forms Θ1 and Θ2, we know that their
difference Θ1−Θ2 = π∗α is a constant. Then π∗dα = dΘ1−dΘ2 = ω−ω = 0.

Finally, if d(α(X)) = 0, α(X) is a constant.

Remark 3.4. In view of Proposition 3.3, α(X) is a constant for any X. On the
other hand, for any Θ1,Θ2, we have that Θ1 = Θ2+π∗α and μ1 = μ2+π∗α(X).
Then, fixing α(Xi) is equivalent to making a choice of the connection 1-form
and to fixing the constant in the moment map.

In other words, the choice of a constant can be made either by selecting
a specific connection 1-form or, equivalently, by setting to 0 the coordinates
of the moment map at a particular Bohr-Sommerfeld leaf.

3.2. The BS set in the image of the moment map

Observe that any torus action on a symplectic manifold M of half the dimen-
sion of M defines an integrable system. Then, in a symplectic toric manifold
(M,ω, μ), we can apply Theorem 3.1 to identify the Bohr-Sommerfeld leaves
of M with the integer points in the image of the moment map.

We want to extend the correspondence between Bohr-Sommerfeld leaves
and integer points in the image of the moment map to b-symplectic toric
manifolds. To do this, we prove first Theorem 3.5, which is a particular case
of Theorem 3.1 for symplectic toric manifolds. Then, we obtain Corollary 3.6,
the b-symplectic toric version of Theorem 3.5.

Theorem 3.5. Let (M,ω, μ) be an integral symplectic toric manifold. Then,
the Bohr-Sommerfeld set coincides with the integer points in the image of μ.
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Proof. Suppose (M,ω, μ) is an integral symplectic toric manifold of a dimen-
sion 2n. We will compute the Bohr-Sommerfeld leaves of M with respect to
the real Lagrangian polarization given by μ and see that each one of them is
mapped to an integer point of μ(M).

The Bohr-Sommerfeld leaves are the ones supporting leafwise flat sections,
i.e. sections s satisfying ∇Xs = 0 for any vector field X tangent to the leaf.

We use the following formula from [Kos70] (equation (4.3.2)) and also
[DGMW95] (equation (1.3)):

(9) X(s) = ∇Xs + i〈μ,X〉s,

with X ∈ t.
Since M is a toric manifold, we can make use of the natural angle coordi-

nates φ1, . . . , φn to obtain from (9) the following equation for each 1 ≤ i ≤ n:

(10) ∂

∂φi
(s) = ∇ ∂

∂φi

s + i〈μi, φi〉s.

For leafwise flat sections, we have ∇ ∂
∂φi

s = 0 for each i, implying that

(11) ∂

∂φi
(s) = i〈μi, φi〉s.

We are looking for leaves of the foliation given by μ which admit a flat section.
Then, we can integrate equation (11) with respect to φ from 0 to 2π noting
that μi is constant on any leaf. We obtain

(12) s(φi = 2π) = eiμi2π · s(φi = 0).

In order to be a well-defined section globally (on the entire leaf), one must
have s(0) = s(2π). This condition is met if and only if μi ∈ Z. So the values
of μ(M) at which there is a non-trivial leafwise flat section are in Z

n.

Corollary 3.6. Let (bM2n, Z, ω, μ) be an integral b-symplectic toric manifold.
Then, the Bohr-Sommerfeld set coincides with the integer points in the image
of μ.

Proof. By Proposition 2.10, in a neighbourhood L × S1 × (−ε, ε) ∼= U ⊆ M
of Z, where L is a leaf of the symplectic foliation of Z, the T n-action on U \Z
has moment map

μU\Z : L× S1 × ((−ε, ε) \ {0}) → t∗ ∼= t∗Z × R, (�, ρ, t) �→ (μL(�), c log |t|),
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where c is the modular period of Z and the map μL : L → t∗Z is a moment
map for the T n−1

Z -action on L.
As M \ Z is an integral symplectic toric manifold, we can apply Theo-

rem 3.5. Then, Bohr-Sommerfeld leaves of M \ Z correspond to the points
(μL(�), c log |t|) such that μL(�) ∈ Z

n−1 and c log |t| ∈ Z.

4. Bohr-Sommerfeld quantization with sign for b-symplectic
toric manifolds

In this section we formalize the notion of counting Bohr-Sommerfeld leaves to
form virtual vector spaces. We will redefine the Bohr-Sommerfeld quantization
of Section 2 in order to have it defined as a sum of T -modules. We will do
this first for the symplectic toric case, in which the quantization is finite.
Then, using the orientation of the manifold, we will define a quantization with
sign. This will allow us to construct the quantization as a direct difference of
infinite-dimensional T -modules where each representation of T occurs with
finite multiplicity. We will illustrate these concepts with a simple example
where M is the 2-sphere.

4.1. BS quantization via T -modules

We start defining a Bohr-Sommerfeld quantization for symplectic toric man-
ifolds. Assume that (M,ω, μ) is a symplectic toric manifold and suppose BBS

is the Bohr-Sommerfeld set of the polarization given by the moment map μ.
To each b ∈ BBS regular value of μ (i.e., to each b ∈ BBS in the interior

of the moment polytope Δ = μ(M)) we can associate a representation C(b)
of Tn, where b is the weight obtained by taking the quotient with the lifted
action given by μ. By the following Proposition, this representation C(b) is
equal to the representation C〈sb〉) that appears in equation (3).

Proposition 4.1. For any b = μ(x) ∈ BBS in the interior of Δ = μ(M),
C〈sb〉 = C(b).

Proof. Suppose b = μ(x) ∈ BBS . Then, sb is a section of the line bundle over
M such that it satisfies equation (9), namely,

X(sb) = ∇Xsb + i〈μ,X〉sb.

If b is in the interior of Δ = μ(M), it has a neighbourhood U in which
all points are regular values of μ or, equivalently, in the pre-image μ−1(U)
the torus action has no singularities. Then, on the pre-images x = μ−1(b)
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of these values, the line bundle L restricts to a line bundle with connection
L → μ−1(b), where μ−1(b) is a torus T n. Then, the connection on this line
bundle, since μ(x) is integral, is given by the line C(μ(x)), where C(μ(x)) is
the quotient Lμ−1(μ(x))/T

n [Kos70].

In the case of a point b in the boundary of the moment polytope Δ,
the identification in Proposition 4.1 does not hold. Instead, we define the
quantization for such point b using the representation C(b).

We have associated each b ∈ BBS a representation C(b), whether b is in
the interior or in the boundary of Δ, and we can define the Bohr-Sommerfeld
quantization as follows.

Definition 4.2. The Bohr-Sommerfeld quantization of a compact integral
symplectic toric manifold is

(13) Q(M) =
⊕

b∈BBS

C(b).

Remark 4.3. Observe that Q(M) can also be defined directly as Q(M) =⊕
b∈Δ∩Zn C(b). The sum

⊕
b∈Δ∩Zn C(b) in equation (13) can be an infinite-

dimensional module if M is a non-compact toric manifold (in particular, if M
is a b-symplectic toric manifold) because Δ may be unbounded. Nevertheless,
in all cases each weight has finite multiplicity.

By the previous remark, if we apply Definition 4.2 to a b-symplectic toric
manifold we will obtain an infinite-dimensional quantization space. For this
reason, we introduce the Bohr-Sommerfeld quantization with sign below. We
again define this quantization as a T -module.

4.2. The canonical b-sphere

The simplest example of a b-symplectic toric manifold is the sphere with the
singular hypersurface Z being a single circle at the equator and endowed with
the action of rotation around its vertical axis. We are going to see that its
Bohr-Sommerfeld quantization via T -modules gives an infinite-dimensional
space and that, on the other hand, its Bohr-Sommerfeld quantization with
sign gives a finite-dimensional space. Furthermore, in Section 5 we will prove
that the latter quantization coincides with the formal geometric quantization
in the general case.

Consider the b-symplectic sphere (S2, Z, ω, μ), with the hypersurface Z on
the equator and μ the moment map for the action of S1 by rotation around
the vertical axis. Away from the poles, take cylindrical polar coordinates
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{(h, θ) : − 1 < h < 1, 0 ≤ θ < 2π}. Z corresponds to {h = 0}, the b-
symplectic form on S2 is ω = 1

hdh ∧ dθ = d log |h| ∧ dθ and the moment map
is the b-function μ = − log |h|.

Let L be a complex line bundle on S2 with connection ∇ defined on S2\Z
by

∇Xσ = X(σ) − σi log |h| dθ(X).
The connection ∇ has curvature ω.

Consider the real polarization P of S2 \Z given by the map μ = − log |h|.
The leaves of P are the circles of the form {h0}×S1, with h0 ∈ (−1, 0)∪(0, 1),
along with the two poles.

The leaf-wise flat sections, which satisfy ∇Xσ = 0 for X tangent to the
polarization P , are of the form

σ(h, θ) = a(h)ei log |h|θ,

with a(h) ∈ C (see for instance [Ham10] or [MM21] for the explicit computa-
tions). The Bohr-Sommerfeld leaves on S2 \ Z are the leaves of the foliation
by P that admit a non-trivial global leaf-wise flat section σ.

Along each leaf {h0}×S1 of the foliation by P of S2 \Z, h is fixed at h0.
Then, a leaf is Bohr-Sommerfeld if it admits a section σ(h0, θ) such that

σ(h0, θ) = σ(h0, θ + 2π).

Therefore, {h0}×S1 is a Bohr-Sommerfeld leaf if 1 = e2πi log |h0| or, equiva-
lently, if log |h0| ∈ Z. And the set of all Bohr-Sommerfeld leaves of the foliation
by P of S2 \ Z is

BBS = {{e−m}× S1 ⊂ S2 \Z : m ∈ N}
⋃

{{−e−m}× S1 ⊂ S2 \Z : m ∈ N}.

The Bohr-Sommerfeld quantization of (S2, Z, ω, μ) is, by Definition 4.2,
the following sum

Q(S2) =
⊕

b∈BBS

C(b) =
⊕
b∈N

C(b) ⊕ C(b),

which is an infinite-dimensional space.
Observe that the quantization is infinite-dimensional because there is an

infinite number of Bohr-Sommerfeld leaves arbitrarily close to Z both in the
upper and the lower hemisphere. Explicitly, for any a > 0, there is an infinite
number of values of h ∈ (0, a) and also of h ∈ (−a, 0) satisfying the condition
log |h| ∈ Z.
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4.3. The b-symplectic toric sphere

In order to obtain a finite-dimensional quantization of (S2, Z = {hz} ×
S1, ω, μ), we will define a signed sum of the quantization spaces correspond-
ing to the Bohr-Sommerfeld leaves of S2 that takes into account the orienta-
tion of the hemisphere in which each Bohr-Sommerfeld leaf lies. Morally, we
define the quantization space by “adding” the virtual vector spaces of Bohr-
Sommerfeld leaves in the northern hemisphere and “subtracting” the virtual
vector spaces of Bohr-Sommerfeld leaves in the southern hemisphere. In such
a way, the final sum will be a finite-dimensional virtual vector space.

Formally, we define the Bohr-Sommerfeld quantization with sign of the
b-symplectic toric sphere (S2, Z = {hz} × S1, ω, μ), with −1 < hz < 1, as
the direct difference of the sum of the virtual vector spaces C(b) associated
to the Bohr-Sommerfeld leaves in S2

+ = (hz, 1) × S1 ⊂ S2 \ Z and the sum
of the virtual vector spaces C(b) associated to the Bohr-Sommerfeld leaves in
S2
− = (−1, hz) × S1 ⊂ S2 \ Z.

Definition 4.4. Let BBS be the Bohr-Sommerfeld set of (S2, Z = {hz} ×
S1, ω, μ). For each b ∈ BBS , define ε(b) as ε(b) = +1 if μ−1(b) is a Bohr-
Sommerfeld leaf in the northern hemisphere S2

+ and ε(b) = −1 if μ−1(b) is a
Bohr-Sommerfeld leaf in the southern hemisphere S2

−. We call ε(b) the sign
of b.

Definition 4.5 (BS quantization with sign of (S2, Z = {hz}×S1, ω, μ)). Let
BBS be the Bohr-Sommerfeld set of (S2, Z = {hz} × S1, ω, μ). The quantiza-
tion with sign of (S2, Z = {hz} × S1, ω, μ) is

Q̃(S2) =
⊕

b∈BBS

ε(b)C(b).

Lemma 4.6. Q̃(S2) is a finite-dimensional vector space.

Proof. First, observe that
⊕

b∈BBS
ε(b)C(b) is an infinite-dimensional module

with finite multiplicities (which may be negative).
For each Bohr-Sommerfeld leaf of the form {hz + δ} × S1 in S2

+, there is
a Bohr-Sommerfeld leaf of the form {hz − δ} × S1 in S2

− for any δ > 0 small
enough. Then, at any symmetric neighbourhood U of Z in S2 \Z, the virtual
module

⊕
b∈BBS∩μ(U) ε(b)C(b) is exactly 0.

On the other hand, there are only finitely many Bohr-Sommerfeld leaves
in S2\U and, therefore,

⊕
b∈BBS∩μ(S2\U) ε(b)C(b) is finite-dimensional. Hence,

Q̃(S2) is a finite-dimensional vector space.
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In particular, with this definition the Bohr-Sommerfeld quantization with
sign of the b-symplectic toric sphere, with singular hypersurface Z the circle
at the equator, is the zero-dimensional vector space due to its symmetry (see
Figure 2).

Figure 2: On the left, Bohr-Sommerfeld leaves on the northern hemisphere (in
red) and the southern hemisphere (in blue) of (S2, Z = {h0 = 0} × S1, ω, μ).
On the right, the moment map μ = − log |h| with dots indicating Bohr-
Sommerfeld leaves.

Remark 4.7. Our quantization model resembles the computations of section 6
of [Bon22] for Bruhat-Poisson structures using symplectic groupoids. More
precisely, the computations performed in [Bon22] (following [BCQM14]) for
the symplectic reduction of the Lu-Weinstein groupoid integrating the stan-
dard Poisson structure on U(2) yield Bohr-Sommerfeld leaves similar to those
seen in our approach. We plan to address these issues elsewhere.
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4.4. b-symplectic toric surfaces

We can naturally generalize the definition of Bohr-Sommerfeld quantization
with sign of the b-symplectic toric sphere (S2, Z = {hz} × S1, ω, μ) to any
b-symplectic toric surface (M2, Z, ω, μ).

By Theorem 2.8, a b-symplectic toric surface (M2, Z, ω, μ) is equivari-
antly b-symplectomorphic to either (S2, Z) or (T 2, Z), where Z is a collection
of latitude circles (in T 2, an even number of them) and μ is the standard
rotation.

First orient the manifold M . Since the b-symplectic form defines an ori-
entation in each connected component of M2 \ Z, we can associate a sign
to each Bohr-Sommerfeld leaf depending on whether this orientation agrees
with the orientation of M .

Definition 4.8. Let BBS be the Bohr-Sommerfeld set of (M2, Z, ω, μ). For
each b ∈ BBS , define ε(b) as ε(b) = +1 if μ−1(b) belongs to a component
whose orientation agrees with that given by the b-symplectic form and as
ε(b) = −1 if μ−1(b) belongs to a component whose orientation is the opposite
of that given by the b-symplectic form. We call ε(b) the sign of b.

Definition 4.9 (BS quantization with sign of (M2, Z, ω, μ)). Let BBS be the
Bohr-Sommerfeld set of (M2, Z, ω, μ). We define the quantization with sign
of (M2, Z, ω, μ) as

Q̃(M2) =
⊕

b∈BBS

ε(b)C(b).

Lemma 4.10. Q̃(M2) is a finite-dimensional vector space.

Proof. Take a symmetric neighbourhood U ⊂ M2 \Z of Z; such a neighbour-
hood exists by Proposition 2.10. By the argument in the proof of Lemma 4.6,
the contribution of leaves in U \ Z to the sum

⊕
b∈BBS

ε(b)C(b) is 0, and the
contribution of leaves in M2 \ U is a finite-dimensional vector space. Hence,
Q̃(M2) is finite-dimensional.

Note that a b-symplectic toric surface that has an infinite number of
Bohr-Sommerfeld leaves still yields a finite-dimensional quantization (see Fig-
ure 3).

4.5. b-symplectic toric manifolds

Proposition 2.9 states that any b-symplectic toric manifold (M2n, Z, ω, μ) de-
composes either into the product of a b-symplectic toric torus (T 2, ZT , ωT , μT )
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Figure 3: A b-symplectic toric sphere with Z consisting of 5 latitude circles
and the image of its moment map. The blue dots denote the Bohr-Sommerfeld
leaves in positively oriented components of S2 \ Z. The red dots denote the
Bohr-Sommerfeld leaves in negatively oriented components of S2 \Z. White-
filled dots represent Bohr-Sommerfeld leaves in the neighbourhood of each Zi

whose contributions to the quantization Q(M) cancel.

with a classic symplectic toric manifold, or else can be obtained from the prod-
uct of a b-symplectic toric sphere (S2, ZS , ωS , μS) with a classic symplectic
toric manifold by a sequence of symplectic cuts away from Z.

Choose an orientation of M . Then, we can define the Bohr-Sommerfeld
quantization with sign for b-symplectic manifolds using the orientation given
by the b-symplectic form on the connected components of M .

Definition 4.11. Let BBS be the Bohr-Sommerfeld set of (M2n, Z, ω, μ). For
each b ∈ BBS , define ε(b) by ε(b) = +1 if π

(
μ−1(b)

)
belongs to a component
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of M \ Z where the orientation of M agrees with the orientation given by ω,
and by ε(b) = −1 otherwise. We call ε(b) the sign of b.

Definition 4.12 (BS quantization with sign of (M2n, Z, ω, μ)). Let BBS

be the Bohr-Sommerfeld set of (M2n, Z, ω, μ). The quantization with sign of
(M2n, Z, ω, μ) is

Q̃(M2n) =
⊕

b∈BBS

ε(b)C(b).

Lemma 4.13. Q̃(M2n) is a finite-dimensional vector space.

Proof. Take a symmetric neighbourhood U ⊂ M2n\Z. Such a neighbourhood
always exists by Proposition 2.10. The same argument used in the proof of
Lemmas 4.6 and 4.10 shows that Q̃(M2n) is finite-dimensional.

Remark 4.14. In the definition of the Bohr-Sommerfeld quantization with
sign and, in particular, in the sum

⊕
b∈BBS

ε(b)C(b), we are using the fact
that we have a group T acting with weights with finite multiplicity. Thus, the
infinite sum

⊕
b∈BBS

ε(b)C(b) is well defined.

5. The final count. Bohr-Sommerfeld quantization equals
formal geometric quantization

In this section we compare Bohr-Sommerfeld quantization with formal ge-
ometric quantization. We show that both are given by the signed count of
integer points in the image of the moment map. We do it first for the sym-
plectic case (Theorem 5.1), and then the b-symplectic case (Theorem 5.2).

Theorem 5.1. Let (M2, ω, μ) be a symplectic toric manifold. Then, the for-
mal geometric quantization of M coincides with the Bohr-Sommerfeld quan-
tization.

Proof. We compute the formal geometric quantization of a symplectic toric
manifold and then we count the Bohr-Sommerfeld leaves. We see that they
are the same and, in particular, they coincide with the count of the integer
points in the image of the moment map of the torus action.

In view of Theorem 2.11 (Quantization commutes with reduction), the
formal geometric quantization of a symplectic toric manifold (M2n, ω, μ) is
given by

(14) Q(M) =
⊕
α∈Zn

Q(M//αT )α.

Notice that the sum is taken over all weights α of T .
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Suppose μ : M → t is the moment map of the torus action. Then, the
reduced spaces M//αT are either empty if α is not in μ(M) or a point if it
is. Since the quantization of a point is given by C, we have that

(15) Q(M) =
⊕

α∈Zn∩μ(M)
C(α).

Thus, the formal geometric quantization of M is given by as many copies
of C as there are integer points in the image of the moment map.

On the other hand, by Theorem 3.5, the Bohr-Sommerfeld quantization is
given by the count of Bohr-Sommerfeld leaves of M , which are in one to one
correspondence with the integer points in the image of the moment map.

In the b-symplectic case we have

Theorem 5.2. Let (M2n, Z, ω, μ) be a b-symplectic toric manifold. Then,
the formal geometric quantization of M coincides with the Bohr-Sommerfeld
quantization with sign.

Proof. Recall from [GMW18a] that for any given b-symplectic toric manifold
(M,Z, ω, μ), the quantization space Q(M) is defined as the vector space such
that the following equality holds

(16) (Q(M) ⊗Q(N))T = ε(α)Q((M ×N)//0T )

for any compact symplectic manifold N and any weight α of T , where T is
the torus generating the action with moment map μ [GMW18b].

Alternatively, we have

(17) Q(M) =
⊕

α∈Zn∩μ(M)
ε(α)C(α),

where ε(α) are the signs given in equation (8)
On the other hand, by Corollary 3.6 the Bohr-Sommerfeld set of M co-

incides with the lattice of integer points in the image of μ. Therefore, by
Definition 4.12, the Bohr-Sommerfeld quantization with sign of M is

(18) Q̃(M) =
⊕

b∈BBS

ε(b)C(b) =
⊕

b∈Zn∩μ(M)
ε(b)C(b).

Finally, for any point p in the Bohr-Sommerfeld set BBS , the sign ε(p)
coincides with the sign ε(p) since, by definition, both of them are +1 if the
orientation given by the symplectic form on the component of M \Z contain-
ing μ−1(p) and the overall orientation of M agree and −1 otherwise. Hence,
Q(M) = Q̃(M).
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