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Abstract: A Lie pair is an inclusion A to L of Lie algebroids
over the same base manifold. In an earlier work, the third author
with Bandiera, Stiénon, and Xu introduced a canonical L�3 alge-
bra Γ(∧•A∨⊗L/A) whose unary bracket is the Chevalley-Eilenberg
differential arising from every Lie pair (L,A). In this note, we prove
that to such a Lie pair there is an associated Lie algebra action by
Der(L) on the L�3 algebra Γ(∧•A∨ ⊗ L/A). Here Der(L) is the
space of derivations on the Lie algebroid L, or infinitesimal au-
tomorphisms of L. The said action gives rise to a larger scope of
gauge equivalences of Maurer-Cartan elements in Γ(∧•A∨ ⊗L/A),
and for this reason we elect to call the Der(L)-action internal sym-
metry of Γ(∧•A∨ ⊗ L/A).
Keywords: L∞ algebra, L�3 algebra, dg algebra, Lie pair, Lie
algebra action.

1. Introduction

The present note is a continuation of the previous work [2], in which some
homotopy-level structures from Lie pairs, known as L∞ algebroids, shifted
derived Poisson algebras and so forth were found. Now, we are more concerned
with intrinsic properties of these structures. The motivation here is detailed
below.

Lie algebroids were introduced in the 1960s by Pradines [28] as a for-
malization of ideas going back to the works of Lie and Cartan. Recall that
a Lie K-algebroid (K is either R or C) is a K-vector bundle L → M over a
smooth manifold M such that Γ(L) is a Lie-Rinehart K-algebra [29] over the
commutative ring C∞(M,K). Namely, Γ(L) is equipped with a Lie bracket
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[·, ·]L, an anchor map ρL : L → TM ⊗R K, and they are compatible (see Defi-
nition 2.13). In recent years, people tend to give the equivalent description of
the Lie algebroid structure on L from a dg manifold point of view [33], namely,
the Chevalley-Eilenberg differential operator dL : Γ(∧•L∨) → Γ(∧•+1L∨) en-
codes [·, ·]L and ρL, and gives rise to a dg algebra (Γ(∧•L∨), dL).

Objects of Lie algebroids interpolate between tangent bundles, foliations
on the one hand and on the other hand, Lie algebras and their actions on
manifolds. As Lie algebroids combine the usual differential geometry and Lie
algebra theory under a common roof, it suggests their relations with the
realm of Mechanics. In fact, they form a category which is closely related
to symplectic and Poisson manifolds, and there has been recently a lot of
work and progress in the geometric aspects of Hamiltonian and Lagrangian
mechanics on Lie algebroids, see e.g. [17, 14, 26, 42].

We say that (L,A) is a pair of Lie algebroids or Lie pair for short if
A is a subalgebroid of another Lie algebroid L over the same base mani-
fold. The notion of Lie pair is a natural framework encompassing a range of
diverse geometric contexts including complex manifolds, foliations, matched
pairs, and manifolds endowed with an action of a Lie algebra, etc. In the last
decade much research on Lie pairs has been done following different strate-
gies and the underlying mathematical structures: Atiyah classes arising from
Lie pairs have been studied, using a variety of methods, see e.g. [10, 11, 3];
It is shown that geometric objects including Kapranov dg and Fedosov dg
manifolds [21, 32], algebraic objects such as Hopf algebras [9, 13], Leibniz∞
and L∞ algebras can be derived from Lie pairs [22, 2, 8]; Also, in the context
of Lie pairs, considerable attentions had been paid to Poincaré-Birkhoff-Witt
isomorphisms [6, 7], Kontsevich-Duflo isomorphisms [23, 12], and Rozansky-
Witten-type invariants [40], etc.

We remind the reader briefly of the notion of Lie algebroid representation
of L on a vector bundle V (over the same base manifold), also known as an
L-action, or an L-module structure on V — This means a K-bilinear map
∇ : Γ(L)×Γ(V ) → Γ(V ) which is C∞(M,K)-linear in its first argument and
satisfying

1. ∇l(fv) = f∇lv + ρL(l)(f)v, for all l ∈ Γ(L), f ∈ C∞(M,K) and
v ∈ Γ(V );

2. ∇[l1,l2]L = ∇l1 ◦ ∇l2 −∇l2 ◦ ∇l1 , for all l1, l2 ∈ Γ(L).

If we turn to the language of dg algebras, such an action ∇ is equivalent to
a square zero derivation d∇L : Γ(∧•L∨ ⊗ V ) → Γ(∧•+1L∨ ⊗ V ) which is also
called the Chevalley-Eilenberg differential [33]. The pair (Γ(∧•L∨ ⊗ V ), d∇L )
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now becomes a dg module over the dg algebra (Γ(∧•L∨), dL), and is known
as the Chevalley-Eilenberg complex of L with coefficients in V .

Notably, given a Lie pair (L,A) over a base manifold M , the quotient
bundle L/A, which we usually denote by B, naturally admits a Lie algebroid
A-action known as the Bott connection [4, 5]. In specific, this action which
we denote by ∇ is defined by

Γ(A) × Γ(B) −→ Γ(B) : (a, b) �−→ ∇ab := prB[a, b̃]L

where a ∈ Γ(A), b ∈ Γ(B), prB : L → B stands for the canonical quotient
map, and b̃ ∈ Γ(L) satisfies prB(b̃) = b. The Bott connection originates in
foliation theory: When we especially take L = TM with A the tangent bundle
to a foliation on M , and B = L/A the normal bundle to the foliation, the
action ∇ becomes the canonical flat connection on B along A considered by
Bott [4].

From the Lie algebroid A and its action on B, we have the standard
dg algebra Ω•

A := Γ(∧•A∨) and the dg module Ω•
A(B) := Γ(∧•A∨ ⊗ L/A)

(both equipped with Chevalley-Eilenberg differentials). To interpret Ω•
A(B),

consider XA and XL, the differentiable stacks determined by the local Lie
groupoids integrating the Lie algebroids A and L, respectively. The dg mod-
ule Ω•

A(B) can be regarded as the space of formal vector fields tangent to the
fibers of the differentiable stack fibration XA → XL. We would like to mention
another point of view towards foliations on manifolds, which are particular
instances of Lie pairs, due to Vitagliano [37, 38, 39] — Let C ⊂ TM be an
involutive distribution on a finite dimensional smooth manifold M . This gives
an object of a diffiety to which there is associated a rich cohomological cal-
culus, also known as secondary calculus [34, 35, 36]. For instance, secondary
functions give characteristic (de Rham) cohomology of C, i.e. HdR(Γ(∧•C∨)),
and secondary vector fields give characteristic cohomology with local coeffi-
cients in C-normal vector fields, i.e. HdR(Γ(∧•C∨ ⊗ TM/C)). Although the
settings op. cit. are foliations on smooth manifolds, we can adapt them to
Lie pairs easily: given a general Lie pair (L,A), one interprets the Chevalley-
Eilenberg cohomology HCE(A) := H(Γ(∧•A∨)) = H(Ω•

A) as the secondary
functions and HCE(A;B) := H(Γ(∧•A∨⊗B)) = H(Ω•

A(B)) as the secondary
vector fields stemming from a stack fibration XA → XL.

To the aforementioned space Ω•
A(B), there are associated two different

L∞ structures, one by [22] and the other by [2]. The latter one is relatively
easier because it is indeed an L�3 algebra (i.e., its structure maps [· · · ]n are
trivial for n � 4, see Section 2.3). We wish to find more intrinsic properties
of the both L∞ structures but in this note we only handle the latter one and
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give the following result — the Lie algebra Der(L) of derivations of the Lie
algebroid L has an action on the said L�3 algebra Ω•

A(B), see Theorem 4.2.
Why the L�3-algebra Ω•

A(B), the central object of this study, is interest-
ing? In fact, it is shown in [2] that Ω•

A(B) is a ‘resolution’ of HCE(A;B) =
H(Ω•

A(B)), which admits a canonical graded Lie algebra structure. As a conse-
quence of our Theorem 4.2, we find an action by derivation of a Lie subalgebra
of Der(L) on HCE(A;B), see Corollary 4.6. Moreover, Ω•

A(B) is closely related
with deformations of the Lie pair (L,A). To be more precise, a Maurer-Cartan
element in Ω•

A(B), i.e., a certain element ξ ∈ Ω1
A(B)⊗mA (where mA is the

maximal ideal of a local Artinian K-algebra A ; see Definition 5.1), gives rise
to a deformed Lie pair (L,Aξ). It turns out that the aforementioned action
by Der(L) on Ω•

A(B) determines a family of gauge equivalences of such defor-
mations. Limited by the length of this paper, we do not expand this relatively
complicated topic. Detailed investigation and conclusions will be presented in
our next work.

To prove Theorem 4.2, we first need to specify the notion of a Lie algebra
action on an L∞ algebra. We will borrow many known facts from the literature
and give a formal definition and several equivalent characterizations which
should be of independent interest, see Section 3. We would like to point out
that, in [27], Mehta and Zambon have introduced the concept of L∞ algebra
action on a graded manifold, which is more general than our definition of Lie
algebra actions and could be a point for further studies related to the present
work.

Furthermore, we propose to consider gauge actions on Maurer-Cartan
elements in an L∞ algebra if it adopts a Lie algebra action. The idea follows
from the original definition of gauge actions by Getzler [16]. When applying
to the particular instance of Der(L)-action on Ω•

A(B), we obtain a new type of
gauge equivalence of Maurer-Cartan elements in Ω•

A(B), which is compatible
with the standard gauge equivalence in the sense of Getzler, see Theorem 5.4.
For this reason, we elect to call the action by Der(L) internal symmetry of
the L�3 algebra Ω•

A(B).

Terminology and notations

Field K We use the symbol K to denote the field of either real or complex
numbers.

Gradings Unless specified otherwise, all vector spaces, algebras, modules,
etc., are Z-graded objects over the field K. For a graded object V = ⊕i∈ZV

i,
the degree of a homogeneous element v ∈ V i is denoted by |v| = i. We write
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V [k] as the degree k shift of V by the rule (V [k])i = V k+i, so the element
v[k] ∈ V [k] shifted from v ∈ V has degree |v[k]| = |v| − k. The elements
v[1] ∈ V [1] will also be denoted by ṽ.

Tensor products Given a graded vector space V , we denote its tensor
(co)algebra and exterior (co)algebra over K respectively by T (V ) :=⊕

n�0 V
⊗n and Λ(V ) :=

⊕
n�0 Λn(V ). The symmetric (co)algebra and the

reduced symmetric (co)algebra of V are respectively denoted by S(V ) :=⊕
n�0 S

n(V ) and S(V ) :=
⊕

n�1 S
n(V ), whose multiplication symbols are

written as �.

Shuffles Let Sn denote the permutation group of the set {1, 2, . . . , n}.
A (p, q)-shuffle is a permutation σ ∈ Sp+q such that σ(1) < · · · < σ(p)
and σ(p + 1) < · · · < σ(p + q). The symbol Sh(p, q) denotes the set of
(p, q)-shuffles. Similarly, Sh(i, j, k) denotes the set of such (i, j, k)-shuffles, i.e.,
those σ ∈ Si+j+k satisfying σ(1) < · · · < σ(i), σ(i + 1) < · · · < σ(i + j), and
σ(i+j+1) < · · · < σ(i+j+k). For any shuffle σ, its sign is denoted by sgn(σ).

Koszul signs For homogeneous elements v1, . . . , vn ∈ V and σ ∈ Sn, the
Koszul signs ε(σ; v1, . . . , vn) and χ(σ; v1, . . . , vn) are defined respectively by
the equations

v1 � · · · � vn = ε(σ; v1, . . . , vn)vσ(1) � · · · � vσ(n)
(
∈ S(V )

)
,

and v1 ∧ · · · ∧ vn = χ(σ; v1, . . . , vn)vσ(1) ∧ · · · ∧ vσ(n)
(
∈ Λ(V )

)
.

The two signs are related by χ(σ; v1, . . . , vn) = sgn(σ)ε(σ; v1, . . . , vn).

The décalage isomorphism Given a graded vector space V , there are natural
isomorphisms for any n ∈ N:

dpn : Sn(V [1]
)
→

(
ΛnV

)
[n], ṽ1�· · ·�ṽn �→ (−1)

∑n

i=1(n−i)|vi|(v1∧· · ·∧vn)[n].

Lie algebroids In this paper ‘Lie algebroid’ always means ‘Lie K-algebroid’.

Abbreviations The word ‘dg’ stands for ‘differential graded’. Likewise, ‘dgla’
stands for ‘differential graded Lie algebra’.
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2. L∞ algebras

2.1. Definitions of L∞ algebras

We start with the definitions of various terms related to homotopy Lie alge-
bras.

Definition 2.1. An L∞ algebra is a graded vector space g equipped with
a collection of skew-symmetric multilinear maps [· · · ]k : Λkg → g of degree
(2 − k), for all k � 1, such that the higher Jacobi rules

∑
i=1,...,n

σ∈Sh(i,n−i)

(−1)iχ(σ;x1, . . . , xn)
[
[xσ(1), . . . , xσ(i)]i, xσ(i+1), . . . , xσ(n)

]
n−i+1 = 0,

(2.2)

hold for all homogeneous elements x1, . . . , xn ∈ V and n � 1.

Notation It is common to denote the unary bracket [·]1 by d.
The first three Jacobi rules are listed below:

• (n = 1) d2 = 0,
• (n = 2) d[x1, x2]2 = [dx1, x2]2 + (−1)|x1|[x1, dx2]2,
• (n = 3) [

[x1, x2]2, x3
]
2 + (−1)1+|x2|·|x3|[[x1, x3]2, x2

]
2

+ (−1)|x1|(|x2|+|x3|)[[x2, x3]2, x1
]
2

= d[x1, x2, x3]3 + [dx1, x2, x3]3 + (−1)1+|x1|·|x2|[dx2, x1, x3]3
+ (−1)(|x1|+|x2|)|x3|[dx3, x1, x2]3.

In particular, an L∞ algebra with [· · · ]k = 0 for k � 3 amounts to a
differential graded Lie algebra (dgla for short), i.e., a triple (V, [·, ·], d), where
(V =

⊕
i∈Z V

i, d) is a differential graded vector space and [·, ·] : V × V → V
is a graded Lie bracket, satisfying the above n = 2 constraint.

Definition 2.3. If an L∞ algebra has vanishing brackets [· · · ]k = 0 for k � 4,
i.e., only the brackets d, [·, ·]2, and [·, ·, ·]3 are possibly nontrivial, then it is
called an L�3 algebra.

Remark 2.4. In this paper, we follow the sign convention of Getzler [16] for
the definition of L∞ algebras. The original definition of L∞ structure on g
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introduced by Lada and Markl [20] means a family of brackets [· · · ]′k : Λk(g) →
g of degree (2 − k) subject to the higher Jacobi rules:

(2.5)

∑
i=1,...,n

σ∈Sh(i,n−i)

(−1)i(n−i)χ(σ;x1, . . . , xn)

[
[xσ(1), . . . , xσ(i)]′i, xσ(i+1), . . . , xσ(n)

]′
n−i+1 = 0.

In fact, if we define

[x1, . . . , xk]k := (−1)
k(k+1)

2 [x1, . . . , xk]′k,

then the identity (2.5) becomes (2.2).

Remark 2.6. For an L∞-algebra g whose unary bracket is d, since d2 = 0,
we have a cochain complex (g, d). The corresponding cohomology is denoted by
H(g). Moreover, H(g) is equipped with a graded Lie algebra structure whose
Lie bracket is induced from the binary bracket of g. Note this H(g) is not
HCE(g) which usually refers to the Chevalley-Eilenberg cohomology of the L∞
algebra g.

Definition 2.7. Let (g1, [· · · ]1n) and (g2, [· · · ]2n) be two L∞ algebras. An L∞
morphism F : g1 → g2 is a collection of multilinear maps

Fn : Λng1 → g2

(of degree 1 − n) satisfying the following equations:∑
p+q=n+1

σ∈Sh(p,n−p)

±Fq

(
[xσ(1), . . . , xσ(p)]1p, xσ(p+1), . . . , xσ(n)

)

=
∑

1�k�n
i1+···+ik=n
τ∈Sh(i1,...,ik)

±
[
Fi1(xτ(1), . . . , xτ(i1)), . . . , Fik(xτ(i1+···+ik−1+1), . . . , xτ(n))

]2
k

for every n � 1 and x1, . . . , xn ∈ g1. Here we denote by (±) the appropriate
Koszul signs (which can be worked out explicitly).

There is another version of definition for an L∞ algebra, known as L∞[1]
algebras, see [41, 30].



2202 Dadi Ni et al.

Definition 2.8. An L∞[1] algebra is a graded vector space W equipped with
a collection of symmetric multilinear maps {· · · }k : Sk(W ) → W , all being
degree 1 for k � 1, such that the higher Jacobi rules

∑
i=1,...,n

σ∈Sh(i,n−i)

ε(σ;w1, . . . , wn)
{
{wσ(1), . . . , wσ(i)}i, wσ(i+1), . . . , wσ(n)

}
n−i+1 = 0

(2.9)

hold for all homogeneous elements w1, . . . , wn ∈ W and n � 1.

A basic fact we need is the bijection between L∞ algebra structures on a
graded vector space g and L∞[1] algebra structures on g[1] — Suppose that
(g, [· · · ]n) is an L∞ algebra. Following the décalage isomorphism, we define
the following n-brackets:

Sn(g[1]
)
→ g[1], {x̃1, . . . , x̃n}n := (−1)

n(n+1)
2 +

∑n

i=1(n−i)|xi|([x1, . . . , xn]n
)
[1],

where x1, . . . , xn ∈ g. Then one can verify that (g[1], {· · · }n) is an L∞[1]
algebra.

Another relation we need is about the Koszul signs:

(−1)
∑n

i=1(n−i)|xσ(i)|ε(σ; x̃1, . . . , x̃n) = (−1)
∑n

i=1(n−i)|xi|χ(σ;x1, . . . , xn),

where σ ∈ Sn, ε(σ; x̃1, . . . , x̃n) and χ(σ;x1, . . . , xn) are defined in Sn(g[1])
and Λn(g) respectively.

2.2. L∞ structure in terms of dg coalgebras

The notions of L∞ and L∞[1] algebras can be wrapped up in the language of
dg coalgebras. Here is a quick review of this fact. One could also consult [25]
and [15].

Let C be a graded coalgebra with a comultiplication Δ : C → C ⊗C. A
degree m coderivation of (C,Δ) is a degree m graded linear map D : C → C
satisfying the coLeibniz rule ΔD = (D ⊗ idC + idC ⊗D)Δ. A codifferential
is a degree 1 coderivation D with D2 = 0.

Notation The vector space of all coderivations on C is denoted by Coder(C)
:=

⊕
m∈Z Coderm(C) which is naturally graded by the degrees. With re-

spect to the composition ◦, the space Coder(C) has the graded Lie bracket
[F,G] := F ◦G− (−1)|F ||G|G◦F for homogeneous elements F,G ∈ Coder(C).
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If D : C → C is a codifferential, then [·, ·] and d = [D, ·] give a dgla structure
on Coder(C).

We will mainly work with two coalgebras associated with a given graded
vector space V : the symmetric coalgebra S(V ) =

⊕
n�0 S

n(V ) and the re-
duced one S(V ) =

⊕
n�1 S

n(V ). The comultiplication on S(V ) is given as
follows:

b(v1 � · · · � vn)
=

∑
r=0,...,n

σ∈Sh(r,n−r)

ε(σ; v1, . . . , vn)(vσ(1) � · · · � vσ(r)) ⊗ (vσ(r+1) � · · · � vσ(n)),

where v1, . . . , vn ∈ V are homogeneous elements. In particular, for a homo-
geneous element v ∈ V , we have b(v) = 1 ⊗ v + v ⊗ 1. For 1 ∈ S0(V ) = K,
we have b(1) = 1 ⊗ 1. The counit ε : S(V ) → K = S0(V ) is the natural
projection.

Similarly, the comultiplication on the reduced symmetric coalgebra S(V )
is given as follows:

l(v1 � · · · � vn)
=

∑
r=1,...,n−1
σ∈Sh(r,n−r)

ε(σ; v1, . . . , vn)(vσ(1) � · · · � vσ(r)) ⊗ (vσ(r+1) � · · · � vσ(n)),

where v1, . . . , vn ∈ V are homogeneous elements. In particular, for a homo-
geneous element v ∈ V , we have l(v) = 0. Let p : S(V ) → S(V ) be the
projection with kernel K = S0(V ). It is easy to check that lp = (p⊗ p)b, i.e.,
p is a morphism of graded coalgebras.

Given a graded vector space V , every coderivation D : S(V ) → S(V ) of
degree m is completely determined by its corestriction pr1 ◦D = (D0, D1, D2,
. . .), where pr1 : S(V ) → V denotes the canonical projection, and Dk is
the composition Sk(V ) D−→ S(V ) pr1−−→ V , which is a graded vector space
morphism of degree m. In other words, there exists an isomorphism of graded
vector spaces

(2.10) Coder
(
S(V )

) ∼= Hom
(
S(V ), V

)
,

whose inverse is given by the formula

D(v1 � · · · � vn)
= D0(1) � v1 � · · · � vn
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+
∑

k=1,...,n
σ∈Sh(k,n−k)

ε(σ; v1, . . . , vn)Dk(vσ(1) � · · · � vσ(k)) � vσ(k+1) � · · · � vσ(n),

where v1, . . . , vn ∈ V are homogeneous elements. Following this proposition,
we use the notation D = (D0, D1, D2, . . .) to denote a coderivation of S(V ).

Similarly, for the reduced symmetric coalgebra S(V ), the map R �→
pr1 ◦R = (R1, R2, . . .) with Rk := pr1 ◦R|Sk(V ) gives an isomorphism of graded
vector spaces

(2.11) Coder
(
S(V )

) ∼= Hom
(
S(V ), V

)
,

whose inverse is given by the formula

R(v1 � · · · � vn)
=

∑
k=1,...,n

σ∈Sh(k,n−k)

ε(σ; v1, . . . , vn)Rk(vσ(1) � · · · � vσ(k)) � vσ(k+1) � · · · � vσ(n),

where v1, . . . , vn ∈ V are homogeneous elements.
By these two identifications, a coderivation R = (R1, R2, . . .) on S(V )

is equivalent to a coderivation R = (R0, R1, R2, . . .) on S(V ) with R0 = 0.
On the other hand, given a coderivation D = (D0, D1, D2, . . .) on S(V ), we
have a truncated coderivation D := (D1, D2, . . .) on S(V ). In particular, if
Q ∈ Coder1(S(V )) is a codifferential, then Q induces dgla structures on both
Coder(S(V )) and Coder(S(V )), where the former is a sub-dgla of the latter.

For a degree i coderivation R ∈ Coderi(S(V )) and a degree j vector
v ∈ V j , we can define a degree (i + j) coderivation v�R ∈ Coderi+j(S(V ))
with components given by

(v�R)n(v1 � · · · � vn) := (−1)ijRn+1(v � v1 � · · · � vn),

∀n � 1, v1 � · · · � vn ∈ Sn(V ). One can check that

v�R=−
[
v#, R

]
, (−1)ijR(v)=(−1)ijR1(v) = −

[
v#, R

]
0(1) = −

[
v#, R

]
(1),

or equivalently,

(2.12) −
[
v#, R

]
=

(
(−1)ijR(v)

)# + v�R,

where v# = ((v#)0 = v, 0, 0, . . .) ∈ Coder(S(V )).
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Finally, we need the fact that there is a bijection between L∞ algebra struc-
tures on a graded vector space g and codifferentials on the reduced symmetric
coalgebra S(g[1]). In fact, it suffices to consider L∞[1] algebra structures on
g[1]. Suppose that a sequence of maps {· · · }k : Sk(g[1]) → g[1], all being
degree 1 for k � 1, define an L∞[1] structure on g[1] (see Definition 2.8).
Set Qk = {· · · }k and consider Q = (Q1, Q2, . . .) ∈ Coder1(S(g[1])), then the
higher Jacobi identities (2.9) are equivalent to the identity Q2 = 0, i.e., Q is
a codifferential on S(g[1]).

Throughout the note, we shall assume the correspondence between an L∞
algebra g and its associated dg coalgebra (S(g[1]), Q) by default. Of course,
the codifferential Q also gives rise to a dg coalgebra (S(g[1]), Q). In this con-
text, a morphism of L∞ algebras g1 → g2 translates to a morphism of dg coal-
gebras (S(g1[1]), Q1) → (S(g2[1]), Q2), and (S(g1[1]), Q1) → (S(g2[1]), Q2) as
well.

2.3. The L�3 algebra arising from a Lie pair

Definition 2.13. Let M be a smooth manifold. A Lie algebroid over M
consists of a K-vector bundle E → M , a vector bundle map ρE : E →
TM ⊗R K, called anchor, and a Lie algebra bracket [·, ·]E on the space of
sections Γ(E), such that ρE induces a Lie algebra homomorphism from Γ(E)
to X (M) ⊗R K, and the Leibniz rule

[u, fv]E =
(
ρE(u)f

)
v + f [u, v]E

is satisfied for all f ∈ C∞(M,K) and u, v ∈ Γ(E). Such a Lie algebroid is
denoted by the triple (E, [·, ·]E , ρE).

Definition 2.14. By a Lie algebroid pair (Lie pair for short) (L,A), we
mean a Lie algebroid L together with a Lie subalgebroid A of L over the same
base manifold M (we will often omit to write M).

Given a Lie pair (L,A), one can choose a complement B of A in L and
identify the quotient bundle L/A ∼= B though it is not canonical. In the
sequel, we fix such an embedding B ↪→ L and hence get a fixed decomposition
L ∼= A⊕B. The projections from L to A and B are denoted by prA and prB.

The Bott connection ∇ of A on B is given by

Γ(A) × Γ(B) −→ Γ(B) : (a, b) �−→ ∇ab := prB[a, b]L.

In fact, this definition does not depend on the choice of a decomposition
L ∼= A ⊕ B. Therefore, the quotient B of a Lie pair (L,A) is canonically an
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A-module, i.e.,

∇a(fb) =
(
ρA(a)f

)
b + f(∇ab),

∇[a1,a2]Ab = ∇a1(∇a2b) −∇a2(∇a1b),

where a, a1, a2 ∈ Γ(A), b ∈ Γ(B), f ∈ C∞(M,K).
Similarly, there is a B-operation ð on A though it depends on the decom-

position L ∼= A⊕B:

Γ(B) × Γ(A) −→ Γ(A) : (b, a) �−→ ðba := prA[b, a]L.

Furthermore, the operation ðb : Γ(A) → Γ(A),∀b ∈ Γ(B) induces a dual
operation on Γ(A∨) given by

〈ðbu, a〉 = ρL(b)〈u, a〉 − 〈u, ðba〉, ∀u ∈ Γ
(
A∨),∀a ∈ Γ(A).

More generally, the operation ðb extends to a derivation on Γ(ΛpA∨),∀p ∈ N

by the Leibniz rule.
Next, introduce the following maps for any b1, b2 ∈ Γ(B):

[·, ·]B : Γ(B) × Γ(B) → Γ(B), [b1, b2]B := prB[b1, b2]L,
β(·, ·) : Γ(B) × Γ(B) → Γ(A), β(b1, b2) := prA[b1, b2]L,

where the bracket [·, ·]B does not necessarily satisfy the Jacobi identity.
With these structure maps fixed, the Lie algebroid structure on L = A⊕B

can be described as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[a1, a2]L = [a1, a2]A,
[b1, b2]L = β(b1, b2) + [b1, b2]B,
[a, b]L = −ðba + ∇ab,

ρL(a + b) = ρA(a) + ρB(b),

∀a, a1, a2 ∈ Γ(A), b, b1, b2 ∈ Γ(B),

where ρA, ρB are the restrictions ρL|A, ρL|B respectively.
Consider the spaces of A-forms and B-valued A-forms:

Ω•
A =

rank(A)⊕
k=0

Γ
(
ΛkA∨), Ω•

A(B) =
rank(A)⊕
k=0

Γ
(
ΛkA∨ ⊗B

)
.

Let ω ∈ Ω•
A and λ ∈ Ω•

A, b ∈ Γ(B) so that λ ⊗ b ∈ Ω•
A(B). It is clear that

Ω•
A(B) is an Ω•

A-module: ω · (λ⊗ b) := (ω ∧λ)⊗ b. Also, both Ω•
A and Ω•

A(B)
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are equipped with the standard Chevalley-Eilenberg differentials as follows:

(dAω)(a1, . . . , ak+1) =
k+1∑
i=1

(−1)i+1ρA(ai)
(
ω(a1, . . . , âi, . . . , ak+1)

)
+

∑
i<j

(−1)i+jω
(
[ai, aj ]A, a1, . . . , âi, . . . , âj , . . . , ak+1

)
,

(
dBott
A X

)
(a1, . . . , ak+1)=

k+1∑
i=1

(−1)i+1∇ai

(
X(a1, . . . , âi, . . . , ak+1)

)(2.15)

+
∑
i<j

(−1)i+jX
(
[ai, aj ]A, a1, . . . , âi, . . . , âj , . . . , ak+1

)
,

where ω ∈ Ωk
A, X ∈ Ωk

A(B), ai ∈ Γ(A). Under these differentials, the space
(Ω•

A, dA) is a dg algebra and the space (Ω•
A(B), dBott

A ) is a dg Ω•
A-module.

A vector field of degree n on the graded manifold A[1] is a derivation of
degree n of the algebra Ω•

A = C∞(A[1]), i.e., a linear map ς : Ω•
A → Ω•+n

A

such that the graded Leibniz rule

ς(ξ ∧ η) = (ςξ) ∧ η + (−1)n·|ξ|ξ ∧ (ςη)

holds for all homogeneous elements ξ, η ∈ Ω•
A.

Notation Let us denote by Dern(Ω•
A) the set of degree n derivations of Ω•

A.

Theorem 2.16 ([2, Proposition 4.3]). Let (L,A) be a Lie pair. Given a
decomposition L ∼= A⊕B, there exists an induced L�3 algebroid structure on
the graded vector bundle A[1] ×B → A[1] whose structure maps are given as
follows:

(1). The zeroth anchor ρ0 is dA : Ω•
A → Ω•+1

A .
(2). The unary anchor ρ1 : Ωi

A(B) → Deri(Ω•
A) is given by

ρ1(λ⊗ b)ω = λ · (ðbω), ∀λ⊗ b ∈ Ωi
A(B), ω ∈ Ω•

A.

(3). The binary anchor ρ2 : Ωi
A(B) × Ωj

A(B) → Deri+j−1(Ω•
A) is given by

ρ2
(
λ⊗ b, λ′ ⊗ b′

)
ω = (−1)|λ|+|λ′|+1(λ ∧ λ′) · (iβ(b,b′)ω),

∀λ⊗ b, λ′ ⊗ b′ ∈ Ωi
A(B), ω ∈ Ω•

A.
(4). The unary bracket d = [·]1 is dBott

A : Ω•
A(B) → Ω•+1

A (B).
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(5). The binary bracket [·, ·]2 : Ωi
A(B) × Ωj

A(B) → Ωi+j
A (B) is generated by

the relations [
b, b′

]
2 =

[
b, b′

]
B
,

[X,ω · Y ]2 =
(
ρ1(X)ω

)
· Y + (−1)|ω|·|X|ω · [X, Y ]2,

∀b, b′ ∈ Γ(B), X, Y ∈ Ω•
A(B), ω ∈ Ω•

A.
(6). The ternary bracket [·, ·, ·]3 : Ωp

A(B)×Ωq
A(B)×Ωr

A(B) → Ωp+q+r−1
A (B)

is generated by the relations[
b, b′, b′′

]
3 = 0,

[X, Y, ω · Z]3 =
(
ρ2(X, Y )ω

)
· Z + (−1)|ω|(|X|+|Y |+1)ω · [X, Y, Z]3,

∀b, b′, b′′ ∈ Γ(B), X, Y, Z ∈ Ω•
A(B), ω ∈ Ω•

A.
(7). The other higher anchors and brackets all vanish.

We further find direct formulas of higher structure maps of Ω•
A(B). Similar

results are found in [31].

Proposition 2.17. The binary and the ternary brackets of the L�3 algebra
Ω•

A(B) are expressed as follows:

(1) For all X ∈ Ωp
A(B) and Y ∈ Ωq

A(B), the 2-bracket [X, Y ]2 ∈ Ωp+q
A (B)

is determined by

[X, Y ]2(a1, . . . , ap+q)

=
∑

σ∈Sh(p,q)

p∑
i=1

sgn(σ)X(aσ(1), . . . ,ðY (aσ(p+1),...,aσ(p+q))aσ(i), . . . , aσ(p))

−
∑

τ∈Sh(p,q)

q∑
j=1

sgn(τ)Y (aτ(p+1), . . . ,ðX(aτ(1),...,aτ(p))aτ(p+j), . . . , aτ(p+q))

+
∑

α∈Sh(p,q)
sgn(α)

[
X(aα(1), . . . , aα(p)), Y (aα(p+1), . . . , aα(p+q))

]
B
.

(2) For all X ∈ Ωp
A(B), Y ∈ Ωq

A(B), and Z ∈ Ωr
A(B), the 3-bracket

[X, Y, Z]3 ∈ Ωp+q+r−1
A (B) is determined by

[X, Y, Z]3(a1, . . . , ap+q+r−1)

= (−1)p+q+1 ∑
σ∈Sh(p,q,r−1)

sgn(σ)Z
(
β
(
X(aσ(1), . . .), Y (aσ(p+1), . . .)

)
,
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aσ(p+q+1), . . .
)

+ (−1)p
∑

τ∈Sh(p,q−1,r)
sgn(τ)Y

(
β
(
X(aτ(1), . . .), Z(aτ(p+q), . . .)

)
,

aτ(p+1), . . .
)

−
∑

α∈Sh(p−1,q,r)
sgn(α)X

(
β
(
Y (aα(p), . . .), Z(aα(p+q), . . .)

)
, aα(1), . . .

)
.

Here a1, . . . , ap+q+r−1 ∈ Γ(A), and the set Sh(i, j, k) consists of (i, j, k)-
shuffles.

Proof. To show (1), by linearity, we assume that X = u ⊗ b ∈ Ωp
A(B) and

Y = v⊗ c ∈ Ωq
A(B) where u, v ∈ Ω•

A, b, c ∈ Γ(B). By the generating relations
of the binary bracket, we have

[X, Y ]2 =
(
u ∧ (ðbv)

)
⊗ c−

(
(ðcu) ∧ v

)
⊗ b + (u ∧ v) ⊗ [b, c]B.

Evaluating the above expression at the variables a1, . . . , ap+q, we get

[X, Y ]2(a1, . . . , ap+q)
=

∑
τ∈Sh(p,q)

sgn(τ)u(aτ(1), . . . , aτ(p)) · ðbv(aτ(p+1), . . . , aτ(p+q)) · c

−
∑

σ∈Sh(p,q)
sgn(σ)ðcu(aσ(1), . . . , aσ(p)) · v(aσ(p+1), . . . , aσ(p+q)) · b

+
∑

α∈Sh(p,q)
sgn(α)u(aα(1), . . . , aα(p)) · v(aα(p+1), . . . , aα(p+q)) · [b, c]B

=
∑

τ∈Sh(p,q)
sgn(τ)u(aτ(1), . . . , aτ(p)) · ρB(b)

(
v(aτ(p+1), . . . , aτ(p+q))

)
· c

−
∑

τ∈Sh(p,q)
sgn(τ)u(aτ(1), . . . , aτ(p))

·
(

q∑
j=1

v(aτ(p+1), . . . ,ðbaτ(p+j), . . . , aτ(p+q))
)
· c

−
∑

σ∈Sh(p,q)
sgn(σ)ρB(c)

(
u(aσ(1), . . . , aσ(p))

)
· v(aσ(p+1), . . . , aσ(p+q)) · b

+
∑

σ∈Sh(p,q)
sgn(σ)

(
p∑

i=1
u(aσ(1), . . . ,ðcaσ(i), . . . , aσ(p))

)

· v(aσ(p+1), . . . , aσ(p+q)) · b
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+
∑

α∈Sh(p,q)
sgn(α)u(aα(1), . . . , aα(p)) · v(aα(p+1), . . . , aα(p+q)) · [b, c]B

=
∑

σ∈Sh(p,q)

p∑
i=1

sgn(σ)X(aσ(1), . . . ,ðY (aσ(p+1),...,aσ(p+q))aσ(i), . . . , aσ(p))

−
∑

τ∈Sh(p,q)

q∑
j=1

sgn(τ)Y (aτ(p+1), . . . ,ðX(aτ(1),...,aτ(p))aτ(p+j), . . . , aτ(p+q))

+
∑

α∈Sh(p,q)
sgn(α)

[
X(aα(1), . . . , aα(p)), Y (aα(p+1), . . . , aα(p+q))

]
B
.

To show (2), we also assume that Z = w ⊗ e ∈ Ωr
A(B) where w ∈ Ω•

A,
e ∈ Γ(B). By the generating relations of the ternary bracket, we have

[X, Y, Z]3 =
(
ρ2(X, Y )w

)
⊗ e + (−1)|Y ||Z|+1(ρ2(X,Z)v

)
⊗ c

+ (−1)|X|(|Y |+|Z|)(ρ2(Y, Z)u
)
⊗ b

= (−1)|X|+|Y |+1(u ∧ v ∧ iβ(b,c)w) ⊗ e+(−1)|X|(u ∧ iβ(b,e)v ∧ w) ⊗ c

− (iβ(c,e)u ∧ v ∧ w) ⊗ b.

Evaluating the above expression at the variables a1, . . . , ap+q, we get (2).

Remark 2.18. The unary anchor ρ1, the binary anchor ρ2 and the ternary
bracket [·, ·, ·]3 are all C∞(M)-(multi-)linear, whereas the zeroth anchor dA,
the unary bracket dBott

A and the binary bracket [·, ·]2 are not.

Remark 2.19. Note that the L�3 structure maps depend on the choice of
a splitting L ∼= A ⊕ B. However, different choices of splittings give rise to
isomorphic L�3 algebras where the isomorphism is given by a collection of
multilinear maps

ϕn : ∧n (
Ω•

A(B)
)
→ Ω•

A(B), n = 1, 2, . . .

where ϕ1 is the identity map, see [2, Theorem 1.1]. In fact, these maps ϕn

can be wrapped up into an automorphism exp(δπ) of the coalgebra S(Ω•
A(B)[1])

where the datum π measures the difference between two splittings and δπ is
a coderivation of S(Ω•

A(B)[1]). Moreover, exp(δπ) is an isomorphism of dg
coalgebras, i.e., it intertwines the relevant codifferentials arising from different
splittings.
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3. Lie algebra actions on L∞ algebras

Let h be an ordinary (i.e., with zero grading) Lie algebra, and g be an L∞
algebra. In this Section, we consider a notion of Lie algebra action of h on the
L∞ algebra g, together with several equivalent descriptions of such an action.

3.1. Definition of Lie algebra actions on L∞ algebras

Recall that from g we obtain the associated dg coalgebras (S(g[1]), Q) and
(S(g[1]), Q), and the dglas Coder(S(g[1])) and Coder(S(g[1])) whose differ-
entials are both induced by Q. In the meantime, h could be regarded as a
dgla which concentrates in degree 0 and has a trivial differential.

Definition 3.1. A Lie algebra action of h on the L∞ algebra g is a dgla
homomorphism

ψ : h → Coder
(
S
(
g[1]

))
.

Definition 3.2. Suppose that two L∞ algebras g1 and g2 are both equipped
with h-actions ψ1 and ψ2, respectively. A morphism of L∞ algebras F : g1 →
g2 is called compatible with the h-actions if the corresponding morphism
of dg coalgebras F s : S(g1[1]) → S(g2[1]) intertwines with ψ1 and ψ2, i.e.
ψ2(h) ◦ F s = F s ◦ ψ1(h), ∀h ∈ h.

Proposition 3.3. An h-action on g as defined above is equivalent to a pair
of linear maps (θ, γ) where θ : h → Coder0(S(g[1])) and γ : h → g[1]0 such
that for all h, h′ ∈ h the following compatibility conditions hold:

Q ◦ γ = 0,(3.4) [
Q, θ(h)

]
= −γ(h)�Q,(3.5)

γ
([
h, h′]

h

)
= θ(h)

(
γ
(
h′))− θ

(
h′)(γ(h)

)
,(3.6)

θ
([
h, h′]

h

)
=

[
θ(h), θ

(
h′)] + γ

(
h′)�θ(h) − γ(h)�θ

(
h′).(3.7)

Proof. For every h ∈ h, its corresponding coderivation ψ(h) ∈ Coder(S(g[1])),
by identification (2.10), is completely determined by a sequence of maps

ψ(h)k : Sk(g[1]
)
→ g[1], k � 0.

Let γ : h → g[1]0 be given by γ(h) := ψ(h)0(1). According to identifi-
cation (2.11), the sequence of maps ψ(h)k, k � 1, uniquely determines a
coderivation of degree 0 on S(g[1]), which we denote by θ(h). Hence,

(3.8) ψ(h) = γ(h)# + θ(h).
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The linear map ψ is a morphism of dglas if and only if both of the following
two equalities hold:

[
Q,ψ(h)

]
= 0, ∀h ∈ h,(3.9)

ψ
([
h, h′]

h

)
=

[
ψ(h), ψ

(
h′)], ∀h, h′ ∈ h.(3.10)

Using (3.8) and (2.12), we have

[
Q,ψ(h)

]
=

[
Q, γ(h)#

]
+

[
Q, θ(h)

]
= −

[
γ(h)#, Q

]
+

[
Q, θ(h)

]
= Q

(
γ(h)

)# + γ(h)�Q +
[
Q, θ(h)

]
,

where γ(h)�Q+ [Q, θ(h)] ∈ Coder0(S(g[1])). Now, we see that (3.9) is equiv-
alent to (3.4) and (3.5).

Using (3.8) and (2.12) again, plus the fact [v#, v′#] = 0,∀v, v′ ∈ g[1], we
have

ψ
([
h, h′]

h

)
−

[
ψ(h), ψ

(
h′)]

= γ
([
h, h′]

h

)# + θ
([
h, h′]

h

)
−

[
γ(h)# + θ(h), γ

(
h′)# + θ

(
h′)]

= γ
([
h, h′]

h

)# + θ
([
h, h′]

h

)
−

[
θ(h), θ

(
h′)]− [

γ(h)#, θ
(
h′)]− [

θ(h), γ
(
h′)#]

= γ
([
h, h′]

h

)# + θ
([
h, h′]

h

)
−

[
θ(h), θ

(
h′)]

+
(
θ
(
h′)(γ(h)

))# + γ(h)�θ
(
h′)− (

θ(h)
(
γ
(
h′)))# − γ

(
h′)�θ(h).

Separating the coderivations in the above expression involving # apart from
those in Coder0(S(g[1])), we see that (3.10) is equivalent to (3.6) and (3.7).

Remark 3.11. In particular, if γ = 0, then θ : h → Coder(S(g[1])) needs
to be a morphism of dglas. The compatibility conditions in Proposition 3.3
become

[
Q, θ(h)

]
= 0,

θ
([
h, h′]

h

)
=

[
θ(h), θ

(
h′)],

for all h, h′ ∈ h. Therefore, for any h ∈ h the coderivation θ(h) is an in-
finitesimal deformation of g, and θ commutes with Lie brackets. In this case,
we say g admits a strict Lie algebra action of h.
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3.2. Equivalent characterizations of Lie algebra actions on L∞
algebras

We give two more characterizations of Definition 3.1. The first one follows
Mehta-Zambon’s approach [27] via extensions. The second one follows the
classical approach of specifying the action maps.

Theorem 3.12. An L∞ algebra g admits a Lie algebra action of h if and
only if the direct sum h⊕ g, where h concentrates in degree 0, admits an L∞
algebra structure which extends the original L∞ algebra structure on g and
the Lie algebra structure on h, in the sense that the following two conditions
hold:

(1) the sequence 0 −→ g
ιg−→ h⊕ g

prh−→ h −→ 0 is a (not necessarily split)
sequence of L∞ morphisms,

(2) any n-bracket on h⊕ g for n � 3 vanishes when two or more inputs are
from h.

Proof. Assume that g admits an h-action with the dgla homomorphism ψ as
in Definition 3.1, it suffices to construct a codifferential Q̂ on S(h[1] ⊕ g[1]).
By Proposition 3.3, ψ is completely determined by (γ, θ). In what follows, we
explain by several steps how to use (Q, θ, γ) to construct Q̂.

Firstly, we specify the components of a degree 1 coderivation Q̂ = (Q̂1, Q̂2, . . .)
of S(h[1] ⊕ g[1]).

• The unary component Q̂1 : h[1] ⊕ g[1] → g[1] ⊂ h[1] ⊕ g[1] is given by

Q̂1(h̃) = γ(h) and Q̂1(x̃) = Q1(x̃), ∀h ∈ h, x ∈ g.

• The binary component Q̂2 : S2(h[1] ⊕ g[1]) → h[1] ⊕ g[1] is given by

Q̂2(x̃1 � x̃2) = Q2(x̃1 � x̃2),
Q̂2(h̃� x̃) = θ(h)1(x̃),
Q̂2

(
h̃� h̃′) =

[
h, h′]

h
[1],

where h, h′ ∈ h and x, x1, x2 ∈ g.
• The n-component (n � 3) Q̂n : Sn(h[1] ⊕ g[1]) → g[1] ⊂ h[1] ⊕ g[1] is

determined by

Q̂n(x̃1 � · · · � x̃n) = Qn(x̃1 � · · · � x̃n),
Q̂n(h̃� x̃1 � · · · � x̃n−1) = θ(h)n−1(x̃1 � · · · � x̃n−1),
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where h ∈ h, x1, . . . , xn ∈ g, and Q̂n is required to vanish with two or
more inputs of h[1].

Next, we verify that Q̂◦Q̂ = 0. Applying Equation (3.4) and (Q◦Q)1 = 0,
one has (Q̂ ◦ Q̂)1 = 0. Applying Equations (3.5), (3.6) and (Q ◦ Q)2 = 0,
one has (Q̂ ◦ Q̂)2 = 0. We now apply Equations (3.5) and (3.7) to obtain
(Q̂ ◦ Q̂)n+1 = 0 for every n � 2.

• When there is only one input of h[1], i.e., ∀h̃ ∈ h[1] and x̃1, . . . , x̃n ∈ g[1],
we have

(Q̂ ◦ Q̂)n+1(h̃� x̃1 � · · · � x̃n)
= Qn+1

(
γ(h) � x̃1 � · · · � x̃n

)
+

∑
k=1,...,n

σ∈Sh(k,n−k)

ε(σ; x̃1, . . . , x̃n)

Qn−k+1
(
θ(h)k(x̃σ(1) � · · · � x̃σ(k)) � x̃σ(k+1) � · · · � x̃σ(n)

)
−

∑
k=1,...,n

σ∈Sh(k,n−k)

ε(σ; x̃1, . . . , x̃n)

θ(h)n−k+1
(
Qk(x̃σ(1) � · · · � x̃σ(k)) � x̃σ(k+1) � · · · � x̃σ(n)

)
=

(
γ(h)�Q +

[
Q, θ(h)

])
n
(x̃1 � · · · � x̃n)

= 0.

• When there are two inputs of h[1], i.e., ∀h̃, h̃′ ∈ h[1] and x̃1, . . . , x̃n−1 ∈
g[1], we have

(Q̂ ◦ Q̂)n+1
(
h̃� h̃′ � x̃1 � · · · � x̃n−1

)
= θ

(
h′)

n

(
γ(h) � x̃1 � · · · � x̃n−1

)
− θ(h)n

(
γ
(
h′)� x̃1 � · · · � x̃n−1

)
+ θ

([
h, h′]

h

)
n−1(x̃1 � · · · � x̃n−1)

+
∑

k=1,...,n−1
σ∈Sh(k,n−k−1)

ε(σ; x̃1, . . . , x̃n−1)

θ
(
h′)

n−k

(
θ(h)k(x̃σ(1) � · · · � x̃σ(k)) � x̃σ(k+1) � · · · � x̃σ(n−1)

)
−

∑
k=1,...,n−1

σ∈Sh(k,n−k−1)

ε(σ; x̃1, . . . , x̃n−1)

θ(h)n−k

(
θ
(
h′)

k
(x̃σ(1) � · · · � x̃σ(k)) � x̃σ(k+1) � · · · � x̃σ(n−1)

)
=

(
γ(h)�θ

(
h′)− γ

(
h′)�θ(h) + θ

([
h, h′]

h

)
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−
[
θ(h), θ

(
h′)])

n−1
(x̃1 � · · · � x̃n)

= 0.

• When there are exactly three inputs of h[1] and no inputs of g[1], the
equality (Q̂ ◦ Q̂)3(h̃, h̃′, h̃′′) = 0 follows from the Jacobi identity for h.

• The remaining case of verifying (Q̂◦Q̂)n+1 = 0 follows from the require-
ment that Q̂k+1 vanishes with two or more inputs of h[1] for k � 2.

Thus Q̂ is a codifferential on S(h[1] ⊕ g[1]). The verification of conditions (1)
and (2) are immediate.

Conversely, suppose that Q̂ is a codifferential on S(h[1] ⊕ g[1]) satisfying
conditions (1) and (2) of the current Theorem. Define

γ(h) := Q̂1(h̃), and θ(h) := restriction of h̃�Q̂ on S
(
g[1]

)
, ∀h ∈ h,

where Q̂1(h̃) is in g[1] because of the trivial differential on h.
Reversing the above argument, one obtains the four compatibility Equa-

tions (3.4), (3.5), (3.6), (3.7) for γ and θ as a result of evaluating Q̂ ◦ Q̂ = 0
for various cases of inputs.

Remark 3.13. We have defined a compatibility condition between Lie alge-
bra actions and morphism of L∞ algebras in Definition 3.2. In terms of the
characterization as described by the above theorem, the compatible condition
is equivalent to the statement that the morphism F : g1 → g2 extends to the
morphism F e : h ⊕ g1 → h ⊕ g2 (of L∞ algebras) with F e

1 = idh⊕F1 and
F e
n = Fn for all n � 2.

Classically, a Lie algebra action of h on an object M is specified by an
action map h×M → M satisfying certain compatibility conditions. Similarly,
applying (θ, γ) (see Proposition 3.3) to define for n � 1:

μn(h, x1, . . . , xn)[1] := (−1)
(n+1)(n+2)

2 +
∑n

i=1(n−i)|xi|θ(h)n(x̃1 � · · · � x̃n),

and μ0(h)[1] := −γ(h), where h ∈ h and x1, . . . , xn ∈ g, we have the following
statement.

Proposition 3.14. Let h be a Lie algebra and (g, [· · · ]k) an L∞ algebra as
defined in Definition 2.1. An h-action on g as defined above is equivalent to
a collection of multilinear maps μn : h×∧ng → g of degree (1− n) for n � 0
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which satisfy

∑
p=1,...,n

σ∈Sh(p,n−p)

χ(σ;x1, . . . , xn)μn−p+1
(
h, [xσ(1), . . . , xσ(p)]p, xσ(p+1), . . . , xσ(n)

)

=
∑

p=0,...,n
σ∈Sh(p,n−p)

(−1)p+1χ(σ;x1, . . . , xn)

[
μp(h, xσ(1), . . . , xσ(p)), xσ(p+1), . . . , xσ(n)

]
n−p+1,

(3.15)

and

μn

([
h, h′]

h
, x1, . . . , xn

)
=

∑
p=0,...,n

σ∈Sh(p,n−p)

χ(σ;x1, . . . , xn)

μn−p+1
(
h, μp

(
h′, xσ(1), . . . , xσ(p)

)
, xσ(p+1), . . . , xσ(n)

)
−

∑
p=0,...,n

σ∈Sh(p,n−p)

χ(σ;x1, . . . , xn)

μn−p+1
(
h′, μp(h, xσ(1), . . . , xσ(p)), xσ(p+1), . . . , xσ(n)

)
,

(3.16)

for all h, h′ ∈ h and x1, . . . , xn ∈ g.

Proof. When n = 0, one immediately sees that Equations (3.15) and (3.16)
are equivalent to Equations (3.4) and (3.6). Now assume n � 1, we will verify
that Equation (3.15) is equivalent to Equation (3.5).

By the correspondence between codifferentials Q on (S(g[1])) and L∞
brackets [· · · ]k, k � 1 on g, we know that

Qn(x̃1, . . . , x̃n) = (−1)
n(n+1)

2 +
∑n

i=1(n−i)|xi|([x1, . . . , xn]n
)
[1].

Equation (3.5) means that

Qn+1
(
γ(h) � x̃1 � · · · � x̃n

)
+

[
Q, θ(h)

]
n
(x̃1 � · · · � x̃n) = 0.

We have the explicit evaluations:(
Q ◦ θ(h)

)
n
(x̃1 � · · · � x̃n)
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=
∑

p=1,...,n
σ∈Sh(p,n−p)

ε(σ; x̃1, . . . , x̃n)

·Qn−p+1
(
θ(h)p(x̃σ(1) � · · · � x̃σ(p)) � x̃σ(p+1) � · · · � x̃σ(n)

)
=

∑
p=1,...,n

σ∈Sh(p,n−p)

(
ε(σ; x̃1, . . . , x̃n)(−1)

(p+1)(p+2)
2 +

∑p

i=1(p−i)|xσ(i)|

·Qn−p+1
(
μp(h, xσ(1), . . . , xσ(p))[1] � x̃σ(p+1) � · · · � x̃σ(n)

))
=

∑
p=1,...,n

σ∈Sh(p,n−p)

(
ε(σ; x̃1, . . . , x̃n)(−1)

(p+1)(p+2)
2 +

∑p

i=1(p−i)|xσ(i)|

(−1)
(n−p+1)(n−p+2)

2 +(n−p)(|xσ(1)|+···|xσ(p)|+2−p−1)+
∑n−p

j=1 (n−p−j)|xσ(p+j)|

·
[
μp(h, xσ(1), . . . , xσ(p)), xσ(p+1), . . . , xσ(n)

]
n−p+1[1]

)
=

∑
p=1,...,n

σ∈Sh(p,n−p)

(
χ(σ;x1, . . . , xn)(−1)

n(n+1)
2 +p+

∑n

i=1(n−i)|xi|

·
[
μp(h, xσ(1), . . . , xσ(p)), xσ(p+1), . . . , xσ(n)

]
n−p+1[1]

)
.

Likewise, one verifies two more explicit evaluations:

Qn+1
(
γ(h) � x̃1 � · · · � x̃n

)
= (−1)

(n+1)(n+2)
2 +n+

∑n

i=1(n−i)|xi|[−μ0(h), x1, . . . , xn
]
n+1[1].(

θ(h) ◦Q
)
n
(x̃1 � · · · � x̃n)

=
∑

p=1,...,n
σ∈Sh(p,n−p)

(
χ(σ;x1, . . . , xn)(−1)

n(n+1)
2 +1+

∑n

i=1(n−i)|xi|

· μn−p+1
(
h, [xσ(1), . . . , xσ(p)]p, xσ(p+1), . . . , xσ(n)

)
[1]

)
.

Combining the above identities, we obtain the equivalence between Equa-
tions (3.5) and (3.15).

Similarly, one verifies that Equation (3.16) for n � 1 is equivalent to
Equation (3.7).

Notation In the sequel, we will simply denote the unary map μ0 : h → g1

by κ, and denote μn(h, x1, . . . , xn) by h � (x1, . . . , xn). We shall call them the
n-action maps of h on g. When n = 1, the symbol h � (x1) becomes h � x1
if there is no risk of confusion.
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For small numbers n, the compatibility conditions in the above proposi-
tion are unraveled as follows:

• n = 0

(3.17) d ◦ κ = 0;

• n = 1

κ
[
h, h′]

h
= h �

(
κh′)− h′ � (κh),(3.18)

d(h � x) = [κh, x]2 + h � (dx);(3.19)

• n = 2

[
h, h′]

h
� x = h �

(
h′ � x

)
− h′ � (h � x) + h �

(
κh′, x

)
− h′ � (κh, x),

(3.20)

h � (dx1, x2) + h � (x1, dx2) + h � [x1, x2]2
(3.21)

= −[κh, x1, x2]3 + [h � x1, x2]2 + [x1, h � x2]2 − d
(
h � (x1, x2)

)
;

• n = 3

∑
σ∈Sh(1,2)

χ(σ;x1, x2, x3)h � (dxσ(1), xσ(2), xσ(3)) + h � [x1, x2, x3]3
(3.22)

+
∑

σ∈Sh(2,1)
χ(σ;x1, x2, x3)h �

(
[xσ(1), xσ(2)]2, xσ(3)

)
= −[κh, x1, x2, x3]4 +

∑
σ∈Sh(1,2)

χ(σ;x1, x2, x3)[h � xσ(1), xσ(2), xσ(3)]3

−
∑

σ∈Sh(2,1)
χ(σ;x1, x2, x3)

[
h � (xσ(1), xσ(2)), xσ(3)

]
2

+ d
(
h � (x1, x2, x3)

)
,

[
h, h′]

h
� (x1, x2, x3)

(3.23)

= h �
(
κh′, x1, x2, x3

)
+

∑
σ∈Sh(1,2)

χ(σ;x1, x2, x3)h �
(
h′ � xσ(1), xσ(2), xσ(3)

)
+

∑
σ∈Sh(2,1)

χ(σ;x1, x2, x3)h �
(
h′ � (xσ(1), xσ(2)), xσ(3)

)
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+ h �
(
h′ � (x1, x2, x3)

)
− h′ � (κh, x1, x2, x3)

−
∑

σ∈Sh(1,2)
χ(σ;x1, x2, x3)h′ � (h � xσ(1), xσ(2), xσ(3))

−
∑

σ∈Sh(2,1)
χ(σ;x1, x2, x3)h′ �

(
h � (xσ(1), xσ(2)), xσ(3)

)
− h′ �

(
h � (x1, x2, x3)

)
.

The following fact can be verified by the Jacobi identities in (2.1) and
(3.21).

Proposition 3.24. Suppose that a Lie algebra h acts on an L∞ algebra g,
the 0-action being κ : h → g1. Then h0 = ker(κ) is a Lie subalgebra in h,
and h0 acts on the space H(g) (see Remark 2.6), denoted and defined by
� : h0 ×H(g) → H(g),

h � x = h � x

for all h ∈ h0 and x ∈ g which is subject to dx = 0. Here x stands for the
cohomology class of x. Moreover, the h0 action is compatible with the graded
Lie algebra structure on H(g):

h � [x1, x2] = [h � x1, x2] + [x1, h � x2]

for all x1 and x2 ∈ H(g) (in other words, the action is a derivation).

4. Main result: action of derivations on the L�3 algebra
arising from a Lie pair

We shall show that the Lie algebra of derivations of a Lie algebroid (also
known as morphic vector fields or Lie algebroid derivations, see [24, 19]) acts
on the L∞ algebra Ω•

A(B) in the sense of Definition 3.1. Let us first give a
conceptually easy but not very rigorous explanation of this fact.

As we have mentioned in the introduction, the Lie algebroid structure of
L is encapsulated in the dg algebra (Γ(∧•L∨), dL). In the language of Văıntrob
[33], we say that L[1] is a dg manifold. The group Aut(L) of automorphisms
of the Lie algebroid L has an induced action on L[1]. According to [2], the
L�3 algebra Ω•

A(B) can be considered as the section space of the dg vector
bundle L[1] → A[1]. Hence there is an associated action of Aut(L) on Ω•

A(B).
Therefore, Der(L), the ‘Lie algebra’ of Aut(L), acts on Ω•

A(B) as well. Trans-
lating this thought into a purely algebraic description, it becomes the desired
action. Our Theorem 4.2 below demonstrates the said action.
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Definition 4.1. Let (L, [·, ·]L, ρL) be a Lie algebroid over M . A derivation
of L is an operator δ : Γ(L) → Γ(L) which is equipped with some s ∈ X (M)⊗
K, called the symbol of δ, such that

δ(fu) = s(f)u + fδ(u),[
s, ρL(u)

]
= ρL

(
δ(u)

)
,

and δ[u, v]L =
[
δ(u), v

]
L

+
[
u, δ(v)

]
L
,

for all f ∈ C∞(M,K), u, v ∈ Γ(L).

Notation We will denote by Der(L) the space of derivations of a Lie algebroid
L. Note that it is naturally a Lie algebra (possibly infinite dimensional) whose
Lie bracket is the standard commutator. In [1], such derivations are called 1-
differentials of L.

Theorem 4.2. Given a Lie pair (L,A) and a decomposition L ∼= A⊕B, the
Lie algebra Der(L) acts on the associated L�3 algebra Ω•

A(B) with the action
maps specified as follows.

(1) The 0-action μ0 = κ : Der(L) → Ω1
A(B) is given by

κ(δ)(a) := −prBδ(a), ∀a ∈ Γ(A).

(2) The 1-action μ1 : Der(L) × Ωk
A(B) → Ωk

A(B) is defined in two situa-
tions:
• if k = 0, then we define μ1(δ, b) = δ � b ∈ Γ(B) for δ ∈ Der(L) and

b ∈ Γ(B) by
δ � b := prBδ(b);

• if k � 1, then we define μ1(δ,X) = δ �X ∈ Ωk
A(B) for δ ∈ Der(L)

and X ∈ Ωk
A(B) by

(δ � X)(a1, . . . , ak)

:= −
k∑

j=1
X
(
a1, . . . , prAδ(aj), . . . , ak

)
+ prBδ

(
X(a1, . . . , ak)

)
,

where a1, . . . , ak ∈ Γ(A).
(3) The 2-action μ2 : Der(L) × Ωi

A(B) × Ωj
A(B) → Ωi+j−1

A (B) is defined
by the situations:
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• If i = j = 0, we set

μ2
(
δ, b, b′

)
= δ �

(
b, b′

)
:= 0, ∀δ ∈ Der(L), b, b′ ∈ Γ(B);

• If i � 1, j = 0, we define μ2(δ,X, b) = δ � (X, b) ∈ Ωi−1
A (B) for

δ ∈ Der(L), X ∈ Ωi
A(B) and b ∈ Γ(B) by

(
δ � (X, b)

)
(a1, . . . , ai−1) := X

(
prAδ(b), a1, . . . , ai−1

)
,

∀a1, . . . , ai−1 ∈ Γ(A).
• If i = 0 and j � 1, the situation is similar:

(
δ � (b,X)

)
(a1, . . . , ai−1) := −X

(
prAδ(b), a1, . . . , ai−1

)
,

∀a1, . . . , ai−1 ∈ Γ(A).
• If i � 1, j � 1, we define μ2(δ,X, Y ) = δ � (X, Y ) ∈ Ωi+j−1

A (B)
for δ ∈ Der(L), X ∈ Ωi

A(B) and Y ∈ Ωj
A(B) by

(
δ � (X, Y )

)
(a1, . . . , ai+j−1)

:= (−1)i+1 ∑
σ∈Sh(i,j−1)

sgn(σ)Y
(
prAδ

(
X(aσ(1), . . .)

)
, aσ(i+1), . . .

)
+

∑
σ∈Sh(i−1,j)

sgn(σ)X
(
prAδ

(
Y (aσ(i), . . .)

)
, aσ(1), . . .

)
,

where a1, . . . , ai+j−1 ∈ Γ(A).

(4) All higher n-actions (n � 3) are trivial.

Moreover, the structure maps μn are subject to the following properties: for
any δ ∈ Der(L) whose symbol is denoted by s, and for any X, Y ∈ Ω•

A(B),
f ∈ C∞(M,K), ω ∈ Ω•

A, we have

(i) for the 0-action κ,
κ(fδ) = fκ(δ);

(ii) for the 1-action,

(fδ) � X = f(δ � X);
δ � (ω ·X) =

(
�1(δ)(ω)

)
·X + ω · (δ � X),
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where �1 : Der(L) → Der0(Ω•
A) is defined for ω ∈ Ωk

A by(
�1(δ)(ω)

)
(a1, . . . , ak)

:= s
(
ω(a1, . . . , ak)

)
−

k∑
j=1

ω
(
a1, . . . , prAδ(aj), . . . , ak

)
;

(iii) for the 2-action,

(fδ) � (X, Y ) = f
(
δ � (X, Y )

)
;

δ � (X,ω · Y ) =
(
�2(δ,X)(ω)

)
· Y + (−1)|ω|(1+|X|)ω ·

(
δ � (X, Y )

)
,

where �2 : Der(L) × Ω•
A(B) → Der•−1(Ω•

A) is defined for X ∈ Ωi
A(B),

ω ∈ Ωk
A by:(

�2(δ,X)(ω)
)
(a1, . . . , ai+k−1)

:= (−1)i+1 ∑
σ∈Sh(i,k−1)

sgn(σ)ω
(
prAδ

(
X(aσ(1), . . .)

)
, aσ(i+1), . . .

)
.

Proof. Properties (i), (ii) and (iii) follow by direct verifications using their
definitions given by the theorem. Next, we apply Proposition 3.14 to prove
that these action maps μn do define a Lie algebra action. Since μk and [· · · ]k+1
vanish for k � 3, we only need to verify Equations (3.15) and (3.16) for
n = 0, 1, 2, 3, which are unraveled in Equations (3.17) to (3.23), plus one
more equation of (3.15) for n = 4.

• When n = 0, we need to show dBott
A ◦ κ vanishes. In fact, by Equa-

tion (2.15) and the definition of κ, we have for δ ∈ Der(L) and a1, a2 ∈
Γ(A) that

dBott
A

(
κ(δ)

)
(a1, a2)

= ∇a1

(
κ(δ)(a2)

)
−∇a2

(
κ(δ)(a1)

)
− κ(δ)

(
[a1, a2]A

)
= −prB

[
a1, δ(a2)

]
L
− prB

[
δ(a1), a2

]
L

+ prB
(
δ[a1, a2]A

)
= 0.

• When n = 1, we need to verify the following two equalities for δ, δ′ ∈
Der(L) and X ∈ Ω•

A(B):

κ
([
δ, δ′

])
= δ �

(
κ
(
δ′
))

− δ′ �
(
κ(δ)

)
,(4.3)

dBott
A (δ � X) =

[
κ(δ), X

]
2 + δ �

(
dBott
A X

)
.(4.4)
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To verify Equation (4.3), by the definition of κ, we have

κ(δ) = −prB ◦ δ|Γ(A) = −δ|Γ(A) + prA ◦ δ|Γ(A).

Thus, we get:

κ
([
δ, δ′

])
= −prB ◦ δ ◦ δ′|Γ(A) + prB ◦ δ′ ◦ δ|Γ(A)

= prB ◦ δ ◦
(
κ
(
δ′
)
− prA ◦ δ′|Γ(A)

)
− prB ◦ δ′ ◦

(
κ(δ) − prA ◦ δ|Γ(A)

)
= δ �

(
κ
(
δ′
))

− δ′ �
(
κ(δ)

)
.

To show Equation (4.4), we begin with the case where X is merely a
generating element: X = b ∈ Γ(B). By Equation (2.15) of dBott

A and
the definition of μ1, we can examine the following identities for any
a ∈ Γ(A).(

dBott
A (δ � b)

)
(a) = ∇a(δ � b) = prB[a, δ � b]L = prB

[
a, prBδ(b)

]
L

= prB
[
a, δ(b)

]
L

= prB
(
δ[a, b]L

)
− prB

[
δ(a), b

]
L
;(

δ �
(
dBott
A b

))
(a) = δ �

((
dBott
A b

)
(a)

)
−

(
dBott
A b

)
(δ � a)

= δ � (∇ab) −∇δ�ab

= prB
(
δ
(
prB[a, b]L

))
− prB

[
prA

(
δ(a)

)
, b
]
L
.

By the expression of [·, ·]2 in Proposition 2.17, we have[
κ(δ), b

]
2(a) = κ(δ)(ðba) +

[
κ(δ)(a), b

]
B

= prB
(
δ
(
prA[a, b]L

))
− prB

[
prB

(
δ(a)

)
, b
]
L
.

Hence, Equation (4.4) holds for X = b ∈ Γ(B). The verification of Equa-
tion (4.4) for general X ∈ Ω•

A(B) follows from the property described
in (ii).

• When n = 2, we need to verify the following two equalities for δ, δ′ ∈
Der(L) and X,X1, X2 ∈ Ω•

A(B):[
δ, δ′

]
� X = δ �

(
κ
(
δ′
)
, X

)
+ δ �

(
δ′ � X

)
− δ′ �

(
κ(δ), X

)
− δ′ � (δ � X),

and

δ �
(
dBott
A X1, X2

)
+ (−1)1+|X1||X2|δ �

(
dBott
A X2, X1

)
+ δ �

(
[X1, X2]2

)
= −

[
κ(δ), X1, X2

]
3 + [δ � X1, X2]2
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+ (−1)1+|X1||X2|[δ � X2, X1]2 − dBott
A

(
δ � (X1, X2)

)
.

By the properties in (iii), it suffices to consider the situations where
X = b ∈ Γ(B), X1 = b1 ∈ Γ(B), and X2 = b2 ∈ Γ(B). Using the
definitions of κ and μ1, we get

δ �
(
κ
(
δ′
)
, b
)
+ δ �

(
δ′ � b

)
− δ′ �

(
κ(δ), b

)
− δ′ � (δ � b)

= κ
(
δ′
)(

prAδ(b)
)
+ prBδ

(
prBδ′(b)

)
− κ(δ)

(
prAδ′(b)

)
− prBδ′

(
prBδ(b)

)
= −prBδ′

(
prAδ(b)

)
+ prBδ

(
prBδ′(b)

)
+prBδ

(
prAδ′(b)

)
−prBδ′

(
prBδ(b)

)
=

(
prB ◦ δ ◦ δ′

)
(b) −

(
prB ◦ δ′ ◦ δ

)
(b) =

[
δ, δ′

]
� b.

Using the definitions of κ, μ1, μ2 and the expression of [·, ·, ·]3 in Propo-
sition 2.17, we get

δ �
(
dBott
A b1, b2

)
− δ �

(
dBott
A b2, b1

)
+ δ �

(
[b1, b2]2

)
=

(
dBott
A b1

)(
prAδ(b2)

)
−

(
dBott
A b2

)(
prAδ(b1)

)
+ prBδ[b1, b2]B

= prB
[
prAδ(b2), b1

]
L
− prB

[
prAδ(b1), b2

]
L

+ prBδ
(
prB[b1, b2]L

)
= −prB

[
prBδ(b2), b1

]
L

+ prB
[
prBδ(b1), b2

]
L
− prBδ

(
prA[b1, b2]L

)
= −[δ � b2, b1]2 + [δ � b1, b2]2 −

[
κ(δ), b1, b2

]
3 − dBott

A

(
δ � (b1, b2)

)
.

• When n = 3, by the vanishing of μ3 and [· · · ]4, we need to verify the
following two equalities for δ, δ′ ∈ Der(L) and X1, X2, X3 ∈ Ω•

A(B):∑
σ∈Sh(2,1)

χ(σ;X1, X2, X3)δ �
(
[Xσ(1), Xσ(2)]2, Xσ(3)

)
+ δ � [X1, X2, X3]3

=
∑

σ∈Sh(1,2)
χ(σ;X1, X2, X3)[δ � Xσ(1), Xσ(2), Xσ(3)]3

−
∑

σ∈Sh(2,1)
χ(σ;X1, X2, X3)

[
δ � (Xσ(1), Xσ(2)), Xσ(3)

]
2,

and ∑
σ∈Sh(2,1)

χ(σ;X1, X2, X3)
(
δ �

(
δ′ � (Xσ(1), Xσ(2)), Xσ(3)

))
=

∑
σ∈Sh(2,1)

χ(σ;X1, X2, X3)
(
δ′ �

(
δ � (Xσ(1), Xσ(2)), Xσ(3)

))
.

In fact, when the three Xi’s are of the form bi ∈ Γ(B), all the terms in
these equalities are trivial. For general Xi, one resorts to (5) and (6) of
Theorem 2.16, and properties (ii) and (iii).
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• When n � 4, by the vanishing of μk and [· · · ]k+1 for k � 3, we are only
left to verify the following equality for δ ∈ Der(L) and X1, . . . , X4 ∈
Ω•

A(B): ∑
σ∈Sh(3,1)

χ(σ;X1, . . . , X4)δ �
(
[Xσ(1), Xσ(2), Xσ(3)]3, Xσ(4)

)
= −

∑
σ∈Sh(2,2)

χ(σ;X1, . . . , X4)
[
δ � (Xσ(1), Xσ(2)), Xσ(3), Xσ(4)

]
3.

The argument is similar to the n = 3 case.

Following Theorems 3.12 and 4.2, we have a corollary.

Corollary 4.5. The space Der(L)⊕Ω•
A(B) admits an L�3 algebra structure

which extends the L�3 structure on Ω•
A(B).

Define a subspace of Der(L):

Der(L,A) := kerκ =
{
δ ∈ Der(L) | δΓ(A) ⊂ Γ(A)

}
.

Following Proposition 3.24, we have another corollary.

Corollary 4.6. The above Der(L,A) is a Lie algebra and it acts by derivation
on the graded Lie algebra H(Ω•

A(B), [·]1 = dBott
A ) = HCE(A;B).

Example 4.7. Let h be a complex semisimple Lie algebra, and t a Cartan
subalgebra in h. Let h = t⊕⊕

α∈Δ hα be its root decomposition, where Δ ⊂ t∨

is the root system of h. Fix a set Π of simple roots and denote the set of
positive roots by Δ+. For all α ∈ Δ+, there exist eα ∈ t, xα ∈ hα, and
x−α ∈ h−α such that

[eα, xα] = 2xα, [eα, x−α] = −2x−α, [xα, x−α] = eα.

Furthermore, there are two standard sets of structure constants Cα,β, Nα,β ∈ Z

such that (see [18, Chapters III,VII]):

[eα, xβ] = Cα,βxβ, [eα, x−β ] = −Cα,βx−β , ∀α, β ∈ Δ;
[xα, xβ] = Nα,βxα+β , [x−α, x−β ] = −Nα,βx−α−β,

∀α, β ∈ Δ with α + β ∈ Δ.

For the simple roots α, β ∈ Π under a given ordering, the data Cα,β form
the corresponding Cartan matrix. For α, β ∈ Δ with α + β /∈ Δ ∪ {0}, set
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Nα,β = 0. However, since [xα, x−α] = eα /∈ ⊕
β∈Δ hβ for α ∈ Δ, the number

Nα,−α is undefined.
Now, the Lie pair we take is L = h together with its subalgebra A = t,

and hence B = L/A =
⊕

α∈Δ hα. According to Theorem 2.16 and Proposi-
tion 2.17, the space Λ•t∨ ⊗ (

⊕
α∈Δ hα) admits an L�3 structure, see also [2,

Theorem 4.22].
Since h is semisimple, we have Der(h) ∼= h. Therefore, by Theorem 4.2,

there is a Lie algebra action of h on Λ•t∨ ⊗ (
⊕

α∈Δ hα). The action maps are
specified as follows:

(1) The 0-action μ0 = κ : h → t∨ ⊗ (
⊕

α∈Δ hα) is given by

κ(eα) = 0, κ(xα) =
∑
β∈Π

Cβ,αe
∨
β ⊗xα, κ(x−α) = −

∑
β∈Π

Cβ,αe
∨
β ⊗x−α,

∀α ∈ Δ+.
(2) The 1-action μ1 : h ×

(
Λ•t∨ ⊗ (

⊕
α∈Δ hα)

)
→ Λ•t∨ ⊗ (

⊕
α∈Δ hα) is

given by the generating relations⎧⎪⎪⎨⎪⎪⎩
xα � x−α = 0 ∀α ∈ Δ,

xα � xβ = Nα,βxα+β ∀α, β ∈ Δ with α + β �= 0,
eα � xβ = Cα,βxβ ∀α ∈ Π, β ∈ Δ,

with vanishing �1 = 0 : h → Der0(Λ•t∨).
(3) The 2-action μ2 : h ×

(
Λ•t∨ ⊗ (

⊕
α∈Δ hα)

)⊗2 → Λ•−1t∨ ⊗ (
⊕

α∈Δ hα)
is given by the generating relation

h �

(⊕
α∈Δ

hα,
⊕
α∈Δ

hα

)
= 0,

with �2 : h×
(
Λ•t∨ ⊗ (

⊕
α∈Δ hα)

)
→ Der•−1(Λ•t∨)⎧⎪⎪⎨⎪⎪⎩

�2(xα, ω ⊗ x−α) = (−1)|ω|+1ω · eα� ∀α ∈ Δ,

�2(xα, ω ⊗ xβ) = 0 ∀α, β ∈ Δ with α + β �= 0,
�2(eα, ω ⊗ xβ) = 0 ∀α, β ∈ Δ,

where ω ∈ Λ•t∨.
(4) All higher actions μn (n � 3) are trivial.

Remark 4.8. In Remark 2.19 we have addressed the dependence of splittings
L = A⊕B which give different but isomorphic L�3 algebras Ω•

A(B). We point
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out that the Der(L)-action on Ω•
A(B) constructed by Theorem 4.2 also depends

on the choice of splitting. However, one can prove that such Der(L)-actions
are compatible with the L�3 algebras Ω•

A(B) arising from different splittings
(see Definition 3.2). For this reason, the Der(L)-action given by the theorem
is in fact canonical.

5. Gauge equivalences of Maurer-Cartan elements based on
Lie algebra actions

In this part, we review a notion of gauge equivalence of Maurer-Cartan el-
ements introduced by Getzler [16], and will propose another type of gauge
equivalence following Getzler’s formula.

Notation Let A be a local Artinian K-algebras with residue field K. We will
denote by mA the maximal ideal of A .

Let g be an L∞ algebra. The graded vector space g ⊗ mA now becomes
a nilpotent1 L∞ algebra whose structure maps are extended from g.

Definition 5.1. A Maurer-Cartan element in an L∞ algebra g (with
coefficient mA ) is an element ξ ∈ g1 ⊗mA such that

∞∑
k=1

1
k! [ξ, . . . , ξ]k = 0.

We will denote by MCA (g) (⊂ g1 ⊗mA ) the set of Maurer-Cartan elements
in g.

For any element ξ ∈ g1 ⊗mA , the formula

[g1, . . . , gi]ξi =
∞∑
k=0

1
k!

[
ξ∧k, g1, . . . , gi

]
i+k

= [g1, . . . , gi]i + [ξ, g1, . . . , gi]i+1 + 1
2[ξ, ξ, g1, . . . , gi]i+2 + · · ·

1This means that the lower central series F i(g ⊗ mA ) vanish for i sufficiently
large, where F 1(g⊗mA ) = g⊗mA and, for i � 2,

F i(g⊗mA ) :=
∑

i1+···+ik=i

[
F i1(g⊗mA ), . . . , F ik(g⊗mA )

]
k
.
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defines a new sequence of brackets on g⊗mA known as the (i-th) ξ-bracket,
where [ξ∧k, g1, . . . , gi]k+i is an abbreviation for [ξ, . . . , ξ, g1, . . . , gi]k+i, in which
ξ occurs k times. For example, we have

[g]ξ1 = [g]1 + [ξ, g]2 + 1
2[ξ, ξ, g]3 + · · · .

For b ∈ g0 ⊗mA , ξ ∈ MCA (g), define eb ∗ ξ ∈ g1 ⊗mA by

eb ∗ ξ := ξ −
∞∑
k=1

1
k!e

k
ξ (b),

where ekξ (b) are inductively determined by

e1
ξ(b) = [b]ξ1,

ek+1
ξ (b) =

k∑
n=1

1
n!

∑
k1+···+kn=k

ki�1

k!
k1! · · · kn!

[
b, ek1

ξ (b), . . . , eknξ (b)
]ξ
n+1.

It is shown op. cit. that eb ∗ ξ again lands in MCA (g) and hence one obtains
an “action” of g0⊗mA on MCA (g). Let us call it the gauge action. Note that
g0 ⊗mA is not a Lie algebra in general.

Definition 5.2. Let g be an L∞ algebra. Two Maurer-Cartan elements ξ, η ∈
MCA (g) are said to be gauge equivalent if there exists an element b ∈
g0 ⊗mA such that eb ∗ ξ = η.

Following the recipe of gauge actions, we propose another type of gauge
equivalence of Maurer-Cartan elements arising from Lie algebra actions. Sup-
pose that the L∞ algebra g admits an action by a Lie algebra h, with the
structure maps being {μn} (or �). For any h ∈ h ⊗ mA and ξ ∈ MCA (g),
define eh ∗ ξ ∈ g1 ⊗mA as follows:

eh ∗ ξ := ξ −
∞∑
k=1

1
k!e

k
ξ (h),

where ekξ (h) ∈ g1 ⊗mA (k � 1) is inductively defined by

e1
ξ(h) =

∞∑
i=0

1
i!μi

(
ξ∧i, h

)
= κ(h) − h � (ξ) + 1

2h � (ξ, ξ) − 1
6h � (ξ, ξ, ξ) + · · · ,
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and

ek+1
ξ (h) =

k∑
n=1

1
n!

∑
k1+···+kn=k

ki�1

k!
k1! · · · kn!

∞∑
j=0

(−1)j

j! h �
(
ξ∧j , ek1

ξ (h), . . . , eknξ (h)
)
.

Again, one can prove that eh ∗ ξ belongs to MCA (g). In turn, we obtain
a new type of gauge action which is given by the Lie algebra h ⊗ mA on
MCA (g), and hence the notion of h-gauge equivalence:

Definition 5.3. With the assumptions as above, two Maurer-Cartan elements
ξ and η ∈ MCA (g) are said to be h-gauge equivalent if there exists an
h ∈ h⊗mA such that eh ∗ ξ = η.

More properties of h-gauge equivalences will be studied in the future. Just
for this note, let us turn back to the settings of Section 4, Theorem 4.2 in
particular: g is the L�3 algebra Ω•

A(B) with an h = Der(L) action. We have
g0 = Γ(B). For an element b ∈ Γ(B) ⊗mA , consider the operator

adb := [b, ·]L ∈ EndA
(
Γ(L) ⊗mA

)
.

We can check that, adb is indeed a derivation, i.e. adb ∈ Der(L) ⊗ mA , and
moreover, we have

κ(adb) = [b]1
(
= dBott

A b
)
,

adb � (X) = [b,X]2,
adb � (X, Y ) = [b,X, Y ]3,

for all X and Y ∈ Ω•
A(B) ⊗ mA . From these relations, we can prove the

following fact.

Theorem 5.4. For any b ∈ Γ(B) ⊗ mA , the Der(L) ⊗ mA -gauge action by
δ = adb coincides with the gauge action by b, i.e.

eadb ∗ ξ = eb ∗ ξ, ∀ξ ∈ MCA
(
Ω•

A(B)
)
.

From this theorem, we see that our newly introduced Der(L)⊗mA -gauge
action recovers the classical one given by Getzler in [16]. It comes from the
Der(L)-action on Ω•

A(B) as detailed in the previous Theorem 4.2. We have a
reason to call such actions δ � (· · · ) (δ ∈ Der(L)) internal symmetries — the
Lie algebra Der(L) exists naturally; while the space Γ(B) is not a Lie algebra
in general, and its role depends on the splitting L ∼= A ⊕ B. Of course,
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isomorphism classes of MCA
(
Ω•

A(B)
)

up to Der(L)⊗mA -gauge equivalences
(i.e. the associated deformation space) will have fewer elements than up to
Γ(B) ⊗ mA -gauge equivalences. The new problems caused by this way of
thinking await our follow-up research.
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