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Graded extensions of generalized Haagerup categories∗

Pinhas Grossman, Masaki Izumi, and Noah Snyder

Abstract: We classify certain Z2-graded extensions of general-
ized Haagerup categories in terms of numerical invariants satisfying
polynomial equations. In particular, we construct a number of new
examples of fusion categories, including: Z2-graded extensions of
Z2n generalized Haagerup categories for all n ≤ 5; Z2 ×Z2-graded
extensions of the Asaeda-Haagerup categories; and extensions of
the Z2 × Z2 generalized Haagerup category by its outer automor-
phism group A4. The construction uses endomorphism categories
of operator algebras, and in particular, free products of Cuntz al-
gebras with free group C∗-algebras.

1. Introduction

A quadratic category is a fusion category whose set of simple objects has ex-
actly two orbits under the (left) tensor product action of the subcategory of
invertible objects. Quadratic categories play a prominent role in the classifica-
tion of small-index subfactors. Indeed, with a notable exception (the Extended
Haagerup categories), all known fusion categories can be constructed by start-
ing with either categories coming from finite groups or quantum groups at
roots of unity, or starting with quadratic fusion categories, and then applying
certain constructions.

In this paper we study one of these constructions (G-extensions) applied
to one of the most important families of quadratic categories: the generalized
Haagerup categories. One motivating application of these techniques is to
resolve in the positive the open question of whether the Asaeda-Haagerup
fusion categories admit extensions by their full Brauer-Picard group, which
is the Klein 4-group.

Generalized Haagerup categories were introduced as a generalization of
Haagerup’s famous original example appearing in the classification of small
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index subfactors [1], by replacing the group Z3 = Inv(C) of isomorphism
classes of invertible objects which appears in the Haagerup subfactor with
an arbitrary finite Abelian group. A generalized Haagerup category is tensor
generated by a single simple object X, and satisfies the following fusion rules
(plus some cohomological conditions) [15]:

g ⊗X ∼= X ⊗ g−1, ∀g ∈ Inv(C), X ⊗X ∼= 1 ⊕
⊕

g∈Inv(C)
g ⊗X.

Generalized Haagerup categories were classified in [15] in terms of solu-
tions of certain polynomial equations; moreover, when there is such a solu-
tion the category can be realized as a category of endomorphisms of a von
Neumann factor completion of a Cuntz algebra. We will be generalizing this
approach to also treat extensions of generalized Haagerup categories, but this
generalization will require replacing Cuntz algebras by more complicated al-
gebras.

A G-extension of a fusion category C is a G-graded fusion category D
whose trivial component is C. There is a general obstruction theory for G-
extensions developed by Etingof-Nikshych-Ostrik using the homotopy type of
the Brauer-Picard groupoid of C [6]. As is typical for obstruction theories, this
is quite easy to apply when the cohomology groups where the obstructions
live are trivial, but if the groups are non-trivial it can be quite difficult to
figure out whether the obstruction vanishes or not. In this paper we will
take a much more bare-hands approach, using concrete realizations of our
examples as categories of endomorphisms, and explicitly computing structure
constants.

In general, the non-trivially graded parts of a G-extension of C will be
non-trivial invertible bimodule categories over C. In this paper we will be
considering the special case of quasi-trivial extensions, where each of these
bimodules comes from an outer automorphism of C (i.e. it is trivial as either a
left or right module, but the two actions are twisted by an outer automorphism
relative to each other).

Our first main result says:

Theorem 1.1. Unitary extensions of a generalized Haagerup category C by
an outer action of Z2 which is trivial on the subcategory of invertible objects
are completely classified by solutions to certain polynomial equations. More-
over, when these polynomial equations are satisfied then the extensions may
be explicitly realized as categories of endomorphisms of a factor completion of
the free product On+1 ∗ On+1 ∗ C∗(F3) where O denotes a Cuntz algebra, F
denotes a free group, and n is the size of Inv(C).
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More specifically, to any such extension of a generalized Haagerup cat-
egory C with group of invertible objects G and structure constants (A, ε, η),
we associate extension data consisting of elements p ∈ G\2G and z ∈ G2;
a pair of characters χ, μ ∈ Ĝ; a pair of unitary scalars ξ, ν; and a function
a : G → T. This data satisfies a list of polynomial equations, and conversely
any solution to these equations is realized as extension data. Equivalence of
extensions can be described in terms of an equivalence relation on extension
data. See Theorems 3.1, 3.2, and 3.3 below for the detailed statements.

Such outer actions can only exist when the group Inv(C) has even order.
Generalized Haagerup categories are known to exist for all cyclic groups of
size ≤ 10 (with multiple distinct examples for certain groups), and we solve
the polynomial equations for Z2-extensions for all of the examples in this
range, thereby constructing new fusion categories in each case. In fact, due to
choices in the construction of the extension, we have 4 different Z2-extensions
for each example, which are also distinct as tensor categories (some of the
choices even lead to different fusion rules).

We then generalize these techniques to give applications in two further
examples of interest. First, we consider the category AH4 in the Morita equiv-
alence class of the Asaeda-Haagerup subfactor. This can be constructed as a
degenerate version of a generalized Haagerup category for the group Z4 ×Z2,
where the second factor acts trivially and so the group of invertible objects up
to isomorphism is Z4. In prior work we calculated the Brauer-Picard groupoid
of the Asaeda-Haagerup fusion categories and saw that the Brauer-Picard
group is the Klein 4-group [13, 10]. Using Etingof-Nikshych-Ostrik’s obstruc-
tion theory, it is easy to see that these fusion categories have Z2-extensions
for each subgroup of the Klein 4-group [12], but since the Klein 4-group is
not cyclic the question of whether there is an extension by the full Klein 4-
group is substantially more difficult. For the original fusion categories AH1
and AH2, which arise as the even parts of the Asaeda-Haagerup subfactor,
the invertible bimodule categories do not come from outer automorphisms,
but for AH4 all the bimodule categories do come from outer automorphisms.
Thus the problem of finding extensions of AH4 is very close to the setting of
our main result. This leads to our second result.

Theorem 1.2. The Asaeda-Haagerup fusion category AH4 has an extension
by its Klein 4-group of outer automorphisms. Moreover, this extension can be
explicitly realized as a category of endomorphisms of a factor completion of
the algebra O9 ∗ O9 ∗ C∗(F3).

By Etingof-Nikshych-Ostrik’s theory, we can conclude that the obstruc-
tion vanishes, and hence all of the Asaeda-Haagerup fusion categories have
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extensions by their full Brauer-Picard group; and moreover all such exten-
sions can be easily classified via group cohomology. These extensions give
some new rich and complicated examples of fusion categories. Homotopy
theoretically this can be summarized by saying that the Brauer-Picard 3-
groupoid is homotopy equivalent to the product of Eilenberg-Maclane spaces
K(Z2 × Z2, 1) × K(C×, 3), or equivalently that the Postnikov k-invariant
vanishes.

Our other application is to the generalized Haagerup category for the
group Z2 × Z2. This category is related to a conformal inclusion SU(5)5 ⊂
Spin(24); see [19, 5]. This category is interesting because its Brauer-Picard
group is unusually rich: it was shown in [8] that this group has order 360.
The group was identified as S3 ×A5 by the first named author and Feng Xu
in unpublished work; see [5] for a proof. The outer automorphism subgroup
is A4. We show using similar techniques to our main theorem:

Theorem 1.3. There is an A4-graded extension of the Z2 × Z2 generalized
Haagerup category by its outer automorphism group. Moreover, this extension
can be realized as a category of endomorphisms of a factor closure of the
algebra O5 ∗ O5 ∗ O5 ∗ O5 ∗ C∗(F13).

Again this implies that the relevant obstruction vanishes and hence lets
us completely classify all such extensions, of which there are exactly 15 up to
equivalence. We also classify all extensions by subgroups of the outer auto-
morphism group. Thus we determine the extension theory associated to the
outer automorphism subgroup of the Brauer-Picard group. It is an interest-
ing problem to determine the extension theory by the entire Brauer-Picard
group; however we do not currently see an accessible way to approach this.

The paper is organized as follows.
In Section 2 we review some background material on fusion categories,

extension theory, generalized Haagerup categories, and outer automorphisms.
In Section 3 we give the classification of certain Z2-extensions of general-

ized Haagerup categories.
In Section 4 we look at some examples, including generalized Haagerup

categories for cyclic groups, the Asaeda-Haagerup categories, and the gener-
alized Haagerup category for Z2 × Z2.

In Section 5 we study the Z2 ×Z2 generalized Haagerup example further,
and classify all of its quasi-trivial extensions.

A long and tedious calculation needed for the argument in Section 5 is
deferred to an Appendix.
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2. Background

2.1. Fusion categories

A fusion category over an algebraically closed field k is a rigid semisimple k-
linear monoidal category with finitely many simple objects up to isomorphism
and finite-dimensional morphism spaces, and such that the unit object is
simple [7]. In this paper k will always be the field C of complex numbers.

An object X in a fusion category is said to be invertible if there is another
object Y such that X ⊗ Y ∼= 1 (where 1 is the unit object). The invertible
objects in a fusion category C form a tensor subcategory Inv(C), and the set of
isomorphism classes of invertible objects is a group, by an abuse of notation
also sometimes denoted by Inv(C).

One can define left and right module categories and bimodule categories
over fusion categories, as well as relative tensor products – see [6] for details.
A bimodule category is said to be invertible if its relative tensor product with
its opposite bimodule category is equivalent to a trivial bimodule. Invertible
bimodule categories are also called Morita equivalences.

One way that invertible bimodule categories arise is through automor-
phisms. Given a tensor autoequivalence α of a fusion category C, there is an
invertible bimodule category CCα(C), where the right action of C is twisted
by α. This bimodule is equivalent to the trivial bimodule CCC iff α is inner
(isomorphic to conjugation by an invertible object). The set of isomorphism
classes of tensor autoequivalences of C, modulo inner autoequivalences, is a
group, denoted by Out(C).

To any fusion category C, one can associate the Brauer-Picard 3-groupoid,
whose objects are fusion categories Morita equivalent to C, whose 1-morphisms
are Morita equivalences between such categories, whose 2-morphisms are bi-
module equivalences, and whose 3-morphisms are bimodule natural isomor-
phisms. This can be truncated: in particular, the Brauer-Picard groupoid con-
sists just of Morita equivalences modulo equivalence, and the Brauer-Picard
group consists of Morita autoequivalences of C up to equivalence. Also, by the
homotopy hypothesis, one can think of a 3-groupoid as a homotopy 3-type
(that is, a space in the sense of algebraic topology, whose homotopy groups
vanish above 3).

In this paper, we are primarily concerned with unitary fusion categories.
A fusion category is called unitary if it is equipped with a ∗ (sometimes called
“dagger”) structure which makes it into a C∗-tensor category (see [3] for the
definition of a (strict) C∗-tensor category). When discussing tensor functors
between unitary fusion categories, we assume such functors are also unitary,
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i.e. compatible with the C∗-structure. Unitary fusion categories are closely
related to operator algebras; see Section 2.3 below.

2.2. Extension theory

Let Γ be a finite group. A Γ-graded fusion category is a fusion category with
a direct sum decomposition

C =
⊕
g∈Γ

Cg

where the Cg are full Abelian subcategories and the tensor product bifunctor
maps Cg × Ch to Cgh, ∀g, h ∈ Γ. The trivial component Ce is then a fusion
category and all of the graded components Cg are Ce-Ce bimodule categories.
If the grading is faithful, then these bimodule categories are all invertible [6].

Definition 2.1. A Γ-extension of a fusion category C is a faithfully Γ-graded
fusion category whose trivial component is tensor equivalent to C.

Whenever we discuss equivalence between two Γ-extensions of C, we once
fix tensor equivalences between C and the trivial components of the exten-
sions, and then identify them afterward.

Definition 2.2. We say that two Γ-extensions D and D′ of C are equivalent
if there exists a tensor equivalence F from D to D′ satisfying F|De = id and
F(Dg) = D′

g for every g ∈ Γ. We denote by ExtΓ(C) the set of equivalence
classes of Γ-extensions of C.

Note that one can have inequivalent extensions which nonetheless are
equivalent as tensor categories. This can happen either because the equiva-
lence permutes the gradings, or because the equivalence restricts non-trivially
to C; see [4].

On the other hand, there is an even less flexible definition where in ad-
dition to fixing the zero graded part and fixing the grading, you also fix the
bimodule categories. The main statements in [6] implicitly use this even more
restrictive definition. To correct those results for the above definition of ex-
tension, one needs to look at orbits under the action of applying a bimodule
autoequivalence to each graded part in a coherent way. See [2] for more detail.

One way that Γ-extensions arise is from categorical group actions: if Γ
acts on C, then there is a corresponding semidirect product C � Γ, which is a
Γ-extension of C.

Definition 2.3. A Γ-extension of C is called trivial if it is equivalent to a
semidirect product of a categorical action of Γ on C. A Γ-extension is called
quasi-trivial if each graded component contains an invertible object.
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Equivalently, an extension is quasi-trivial if each of the homogenous com-
ponents is equivalent to the trivial module as a (left) C-module category.

The following result of Etingof-Nikshych-Ostrik describes extensions in
terms of the Brauer-Picard groupoid.

Theorem 2.1 ([6]). A group homomorphism c from a finite group Γ into
the Brauer-Picard group of C determines an obstruction class in O3(c) ∈
H3(Γ, Inv(Z(C))) for the existence of a C-bimodule quasi-tensor product (de-
fined there) on the Γ-indexed collection of bimodules coming from the map. If
this obstruction vanishes, then the set of such C-bimodule quasi-tensor prod-
ucts is a torsor for H2(Γ, Inv(Z(C))).

Then each such C-bimodule quasi-tensor product M determines an ob-
struction class in O4(c,M) ∈ H4(Γ,C∗) for the existence of an associativity
constraint. If this obstruction vanishes, then the set of associativity constraints
A for the quasi-tensor product forms a torsor over H3(Γ,C∗).

The H3(Γ,C∗) torsor structure can be realized in a concrete manner as
follows. Let D be a Γ-extension of C, and let [ω] ∈ H3(Γ,C). Then we can
put

ω · D =
⊕
g∈Γ

Dg � g ⊂ D � VecωΓ.

In the context of operator algebras, this procedure corresponds to taking an
(outer) tensor product with a Γ-kernel with obstruction [ω], which we often
use in this work.

The parametrization in Theorem 2.1 does not classify extensions up to
equivalence, in the sense defined above, because two associators A and A′ for
a given pair (c,M) with A′

f,g,h = ω(f, g, h) ◦Af,g,h and [ω] ∈ H3(Γ,C×) \ {0}
may give equivalent extensions. The missing piece for complete classification
was obtained recently by Davydov and Nikshych.

Theorem 2.2 ([2, Corollary 8.7]). Let the notation be as above. Then there
exists a group homomorphism p1

(c,M) : H1(Γ, Inv(Z(C))) → H3(Γ,C×) satis-
fying the following property: Let A and A′ be associators for (c,M), and let
ω ∈ Z3(Γ,C×) with Af,g,h = ω(f, g, h)◦A′

f,g,h. Then the two Γ-extensions of C
arising from A and A′ are equivalent if and only if the cohomology class [ω] is
in the image of p1

(c,M). In consequence, the equivalence classes of Γ-extensions
of C with (c,M) form a torsor over coker(p1

(c,M)).

In practice it can of course be difficult to compute the obstruction classes
for specific examples. One of the motivations of this work is to provide inter-
esting examples of graded extensions.
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Remark. When Γ is a finite group, we have Hn(Γ,C×) = Hn(Γ,T) for n ≥ 1
because C

× ∼= R × T as trivial Γ-modules and Hn(Γ,R) = {0} for n ≥ 1.
Thus we mainly discuss Hn(Γ,T) as it is more natural from the view point
of operator algebras. In fact, there should be a version of Etingof-Nikshych-
Ostrik’s extension theory in the unitary setting using an appropriate unitary
analogue of the Brauer-Picard group where T appears as π3, but we will not
require this unitary version of obstruction theory in this paper.

2.3. The category End0(M)

Let M be a Type III factor. The C-linear category End(M) has as objects
the normal unital ∗-endomorphisms of M , and as morphisms elements of M
which intertwine such endomorphisms:

Hom(ρ, σ) =
{
t ∈ M : tρ(x) = σ(x)t, ∀x ∈ M

}
.

This can be made into a strict monoidal category by defining

ρ⊗ σ = ρ ◦ σ

and

t⊗ s = tρ1(s) = σ1(s)t, t ∈ Hom(ρ1, σ1), s ∈ Hom(ρ2, σ2).

The identity automorphism is a monoidal unit.
Let End0(M) be the full subcategory of End(M) whose objects are en-

domorphisms with finite-index (see [16] for a discussion of index in infinite
factors). Then End0(M) is still a monoidal category, and it is also rigid and
semi-simple with finite-dimensional morphism spaces. Thus any full tensor
subcategory of End0(M) with finitely many simple objects is a unitary fusion
category. Conversely, every unitary fusion category embeds into End0(M) for
some M (in fact M can be taken to be any hyperfinite Type III factor) in an
essentially unique way.

Recall that a tensor functor from a strict fusion category C to another
strict fusion category D is a pair (F,L) consisting of a functor F : C → D
and natural isomorphisms

Lρ,σ ∈ HomD
(
F (ρ) ⊗ F (σ), F (ρ⊗ σ)

)
satisfying

Lρ⊗σ,τ ◦ (Lρ,σ ⊗ IF (τ)) = Lρ,σ⊗τ ◦ (IF (ρ) ⊗ Lσ,τ )
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for any ρ, σ, τ ∈ C. We may and do assume F (1C) = 1D and L1C ,ρ = Lρ,1C =
IF (ρ). When C and D are C∗ categories, we further assume that Lρ,σ is a
unitary.

The following uniqueness result is [14, Theorem 2.2], essentially due to
Popa [17].

Theorem 2.3. Let M and P be hyperfinite type III1 factors, and let C and D
be unitary fusion categories embedded in End0(M) and End0(P ) respectively.
Let (F,L) be a tensor functor from C to D that is an equivalence of the two
unitary fusion categories C and D. Then there exists a surjective isomorphism
Φ : M → P and unitaries Uρ ∈ P for each object ρ ∈ C satisfying

F (ρ) = AdUρ ◦ Φ ◦ ρ ◦ Φ−1,

F (t) = UσΦ(t)U∗
ρ , X ∈ (ρ, σ),

Lρ,σ = Uρ◦σΦ ◦ ρ ◦ Φ−1(U∗
σ

)
U∗
ρ = Uρ◦σU

∗
ρF (ρ)

(
U∗
σ

)
.

When discussing the category End0(M), it is common to suppress tensor
product and “Hom” symbols, and to use square brackets to denote isomor-
phism classes (also called sectors).

2.4. Generalized Haagerup categories

A generalized Haagerup category is a unitary fusion category C which is tensor
generated by a simple object X satisfying the fusion rules

g ⊗X ∼= X ⊗ g−1, ∀g ∈ Inv(C), X ⊗X ∼= 1 ⊕
⊕

g∈Inv(C)
g ⊗X,

and satisfying certain cohomological conditions (see [15]).
It is shown in [15] that a generalized Haagerup category can always be

realized in End0(M) in the following way, which we call a standard form.
Let G = Inv(C). There is a copy of the Cuntz algebra O|G|+1 with gener-

ators {s} ∪ {tg}g∈G inside M , a map

G → Aut(M), g �→ αg,

and an irreducible endomorphism ρ of M , such that the following relations
hold:

1.

αg(s) = s, αg(th) = εg(h)th+2g, ∀g, h ∈ G
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ρ(s) = 1
d
s +

∑
g∈G

1√
d
t2g

ρ(tg) = ε−g(g)
[
η−gt−gss

∗ + ηg√
d
st∗−g +

∑
h,k∈G

A−g(h, k)th−gth+k−gt
∗
k−g

]
,

for structure constants

εg(h) ∈ {−1, 1}, ηg ∈
{
1, e

2πi
3 , e−

2πi
3
}
, Ag(h, k) ∈ C

satisfying

εh+k(g) = εh(g)εk(g + 2h), εh(0) = 1(2.1)
ηg+2h = ηg(2.2) ∑

h∈G
Ag(h, 0) = −ηg

d
(2.3)

∑
h∈G

Ag(h− g, k)Ag′
(
h− g′, k

)
= δg,g′ −

ηgηg′

d
δk,0(2.4)

Ag+2h(p, q) = εh(g)εh(g + p)εh(g + q)εh(g + p + q)Ag(p, q)(2.5)
Ag(h, k) = Ag(k, h)(2.6)

Ag(h, k) = Ag(−k, h− k)ηgε−k(g + h)ε−k(g + k)ε−k(g + h + k)(2.7)
= Ag(k − h,−h)ηgε−h(g + h)ε−h(g + k)ε−h(g + h + k)

Ag(h, k) = Ag+h(h, k)ηgηg+kηg+hηg+h+kεh(g)εh(g + k)(2.8)
= Ag+k(h, k)ηgηg+hηg+kηg+h+kεk(g)εk(g + h)

∑
l∈G

Ag(x + y, l)Ag−p+x(−x, l + p)Ag−q+x+y(−y, l + q)

(2.9)

= Ag(p + x, q + x + y)Ag−p(q + y, p + x + y)
× ηgηg+q+xηg+p+q+yηg+pηg+x+yηg+q+x+y

× εp(g − p + x)εp+x(g − p + q + y)εq(g − q + x + y)εq+y(g − q + x)

− δx,0δy,0,
d

ηgηg+pηg+q

2.

αg

(
ρ(x)

)
= ρ

(
α−g(x)

)
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ρ2(x) = sxs∗ +
∑
g∈G

tg(αg

(
ρ(x)

)
t∗g, ∀x ∈ M

(The second condition follows from the first one for x in the Cuntz algebra.)
In such a setup, the full tensor subcategory of End0(M) generated by ρ

is a generalized Haagerup category if the action of G is outer.
We will also be interested in “degenerate” generalized Haagerup cate-

gories, which have the same form, but where the action of G on M may not
be outer. An example of such a category for G = Z4 × Z2 is the Asaeda-
Haagerup category AH4, where the Z2 factor acts trivially; this category is a
Z2-de-equivariantization of a corresponding generalized Haagerup category.

In the sequel, when we want to include degenerate generalized Haagerup
categories, we will explicitly say so; otherwise by “generalized Haagerup cat-
egory” we will mean the non-degenerate version.

2.5. The outer automorphism group

Let (F,L) be a tensor autoequivalence of a generalized Haagerup category C
with group of invertible objects G = Inv(C). Then there exists p ∈ G and
σ ∈ Aut(G) satisfying [F (αg)] = [ασ(g)] and [F (ρ)] = [αpρ]. Thus there exist
unitaries vg, u ∈ U(M) satisfying

F (αg) = Ad(vσ(g)) ◦ ασ(g) and F (ρ) = Ad(u) ◦ αp ◦ ρ.

Note that ({F (αg)}g∈G, {L∗
g,h}g,h) form a cocycle action of G on M . Since

F (αg) is outer for all g �= e, it is equivalent to a genuine action ([18, Corollary
5.2]), and we may assume that Lg,h = 1 for all g, h ∈ G up to natural
transformation. Then the equation

F (αg)F (αh) = F (αg+h)

implies
Ad(vg) ◦ αg ◦ Ad(vh) ◦ αh = Ad(vg+h) ◦ αg+h.

Since the left-hand side is equal to Ad(vgαg(vh))◦αg+h, we get Ad(vgαg(vh)) =
Ad(vg+h). This means that there exists a 2-cocycle ω in Z2(G,T) satisfying
vgαg(vh) = ω(g, h)vgh, and the cohomology class [ω] ∈ H2(G,T) depends only
on the class [(F,L)] ∈ Out(C). Since the inner autoequivalence αg ⊗ · ⊗ α−1

g

of C sends ρ to α2g ◦ ρ, while it leaves αh invariant, only the class [p] ∈ G/2G
is an invariant of [(F,L)] too. Thus the triple

(
[ω], [p], σ

)
∈ H2(G,T) ×G/2G× Aut(G)
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is an invariant of the class [(F,L)] ∈ Out(C).
If the cohomology class of ω is trivial, we may assume that {vg}g∈G form

an α-cocycle by modifying vg. Since α is outer, every α-cocycle is a cobound-
ary, and there exists v ∈ U(M) satisfying vg = v∗αg(v). Thus

F (αg) = Ad(vg) ◦ αg = Ad(v)−1 ◦ αg ◦ Ad(v),

and we may assume that F (αg) = ασ(g) and Lg,h = 1 for all g, h ∈ G up to
natural transformation.

The group (
H2(G,T) ×G/2G

)
� Aut(G)

acts on the set of solutions (ε, η, A) of the above equations modulo gauge
equivalence, and we have an explicit description of Out(C) in terms of this
action.

Theorem 2.4 ([15, Theorem 5.9]). Let C be a generalized Haagerup category
given by (ε, η, A). Then Out(C) is the stabilizer of [(ε, η, A)].

It follows that the subgroup of Out(C) which acts trivially on Inv(C) is a
subgroup of G/2G (and in particular is trivial when G is odd).

For every known example, we have Out(C) ⊂ G/2G � Aut(G), and we
may assume that F (αg) = ασ(g) and Lg,h = 1 for all g, h ∈ G for every
tensor autoequivalence (F,L) of C. Assume C is embedded in End0(M) and
β ∈ Aut(M) implements a tensor autoequivalence of C in this situation. Then
the above argument shows that by perturbing β by an inner automorphism,
we may always assume β ◦ αg ◦ β−1 = ασ(g).

Recall that the group Inv(Z(C)) plays an essential role in the extension
theory. In the case of generalized Haagerup categories satisfying a certain
extra assumption – which is satisfied in all of the examples of interest below
– we can identify Inv(Z(C)) with

G2 = {g ∈ G; 2g = 0}

(see [9]), and the action of Out(C) on Inv(Z(C)) is determined by the permu-
tation σ ∈ Aut(G) associated to each outer automorphism.

We end this section by describing how Theorem 2.3 works in the case of
generalized Haagerup categories. Assume that C is a generalized Haagerup
category given by the Cuntz algebra model (α, ρ). Assume we have two em-
beddings C in End0(Mi), i = 1, 2, where M1 and M2 are hyperfinite Type III1
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factors. More precisely, we have α
(i)
g , ρ(i) ∈ End0(Mi) and homomorphisms

ιi : O|G|+1 → Mi satisfying

α(i)
g ◦ ιi = ιi ◦ αg. ρ(i) ◦ ιi = ιi ◦ ρg.

We apply Theorem 2.3 to the monoidal functor (F,L) given by

F
(
α(1)
g

)
= α(2)

g , F
(
ρ(1)) = F

(
ρ(2)),

F
(
ι(1)(v)

)
= ι(2)(v) for v ∈ (μ, ν), Lμ,ν = 1.

Then we get an isomorphism Φ : M1 → M2 and unitaries uμ ∈ U(M2) such
that

μ(2) = Ad(u)μ ◦ Φ ◦ μ(1) ◦ Φ−1,

ι(2)(v) = uνΦ
(
ι(1)(X)

)
u∗μ,

uμ◦ν = uμΦ ◦ μ(1) ◦ Φ−1(uν).

For μ = αg and ν = αh, this shows that {uαg}g∈G is a Φ ◦ α(1) ◦Φ−1-cocycle,
and there exists a unitary u ∈ U(M2) satisfying uαg = u∗Φ ◦ α(1) ◦ Φ−1(u).
By replacing Φ with Ad(u) ◦ Φ if necessary, we may assume that α(2) =
Φ ◦ α(1) ◦ Φ−1 and uαg = 1. Under this condition, we have

uαg◦ρ = uαgα
(2)
g (uρ) = α(2)

g (uρ),
uρ◦α−g = uρΦ ◦ ρ(2) ◦ Φ−1(uα−g) = uρ.

Since αg ◦ ρ = ρ ◦α−g, we find that uρ is fixed by α
(1)
g = Φ ◦α(2)

g ◦Φ−1. There
is no further argument to simplify the situation. In conclusion, this means
that when we compare two extensions of C by using Theorem 2.3, there is a
freedom to replace ρ by Ad(u) ◦ ρ with u fixed by αg, while we can always fix
the group part αg.

3. Classification of extensions

As mentioned in the previous section, for a generalized Haagerup category C
with group of invertible objects G = Inv(C), we can identify Out(C) with a
subgroup of (

H2(G,T) ×G/2G
)
� Aut(G);

and moreover for all known examples, the outer automorphisms are cocycle-
free in the sense that Out(C) lies in the subgroup G/2G� Aut(G).
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We would like to classify Z2-graded extensions associated to an outer
automorphism which fixes the invertible objects, i.e. which corresponds to
the trivial element in Aut(G). Such an automorphism moves ρ to αpρ for
some p ∈ G\2G (note that for a given element of Out(C), the choice of p is
determined only up to an element of 2G).

As motivation for studying this type of automorphism, we note that it
is shown in [8] that the Brauer-Picard group of the generalized Haagerup
subfactor for Z4 is isomorphic to Z2, and is generated by such an outer auto-
morphism. As we will see below, such outer automorphisms also exist for all
known examples of generalized Haagerup categories for even groups.

3.1. Structure constants and constraints

Let C be a generalized Haagerup category realized in standard form in
End0(M). We would like to analyze the structure of an arbitrary Z2-extension
of C generated by an invertible object (automorphism) β such that

[βαg] = [αgβ], ∀g ∈ G

[βρ] = [αpρβ], for some p ∈ G\2G.

So we fix p ∈ G\2G and assume that β is an automorphism of M satisfying
these fusion rules. We will also assume that the automorphism associated to
β is cocycle-free, so that we may assume

β ◦ αg = αg ◦ β, ∀g ∈ G,

as explained in the previous section.
Choose a unitary u ∈ M such that

β ◦ ρ = Ad(u) ◦ αp ◦ ρ ◦ β.

Note that u is determined up to a scalar since ρ is irreducible.

Lemma 3.1. We have [β2] = [αp+z] for some z ∈ G2.

Proof. By assumption β2 is in C, and hence isomorphic to αg for some g ∈ G.
We have

[α2gρ] = [αgρα−g] =
[
β2ρβ−2] =

[
βαpρβ

−1] = [α2pρ].

Therefore we have 2g = 2p, and hence g = p + z for some z ∈ G2.
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Now choose a unitary v ∈ M such that

β2 = Ad(v) ◦ αp+z.

We first determine the actions of αg and β on u and v.

Lemma 3.2. 1. There are characters χ, μ ∈ Ĝ such that

αg(u) = χ(g)u, αg(v) = μ(g)v, ∀g ∈ G.

2. We have
β(v) = νv,

where ν2 = μ(p + z).

Proof. We have

Ad
(
αg(u)

)
◦ αpρ = αg ◦ Ad(u) ◦ αpρ ◦ αg

= αg ◦ βρβ−1 ◦ αg = βρβ−1 = Ad(u) ◦ αpρ.

Since αpρ is irreducible, it must be that αg(u) is a scalar multiple of u; call
the corresponding character χ. Similarly,

Ad
(
αg(v)

)
◦ αp+z = αg ◦ β2 ◦ α−g = β2 = Ad(v) ◦ αp+z,

so αg(v) is a scalar multiple of v; call the corresponding character μ.
Finally, we have

Ad
(
β(v)

)
◦ αp+z = β

(
β2)β−1 = β2,

so β(v) is also a scalar multiple of v; call the corresponding scalar ν. We have

ν2v = β2(v) =
(
Ad(v) ◦ αp+z

)
(v) = μ(p + z)v.

Note that we have not found any constraints on β(u). Similarly, we have
not found any constraints on β(s) or β(tg).

We would now like to determine where ρ sends u and v.

Lemma 3.3. Replacing u with a scalar multiple if necessary, we may assume
that

ρ(u) = u∗β(s)s∗ +
∑
g∈G

a(g)u∗β(tg−p)ut∗g,

where a(g) is a function from G to T.
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Proof. We have u ∈ (αpρβ, βρ), so that ρ(u) ∈ (ραpρβ, ρβρ) = (α−pρ
2β, ρβρ).

Since [αpρβ] = [βρ], we also have

[ρβρ] =
[
α−pρ

2β
]

= [α−pβ] ⊕
⊕
g∈G

[αgρβ],

and a basis for (α−pρ
2β, ρβρ) is given by
{
u∗β(s)s∗

}
∪
{
u∗β(tg−p)ut∗g

}
g∈G.

Multiplying u by a scalar if necessary, we may assume that uρ(u)s = β(s), so
that

ρ(u) = u∗β(s)s∗ +
∑
g∈G

a(g)u∗β(tg−p)ut∗g.

Since uρ(u)tg = a(g)β(tg−p)u is an isometry for each g, we must have |a(g)| =
1.

Note that we can replace u with −u, which would multiply each a(g) by
−1.

Lemma 3.4. We have

ρ
(
β(u)

)
= χ(p)

(
u∗β

(
u∗

)[
vsv∗β(s)∗+

∑
g∈G

a(g)εp+z(g−p)vtg+pv
∗β(u)β(tg)∗

]
u

)

Proof. We have

ρ
(
β(u)

)
=

(
α−p ◦ Ad

(
u∗

)
◦ βρ

)
(u)

=
(
Ad

(
u∗

)
◦ βραp

)
(u) = χ(p)

(
Ad

(
u∗

)
◦ βρ

)
(u)

= χ(p)u∗β
(
u∗β(s)s∗ +

∑
g∈G

a(g)u∗β(tg−p)ut∗g
)
u

= χ(p)
(
u∗β

(
u∗

)[
vsv∗β(s)∗ +

∑
g∈G

a(g)εp+z(g − p)vtg+pv
∗β(u)β(tg)∗

]
u

)

(where we have used β2 = Ad(v) ◦ αp+z).

Lemma 3.5. We have
ρ(v) = ξu∗β(u)∗v,

where ξ ∈ T.
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Proof. We have v ∈ (αp+z, β
2), so ρ(v) ∈ (ραp+z, ρβ

2), which is a one-
dimensional space since [ραp+z] = [ρβ2] is irreducible. Therefore, it suffices
to show that u∗β(u)∗v ∈ (ραp+z, ρβ

2), which can be readily checked:

v ∈
(
ραp+z = α−p+zρ, α−2pβ

2ρ
)

β(u)∗ ∈
(
α−2pβ

2ρ = β2ρα2p, βαpρβα2p = βρβα−p

)
u∗ ∈

(
βρβα−p, ρβαpβα−p = ρβ2).

Next, we will check constraints from the relation αg ◦ ρ = ρ ◦ α−g on u
and v.

Lemma 3.6. We have

1.
a(h + 2g) = a(h)εg(h)εg(h− p)χ(g), ∀g, h ∈ G.

2.
μ(g)2 = χ(g)2, ∀g ∈ G.

Proof. For the first part, we have

αg

(
ρ(u)

)
= αg

(
u∗β(s)s∗ +

∑
h∈G

a(h)u∗β(th−p)ut∗h
)

= χ(−g)u∗β(s)s∗ +
∑
h∈G

a(h)εg(h− p)εg(h)u∗β(t2g+h−p)ut∗2g+h.

On the other hand,

ρ
(
α−g(u)

)
= χ(−g)ρ(u) = χ(−g)

(
u∗β(s)s∗ +

∑
h∈G

a(h)u∗β(th−p)ut∗h
)
.

Equating terms gives the desired relation. For the second part, we have

αg

(
ρ(v)

)
= αg

(
ξu∗β(u)∗v

)
= ξχ(−2g)μ(g)u∗β(u)∗v

and
ρ
(
α−g(v)

)
= μ(−g)ξu∗β(u)∗v,

so we get μ(2g) = χ(2g).

Next, we check constraints from the relation β ◦ ρ = Ad(u) ◦αpρ ◦β on v.
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Lemma 3.7. We have
μ(p) = χ(p + z).

Proof. We have

β
(
ρ(v)

)
=β

(
ξu∗β(u)∗v

)
= ξχ(−p+z)β(u)∗vu∗v∗β(v) = νξχ(−p+z)β(u)∗vu∗,

while
u
(
αpρ

(
β(v)

))
u∗ = νμ(−p)uρ(v)u∗ = νμ(−p)ξβ(u)∗vu∗.

What remains is to check constraints coming from the relation

ρ2(x) = sxs∗ +
∑
g∈G

tg(αgρ)(x)t∗g

for x = v and x = u.

Lemma 3.8. We have

1.
ξ2 = χ(p)

2.
a(g)a(g − p)εp+z(g − 2p)ξ = μ(g), ∀g ∈ G.

Proof. We have

ρ2(v) = ρ
(
ξu∗β(u)∗v

)
= ξ2ρ(u)∗ρ

(
β(u)

)∗
u∗β(u)∗v

= ξ2
(
u∗β(s)s∗ +

∑
g∈G

a(g)u∗β(tg−p)ut∗g
)∗

·
(
χ(p)

(
u∗β

(
u∗

)[
vsv∗β(s)∗

+
∑
h∈G

a(h)εp+z(h− p)vth+pv
∗β(u)β(th)∗

])
u

)∗
u∗β(u)∗v

= ξ2χ(−p)
(
sβ

(
s∗
)
+

∑
g∈G

a(g)tgu∗β(tg−p)∗
)

·
(
β(s)vs∗ +

∑
h∈G

a(h)εp+z(h− p)β(th)β(u)∗vt∗h+p

)

= ξ2χ(−p)
(
svs∗ +

∑
g∈G

a(g)a(g − p)εp+z(g − 2p)tgu∗β(u)∗vt∗g
)
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= ξ2χ(−p)
(
svs∗ +

∑
g∈G

a(g)a(g − p)ξμ(g)εp+z(g − 2p)tg(αgρ)(v)t∗g
)
.

Setting this equal to

svs∗ +
∑
g∈G

tg(αgρ)(v)t∗g

gives the relations.

Finally, we will look at ρ2(u).

Lemma 3.9. We have

1.
ηg+p = ηg, ∀g ∈ G

2.
χ(g) = a(g)2, ∀g

3.
a(g)a(−g) = ε−g(g − p)ε−g(g), ∀g.

4.

Ag(h, k) = a(g + h)a(g + k)a(g + h + k)a(g)Ag−p(h, k), ∀g, h, k.

Proof. We have

ρ2(u) = ρ

(
u∗β(s)s∗ +

∑
g∈G

a(g)u∗β(tg−p)ut∗g
)

= ρ(u)∗ρβ(s)ρ(s)∗ +
∑
g∈G

a(g)ρ(u)∗ρβ(tg−p)ρ(u)ρ(tg)∗)

=
(
u∗β(s)s∗ +

∑
g∈G

a(g)u∗β(tg−p)ut∗g
)∗(

Ad
(
u∗

)
βραp(s)

)
ρ(s)∗

+
∑
g∈G

a(g)
(
u∗β(s)s∗ +

∑
k∈G

a(k)u∗β(tk−p)ut∗k
)∗(

Ad
(
u∗

)
βραp

)
(tg−p)

·
(
u∗β(s)s∗ +

∑
h∈G

a(h)u∗β(th−p)ut∗h
)
ρ(tg)∗

=
(
sβ(s)∗ +

∑
g∈G

a(g)tgu∗β(tg−p)∗
)
β
(
ρ(s)

)
uρ(s)∗
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+
∑
g∈G

a(g)εp(g − p)
(
sβ(s)∗ +

∑
k∈G

a(k)tku∗β(tk−p)∗
)
β
(
ρ(tg+p)

)

·
(
β(s)s∗ +

∑
h∈G

a(h)β(th−p)ut∗h
)
ρ(tg)∗

= sβ
(
s∗ρ(s)

)
uρ(s)∗ +

∑
g∈G

a(g)tgu∗β
(
t∗g−pρ(s)

)
uρ(s)∗

+
∑

g,h∈G
a(g)a(h)εp(g − p)sβ

(
s∗ρ(tg+p)th−p

)
ut∗hρ(tg)∗

+
∑

g,k∈G
a(g)a(k)εp(g − p)tku∗β

(
t∗k−pρ(tg+p)s

)
s∗ρ(tg)∗

+
∑

g,h,k∈G
a(g)a(h)a(k)εp(g − p)tku∗β

(
t∗k−pρ(tg+p)th−p

)
ut∗hρ(tg)∗

= 1
d
suρ(s)∗ + 1√

d

∑
g∈G

a(g)tgu∗β(tg−p)uρ(s)∗

+ 1√
d

∑
g∈G

ηg+pa(g)a(−g)εp(g − p)ε−g−p(g + p)sut∗−gρ(tg)∗

+
∑
g∈G

ηg+pa(g)a(−g)εp(g − p)ε−g−p(g + p)t−gu
∗β(s)s∗ρ(tg)∗

+
∑

g,h,k∈G
a(g)a(h)a(k)εp(g − p)ε−g−p(g + p)A−g−p(k + g, h + g)

· tku∗β(tg+h+k−p)ut∗hρ(tg)∗

This gives

ρ2(u)s = 1
d2 su + 1√

dd

∑
g∈G

a(g)tgu∗β(tg−p)u

+ 1
d

∑
g∈G

ηgηg+pa(g)a(−g)ε−g(g)εp(g − p)ε−g−p(g + p)su

+ 1√
d

∑
g,k∈G

ηga(g)a(−g)a(k)ε−g(g)εp(g − p)ε−g−p(g + p)A−g−p(k + g, 0)

· t∗ku∗β(tk−p)u

=
( 1
d2 + 1

d

∑
g∈G

ηgηg+pa(g)a(−g)ε−g(g)εp(g − p)ε−g−p(g + p)
)
su

+ 1√
d

∑
g∈G

a(g)
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·
(1
d

+
∑
k∈G

ηka(k)a(−k)ε−k(k)εp(k − p)ε−k−p(k + p)A−k−p(k + g, 0)
)

· tgu∗β(tg−p)u.

Setting this equal to su gives the equation∑
g∈G

ηgηg+pa(g)a(−g)ε−g(g)εp(g − p)ε−g−p(g + p) = n,

which implies that

ηgηg+pa(g)a(−g)ε−g(g)εp(g − p)ε−g−p(g + p)
= ηgηg+pa(g)a(−g)ε−g(g)ε−g(g − p) = 1,

(3.1)

and

−1
d

=
∑
k∈G

ηk+pA−k−p(k + g, 0) =
∑
k∈G

ηg+p
2Ag−p(k + g, 0) = ηg+p

2−ηg+p

d
,

which is true (where we have used Eqs. (2.3) and (2.7)).
Similarly,

ρ2(u)tl = 1
d
√
d
sut∗l + 1

d

∑
g∈G

a(g)tgu∗β(tg−p)ut∗l

+ 1√
d

∑
g∈G

ηg+pa(g)a(−g)ε−g(g)εp(g − p)ε−g−p(g + p)A−g(l + g, 0)sut∗l

+ η−lη−l+pa(−l)a(l)εp(−l − p)εl−p(−l + p)εl(−l)tlu∗β(s)s∗

+
∑

g,h,k∈G
a(g)a(h)a(k)εp(g − p)ε−g−p(g + p)ε−g(g)

· A−g−p(k + g, h + g)A−g(l + g, h + g)tku∗β(tg+h+k−p)ut∗h+g+l

Collecting terms and applying Eq. (3.1) gives

= 1√
d

(1
d

+
∑
g∈G

ηgA−g(l + g, 0)
)
sut∗l + a(−l)2tlu∗β(s)s∗

+ 1
d

∑
g∈G

a(g)tgu∗β(tg−p)ut∗l

+
∑
m∈G

(∑
k∈G

a(k)
(∑
g∈G

a(−g)ηgηg+pa(m− g)
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· A−g−p(k + g,m)A−g(l + g,m)
)
tku

∗β(tm+k−p)ut∗m+l

)

= a(−l)2tlu∗β(s)s∗

+
∑
m∈G

∑
k∈G

a(k)
(
δm,0

d
+

(∑
g∈G

a(−g)ηgηg+pa(m− g)

· A−g−p(k + g,m)A−g(l + g,m)
))

tku
∗β(tm+k−p)ut∗m+l)

(where we have used Eqs. (2.3) and (2.7) to eliminate the first term).
Comparing with

tlαlρ(u) = χ(−l)tl
(
u∗β(s)s∗ +

∑
g∈G

a(g)u∗β(tg−p)ut∗g
)

= χ(−l)tlu∗β(s)s∗ +
∑
g∈G

χ(−l)a(g)tlu∗β(tg−p)ut∗g

we get the relations

(3.2) a(l)2 = χ(l)

and∑
g∈G

a(l)a(m + l)a(−g)ηgηg+pa(m− g)A−g−p(k + g,m)A−g(l + g,m)))

= δk,l −
δm,0

d
= ηkηl

∑
g∈G

A−k(k + g,m)A−l(l + g,m)

= η2
kηk+mη2

l ηl+m

∑
g∈G

εg+k(−k)εg+k(−k + m)εg+l(−l)εg+l(−l + m)

· Ag(k + g,m)Ag(l + g,m)
= η2

kηk+mη2
l ηl+mεk(−k)εk(−k + m)εl(−l)εl(−l + m)

·
∑
g∈G

A−g(k + g,m)A−g(l + g,m).

Setting k = l and r = k+g (and replacing g with −g), we get the relation

(3.3) Ag−p(r,m) = a(r + g)a(m + g)ηg+pηga(g)a(m + r + g)Ag(r,m).

Finally, by Eq. (3.2), we have that

a(g)a(−g) = ±1
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is always real, so by Eq. (3.2) we must have

(3.4) ηg = ηg+p, ∀g,

which simplifies Eqs. (3.1) and (3.3).

Note that although in deriving the last relation in the proof we specialized
the equation to k = l, the resulting relation makes the equation true for all k
and l (which we will need later for reconstruction of the category from these
relations).

Putting this all together, we arrive at the following description of β:

Theorem 3.1. Let C be a (possibly degenerate) generalized Haagerup category
for G realized in standard form in End0(M) with structure constants (A, ε, η),
and suppose that β ∈ Aut(M) commutes with αg, g ∈ G and there are
elements p ∈ G\2G and z ∈ G2 such that

[βρ] = [αpρβ],
[
β2] = [αp+z].

Then there exist unitaries u and v in M such that

β ◦ ρ = Ad(u) ◦ αp ◦ ρ ◦ β, β2 = Ad(v) ◦ αz;

characters χ, μ ∈ Ĝ such that

(3.5) αg(u) = χ(g)u, αg(v) = μ(g)v;

constants ξ, ν ∈ T such that

(3.6) ρ(v) = ξu∗β
(
u∗

)
v, β(v) = νv;

and a function a : G → T such that

(3.7) ρ(u) = u∗β(s)s∗ +
∑
g∈G

a(g)u∗β(tg−p)ut∗g;

and such that the following identities hold:

ν2 = μ(p + z)(3.8)
ξ2 = χ(p)(3.9)

μ(g)2 = χ(g)2(3.10)
μ(p) = χ(p + z)(3.11)
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a(0) = 1(3.12)
χ(g) = a(g)2(3.13)

a(h + 2g) = a(h)εg(h)εg(h− p)χ(g)(3.14)
a(g)a(g − p)εp+z(g − 2p)ξ = μ(g)(3.15)
a(g)a(−g) = ε−g(g − p)ε−g(g)(3.16)

Ag(h, k) = a(g + h)a(g + k)a(g + h + k)a(g)Ag−p(h, k)(3.17)

We also must have ηg = ηg+p, ∀g ∈ G.

Proof. The relations are collected from the previous lemmas. The only new
one is a(0) = 1, which we can assume by noting that a(0)2 = χ(0) = 1, so
that a(0) = ±1, and then replacing u by −u if necessary.

When g ∈ G2, Eq. (3.14) implies

χ(g) = εg(h)εg(h− p).

Then putting h = 0 and h = p, we get

(3.18) χ(g) = εg(p) = εg(−p), ∀g ∈ G2.

Some of the relations in Theorem 3.1 are redundant, and we can organize
them in a more efficient way as follows.

Lemma 3.10. Eq. (3.8)–(3.17) are equivalent to the following equations:

ν2 = μ(p + z),(3.19)
ξ = a(p)ε−p(p)(3.20)
χ(g) = a(g)2(3.21)

μ(g) = a(g)a(g − p)a(p)ε−p(g)ε−p(p)εz(g)(3.22)
a(0) = 1(3.23)

a(h + 2g)
a(h)a(2g) = εg(h)εg(h− p)εg(0)εg(−p),(3.24)

a(g)a(−g) = ε−g(g − p)ε−g(g)(3.25)
Ag(h, k) = a(g + h)a(g + k)a(g + h + k)a(g)Ag−p(h, k)(3.26)

Definition 3.1. We will call a collection of data (χ, μ, ξ, ν, a(g)) satisfying
the conditions in Theorem 3.1 a set of extension data for (C, A, ε, p, z).
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3.2. Reconstruction

We now describe how to reconstruct a Z2-graded extension of a generalized
Haagerup category C from its extension data.

Suppose we are given a set of extension data (χ, μ, ξ, ν, a(g)) for
(C, A, ε, p, z). Let U = On+1∗On+1∗C∗(F3), which is the universal C∗-algebra
generated by two copies of On+1 and three unitaries u0, u1, and v. Intuitively,
we think of the first copy of On+1 as the original Cuntz algebra for C; the
second copy as the image of the first copy under the new automorphism β;
and the unitaries u0, u1, and v as corresponding to u, β(u), and v in the
previous section, respectively.

We would like to extend ρ and αg to U such that the original relations

αg ◦ αh = αg+h, αg ◦ ρ = ρ ◦ α−g

and
ρ2(x) = sxs∗ +

∑
g∈G

tgαg

(
ρ(x)

)
t∗g

continue to hold; then define β on U such that the new relations

β ◦ αg = αg ◦ β, ρ ◦ β = Ad(u0) ◦ αp ◦ ρ ◦ β, β2 = Ad(v) ◦ αp+z

also hold; and finally extend everything to a von Neumann algebra closure of
U to get a unitary fusion category.

Let Φ0 (resp. Φ1) be the canonical isomorphism from O|G|+1 onto the first
(resp. second) copy of O|G|+1 in U . We set s(k) = Φk(s) and t

(k)
g = Φk(tg).

We define a G-action α̃ on U by

α̃g(uk) = χ(g)uk, for k = 0, 1, α̃g(v) = μ(g)v,
α̃g

(
Φk(x)

)
= Φk

(
αg(x)

)
, x ∈ O|G|+1

and an endomorphism ρ̃ of U by

ρ̃
(
Φk(x)

)
=

{
Φ0(ρ(x)) if k = 0,
u∗0Φ1(ραp(x))u0 if k = 1,

ρ̃(u0) = u∗0

(
s(1)s(0)∗ +

∑
g∈G

a(g)t(1)
g−pu0t

(0)
g

∗
)
,

ρ̃(u1) = χ(p)u∗0u∗1
(
vs(0)v∗s(1)∗ +

∑
g∈G

a(g)εp+z(g − p)vt(0)
g+pv

∗u1t
(1)
g

∗
)
u0,
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ρ̃(v) = ξu∗0u
∗
1v.

Lemma 3.11. We have

α̃g ◦ ρ̃ = ρ̃ ◦ α̃−g, ∀g ∈ G.

Proof. It is easy to see that the relation holds for x ∈ Φk(O|G|+1), for k =
0, 1. For x ∈ {u0, u1, v}, the relation reduces to a similar calculation as in
Lemma 3.6, using Eqs. (3.10) and (3.14).

We define an endomorphism β̃ on U by

β̃
(
Φk(x)

)
=

{
Φ1(x) if k = 0,
vΦ0(αp+z(x))v∗ if k = 1,

β̃(u0) = u1, β̃(u1) = μ(p)vu0v
∗, β̃(v) = νv.

Lemma 3.12. We have

1. β̃ ◦ α̃g = α̃g ◦ β̃
2. β̃2 = Ad(v) ◦ α̃p+z

3. β̃ ◦ ρ̃ = Ad(u0) ◦ α̃p ◦ ρ̃ ◦ β̃

Proof. 1. Easy.
2. Also straightforward to check, using Eq. (3.8).
3. Similar calculation as in Lemma 3.7, using Eq. (3.11).

Finally, we need to check that ρ̃2 has the correct form.

Lemma 3.13. We have

ρ̃2(x) = s(0)xs(0)∗ +
∑
g∈G

t(0)
g (α̃gρ̃)(x)t(0)

g
∗, ∀x ∈ U .

Proof. It suffices to show that

ρ̃2(x)s(0) = s(0)x

and
ρ̃2(x)t(0)

g = t(0)
g (α̃gρ̃)(x), ∀g ∈ G.

Again, this is easy to check for x ∈ Φk(O|G|+1). Note that

ρ̃(u0) = u∗0

(
s(1)s(0)∗ +

∑
g∈G

a(g)t(1)
g−pu0t

(0)
g

∗
)
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= u∗0

(
β̃
(
s(0))s(0)∗ +

∑
g∈G

a(g)β̃
(
t
(0)
g−p

)
u0t

(0)
g

∗
)

and
ρ̃(v) = ξu∗0β̃(u0)∗v.

Then then calculation is essentially the same as in Lemmas 3.8 and 3.9, using
Eqs. (3.9), (3.13), (3.15), (3.16), and (3.17).

Lemma 3.14. There is a factor closure of U to which the endomorphisms
α̃g, ρ̃ and β̃ all extend.

Proof. This can be shown by a similar argument to Appendix of [15].

Putting this all together, we get the following reconstruction result.

Theorem 3.2. Let C be a possibly degenerate generalized Haagerup category
for G, with structure constants (A, ε). Let p ∈ G\2G and z ∈ G2 be given,
and let (χ, μ, ξ, ν, a(g)) be a set of extension data. Then there is a Z2-graded
extension of C which realizes the extension data.

Remark. Suppose the we have extension data such that everything besides
a(g) is trivial (note that in particular this implies that a(g) ∈ {±1}, ∀g). Then
we don’t need a free product, and we can define β directly on the original Cuntz
algebra by β(s) = s, β(tg) = a(g + p)tg+p. We can then verify using Eqs.
(3.14), (3.16) and (3.17) that β satisfies the appropriate relations, namely

β ◦ ρ = αp ◦ ρ ◦ β, β2 = αp+z.

A necessary condition for this situation to occur is that εk(p) = 1 for all
k ∈ G2. Indeed, assume u = 1. Then β ◦ ρ ◦ β−1 = αp ◦ ρ, and β(t0) is a
multiple of tp. Thus for all k ∈ G2, we get

αk

(
β(t0)

)
= β

(
αk(t0)

)
= β(t0),

which shows εk(p) = 1.
This will be useful later when we look at the Asaeda-Haagerup categories.

3.3. Equivalence

We have seen that we can describe an extension in terms of extension data.
We would like to know when two sets of extension data describe equivalent
extensions.
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Suppose we have two extensions, each of the form discussed above, for
the same generalized Haagerup category C with structure constants (A, ε).
Then by Theorem 2.3 and the discussion at the end of Section 2.5, for the
purposes of comparing extension data up to unitary equivalence, we may
assume without loss of generality that both extensions are realized in the
same End0(M), with the same group action α, but with the choices for ρ
possibly differing by an inner perturbation by a unitary fixed by α, and with
possibly different choices for β.

We can easily show that if we replace ρ with Ad(w) ◦ ρ, where w is a
unitary fixed by αg, the extension data does not change at all.

So what remains is to check how the choice of β affects the extension
data. There are two ways we could modify β and still describe an equivalent
extension.

First, we can replace β by a different representative of the same isomor-
phism class [β′] = [β], i.e.

β′ = Ad(w) ◦ β

for some unitary w. To keep the relation

αg ◦ β′ = β′ ◦ αg

we require that the αg act as scalars on w, meaning there is a character ζ ∈ Ĝ
with

αg(w) = ζ(g)w, ∀g ∈ G.

In this case we can take

u′ = wuρ(w)∗ ∈
(
αpρβ

′, β′ρ
)
, v′ = wβ(w)v ∈

(
αp+z, β

′ 2)
as the unitaries for the extension. Then we have

1.

αg

(
u′
)

= αg

(
wuρ(w)∗

)
= ζ(g)2χ(g)wuρ(w)∗ = ζ(g)2χ(g)u′

2.

αg

(
v′
)

= αg

(
wβ(w)v

)
= ζ(g)2μ(g)wβ(w)v = ζ(g)2μ(g)v′
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3.

β′(v′) = β′(wβ(w)v
)

= Ad(w)
(
β
(
wβ(w)v

))
= w

(
β(w)β2(w)β(v)

)
w∗

= νwβ(w)
(
vαp+z(w)v∗

)
vw∗

= νζ(p + z)wβ(w)v = νζ(p + z)v′

4.

ρ
(
v′
)

= ρ
(
wβ(w)v

)
= ρ(w)ρβ(w)ρ(v)

= ξρ(w)α−pAd
(
u∗

)
βρ(w)u∗β(u)∗v

= ξζ(p)ρ(w)u∗β
(
ρ(w)u∗

)
v

= ξζ(p)ρ(w)u∗w∗(wβ(ρ(w)u∗
)
w∗)wv

= ξζ(p)u′ ∗β′(u′ ∗)β′(w)wv = ξζ(p)u′ ∗β′(u′ ∗)v′
5.

ρ
(
u′
)

= ρ(w)ρ(u)ρ2(w)∗

= ρ(w)u∗β(s)s∗ρ2(w)∗ +
∑
g∈G

a(g)ρ(w)u∗β(tg−p)ut∗gρ2(w)∗

=
(
ρ(w)u∗w∗)(wβ(s)w∗)(ws∗ρ2(w)∗

)
+

∑
g∈G

a(g)
(
ρ(w)u∗w∗)(wβ(tg−p)w∗)(wut∗gρ2(w)∗

)

= u′ ∗β′(s)s∗ +
∑
g∈G

a(g)u′ ∗β′(tg−p)wuαgρ
(
w∗)t∗g

= u′ ∗β′(s)s∗ +
∑
g∈G

a(g)ζ(g)u′ ∗β′(tg−p)u′t∗g

Therefore χ and μ are each multiplied by ζ2, ξ is multiplied by ζ(p), ν is
multiplied by ζ(p + z), and a(g) is multiplied by ζ(g).

Second, we can replace β by a different object β′ in the extension which
satisfies the same initial assumptions as β. This means that

[
β′] = [αkβ]

for some k ∈ G, and since
[
β2] = [αp+z] =

[
β′ 2] =

[
α2kβ

2],



2364 Pinhas Grossman et al.

we have
[α2k] = [id],

which implies that k ∈ G2. On the other hand, for any k ∈ G2, we have
[
(αkβ)2

]
=

[
β2] = [αp+z], [αkβρ] = [αkαpρβ] = [αpραkβ].

Thus αkβ satisfies the same assumptions as β.
In this case, we can still take u as our intertwiner for (αpρβ

′, β′ρ) and v

as our intertwiner for (αp+z, β
′ 2). Thus χ and μ remain unchanged. On the

other hand, we have

1.
β′(v) = (αkβ)(v) = αk(νv) = μ(k)νv.

2.
ρ(v) = ξu∗β(u)∗v = ξu∗

(
αkβ

′)(u)∗v = ξχ(k)u∗β′(u)∗v

3.

ρ(u) = u∗β(s)s∗ρ2(w)∗ +
∑
g∈G

a(g)u∗β(tg−p)ut∗g

= u∗β′(s)s∗ρ2(w)∗ +
∑
g∈G

εk(g − p)a(g)u∗β′(tg−p)ut∗g

Thus ν is multiplied by μ(k) and ξ is multiplied by χ(k).
For a(g), we need to first normalize the new a(g) by replacing u with −u

if necessary, and so a(g) is multiplied by εk(g−p)εk(−p) in the extension data
corresponding to β′.

Putting this all together, we get the following description of equivalence.

Theorem 3.3. Let C be a generalized Haagerup category with structure con-
stants (A, ε), and fix p ∈ G\2G and z ∈ G2. Let (χ, μ, ξ, ν, a(g)) and
(χ′, μ′, ξ′, ν ′, a′(g)) be two sets of extension data for (C, A, ε, p, z). Then the
corresponding extensions are unitarily equivalent iff there is a character ζ ∈ Ĝ

and an element k ∈ G2 such that

χ′ = ζ2χ, μ′ = ζ2μ,

ξ′ = ζ(p)χ(k)ξ, ν ′ = ζ(p + z)μ(k)ν
a′(g) = ζ(g)εk(g − p)εk(p)a(g)
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Proof. First note that since the extension data completely determine the 6j-
symbols of the extension, any two extensions which share the same extension
data are equivalent.

Now, as we have seen, once (A, ε) is fixed, the only freedom we have for
the extension data is the choice of β, which leads to the relations above.

Conversely, for any character ζ, we can find a unitary w in M such that
αg(w) = ζ(g)w. Therefore we can always vary the extension data by the given
relations.

Remark. In the degenerate case, where the action of α is not outer, we may
not be able realize every character ζ.

In the rest of this section, we assume that Ag(h, k) �= 0 for all g, h, k ∈ G,
which is true for every known example. In this case, ε is a bicharacter on
G2 × G. Let (χ, μ, ξ, ν, a) and (χ̃, μ̃, ξ̃, ν̃, ã) be two extension data, and let
b(g) = ã(g)/a(g). Then Eq. (3.17) shows that b is a character, and we have

χ̃(g) = b(g)2χ(g), μ̃(g) = b(g)2μ(g)
ξ̃ = b(p)ξ, ν̃ = ±b(p + z)ν.

Therefore, to determine the number of extensions with fixed (p, z), Theo-
rem 3.3 shows that we can fix a, and in consequence χ, μ, and ξ too. Now the
only remaining freedom is multiplying ν by −1.

Letting ζ(g) = εk(g − p)εk(p) = εk(g) in Theorem 3.3, we get

ν ′ = εk(p + z)μ(k)ν = εk(z)χ(k)μ(k).

Let τ be a character of G defined by

τ(g) = μ(g)εz(g)
χ(g) = a(g − p)a(p)

a(g) ε−p(g)ε−p(p).

Then since χ2 = μ2, we have τ 2 = 1. Now we have

ν ′ = τ(k)εz(k)εk(z)ν.

Note that we always have τ(p) = 1, and in fact τ is trivial for every known
example.

In summary, we get the following classification.

Corollary 3.1. Assume that there exists extension data for (C, A, ε, p, z),
where Ag(h, k) �= 0 for all g, h, k ∈ G. Then the number of equivalence classes
of such extensions is 2 if τ(k)εk(z)εz(k) = 1 for all k ∈ G2, and it is 1 if
there exists k ∈ G2 with τ(k)εk(z)εz(k) = −1.
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Corollary 3.2. Under the assumptions of the above corollary, if G = Z2n,
then there exists either 0 or 2 extensions for a given (p, z).

Proof. In the case of G = Z2n, we have G2 = {0, n}, and we may always
assume p = 1. Since p generates G in this case, τ(p) = 1 implies that τ is
trivial. Now we have τ(k)εk(z)εz(k) = 1 for every combination of z and k.
Thus there exist exactly 2 extensions for (1, z) once extension data exists.

Remark. In our situation, we have

H2(
Z2, Inv

(
Z(C)

))
= H2(Z2, G2) = G2,

H3(
Z2,C

×) = Z2,

H1(
Z2, Inv

(
Z(C)

))
= H1(Z2, G2) = Hom(Z2, G2) = G2.

As in the argument at the end of subsection 5.2, we can see that z corresponds
to the element in H2(Z2, Inv(Z(C))) in Theorem 2.1, and τ(k)εk(z)εz(k) cor-
responds to p1

(c,M)(k) in Theorem 2.2 if H3(Z2,C
×) is identified with {1,−1}.

4. Examples

4.1. Cyclic groups

For an even cyclic group G = Z2n, there are two possible bicharacters valued
in {−, 1, 1} on G2×G = Z2×Z2n, namely the trivial one and εn(m) = (−1)m.

For all known examples, ε restricts to the nontrivial bicharacter. In par-
ticular, there are examples known for each n ≤ 5 such that [1] + [αgρ] admits
a Q-system for each g ∈ G, with two different examples each for n = 3, 5. The
Q-systems comprise two orbits under the action of the inner automorphism
group of C, corresponding to whether g is even or odd.

It is natural to wonder whether the two orbits are transposed by an outer
automorphism of C, and this is indeed the case for all of the the known
examples (note that H2(Z2n,T) is trivial, so the cocycle-free condition is
automatic). It is then natural to ask whether these outer automorphisms
realize Z2-graded extensions of the fusion categories.

We therefore consider extension data for p = 1. We have z ∈ G2 = {0, n}.
Then we have

χ(p)m = χ(1)n = χ(n) = εn(1) = −1,

so χ(1) is a primitive 2nth root of unity. We then have ξ2n = −1. Then

μ(1) = χ(1)χ(z).
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From Eq. (3.15) we then have

a(g)a(g − 1)ξ = εp+z(g − 2p)μ(g)
= ε1(g − 2)εz(g)ξ2gχ(z)g = ε1(g − 2)ξ2g.

If we fix ε1(2n − 1) = −1 and ε1(g) = 1 otherwise, this gives the unique
solution

a(g) = −ξg, 1 ≤ g ≤ 2n− 1.

We can then check Eqs. (3.14) and (3.16) (which only depend on ε) hold,
and what remains is to check Eq. (3.17) using the structure data Ag(h, k).
Note that Eq. (3.17) does not depend on z.

Theorem 4.1. For each of the known examples of generalized Haagerup cat-
egories for G = Z2n, 1 ≤ n ≤ 5, and each odd p and z ∈ {0, n}, there are two
distinct Z2-graded extensions of the form discussed in the previous section.

Proof. We check Eq. (3.17) with a computer. Then by Corollary 3.2, in each
case there are two distinct extensions up to equivalence.

Remark. In this paper we are concerned with classifying extensions up to
the natural notion of equivalence, but one can also ask whether different
extensions give distinct tensor categories. For Z2-extensions of generalized
Haagerup categories, there is a unique nontrivial homogeneous component, so
the only way two different extensions can be tensor equivalent is if they are
related by a nontrivial automorphism of the trivial component (that is, of the
generalized Haagerup category).

Note that the choice of z ∈ {0, n} for a generalized Haagerup category
for an even cyclic group is an invariant of the tensor category (indeed, of the
fusion rules) of the extension. It is less clear whether the sign choice in ν in
the extension data is also an invariant of the tensor category.

One can check that once one fixes an extension as above, the extension
data is invariant under conjugation by the αg, as well as conjugation by β.
Thus if the outer automorphism group of the generalized Haagerup category is
generated by conjugation by β, then the different extensions are also distinct
as tensor categories. This is the case for the generalized Haagerup category
for Z4.

Thus at least for Z4, the Z2-graded extensions constructed above give
four different fusion categories, and we conjecture that this holds in general
for Z2n.
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4.2. Asaeda-Haagerup categories

The Asaeda-Haagerup subfactor was one of the two original “exotic” subfac-
tors discovered in [1] (the other being the Haagerup subfactor, corresponding
to a generalized Haagerup category for Z3). It was shown in [10] that there are
exactly six fusion categories in the Morita equivalence class of the Asaeda-
Haagerup categories. Three of these, including the two which are the even
parts of the Asaeda-Haagerup subfactor, do not admit any outer automor-
phisms. The other three are quadratic categories, and one of these, called
AH4, is a de-equivariantization of a generalized Haagerup category for the
group G = Z4 × Z2.

The category AH4 may be considered a degenerate generalized Haagerup
category, coming from a solution to Eqs. (2.1)–(2.9) for G with ε(0,1)((i, j)) = 1
for all (i, j), which means that α(0,1) acts trivially on the Cuntz algebra (and
hence is equal to id). Thus we have Inv(AH4) ∼= Z4.

There are 8 non-isomorphic Q-systems of the form [id] + [αgρ] (two for
each g ∈ Z4), which fall into 4 inner conjugacy classes, since αg+2ρ is inner
conjugate to αgρ. The Brauer-Picard group is

BrPic(AH4) ∼= Out(AH4) ∼= Z2 × Z2

and acts transitively on the inner conjugacy classes of Q-systems: there is
an autoequivalence fixing ρ but transposing the two Q-systems for [id] + [ρ],
and another autoequivalence sending ρ to α1ρ. (The Brauer-Picard group had
previously been calculated for the original Asaeda-Haagerup categories in [13]
using other methods).

Therefore it is natural to wonder whether AH4 can be extended by
Out(AH4), and consequently whether all of the Asaeda-Haagerup categories
admit Z2 × Z2-graded extensions.

In [12] it was shown on abstract grounds that the obstructions for Z2-
extensions vanish – but those methods do not determine the obstructions for
Z2 × Z2-extensions.

We will show that the Z2×Z2 obstructions vanish by directly constructing
a Z2 × Z2-extension using the methods above.

We refer to [10, Section 4] for the structure constants (A, ε) of the category
AH4, and note that the bicharacter ε on G2 ×G is given by

ε(i,j)
(
(k, l)

)
=

{
−1 (i, l) = (2, 1),
1 otherwise.

We will consider extensions for each of p = (1, 0) and p = (0, 1).
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We start with p = (1, 0), and let z = (0, 0). Note that εk(p) = 1 for all
k ∈ G2, so by Remark 3.2, there is a possibility of realizing an extension on
the original Cuntz algebra.

Up to equivalence, there are two solutions for a(g) in Eqs. (2.1)–(2.8), ex-
actly one of which also solves Eq. (2.9) (this was checked with Mathematica).

We fix the extension data as a((0, 1)) = −1 and a(g) = 1 otherwise, and
then ν = ±1 determine two inequivalent extensions.

We then have χ = μ = ξ = 1, and if ν = 1 as well, we can represent the
extension on the Cuntz algebra O9.

Next, we consider p = (0, 1) and z = (0, 0). In this case we have ε(2,0)(p) =
−1, so there is no hope of realizing an extension on the original Cuntz algebra.
We find again a unique solution for a(g) up to equivalence:

a′
(
(x, y)

)
= e

xπi
4 ,

and again a sign choice in ν ′ gives two different extensions.

Remark. For each p, we have chosen z = (0, 0), and found corresponding
extensions. Since Inv(Z(AH4)) is trivial, there can be at most one quasi-
tensor product for a given choice of p, so we cannot have additional extensions
for other choices of z.

For example, for p = (1, 0) and z = (2, 0), there is a solution to Eqs. (2.1)–
(2.8), but it does not satisfy (2.9).

We would now like to realize extensions for p = (1, 0) and p = (0, 1)
simultaneously.

Let U = O9 ∗O9 ∗C∗(F3). We define an automorphism β̃′ using a′(g) and
a choice of sign for ν ′ as in the proof of Theorem 3.2.

We can also define β on O9 using a(g) with ν = 1.
We now want to extend β to U . We need to preserve the relations

β ◦ ρ = α(1,0) ◦ ρ ◦ β, β ◦ αg = αg ◦ β, β2 = α(1,0)

which hold on the Cuntz algebra, and we would also like the extension of β
to commute with β̃′. So we define

β̃
(
Φ0(x)

)
= β̃

(
Φ1(x)

)
= β(x), ∀x ∈ O9,

β̃(u0) = cu0, β̃(u1) = cu1, β̃(v) = c′v.

Then we have

β̃ ◦ α̃g = α̃g ◦ β̃, β̃ ◦ β̃′ = β̃′ ◦ β̃
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and
β̃2 = α̃(1,0)

if
c2 = χ′((1, 0)

)
= i, c′ 2 = μ′((1, 0)

)
= i,

which will now assume.

Lemma 4.1. We have
β̃ ◦ ρ̃ = α̃(1,0) ◦ ρ̃ ◦ β̃

if
ca′

(
g − (1, 0)

)
a
(
g − (0, 1)

)
a(g) = a′(g), ∀g ∈ G

Proof. It is straightforward to check that the relations hold for x ∈ Φk(O9).
For u0 we have

(β̃ ◦ ρ̃)(u0) = β̃

(
u∗0

(
s(1)s(0)∗ +

∑
g∈G

a′(g)β̃′(t(1)
g−(0,1)

)
u0t

(0)
g

∗
))

= cu∗0

(
s(1)s(0)∗

+
∑
g∈G

ca′(g)a
(
g − (0, 1) + (1, 0)

)
a
(
g + (1, 0)

)
β̃′(t(1)

g−(0,1)+(1,0)
)
u0t

(0)
g+(1,0)

∗
)

and

(α̃(1,0) ◦ ρ̃ ◦ β̃)(u0)

= cχ′(−(1, 0)
)(

u∗0

(
s(1)s(0)∗ +

∑
g∈G

a′(g)β̃′(t(1)
g−(0,1)

)
u0t

(0)
g

∗
))

,

which are equal if the relation holds.
Next we have

(β̃ ◦ ρ̃)(v) = β̃
(
ξu∗0u

∗
1v

)
= ξ′c2c′u∗0u

∗
1v

and
(α̃(1,0) ◦ ρ̃ ◦ β̃)(v) = μ′((1, 0)

)
c′ξ′u∗0u

∗
1v,

which are equal if
μ′((1, 0)

)
= c2 = χ′((1, 0)

)
,

which is true.
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Theorem 4.2. The obstruction in H4(Z2×Z2,T) for the existence of Z2×Z2-
graded extensions of the Asaeda-Haagerup categories by mutually inequivalent
bimodule categories vanishes.

Proof. We can verify that the relation in Lemma 4.1 holds for c = e−
3πi
4 .

Then we can simultaneously extend β̃ and β̃′ to a factor closure, as in the
proof of Theorem 3.2. Since such an extension exists, the obstruction must
vanish.

Since the homotopy type of the Brauer-Picard 2-group is an invariant
of Morita equivalence, we get corresponding extensions of all the Asaeda-
Haagerup categories.

Corollary 4.1. For each of the Asaeda-Haagerup fusion catgeories, there
exist 8 different Z2×Z2-graded extensions of the Asaeda-Haagerup categories
by mutually inequivalent bimodule categories.

Proof. Since Inv(Z(C)) is trivial, so are Hn(Z2×Z2, InvZ(C)) for all n. Thus
there is no choice of quasi-tensor product. By Theorem 4.2, the obstructions
for extensions vanish. Therefore Theorem 2.1 and Theorem 2.2 show that the
set of extensions form a torsor over H3(Z2 × Z2,T) ∼= (Z2)3.

Note that unlike for AH4, the group Out(C) is trivial for C = AH1,2,3.
Therefore the corresponding extensions for those categories are not quasi-
trivial, but rather involve bimodule categories that are non-trivial even as
module categories (see [13] and the accompanying text files for a description of
these bimodule categories, including dimensions of simple objects and fusion
rules).

Conjecture 4.1. Similar Z2 × Z2-graded extensions exist for generalized
Asaeda-Haagerup categories (de-equivariantizations of generalized Haagerup
categories for the groups Z4m × Z2 with ε(0,1) trivial).

For specific values of m the conjecture can in theory be checked by a
similar calculation as above – namely, try to find extension data for p =
(1, 0), z = (0, 0) with trivial χ, μ, ξ; then for p = (0, 1), z = (0, 0); then check
the relation in Lemma 4.1. However, generalized Asaeda-Haagerup categories
are themselves not yet known to exist for m > 1.

4.3. The group Z2 × Z2

It was shown in [15] that there is a unique generalized Haagerup category C
for G = Z2 × Z2. This category is related to a conformal inclusion SU(5)5 ⊂
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Spin(24); see [19, 5]. It was shown in [8] that the Brauer-Picard group of this
category has order 360, and the group was identified as S3 × A5 in [5]. The
outer automorphism subgroup is A4.

We would like to classify the quasi-trivial graded-extensions of C, and in
particular find A4-extensions by the entire outer automorphism group. In this
subsection we first consider the Z2-extensions.

We will use the normalization

εg(h) =

⎛
⎜⎜⎜⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞
⎟⎟⎟⎠ ,

as in [15] (corresponding to s = −1 there). We label the elements of the
group by {0, p, q, r} (in that order with respect to the matrices of structure
constants). We consider extensions by an automorphism β which conjugates
ρ to αpρ.

Then Eq. (3.14) reduces to

χ(g) = εg(p),

so χ is given by the second column of the ε matrix, (1,−1, 1,−1), and then
ξ = ±i.

From Eq. (3.15) we have

a(p) = ξ̄, a(q)a(r) = a(p)μ(r)εp+z(r) = a(p)μ(q)εp+z(q)

By Theorem 3.3, without loss of generality we can assume

a = (1,−i, t, i)

for some
t = ±1 = −μ(q)εp+z(q) = −μ(r)εp+z(r).

Checking Eq. (3.17) with a computer (or by hand) gives t = 1. Then we have

μ(q) = εp+z(q) = χ(q)εp+z(q)εq(p) = χ(q)εz(q)

and similarly
μ(r) = χ(r)εz(r).
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Note that we also have

μ(0) = χ(0)εz(0), μ(p) = χ(p)εz(p)

by Eq. (3.11). So
μ = χεz.

Thus τ in Corollary 3.1 is trivial, and the number of extensions are de-
termined by whether εk(z)εz(k) can take −1 or not. We also have

ν2 = μ(p + z) = −εz(z).

It was shown in [15] that there is a Z3-action on C which fixes ρ and
cyclically permutes {αp, αq, αr}. Therefore, similar extensions exist for auto-
morphisms taking ρ to αqρ and αrρ.

Summarizing, we have:

Theorem 4.3. For each x ∈ {p, q, r} and y ∈ G, there is a Z2-extension
of C by an automorphism βx,y such that [βx,yρ] = [αxρβx,y] and [β2

x,y] =
[αx+y]. Such an extension is unique unless y = 0, and there exist exactly two
extensions for y = 0.

We defer the general case of quasi-trivial extensions of C by outer auto-
morphisms to a separate section, since the argument is long and involved.

5. Quasi-trivial extensions of the generalized Haagerup
category for Z2 × Z2

At the end of the previous section we classified quasi-trivial Z2-extensions of
the generalized Haagerup category for Z2×Z2. In this section we will consider
more generally extensions of this category by arbitrary subgroups of the outer
automorphism group A4.

Throughout this section, let C be the generalized Haagerup category for
Z2 × Z2, realized in standard form in End0(M). We label the group as G =
{0, p, q, r}, and use the same normalization of ε and A as in the previous
section.

5.1. Constraints for a Z2 × Z2-extension

We first consider Z2 × Z2-extensions.



2374 Pinhas Grossman et al.

Let us first assume that we have a Z2 × Z2-extension, also realized in
End0(M), generated by automorphisms βp and βq such that [βhρβ−1

h ] = [αhρ]
for each h ∈ {p, q}. Let βr = (βpβq)−1. Then we have

[
βrρβ

−1
r

]
=

[
β−1
q β−1

p ρβpβq
]

= [αrρ].

We will denote the corresponding unitaries and extension data using sub-
scripts, e.g. uh, vh, ξh, ah etc., for h ∈ {p, q, r}.

Then as we have seen, we can without loss of generality assume that

ap = (1,−i, 1, i)

and similarly
aq = (1, i,−i, 1).

Then we have
ar = (1, ts, ti,−si),

where t and s are signs.

Lemma 5.1. We have
ar = (1, 1, i,−i).

Also,
βp(uq)up = β−1

r

(
u∗r

)
,

and similarly for cyclic permutations of (p, q, r).

Proof. We have

Ad
(
β−1
r

(
u∗r

))
◦ αrρ = β−1

r ρβr = βpβqρβ
−1
q β−1

p

= βp ◦ Ad(uq) ◦ αqρβ
−1
p = Ad

(
βp(uq)αq(up)

)
◦ αp+qρ

= Ad
(
βp(uq)up

)
◦ αrρ,

which implies that
βp(uq)up = bpβ

−1
r

(
u∗r

)
for some unitary scalar bp.

Consider the action of ρ on this identity. We have

bp = β−1
r (ur)βp(uq)up = ρ

(
β−1
r (ur)βp(uq)up

)
=

(
β−1
r βrρβ

−1
r

)
(ur)u∗pαp

(
βp

(
ρ(uq)

))
upρ(up)



Graded extensions of generalized Haagerup categories 2375

= εp(q)β−1
r

(
urαrρ(ur)u∗r

)
u∗pβp

(
u∗q

)
βp

(
uqρ(uq)

)
upρ(up)

= εp(q)εr(r)bpβ−1
r

(
urρ(ur)u∗r

)
β−1
r (ur)βp

(
uqρ(uq)

)
upρ(up)

= bpβ
−1
r

(
urρ(ur)

)
βp

(
uqρ(uq)

)
upρ(up).

So we have:

b2p = β−1
r

(
urρ(ur)

)
βp

(
uqρ(uq)

)
upρ(up)

= βpβq

(
βr(s)s∗ +

∑
g∈G

ar(g)βr(tg−r)urt∗g
)

· βp
(
βq(s)s∗ +

∑
h∈G

aq(h)βq(th−q)uqt∗h
)

·
(
βp(s)s∗ +

∑
k∈G

ap(k)βp(tk−p)upt∗k
)

= (βpβqβr)(s)s∗

+
∑
g∈G

ap(g)aq(g − p)ar(g − p− q)(βpβqβr)(tg−p−q−r)
(
βpβq(ur)

)
βp(uq)upt∗g

= ss∗ +
∑
g∈G

ap(g)aq(g − p)ar(g − r)bptgt∗g.

So we get
b2p = ap(g)aq(g − p)ar(g − r)bp = 1, ∀g ∈ G,

which implies that bp = 1 and s = t = 1, so that ar = (1, 1, i,−i).
This calculation is invariant under cyclic permutations of (p, q, r).

We record for later use the relation among ap, aq, ar that we found in the
proof of Lemma 5.1, which can be verified directly:

(5.1) ap(g)aq(g − p)ar(g − r) = 1, ∀g ∈ G.

As we have seen previously, each of the Z2-graded extensions can be re-
constructed from a Cuntz algebra and three unitaries corresponding to uh,
vh, and βh(uh). For our Z2 × Z2-graded extension, we also have to consider
the images under the various βk of each uh and vh.

A priori, there are 21 unitaries to consider:
{
βk(uh)

}
h∈{p,q,r}, k∈Z2×Z2

∪
{
βk(vh)

}
h∈{p,q,r}, k∈Z2×Z2\{h}
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(where we let β0 = id; note that we have βh(vh) = νhvh). We can then use
the relations

βpβqβr = id and β2
h = Ad(vh) ◦ αh+zh

to express β(w) as a word in these unitaries and their adjoints for any w on
this list. Similarly, we can use the relation

ρ ◦ βh = Ad
(
u∗h

)
◦ βh ◦ ρ ◦ αh

to simplify ρ(w). Thus, the C∗-algebra generated by the Cuntz algebra gen-
erators and these unitaries is invariant under the αg, βh, and ρ.

We first show that 6 of these 21 unitaries can be written in terms of the
other 15.

Lemma 5.2. We have:

1. βp(uq) = −εzr(r)v∗rβr(ur)∗vru∗p
2. βp(vq) = νqμq(r + zr)v∗rβr(vq)vr

and similarly for other cyclic permutations of (p, q, r)

Proof. 1. We have

βp(uq) = β−1
r

(
u∗r

)
u∗p = β−2

r

(
βr

(
u∗r

))
u∗p

=
(
Ad(vr) ◦ αr+zr

)−1(
βr

(
u∗r

))
u∗p = χr(r + zr)v∗r

(
βr

(
u∗r

))
vru

∗
p,

and
χr(r + zr) = εr+zr(r) = εr(r)εzr(r) = −εzr(r).

2. We have

βp(vq) = νqβpβq(vq) = νqβ
−1
r (vq) = νβ−2

r

(
βr(vq)

)
= ν

(
Ad(vr) ◦ αr+zr

)−1(
βr(vq)

)
= νqμq(r + zr)v∗rβr(vq)vr.

In light of Lemma 5.2, we only need to consider the 15 unitaries of the
form uh, βh(uh), βh′(uh), vh, and βh′(vh), where h′ is the successor of h in the
cyclic ordering (p, q, r). We introduce the notation

u
(j)
i = βj(ui), i, j ∈ {p, q, r}.

We now derive two further relations among these 15 unitaries.
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The first one comes from the fact that

Ad
(
v(q)
p

)
= Ad

(
βq(vp)

)
= βq ◦ Ad(vp) ◦ β−1

q

= βq
(
αp+zpβ

2
p

)
β−1
q = αp+zpβqβ

2
pβ

−1
q .

Lemma 5.3. The unitary vpv
(q)
p vqv

(r)
q vrv

(p)
r is a scalar.

Proof. It suffices to show that Ad(vpv(q)
p vqv

(r)
q vrv

(p)
r ) is the identity. By the

previous remark, we have

Ad
(
vpv

(q)
p

)
=

(
αp+zpβ

2
p

)
αp+zpβqβ

2
pβ

−1
q = β2

pβqβ
2
pβ

−1
q ,

with similar formulas for Ad(vqv(r)
q ) and Ad(vrv(p)

r ), so we have

Ad
(
vpv

(q)
p vqv

(r)
q vrv

(p)
r

)
=

(
β2
pβqβ

2
pβ

−1
q

)(
β2
qβrβ

2
qβ

−1
r

)(
β2
rβpβ

2
rβ

−1
p

)
= β2

pβqβ
2
pβqβrβ

2
qβrβpβ

2
rβ

−1
p = β2

pβqβpβqβ
2
rβ

−1
p = β2

pβqβrβ
−1
p = βpβ

−1
p = id,

where we have used the relation βp = (βqβr)−1 four times.

By renormalizing vp if necessary, we may and will assume that

(5.2) vpv
(q)
p vqv

(r)
q vrv

(p)
r = 1.

Lemma 5.4. We have

(5.3) u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r = −εzp(p)εzq(q)εzr(r).

Proof. First note that the relation β2
h = Ad(vh) ◦ αh+zh can be rewritten as

β−1
h =

(
Ad(vh) ◦ αh+zh

)−1
βh.

We then have

u(p)
r = βp(ur) = (βqβr)−1(ur) = β−1

r

(
β−1
q (ur)

)
=

((
Ad(vr) ◦ αr+zr

)−1
βr

)(((
Ad(vq) ◦ αq+zq

)−1
βq

)
(ur)

)
= χr(q + zq + r + zr)

(
Ad

(
v∗rv

(r)∗
q

)
◦ βrβq

)
(ur)

= εq+zq+r+zr(r)
(
Ad

(
v∗rv

(r)∗
q

)
◦ βr

)(
−εzp(p)v∗pu(p)∗

p vpu
∗
q

)
= −εzp(p)εzr+zq(r)Ad

(
v∗rv

(r)∗
q

)(
βr(vp)∗β−1

q (up)∗βr(vp)βr(uq)∗
)

= −εzp(p)εzr+zq(r)Ad
(
v∗rv

(r)∗
q

)((
νpμp(q + zq)v∗qβq(vp)∗vq

)
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·
((

Ad
(
v∗q

)
◦ αq+zqβq

)
(up)∗

)(
νpμp(q + zq)v∗qβq(vp)vq

)
βr(uq)∗

)
= −εzp(p)εzr+zq(r)χp(q + zq)Ad

(
v∗rv

(r)∗
q

)(
v∗qβq(vp)∗βq(up)∗βq(vp)vqβr(uq)∗

)
= −εzp+zq(p)εzr+zq(r)v∗rv(r)∗

q v∗qβq(vp)∗βq(up)∗βq(vp)vqβr(uq)∗v(r)
q vr

= −εzp(p)εzq(q)εzr(r)v(p)
r vpu

(q)∗
p v(q)

p vqu
(r)∗
q v(r)

q vr.

Rearranging gives the condition.

We next apply ρ and βh to the conditions in Lemmas 5.3 and 5.4 to see if
any further constraints arise. It turns out only applying βh to the condition
in Lemma 5.3 gives an additional constraint.

Lemma 5.5. We have

1 = εzp+zq+zr(zp)εzp(zp + zq + zr)
= εzp+zq+zr(zq)εzq(zp + zq + zr) = εzp+zq+zr(zr)εzr(zp + zq + zr)

Proof. We have

1 = βp(1) = βp
(
vpv

(q)
p vqv

(r)
q vrv

(p)
r

)
= νpvpβ

−1
r (vp)βp(vq)(βpβr)(vq)βp(vr)

(
Ad(vp) ◦ αp+zp

)
(vr)

= νpμr(p + zp)vp
(
v∗r (αr+zrβr)(vp)vr

)(
νqμq(r + zr)v∗rβr(vq)vr

)
· (βpβr)(vq)βp(vr)vpvrv∗p

= νpνqμr(p + zp)μp(r + zr)μq(r + zr)vpv∗rβr(vp)v(r)
q vr(βpβr)(vq)v(p)

r vpvrv
∗
p

= νpνqμr(p + zp)μp(r + zr)μq(r + zr)vpv∗r
(
νpμp(q + zq)v∗qβq(vp)vq

)
v(r)
q vr

·
(
Ad

(
v(p)
r vp

)
αq+zr+zpβq

)
(vq)v(p)

r vpvrv
∗
p

= μr(p + zp)μp(p + zr + zq)μq(r + zp + zq)
· vpv∗rv∗qv(q)

p vqv
(r)
q vrv

(p)
r vpv

∗
qvqvqv

∗
pv

(p)∗
r v(p)

r vpvrv
∗
p

= μr(p + zp)μp(p + zr + zq)μq(p + zp).

Using the relation

μh(g) = χh(g)εzh(g) = εg(h)εzh(g),

we have

1 = μr(p + zp)μp(p + zr + zq)μq(p + zp)
= εp+zr+zq(p)εp+zp(q)εp+zp(r)εzp(p + zr + zq)εzq(p + zp)εzr(p + zp)



Graded extensions of generalized Haagerup categories 2379

= εzp(zq + zr)εzq+zr(zp) = εzp(zp + zq + zr)εzp+zq+zr(zp).

Similarly, we can replace p with q or r.

Corollary 5.1. One of the following occurs:

1. zp + zq + zr = 0
2. Two of zp, zq, zr are 0
3. zp = zq = zr

Proof. Suppose zp + zq + zr �= 0. Then

εg(zp + zq + zr)εzp+zq+zr(g) = 1

holds for g = 0 or g = zp + zq + zr. Suppose, e.g. zp and zq are both nonzero.
Then we must have

zp = zq = zp + zq + zr = zr.

Remark. Conversely, the relations in Lemma 5.5 follow from any of the
conditions in Corollary 5.1.

Finally, we record the formulas for βr and ρ applied to u
(q)
p and v

(q)
p , which

will be needed for reconstruction.

Lemma 5.6. We have

1. βr(u(q)
p ) = χp(p + zr + zq)v(r)

q vru
(p)
p v∗rv

(r)∗
q

2. βr(v(q)
p ) = νpμp(p + zp + zq)v(r)

q vrvpv
∗
rv

(r)∗
q

3. ρ(u(q)
p ) = χp(q)u∗qu

(q)∗
p v

(q)
p vq[βr(s)v∗qv

(q)∗
p βq(s)∗ +

∑
g∈G εr+zp+zq(g−p)×

ap(g)βr(tg−p)v∗qv
(q)∗
p u

(q)
p βq(tg)∗]uq

4. ρ(v(q)
p ) = −εzq(q)μp(q)χp(r + zp + zq)ξpu∗qu

(q)∗
p v

(q)
p vqurv

∗
qu

(q)
q uq

Proof. We have already seen similar calculations for β in previous proofs.
For ρ, we have

ρ
(
u(q)
p

)
= ρ

(
βq(up)

)
= u∗q(αqβqρ)(up)uq

= χp(q)u∗qβq
(
u∗pβp(s)s∗ +

∑
g∈G

ap(g)u∗pβp(tg−p)upt∗g
)
uq

= χp(q)
[
u∗qu

(q)∗
p v(q)

p vqβr(s)v∗qv(q)∗
p βq(s)∗uq

+
∑
g∈G

εr+zp+zq(g − p)u∗qu(q)∗
p v(q)

p vqβr(tg−p)v∗qv(q)∗
p u(q)

p βq(tg)∗uq
]
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and

ρ(v(q)
p = ρ

(
βq(vp)

)
= u∗q(αqβqρ)(vp)uq

= μp(q)ξpu∗qβq
(
u∗pβp

(
u∗p

)
vp
)
uq

= μp(q)χp(r + zp + zq)ξpu∗qu(q)∗
p v(q)

p vqu
(q)∗
p v∗qv

(q)∗
p v(q)

p uq

= μp(q)χp(r + zp + zq)ξpu∗qu(q)∗
p v(q)

p vqβr(up)∗v∗quq
= −εzq(q)μp(q)χp(r + zp + zq)ξpu∗qu(q)∗

p v(q)
p vqurv

∗
qβq(uq)vqv∗quq

= −εzq(q)μp(q)χp(r + zp + zq)ξpu∗qu(q)∗
p v(q)

p vqurv
∗
qu

(q)
q uq.

5.2. Reconstruction

We now describe how to reconstruct Z2 × Z2-graded extensions of the Z2 ×
Z2 generalized Haagerup category, following the calculations of the previous
section.

We start with the Cuntz algebra O5, together with the endomorphism ρ
and G = Z2 × Z2 action α.

Let zp, zq, zr ∈ Z2×Z2 satisfying the conditions of Corollary 5.1 be given.
Let ap = (1,−i, 1, i), aq = (1, i,−i, 1), and ar = (1, 1, i,−i). Let ξh = i,

χh(g) = εg(h), μh(g) = εg(h)εzh(g),

for h ∈ {p, q, r}.
Let νh ∈ {±i} for h = 0 and νh ∈ {±1} for h ∈ {p, q, r} be given for each

h ∈ {p, q, r}.
For h ∈ {p, q, r}, we will denote by h′ its successor in the cylic ordering

(p, q, r), and by h′′ the third element.
Let U = O5 ∗ O5 ∗ O5 ∗ O5 ∗ C∗(F13), which is the universal C∗-algebra

generated by four copies of O5 and fifteen unitaries uh = u
(0)
h , u

(h)
h , u

(h′)
h ,

vh = v
(0)
h , v

(h′)
h , for h ∈ {p, q, r}; subject to the relations

(5.4) vpv
(q)
p vqv

(r)
q vrv

(p)
r = 1

and

(5.5) u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r = −εzp(p)εzq(q)εzr(r)

(recall that these relations come from Lemmas 5.3 and 5.4).
We label the four copies of O5 by Z2×Z2, and denote by Φh the inclusion

map of O5 into U corresponding to h ∈ {0, p, q, r}.
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Then we define α̃g on U by

α̃g

(
Φh(x)

)
= Φh

(
αg(x)

)
, x ∈ O5

α̃g

(
u

(k)
h

)
= χh(g)u(k)

h , α̃g

(
v

(k)
h

)
= μh(g)v(k)

h ,

and define ρ̃ by

ρ̃
(
Φh(x)

)
= u∗hΦh

(
ραh(x)

)
uh, (where we let u0 = 1)

ρ̃(uh) = u∗h

(
s(h)s(0)∗ +

∑
g∈G

ah(g)t(h)
g+huht

(0)
g

∗
)
,

ρ̃
(
u

(h)
h

)
=χh(h)u∗hu

(h)∗
h vh

(
s(0)v∗hs

(h)∗+
∑
g∈G

ah(g)εh+zh(g+h)t(0)
g+hv

∗
hu

(h)
h t(h)

g
∗
)
uh,

ρ
(
u

(h′)
h

)
= χh

(
h′)u∗h′u

(h′)∗
h v

(h′)
h vh′

[
s(h′′)v∗h′v

(h′)∗
h s(h′)∗

+
∑
g∈G

εh′′+zh+zh′ (g + h)th′′
g+hv

∗
h′v

(h′)∗
h u

(h′)
h t(h

′)∗
g

]
uh′ ,

ρ̃(vh) = ξhu
∗
hu

(h)∗
h vh,

ρ
(
v

(h′)
h

)
= −εzh′

(
h′)μh

(
h′)χh

(
h′′ + zh + zh′

)
ξhu

∗
h′u

(h′)∗
h v

(h′)
h vh′uh′′v∗h′u

(h′)
h′ uh′ .

Remark. The formulas for ρ̃ come from the formulas for Z2-extensions in the
previous chapter, together with the calculations in Lemma 5.6 for the unitaries
u

(h′)
h and v

(h′)
h . Note that χh(h) = εh(h) = −1 and χh(h′) = εh′(h) = 1 can

be used to simplify the formulas for ρ̃(u(h)
h ) and ρ̃(u(h′)

h ). Similarly, the scalar
cofficients in the formulas for ρ̃(vh) and ρ̃(v(h′)

h ) can be simplified to i and
iεzh+zh′ (h

′′), respectively.

Lemma 5.7. 1. The formulas above define a G-action α̃ and an endo-
morphism ρ̃ on U .

2. We have α̃g ◦ ρ̃ = ρ̃ ◦ α̃g.

Proof. To show that the formulas give well-defined maps, we need to check
that α̃g and ρ̃ preserves the relations (5.4) and (5.5).

Applying α̃g to vpv
(q)
p vqv

(r)
q vrv

(p)
r multiplies it by the scalar

μp(g)2μq(g)2μr(g)2 = 1,

and applying α̃g to u
(p)
r v∗rv

(r)∗
q u

(r)
q v∗qv

(q)∗
p u

(q)
p v∗pv

(p)∗
r multiplies it by the scalar

χp(g)μp(g)2χq(g)μq(g)2χr(g)μr(g)2u(p)
r
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= χp(g)χq(g)χr(g) = εg(p + q + r) = εg(0) = 1.

For ρ̃, we have

ρ̃
(
vpv

(q)
p vqv

(r)
q vrv

(p)
r

)
=

(
ξpu

∗
pu

(p)∗
p vp

)(
−εzq(q)μp(q)χp(r + zp + zq)ξpu∗qu(q)∗

p v(q)
p vqurv

∗
qu

(q)
q uq

)
·
(
ξqu

∗
qu

(q)∗
q vq

)(
−εzr(r)μq(r)χq(p + zq + zr)ξqu∗ru(r)∗

q v(r)
q vrupv

∗
ru

(r)
r ur

)
·
(
ξru

∗
ru

(r)∗
r vr

)(
−εzp(p)μr(p)χr(q + zr + zp)ξru∗pu(p)∗

r v(p)
r vpuqv

∗
pu

(p)
p up

)
The scalar coefficient is

−(ξpξqξr)2εzp(p)εzq(q)εzr(r)εq(p)εzp(q)εr(q)εzq(r)εp(r)εzr(p)
· εr+zp+zq(p)εp+zr+zq(q)εq+zr+zp(r)

= −εzp(p)εzq(q)εzr(r)

and the product of unitaries, after cancelling inverses, is

u∗pu
(p)∗
p vpu

∗
qu

(q)∗
p

(
v(q)
p vqu

(r)∗
q v(r)

q vru
(p)∗
r v(p)

r vp
)
uqv

∗
pu

(p)
p up

= −εzp(p)εzq(q)εzr(r)
(
u∗pu

(p)∗
p vpu

∗
q

)(
uqv

∗
pu

(p)
p up

)
= −εzp(p)εzq(q)εzr(r),

where we have used relation (5.5) (after taken the adjoint and a cyclic re-
ordering). Thus

ρ̃
(
vpv

(q)
p vqv

(r)
q vrv

(p)
r

)
= 1,

and ρ̃ preserves relation (5.4).
Next, we have

ρ̃
(
u

(h′)
h v∗hv

h)∗
h′′

)
= χh

(
h′)[u∗h′u

(h′)∗
h v

(h′)
h vh′s(h′′)v∗h′v

(h′)∗
h s(h′)∗uh′

+
∑
g∈G

εh′′+zh+zh′ (g + h)u∗h′u
(h′)∗
h v

(h′)
h vh′th

′′
g+hv

∗
h′v

(h′)∗
h u

(h′)
h t(h

′)∗
g uh′

]
(
ξhv

∗
hu

(h)
h uh

)(
−εzh(h)μh′′(h)χh′′

(
h′ + zh + zh′′

)
ξh′′u∗hu

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ u

(h)
h′′ uh

)
= −εzh+zh′′

(
h′)u∗h′u

(h′)∗
h v

(h′)
h vh′

[
s(h′′)v∗h′v

(h′)∗
h s(h′)∗

+
∑
g∈G

εh′′+zh+zh′ (g + h)th′′
g+hv

∗
h′v

(h′)∗
h u

(h′)
h t(h

′)∗
g

]
v∗hv

(h)∗
h′′ u

(h)
h′′ uh.
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So then

ρ̃
(
u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r

)
=

(
−εzr+zq(p)u∗pu(p)∗

r v(p)
r vp

[
s(q)v∗pv

(p)∗
r s(p)∗

+
∑
g∈G

εq+zr+zp(g + r)ar(g)tqg+rv
∗
pv

(p)∗
r u(p)

r t(p)∗g

]
v∗rv

(r)∗
q u(r)

q ur

)

·
(
−εzq+zp(r)u∗ru(r)∗

q v(r)
q vr

[
s(p)v∗rv

(r)∗
q s(r)∗

+
∑
g∈G

εp+zq+zr(g + q)aq(g)tpg+qv
∗
rv

(r)∗
q u(r)

q t(r)∗g

]
v∗qv

(q)∗
p u(q)

p uq

)

·
(
−εzp+zr(q)u∗qu(q)∗

p v(q)
p vq

[
s(r)v∗qv

(q)∗
p s(q)∗

+
∑
g∈G

εr+zp+zq(g + p)ap(g)trg+pv
∗
qv

(q)∗
p u(q)

p t(q)∗g

]
v∗pv

(p)∗
q u(p)

r up

)

= −εzp(p)εzq(q)εzr(r)u∗pu(p)∗
r v(p)

r vp[
s(q)v∗pv

(p)∗
r v∗rv

(r)∗
q v∗qv

(q)∗
p s(q)∗

+
∑
g∈G

εp+zq+zr(g)εr+zp+zq(g + q)εq+zr+zp(g + r)ar(g)aq(g + q)ap(g + r)

t
(q)
g+rv

∗
pv

(p)∗
r u(p)

r v∗rv
(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p t
(q)∗
g+r

]
v∗pv

(p)∗
q u(p)

r up

= −εzp(p)εzq(q)εzr(r)u∗pu(p)∗
r v(p)

r vp

[
s(q)s(q)∗

+
∑
g∈G

−εzp(p)εzq(q)εzr(r)εp+zq+zr(g)εr+zp+zq(g + q)εq+zr+zp(g + r)

· ar(g)aq(g + q)ap(g + r)t(q)g+rt
(q)∗
g+r

]
v∗pv

(p)∗
q u(p)

r up,

where we have used relations (5.4) and (5.5) in the last step.
Finally, we have

−εzp(p)εzq(q)εzr(r)εp+zq+zr(g)εr+zp+zq(g + q)εq+zr+zp(g + r)
· ar(g)aq(g + q)ap(g + r)

= ar(g)aq(g + q)ap(g + r) = 1,
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(using relation (5.1)), so we get

ρ̃
(
u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r

)
= −εzp(p)εzq(q)εzr(r)

[
s(q)s(q)∗ +

∑
g∈G

t
(q)
g+rt

(q)∗
g+r

]

= −εzp(p)εzq(q)εzr(r),

and ρ̃ preserves relation (5.5).
It is then clear that α̃ is a G-action and ρ̃ is an endomorphism of U .
To check that ρ̃ ◦ α̃g = α̃g ◦ ρ̃, it suffices to check the relations

α̃g

(
ρ̃
(
u

(h′)
h

))
= ρ̃(α̃g)

(
u

(h′)
h

)
) = χh(g)ρ̃

(
u

(h′)
h

)
= εg(h)ρ̃

(
u

(h′)
h

)
and

α̃g(ρ̃)
(
v

(h′)
h

)
) = ρ̃(α̃g)

(
v

(h′)
h

)
) = μh(g)ρ̃

(
v

(h′)
h

)
= εg(h)εzh(g)ρ̃

(
v

(h′)
h

)
which can be easily verified from the formulas for ρ̃(u(h′)

h ) and ρ̃(v(h′)
h ).

Next we define automorphisms β̃h for h ∈ {p, q, r} by the formulas

β̃h
(
Φk(x)

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φh(x) k = 0
vhΦ0(αh+zh(x))v∗h k = h

v∗h′′Φh′′(αh′′+zh′′ (x))vh′′ k = h′

v
(h)
h′′ vhΦh′(αh′+zh+zh′′ (x))v∗hv

(h)∗
h′′ k = h′′

β̃h(uh) = u
(h)
h , β̃h

(
u

(h)
h

)
= χh(h + zh)vhuhv∗h

β̃h
(
u

(h′)
h

)
= −εzh′

(
h′)χh

(
h′′ + zh′′

)
v∗h′′v∗h′u

(h′)∗
h′ vh′u∗h′′vh′′

β̃h(uh′) = −εzh′′
(
h′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗h, β̃h

(
u

(h′)
h′

)
= χ′

h

(
h′′ + zh′′

)
v∗h′′uh

′′
h′ vh′′

β̃h
(
u

(h′′)
h′

)
= χh′

(
h′ + zh + zh′′

)
v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′ )

β̃h(uh′′) = u
(h)
h′′ , β̃h

(
u

(h′′)
h′′

)
= −εzh(h)χh′′

(
h′ + zh + zh′′

)
v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

β̃h
(
u

(h)
h′′

)
= χh′′(h + zh)vhuh′′v∗h

β̃h(vh) = νhvh, β̃h
(
v

(h′)
h

)
= νpμp(h + zh′ + zh′′)v∗h′′v∗h′v

(h′)
h vh′vh′′

β̃h(vh′) = νh′μh′
(
h′′ + zh′′

)
v∗h′′v

(h′′)
h′ vh′′

β̃h
(
v

(h′′)
h′

)
= νh′μh′

(
h′ + zh + zh′′

)
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

β̃h(vh′′) = v
(h)
h′′ , β̃h

(
v

(h)
h′′

)
= μh′′(h + zh)vhvh′′v∗h.
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Once again, the formulas here come from the calculations in the previous
subsection, and some of the scalar coefficients can be simplified by calculating
χ and μ in terms of ε.

Lemma 5.8. The formulas above define automorphisms β̃h on U such that:

1. β̃h ◦ α̃g = α̃g ◦ β̃h
2. β̃2

h = Ad(vh) ◦ αh+z+h

3. β̃h ◦ ρ̃ = Ad(uh) ◦ α̃h ◦ ρ̃ ◦ β̃h.
The proof of Lemma 5.8 is straightforward but tedious, so we defer it to

an appendix.

Lemma 5.9. We have ρ̃2(x) = sxs∗ +
∑
g∈G

tg(αgρ)(x)t∗g for all x ∈ U .

Proof. It suffices to check the relation for x = u
(h′)
h and x = v

(h′)
h . We have

ρ̃2(u(h′)
h

)
= ρ̃2β̃h′(uh) = ρ̃Ad

(
u∗h′

)
α̃h′ β̃h′ ρ̃(uh) = Ad

(
ρ̃(uh′)∗u∗h′

)
β̃h′ ρ̃2(u)

= Ad
(
ρ̃(uh′)∗u∗h′

)
β̃h′

(
suhs

∗ +
∑
g∈G

tg(αgρ)(uh)t∗g
)

= Ad
(
ρ̃(uh′)∗u∗h′

)(
s(h′)u

(h′)
h s(h′)∗ +

∑
g∈G

χh

(
h′)t(h′)

g uh′(αgρ)
(
u

(h′)
h

)
u∗h′t(h

′)∗
g

)

=
(
s(h′)s(0)∗ +

∑
g∈G

ah′(g)t(h
′)

g+h′uh′t(0)
g

∗
)∗

·
(
s(h′)u

(h′)
h s(h′)∗ +

∑
g∈G

χh

(
h′)t(h′)

g uh′(αgρ)
(
u

(h′)
h

)
u∗h′t(h

′)∗
g

)

·
(
s(h′)s(0)∗ +

∑
g∈G

ah′(g)t(h
′)

g+h′uh′t(0)
g

∗
)

= s(0)u
(h′)
h s(0)∗ +

∑
g∈G

χh

(
h′)t(0)

g αg+h′ρ
(
u

(h′)
h

)
t(0)∗
g

= s(0)u
(h′)
h s(0)∗ +

∑
g∈G

t(0)
g αgρ

(
u

(h′)
h

)
t(0)∗
g

and a similar calculation applies to v
(h′)
h .

Theorem 5.1. For any choice of zp, zq, zr satisfying one of the conditions
of Corollary 5.1, and any choice of νh ∈ {±i} for zh = 0 and νh ∈ {±1} for
zh ∈ {p, q, r}, there exists a corresponding extension of the Z2×Z2 generalized
Haagerup category C by the Z2×Z2 subgroup of the outer automorphism group.
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We can count the number of distinct Z2 × Z2-extensions given by the
above construction as follows. There are 28 triples (zp, zq, zr) which satisfy
one of the conditions of Corollary 5.1.

1. For (0, 0, 0), there exist exactly 8 extensions.
2. For each of (x, 0, 0), (0, x, 0), (0, 0, x), x ∈ {p, q, r}, there exist exactly

4 extensions.
3. For each of (x, x, 0), (x, 0, x), (0, x, x), x ∈ {p, q, r}, there exist exactly

2 extensions.
4. For each of (x, x, x), x ∈ {p, q, r}, there exist exactly 2 extensions.
5. For each of (p, q, r), (q, r, p), (r, p, q), (p, r, q), (r, q, p), (q, p, r), there

exists a unique extension.

The fourth and fifth cases are a little subtle, and we discuss them now.
Assume (zp, zq, zr) = (p, p, p). Then we may assume νp = νq = 1. The

only remaining freedom for perturbing βp and βq keeping this condition is to
replace βp and βq with αx ◦ βp and αy ◦ βq with x, y ∈ {0, p}, up to inner
automorphisms. This amounts to replacing βr with αx+y ◦βr, and multiplying
νr by

εx+y(zr)εzr(x + y) = εx+y(p)εp(x + y),

which is always 1 in any combination of x and y. Thus the two extensions for
νr = 1 and νr = −1 are inequivalent.

In the fifth case, a similar computation shows that the two extensions for
νr = 1 and νr = −1 are equivalent.

Corollary 5.2. There exist exactly 74 different Z2 × Z2-graded extensions,
up to equivalence.

We can interpret our classification result in terms of Theorem 2.1 and
Theorem 2.2 as follows.

First we show that the freedom for νh corresponds to H3(Z2 × Z2,T) ∼=
Z

3
2, with which we identify {1,−1}3. Assume a Z2 × Z2-graded extension

(αg, ρ, βh) is realized in End0(M). We choose another factor N and an outer
Z2×Z2-kernel σ : Z2×Z2 → Aut(N), which is a map inducing an embedding
of Z2 × Z2 into Out(N). We may assume σr = (σp ◦ σq)−1. Then there exist
unitaries wh ∈ U(N) for h = p, q, r satisfying σ2

h = Ad(wh), and there exists
δh ∈ {1,−1} satisfying σh(wh) = δhwh. The triple (δp, δq, δr) ∈ {1,−1}3 is
identified with the obstruction of σ in H3(Z2 × Z2,T). Now can get a new
extension (αg ⊗ id, ρ ⊗ id, βh ⊗ σh) realized in End0(M ⊗N), which has the
same (zp, zq, zr) as before while νh is replaced by δhνh. This means that the
freedom of νh corresponds to the H3(Z2 × Z2,T)-torsor structure.
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Now the only remaining freedom is (zp, zq, zr), which should correspond
to an element in

H2(Z2 × Z2, Inv
(
Z(C)

)
= H2(Z2 × Z2, G) = G3.

This means that out of 64 possibilities for M , only 28 have trivial obstruction
O4(c,M) ∈ H4(Z2 × Z2,T).

Finally, we have

H1(Z2 × Z2, Inv
(
Z(C)

)
= H1(Z2 × Z2, G) = Hom(Z2 × Z2, G) = G2.

Since the effect of p1
(c,M) : H1(Z2 × Z2, Inv(Z(C)) → H3(Z2 × Z2,T) should

correspond to the freedom of replacing (βp, βq, βr) by

(αx ◦ βp, αy ◦ βq, αx+y ◦ βr)

up to inner perturbation, we should have

p1
(c,M)(x, y) =

(
εzp(x)εx(zp), εzq(y)εy(zq), εzr(x + y)εx+y(zr)

)
.

5.3. A4-extensions

We will now consider extensions by the entire outer automorphism group
A4 = (Z2 × Z2) � Z3.

Let θ be the automorphism of G defined by θ(h) = h′. It was shown in
[15] that since the structure constants A and ε are invariant under θ, the
automorphism γ0 of O5 defined by

γ0(s) = s, γ0(tg) = tθ(g)

(and as usual extended to the closure) satisfies

γ0 ◦ αg = αθ(g) ◦ γ0, γ0 ◦ ρ = ρ ◦ γ0.

Let H = 〈γ0〉 ∼= Z3. Then we have

Hn(H, Inv
(
Z(C)

))
= {0}, ∀n ≥ 1,

H4(H,T) = {0},
H3(H,T) = Z3.

Thus Theorem 2.1 and Theorem 2.2 show that there exist exactly three H-
extensions of C.



2388 Pinhas Grossman et al.

One of the three H-extensions is generated by γ0, and the other two can be
obtained by modifying the associator of the VecZ3 subcategory generated by
γ0 by an element of H3(Z3,T), as in the argument at the end of the previous
subsection. (We will refer to this construction as changing the associator
of γ0).

Remark. The same argument works for other order 3 subgroups of Out(C)
too.

We would like to extend γ0 to U . Suppose that θ(zh) = zθ(h) for h ∈
{p, q, r}. Define γ̃0 by

γ̃0
(
Φh(x)

)
= Φθ(h)

(
γ0(x)

)
γ̃0

(
u

(k)
h

)
= u

(θ(k))
θ(h) , γ̃0

(
v

(k)
h

)
= v

(θ(k))
θ(h) .

Lemma 5.10. The above formulas define an automorphism of U , and we
have

1. γ̃0
3 = id

2. γ̃0 ◦ α̃g = α̃θ(g) ◦ γ̃0
3. γ̃0 ◦ ρ̃ = ρ̃ ◦ γ̃0
4. If νp = νq = νr, then γ̃0 ◦ β̃h = β̃θ(h) ◦ γ̃0

Proof. First note that, using the fact that zθ(h) = θ(zh), we can see that γ̃0
preserves the relations (5.4) and (5.5), and is therefore well-defined. It is then
clear that γ̃0 is an automorphism of order 3.

Then the relations (2)–(4) follow from the invariance of the structure
constants under θ.

Since εg(h) = εθ(g)(θ(h)) (and therefore also χg(h) = χθ(g)(θ(h)) and
μg(h) = μθ(g)(θ(h)), again using the fact that zθ(h) = θ(zh)), we can check
that γ̃0 ◦ α̃g = α̃θ(g) ◦ γ̃0.

Similarly, since ξh = i, ∀h ∈ {p, q, r} and ah(g) = aθ(h)(θ(g)), we can
check that γ̃0 ◦ ρ̃ = ρ̃ ◦ γ̃0.

And since νh is the same for all h, we can check that γ̃0◦β̃h = β̃θ(h)◦γ̃0.

Again by changing the associator of γ0, we get triple the number of ex-
tensions.

Theorem 5.2. There exist exactly 15 quasi-trivial extensions of C by the en-
tire outer automorphism subgroup of the Brauer-Picard group. More precisely,

1. For each of the 2 cases zp = zq = zr = 0 and νp = νq = νr = ±i,
there are exactly 3 extensions distinguished by the associators of the
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invertible objects in the θ-homogeneous part. These 6 extensions form
a torsor over H3(A4,T).

2. For each of the 3 cases (zp, zq, zr) = (x, x′, x′′), x ∈ {p, q, r}, and νp =
νq = νr = 1, there exist exactly three extensions distinguished by the
associators of the invertible objects in the θ-homogeneous part.

Proof. Let (α, ρ, βp, βq, βr, γ) be a A4-extension of C realized in End0(M),
where (α, ρ, βp, βq, βr) is a Z2 × Z2-extension as in the previous subsection,
and γ is an invertible object in the θ-homogeneous part. Then γ3 ∈ C, and
there exists g ∈ G satisfying [γ3] = [αg]. Since [γ3] commutes with [γ], we get
[γ3] = [id]. Since

[αgγ] = [αg′+g′′γ] =
[
αg′γα

−1
g′

]
,

the associator of γ does not depend on the choice of the invertible object γ in
the θ-homogeneous part. Thus the associator of γ is a well-defined invariant
of the extension.

Since A4 is a semi-direct product G � H, and |G| = |Inv(Z(C))| =
4, |H| = 3, we have Hp(H,Hq(G,T)) = 0 for all p ≥ 1, q ≥ 1, and
H1(H, Inv(Z(C))H) = 0. Thus Lyndon-Hochschild-Serre spectral sequence
shows that there exists a split exact sequence

0 → H3(H,T) → H3(A4,T) → H3(G,T)H → 0,

where H3(H,T) ∼= Z3 and H3(G,T)H ∼= Z2, and

H1(A4, Inv
(
Z(C)

))
) = H1(G,G)H = Hom(G,G)θ ∼= Z2 × Z2.

Thus the intersection of H3(H,T) and the image of

p1
(c,M) : H1(A4, Inv

(
Z(C)

))
→ H3(A4,T)

is trivial, which means that the set of equivalence classes of A4-extensions of
C has a free H3(H,T)-action through the H3(A4,T)-action, and it changes
the associator of γ. In particular, we get the extensions listed in the theorem.

Now it suffices to show that there exist exactly 5 extensions with γ hav-
ing trivial associator. In this case, we may assume that γ3 = id, and the
H-extension (α, ρ, γ) is equivalent to the model (α, ρ, γ0). Thus using the
uniqueness theorem, we may assume that γ acts on the Cuntz algebra O5 ⊂ M
as γ0 by replacing ρ with Ad(w)◦ρ with a unitary w fixed by αg for all g ∈ G.
Recall that this replacement does not change the extension data of βp, βq,
or βr. Thus we may and do assume that γ restricted to O5 is γ0 from the
beginning.
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Since (α, ρ, βp), (α, ρ, γ−1 ◦βq ◦γ), (α, ρ, γ ◦βr ◦γ−1) are equivalent exten-
sions, we have zh′ = z′h for all h ∈ {p, q, r}, and νp = νq = νr = ±i if zh = 0.
If zh �= 0, we can arrange βp, βq, and βr so that νp = νq = νr = 1.

As in the case of γ, we have [(βpγ)3] = [id], and so

[βp]
[
γβpγ

−1][γ2βpγ
−2] = [id].

Thus we may replace βq with γ ◦ βp ◦ γ−1, and βr with (βp ◦ γ ◦ βqγ
−1)−1,

which does not change the extension data of βp, βq, or βr.
Unfortunately, we can not expect that (βpγ)3 = id holds on the nose, and

we should modify βp. We have β−1
p ◦ γ ◦ βp = β−1

p ◦ βq ◦ γ, and

β−1
p ◦ βq = β−2

p ◦ β−1
r = β−2

p ◦ β−2
r ◦ βr = Adv∗p ◦ αp+zp ◦ Adv∗r ◦ αr+zr ◦ βr

= Ad
(
v∗pv

∗
r

)
◦ αq+zq ◦ βr.

We set β′
r = Ad(v∗pv∗r ) ◦ αq+zq ◦ βr, which satisfies (β′

r ◦ γ)3 = id. We set
β′
p = γ ◦ β′

r ◦ γ−1 and β′
q = γ2 ◦ β′

r ◦ γ−2. Then

γ ◦ β′
x ◦ γ−1 = β′

x′(5.6)
β′
x ◦ β′

x′ ◦ β′
x′′ = id(5.7)

hold for all x ∈ {p, q, r}.
Although the extension data of β′

x is not necessarily the same as before,
it is completely determined by that of βx. Since we can work on the new
extension data in the previous sections equally well, we assume that Eqs. (5.6),
(5.7) hold for βx instead of β′

x to avoid heavy notation.
The above two equations force that γ(ux) is a multiple of ux′ , and γ(vx)

is a multiple of vx′ . For the latter, we can simply assume that γ(vx) = vx′

holds for all x ∈ {p, q, r} by renaming them, while we can still keep Eq. (5.2)
by normalizing vp. Eq. (3.7) shows that γ(ux) = ux′ holds for all x ∈ {p, q, r}.

Now the action of γ on O5 ∪ {ux, u(x)
x , u

(x′)
x , vx, v

(x′)
x } are completely de-

termined by the data (zp, νp). This means that if two A4-extensions of C
share the same data, they share the same 6j-symbols, and they are equivalent
extensions.

Appendix A. Proof of Lemma 5.8

In this Appendix, we prove Lemma 5.8, which states that the β̃h, as de-
fined in the reconstruction of a Z2 × Z2-extension of the Z2 × Z2 generalized
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Haagerup category, satisfy the appropriate relations. The tedious proof con-
sists of checking the claimed identities of endomorphisms by calculating the
images of the various generating unitaries under the left and right hand side
of each identity, simplifying if possible using (5.4) and (5.5), and comparing
the results.

Proof. First, we need to show that β̃h a is well-defined endomorphism. Clearly,
β̃h maps each copy of O5 isomorphically onto another Cuntz subalgebra of U .
Then we need to check that β̃h preserves relations (5.4) and (5.5). The relation
(5.4) was checked in the proof of Lemma 5.5. For relation (5.5), we have

β̃p
(
u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r

)
=

(
χr(p + zp)vpurv∗p

)(
v(p)∗
r

)(
νqμq(q + zp + zr)v(p)

r vpvqv
∗
pv

(p)∗
r

)∗
·
(
χq(q + zp + zr)v(p)

r vpu
(q)
q v∗pv

(p)∗
r

)(
νqμq(r + zr)v∗rv(r)

q vr
)∗

·
(
νpμp(p + zq + zr)v∗rv∗qv(q)

p vqvr
)∗

·
(
−εzq(q)χp(r + zr)v∗rv∗qu(q)∗

q vqu
∗
rvr

)
(νpvp)∗

(
μr(p + zp)vpvrv∗p

)∗
The product of unitaries is

vpurv
∗
qu

(q)
q

(
v∗pv

(p)∗
r v∗rv

(r)∗
q v∗qv

(q)∗
p

)
u(q)∗
q vqu

∗
rv

∗
p = 1,

using relation (5.4). The scalar coefficient is

= −εzq(q)(μrχr)(p + zp)(μqχq)(q + zp + zr)(χpμq)(r + zr)μp(p + zq + zr)
= −εzq(q)εzr(p + zp)εzq(q + zp + zr)εr+zr(p + q)εzq(r + zr)εp+zq+zr(p)

· εzp(p + zq + zr)
−εp(p)εr(r)εzp(p)εzq(q)εzr(r)εzp(zq + zr)εzq+zr(zp) = −εzp(p)εzq(q)εzr(r),

using the relation in Lemma 5.5. Thus β̃p preserves (5.5), and since this
calculation is invariant under cyclic permutations of (p, q, r), so do β̃q and β̃r.

It is straightforward to check that β̃h ◦ α̃g = α̃g ◦ β̃h.
Next, we need to check that β̃2

h = Ad(vh) ◦ α̃h+zh . This relation clearly
holds on Φ0(O5) and Φh(O5). We also have

β̃2
h

(
Φh′(x)

)
= β̃h

(
v∗h′′Φh′′

(
αh′′+zh′′ (x)

)
vh′′

)
= v

(h)∗
h′′

(
v

(h)
h′′ vhΦh′

(
αh′+zh+zh′′

(
αh′′+zh′′ (x)

))
v∗hv

(h)∗
h′′

)
v

(h)
h′′ )

= vhΦh′(αh+zh)v∗h =
(
Ad(vh) ◦ α̃h+zh

)(
Φh′(x)

)



2392 Pinhas Grossman et al.

and

β̃2
h

(
Φh′′(x)

)
= β̃h

(
v

(h)
h′′ vhΦh′

(
αh′+zh+zh′′ (x)

)
v∗hv

(h)∗
h′′

)
=

(
vhvh′′v∗h

)
vh

(
v∗h′′Φh′′

(
αh′′+zh′′

(
αh′+zh+zh′′ (x)

))
vh′′

)
v∗h

(
vhv

∗
h′′v∗h

)
= vhΦh′′

(
αh+zh(x)

)
v∗h =

(
Ad(vh) ◦ α̃h+zh

)(
Φh′′(x)

)
.

We will now check this relation for all of the unitaries containing a symbol
other than h.

•

β̃2
h

(
u

(h′)
h

)
= β̃h

(
−εzh′

(
h′)χh

(
h′′ + zh′′

)
v∗h′′v∗h′u

(h′)∗
h′ vh′u∗h′′vh′′

)
= −εzh′

(
h′)χh

(
h′′ + zh′′

)(
v

(h)
h′′

)∗(
v∗h′′v

(h′′)
h′ vh′′

)∗
·
(
χh′

(
h′′ + zh′′

)
v∗h′′uh

′′
h′ vh′′

)∗(
v∗h′′v

(h′′)
h′ vh′′

)(
u

(h)
h′′

)∗(
v

(h)
h′′

)
= εzh′

(
h′)εzh′′ (h′′)v(h)∗

h′′ v∗h′′v
(h′′)∗
h′

(
vh′′v∗h′′

)
u

(h′′)∗
h′

(
vh′′v∗h′′

)
v

(h′′)
h′ vh′′u

(h)∗
h′′ v

(h)
h′′

= εzh′
(
h′)εzh′′ (h′′)(v(h)∗

h′′ v∗h′′v
(h′′)∗
h′

)
u

(h′′)∗
h′ v

(h′′)
h′ vh′′u

(h)∗
h′′ v

(h)
h′′

= εzh′
(
h′)εzh′′ (h′′)vhv(h′)

h vh′u
(h′′)∗
h′

(
v

(h′′)
h′ vh′′u

(h)∗
h′′ v

(h)
h′′

)
= εzh′

(
h′)εzh′′ (h′′)(−εzh(h)εzh′

(
h′)εzh′′ (h′′))

· vh
(
v

(h′)
h vh′u

(h′′)∗
h′ u

(h′′)
h′ v∗h′v

(h′)∗
h

)
u

(h′)
h v∗h

= −εzh(h)vhu(h′)
h v∗h = χh(h + zh)vhu(h′)

h v∗h

=
(
Ad(vh) ◦ α̃h+zh

)(
u

(h′)
h

)
.

•

β̃2
h

(
u

(h′′)
h′

)
= β̃h

(
χh′

(
h′ + zh + zh′′

)
v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′

)
= χh′

(
h′+zh+zh′′

)(
vhvh′′v∗h

)
(vh)

(
χ′
h

(
h′′+zh′′

)
v∗h′′uh

′′
h′ vh′′

)
(vh)∗

(
vhvh′′v∗h

)∗
= χh′(h + zh)vh

(
vh′′v∗hvhv

∗
h′′
)
uh

′′
h′
(
vh′′v∗hvhv

∗
h′′
)
v∗h

= χh′(h + zh)vhuh
′′

h′ v∗h =
(
Ad(vh) ◦ α̃h+zh

)(
u

(h′′)
h′

)
.

•

β̃2
h

(
u

(h′′)
h′′

)
= β̃h

(
−εzh(h)χh′′

(
h′ + zh + zh′′

)
v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

)
= −εzh(h)χh′′

(
h′ + zh + zh′′

)(
vhvh′′v∗h

)(
χh(h + zh)vhuhv∗h

)∗(vh)
·
(
−εzh′′

(
h′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)∗(vh)∗(vhvh′′v∗h
)∗

= εzh(h)εzh′′
(
h′′)χh(h + zh)χh′′

(
h′ + zh + zh′′

)
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· vh
(
vh′′v∗hvhu

∗
hv

∗
hvhuhv

∗
h′′
)
u

(h′′)
h′′

(
vh′′v∗hvhv

∗
h′′
)
v∗h

= εzh
(
h′′)vhu(h′′)

h′′ v∗h = χh′′(h + zh)vhu(h′′)
h′′ v∗h

=
(
Ad(vh) ◦ α̃h+zh

)(
u

(h′′)
h′′

)
•

β̃2
h

(
v

(h′)
h

)
= β̃h

(
νhμh(h + zh′ + zh′′)v∗h′′v∗h′v

(h′)
h vh′vh′′

)
= νpμp(h + zh′ + zh′′)

(
v

(h)
h′′

)∗(
v∗h′′v

(h′′)
h′ vh′′

)∗
·
(
νhμh(h + zh′ + zh′′)v∗h′′v∗h′v

(h′)
h vh′vh′′

)(
v∗h′′v

(h′′)
h′ vh′′

)
(vh′′)

= νh
2v

(h)∗
h′′ v∗h′′v

(h′′)∗
h′

(
vh′′v∗h′′

)
v∗h′v

(h′)
h vh′

(
vh′′v∗h′′

)
v

(h′′)
h′ vh′′v

(h)
h′′

= −εzh(zh)
(
v

(h)∗
h′′ v∗h′′v

(h′′)∗
h′ v∗h′

)
v

(h′)
h

(
vh′v

(h′′)
h′ vh′′v

(h)
h′′

)
= εh+zh(h)εzh(h + zh)vhv(h′)

h

(
v

(h′)
h v

(h′)∗
h

)
v∗h

= μh(h + zh)vhv(h′)
h v∗h =

(
Ad(vh) ◦ α̃h+zh

)(
v

(h′)
h

)
•

β̃2
h

(
v

(h′′)
h′

)
= β̃h

(
νh′μh′

(
h′ + zh + zh′′

)
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

)
)

= νh′μh′
(
h′ + zh + zh′′

)(
vhvh′′v∗h

)
(vh)

·
(
νh′μh′

(
h′′ + zh′′

)
v∗h′′v

(h′′)
h′ vh′′

)
(vh)∗

(
vhvh′′v∗h

)∗
= μh′(h + zh)vh

(
vh′′v∗hvhv

∗
h′′
)
v

(h′′)
h′

(
vh′′v∗hvhv

∗
h′′
)
v∗h

= μh′(h + zh)vhv(h′′)
h′ v∗h =

(
Ad(vh) ◦ α̃h+zh

)(
v

(h′′)
h′

)
•

β̃2
h(uh′) = β̃h

(
−εzh′′

(
h′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)
= −εzh′′

(
h′′)(v(h)

h′′
)∗(−εzh(h)χh′′

(
h′ + zh + zh′′

)
· v(h)

h′′ u
(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

)∗(
v

(h)
h′′

)(
u

(h)
h

)∗
= −εzh

(
h′)(v(h)∗

h′′ v
(h)
h′′

)
vhuh′v∗h

(
u

(h)
h v

(h)∗
h′′ v

(h)
h′′ u

(h)∗
h

)
= χh′(h + zh)vhuh′v∗h =

(
Ad(vh) ◦ α̃h+zh

)
(uh′)

•

β̃2
h

(
u

(h′)
h′

)
= β̃h

(
χ′
h

(
h′′ + zh′′

)
v∗h′′uh

′′
h′ vh′′

)
= χh′

(
h′′ + zh′′

)(
v

(h)
h′′

)∗(
χh′

(
h′ + zh + zh′′

)
v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′

)
)
(
v

(h)
h′′

)
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= χh′(h + zh)
(
v

(h)∗
h′′ v

(h)
h′′

)
vhu

(h′)
h′ v∗h

(
v

(h)∗
h′′ v

(h)
h′′

)
= χh′(h + zh)vhu(h′)

h′ v∗h =
(
Ad(vh) ◦ α̃h+zh

)(
u

(h′)
h′

)
•

β̃2
h(uh′′) = β̃h

(
u

(h)
h′′

)
= χh′′(h + zh)vhuh′′v∗h =

(
Ad(vh) ◦ α̃h+zh

)
(uh′′)

•

β̃2
h

(
u

(h)
h′′

)
= β̃h

(
χh′′(h + zh)vhuh′′v∗h

)
= χh′′(h + zh)(νhvh)

(
u

(h)
h′′

)
(νhvh)∗

= χh′′(h + zh)vhu(h)
h′′ v

∗
h =

(
Ad(vh) ◦ α̃h+zh

)(
u

(h)
h′′

)
•

β̃2
h(vh′) = β̃h

(
νh′μh′

(
h′′ + zh′′

)
v∗h′′v

(h′′)
h′ vh′′

)
= β̃h

(
νh′μh′

(
h′′+zh′′

)(
v

(h)
h′′

)(
νh′μh′

(
h′+zh+zh′′

)
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

))(
v

(h)∗
h′′

)
)

= μh′(h + zh)
(
v

(h)
h′′ v

(h)
h′′

)
vhvh′v∗h

(
v

(h)∗
h′′ v

(h)∗
h′′

)
= μh′(h + zh)vhvh′v∗h =

(
Ad(vh) ◦ α̃h+zh

)
(vh′)

•

β̃2
h(vh′′) = β̃h

(
v

(h)
h′′

)
= μh′′(h + zh)vhvh′′v∗h =

(
Ad(vh) ◦ α̃h+zh

)
(vh′′)

•

β̃2
h

(
v

(h)
h′′

)
= β̃h

(
μh′′(h + zh)vhvh′′v∗h

)
= μh′′(h + zh)(νhvh)

(
v

(h)
h′′

)
(νhvh)∗

= μh′′(h + zh)vhv(h)
h′′ v∗h = Ad(vh) ◦ α̃h+zh

(
v

(h)
h′′

)
.

Finally, we will check the relation β̃h ◦ ρ̃ = Ad(uh) ◦ α̃h ◦ ρ̃ ◦ β̃h.
We have

(β̃hρ̃)
(
Φh′(x)

)
= β̃h

(
u∗h′Φh′

(
ραh′(x)

)
uh′

)
=

(
uhv

∗
h′′u

(h′′)
h′′ vh′′

)(
v∗h′′Φh′′

(
αh′′+zh′′

(
ραh′(x)

))
(vh′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)
= uhv

∗
h′′u

(h′′)
h′′ Φh′′

(
ραh+zh′′ (x)

)
u

(h′′)∗
h′′ vh′′u∗h
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while (
Ad(uh)α̃hρ̃β̃h

)(
Φh′(x)

)
= uh

(
ρ̃
(
v∗h′′Φh′′

(
αh′+zh′′ (x)

)
vh′′

))
u∗h

=
(
uhv

∗
h′′u

(h′′)
h′′ uh′′

)(
u∗h′′Φh′′

(
ραh+zh′′ (x)

)
uh′′

)(
u∗h′′u

(h′′)∗
h′′ vh′′u∗h

)
= uhv

∗
h′′u

(h′′)
h′′ Φh′′

(
ραh+zh′′ (x)

)
u

(h′′)∗
h′′ vh′′u∗h

Similarly, we have

(β̃hρ̃)
(
Φh′′(x)

)
= β̃h

(
u∗h′′Φh′′

(
ραh′′(x)

)
uh′′

)
= u

(h)∗
h′′

(
v

(h)
h′′ vhΦh′

(
αh′+zh+zh′′

(
ραh′′(x)

))
v∗hv

(h)∗
h′′

)
)u(h)

h′′

= u
(h)∗
h′′ v

(h)
h′′ vhΦh′

(
ραh+zh+zh′′ (x)

)
v∗hv

(h)∗
h′′ u

(h)
h′′

while (
Ad(uh)α̃hρ̃β̃h

)(
Φh′′(x)

)
= uhρ̃

(
v

(h)
h′′ vhΦh′

(
αh′′+zh+zh′′ (x)

)
v∗hv

(h)∗
h′′

)
u∗h

= uh
(
u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′

)(
u∗h′Φh′

(
ραh+zh+zh′′ (x)

)
uh′

)(
u∗h′v∗hv

(h)∗
h′′ u

(h)
h′′ uh

)
u∗h

= u
(h)∗
h′′ v

(h)
h′′ vhΦh′

(
ραh+zh+zh′′ (x)

)
v∗hv

(h)∗
h′′ u

(h)
h′′

Now we will again check the relation on all the unitaries containing a
symbol other than h.

•

(β̃hρ̃)(uh′)

= β̃h

(
u∗h′

(
s(h′)s(0)∗ +

∑
g∈G

ah′(g)t(h
′)

g+h′uh′t(0)
g

∗
))

= uhv
∗
h′′u

(h′′)
h′′ vh′′

(
−εzh′′

(
h′′)v∗h′′s(h′′)vh′′s(h)∗

+
∑
g∈G

εh′′+zh′′

(
g + h′)ah′(g)v∗h′′t

(h′′)
g+h′vh′′v∗h′′u

(h′′)∗
h′′ vh′′u∗ht

(h)
g

∗
)

= uhv
∗
h′′u

(h′′)
h′′

(
−εzh′′

(
h′′)s(h′′)vh′′s(h)∗

+
∑
g∈G

εh′′+zh′′

(
g + h′)ah′(g)t(h

′′)
g+h′u

(h′′)∗
h′′ vh′′u∗ht

(h)
g

∗
)
,
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while (
Ad(uh)α̃hρ̃β̃h

)
(uh′)

= χh′(h)uhρ̃
(
−εzh′′

(
h′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)
u∗h

= −εzh′′
(
h′′)uh

·
((

s(0)v∗h′′s(h′′)∗

+
∑
g∈G

ah′′(g)εh′′+zh′′

(
g + h′′)t(0)

g+h′′v
∗
h′′u

(h′′)
h′′ t(h

′′)
g

∗
)
u

(h′′)∗
h′′ vh′′

)∗

· u∗h
(
s(h)s(0)∗ +

∑
g∈G

ah(g)t(h)
g+huht

(0)
g

∗
)∗

u∗h

= −εzh′′
(
h′′)uhv∗h′′u

(h′′)
h′′

(
s(h′′)vh′′s(h)∗

+
∑
g∈G

ah′′(g)ah
(
g + h′′)εh′′+zh′′

(
g + h′′)t(h′′)

g u
(h′′)∗
h′′ vh′′u∗ht

(h)∗
g+h′

)

= uhv
∗
h′′u

(h′′)
h′′

(
−εzh′′

(
h′′)s(h′′)vh′′s(h)∗

+
∑
g∈G

ah′
(
g + h′)εh′′+zh′′ (g)t

(h′′)
g u

(h′′)∗
h′′ vh′′u∗ht

(h)∗
g+h′

)

= uhv
∗
h′′u

(h′′)
h′′

(
−εzh′′

(
h′′)s(h′′)vh′′s(h)∗

+
∑
g∈G

ah′(g)εh′′+zh′′

(
g + h′)t(h′′)

g+h′u
(h′′)∗
h′′ vh′′u∗ht

(h)∗
g

)
,

where we have used (5.1).
•

(β̃hρ̃)
(
u

(h′)
h

)
= β̃h

(
u∗h′u

(h′)∗
h v

(h′)
h vh′

[
s(h′′)v∗h′v

(h′)∗
h s(h′)∗

+
∑
g∈G

εh′′+zh+zh′ (g + h)ah(g)th
′′

g+hv
∗
h′v

(h′)∗
h u

(h′)
h t(h

′)∗
g

]
uh′

=
(
uhv

∗
h′′u

(h′′)
h′′ vh′′

)(
v∗h′′uh′′v∗h′u

(h′)
h′ vh′vh′′

)(
v∗h′′v∗h′v

(h′)
h vh′vh′′

)(
v∗h′′v

(h′′)
h′ vh′′

)
·
[
−εzh′

(
h′)χh

(
h′′ + zh′′

)(
v

(h)
h′′ vhs

(h′)v∗hv
(h)∗
h′′

)(
v∗h′′v

(h′′)∗
(h′) vh′′

)
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·
(
v∗h′′v∗h′v

(h′)∗
(h) vh′vh′′

)(
v∗h′′s(h′′)∗vh′′

)
+

∑
g∈G

εh′′+zh+zh′ (g + h)εh′+zh+zh′′ (g + h)εh′′+zh′′ (g)ah(g)

(
v

(h)
h′′ vht

(h′)
g+hv

∗
hv

(h)∗
h′′

)(
v∗h′′v

(h′′)∗
(h′) vh′′

)(
v∗h′′v∗h′v

(h′)∗
(h) vh′vh′′

)
·
(
v∗h′′v∗h′u

(h′)∗
h′ vh′u∗h′′vh′′

)(
v∗h′′t(h

′′)∗
g vh′′

)]

· v∗h′′u
(h′′)∗
h′′ vh′′u∗h

= uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′u

(h′)
h′

[
εzh′

(
h′)εzh′′(h)s(h′)vh′s(h′′)∗

)

+
∑
g∈G

−εzh′ (h + g)εzh′′ (h)εh′(g)ah(g)t(h
′)

g+hu
(h′)∗
h′ vh′u∗h′′t(h

′′)∗
g

]
u

(h′′)∗
h′′ vh′′u∗h,

where we have used (5.4) twice, while

(
Ad(uh)α̃hρ̃β̃h

)(
u

(h′)
h

)
= χh(h)

(
−εzh′

(
h′)χh

(
h′′ + zh′′

))
uhρ̃

(
v∗h′′v∗h′u

(h′)∗
h′ vh′u∗h′′vh′′

)
u∗h

= εzh′
(
h′)εh′′+zh′′ (h)uh

(
v∗h′′u

(h′′)
h′′ uh′′

)(
v∗h′u

(h′)
h′ uh′

)
·
(
χh′

(
h′)u∗h′u

(h′)∗
h′

(
vh′s(0)v∗h′s(h′)∗ +

∑
g∈G

ah′(g)εh′+zh′

(
g + h′)vh′t

(0)
g+h′v

∗
h′u

(h′)
h′ t(h

′)
g

∗
)
uh′

)∗

·
(
u∗h′u

(h′)∗
h′ vh′

)
·
(
u∗h′′

(
s(h′′)s(0)∗ +

∑
g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(0)
g

∗
))∗(

u∗h′′u
(h′′)∗
h′′ vh′′

)
u∗h

= −εzh′
(
h′)εh′′+zh′′ (h)uhv∗h′′u

(h′′)
h′′ uh′′v∗h′u

(h′)
h′

·
[
s(h′)vh′s(h′′)∗+

∑
g∈G

ah′(g)ah′′
(
g+h′)εh′+zh′

(
g+h′)t(h′)

g u
(h′)∗
h′ vh′u∗h′′t

(h′′)∗
g+h

]

· u(h′′)∗
h′′ vh′′u∗h

= uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′u

(h′)
h′

·
[
εzh′

(
h′)εzh′′ (h)s(h′)vh′s(h′′)∗
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+
∑
g∈G

−ah(g)εzh′ (h + g)εzh′′ (h)εh′(g)t(h
′)

g+hu
(h′)∗
h′ vh′u∗h′′t(h

′′)∗
g

]
u

(h′′)∗
h′′ vh′′u∗h,

where again we have used (5.1).
•

(β̃hρ̃)
(
u

(h′′)
h′

)
= β̃h

(
χh′

(
h′′)u∗h′′u

(h′′)∗
h′ v

(h′′)
h′ vh′′

[
s(h)v∗h′′v

(h′′)∗
h′ s(h′′)∗

+
∑
g∈G

ah′(g)εh+zh′+zh′′

(
g + h′)t(h)

g+h′v
∗
h′′v

(h′′)∗
h′ u

(h′′)
h′ t(h

′′)∗
g

]
uh′′

)

=
(
u

(h)
h′′

)∗(
v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′

)∗(
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

)(
v

(h)
h′′

)
·
[
χh′

(
h′ + zh + zh′′

)(
vhs

(0)v∗h
)(
v

(h)
h′′

)∗(
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

)∗
·
(
v

(h)
h′′ vhs

(h′)∗v∗hv
(h)∗
h′′

)
+

∑
g∈G

ah′(g)εh+zh′+zh′′

(
g + h′)εh+zh

(
g + h′)εh′+zh+zh′′ (g)

·
(
vht

(0)
g+h′v

∗
h

)(
v

(h)
h′′

)∗(
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

)∗
·
(
v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′

)(
v

(h)
h′′ vht

(h′)∗
g v∗hv

(h)∗
h′′

)](
u

(h)
h′′

)

= u
(h)∗
h′′ v

(h)
h′′ vhu

(h′)∗
h′ vh′

[
−εzh+zh′′

(
h′)s(0)v∗h′s(h′)

+
∑
g∈G

ah′(g)εzh+zh′+zh′′

(
h′)εh′+zh′ (g)t

(0)
g+h′v

∗
h′u

(h′)
h′ t(h

′)∗
g

]
v∗hv

(h)∗
h′′ u

(h)
h′′ ,

while
(
Ad(uh)α̃hρ̃β̃h

)(
u

(h′′)
h′

)
= uhχh′(h)ρ̃

(
χh′

(
h′ + zh + zh′′

)
v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′

)
u∗h

= −εzh+zh′′

(
h′)uh(u∗hu(h)∗

h′′ v
(h)
h′′ vhuh′v∗hu

(h)
h uh

)(
u∗hu

(h)∗
h vh

)
·
(
u∗h′u

(h′)∗
h′

·
(
vh′s(0)v∗h′s(h′)∗ +

∑
g∈G

ah′(g)εh′+zh′

(
g + h′)vh′t

(0)
g+h′v

∗
h′u

(h′)
h′ t(h

′)
g

∗
)
uh′

)

·
(
u∗hu

(h)∗
h vh

)∗(
u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h uh

)∗
u∗h
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= u
(h)∗
h′′ v

(h)
h′′ vhu

(h′)∗
h′ vh′

(
−εzh+zh′′

(
h′)s(0)v∗h′s(h′)∗

+
∑
g∈G

ah′(g)εzh+zh′+zh′′

(
h′)εh′+zh′ (g)t

(0)
g+h′v

∗
h′u

(h′)
h′ t(h

′)
g

∗
)

)v∗hv
(h)∗
h′′ u

(h)
h′′

•

(β̃hρ̃)
(
u

(h′′)
h′′

)
= β̃h

(
χh′′

(
h′′)u∗h′′u

(h′′)∗
h′′ vh′′

(
s(0)v∗h′′s(h′′)∗

+
∑
g∈G

ah′′(g)εh′′+zh′′

(
g + h′′)t(0)

g+h′′v
∗
h′′u

(h′′)
h′′ t(h

′′)
g

∗
)
uh′′

)

= −
(
u

(h)
h′′

)∗(
v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

)∗(
v

(h)
h′′

)
·
[
−εzh(h)χh′′

(
h′ + zh + zh′′

)
s(h)(v(h)

h′′
)∗(

v
(h)
h′′ vhs

(h′)v∗hv
(h)∗
h′′

)
+

∑
g∈G

ah′′(g)εh′′+zh′′

(
g + h′′)εh′+zh+zh′′ (g)

· t(h)
g+h′′

(
v

(h)
h′′

)∗(
v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

)(
v

(h)
h′′ vht

(h′)
g

∗v∗hv
(h)∗
h′′

)](
u

(h)
h′′

)

= −u
(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h

[
−εzh(h)χh′′

(
h′ + zh + zh′′

)
s(h)vhs

(h′)

+
∑
g∈G

ah′′(g)εh′′+zh′′
(
g+h′′)εh′+zh+zh′′ (g)t

(h)
g+h′′u

(h)∗
h vhu

∗
h′t(h

′)
g

∗
]
v∗hv

(h)∗
h′′ u

(h)
h′′

= −εzh
(
h′)εzh′′ (zh′′)u(h)∗

h′′ v
(h)
h′′ vhuh′v∗hu

(h)
h

·
[
s(h)vhs

(h′) +
∑
g∈G

ah′′(g)εh+zh

(
g + h′)t(h)

g+h′′u
(h)∗
h vhu

∗
h′t(h

′)
g

]
v∗hv

(h)∗
h′′ u

(h)
h′′ ,

while

(
Ad(uh)α̃hρ̃β̃h

)(
u

(h′′)
h′′

)
= uhχh′′(h)ρ̃

(
−εzh(h)χh′′

(
h′ + zh + zh′′

)
v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

)
u∗h

= εzh
(
h′)εzh′ (zh′)uh

(
u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h uh

)
·
(
χh(h)u∗hu

(h)∗
h vh
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·
(
s(0)v∗hs

(h)∗ +
∑
g∈G

ah(g)εh+zh(g + h)t(0)
g+hv

∗
hu

(h)
h t(h)

g
∗
)
uh

)∗(
u∗hu

(h)∗
h vh

)

·
(
u∗h′

(
s(h′)s(0)∗ +

∑
g∈G

ah′(g)t(h
′)

g+h′uh′t(0)
g

∗
))

∗

·
(
u∗hu

(h)∗
h vh

)∗(
u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h uh

)∗
u∗h

= −εzh
(
h′)εzh′′ (zh′′)u(h)∗

h′′ v
(h)
h′′ vhuh′v∗hu

(h)
h

·
(
s(0)v∗hs

(h)∗ +
∑
g∈G

ah(g)εh+zh(g + h)t(0)
g+hv

∗
hu

(h)
h t(h)

g
∗
)∗

·
(
s(h′)s(0)∗ +

∑
g∈G

ah′(g)t(h
′)

g+h′uh′t(0)
g

∗
)
∗v∗hv

(h)∗
h′′ u

(h)
h′′

= −εzh
(
h′)εzh′′ (zh′′)u(h)∗

h′′ v
(h)
h′′ vhuh′v∗hu

(h)
h

·
[
s(h)vhs

(h′) +
∑
g∈G

ah(g)ah′(g + h)εh+zh(g + h)t(h)
g u

(h)∗
h vhu

∗
h′t

(h′)
g+h′′

]

· v∗hv
(h)∗
h′′ u

(h)
h′′

= −εzh
(
h′)εzh′′ (zh′′)u(h)∗

h′′ v
(h)
h′′ vhuh′v∗hu

(h)
h

·
[
s(h)vhs

(h′) +
∑
g∈G

ah′′(g)εh+zh

(
g + h′)t(h)

g+h′′u
(h)∗
h vhu

∗
h′t(h

′)
g

]
v∗hv

(h)∗
h′′ u

(h)
h′′

•

(β̃hρ̃)
(
u

(h′)
h′

)
= β̃h

(
χh′

(
h′)u∗h′u

(h′)∗
h′ vh′

·
(
s(0)v∗h′s(h′)∗ +

∑
g∈G

ah′(g)εh′+zh′

(
g + h′)t(0)

g+h′v∗h′u
(h′)
h′ t(h

′)
g

∗
)
uh′

)

= −
(
v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)∗(
v∗h′′uh

′′
h′ vh′′

)∗(
v∗h′′v

(h′′)
h′ vh′′

)
·
[
χh′

(
h′′ + zh′′

)
s(h)(v∗h′′v

(h′′)
h′ vh′′

)∗(
v∗h′′s(h′′)∗vh′′

)
+

∑
g∈G

ah′(g)εh′+zh′

(
g + h′)εh′′+zh′′ (g)

· t(h)
g+h′

(
v∗h′′v

(h′′)
h′ vh′′

)∗(
v∗h′′uh

′′
h′ vh′′

)
v∗(h′′t(h

′′)∗
g vh′′

](
v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)
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= −uhv
∗
h′′v

(h′′)
h′ vh′′

[
χh′

(
h′′ + zh′′

)
s(h)v∗h′′v

(h′′)∗
h′ s(h′′)∗

+
∑
g∈G

ah′(g)εh′+zh′

(
g + h′)εh′′+zh′′ (g)t

(h)
g+h′v

∗
h′′v

(h′′)∗
h′ u

(h′′)
h′ t(h

′′)∗
g

]
u

(h′′)∗
h′′ vh′′u∗h,

while
(
Ad(uh)α̃hρ̃β̃h

)(
u

(h′)
h′

)
= uhχh′(h)ρ̃

(
χ′
h

(
h′′ + zh′′

)
v∗h′′uh

′′
h′ vh′′

)
u∗h

= −εzh′′ (h′)uhχh′
(
h′′)[u∗h′′u

(h′′)∗
h′ v

(h′′)
h′ vh′′s(h)v∗h′′v

(h′′)∗
h′ s(h′′)∗uh′′

+
∑
g∈G

εh+zh′+zh′′

(
g + h′)ah′(g)

· u∗h′′u
(h′′)∗
h′ v

(h′′)
h′ vh′′thg+h′v∗h′′v

(h′′)∗
h′ u

(h′′)
h′ t(h

′′)∗
g uh′′

]

·
(
u∗h′′u

(h′′)∗
h′′ vh′′

)
u∗h

= −εzh′′ (h′)uhu
∗
h′′u

(h′′)∗
h′ v

(h′′)
h′ vh′′

[
s(h)v∗h′′v

(h′′)∗
h′ s(h′′)∗

+
∑
g∈G

εh+zh′+zh′′

(
g + h′)ah′(g)thg+h′v∗h′′v

(h′′)∗
h′ u

(h′′)
h′ t(h

′′)∗
g

]
u

(h′′)∗
h′′ vh′′u∗h

•

(β̃hρ̃)(uh′′)

= β̃h

(
u∗h′′

(
s(h′′)s(0)∗ +

∑
g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(0)
g

∗
))

= u
(h)∗
h′′

(
v

(h)
h′′ vhs

(h′)v∗hv
(h)∗
h′′ s(h)∗

+
∑
g∈G

ah′′(g)εh′+zh+zh′′

(
g + h′′)v(h)

h′′ vht
(h′)
g+h′′v

∗
hv

(h)∗
h′′ u

(h)
h′′ t

(h)
g

∗
)

= u
(h)∗
h′′ v

(h)
h′′ vh[s(h′)v∗hv

(h)∗
h′′ s(h)∗

+
∑
g∈G

ah′′(g)εh′+zh+zh′′

(
g + h′′)t(h′)

g+h′′v
∗
hv

(h)∗
h′′ u

(h)
h′′ t

(h)
g

∗),

while
(
Ad(uh)α̃hρ̃β̃h

)
(uh′′)
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= uh
(
χh′′(h)ρ̃

(
u

(h)
h′′

))
u∗h

= uh

(
χh′′(h)

[
u∗hu

(h)∗
h′′ v

(h)
h′′ vhs

(h′)v∗hv
(h)∗
h′′ s(h)∗uh

+
∑
g∈G

εh′+zh′′+zh

(
g + h′′)ah′′(g)

· u∗hu
(h)∗
h′′ v

(h)
h′′ vht

h′
g+h′′v∗hv

(h)∗
h′′ u

(h)
h′′ t

(h)∗
g uh

])
u∗h

= u
(h)∗
h′′ v

(h)
h′′ vh

[
s(h′)v∗hv

(h)∗
h′′ s(h)∗

+
∑
g∈G

εh′+zh′′+zh

(
g + h′′)ah′′(g)th′

g+h′′v∗hv
(h)∗
h′′ u

(h)
h′′ t

(h)∗
g

]

•

(β̃hρ̃)
(
u

(h)
h′′

)
= β̃h

(
u∗hu

(h)∗
h′′ v

(h)
h′′ vh

[
s(h′)v∗hv

(h)∗
h′′ s(h)∗

+
∑
g∈G

εh′+zh′′+zh

(
g + h′′)ah′′(g)th′

g+h′′v∗hv
(h)∗
h′′ u

(h)
h′′ t(h)∗

g

]
uh

)

=
(
u

(h)
h

)∗(
vhuh′′v∗h

)∗(
vhvh′′v∗h

)
(vh)

·
[
χh′′(h + zh)v∗h′′s(h′′)vh′′(vh)∗

(
vhvh′′v∗h

)∗(
vhs

(0)∗v∗h
)

+
∑
g∈G

εh′+zh′′+zh

(
g + h′′)εh′′+zh′′

(
g + h′′)εh+zh(g)ah′′(g)

· v∗h′′t
(h′′)
g+h′′vh′′(vh)∗

(
vhvh′′v∗h

)∗(
vhuh′′v∗h

)(
vht

(h)∗
g v∗h

)]
u

(h)
h

= εzh
(
h′′)u(h)∗

h vhu
∗
h′′

[
s(h′′)s(0)∗ +

∑
g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(h)∗
g

]
v∗hu

(h)
h ,

while
(
Ad(uh)α̃hρ̃β̃h

)(
u

(h)
h′′

)
= uh

(
χh′′(h)ρ̃

(
χh′′(h + zh)vhuh′′v∗h

))
u∗h

= εzh
(
h′′)uh(u∗hu(h)∗

h vh
)

·
(
u∗h′′

(
s(h′′)s(0)∗ +

∑
g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(0)
g

∗
))(

u∗hu
(h)∗
h vh

)∗
u∗h
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= εzh
(
h′′)u(h)∗

h vhu
∗
h′′

[
s(h′′)s(0)∗ +

∑
g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(h)
g

∗
]
v∗hu

(h)
h

•

(β̃hρ̃)
(
v

(h′)
h

)
= β̃h

(
−εzh′

(
h′)μh

(
h′)χh

(
h′′ + zh + zh′

)
ξh

· u∗h′u
(h′)∗
h v

(h′)
h vh′uh′′v∗h′u

(h′)
h′ uh′

)
= (−εzh′

(
h′)μh

(
h′)χh

(
h′′ + zh + zh′ξh

)(
νhμh(h + zh′ + zh′′)

)
·
(
−εzh′

(
h′)χh

(
h′′ + zh′′

))(
χh′

(
h′′ + zh′′

))
·
(
v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)∗(
v∗h′′v∗h′u

(h′)∗
h′ vh′u∗h′′vh′′

)∗
·
(
v∗h′′v∗h′v

(h′)
h vh′vh′′

)(
v∗h′′v

(h′′)
h′ vh′′

)
·
(
u

(h)
h′′

)(
v∗h′′v

(h′′)
h′ vh′′

)∗(
v∗h′′uh

′′
h′ vh′′

)(
v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)
= −ξhνhεzh

(
h′ + zh′ + zh′′

)
εzh′′

(
h′)

· uhv∗h′′u
(h′′)
h′′ uh′′v∗h′uh

′
h′
(
v

(h′)
h vh′v

(h′′)
h′ vh′′

)
u

(h)
h′′ v

∗
h′′v

(h′′)∗
h′ uh

′′
h′ u

(h′′)∗
h′′ vh′′u∗h

= −ξhνhεzh
(
h′ + zh′ + zh′′

)
εzh′′

(
h′)

· uhv∗h′′u
(h′′)
h′′ uh′′v∗h′uh

′
h′
(
v∗hv

(h)∗
h′′ u

(h)
h′′ v

∗
h′′v

(h′′)∗
h′ uh

′′
h′
)
u

(h′′)∗
h′′ vh′′u∗h

= ξhνhεzh
(
h′′ + zh′ + zh′′

)
εzh′

(
h′)εzh′′ (h)

· uhv∗h′′u
(h′′)
h′′ uh′′v∗h′uh

′
h′u

(h′)∗
h v

(h′)
h vh′u

(h′′)∗
h′′ vh′′u∗h,

where we have used relations (5.4) and (5.5), while
(
Ad(uh)α̃hρ̃β̃h

)(
v

(h′)
h

)
= uh(μh(h)ρ̃

(
νhμh(h + zh′ + zh′′)v∗h′′v∗h′v

(h′)
h vh′vh′′

)
u∗h

= μh(h)νhμh(h + zh′ + zh′′)
(
−εzh′

(
h′)μh

(
h′)χh

(
h′′ + zh + zh′

)
ξh
)

· uh
(
u∗h′′u

(h′′)∗
h′′ vh′′

)∗(
u∗h′u

(h′)∗
h′ vh′

)∗(
u∗h′u

(h′)∗
h v

(h′)
h vh′uh′′v∗h′u

(h′)
h′ uh′

)
·
(
u∗h′u

(h′)∗
h′ vh′

)(
u∗h′′u

(h′′)∗
h′′ vh′′

)
u∗h

= ξhνhεzh
(
h′′ + zh′ + zh′′

)
εzh′

(
h′)εzh′′ (h)

· uhv∗h′′u
(h′′)
h′′ uh′′v∗h′uh

′
h′u

(h′)∗
h v

(h′)
h vh′u

(h′′)∗
h′′ vh′′u∗h

•

(β̃hρ̃)
(
v

(h′′)
h′

)
= β̃h

(
−εzh′′

(
h′′)μh′

(
h′′)χh′(h + zh′ + zh′′)ξh′
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· u∗h′′u
(h′′)∗
h′ v

(h′′)
h′ vh′′uhv

∗
h′′u

(h′′)
h′′ uh′′

)
= −εzh′′

(
h′′)μh′

(
h′′)χh′(h + zh′ + zh′′)ξh′

(
χh′

(
h′ + zh + zh′′

))
·
(
−εzh(h)χh′′

(
h′ + zh + zh′′

))(
νh′μh′

(
h′ + zh + zh′′

))
·
(
u

(h)
h′′

)∗(
v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′

)∗(
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

)(
v

(h)
h′′

)(
u

(h)
h

)(
v

(h)
h′′

)∗
·
(
v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

)(
u

(h)
h′′

)
= νh′ξh′εzh+zh′′

(
h′)εzh′ (h′′ + zh + zh′′

)
u

(h)∗
h′′ v

(h)
h′′ vhu

(h′)∗
h′ vh′u∗h′v∗hv

(h)∗
h′′ u

(h)
h′′ ,

while
(
Ad(uh)α̃hρ̃β̃h

)(
v

(h′′)
h′

)
= uh

(
μh′(h)ρ̃

(
νh′μh′

(
h′ + zh + zh′′

)
v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′

))
u∗h

= μh′(h)νh′μh′
(
h′ + zh + zh′′

)
ξh′

· uh
(
u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h uh

)(
u∗hu

(h)∗
h vh

)
·
(
u∗h′u

(h′)∗
h′ vh′

)(
u∗hu

(h)∗
h vh

)∗(
u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h uh

)∗
u∗h

= νh′ξh′εzh+zh′′

(
h′)εzh′ (h′′ + zh + zh′′

)
u

(h)∗
h′′ v

(h)
h′′ vhu

(h′)∗
h′ vh′u∗h′v∗hv

(h)∗
h′′ u

(h)
h′′

•

(β̃hρ̃)
(
v

(h)
h′′

)
= β̃h

(
−εzh(h)μh′′(h)χh′′

(
h′ + zh′′ + zh

)
ξh′′u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h uh

)
= −εzh(h)μh′′(h)χh′′

(
h′ + zh′′ + zh

)
ξh′′χh′′(h + zh)

· χh(h + zh)μh′′(h + zh)
(
−εzh′′

(
h′′))

·
(
u

(h)
h

)∗(
vhuh′′v∗h

)∗(
vhvh′′v∗h

)
(vh)

(
v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)
(vh)∗

(
vhuhv

∗
h

)(
u

(h)
h

)
= ξh′′εzh

(
h′′)εzh′′ (zh)u(h)∗

h vhu
∗
h′′u

(h′′)∗
h′′ vh′′v∗hu

(h)
h

while
(
Ad(uh)α̃hρ̃β̃h

)(
v

(h)
h′′

)
= uhμh′′(h)ρ̃

(
μh′′(h + zh)vhvh′′v∗h

)
u∗h

= μh′′(h)μh′′(h + zh)ξh′′uh
(
u∗hu

(h)∗
h vh

)(
u∗h′′u

(h′′)∗
h′′ vh′′

)(
u∗hu

(h)∗
h vh

)∗
u∗h

· ξh′′εzh
(
h′′)εzh′′ (zh)u(h)∗

h vhu
∗
h′′u

(h′′)∗
h′′ vh′′v∗hu

(h)
h

•

(β̃hρ̃)(vh′)
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= β̃h
(
ξh′u∗h′u

(h′)∗
h′ vh′

)
= ξh′

(
−εzh′′

(
h′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗h

)∗(
χh′

(
h′′ + zh′′

)
v∗h′′uh

′′
h′ vh′′

)∗
·
(
νh′μh′

(
h′′ + zh′′

)
v∗h′′v

(h′′)
h′ vh′′

)
= −ξh′νh′εzh′

(
h′′ + zh′′

)
εzh′′

(
h′′)uhv∗h′′v

(h′′)
h′ vh′′ ,

while
(
Ad(uh)α̃hρ̃β̃h

)
(vh′)

= uhμh′(h)ρ̃
(
νh′μh′

(
h′′ + zh′′

)
v∗h′′v

(h′′)
h′ vh′′

)
u∗h

= μh′(h)νh′μh′
(
h′′ + zh′′

)(
−εzh′′

(
h′′)μh′

(
h′′)χh′(h + zh′ + zh′′)ξh′

)
· uh

(
u∗h′′u

(h′′)∗
h′′ vh′′

)∗(
u∗h′′u

(h′′)∗
h′ v

(h′′)
h′ vh′′uhv

∗
h′′u

(h′′)
h′′ uh′′

)(
u∗h′′u

(h′′)∗
h′′ vh′′

)
u∗h

= −ξh′νh′εzh′
(
h′′ + zh′′

)
εzh′′

(
h′′)uhv∗h′′u

(h′′)
h′′ v

(h′′)
h′ vh′′

•

(β̃hρ̃)(vh′′) = β̃h
(
ξh′′u∗h′′u

(h′′)∗
h′′ vh′′

)
= ξh′′u

(h)∗
h′′

(
−εzh(h)χh′′

(
h′ + zh + zh′′

)
v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

)∗
v

(h)
h′′

= ξh′′εzh
(
h′)εzh′′ (h′′)u(h)∗

h′′ v
(h)
h′′ vhuh′v∗hu

(h′)
h ,

while
(
Ad(uh)α̃hρ̃β̃h

)
(vh′′) = uhμh′′(h)ρ̃

(
v

(h)
h′′

)
u∗h

= μh′′(h)uh
·
(
−εzh(h)μh′′(h)χh′′

(
h′ + zh′′ + zh

)
ξh′′u∗hu

(h)∗
h′′ v

(h)
h′′ vhuh′v∗hu

(h)
h uh

)
u∗h

= ξh′′εzh
(
h′)εzh′′ (h′′)u(h)∗

h′′ v
(h)
h′′ vhuh′v∗hu

(h)
h
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