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1. Introduction

A biadjoint pair (F,G) of functors consists of two functors F,G and choices
of natural transformations making G both left and right adjoint to F . Biad-
joint pairs of functors are common in today’s mathematics and mathematical
physics. Their popularity is related, in part, to their natural appearance in
extended topological field theories. Such an extended theory may associate
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• a category C(K) to a closed (n− 2)-manifold K,
• a functor C(N) to an (n− 1)-cobordism N between (n− 2)-manifolds,
• a natural transformation C(M) to an n-cobordism M with corners be-

tween (n− 1)-cobordisms.

The functors C(N) and C(N∗) are then naturally biadjoint, where N∗ is the
reverse cobordism of N , see [34] for instance.

Furthermore, biadjoint functors appear throughout representation theory,
algebra, and geometry, including as

• projective functors in highest weight categories [8],
• Zuckerman and Bernstein derived functors in highest weight categories

[7],
• various functors in modular representation theory [42],
• Fourier-Mukai kernels between Calabi-Yau varieties [51],
• functors of tensor products with matrix factorizations, see e.g. [11],
• functors of convolution with Lagrangians between Fukaya–Floer cate-

gories,
• suitable convolution functors in geometric representation theory and in

categories of sheaves on manifolds and stratified spaces,
• generating functors for categorifications of Hecke algebras [20], quantum

groups [13, 40, 52, 44], and Heisenberg algebras [37],
• functors of tensoring with objects of pivotal categories [54],
• 1-morphisms in Mazorchuk–Miemietz fiat 2-categories [49].

A biadjoint pair (F,G) between categories A,B gives rise to a planar
diagrammatic calculus of collections of arcs and circles in the plane, as re-
viewed below in Section 2.1. Such diagrams describe natural transformations
between compositions of F and G built from the four biadjointness natu-
ral transformations. Regions of these diagrams are labelled by categories A
and B in checkerboard fashion. Closed diagrams in the plane, that is, col-
lections of nested circles in the plane, give rise to elements of the centers
Z(A), Z(B), depending on whether the outside region is labelled A or B. The
centers Z(A), Z(B) are commutative monoids, and potentially, there is a lot
of freedom in associating elements of these commutative monoids to closed
diagrams.

In this paper we investigate the case when the categories A,B are pre-
additive or additive. To further simplify matters, we assume that the cat-
egories and functors are k-linear, over a field k, and, in particular, their
centers Z(A), Z(B) are commutative k-algebras. One can further assume
that the centers come with suitably non-degenerate trace maps Z(A) −→ k,



2412 Mikhail Khovanov and Robert Laugwitz

Z(B) −→ k to the ground field. Applying these trace maps to central ele-
ments encoded by nested circle diagrams produces a collection of elements
of k, one for each nested diagram together with a label for an outer region.
Given such data, one can turn around and build a “minimal” non-degenerate
system of such categories, biadjoint functors, and trace maps on centers in a
straightforward way.

We explain these constructions in detail in the slightly different case of a
self-adjoint endofunctor F : A −→ A rather than a biadjoint pair (F,G). In
the self-adjoint case there is only one category A, each region is labelled by
A, and that label can be omitted. The evaluation data is given by assigning
an element of k to each nested circle diagram.

In the self-adjoint case, the center Z(A) is a commutative algebra that
comes with a k-linear map ω : Z(A) −→ Z(A), corresponding to the operator
of wrapping a circle around a diagram representing an element of Z(A). This
wrapping operator is the trace morphism for the self-adjoint functor F , see
[6] and (95).

In Sections 2.4 and 3 we discuss various monoidal categories one can as-
sign to the data (k, Z, ω) of a commutative k-algebra Z and a k-linear map
ω, generalizing in some cases from a field k to a commutative ring R. These
categories come from a suitable pairing between the k-vector space generated
by diagrams of arcs, circles, and elements of Z embedded in a disk and a simi-
lar space spanned by such diagrams in an annulus, see Section 3.1. When Z is
finite-dimensional over k, the morphism spaces in the resulting categories are
finite-dimensional and the categories and functors between them are recorded
in diagram (36) in Section 3.2.

A related setup emerges when Z and ω are hidden and instead there is
a trace map ε : Z −→ k into the ground field. Then, to a nested diagram
u of circles one can associate the element of k given by evaluating u to an
element of Z via ω and then applying the trace map ε. A collection of these
evaluations can be encoded into an analogue of power series α, called circular
series, where each nested circle diagram carries a coefficient. In Section 3.4
and the latter half of Section 3.3 we discuss reconstructing the data of a
category and a self-adjoint functor from such circular series and single out
recognizable series, which yield finite-dimensional morphism spaces between
the objects in the resulting categories. The situation discussed here is similar
to that of universal construction of topological theories, see [35, 41, 36], for
instance. From that viewpoint, the current paper deals with the case when
the ambient manifold is R2 or S2 together with defect circles (submanifolds
or defects of codimension one).
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To simplify computations of the pairing between vector spaces of diagrams
it is sometimes natural to assume that the coefficients of the formal power
series α depend only on the isotopy type of the nested circle diagrams in S2

rather than in R2. Such spherical power series are considered in Section 3.3,
with examples in Sections 5.2, 5.3.

In Section 4 we review the well-known correspondence between collec-
tions of nested circles in the plane and trees and forests of a suitable type.
Section 4.3 contains a brief discussion of the set-theoretical version of our
construction.

A general theory and understanding of the monoidal categories defined in
Sections 3 and 4 seems to be currently absent. Some examples are considered
in Section 5.

In Section 6 several modifications of our constructions are discussed, offer-
ing, in particular, a common generalization of tensor envelopes of noncommu-
tative power series as introduced in [36] and some structures from the present
paper.

Given a recognizable circular series α as above, that is, an assignment
of an element α(u) of the field k to each isotopy class u of planar diagrams
of nested circles, one key construction is the associated category Uα. The
monoidal category Uα has non-negative integers n as objects and morphisms
from n to m are given by linear combinations of planar diagrams of arcs
and circles with n bottom and m top endpoints. The skein relations in the
category Uα are defined via the universal construction and may be difficult
to write down for a given α.

The finite-dimensional endomorphism rings TLα,n := EndUα(n) can be
viewed as generalizations of the Temperley–Lieb algebra [25, 32]. When α
ignores the nesting and evaluates any diagram of k circles to dk, where d ∈ k
and char(k) = 0, then TLα,n is isomorphic to the Temperley–Lieb algebra
TLn(d) for generic d and to the Jones quotient of TLn(d) when d = q + q−1,
where q is a root of unity (the quotient by the ideal of negligible morphisms).

When α is spherical, the Jones quotient of the algebra TLα,n is, in ad-
dition, a Frobenius algebra. These generalized Temperley–Lieb algebras may
be an interesting topic for further investigation.

The present paper proposes a framework for generalized Temperley–Lieb
algebras and associated categories but does not try to work out the general
theory. An incomplete treatment of some examples can be found in Section 5.

Vaughan Jones discovered and developed many remarkable structures in
mathematics and mathematical physics intricately related to the notion of the
Temperley–Lieb algebra. These structures include the index for subfactors [25,
27], the Jones polynomial of links [26], Hecke algebras [27, 28], models of
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statistical mechanics [29], and planar algebras [31], among others. We dedicate
this paper to his memory.

2. Self-adjoint functors and circle diagrams

2.1. Diagrammatics for biadjoint pairs

Given categories A,B and functors

(1) F : A → B, G : B → A,

the pair (F,G) is called biadjoint if there are isomorphisms

HomA(GN,M) ∼= HomB(N,FN)(2)
HomA(M,GM) ∼= HomB(FM,N)(3)

which are natural in M ∈ ObA and N ∈ ObB. We consider biadjoint pairs
(F,G) together with a choice of natural isomorphisms (2), (3). The natural
isomorphism in (2) can be described by the unit and counit natural transfor-
mations

δ1 : IdB =⇒ FG, μ1 : GF =⇒ IdA,

which satisfy the relations

(1F μ1) ◦ (δ1 1F ) = 1F , (μ1 1G) ◦ (1G δ1) = 1G,(4)

where 1F : F =⇒ F is the identity natural transformation from F to itself,
and analogously for 1G. Likewise, the natural isomorphism in (3) can be
described by the unit and counit natural transformations

δ2 : IdA =⇒ GF, μ2 : FG =⇒ IdB,

which satisfy the relations

(1G μ2) ◦ (δ2 1G) = 1G, (μ2 1F ) ◦ (1F δ2) = 1F .(5)

A pair of functors (F,G) may have more than one collection of natural trans-
formations (δ1, μ1, δ2, μ2) satisfying these conditions. By a pair of biadjoint
functors (F,G) we mean a pair of functors as above together with a choice of
such four natural transformations. We refer to [34, 3, 43] for more details on
biadjoint functors and their diagrammatics.
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Figure 1: Diagrams of 1F and 1G. In this diagrammatics, the planar region
between two parallel horizontal dashed lines describes a natural transforma-
tion from the composition of functors read off the bottom dashed line to the
composition given by boundary points at the top dashed line. Regions of the
diagram correspond to categories.

Figure 2: Diagrams of biadjointness natural transformations. For instance,
the leftmost diagram is the transformation δ1 from the identity functor 1B to
FG. When no arcs end on a dashed line, then we assign the identity functor,
on the category which labels the region, to it.

We use oriented planar diagrams, read from bottom to top, to denote
these adjunctions. The identity natural transformation 1F of the functor F
is denoted by a line oriented up and the identity transformation 1G by a
line oriented down, see Figure 1.1 The unit and counit transformations are
denoted by oriented cup and cap morphisms, see Figure 2.

The biadjointness relations (4), (5) on these four natural transformations
are shown in Figure 3. Notice that they are just the four isotopy relations on
up and down oriented strands.

Arbitrary compositions of the four diagrams depicted in Figure 3, modulo
isotopy relations, lead to diagrams of oriented arcs and circles in the strip
R × [0, 1] of the plane with regions labelled in a checkerboard manner by
the categories A and B, see Figure 4. Edges are oriented so that the region

1The Figures have been created using Inkscape https://inkscape.org/.

https://inkscape.org/


2416 Mikhail Khovanov and Robert Laugwitz

Figure 3: Biadjointness relations are the isotopy relations on strands.

Figure 4: A diagram built out of the biadjointness transformations.

labelled A is always to the right as one travels along a line in the direction
of its orientation. Note that in the compositions of functors, at the top and
bottom of the diagram, F and G always alternate, so these compositions
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Figure 5: Examples of nested circles giving elements in Z(A) and Z(B).

have the form FGF . . . or GFG . . . . The two empty sequences of functors
correspond to the identity functors IdA and IdB. If the rightmost (and semi-
infinite) region of the strip is labelled A, then the rightmost functor in the
compositions at the top and bottom is the functor F (or one or both of
these compositions is just the identity functor IdA). If the rightmost region
is labelled B, the rightmost functor is G (or the identity functor IdB).

In the planar diagrams, the top and bottom compositions have the same
parity of the number of terms (functors) F,G appearing in the composition,
with IdA and IdB having zero terms.

A closed diagram of nested circles with the outer region labelled by A,
respectively, B, defines an element in the center Z(A) of A, respectively in
Z(B), see Figure 5.

More generally, an element z ∈ Z(A) can be represented by a dot labelled
by z floating in a region labelled by A. Elements of Z(A) commute and can
float past each other and anywhere in the region labelled A, but generally
can not cross the lines describing the identity maps of F and G and the
biadjointness morphisms.

Wrapping a clockwise circle around z ∈ Z(A) is the trace map Z(A) −→
Z(B) associated to the biadjoint pair (F,G), see Figure 6, and the discussion
in Section 6.4 around (95). Wrapping a counterclockwise circle around z′ ∈
Z(B) is the trace map Z(B) −→ Z(A). One reference for trace maps is [6].

Figure 6: The trace maps Z(A) −→ Z(B) and Z(B) −→ Z(A).
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Remark. If the categories A and B happen to coincide, so that F,G are
endofunctors of A, then all regions are colored by A, and this label can be
removed. Instead, orientations of lines are then used to differentiate between
F and G and their corresponding transformations. This allows diagrams for
natural transformations between arbitrary, not just alternating, compositions
of functors F and G, such as FFGGGF , etc.

2.2. Diagrammatics for a self-adjoint functor and the category U

Following Došen and Petrić [17, 18], in this section we explain how a self-
adjoint functor gives rise to a monoidal category U described by collections
of circles and arcs in the plane, up to rel boundary isotopies. We call such
collections U-diagrams or arc and circle diagrams.

Self-adjoint functor diagrammatics Suppose we are given an endofunc-
tor F : A −→ A on a category A which is self-adjoint. This means that
natural isomorphisms

(6) HomA(FM,N) ∼= HomA(M,FN), M,N ∈ Ob(A)

have been fixed, over all pairs of objects in A. Equivalently, one fixes natural
transformations

(7) δ : IdA =⇒ FF, μ : FF =⇒ IdA,

subject to the conditions

(8) (1F μ) ◦ (δ 1F ) = 1F , (μ 1F ) ◦ (1F δ) = 1F .

Using the natural transformations 1F , δ, μ and their planar compositions
one can build various natural transformations F n =⇒ Fm, n,m ≥ 0 between
powers of F , including the case n = 0 or m = 0, where the corresponding
functor is F 0 = IdA. These natural transformations from F n to Fm are
encoded by isotopy classes of collections of n+m

2 properly embedded arcs and
finitely many circles in the strip R × [0, 1] of the plane, see Figure 9 for an
example of a natural transformation from F 2 to F 4.

Specializing to n = m = 0, each diagram of nested circles in the plane
defines an element of the center of A. Wrapping a circle around such a diagram
is the trace map, as in Figure 6, where now we do not orient the circles.
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Figure 7: Identity transformation 1F and generating natural transformations
δ and μ for a self-adjoint functor. Every region of these diagram is labelled
by the category A.

Figure 8: Defining relations of self-adjointness are the isotopy relations.

The monoidal category U Denote by Um
n the set of isotopy classes of

planar diagrams discussed above, with n+m
2 arcs connecting in pairs n points

on the bottom line and m points on the top line and some number of circles
(possibly none). There is an associative composition

(9) Uk
m × Um

n −→ Uk
n

given by stacking and concatenating two diagrams along their common m
boundary points, see Figure 10 for an example.

The composition in (9) is associative. We can form a category U having
non-negative integers n as objects and morphisms from n to m given by
elements of Um

n . The unit morphism 1n is given by the diagram of n vertical
arcs.

Denote by Um
n (k) the set of diagrams in Um

n with k circles. Then

(10) Um
n =

⊔
k≥0

Um
n (k).
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Figure 9: A natural transformation from F 2 to F 4 described by a diagram of 3
arcs and 7 embedded circles. Any such system can be further transformed via
isotopies into a form where each circle has a unique maximum and minimum
for the projection on the y-axis and each arc has at most one such extremum
(none if it connects a top F with a bottom F ).

The category U is strict monoidal, with the tensor product given on ob-
jects by n ⊗ m = n + m and on morphisms by stacking them next to each
other on the plane. This monoidal structure is rigid, with self-dual objects
n∗ ∼= n. In fact, the category U is free as a strict monoidal category over the
self-dual object 1 [14, Proposition 9.4]. We note that the category U is not
symmetric.

A self-adjointness datum (δ, μ) for the endofunctor F of A as above gives
a monoidal functor

(11) F : U −→ End(A)

from the category U to the monoidal category of endofunctors of A that
assigns F n to the object n of U and natural transformations δ and μ to the
cup and cap diagrams as in Figure 7. Conversely, a monoidal functor as in
(11) determines a functor F = F(1) and biadjointness data (δ, μ) by applying
F to the cup and cap diagrams in U2

0 and U0
2, correspondingly.

The forgetful functor to the category B of crossingless matchings
Given a U-diagram as studied above, forgetting the circles gives us a crossin-
gless (planar) matching of n points on the bottom and m points on top of the
strip. Denote by Bm

n the set of such matchings (as usual, we choose one rep-
resentative diagram from the corresponding isotopy class for each matching).
We refer to an element of Bm

n as a B-diagram, or arc diagram.
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Figure 10: The composition ba of diagrams b and a.

We denote by B the category, with objects n ∈ Z+, morphisms from n to
m in B given by the set Bm

n of crossingless matching diagrams in the strip,
and composition of morphisms given by concatenation of diagrams followed
by removal of any circles that may appear. The category B is rigid monoidal,
similarly to U, with tensor product n⊗m = n + m.

Given a diagram u ∈ Um
n denote by cir(u) the number of circles in u

and by arc(u) ∈ Bm
n the diagram obtained by removing circles from u. For

u ∈ Um
n (k) we have cir(u) = k. The map arc that forgets the circles,

(12) arc : Um
n −→ Bm

n ,

extends to a functor

(13) arc : U −→ B.

In other words, the functor arc turns an arc-circle diagram into an arc diagram
by removing all circles. The functor arc is monoidal, full, and a bijection on
objects n ∈ Z+ of both categories. We refer the reader to [34, Section 2.2] for
details on the category B and the functor arc.

Temperley–Lieb categories Let R be a commutative ring. The monoidal
category B can be linearized by forming arbitrary linear combinations of mor-
phisms from n to m with coefficients in R. The resulting category RB is
equivalent to the Temperley–Lieb category TL(d), where the value d of the
circle is one,

(14) RB ∼= TL(1).
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More generally, the Temperley–Lieb category TL(d), for d ∈ R, is the pre-
additive R-linear monoidal category with objects n ∈ Z+ and morphisms
from n to m being R-linear combinations of crossingless matchings in Bm

n .
Upon composition (concatenation) of two matchings each resulting circle is
removed simultaneously with multiplying the remaining expression by d ∈ R
for each removed circle.

The endomorphism rings TLn(d) = EndTL(d)(n) are the Temperley–Lieb
algebras [25, 28, 29]. These algebras have interesting connections to knot
theory, quantum groups, and statistical mechanics, see [26, 29, 30, 32] and
references therein. One usually specializes R to a field k (often C of Q(q))
and sets d = ±(q + q−1) or a similar expression, see [12, 33].

We also linearize the category U to a category RU by keeping the same
objects n ∈ Z+ and allowing arbitrary finite R-linear combinations of mor-
phisms. The category RU is a pre-additive monoidal R-linear category. Pick-
ing d ∈ R gives a monoidal functor

(15) arcd : RU −→ TL(d)

that takes a diagram in U and evaluates each circle to d while keeping the col-
lection of arcs the same. A diagram u ∈ Um

n (k) with k circles and underlying
diagram arc(u) ∈ Bm

n of arcs goes under arcd to dk arc(u):

(16) arcd(u) = d cir(u) arc(u) = d k arc(u),

where we denote by cir(u) the number of circles in u.
The functor arcd forgets an enormous amount of information, since to

evaluate it on a diagram u ∈ Um
n (k) one only needs to know the underlying

arc diagram and the number of circles k in u. In this paper we explore more
subtle ways to linearize U and produce functors from it to categories with
finite-dimensional morphism spaces.

Circle diagrams Endomorphisms EndU(0) = U0
0 of the unit object 0 of U

constitute a commutative monoid. Elements of U0
0 are isotopy classes of finite

collections of circles in plane (it is convenient to fix a representative for each
isotopy class). Došen and Petrić [17, 18] call elements of U0

0 circular forms.
We will also call them circle diagrams or closed U-diagrams. Reflection in the
plane takes any closed diagram to itself, see Proposition 1.

Notice that the monoid U0
0 is commutative since we can slide one group

of circles past the other next to it. The monoid U0
0 is isomorphic to the free

commutative monoid on the following countable set U◦.
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We call a circle c in u ∈ U0
0 exterior (or outer) if it borders the infinite re-

gion of the diagram u. Equivalently, a circle c is exterior if it can be connected
to the boundary of the strip R × [0, 1] by an arc disjoint from other circles.
In the diagram in Figure 11 there are four exterior circles, each marked by
the letter e next to it.

Figure 11: A diagram u ∈ U0
0 with four exterior circles each labelled by the

letter e.

Denote by U◦ the subset of U0
0 consisting of diagrams with only one

exterior circle. Elements of U◦ may be called ◦-diagrams or outer diagrams.
Note that the empty diagram ∅ with no circles (which is the unit element of
the monoid EndU(0)) is not in U◦.

A diagram u ∈ U0
0 is in U◦ if and only if it has exactly one exterior circle.

Let

(17) ω : U0
0 −→ U◦

be a bijection of sets that takes a closed diagram and wraps a circle around it,
making it a diagram in U◦ (a ◦-diagram). Starting with the empty diagram ∅

and iteratively applying ω and forming unions of diagrams one can generate
any diagram in U0

0, see Figure 12 for examples.

Figure 12: Diagrams ω2(∅)ω(∅), ω(ω(ω(∅)2)ω(∅)), and ω2(ω(∅)3) of U0
0.

The first diagram is not in U◦ while the second and third diagrams are.

Reflection involutions on U The category U carries an involution ρv,
referred to as vertical reflection, that takes the object n to n and reflects a
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diagram about a vertical axis. The category U also carries a contravariant
involution ρh, called horizontal reflection, also denoted by the bar symbol,
taking a to a. The latter takes n to n and reflects a diagram about a horizontal
line. These reflections give monoidal functors

(18) ρh : (U,⊗) → (Uop,⊗), ρv : (U,⊗) → (U,⊗op),

where f ⊗op g = g ⊗ f for morphisms.
Note that the involutions ρv and ρh commute (in the strict sense). Fur-

thermore, on a closed diagram (a diagram in U0
0), horizontal and vertical

reflection have the same effect, since we consider diagrams up to isotopies, so
that ρv = ρh on endomorphisms of 0. In fact, a stronger statement holds.

Proposition 1. Horizontal refection (and hence also vertical reflection) is
the identity on the set U0

0 of (isomorphism classes) of circle diagrams.

Proof. To prove this, we observe that any diagram in U0
0 can be represented

by a collection of circles in the plane such that each circle has exactly two
(generic) intersection points with the chosen horizontal axis, see an example
in Figure 13. This is easy to show by induction on the number of circles in the
diagram. The property clearly holds for the empty diagram and a one-circle
diagrams. If it holds for diagrams u1, u2, it holds for their union, since one
can place u1, u2 along the horizontal axis as required and away from each
other. If the discussed symmetry property holds for a diagram u, it holds
for the diagram ω(u), the diagram given by placing the circle (which is itself
symmetric about the horizontal axis) around u. All diagrams in U0

0 can be
constructed inductively using disjoint union and the operation ω. Thus, the
proposition follows.

Figure 13: A diagram invariant under the reflection about the (dotted) hori-
zontal axis.

Diagrams in the disk and annulus A diagram u ∈ Un
m can alternatively

be described as a diagram in a disk D2 with n + m marked points on the
outer circle. To remember that x comes from a morphism from n to m, we
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can arrange n points to be on the lower half-circle of the disk and m points
on the upper half-circle — see Figure 14 for an example.

Figure 14: An example of representing an element of Um
n as a diagram in the

disk with marked circle points.

Take the semi-open annulus A = R2 \ int(D2), the complement in R2 of
the interior of the disk D2. We refer to ∂A ∼= S1 ∼= ∂D2 as the inner circle
of A.

We introduce the set Uout
2n of outer circle diagrams in the annulus A for

2n points on the inner circle of the annulus. Outer circle diagrams are isotopy
classes of collections of n disjoint arcs in A connecting these 2n points in
pairs, together with circular forms (i.e., elements of U0

0) that float in the
regions of the annulus separated by the arcs. Figure 15 depicts an example
of an outer circle diagram. There, we have placed a mark × on the circle
between the leftmost top and leftmost bottom point. The mark corresponds
to the position of the left edge of the box — it helps to easily separate top and
bottom boundary points, if needed. From this marking, the arc on the circle
corresponding to the position of the right edge of the box can be recovered if
n is known.

Figure 15: An outer circle diagram in Uout
6 with marker ×.
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2.3. Circular triples obtained from wrapping actions on centers of
categories

Recall that a self-adjoint endofunctor F (together with a choice of self-
adjunction) on a category A gives rise to a monoidal functor

(19) F : U −→ End(A),

see the discussion around formula (11). To a diagram a in Um
n the functor F

assigns a natural transformation F(a) : F n → Fm.
In the special case when a ∈ U0

0, that is, a is a circle diagram (a diagram of
circles in the plane), F(a) is a natural transformation of the identity functor
IdA, that is, an element of the center Z(A) of A.

The center Z(B) of any category B is a commutative monoid under com-
position, with the identity natural transformation of IdB as the unit element.
For A and F as above, the commutative monoid Z(A) also carries a map ω

that wraps a circle around an element z ∈ Z(A),

(20) ω(z) = μ ◦ (1F z1F ) ◦ δ,

as shown in Figure 16. This map ω is usually not a monoid homomorphism
and does not take the unit 1 to 1.

Figure 16: The “wrapping” action of ω on an element z ∈ Z(A).

The functor F restricts to a homorphism of commutative monoids

F : U0
0 −→ Z(A).

Explicitly, the restriction F is constructed as follows. To each circular form
u ∈ U0

0 one assigns an element F(u) of Z(A), constructed inductively on the
number of circles in u.
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1. If u = u1u2 is a product of circular forms u1, u2 (that is, u is given by
placing u1 and u2 next to each other), then

(21) F(u) = F(u1)F(u2).

2. If u is given by a diagram v with a circle wrapped around it (which we
write as u = ω(v)), then

(22) F(u) = ω(F(v)).

We see that iterating multiplication in Z(A) with applying the map ω
gives an endomorphism of the identity functor for any circular diagram, see
examples in Figure 17.

Figure 17: The elements ω2(1)ω(1), ω(ω(ω(1)2)ω(1)), and ω2(ω(1)3) of Z(A),
cf. Figure 12 where the same diagrams are interpreted in U0

0.

The above diagrammatics can be enhanced by choosing a subset S of
Z(A) (perhaps a set of generators or just all elements of Z(A)) and adding
dots in the regions of the plane labelled by elements of S. A dot can float
in its region but cannot jump into another region. Wrapping a circle around
a dot s ∈ S results in the element ω(s), see examples in Figure 18. If S
is multiplicative, we can add the product relation for two dots in the same
region, merging dots labelled by s1, s2 into a single dot labelled s1s2, see
Figure 18.

For a specific category A and a self-adjoint functor F these diagrammatics
for elements of the center Z(A) may have additional relations that will depend
on the choice (A, F ). We will discuss the formal construction of monoidal
categories of such diagrams in the next subsection.

Assume now that the category A and the functor F are R-linear, for a
commutative ring R. This means that morphism spaces in A are R-modules,
composition of maps is R-bilinear, and F respects the R-linear structure of
A.

Then the center Z(A) is a commutative R-algebra, and the endomorphism
ω of the center is an R-linear map. Usually, ω does not commute with the
multiplication in Z = Z(A), that is, ω(ab) 	= ω(a)ω(b), a, b ∈ Z.
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Figure 18: Examples of enhanced circle diagrams with labels from S ⊆ Z(A).
If the set S is multiplicative, dots can be merged, as in (c).

Definition 2. We call a triple (R,Z, ω) of a commutative ring R, a unital
commutative R-algebra Z and an R-linear map ω : Z −→ Z a circular triple.

A circular triple is ω-generated if Z is the only R-subalgebra of Z that
contains 1 and is closed under ω.

With this terminology, an R-linear category A with a self-adjunction
(F, δ, μ) gives a circular triple (R,Z(A), ω).

Taking any commutative algebra Z and a linear map ω on it gives a
large number of examples of circular triples. The map ω may have special
properties, such as be a derivation, ω(ab) = ω(a)b+aω(b), or, more generally,
a differential operator, or just any linear map on a commutative algebra (see
Section 5.4). Another interesting example is the Frobenius endomorphism σ
of a commutative ring A over a characteristic p field, see the end of Section 5.

2.4. The skein category SUω of a circular triple

Given a circular triple (R,Z, ω), we now construct a monoidal category SUZ,ω,
also denoted SUω, for short, and a category UZ which does not depend on ω.

The construction of SUZ,ω Earlier, in (13), we considered the forget-
ful functor U −→ B that removes circles from diagrams in Um

n producing
diagrams in Bm

n . Given a circular triple (R,Z, ω), instead of removing cir-
cles, we can evaluate them to elements in Z to construct the skein category
SUω = SUZ,ω.

The objects of the category SUZ,ω are non-negative integers n ∈ Z+ and
the space of morphism from n to m is given by all finite R-linear combinations
of diagrams of crossingless matchings b ∈ Bm

n , now enhanced by allowing
elements of Z to float in regions of Bm

n . Examples of diagrams in SUZ,ω are
given in Figure 19. Recall that b has n+m

2 + 1 regions into which it separates
the strip. We impose the following rules on these diagrams:
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Figure 19: Examples of morphisms in SUω, written as crossingless matchings
with the regions labelled by elements zi ∈ Z. Linear combinations of diagrams
are allowed as well.

• Elements z1, z2 floating in the same region can merge into a single ele-
ment z1z2.

• An element rz, with r ∈ R, floating in the region can be changed
by removing r from the region and multiplying the coefficient of the
diagram by r.

• A diagram which has a sum z1 + z2 in a region equals the sum of the
corresponding diagrams with z1 and z2 in that region.

In this way, the space of diagrams for a given crossingless matching b can be
identified with the tensor power Z⊗Rk, for k = n+m

2 + 1, one copy of Z for
each region of b.

Now, the space of morphisms from n to m in SUZ,ω can be identified
with the direct sum of cn+m

2
copies of that tensor power Z⊗Rk, one for each

crossingless matching b ∈ Bm
n . Here cr denotes the r-th Catalan number.

To define composition in SUZ,ω we compose diagrams a and b representing
morphisms from m to k and from n to m, respectively. We then inductively
simplify the composed diagram ab. If there is a circle in ab that wraps around
element z ∈ Z, we remove the circle and its interior and place ω(z) in that
place of the diagram instead. Starting with the innermost circles, we can
eventually remove all circles from ab. If the interior of the circle is empty,
we replace it with ω(1) ∈ Z. This composition rule is extended to R-linear
combinations. An example of a composition of diagrams in SUZ,ω can be
found in Figure 20. For simplicity, we often write

SUω = SUZ,ω.(23)

The monoidal structure on SUω Morphism spaces

SUm
ω,n := HomSUω(n,m)
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Figure 20: The composition vu of the diagrams from Figure 19 in SUω.

Figure 21: The tensor product of two morphisms in SUω.

in SUω carry a natural structure of Z ⊗ Z-modules by placing an element
z ∈ Z into the unique leftmost, respectively, rightmost region. This structure
is compatible with composition.

We thus obtain a tensor product

⊗ : SUm
ω,n × SUs

ω,r −→ SUm+s
ω,n+r, (u, v) �−→ u⊗Z v.

which is defined using the horizontal multiplication (tensor product) of the
underlying elements in B, which joins the rightmost region of u and the left-
most region of v in u⊗v. In addition, all region labels from Z are kept, and the
ones in the middle region are multiplied. An example of a tensor product is
given in Figure 21. This tensor product turns SUω into an R-linear monoidal
category, which is not, in general, symmetric or braided.

Now assume that Z is a free R-module and a basis B of Z is chosen.
Recall that as an R-module, HomSUω(n,m) is isomorphic to a direct sum of
ck−1 copies of Z⊗k, for k = n+m

2 + 1. This way, we obtain an R-basis for
HomSUω(n,m) consisting of all diagrams u in Bm

n with regions labelled by
elements of the basis B.

Example 3. (1) We may set Z = RU0
0, with multiplication given by tak-

ing disjoint union of diagrams, and map ω be the operation of wrapping
a circle around a diagram. This results in the monoidal category RU,
which is the R-linearization of the monoidal category U defined in Sec-
tion 2.2, as a special case of SUω.
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(2) For the circular triple (R,R, ω = idR) we recover SUω = RB, the R-
linearization of the category B of crossingless matchings.

Example 4. The Temperley–Lieb category TL(d) is the skein category SUω

for Z = R and ω(1) = d ∈ R. Note that TL(1) = RB.

We observe that the category SUω is rigid and every object is isomorphic
to its left and right dual. The duality morphisms are the same as those in B,
i.e. labelled with the 1 ∈ Z in all regions. As a monoidal category, SUω is
generated by the object 1. Morphisms are generated over R by the following
elementary morphisms:

• The cap and cup morphisms from 2 to 0, respectively, 0 to 2.
• Endomorphisms of 0 corresponding to R-algebra generators of Z.

These morphisms are subject to the following relations

• Identities of the cap and cup morphisms displaying 1 as a self-dual
object.

• Compatibility of composition of morphisms coming from elements of Z
with multiplication in Z.

• Topological relations on the underlying diagrams of crossingless match-
ings in B.

• Moving labels z ∈ Z within the regions.

The monoidal category UZ Assume given a commutative R-algebra Z.
Consider diagrams in U0

0 with additional labels from elements of Z. This
defines a ring U0

Z,0, similarly to SU0
ω,0 where the difference is that circles are

not evaluated using ω. Define the monoidal category

(24) UZ := SU(U0
Z,0, ω),

confer Example 3. Thus, UZ has the same objects as U and morphisms are
given by morphisms in U together with labels from Z in all regions.

Given a circular triple (R,Z, ω), any diagram in U0
Z,0 can be evaluated to

an element in Z. Here, the circle wrapping around a label z ∈ Z is mapped
to ω(z). This definition extends inductively, by sending disjoint unions of
diagrams to products in Z, to a morphism of R-algebras

FZ : U0
Z,0 −→ Z.(25)

More generally, we obtain a diagram of monoidal R-linear functors

(26) U ↪→ UZ
FZ� SUω.
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Here, the second functor FZ is obtained from applying the morphism FZ

to the labels of regions, which contain elements of U0
Z,0. See also the more

general discussion in Section 2.6.

2.5. Universality of RU0
0 and ω-evaluation

Universality of RU0
0 The R-algebra RU0

0 is universal among algebras with
a distinguished R-linear morphism ω. In fact, given any choice of a circular
triple (R,Z, ω), consider the restriction of the morphism FZ from Equation
(25) to the submonoid U0

0. This gives a map

FZ : U0
0 −→ Z(27)

which takes the empty diagram to 1, intertwines the action of ω on Z and
U0

0 and takes the disjoint union of diagram to the product of corresponding
elements, i.e.,

FZ(ab) = FZ(a)FZ(b), a, b ∈ U0
0,

FZ(∅) = 1,
FZ(ω(a)) = ω(FZ(a)).

The R-linear extension of FZ is a unital homomorphism of commutative R-
algebras

(28) FZ : RU0
0 −→ Z

that intertwines the action of R-linear map ω on both algebras. We refer to
this homomorphism as ω-evaluation. We say that Z is ω-generated if the map
(28) is surjective. Equivalently, the smallest R-subalgebra of Z that contains
the unit element 1 ∈ Z and is closed under ω equals Z.

To summarize, we have the following result.

Proposition 5. The commutative monoid (R-algebra) U0
0 (respectively, RU0

0)
is initial among commutative monoids with a distinguished map (respectively,
a distingished R-linear map).

2.6. An adjunction of circular triples and monoidal categories
with a self-adjoint endofunctor

Expanding on the previous subsection, we now explain how the construc-
tions from Section 2.4 are functorial and how SUω can be regarded as a free
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monoidal category with a prescribed circular triple datum recoverable from
its endomorphism ring of the tensor unit.

We define CTripR to be the category of circular triples over R. That is,
objects are circular triples (R,Z, ω), often just displayed as the pair (Z, ω). A
morphism φ : (Z1, ω1) → (Z2, ω2) in CTripR is given by a homomorphism of
R-algebras φ : Z1 → Z2 that intertwines the maps ω1, ω2, i.e., such that the
diagram

Z1

φ

ω1
Z1

φ

Z2
ω2

Z2

(29)

commutes.
We have already seen examples of morphisms of circular triples. For exam-

ple, the map FZ : RU0
0 → Z from (28) is a map of circular triples. It extends

to a map of circular triples
U0

Z,0 −→ Z

that sends a dot labelled with an element z ∈ Z to the corresponding element
of Z.

We observe that a morphism φ : Z1 → Z2 in CTripR induces a monoidal
functor

SUφ : SUω1 −→ SUω2(30)

defined by applying φ to all labels. For example, the morphism RU0
0 → R

that sends any closed circle diagram to 1 ∈ R induces the forgetful functor
U → B from earlier.

The assignment

(Z, ω) �−→ SUω, φ �−→ SUφ

obtained this way defines a functor from the category of circular triples (with
underlying ring R) to R-linear monoidal categories (i.e., monoidal categories
enriched in R-modules). We denote this functor by SU(−).

We also consider the assignment Z ′(−) which associates to an R-linear
monoidal category with a self-adjoint functor the endomorphism ring

Z ′(A) := EndA(1)
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of the tensor unit 1. Note that Z ′(A) embeds into Z(A) by sending z to zIdA.
Hence, to the category A we associate the circular triple (R,Z ′(A), ωF ), where
ωF is the restriction of the wrapping operation defined in (20).

Since the category SUω has self-dual objects, we observe that the endo-
functor F1 of tensoring by the generating object 1, i.e.

F1 : SUω −→ SUω, n �→ n⊗ 1

is a self-adjoint functor. The functor SU(−) can now be enhanced to a func-
tor to the category whose objects are pairs of R-linear monoidal categories
together with a self-adjoint endofunctor. Morphisms in this category are R-
linear monoidal functors G : A → B that intertwine the corresponding self-
adjoint functors in the sense that

G ◦ FA = FB ◦G, GμFA = μFB , GδFA = δFB ,

where (FA, μ
FA , δFA) (or, (FB, μ

FB , δFB)) is the self-adjoint endofunctor on A
(respectively, B). Note that the self-adjoint functors FA, FB are not required
to be monoidal functors.

The assignment Z ′(A) extends to a functor from R-linear monoidal cat-
egories with a self-adjoint functor to CTripR. The functors required in this
category are compatible with the self-adjunctions as G above and come with
a choice of isomorphism G(1) → 1 but do not need to be monoidal functors.
Such functors commute with the wrapping action. We show that this functor
Z ′ is right adjoint to the functor SU(−).

Proposition 6. The functor SU(−) is left adjoint to the functor Z ′(−) that
associates to an R-linear monoidal category with a self-adjoint functor the
circular triple (R,Z ′(A), ω). The unit natural transformation consists of iso-
morphisms (Z, ω) → (Z ′(SUω), ωF1) in CTripR.

Proof. Let A be an R-linear monoidal category with a self-adjoint endofunctor
F , and (Z, ω) = (R,Z, ω) a circular triple. Consider the natural transforma-
tion

η(Z,ω) : (Z, ω) −→ (Z ′(SUω), ωF )

given by sending z to the empty crossingless matching with only region la-
belled by z. This clearly defines an element of Z ′(SUω) = Z and commutes
with the wrapping maps ω, ωF . By construction of SUω, it follows that η(Z,ω)
defines a natural isomorphism.
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We further construct a natural transformation ε : SUZ′(−) → (−). That
is, for each pair (A, F ), where A is an R-linear monoidal category with a
self-adjoint R-linear functor F , we construct an R-linear functor

εA,F : SUZ′(A),ωF
→ A.

This functor sends the object n of SUωF to F n(1). The cap morphism 2 → 0
is sent to the morphism μ1 : F 2(1) → 1 obtained from self-adjointness of F ,
and the cup morphism 0 → 2 is sent to δ1 : 1 → F 2(1). An endomorphism of
0 labelled by z ∈ Z ′(A) is sent to the corresponding element of z ∈ EndA(1).
Since SUωF is generated by these morphisms as an R-linear monoidal cate-
gory we can inductively extend this assignment to the entire category SUωF

following the rules

• εA,F (idn) = idFn(1);
• εA,F (u ◦ v) = εA,F (u) ◦ εA,F (v), for compatible u, v ∈ SUωF ;
• εA,F (1n ⊗ x⊗ 1m) = Fm(xFn(1)), for x = z ∈ Z ′(A), or x equal to the

cap or cup morphism.

and taking R-linear combinations. For example, the disjoint union of two cup
diagrams 0 → 2 is sent to the morphism F 2(δ1)◦ δ1 : 1 → F 4(1), the disjoint
union of two cap diagrams 2 → 0 is sent to the morphism μ1◦μF 2(1) : F 4(1) →
1. This assignment respects all the relations on the generators in the category
SUωF and thus gives an R-linear functor as required.

The endofunctor F1 on SUωF sends an object n to n⊗ 1. Thus,

εA,F ◦ F1(n) = F n+1(1) = F (F n(1)) = F (εA,F ).

This equality extends to morphisms of SUωF . E.g., for the generating cap
morphism c and z ∈ Z ′(A) we have

εA,F ◦ F1(c) = εA,F (c⊗ 1) = F (μ1) = F ◦ εA,F (c),
εA,F ◦ F1(z) = εA,F (z ⊗ 1) = F (z) = F ◦ εA,F (z).

Thus, εA,F is a morphism of R-linear categories equipped with a self-adjoint
functor. One now verifies the adjunction identities from Equation 4 for η
and ε. For this, we note that Z ′(εA,F ) and η(Z′(A),ωF ) are both the identity
on Z ′(A). Further, εSUω ,F1 sends n to the object n and is the identity on
morphisms under identification of Z ′(SUω) and Z. Similarly, SUη(Z,ω) is the
functor induced from this identification so the two functors are mutually
inverse.
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Figure 22: Examples of outer matchings.

In the case of the category U, a similar universal property was given in [17,
Section 11]. Namely, U is the free category with a self-adjoint endofunctor.
Mapping the generating object 1 of U to any object in a category A equipped
with a self-adjunction determines a unique functor between these categories
respecting the self-adjunctions.

3. Pairings and monoidal envelopes

3.1. Pairings, negligible morphisms, and the gligible quotient
category Uω of SUω

In this section, we describe the quotient of SUω by the ideal of negligible
morphisms. To describe the latter ideal, we introduce the set Bout

2n of outer
matchings in an annulus of 2n points on the inner circle of the annulus. Take
an annulus A and place 2n points on the inner circle of A. Outer matchings
are isotopy classes of collections of n disjoint arcs in A connecting these 2n
points in pairs. It is easy to check that |Bout

2n | =
(2n
n

)
. Some examples of

outer matchings are shown in Figure 22. The set Bout
0 consists of the empty

matching and Bout
2 consists of two matchings, see Figure 22a.

We may take a diagram x describing a morphism in HomSUω(n,m) and
represent it as a box with n bottom and m top endpoints. Alternatively,
we can visualize x as a diagram in a disk with n + m boundary points. To
remember that x comes from a morphism from n to m, we can arrange n
points to be on the lower half-circle of the disk and m points on the upper
half-circle — see Figure 23 for an example. As in Section 2.2 for morphisms
in Uout

2n , we may place a mark × corresponding to the position of the left edge
of the box. The position of the right edge of the box can then be recovered if
n is known.

Consider all possible closures of x via diagrams y with n + m boundary
points in an annulus. Such a diagram y consists of an outer matching in
Bout
n+m together with elements of Z sprinkled over the n+m

2 + 1 regions of y
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Figure 23: An example of representing an element of SUω in the disk with
marked circle points.

Figure 24: Examples of the closure of a diagram in SUω by a compatible outer
matching.

into which n+m
2 arcs of y split the annulus. We call such a diagram y a Z-

decorated outer matching. The closure yx is a planar diagram of circles and
elements of Z written in the regions, and it evaluates to an element of Z that
we also denote yx. The evaluation is the same one that simplifies diagrams
in SU0

Z,0 to elements of Z.
We say that a finite R-linear combination x =

∑
i λixi of diagrams xi as

above with coefficients in R is negligible if and only if

(31)
∑
i

λi yxi = 0 ∈ Z

for any outer diagram y. In other words, a morphism x from n to m in SUω

is negligible if yx = 0 for any way to close x on the outside via a Z-decorated
outer matching y. Note that x is a linear combination of diagrams, and yx is
the corresponding linear combination of closed diagrams.

Proposition 7. The set of negligible morphisms constitutes a two-sided mon-
oidal ideal in SUω.

Proof. The proof is straightforward.



2438 Mikhail Khovanov and Robert Laugwitz

Denote by Uω the quotient of SUω by the two-sided ideal of negligible
morphisms. We refer to Uω as the state category of (Z, ω) or the gligible
quotient of SUω.

The category Uω is an R-linear rigid monoidal category. Its objects are
non-negative integers n. The morphism spaces HomUω(n,m) are naturally Z-
bimodules, just like the morphism spaces HomSUω(n,m). If Z is a finitely-gen-
erated R-module, the morphism spaces HomUω(n,m) are finitely-generated
R-modules as well.

3.2. A commutative square of categories

In this subsection, we consider the Karoubi closures of SUω and its gligible
quotient Uω. We give an overview diagram of the monoidal categories consid-
ered in this section in Equation (36).

The Karoubi closure of SUω Given an R-linear category A, one considers
Kar(A⊕) which is the Karoubi closure (or, idempotent completion) of the
category A. This category is constructed in two steps. First, we formally
adjoin finite direct sums of objects in A. That is, we construct a category A⊕

where objects are direct sums
⊕n

i=1 Ai, together with morphisms

ιi : Ai →
n⊕

i=1
Ai, πi :

n⊕
i=1

Ai → Ai(32)

satisfying the relations

πjιi = δi,j idAi .(33)

The category Kar(A⊕) consists of pairs Ae := (A, e), where A is an object in
A⊕ and e : A → A an idempotent endomorphism, i.e. e ◦ e = e. Morphisms
are given by

HomKar(A⊕)
(
Ae, Bf

)
= f ◦ HomA⊕(A,B) ◦ e.

Generalized Deligne–Karoubi categories Define the Deligne (or Delig-
ne–Karoubi) category DSUω associated to SUω as the additive Karoubi clo-
sure of the latter, i.e.

(34) DSUω := Kar(SU⊕
ω ).

This is an idempotent-complete R-linear monoidal category with duals.
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Example 8. Let us specialize to Z = R and d = ω(1) an invertible element
of R, so that SUd = TL(d), the Temperley–Lieb category. Then the additive
Karoubi closure DSUω contains the idempotent e = 1

d : 2 → 2, an endomor-
phism of object 2. The splitting object (2, e) is a proper subobject of 2, for
instance since rankR End((2, e)) = 1 	= 2 = rankR End(2). The object (2, e)
is also not isomorphic to 1 since there are no non-zero morphisms 1 → 2 in
TL(d).

The Karoubi closure of the gligible quotient We define the Karoubi
closure of the gligible quotient category by

(35) DUω := Kar(U⊕
ω )

If the ground ring R is a field k and dimk Z < ∞, then the morphism
spaces in categories DUω and Uω are finite-dimensional. Consequently, taking
the gligible quotient commutes with passing to the additive Karoubi closure
in this case, and there is a commutative diagram of monoidal categories and
monoidal functors

U RU UZ SUω DSUω

Uω DUω.

(36)

We note that the gligible quotient of UZ is equivalent (even isomorphic) to Uω.
Under weaker conditions (if R is not a field or Z has infinite rank over R),

there are potentially two distinct categories in place of DUω: the gligible
quotient of DSUω and the Karoubi envelope of Uω. There is a functor from
the first category to the second, but it is not clear when this functor is an
equivalence. With these weak conditions, it is natural to define DUω as the
Karoubi envelope of the gligible quotient Uω, while keeping in mind the above
caveat: the square is still commutative, but the gligible quotient of DSUω may
not be equivalent to DUω.

We can think of the four categories in the right square of diagram (36)
as various monoidal envelopes of the circular triple (R,Z, ω). Objects of all
of these categories have two-sided duals.
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Summary of these categories

• U has non-negative integers as objects. Morphisms from n to m in U

are isotopy classes of planar diagrams of arcs and circles in the strip
R× [0, 1] with n bottom and m top boundary points.

• RU, for a commutative ring R, is a linearization or pre-linearization of
U. It has non-negative integers as objects. Morphism from n to m in U

are finite R-linear combinations of morphisms in U.
• UZ is associated to a commutative R-algebra Z. It has the same objects

as U, that is, non-negative integers. Compared to RU, morphisms in
UZ are enriched by allowing elements of Z to float in the regions of a
diagram.

• SUω is associated to a circular triple (R,Z, ω), with ω an R-linear en-
domorphism of Z. It is a quotient of UZ by the relation that a circle
wrapping around z ∈ Z evaluates to ω(z).

• Uω is the quotient of SUω by the ideal of negligible morphisms (the
gligible quotient of SUω). Since our categories are only monoidal and not
symmetric, the definition of a negligible morphism requires converting
its diagram in R× [0, 1] to a diagram in D2 and then evaluating closings
of this diagram via all possible annular diagrams.

• DSUω is the additive Karoubi closure of SUω. It is the counterpart of the
Deligne category of the symmetric group. (Although note that DSUω is
not symmetric monoidal.)

• DUω is the gligible quotient of DSUω. When R = k is a field and Z

is finite-dimensional over k, the category DUω is also equivalent to the
additive Karoubi closure of Uω, making the square in (36) commuta-
tive.

Consider the functor from RU to SUω and the composite functor to Uω.
In the special case when Z is ω-generated over R (see Section 2.5), then the
functor from RU to SUω, and hence also the composition to Uω, are full.
In this case, we can use circular forms and have them float in regions of
crossingless matching diagrams in place of elements of Z in order to display
morphisms in SUω.

Let Z be a commutative R-algebra with a set of elements {si}i∈I , si ∈ Z

that ω-generates Z over R. In other words, any element of Z is a R-linear
combination of iterated products of applications of ω to the elements si. In this
case any morphism in SUω is a linear combination of crossingless matchings
with diagrams of circles and dots labelled by the si floating in regions.
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3.3. Spherical triples, evaluations, state spaces and categories

For the gligible quotient category Uω from Section 3.1 to be monoidal we
needed to adopt an asymmetric set-up which pairs diagrams in a disk with
diagrams in an annulus to define the correct quotient space Um

ω,n for the spaces
of diagrams SUm

ω,n in a disk. This pairing is different from similar pairings
in [35, 39, 38] where one works with manifolds (sometimes with defects) rather
than planar diagrams, and the ambient category is symmetric rather than just
monoidal, which is the case with the planar diagrams considered here.

Spherical triples One can limit the consideration to the symmetric case
and consider pairings of diagrams in a disk when the underlying triple (R,Z, ω)
is spherical. This means that the evaluation of a diagram in the plane R2 de-
pends only on the isotopy class of the corresponding diagram in S2.

Definition 9. A triple (R,Z, ω) is called Z-spherical if ω(z1)z2 = z1ω(z2)
for any z1, z2 ∈ Z.

This property is equivalent to the condition that any planar diagram,
when evaluated to an element of Z, depends only on the isotopy class of the
diagram in S2. Such an isotopy of S2 is a composition of isotopies in R2 and
moving an arc from a circle in the diagram through the infinite point of S2.
For a move of a latter type, that circle splits the diagram in S2 into two disks,
and the diagrams there may be evaluated to elements z1, z2 ∈ Z, respectively.
The relation ω(z1)z2 = z1ω(z2) in the above definition says that moving a
circle bounding z1, z2 on the two sides through the infinite point of S2 does
not change the evaluation, see Figure 25.

Figure 25: The Z-sphericality condition for ω. The dashed equatorial circle is
shown to emphasize that the ω-circle and z1, z2-dots are placed on a 2-sphere.

The Z-spherical condition is equivalent to the condition that ω(z) = zω(1)
for all z ∈ Z. In particular, ω is determined by ω(1) ∈ Z, and, vice versa,
any element z0 ∈ Z gives rise to a spherical triple with ω(z) = zz0. Hence,
for Z-spherical ω, to evaluate a diagram, count the number k of its circles,
remove the circles, and then multiply the evaluation of what remains by zk0 .

In the Z-spherical case, labels z ∈ Z in the regions of an arc-circle diagram
in Uω may freely move between the regions.
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Lemma 10. Let (R,Z, ω) be a Z-spherical circular triple. For any z ∈ Z,
the relation

(37) z · id1 = id1 · z

holds in Uω. More generally, for any morphism f in Uω, we have z ·f = f ·z.
In particular, the set {z · u}, where u ∈ Bm

n and z runs over a basis of Z
constitutes a generating set of HomUω(n,m).

Proof. Closing the morphism z · id1− id1 ·z gives the relation of Z-sphericality
from Definition 9. Thus, this relation holds in the gligible quotient Uω. This
implies that we can move all Z-labels in regions of an arc-circle diagram
u ∈ Bm

n to the leftmost region (or the rightmost region). The remaining
statements follow.

Figure 26: Relation (37) holds in Uω in the Z-spherical case.

The Z-spherical condition is very restrictive, since the combinatorics of
nested circles in the plane or on the 2-sphere is lost. One can instead refine
it by adding a trace map from Z to a smaller commutative ground ring to
evaluate spherical diagrams. Without aiming for full generality, let us define
R-spherical or simply spherical triples.

Definition 11. A circular triple (R,Z, ω) is called R-spherical (or spherical
for short) if it comes equipped with a non-degenerate R-linear trace map
ε : Z −→ R such that

(38) ε(z1ω(z2)) = ε(ω(z1)z2), z1, z2 ∈ Z.

When pairing a diagram in a disk to a diagram in an annulus, for a
Z-spherical triple (R,Z, ω) or an R-spherical triple (R,Z, ω, ε), the annular
diagram may be reduced to one in a disk by moving some of its arcs through
the infinite point of S2. The two R-modules on the two sides of the pairing
can be made isomorphic, and the pairing is then symmetric. We will look at
some examples in Section 5 and now discuss a related setup when only the
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Figure 27: Diagrams a, b ∈ U4
0 and the reflection b ∈ U0

4.

evaluations of spherical diagrams in R (taken to be a field k, for simplicity)
are given.

Pairings on circle diagrams Recall from Section 2.2 that the category U

has non-negative integers n as objects and morphisms from n to m are isotopy
classes of planar diagram with circles and arcs, the latter connecting n + m
points on the boundary of the diagram in pairs via a crossingless matching.
Thus, the set of morphisms Um

n from n to m in U is the set of isotopy classes
of diagrams of circles and arcs in the strip R× [0, 1] with m top and n bottom
endpoints.

Elements of Um
n are in a bijective correspondence with the following data,

see also Section 2.2. Each u ∈ Um
n defines a crossingless matching arc(u) ∈ Bm

n

given by erasing the circles of u. The diagram arc(u) partitions the strip into
n+m

2 + 1 contractible regions. The intersection of u with the interior of each
region is a diagram of circles, thus an element of U0

0. Hence, we see that
elements of Um

n are in a bijection with crossingless matching in Bm
n together

with a choice of a diagram in U0
0 (a closed diagram) for each of the n+m

2 + 1
regions.

Given a diagram u ∈ Um
n denote by u ∈ Un

m the reflection of u about the
horizontal line through the middle of the strip. As we have seen in (18), this
operation extends to a contravariant involution on the category U.

The set Um
n is empty unless n + m is even, and Un

0 is empty unless n is
even. For two elements a, b ∈ Un

0 the composition ba is a closed diagram in
U0

0, see Figure 28 for an example.
The map of sets

(39) Un
0 × Un

0 −→ U0
0

taking a × b to ba is symmetric, ba = ab since for c ∈ U0
0 we have c = c by

Proposition 1.
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Figure 28: The composition ba ∈ U0
0 of the diagrams a, b from Figure 27.

Spherical evaluations Let us first discuss a minimalist approach to the
construction of state spaces and state categories in the spherical framework
(Section 3.4 will expand on this approach in the non-spherical case as well).
We specialize R to a field k and assume given a map

(40) α : U0
0 −→ k, α(ω(u1)u2) = α(ω(u2)u1), u1, u2 ∈ U0

0.

The condition says that evaluation α of circle diagrams is spherical, that is,
depends only on the isotopy class of the diagram in S2. Alternatively, one
can define the quotient set Us,0

0 of U0
0 by identifying two diagrams if they are

isotopic as diagrams in S2 and define α as the composition U0
0 −→ U

s,0
0 −→ k

for some evaluation map U
s,0
0 −→ k.

Consider the bilinear form ( , )α on kU2n
0 defined on the basis of circle

diagrams by

(41) (a, b)α := α(ba), a, b ∈ U2n
0

and extended to the entire vector space kU2n
0 bilinearly. Define the state space

(42) U2n
α := kU2n

0 /ker(( , )α)

as the quotient of the vector space kU2n
0 of diagrams by the kernel of the

bilinear form ( , )α. The bilinear form is symmetric by Proposition 1.
This definition makes sense for any function α : U0

0 −→ k but gives a
better behaved collection of spaces U2n

α when α is spherical, so that α factors
through the quotient set U

s,0
0 .

Definition 12. A spherical evaluation α as in (40) is called recognizable if
the state spaces U2n

α are finite-dimensional for all n.
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Proposition 13. A spherical evaluation α is recognizable if and only if U0
α

is finite-dimensional.

Proof. The proof is straightforward: if U0
α is finite-dimensional then a closed

diagram, when part of any larger diagram to be evaluated, can be reduced to
a linear combination of diagrams from a fixed finite subset S ⊂ U0

0. Conse-
quently, any diagram u in U2n

0 can be reduced, in U0
α, to a linear combination

of diagrams with the n arcs as in u and a diagrams from S in each of n + 1
regions cut out by the arcs in the lower half-plane.

More generally, when R is a commutative ring rather than a field k, the
evaluation α : U0

0 −→ R is called recognizable if U0
α is a finitely generated

R-module. This is equivalent to all state spaces U2n
α being finitely generated

R-modules.
From here on we restrict to spherical α for the rest of this section. The

state space U0
α is naturally a commutative algebra with the non-degenerate

trace form α. This algebra is finite-dimensional exactly when α is recognizable.
Wrapping a circle around a diagram induces an k-linear map ω : U0

α −→ U0
α.

Converting from the lower half-plane to a disk or a plane strip with n

bottom and top m boundary points, we can define the state space Um
α,n of the

evaluation α for such diagrams. This can be done, for instance, by bending
the bottom n points via n arcs to get diagrams in Un+m

0 and using the bilinear
form on that space, or by directly gluing together two such diagrams into a
spherical diagram and applying α. There is an isomorphism of vector spaces
Um

α,n
∼= Un+m

α as long as we fix an arc diagram to move the bottom points to
the top, see Figure 29.

Figure 29: An isomorphism of Un+m
α and Um

α,n given by bending the n bottom
points to the top.
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The benefit of using spherical evaluations with the bilinear form (41)
is that the spaces Um

α,n can be arranged into a monoidal category Uα. The
objects of that category are non-negative integers n ≥ 0, and the vector space
Um

α,n describes the space of morphisms from n to m. Composition is given by
concatenation of diagrams, and compatibility with the quotient construction
is clear. That α is spherical implies that the category Uα is (strict) monoidal.
On objects, the tensor product is given by n ⊗m = n + m. On morphisms,
the tensor product is given by placing diagrams in parallel.

To get a monoidal category in this way from a non-spherical evaluation
α : U0

0 −→ k one needs to use the asymmetric setup and couple diagrams in
a disk to diagrams in an annulus, similar to that in Section 3.1. In the later
Section 3.4 we discuss this construction in more detail.

Given a spherical evaluation α and the associated monoidal category Uα,
the most natural case to consider is that of recognizable α. The following
observation is immediate.

Proposition 14. A spherical evaluation α is recognizable if and only if the
morphism spaces in the category Uα are finite-dimensional.

Given a recognizable α the commutative k-algebra Z := U0
α is finite-

dimensional and the the trace form α turns it into a commutative Frobenius
algebra. It satisfies the sphericality condition with respect to the k-linear map
ω : Z −→ Z given by wrapping a circle around an element of U0

α, i.e.

(43) α(ω(u1)u2) = α(u1ω(u2)), u1, u2 ∈ Z.

Furthermore, Z is ω-generated (cf. Definition 2), which is a stability condition
on that data.

Proposition 15. There is a natural bijection between recognizable spherical
evaluations α and isomorphism classes of commutative Frobenius algebras Z
with a trace form ε : Z −→ k and a linear map ω : Z −→ Z such that Z is
the only ω-stable subalgebra of Z and the spherical condition (40) holds for ε.

Proof. The proof is immediate.

One can repeat the construction of categories and functors as in [39, 38,
36] and (36) and consider the following categories and functors.

(44)

U kU SUα DSUα

Uα DUα
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We start with the category U. First, allow any finite k-linear combinations
of morphisms in U to form the category kU with the same objects n ≥ 0 as U.
Next, we pick a spherical evaluation α and consider the commutative algebra
U0

α as described above. Introduce the skein category SUα as the quotient of
kU by adding the relations that an endomorphism x of the 0 object in SUα

is zero in HomSUα(0, 0) if its image in U0
α is zero. Such an endomorphism is a

k-linear combination of closed diagrams (diagrams in U0
0). Choose a set S of

diagrams in U0
0 that project to a basis of the algebra U0

α.
Thus, when passing from kU to SU we only add relations on closed di-

agrams, not on diagrams with arcs. Relations on closed diagrams allow to
simplify any diagram in Um

n , when viewed as a morphism from n to m in
SUα, into a linear combination of diagrams with a circular form from S in
each region. The vector space of morphisms from n to m in SUα has a basis
given by a choice of a crossingless matching of n+m points on the boundary
of a strip together with a choice of an element of S in each of the n+m

2 regions
cut out by the arcs of the matching. In particular, morphism spaces in SUα

are finite-dimensional if and only if α is rational (recognizable). Note that the
category SUα is equivalent to the category SUU0

α, ω
discussed in Section 2.4.

We think of SUα as a type of skein category, similar to those in [39, 38, 36],
where one has control over the size of morphism spaces and can write down
a basis in each.

Assume now that α is a recognizable spherical evaluation. Then morphism
spaces in SUα are finite-dimensional. This allows us to build a commutative
square of categories and functors. We can pass from SUα to the gligible quo-
tient category Uα. The morphism spaces in Uα are quotients of those in kU
or SUα by the bilinear pairings on Um

n , gluing two diagrams with identical
boundaries into a diagram of circles on the 2-sphere, as already discussed.

In the category Uα the morphism space Hom(0, 2n) is naturally isomor-
phic to the state space U2n

α . Thus, the gligible quotient category is equivalent
to the category obtained from the state spaces Uα.

The square of four categories and functors on the right side of the dia-
gram in (44) is commutative in the strong sense: Taking the additive Karoubi
envelope DSUα of SUα and then the gligible quotient results in the category
DUα equivalent to that of first taking the gligible quotient and then forming
the additive Karoubi envelope.

Proposition 16. All the categories and functors in the above diagram (44)
are monoidal. In each of these categories the functor of tensoring with the
object 1 is self-adjoint, via the canonical natural transformations given by the
cup and the cap diagrams.
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Recall the skein categories SUZ,ω = SUω defined for a circular triple
(R,Z, ω) in Section 2.4. Assume given a R-spherical datum (R,Z, ω, ε) of a
circular triple with R-linear map ε : Z → R. We may consider the composition
of R-linear maps

α : RU0
0

FZ−−→ Z
ε−→ R.

The pairing ( , )α : RU0
0 × RU0

0 → R factors through εm : Z × Z → R, using
the R-algebra map FZ defined in (28).

If Z is ω-generated, Z ∼= RU0
0/ kerFZ and, using that FZ is an algebra

map on RU0
0, we see that U0

α is isomorphic to a quotient of the commutative
R-algebra Z. Hence, Z serves as a preliminary reduction of the space RU0

0
and can detect whether α is recognizable. Thus, the following lemma is a
consequence of Proposition 13.

Lemma 17. Let k be a field and (k, Z, ω) a spherical triple with a k-linear
spherical trace ε : Z → k. If Z is finite-dimensional over k, then α is recog-
nizable.

Note that in the ω-generated case, the quotient map p : Z � U0
α gives a

morphism of circular triples. Thus, it induces a full monoidal functor

SUp : SUω −→ SUα,

using (30). The maps HomSUω(0, 2n) → HomSUα(0, 2n) fit into the commuta-
tive diagram

kU2n
0 × kU2n

0
( , )

kU0
0

FZ

α

k.

kSU2n
ω,0 × kSU2n

ω,0
( , )

Z

ε

This implies surjective maps HomUω(n,m) → HomUα(n,m) for all n,m using
duality as in Figure 29. Thus, in the presence of a trace map ε : Z → k, Uα

is a quotient of Uω = UZ,ω.
The sphericality condition is analogous to the spherical trace property of

Barrett–Westbury [2].

3.4. Circular series and recognizable series

In this section, we generalize the construction of state spaces to non-spherical
circular series.



Planar diagrammatics of self-adjoint functors 2449

Circular series We work over a ground field k, for simplicity, but the
constructions below generalize to a ground commutative ring R and, more
generally, to a ground commutative semiring.

A circular series α is defined to be a map α : U0
0 → k that assigns an

element α(u) of k to each circular form u. We alternatively write

(45) α = {α(u)}u∈U0
0

=
∑
u∈U0

0

α(u)u,

and can also view α as a linear map kU0
0 −→ k. To build state spaces and

a category from circular series α we use an approach similar to the one in
Section 3.1.

Throughout the paper we use U2n
0 to denote the set of circular diagrams

with 2n endpoints in both a disk and in the lower half-plane, via the standard
identification of these sets (see an example in Figure 14 and the discussion in
that section). U2n

0 can be viewed as the set of matchings of 2n points on the
unit circle by n arcs in the unit disk, with possibly nested circles floating in
the regions of the diagram.

Recall from Section 2.2 that Uout
2n is the set on pairings of 2n points on the

unit circle by n arcs in the outside annulus, possibly with additional nested
collections of circles, also see Figure 15 for an example of such an annular
diagram.

The pairing of diagrams

(46) U2n
0 × Uout

2n −→ U0
0, a, b �−→ ab, a ∈ U2n

0 , b ∈ Uout
2n ,

is given by gluing diagrams a and b from the corresponding sets into a circular
diagram ab in the plane.

The series (or evaluation) α allows us to define a bilinear form

(47) ( , )α : kU2n
0 × kUout

2n −→ k, (a, b) �−→ α(ab),

on the vector spaces with these sets as bases, by evaluating closed planar
diagram ab via α. If needed, one can write (, )n,α instead of (, )α to emphasize
dependence on n. Note that both of these spaces are infinite-dimensional,
including when n = 0, since circles can be nested in infinitely many ways.

Define the left kernel of (, )α as

ker�(α) := {x ∈ kU2n
0 |(x, y)α = 0 ∀y ∈ kUout

2n }
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We define the state space Aα(n), or just A(n), as the quotient of kU2n
0 by

ker�(α),

(48) Aα(n) := kU2n
0 / ker�(α),

and call it the state space of 2n points (on the boundary of a disk) for the
evaluation α.

Recognizable series

Definition 18. A circular series α is called recognizable iff the state spaces
A(n) are finite-dimensional for all n ≥ 0.

Alternatively, we can say that α is of finite rank.

Proposition 19. A circular series α is recognizable if and only if A(0) =
Aα(0) is a finite-dimensional k-vector space.

Proof. Clearly, A(0) needs to be finite-dimensional for α to be recognizable.
If A(0) is finite-dimensional, there are finitely many circular forms v1, . . . , vk
(where k = dimk A(0)) such that any circular form is obtained by their linear
combination modulo an element of ker((, )0,α).

A diagram w ∈ U2n
0 is determined by the crossingless matching on its 2n

endpoints together with choices of circular forms to place in n + 1 regions of
the disk separated by the arcs of the matching. Modulo ker((, )n,α), one can
reduce to placing one of v1, . . . , vk in each region of the disk. In particular,

dimk A(n) ≤ cnk
n+1 = 1

n + 1

(
2n
n

)
kn+1,

where cn is the number of crossingless matchings of 2n points on the boundary
of a disk. The proposition follows.

The state space A(0) is naturally a unital commutative algebra. The mul-
tiplication comes from that on U0

0 given by placing diagrams (circular forms)
next to each other. The unit element 1 is the empty circular form ∅. The
operator ω of wrapping a circle around a diagram preserves the left kernel
of the bilinear form (, )0,α and descends to a linear map, also denoted ω, on
A(0). The trace form ε : A(0) −→ k comes from the evaluation α of closed
diagrams, ε(a) := α(a), for a ∈ U0

0.
We see that A(0) is a unital commutative algebra equipped with a k-linear

map ω : A(0) −→ A(0) and a trace form ε.
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The triple (A(0), ω, ε) is non-degenerate in the following weak sense. For
any x ∈ A(0), x 	= 0 there exists k ≥ 0 and a sequence x1, . . . , xk ∈ A(0) such
that

(49) ε(xkω(xk−1 . . . ω(x2ω(x1x))) . . . ) 	= 0.

We call such a data (A,ω, ε) a commutative weakly Frobenius triple. In the
pictorial language, we start with the diagram x and iterate between placing
xi, i = 1, . . . , k, next to the previous diagram and enveloping the diagram by
a circle (application of ω). At the end the trace form ε is applied.

Proposition 20. There is a bijection between recognizable circular series α
and isomorphism classes of commutative finite-dimensional algebras A with
the trace form ε and a linear endomorphism ω subject to weakly Frobenius
property above and to the stability condition that A is the only subalgebra of
A that contains 1 and is closed under ω.

Proof. The proof is straightforward.

This proposition is very similar in spirit to Proposition 15, except that
the spherical condition (40) is dropped here and the bilinear pairing needed
to define A(n) is asymmetric, with a bigger space on the other side of the
pairing (47).

The dihedral group D2n of symmetries of a regular 2n-gon acts on A(n),
via rotations and reflections. Note that reflection of diagrams respects the
left kernel of the form, since any diagram in U0

0 is invariant under the plane’s
reflection, so that reflection descends to an invertible linear map r : A(n) −→
A(n).

Placing diagrams with 2n and 2m endpoints, respectively, next to each
other induces multiplication maps

(50) A(n) ⊗ A(m) −→ A(n + m),

that respect the reflection maps r as above, in the sense that r(xy) = r(y)r(x),
for x ∈ A(n) and y ∈ A(m).

Circular triples and quadruples For a field k, a circular triple (k, Z, ω)
allows us to associate an element FZ(u) of a commutative k-algebra Z to
each circular form u ∈ U0

0. Assume that Z comes with a k-linear trace map
ε : Z −→ k. Then composing with ε allows us to assign to a circular form u
the element ε(FZ(u)) of k.
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Assume that Z is finite-dimensional. Then evaluating a circular form u
to ε(FZ(u)) gives a recognizable circular series α. To understand the space
A(0), first pass to the smallest subalgebra Z ′ of Z that contains 1 and is
closed under ω. The trace map ε may be degenerate on Z ′ (as well as on Z),
in the interated compositions sense as discussed right before Proposition 20.
Consider the subspace K ⊂ Z ′ that consists of x such that the evaluations
on the left hand side of (49) are zero for any sequence x1, . . . , xk ∈ Z ′. The
space A(0) is naturally isomorphic to the quotient, A(0) ∼= Z ′/K.

In particular, we see that a series α is recognizable if and only if there
exists a circular triple (k, Z, ω) together with a k-linear map ε : Z −→ k such
that

• dimk Z < ∞, that is, Z is finite-dimensional,
• α(u) = ε(FZ(u)) for all circular forms u.

A data (k, Z, ω, ε) with the above properties may be called a circular quadru-
ple. Furthermore, given recognizable α, such circular quadruple can be chosen
so that Z is ω-generated and (Z, ω, ε) is a commutative weakly Frobenius
triple. Given α, such a minimal circular quadruple is unique up to isomor-
phism, see Proposition 20.

One can think of circular quadruples as describing “inner-to-outer” eval-
uations of circular diagrams.

A diagram of categories and functors associated to α To a spherical
recognizable series α we have associated a diagram of categories of functors,
see (44). This construction extends immediately to arbitrary circular recog-
nizable series α, so essentially the same diagram is reproduced below.

(51)

U kU SUα DSUα

Uα DUα

The skein category SUα is given by including all relations on closed planar
diagrams (relations in A(0)). In this category the dimension of the morphism
space from n to m is ck · dimA(0)k+1, where k = (n + m)/2 and ck is the
k-the Catalan number. The category Uα is the gligible quotient of SUα, with
the same objects n ≥ 0. The categories on the far right are Karoubi additive
closures of the categories SUα and Uα, respectively. The square commutes in
the strong sense, see the discussion preceeding Proposition 16.
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Each recognizable circular series α gives rise to a collection of finite-
dimensional k-algebras

TLα,n := EndUα(n),

the endomorphism rings of objects n ∈ N of the category Uα. These algebras
generalize the Jones quotients of Temperley–Lieb algebras [25, 32].

4. Trees, forests, their series and relation to circular forms

In this section we explain the standard correspondence between trees (forests)
and circular forms, allowing one to flip between these two types of combina-
torial objects when forming the corresponding series.

4.1. Trees, forests, and circular forms

By a tree we mean a finite connected unoriented graph Γ without multiple
edges, cycles and with a preferred vertex (called root). The empty graph
is excluded. Denote by T the set of trees, up to isomorphisms; we pick one
representative from each isomorphism class. Trees are often depicted by planar
diagrams with the root at the top and vertices at distance k from the root
placed k steps below the root. Examples of trees are shown in Figure 30.

Figure 30: Examples of trees; note that a planar presentation of a tree is
rarely unique. For the sixth tree from the left two different presentations are
depicted. A presentation of a tree can be made unique by picking a total
order on trees and placing subtrees below each node from left to right in the
decreasing order direction.

A forest w is a graph which is a disjoint union of finitely many trees.
The empty graph is allowed. Each component of w carries a preferred vertex
(root of the corresponding tree). The order of trees when listing a forest does
not matter. When choosing a set of graphs to represent forests, we pick one
representative for each isomorphism class of forests.
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Denote by T∗ the set of forests and by T∗
k the set of forests with k com-

ponents (trees), so that

(52) T∗ =
⊔
k≥0

T∗
k.

The set T∗
1 is in a bijection with T, the set T∗

0 consists of the empty forest.
The set T∗

k can be identified with the k-th symmetric power of T∗
1,

(53) T∗
k
∼= Sk(T∗

1).

We now describe well-known mutually-inverse bijections, denoted by for
and cir, between the set U0

0 of closed planar diagrams and the set T∗ of
forests, which restrict to mutually-inverse bijections between the set U◦ of
◦-diagrams (diagrams with a single outer circle) and the set T of trees. That
is, the bijections fit into the commutative diagrams

U◦
for
∼ T

U0
0

for
∼ T∗,

T
cir
∼ U◦

T∗ cir
∼ U0

0.

(54)

First, to a tree t we assign an element in U◦ denoted cir(t), a collection
of circles with one exterior circle. Define this map

(55) cir : T −→ U◦

by induction on the number of nodes in t. To the unique tree with a single
node assign the diagram with a single circle, see Figure 31 left. Given a tree t,
denote by t1, . . . , tk the trees obtained by removing the root r(t) of t together
with all adjacent edges and making the vertices adjacent to r(t) in t the roots
r(t1), . . . , r(tk) of the trees t1, . . . , tk. Now place diagrams cir(t1), . . . , cir(tk),
already defined by induction, to float inside a circle, see Figure 31 right.

Figure 31: Inductive construction of the map cir.

This map cir in (55) is clearly a bijection. Consider the inverse bijection

(56) for : U◦
∼=−→ T, for ◦ cir = idT, cir ◦ for = idU◦ .
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The inverse bijection takes a ◦-diagram u and builds a tree for(u) with nodes
in bijection with circles of u. The unique exterior circle c of u gives the root
node for(u). A circle c2 nested immediately inside a circle c1 gives a child
node for(c2) to that of for(c1). Examples of circle configurations in U◦ and
associated trees are shown in Figure 32.

Figure 32: Examples of the correspondence between trees and ◦-diagrams.

Figure 33 shows a more complicated configuration in U◦ and the associ-
ated tree.

Figure 33: A more complicated example of a tree (on the right) associated to
a ◦-diagram (on the left).

Extending these bijections to disjoint unions of trees (i.e., forests) on
one side and unions of ◦-diagrams floating in the plane (elements of U0

0)
gives the mutually-inverse bijections in (54). The empty forest corresponds
to the diagram with no circles. Under these bijections the number of nodes
in a forest equals the number of circles in the corresponding planar diagram.
The exterior circles of a diagram correspond to the roots of the trees of the
associated forest as in Figure 34.

Recall that Um
n denotes the set of isotopy classes of diagrams of circles

and arcs in the strip R× [0, 1] with m top and n bottom endpoints. Elements
of Um

n are in a bijective correspondence with the following data. Each u ∈ Um
n

defines a crossingless matching arc(u) ∈ Bm
n given by erasing the circles of u.
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Figure 34: (a): a diagram u ∈ U0
0 with four exterior circles; the latter

are labelled by the letter e next to them. (b): the forest for(u) associated
to u.

Diagram arc(u) partitions the strip into n+m
2 + 1 contractible regions. The

intersection of u with the interior of each region is a diagram of circles, thus
an element of U0

0. Thus, elements of Um
n are in a bijection with crossingless

matchings in Bm
n together with a choice of a diagram in U0

0 for each of n+m
2 +1

regions. Equivalently, elements of Um
n are in a bijection with elements a ∈ Bm

n

together with a choice of a forest for each region of a.

Figure 35: A diagram in U4
2 corresponds to an element of B4

2 together with
circle diagrams in each region.

For example, in Figure 35, n = 2,m = 4, and there are four regions, which
carry configurations of 0, 2, 3, 3 circles, respectively. Two of these configrations
correspond to trees, one is the empty forest, and one is a 2-component forest.

4.2. Tree and forest series and tree automata

Suppose given a function

(57) α : U0
0 −→ k,
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that is, a map from the set of circular forms to k. Then α can be thought of
as formal series (circular form series)

(58) Zα =
∑
u∈U0

0

α(u)u,

that is, a formal sum, usually with infinitely many non-zero terms, over cir-
cular forms.

Composing α with the bijection cir from (55) gives us a map

(59) α ◦ cir : T∗ −→ k,

which we may also refer to as α, when it is unambiguous. Such a function α
can be called a tree (or forest) series, since it can formally be encoded by the
generating function over forests

(60) Z for
α =

∑
f∈T∗

α(cir(f)) f

as the corresponding formal sum over forests.
This bijection between forests and circular forms descends to a bijection

between a suitable quotient set of T∗ and the set of spherical circular forms.
We leave the details to an interested reader.

Converting from circular forms to forests gives a simple combinatorial
encoding of isotopy classes of collections of disjoint curves on the plane. It
would also be a starting point to investigate connections between univer-
sal theories and categories built from α, see equation (51) for instance, and
weighted tree automata. Tree and weighted tree automata generalize finite
state automata (FSA) and weighted FSA and are studied in depth in com-
puter science, see [19, 21, 50] and references therein. Noncommutative power
series generalize to series for weighted tree automata, and our series associ-
ated to an evaluation α of circular forms constitute examples of tree series.
Trees and forests associated to circular forms are less general that those that
appear in arbitrary tree automata. Some of this gap can be bridged by adding
labels to the circles in circular forms and adding other defects to planar con-
figurations. After reducing the gap, similarities between tree automata and
weighted tree automata on one side and universal theories for planar dia-
grams of labelled circles with various decorations and planar graphs on the
other side appear worthy of further investigation.

A commutative weakly Frobeninus algebra A(0) with the trace map ε
and the linear endomorphism ω can be viewed as a k-linear bottom-to-top
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tree automaton that evaluates a closed diagram starting with the innermost
circles (that evaluate to ω(1)), computing unions of closed diagrams via mul-
tiplication in A(0), circle wrapping given by ω, combined with the trace map
to k to end the computation.

In this paper we mostly work over a field k. Extending definitions to an
arbitrary commutative ring R is straightforward. It is also direct to extend
our constructions to a ground commutative semiring R. Then, for instance,
state spaces A(0) and morphism spaces in the gligible categories Uα become
semimodules over R.

A cursory examination of semimodules, over the boolean semiring B =
{0, 1} with 1 + 1 = 1, for instance, show that they are harder to deal with
than modules over rings. In some cases general semimodules may be hidden,
and one can instead work with free semimodules or with just a set of their
generators, reducing the structures to set-theoretical ones and substantially
simplifying the theory — this approach seems implicit in some standard text-
book material on weighted FSA and tree automata.

The approach of this paper and related papers [35, 39, 36, 38, 41], if rewrit-
ten over a semiring, would combine the theory of semimodules over commu-
tative semirings with monoidal or symmetric monoidal categories, making it
harder to stay within set-theoretical structures. This may be an interesting
extension of weighted tree automata and related constructions in the general
automata theory to explore.

4.3. The set-theoretical version

In a set-theoretical version of the story, the underlying categories are neither
additive nor pre-additive. In particular, the center Z of a category A is only
a commutative monoid. One can think of its elements as floating in a region
of the plane labelled by A. Multiplication in Z corresponds to placing the
elements next to each other. Wrapping a circle around z ∈ Z is a map of sets
ω : Z −→ Z.

One can now start with this data (Z, ω): a commutative monoid and a
map of sets ω. Given a collection u of nested circles in the plane, one can
recursively evaluate (Z, ω) on u to get an element α(u) ∈ Z.

To (Z, ω) one can assign several monoidal categories similarly to (36).
The skein category SUω has objects n ≥ 0 and morphisms given by planar
diagrams of arcs up to isotopy, with elements of Z floating in the regions of
the diagram.

From SUω we can pass to the gligible quotient category Uω by identify-
ing morphisms u1, u2 if closing them by any annular diagram v gives equal
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elements of Z, with α(vu1) = α(vu2). One can then form Karoubi closures as
well.

Endomorphisms of the object n in SUω constitute a monoid which is
analogous to or generalizes the Temperley–Lieb monoid. The latter has (n, n)-
crossingless matchings as its elements, with the product given by concatena-
tion with consequent removal of closed components (circles).

A spherical case of this construction would consist of data (Z, ω, ε) with
Z and ω as before, and a map of sets ε : Z −→ W , from Z to a set W , subject
to the sphericality condition

(61) ε(ω(z1)z2) = ε(ω(z2)z1), z1, z2 ∈ Z.

The pairing now becomes a symmetric pairing on the product of a set with
itself, with both diagrams in the disk (rather than one a disk diagram the
other an annular diagram). We leave the details to the reader.

Likewise, the analogue of a series will be a formal sum

(62) α =
∑
u∈U0

0

α(u)u, α(u) ∈ Z,

We define the notion of recognizable tree (or forest) series by requiring A(0)
to be finitely-generated over Z. In the spherical case, one can replace Z in
(62) by a set W . These structures are related to special cases of bottom-to-
top tree automata, see the references in the previous section, and to suitable
monoidal envelopes of such automata, analogous to monoidal envelopes of
FSA sketched in [36].

Assume given (Z, ω) as above, with a finite commutative monoid Z. Given
elements a, b ∈ B2n

0 (two crossingless matchings of 2n points) their pairing ba
is a collection of circles in the plane. This collection has a (generally non-
unique) minimal presentation, ba = cc for some c ∈ B2m

0 with m ≤ n and m
minimal with this property. Figure 36 shows an example of such a minimal
presentation.

The data (Z, ω) can then be used to evaluate ba to an element α(ba) ∈ Z.
In this sense, ba = cc can be viewed as a toy instance of computation data,
with just two operations: commutative multiplication in Z and the endomor-
phism ω. Although an efficient way to record this data is via a crossingless
matching c, storing the same data in two separate locations as matchings a
and b allows to hide the original program or intended computation, until a
and b are brought together into ba. Starting with c ∈ B2m

0 , one can randomly
represent cc as ba for a, b ∈ B2n

0 with n = �λm� for some λ > 1. It is clear
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Figure 36: A minimal presentation for the diagram on the left involving cross-
ingless matchings of 2n points, with n = 7 and m = 4.

that c and the evaluation α(ba) will be hard to guess given access to only a
or b.

It may be interesting to find and study similar factorizations of programs
or computations beyond this toy case, including for arbitrary boolean net-
works.

5. Examples and derivation diagrammatics

In this section, we consider examples of categories SUω and Uω in more detail:

• Section 5.1 treats the case of a one-dimensional k-algebra Z, when the
categories we consider are the Temperley–Lieb categories and their quo-
tients by negligible ideals.

• Section 5.2 and 5.3 consider the class of examples where the evaluation
is spherical and Z is a semisimple algebra (product of base fields).

Then, in Section 5.4, we briefly discuss toy examples of diagrammatics for
rings of operators on commutative rings.

5.1. The one-dimensional case: Temperley–Lieb algebras, meander
determinants, and quantum sl(2)

Let k be an algebraically closed field of characteristic zero and consider the
case of the Temperley–Lieb category TL(d) from Example 4, with endomor-
phism rings of objects isomorphic the Temperley–Lieb algebras [25, 29]. TL(d)
is the skein category SUd and associated to the circular triple (k,k, ω), where
ω is the multiplication by d ∈ k. We want to study the gligible quotient cate-
gory Ud of SUd and the state spaces for this class of examples. Note that the
circular triple (k,k, d) is k-spherical, see Section 3.3.
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The evaluation αd associated to this circular triple is given by αd(u) =
dκ(u), where κ(u) is the number of circles in u. For brevity, we shorten the
associated category Uαd

to Ud.
Consider the pairing on U2n

0 × U2n
0 given by

(a, b) = Fk(ab) = αd(ab) = dκ(ab),(63)

where κ(ba) is the number of circles in the object ba ∈ U0
0. This pairing

extends linearly to kU2n
0 × kU2n

0 .
A spanning set for U2n

d is given by the elements of B2n
0 , the arc diagrams

of 2n points. There are cn such diagrams. We can restrict the pairing ( , )
to this spanning set B2n

0 . The associated matrix of the pairing ( , ) on B2n
0 is

given by the Meander matrix G2n(d), where

(
G2n(d)

)
a,b

= dκ(ba), for a, b ∈ B2n
0 .

We refer to [15, 16] for introductions to meander matrices and their determi-
nants. The following result appears in [15, 16].

Theorem 21. The set B2n
0 is a basis for U2n

d if and only if d 	= q + q−1 for
q a root of unity of order less or equal to n + 1. In this case, Ud = SUd.

Proof. An element v ∈ kB2n
0 is in the kernel of the pairing if and only if it is

in the kernel of the matrix G2n(q). It was shown in [47], [15, Theorem 1] that
the determinant of this matrix is a product of the Chebychev polynomials
Um(q), for m ≤ n, with certain powers detailed in [16, Section 5.2]. Thus,
the pairing is non-degenerate if and only if q is not a root of one of these
polynomials. Using [16, Equation (5.2)], the roots of Um(x) are given by

2 cos
( k

m + 1π
)
, m = 1, . . . , n, k = 1, . . . ,m,

as claimed.
The morphism spaces Um

d,n of the gligble quotient category are isomorphic
to Un+m

d , see Section 3.3, and thus zero if n+m is odd and given by the state
spaces if n+m is even. If q is not a root of unity of order at most n+ 1 then
the pairing ( , ) on these state is non-degenerate and hence Um

d,n = SUm
d,n.

In degenerate case, with d = q + q−1, for qn = 1, the algebra TLn(d)
is isomorphic to the algebra of endomorphisms of V ⊗n

1 for the fundamental
representation V1 of the small quantum group uq(sl2), see [23, Section 1.3]
for details. The category TL(d) = SUd is a non-semisimple category and
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Ud is its semisimplification. This semisimplification is used in the Witten–
Reshetikhin–Turaev topological field theory [57, 53] and related to the Jones
polynomial of knots [26, 30].

5.2. The semisimple two-dimensional k-spherical case

Assume given matrices

(64) a =
(
a11 a12
a21 a22

)
, b =

(
b1 0
0 b2

)
,

with entries in k. Consider a 2-dimensional semisimple commutative Frobe-
nius algebra Z = ke1×ke2, where e1, e2 are mutually-orthogonal idempotents
and the trace map ε(ei) = bi, i = 1, 2. The Frobenius condition is equivalent
to bi 	= 0, i = 1, 2. Assume that the endomorphism ω of the vector space Z is
given by the matrix a in the basis (e1, e2), so that

ω(e1, e2) = (e1, e2)a = (a11e1 + a21e2, a12e1 + a22e2).

The condition that this data is k-spherical is equivalent to symmetricity of
the matrix

ba =
(
b1 0
0 b2

)(
a11 a12
a21 a22

)
=

(
b1a11 b1a12
b2a21 b2a22

)
.

In turn, this is equivalent to the single equation

(65) b1a12 = b2a21.

A crossingless matching u ∈ B2n
0 together with an assignment u′ of num-

bers 1 or 2 to each of the n + 1 regions of c in the disk gives an element
of the morphism space Hom(0, 2n) of the skein category SUα. Assigning the
number i means placing the idempotent ei in the corresponding region of the
diagram.

The above elements constitute a basis of the space of morphisms from 0
to 2n in the skein category for α. In particular,

(66) dim(HomSUα(0, 2n)) = 2n+1

n + 1

(
2n
n

)

Using duality, the same formula gives dimension of morphism spaces in the
skein category from m to 2n−m, for 0 ≤ m ≤ 2n. Furthermore, the elements
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(u, u′) as above constitute a spanning set of the morphism space from 0 to
2n in the gligible quotient category Uα or, equivalently, a spanning set of the
state space A(n).

The inner product (a, b) of two such diagrams is zero unless the idempo-
tents in the regions of a and b match on each interval of the common boundary
circle. There are 2n intervals there, and each one carries an induced coloring
by an element of {1, 2} coming from the labels of the regions. Both a and b
induce such a coloring of the 2n intervals, and (a, b) = 0 unless the induced
colorings coincide.

Consequently the Gram matrix for the pairing in this spanning set is
block-diagonal, with 22n blocks. Each block is a square matrix of the size
at most the n-th Catalan number. This block decomposition simplifies the
computation of the determinant and of the state spaces A(n). In particular,
A(n) decomposes into a direct sum of 22n subspaces (some may be trivial),
one for each {1, 2} colorings of the 2n segments on the circle. Note that, for
some sequences or colors, such as 1122 (which we may also write as 1222), no
matching respects the sequence in the sense that the corresponding element
in SU2n

0 is zero. One can either not consider these cases or list them as giving
0 × 0 blocks each with determinant 1.

For example, the state space A(1) has a spanning set v11, v12, v21, v22 that
consists of elements shown in Figure 37. Each one is a single arc, constituting
the unique matching of two points, together with an assignment of 1 or 2 to
each of the two regions of the disk or lower half-plane.

Figure 37: The vectors v11, v12, v21, v22 that span A(1). The labels 1, 2 denote
idempotents e1, e2 placed in the corresponding regions.

The Gram matrix is diagonal in this basis and given by
⎛
⎜⎜⎜⎝
b1a11 0 0 0

0 b1a12 0 0
0 0 b2a21 0
0 0 0 b2a22

⎞
⎟⎟⎟⎠ .

Notice that the two middle diagonal entries are equal, due to (65). We see
that the vectors v11, v12, v21, v22 constitute a basis of A(1), unless one of aij
is zero.
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If one of a12, a21 is zero, the other one is zero as well, ω stabilizes each of
kei, i = 1, 2, and the system fully decouples and becomes the direct sum of
two one-dimensional systems, each described by the Templerley–Lieb category
with parameters a00 and a11.

Figure 38: The five crossingless matchings compatible with the sequence
1321212.

Table 1: Determinants of the blocks of the Gram matrix for n = 2

Labels # (non-zero diagrams) Gram determinant
14 2 b21a

2
11(a11 − 1)(a11 + 1)

132 1 b1a11a12

1222 0 1
1212 2 b1a

2
12(a12a21 − 1)

We have computed the determinants of Gram matrices for n = 2, 3, 4, 5
(corresponding to diagrams with 4, 6, 8, 10 endpoints, respectively) and all
possible length 2n sequences of 1, 2, up to cyclic order and reflection (since
these transformations do not change the determinants, nor the state spaces).
As an example, the four non-zero diagrams for the sequence 1321212 are
shown in Figure 38. Furthermore, the symmetry interchanging 1, 2 in a se-
quence corresponds to transposing indices 1, 2 in all aij and bi that appear in
the Gram determinant for the sequence — this symmetry is also taken into
account to reduce the number of cases in the tables. The determinants of the
blocks of the Gram matrices for n = 2, 3, 4 are summarized in Tables 1, 2, 3,
and a partial list of Gram determinants for n = 5 in Table 4. Relation (65)
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Table 2: Determinants of the blocks of the Gram matrix for n = 3

Labels # (non-zero diagrams) Gram determinant
16 5 b51a

5
11(a11 − 1)4(a11 + 1)4(a2

11 − 2)
152 2 b21a

2
11a

2
12(a11 − 1)(a11 + 1)

1422 0 1
13212 2 b21a

2
11a

2
12(a11 − 1)(a11 + 1)

122122 1 b1a11a
2
12

1323 1 b1a11a12a22

122122 0 1
121212 5 b51a

5
12(a12a21 − 1)4(a12a21 − 2)

allows one to rewrite the terms in the product formulas for some determinants
in several different ways.

5.3. The semisimple spherical case

Let Z = ⊕k
i=1kei be a semisimple k-algebra of dimension k over an alge-

braically closed field k of characteristic zero, with minimal idemptotents
e1, . . . , ek. Assume given a k-spherical circular triple (k, Z, ω) with ω de-
scribed by the k× k matrix a = (aij), so that ω(ej) =

∑
i aijei, and the trace

form ε given by b = (bi) in the basis (ei)ki=1.
Denote by α the map kU0

0
FZ−−→ Z

ε−→ k. The k-sphericality condition from
Definition 11 is equivalent to

biaij = bjaji, for all i, j.(67)

Consider the ring R′ = k[aij , b±1
i ]/J of polynomials in aij and Laurent

polynomials in bi modulo the ideal J generated by biaij − bjaji for 1 ≤ i <
j ≤ k. The ring R′ is naturally isomorphic to the ring k[a′ij , b±1

i ] for variables
a′ij with 1 ≤ i ≤ j ≤ k and bi for 1 ≤ i ≤ k, by denoting a′ij = biaij =
bjaji. In particular, R′ is an integral domain. The Gram determinants of the
associated pairings in Proposition 22 can be viewed as an element of R′. The
ring R′ is bigraded, with deg(a′ij) = (1, 0) and deg(bi) = (0, 1). Consequently,
deg(aij) = (1,−1).

Proposition 22. If aij ∈ k, bi ∈ k \ {0} are generic elements of an alge-
braically closed field k, the skein category SUα is isomorphic to the gligible
quotient category Uα. Equivalently, for each k the Gram determinant is a
non-zero element of the integral domain R′ defined above.
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Table 3: Determinants of the blocks of the Gram matrix for n = 4

Labels # (non-zero
diagrams)

Gram determinant

18 14
b141 a14

11
(
a2
11 + a11 − 1

) (
a2
11 − a11 − 1

)
· (a11 − 1)13 (a11 + 1)13

(
a2
11 − 2

)6
172 5 b51a

5
11a

5
12 (a11 − 1)4 (a11 + 1)4

(
a2
11 − 2

)
1622 0 1
15212 4 b41a

4
11a

4
12 (a11 − 1)2 (a11 + 1)2 (a12a21 − 1)2

142122 2 b21a
2
11a

4
12

(
a2
11 − 1

)
132132 3 b31a

4
11a

4
12 (a11 − 1) (a11 + 1) (a12a21 − 1)

1523 2 b21a
2
11a

2
12a

2
22 (a11 − 1) (a11 + 1)

142212 0 1
1321222 0 1
1321212 5 b51a

5
11a

5
12 (a12a21 − 1)4 (a12a21 − 2)

12212212 2 b21a
2
11a

4
12 (a12a21 − 1)

1424 0 1
132123 2 b21a

2
11a

2
12a

2
22 (a12a21 − 1)

1221223 1 b1a11a
2
12a22

1322122 1 b1a11a12a22a21

12221222 0 1
12221212 0 1
12212212 0 1

12121212 14 b141 a14
12 (a12a21 − 1)13 (a12a21 − 2)6

·
(
a2
12a

2
21 − 3 a12a21 + 1

)

Proof. The coefficients aij , bi being generic implies that Z is ω-generated. This
is equivalent to being able to write each ei as a linear combination of closed
circular diagrams. (In the non-generic case, we can pass to the subalgebra of
Z generated by 1 and closed under ω to achieve this.)

A diagram u in B2n
0 (a crossingless matching of 2n points) gives rise to

an element of U2n
α , also denoted by u. Given u and a region r of u, denote

by (u, r(i)) the diagram u with the idempotent ei placed in this region r.
We view (u, r(i)) as a vector in U2n

α , so that u =
∑k

i=1(u, r(i)), where k =
dim(Z).

Minimal idempotents ei may be placed in more than one region of u. In
particular, minimal idempotents may be assigned to all regions of u, resulting
in a corresponding vector in U2n

α . Since a crossingless matching of 2n points
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Table 4: Determinants of some of the blocks of the Gram matrix for n = 5

Labels
# (non-zero
diagrams)

Gram determinant

110 42
b421 a42

1,1 (a1,1 − 1)41 (a1,1 + 1)41
(
a2
1,1 − 2

)26
·
(
a2
1,1 − 3

) (
a2
1,1 + a1,1 − 1

)8 (
a2
1,1 − a1,1 − 1

)8
192 14

b141 a14
1,1a

14
1,2

(
a2
1,1 + a1,1 − 1

) (
a2
1,1 − a1,1 − 1

)
·
(
a2
1,1 − 2

)6 (a1,1 − 1)13 (a1,1 + 1)13

1521212 10
b101 a10

1,1a
10
1,2 (a1,1 − 1)5 (a1,1 + 1)5

· (a1,2a2,1 − 2)2 (a1,2a2,1 − 1)8

13213212 7
b71a

10
1,1a

9
1,2 (a1,1 − 1)2 (a1,1 + 1)2

· (a1,2a2,1 − 2) (a1,2a2,1 − 1)5

132121212 14
b141 a14

1,1a
14
1,2 (a1,2a2,1 − 1)13

· (a1,2a2,1 − 2)6
(
a2
1,2a

2
2,1 − 3 a1,2a2,1 + 1

)
1212121212 42

b421 a42
1,2 (a1,2a2,1 − 1)41 (a1,2a2,1 − 2)26

· (a1,2a2,1 − 3)
(
a2
1,2a

2
2,1 − 3 a1,2a2,1 + 1

)8

has n+ 1 regions, the element u can then be written as a sum of kn+1 terms,
each one carrying an assignment of minimal idempotents to all n+ 1 regions
of u.

The space U2n
α,0 has a spanning set given by diagrams of crossingless match-

ings u ∈ B2n
0 together with a choice of idempotent ei for each region of u. We

denote such a vector by (u, c), where c is the idempotent assignment, and can
write u =

∑
c(u, c), the sum over all kn+1 assignments.

Each region of a matching u contains one or more segments on the bound-
ary of u. Labelling these regions by idempotents ei induces a labelling of the
corresponding segments by the same index i (or by the idempotent ei).

An assignment c of minimal idempotents to all regions of u induces a se-
quence of indices (i1, . . . , i2n), the labels of the 2n segments on the boundary
of u, going from left to right. Here we view the boundary as the real line and
crossingless matching u as lying in the bottom half-plane, see Figure 39 for
an example.

Given two such vectors (u, c) and (v, c′), with u, v ∈ B2n
0 , their inner

product is 0 unless the idempotent assignments c, c′ give rise to the same
sequence (i1, . . . , i2n) of indices on the boundaries of u and v. Consider the
Gram matrix of the bilinear form in the spanning set {(u, c)} of U2n

0 for all
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Figure 39: Labelling of a crossingless matching of 8 points by a sequence
(i1, . . . , i8) corresponding to idempotents placed in the boundary regions.

possible matchings u and labellings c. This matrix is block-diagonal, where
we sort the rows and columns into blocks according to the induced sequences
(i1, . . . , i2n) of labels of boundary segments. Here 1 ≤ i1, . . . , i2n ≤ k.

There may not be any vectors (u, c) inducing a particular sequence. For in-
stance, (1, 2, 2, 1) is an example of such a sequence, for n = 2. These sequences
can be ignored, with the corresponding blocks of size 0 × 0 of determinant 1
by convention.

Suppose that the pairing ((u, c), (v, c′)) is non-zero, so that, in particular,
c and c′ induce the same sequence on the boundary. The circular form vu
has at most n circles, and has n circles if and only if u = v. The labelling
c induces a labelling of regions of vu, also denoted c. The element α((vu, c))
can be evaluated inductively on the number of circles in vu, starting with the
innermost circles, using the matrix a = (aij) to compute the action of ω and
multiplication in the semisimple algebra Z to reduce the result, at each step,
to a linear combination of circular forms with one less circle each and a full
idempotent assignment to the regions. When no circles are left, we use the
vector b = (bi) to evaluate each of the resulting diagrams of the empty plane
with an idempotent ei in it.

We see that the evaluation α((vu, c)) is a polynomial with each term of
degree one in the bi’s and degree m in the aij ’s, where m is the number of
circles of vu. Notice that m ≤ n, with equality occurring if and only if v = u.
Consequently, each of the diagonal terms of the Gram matrix has degree n in
the a′ijs, while all off-diagonal terms have strictly lower degrees.

Switching to the bidegrees, as earlier defined, each diagonal term is a ho-
mogeneous element of the ring R′ of bidegree (n, 1 − n). Each off-diagonal
term is homogeneous of bidegree (m, 1 −m) for m < n.

To show that the determinant of the Gram matrix is non-zero for generic
values of the parameters, it suffices to check that each diagonal entry of the
matrix is non-zero for some aij ’s and bi’s. This would imply that each diagonal
entry is a non-zero polynomial, necessarily of bidegree (n, 1 − n). Collapsing
bidegree (n1, n2) into a single degree n1 − n2 would tell us that the deter-
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minant is a polynomial of degree 2n− 1, with a nontrivial top homogeneous
term, implying the proposition.

For a given diagonal entry α(uu, c) set aij = 1 for all i, j and bi = 1 for
all i. Then α(uu, c) = 1 	= 0. The proposition follows.

We formulate the following conjecture, generalizing the statement for
Temperley–Lieb categories and Meander determinants from Theorem 21, re-
garding degeneracies in the Gram determinants of the paring associated to a
k-spherical triple for a semisimple k-algebra. This conjecture have been ver-
ified computationally using MapleTM for morphism spaces Hom(n,m) with
n + m ≤ 10 for a two-dimensional algebra (see Tables 1–4).

Conjecture 23. In the setup of Proposition 22, if all bi 	= 0, then the factors
of the Gram determinants are Chebychev polynomials of the second kind in
the variables cij :=

√
bi/bjaij. In particular, the only degeneracies occur when

cij = q + q−1 for q a root of unity.

The case of a non-semisimple algebra appears very interesting and we
hope to look into it in the future.

5.4. Example: derivation diagrammatics

Additional properties of ω may lead to rules for manipulation and simplifica-
tion of such diagrams. For instance, assume that set S ⊂ A generates A, that
is, the algebra homomorphism R[S] −→ A is surjective. Furthermore, assume
that ω = ∂ is a derivation, that is, ∂(ab) = ∂(a)b + a∂(b), see Figure 40.
Then any diagram reduces to a linear combination of products of diagrams
representing ∂n(s), for various s ∈ S and n ∈ Z+, see Figure 41 for examples.

Figure 40: The Leibniz rule for derivations, where a and b represent arbitrary
diagrams.

The first Weyl algebra and an sl2-action on polynomials Consider
a basic example when the center Z(A) = k[x] is the polynomial ring in one
variable x over a field k. For this diagrammatics we do not need a pair (A, F )
of a category and a self-adjoint functor and can just work with a commutative
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Figure 41: Examples of derivation diagrams.

Figure 42: Derivation diagrammatics, multiplication by • = x.

algebra Z and a linear operator on it. For this example, Z = k[x] and the
operator ω is the differentiation

(68) ∂ : Z −→ Z, ∂(x) = 1, ∂(ab) = ∂(a)b + a∂(b), a, b ∈ Z.

Then any diagram of nested circles and dots reduces to a polynomial in Z
upon repeated simplification.

Let

(69) A1 = Z〈∂〉 = k〈x, ∂〉/(∂x− x∂ − 1)

be the first Weyl algebra, that is, the algebra of polynomial differential op-
erators on one variable x. This algebra acts on Z = k[x], with x acting by
adding a dot outside of a diagram and ∂ acting by wrapping a circle around
a diagram, with the relation in Figure 42.

Note that to any commutative algebra and a linear operator on it we can
associate a monoidal category as in Section 3. We do not know the defining
relations in that category for the pair (k[x], ∂).

The Lie algebra sl2 acts via polynomial derivations

(70) E �→ x2∂, H �→ 2x∂, F �→ −∂

on P1, for ∂ = ∂
∂x , and this action extends to a homomorphism from U(sl2)

to A1. The diagrammatic counterpart of the action is shown in Figure 43.
A more sophisticated example of an sl2 action via annular diagrams can

be found in [4], which comes from the annular closure of categorified quantum
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Figure 43: The action of E,H, F via annular diagrams.

sl2. There the action extends to an action of the current algebra. It may be
interesting to compare it with the more elementary example here.

Figure 44: Diagrammatics with labels from an A1-module M , an element m
of M , and the action of x and ∂ on m.

More general derivation diagrammatics Instead of acting on polyno-
mials, we can take any module M over A1, make a hole in the plane to insert
elements m of a module M and have A1 act diagrammatically, via adding a
dot (the action of x) and circle wrapping (the action of ∂), see Figure 44.
The relation in Figure 42a holds with an element m of M in place of f . This
diagrammatics may be useful, for instance, for analyzing bilinear forms on M
with suitable compatibility conditions on the action of A1. For this applica-
tion, one would glue two planar diagrams describing the action of A1 on two
copies of M into one diagram on the sphere.

More generally, generalized diagrammatics of this sort may be useful for
studying rings of operators acting on commutative algebras. For the Weyl
algebra, An = A⊗n

1 , where

An := k〈x1, . . . , xn, ∂1, . . . , ∂n〉/(xixj − xjxi, ∂i∂j − ∂j∂i, ∂ixj − xj∂i − δi,j)
(71)

the diagrammatics will consists of n types of dots colored by {1, . . . , n}, one
for each generator xi, and n types of wrapping circles, also labelled by numbers
from 1 to n, one for each ∂i, with some relations shown in Figure 45. For An
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Figure 45: Diagrammatic interpretation of some relations in the Weyl alge-
bra An. The generators xi and ∂i are given by a dot and circle labelled i. The
circle wraps about the area to be differentiated. If one needs to keep track of
powers of a dot, a possible convention is to write the color to the lower left
and the power to the upper right of the dot.

diagrammatics, one can, in addition, allow generic intersections of circles of
different colors, with circles sliding freely through each other via relations in
Figures 46 and 47. Doing this allows for a local diagrammatic interpretation
of the commutativity of derivations, ∂i∂j = ∂j∂i, see Figure 46 on the right.

A diagram of overlapping circles and dots on n colors can be evaluated by
splitting it into n diagrams each containing only dots and circles of one color,
evaluating each diagram via iterated derivations and taking the product of
evaluations. From this evaluation rule one can obtain defining relations for
this toy example. An additional relation is that for i 	= j an i-dot can pass
through the boundary of a j-circle.

Figure 46: The relation (A) allows differently colored circles to cross. It can
be viewed as the simplest “virtual crossings” simplification relation. (B) is
a local derivation of commutativity of the operators ∂i, ∂j . Here, the middle
equality is an isotopy of diagrams.

In a more subtle example in [4] (also see [5] for the multi-color gener-
alization) one allows intersections of circles of the same color (the sl2-case
corresponds to one color) as well as self-intersections of a circle. Circles, in
addition, carry dots on them and the ring of operators given by annular dia-
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Figure 47: Another standard relation on virtual crossings, with i, j, k pairwise
distinct.

grams acts on a ring isomorphic to the ring of symmetric functions in infinitely
many variables.

Divided power differentials Let us go back to our original example of one
variable x represented by a dot and derivation ∂ represented by a circle around
the polynomial which is being differentiated, see the discussion around (68). If
we change the ground ring from k to Z, the corresponding ring of polynomials
Z[x] admits divided powers differentiations

∂(n) := ∂n

n! , ∂(m)∂(n) =
(
n + m

n

)
∂(n+m).

To describe them, we can enhance the diagrammatics by letting a circle of
thickness n denote ∂(n), see Figure 48.

Figure 48: A circle of thickness n is denoted by a double circle with label n
on the top right and symbolizes the n-th divided power differentiation ∂(n)

applied to the label (function) inside the circle.

The Leibniz rule

(72) ∂(n)(fg) =
n∑

k=0
∂(k)(f)∂(n−k)(g)

translates into the diagrammatics in Figure 49.
Two-dimensional diagrammatics for manipulation of these divided powers

may appear contrived, but it may potentially lead to new extensions of this



2474 Mikhail Khovanov and Robert Laugwitz

Figure 49: The Leibniz rule.

or related algebraic constructions. We may try, for instance, to allow the
lines for different divided powers of ∂ to split and merge. Figure 50a depicts
an example where a double line representing ∂(2) splits into two single lines
representing ∂, which then merge back into the double line.

Figure 50: The operator ∂(1,1), given by formula (74), applied to a pair of
functions f, g.

We can place polynomials f and g into two bounded regions separated
by the lines of derivatives in the plane. In the left diagram of Figure 50b, g
is nested deeper than f , and we apply ∂(2) to it, while only applying ∂ to f .
We then modify the Leibniz rule for ∂(2) applied to the product

(73) ∂(2)(fg) = f ∂(2)(g) + ∂(f) ∂(g) + ∂(2)(f) g

to the rule that the left diagram in Figure 50b evaluates to

(74) ∂(1,1)(f, g) := f∂(2)(g) + ∂(f)∂(g).

The expression is similar to that in (73) for ∂(2), but the last term is dropped.
The new operator ∂(1,1) applied to a pair (f, g) differs from ∂(2) applied to fg
in that the term ∂(2) is not applied to f , for it is not nested inside both circles
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into which we can split the graph in Figure 50a. The arrow in Figure 50b
depicts this modification of the Leibniz rule.

Generalizing, consider a line of thickness n that splits into r lines of
thickness n1, . . . , nr that run in parallel, with n = n1 + · · · + nr. The lines
then merge back into the original line, see Figure 51 on the left. Denote the
sequence by n = (n1, . . . , nr). Diagrammatically, the corresponding operation
∂n(f1, . . . , fr) is given by the diagram that envelops r bounded regions with
polynomials f1, . . . , fr in them as in Figure 51 on the left.

Figure 51: The n-differentiation operator ∂n acting on (f1, . . . , fr).

We can then modify the Leibniz rule for the diagram in Figure 51 and
define n-differentiation, for n = (n1, . . . , nr), by

(75) ∂n(f1, . . . , fr) :=
∑
k

∂(k1)(f1) . . . ∂(kr)(fr),

where the sum is taken over all sequences k = (k1, . . . , kr) with ki ∈ Z+, such
that

k1 + k2 + · · · + kr = n,

k1 ≤ n1, k1 + k2 ≤ n1 + n2, . . . k1 + · · · + kr−1 ≤ n1 + · · · + nr−1.

In this situation, we also write k ≤ n. By a region of depth m we mean a
region separated by lines of total thickness m from the outer region. When
distributing divided powers of ∂ to act on polynomials in various regions of
the diagram, on a polynomial located in a region of depth m the divided
power of degree at most m may act.

It may be interesting to see whether this or related diagrammatics can be
developed further to justify such two-dimensional manipulation rules for var-
ious systems of operators acting on commutative rings, beyond the examples
coming from trace reductions of categorified quantum groups and categori-
fications of the Heisenberg algebra, where commutative rings on which the
operators act are rings of symmetric functions in finitely many variables and
their tensor products.
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Frobenius endomorphism Given a commutative ring A of characteristic
p, the Frobenius endomorphism σ : A −→ A acts by σ(a) = ap, for a ∈ A.
Elements of A may be depicted by labelled dots floating in the plane, and
the action of σ by a circle enveloping a region of a plane, with the relations
shown in Figure 52.

Figure 52: Graphical calculus for the Frobenius endomorphism of A.

By itself, this diagrammatics is very simple; one can try combining it with
deeper structures in number theory and algebraic geometry in characteristic
p or to convert Frobenius endomorphisms into defect lines on suitable foams.

6. Generalizations and transfer maps

6.1. Generalizing to a biadjoint pair (F,G)

In this paper we have discussed connections between self-adjoint functors,
circular series and forest series evaluations, and triples (R,Z, ω) and quadru-
ples (R,Z, ω, ε). These connections have a straightforward modification for
biadjoint pairs (F,G) between categories A0 and A1,

(76) F : A0 → A1, G : A1 → A0.

Planar diagrams are now checkerboard colored by 0 and 1, the labelling de-
noting categories A0 and A1. Lines and circles of diagrams obtain induced
orientations so that as one travels along an arc in the orientation direction,
the region labelled 0 appears on the right. The resulting systems of arcs and
circles are then compatibly oriented. Section 2.1 explains these diagrammat-
ics, with the categories denoted by A,B there rather than A0,A1.

Closed diagrams of this form, see Figure 53 for an example, are determined
by the underlying circular form (without orientations of circles) and the label
(0 or 1) of the outer region. That data determines orientations of all circles
and labels for all regions.

Consequently, an evaluation function α on such oriented circular foams
can be described by a pair of circular evaluation functions (α0, α1), one for
each label of the outside region. We call such series α = (α0, α1) an oriented
circular series.
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Figure 53: An example of a closed diagram for the biadjoint pair (F,G) which
defines an element of the center of A0.

The construction of state spaces A(μ) goes through as earlier, with objects
μ now being alternating sequences of pluses and minuses, describing orien-
tations at boundary points. For the empty sequence, one should additionally
specify 0 or 1, that is, the label of the region that contains the boundary circle
along which the diagrams are paired. One can denote these empty sequences
by ∅0 and ∅1.

To define state spaces, one again needs an asymmetric setup, so that
diagrams in a disk are paired to similar diagrams in an annulus to produce a
planar diagram and evaluate it.

The diagram of categories and functors (51) extends to this “checker-
board” case, with the caveat that the various monoidal categories in the
diagram become 2-categories with two objects, 0 and 1, corresponding to the
possible labels of the regions.

An oriented circular series α (over a field k) as above is called recognizable
if all state spaces A(μ) are finite-dimensional.

Proposition 24. An oriented circular series α = (α0, α1) is recognizable if
and only if the state spaces A(∅0) and A(∅1) are finite-dimensional.

Proof. Proof is straightforward and left to the reader. This proposition is
analogous to Proposition 19.

The state spaces A(∅0) and A(∅1) are commutative algebras, with trace
maps ε0, ε1, respectively. Taking a closed diagram with an outer region 0,
respectively 1, and wrapping a circle around it gives a diagram with the
opposite label for the outside region. Consequently, these operations give rise
to linear maps

(77) ω0 : A0 −→ A1, ω1 : A1 −→ A0.
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The commutative algebras A(∅0), A(∅1) are Frobenius in the weak sense,
where in analogue with equation (49) indices of ω must alternate and xi’s
must alternate between taking values in the two algebras. For instance, for
x ∈ A(∅0) there must exist k ≥ 0 and length k sequences {xi}, {yi} such that
either

(78) ε0(xkω1(yk−1 . . . (ω0(x2ω1(y1ω0(x1x)))) . . . ) 	= 0.

or

(79) ε1(ykω0(xk . . . (ω0(x2ω1(y1ω0(x1x)))) . . . ) 	= 0.

Proposition 25. Recognizable oriented circular series α = (α0, α1) are in a
bijection with isomorphism classes of pairs (A0, A1) of commutative algebras
over k, with traces εi : Ai −→ k, i = 0, 1 and linear maps ω0 : A0 −→ A1,
ω1 : A1 −→ A0 subject to the above nondegeneracy condition (weak Frobenius
property for (Ai, ωi, εi), i = 0, 1), and the stability condition that (A0, A1)
is the only pair of subalgebras in A0, A1 that contain unit elements and are
closed under ω0, ω1.

Proof. We leave the details of the proof, which is analogous to that of Propo-
sition 20, to the reader.

When extending to the oriented checkerboard case, with all categories
in (51) becoming 2-categories with objects 0, 1, the square of what are now
2-functors continues to be commutative in the strong sense, as long as α is
recognizable, see an earlier discussion.

The analogue of a circular triple (R,Z, ω) in this setup is the data of

• A pair of commutative R-algebras Z0, Z1.
• R-linear maps ω0 : Z0 −→ Z1 and ω1 : Z1 −→ Z0.
• (For the spherical case:) the condition

(80) ω0(z0)z1 = z0 ω1(z1), z0 ∈ Z0, z1 ∈ Z1.

It is not difficult to write down the corresponding condition on oriented
circular series α to make it spherical. For spherical series, the bilinear pairing
can be made symmetric: arc and circle diagrams on an annulus now reduce
to such diagrams in a disk, and the pairing is applied to two disk diagrams
rather than coupling a disk diagram to an annulus diagram. As in the self-
adjoint case, discussed at length earlier, this should simplify computations
and understanding of the corresponding state spaces and categories.
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The generating one-morphisms + and − in each of the corresponding 2-
categories with two objects are biadjoint, with the biadjointness 2-morphisms
given by oriented cup and cap diagrams (four diagrams in total). Vice versa,
from a suitable biadjoint pair of functors (F,G) between pre-additive cate-
gories A0,A1, see (76), versions of oriented circular series, state spaces, ori-
ented circular triples, etc. can be recovered. Trace maps εi : Z(Ai) −→ R,
i = 0, 1 from centers of these categories to the ground ring need to be fixed
to write down oriented circular series associated to a biadjoint pair. This
way, the notion of a circular quadruple from Section 3.4 also extends to this
oriented (or checkerboard) case in a straighforward fashion.

Further generalization, with α taking values in a commutative semiring
R, is possible. That case would, again, bring the theory closer to that of
weighted tree automata.

6.2. Systems of biadjoint pairs and decorated tree series

The two setups, circular series related to a self-adjoint functor and oriented
circular series for a biadjoint pair, admit a further generalization. Consider a
graph Γ with a set of vertices V (Γ) and a set of edges E(Γ), with multiple
edges and loops allowed. Some loops may be oriented.

Such a graph can be associated to a data of categories and biadjoint
pairs of functors or self-adjoint functors between them. That data consists of
categories Av, for v ∈ V (Γ) and a pair of biadjoint functors (Fe, Ge) between
categories Av1 , Av2 for an edge e with vertices v1, v2. For a loop e at vertex
v, one can consider two cases:

• An oriented loop e corresponds to a biadjoint pair (Fe, Ge) of endofunc-
tors of Av.

• An unoriented loop e corresponds to a self-adjoint endofunctor Fe in Av.

To such a graph Γ one can associate the set of Γ-decorated diagrams of
planar embedded circles. We label regions of such a diagram D by vertices of
Γ and circles by edges. If the two regions on the sides of a circle are labelled
v1, v2, the circle must be decorated by an edge with endpoints v1, v2. If there
is only one such edge, the decoration can be omitted or reconstructed from
the labels of the regions. If both regions around the circle are labelled by
the same vertex v ∈ V (Γ), the circle must be labelled by a loop e at v. If
the loop e is oriented (and, thus, will correspond to a biadjoint pair (Fe, Ge)
of endofunctors), an orientation for the circle must be chosen, to distinguish
between Fe and Ge or, vice versa, to reconstruct the functors and categories
from the evaluation data, cf. Section 2.1. For a circle labelled by an unoriented
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loop no additional decoration at that circle is needed, as in Section 2.2. Graphs
Γ with infinitely many vertices or edges may be allowed.

Figure 54: An example of graph Γ is shown in (a) and an example of a Γ-
circular form in (b). Since each vertex has a single loop, we omit labels of
the corresponding circles in the picture (these circles have the same region
labels on both sides). Orientations are chosen for each circle labelled by the
oriented loop e3 (these are the two circles with regions labelled 1 on both
sides) corresponding to the endofunctor of Av1 and its biadjoint. If the graph
Γ comes with corresponding categories and functors, then this diagram gives
an element in Z(Av0).

Given a graph Γ as above, consider all planar Γ-decorated circular di-
agrams U(Γ)∅. An example of a Γ-decorated circular diagram is given in
Figure 54. There is the 2-category U(Γ) with the set of objects V (Γ), one-
morphisms given by paths in the graph Γ and 2-morphisms being isotopy
classes of Γ-decorated one-manifolds with boundary embedded in R × [0, 1].
Decorations of these planar diagrams, when restricted to the boundaries
R× {0},R× {1}, give paths in the graph Γ, see Figure 55 for an example of
a 2-morphism in U(Γ) for Γ as in Figure 54a.

A closed diagram with an outer region labelled by v ∈ V (Γ) gives an
endomorphism of the 1-morphism (v), the latter denoting the length zero
path that starts and ends at v. The set of endomorphisms of (v) may be
denoted U(Γ)(v)(v) or, simply, U(Γ)v. More generally, the set of 2-morphisms
from the path p to the path p′ is denoted U(Γ)p′p or HomU(Γ)(p, p′). With the
earlier notation, the set of Γ-decorated circular diagrams is the union

(81) U(Γ)∅ =
⊔

v∈V (Γ)
U(Γ)v

of diagrams with outer label v, over all vertices v of Γ.
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Figure 55: A 2-morphism in U(Γ), with Γ as in Figure 54b, from one-morphism
e0e2e3e

∗
3 to e0e1e1e2. Both of these one-morphisms are paths in Γ. Notation

e∗3 means that we go along e3 in the opposite orientation direction, as part of
the corresponding path.

A Γ-circular series α is a map

(82) α : U(Γ)∅ −→ k

that assigns an element of the ground field k to each Γ-circular diagram. Such
a series α is called spherical if it descends to a map from the set of isotopy
classes of Γ-circular diagrams on the two-sphere rather than the plane.

With a Γ-circular series α we can repeat the constructions in Section 3.4
and define the state space A(p), for any closed path p in Γ, as the space
with a basis of Γ-diagrams in a disk with boundary p modulo the kernel of
its pairing with the space of corresponding diagrams in the annulus. The
morphism space between two paths p, p′ with the same source vertices and
same target vertices is defined as A(p∗p′), where p∗ is the reverse path of p.
This results in a 2-category U(Γ)α, analogous to the monoidal category Uα in
Section 3.4. The skein 2-category SU(Γ)α can be defined by analogy with the
corresponding monoidal category SUα in that section, by only imposing the
relations on linear combinations of closed diagrams in a disk (no boundary
points).

The resulting 2-categories carry pairs of biadjoint 1-morphisms (or self-
adjoint 1-morphisms), one for each unoriented (respectively, oriented) edge
in Γ.

A Γ-series α is called recognizable if the state spaces A(p) are finite-
dimensional for any closed path p in Γ.

Proposition 26. The Γ-series α is recognizable if and only if the state spaces
A((v)) are finite-dimensional, for any vertex v of Γ.
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Proof. Recall that (v) is the length zero closed path at vertex v. The proof is
immediate.

We leave it to the reader to write down the analogues of Propositions 20
and 25 for this more general setup.

For recognizable α one can form a diagram of 2-categories and 2-functors

(83)

U(Γ) kU(Γ) SU(Γ)α DSU(Γ)α

U(Γ)α DU(Γ)α

analogous to the one in (51). The two 2-categories on the right are Karoubi
completions of the corresponding 2-categories on the side of the left vertical
arrows. The square is commutative in the strong sense, as discussed earlier.

6.3. Adding defects to lines

Another generalization of the circular form construction is to allow lines to
carry zero-dimensional defects. On the categorical side, this generalization
corresponds to adding functor endomorphisms F ⇒ F and denoting them by
dots on lines. For a simple example, given a self-adjoint functor F , choose
a natural transformation a : F ⇒ F subject to the (strong) ambidexterity
condition shown in Figure 56.

Figure 56: The duality relations in (b) are implied by the property in (a).

The analogue of a circular form in this case is a circular form together with
dots placed on its components. Dots can freely move along the component.
The number of dots on each component is then an invariant of a diagram,
and isotopy classes of diagrams are in a bijection with forests as in Section 4
with vertices labelled by non-negative integers. We call these diagrams dotted
circular forms and draw some examples in Figure 57.
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Figure 57: Examples of dotted circular forms.

In the “dotted” version of the category U, which we denote by •U, circles
and arcs of a diagram may carry freely floating dots. A dotted circular series
is a map

α : •U0
0 −→ k

from the set of dotted circular forms (up to isotopy) to the ground field k.
Given α, one can define state spaces A(n) for each n ≥ 0 as before, by

pairing dotted diagrams of n arcs and any number of circles in a disk with
such diagrams in an annulus, followed by taking the quotient of the disk space
by the (left) kernel of the bilinear form, in full analogy with Section 3.4. See
Figure 58 for an example of the pairing of dotted diagrams.

Figure 58: Pairing of a disk diagram and an outer annular diagram, both
equipped with dots on lines.

Recognizable dotted circular series are defined by the requirement that
state spaces A(n) are finite-dimensional for all n, see also Definition 18. The
following generalizes Proposition 19.

Proposition 27. A dotted circular series α is recognizable if and only if A(0)
and A(1) are finite-dimensional.

Proof. The proof uses that a diagram in •U2n
0 is given by nesting a cup dia-

gram in •U2
0 into an inner region of a diagram in •U

2(n−1)
0 . Using induction
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on n and assuming that both A(0), A(1) are finite-dimensional, one obtains a
finite spanning set for A(n), implying that it is finite-dimensional. The other
implication is clear.

Wrapping a circle with n dots around a closed diagram induces a k-linear
map ωn : A(0) −→ A(0), see Figure 59 for an example of such a wrapping
map.

Figure 59: The map ω4 applied to the dotted diagram on the left.

A sequence of linear maps ω∗ := (ω0, ω1, . . . ) is called recurrent or linearly
recurrent if there exist a non-negative integer N and bi ∈ k, 1 ≤ i ≤ N , such
that for any n ≥ 0

(84) ωn+N = b1ωn+N−1 + b2ωn+N−2 + · · · + bNωn.

Notice that the last few bi’s may be zero, so that the recursion does not
necessarily start in the lowest possible degree.

Proposition 28. Suppose that A(0) and A(1) are finite-dimensional, for a
dotted circular series α. Then the sequence ω∗ = (ω0, ω1, ω2, . . . ) of endomor-
phisms of A(0) is linearly recurrent.

Proof. Elements of A(1) can be represented as planar boxes with two strands
emanating out, denoting a linear combination of dotted circular forms in •U2

0.
Placing a dot on the left strand is then an endomorphism of A(1), see Fig-
ure 60, that we can denote by d. Since A(1) is finite-dimensional, the minimal
polynomial for operator d gives us a recurrence relation on powers of d, which
converts to a recurrence relation for the ωn’s.

Remark. As a partial converse to Proposition 28, if ω∗ is recurrent and A(0)
finite-dimensional then A(1) is also finite-dimensional.
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Figure 60: The k-linear map d : A(1) → A(1) of adding a dot on the left
strand.

Remark. The map d placing a dot on the left strand of a diagram is an
endomorphism of A(1) viewed as an A(0)-bimodule, with the bimodule ac-
tion given by placing closed dotted diagrams (which are diagrams defining a
spanning set of A(0)) in the two regions on the two sides of the unique arc in
a diagram in A(1). The minimal degree integral relation on powers of the dot
with coefficients in A(0)⊗2 may have lower degree than that on powers of the
dot with coefficients in k. The former can be thought of as a skein relation to
reduce a power of a dot to a linear combination of lower powers times closed
diagrams placed in the two regions on the sides of the arc that carries powers
of the dot.

The data (A(0), ω∗, ε) is non-degenerate in the following weak sense. For
any x ∈ A(0), x 	= 0 there exists k ≥ 0 and sequences x1, . . . , xk ∈ A(0),
i1, . . . , ik−1 ∈ Z+ = {0, 1, . . . } such that

(85) ε(xk ωik−1(xk−1 . . . ωi2(x2 ωi1(x1x))) . . . ) 	= 0.

We call a datum (A,ω∗, ε) as above with a A finite-dimensional a commutative
weakly Frobenius ∗-triple.
Proposition 29. There is a bijection between recognizable dotted circular
series α and isomorphism classes of the following data:

• A finite-dimensional commutative k-algebra A with the trace form ε and
a recurrent sequence of linear maps ωn : A −→ A, n ≥ 0 subject to (85),
that is, a commutative weakly Frobenius ∗-triple.

• Stability condition: A is the only subalgebra of A that contains 1 and is
closed under ωn, n ≥ 0.

Proof. The proof is straightforward.

Spherical dotted circular series can be defined analogously, cf. (43). In
the spherical case, the setup is more symmetric, with the bilinear pairing
coming from gluing a pair of dotted diagrams in a disk, rather than dotted
diagrams in a disk and an annulus, leading to possible simplifications in the
computation of skein relations.
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Remark 30. Instead of a dot of a single type, one can fix a set S of labels
for dots and consider dotted circular diagrams with dots labelled by elements
of S. If the structure of embeddings of circles into the plane or 2-sphere is ig-
nored, one recovers the familiar notion of noncommutative recognizable power
series, see [9] and its tensor envelope [36]. Keeping track of the embedding
in R2 would add additional complexity to the theory. We do not attempt to
develop it here.

Our strong ambidexterity property for an endomorphism of a self-adjoint
functor, allows to work with a single type of dot on strands, so that the
number of dots on each circle is the only additional information for closed
diagrams. It is also well-suited for dealing with the spherical case of such
diagrams, considered then as diagrams on a 2-sphere.

By the weak ambidexterity of an endomorphism a of a self-adjoint functor
F we mean the relations shown in Figure 61 on the right. The diagram in
Figure 61 on the left defines the endomorphism a∗ of F .

Figure 61: The definition of a∗, denoted by a hollow dot, and the weak am-
bidexterity condition.

In general, the endomorphisms a and a∗ of F do not seem to come, with
any monomial relations on them. This means that the order of a’s and a∗’s in
the product of endomorphisms of F is important, and, in a closed diagram,
any circle will come with a word in a and a∗, up to overall cyclic order. This
gives a lot of freedom in creating possible diagrams and relates this setup to
that of noncommutative power series and associated monoidal categories, see
the remark above and [36]. Unlike [36], one-manifolds with defects (dots) now
lie in the plane and the nesting of these manifolds is part of the structure of
such diagrams. One can think of this setup as the (2, 1, 0)-manifold case, with
the ambient manifold being R2 or S2, embedded one-manifolds (circles) being
codimension one defects and dots on one-manifolds are defects on defects. This
can be further extended by coloring one-manifolds as in Section 6.2 as well
as allowing dots (codimension two defects) to float in the regions of the plane
or the 2-sphere separated by the circles. The later variation is similar to that
in [41, Section 8]. A further extension is to generalize from diagrams in R2 and
S2 to those in more general surfaces. An even further development is to extend
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from collections of (decorated) circles in the plane or a surface to embedded
decorated graphs in R2 and in more general surfaces. Vaughan Jones’ planar
algebras [31] give rise to such planar graph and network evaluations with
additional strong unitarity and positivity properties.

Given a k-linear endofunctor F : A → A, we may consider the monoidal
subcategory AF of the k-linear monoidal category Funk(A,A) that F gen-
erates. If F is self-adjoint, then F is self-dual as an object of AF . This self-
duality induces a pivotal structure on AF provided that left and right duali-
ties coincide [56, Section 1.7]. Equivalently, F satisfies the weak ambidexterity
property that

(86) a∗ = (1Fμ)(1Fa1F )(δ1F ) = (μ1F )(1Fa1F )(1F δ) = ∗a,

for any endomorphism a of F , see Figure 61. Examples of endofunctors satisfy-
ing weak ambidexterity can be given by tensoring with objects from a pivotal
category. These are, in general, not self-dual. We refer to [54] for graphical
calculus associated to pivotal categories.

Remark 31 (Reflection involution). Recall the reflection involution in the
plane, reversing the plane’s orientation. This involution fixes the isotopy class
of any planar diagram of circles, see Proposition 1. Once dots of several types
are allowed on circles, as additional defects, see Remark 30, this involution
no longer has to be trivial. Alternatively, if one adds labelled dots floating in
the regions of the diagram, the reflection involution may permute nontrivially
labels of the dots. With this reflection acting nontrivially, the bilinear form on
suitable state spaces may not be symmetric and one needs slight changes in
our construction. The ground field k may come with an involution ρ to match
the reflection involution, with the bilinear pairing hermitian with respect to
(k, ρ).

6.4. The transfer map and its diagrammatics

In this section, we discuss diagrammatics of transfer maps in the case of a
biadjoint pair of functors.

Adding a boundary and placing morphisms on it Suppose given a bi-
adjoint pair of functors (F,G) between categories A,B as in Section 2.1. The
planar string diagrammatics for (F,G), and for collections of biadjoint pairs,
can be enhanced by considering the half-plane to the left of a vertical line L

that carries objects and morphisms of the categories A and B as follows. Inter-
vals in L are labelled by categories A and B. A dot on an interval of L labelled
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by A denotes a morphism f : a1 → a2 in A, with a collection of consecutive
dots representing the composition a1

f1−→ a2 −→ · · · −→ an−1
fn−1−−−→ an of

morphisms, see Figure 62.

Figure 62: (a) A morphism f : a1 −→ a2 in A; (b) a composition f2f1 : a1 −→
a3 of morphisms in A; (c) a composition fn−1 . . . f1 : a1 −→ an in A; (d) the
functor F applied to a morphism f resulting in the morphism Ff : Fa1 −→
Fa2 in B; (e) a morphism g : b1 −→ b2 in B, (f) a composition of morphisms
g2g1 in B.

For a morphism g : Fa → b in B, where a is an object in A, and b an
object in B, we use specific diagrammatics of the two lines denoting F and
ida merging into a single line denoting idb at a dot. Similar diagrammatics are
used for morphisms f : a → Gb in A, see Figure 63a–b. Similarly, we denote
morphism h : Gb → a in A, and k : b → Fa in B, with arrows of opposite
orientation, see Figure 63c–d.

Using that F is left adjoint to G, we can display the mutually inverse
natural isomorphisms

HomB(Fa, b) ∼←→ HomA(a,Gb),
g �→ g∗ = Gg(δ2)a, f �→ ∗f = (μ2)bFf,

(87)

using these diagrammatics, see Figure 64. Here, δ2, μ2 are the unit and counit
of the adjunction (F,G), see Section 2.1. We may use similar diagrammatics
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to express the natural isomorphisms

HomA(Gb, a) ∼←→ HomB(b, Fa),(88)

from G being left adjoint to F , using the natural transformations δ1, μ1 from
Section 2.1.

Figure 63: (a) A morphism g : Fa −→ b in B, for objects a ∈ A, b ∈ B and
the functor F ; (b) a morphism f : a −→ Gb in A; (c) a morphism h : Gb → a
in B; (d) a morphism k : b → Fa in A.

Figure 64: (a) the dual g∗ of a morphism g, given by composing with the
natural transformation δ2 : IdA −→ GF , see Figure 2 and Section 2.1; (b) the
inverse operation f �→ ∗f .

A natural transformation α : F1 =⇒ F2 between functors F1, F2 : A −→ B
is natural with respect to any morphisms f : a1 → a2 in A, via the commu-
tative diagram

F1(a1)
F1(f)

αa1

F1(a2)
αa2

F2(a1)
F2(f)

F2(a2).

(89)
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Figure 65 expresses this property diagrammatically, as an isotopy condition
between dots.

Figure 65: The property of a natural transformation α : F1 =⇒ F2 is the
isotopy (commutativity) condition that the dots denoting α and f on parallel
vertical lines can slide past each other.

Transfer maps The transfer (or trace) map [24, 45, 46] is the map

TfF : HomB(Fa1, Fa2) −→ HomA(a1, a2),(
f : Fa1 → Fa2

)
�−→

(
(μ1)a2G(f)(δ2)a1 : a1 → a2

)
,

(90)

built using the natural transformations δ2, μ1 from the biadjointness data, cf.
Section 2.1. Interchanging the roles of F and G, we may similarly define

TfG : HomA(Gb1, Gb2) −→ HomB(b1, b2),(91)

using δ1, μ2 instead. We will focus on the case of TfF here. Transfer maps
appeared already in [48, Equations (57)–(58)]. There is a characterization of
Frobenius pairs of functors in terms of transfer maps [10, Proposition 45].

A morphism f in HomB(Fa1, Fa2) can be denoted by the diagram in
Figure 66a as a vertex on the boundary line bounding intervals for objects
a1, a2 along the boundary and with the lines, from the functor F on the
bottom and top edge of the region, going in and out of the vertex.

In this diagrammatic language, the transfer map TfF is given by closing
up the two ends of F into a loop, see Figure 66b. The result of evaluating
the transfer map is a balloon attached to a point on the boundary line, see
Figure 66b on the right.

The notion of the transfer map can be generalized by placing an element
z ∈ Z(B) of the center of the category B inside the region enveloped by the
line for F , see Figure 67, giving us a map

(92) TfF : Z(B) × HomB(Fa1, Fa2) −→ HomA(a1, a2),
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Figure 66: Transfer map diagrammatics for a morphism f : Fa1 −→ Fa2.

which, alternatively, may be hidden inside the original map, via the action

(93) Z(B) × HomB(Fa1, Fa2) −→ HomB(Fa1, Fa2),

of Z(B) on morphisms HomB(Fa1, Fa2) given by placing an element of Z(B)
in the region labelled B in Figure 66a.

For morphisms g1 : a1 −→ a2, g2 : a3 −→ a4 in A and f : Fa2 −→ Fa3 in
B the relations

(94) TfF (f ◦ F (g1)) = TfF (f) ◦ g1, TfF (F (g2) ◦ f) = g2 ◦ TfF (f),

hold, see [45, Proposition 1.8a]. Diagrammatically, they say that the isotopies
that change relative height of the cap and cup points of the balloon, relative
to the boundary points representing g1, g2, do not change the morphism, see
Figure 68.

The trace morphisms An endomorphism α : F −→ F can be denoted by
a dot on a line labelled by F , see Figure 69a. Closing the line into a circle,
using biadjointness, see Figure 69b, is the diagrammatic description of the
trace map of [6]:

(95) trA : End(F ) −→ End(IdA) ∼= Z(A),
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Figure 67: Wrapping F around a central element z of Z(B), the element z is
placed in the region symbolized by a square.

Figure 68: Equations (94) are isotopies that change relative heights.

The trace map can be written as the following composition

trA : IdA
δ2−→ GF

(idG)α−−−−→ GF
μ1−→ IdA.

The other trace,

trB : IdB
δ1−→ FG

α(idG)−−−−→ FG
μ2−→ IdB,

is given by closing the interval with α on the other side, into a clockwise
circle in the plane, with the category B on the outside of the diagram, see
Figure 69c.

Wrapping a central element z ∈ Z(B) by an F -labelled counterclockwise
oriented circle gives a map Z(B) −→ Z(A), see (70). More generally, we
obtain the composite morphism

Z(B) × End(F ) (93)−−→ End(F ) trA−−→ Z(A),(96)
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Figure 69: Diagrammatics of traces of endomorphisms of F . Closing a dotted
interval into a dotted circle gives the trace morphism trA in (b), while the
other closure is the trace trB in (c).

using the action from (93). It wraps a circle with dots labelled by endomor-
phisms of F around an element z of Z(B).

Figure 70: In (a), an element z ∈ Z(B) gives the endomorphism z idF of F
and the trace trA(z idF ) is a counterclockwise F -bubble wrapped around z.
In (b), an element z′ ∈ Z(A) gives the endomorphism idF z

′ of F and its
other trace, the B-trace, is a clockwise F -bubble wrapped around z′.

Interpreting the general transfer map in (90) diagrammatically requires
introducing a peculiar 4-valent vertex on the vertical boundary of the strip
to denote a morphism Fa1 −→ Fa2, see Figure 66 earlier. The input natural
transformation α : F =⇒ F in the trace morphism (95) induces morphisms
αa : Fa −→ Fa for all objects a in A. For this morphism αa, the 4-valent
vertex can be reduced to placing a vertical line with a dot labelled α in
parallel with the boundary labelled by the identity map of a, see Figure 71a.

The trace map bubbles in the presence of boundary describe suitable
morphisms in categories A and B. For instance, the diagram in Figure 71b is
the endomorphism trB(z)b : b −→ b for an object b of B and z ∈ Z(A).
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Figure 71: In (a), the four-valent vertex is simplified to parallel lines when
the morphism Fa1 −→ Fa2 is αa : Fa −→ Fa. In (b), diagrammatics for the
morphism trB(z)b : b −→ b.
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