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A note on continuous entropy
Roberto Longo and Edward Witten

Abstract: Von Neumann entropy has a natural extension to the
case of an arbitrary semifinite von Neumann algebra, as was con-
sidered by I. E. Segal. We relate this entropy to the relative entropy
and show that the entropy increase for an inclusion of von Neu-
mann factors is bounded by the logarithm of the Jones index. The
bound is optimal if the factors are infinite dimensional.

1. Introduction

In recent years, there has been much interest in applications of entropy to
quantum field theory. For example, a novel argument [2] for the Zamolod-
chikov c-theorem concerning the irreversibility of renormalization group flow
in 2 spacetime dimensions made use of the formal notion of the von Neumann
entropy of the density matrix of a quantum field reduced to a local region in
spacetime, a double cone. It is difficult to put this argument on a rigorous
basis because in quantum field theory the algebra of a double cone region
is actually a von Neumann algebra of Type III, and notions such as density
matrix and von Neumann entropy are not available for such algebras.

In the physics literature, the non-existence of a notion of entropy for an
algebra of Type III is described by saying that in quantum field theory, the
entropy of a double cone region (or of any local region in spacetime) is ul-
traviolet divergent. The nature of the ultraviolet divergence depends on the
spacetime dimension. In two dimensions, the divergence is only logarithmic.
The argument in [2] relies on this and involves considering linear combina-
tions of entropies for different double cone regions from which the divergences
cancel. Defining rigorously finite linear combination of entropies might be one
way to put the argument in [2], and others somewhat like it, on a rigorous
basis. This would require considerations beyond the von Neumann algebra
structure, since the assertion that the ultraviolet divergence of the entropy is
logarithmic is special to 2 spacetime dimensions.

Received February 5, 2022.
2010 Mathematics Subject Classification: Primary 94A17, 46L10; sec-

ondary 81T05.

2501

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


2502 Roberto Longo and Edward Witten

Here we will consider a somewhat similar but much simpler situation in
which a renormalized notion of entropy is available. Entropy for an algebra
A of Type II1 was first discussed long ago by I. E. Segal [20]. Segal noted
that for a state of A, a fairly natural notion of entropy can be defined, with
the unusual property that there is a (normalized) state of A with maximum
entropy, namely the tracial state τ , and no state of minimum entropy. Entropy
is then defined to vanish for the tracial state, and therefore, to be negative (or
equal to −∞ in some cases) for other states. To see the interpretation of this
entropy in terms of renormalization, consider a hyperfinite Type II1 algebra
A, which is the large i limit of a family of matrix algebras Mi of dimension n2

i .
The maximum entropy state of Mi is the tracial state τi, with von Neumann
entropy SvN(τi) = log ni. In the limit i → ∞, τi converges to τ . If ϕi is a family
of states of Mi that converge for large i to a state ϕ of A, the Type II1 entropy
S(ϕ) can be defined as limi→∞(SvN(ϕi)−SvN(τi)) = limi→∞(SvN(ϕi)−log ni).
With this definition, it is clear that τ is the maximum entropy state of A and
has entropy 0. The subtraction of the divergent part logni is necessary to
ensure the existence of a large i limit, and makes clear the analogy with
renormalized entropy as studied in the physics literature.

A renormalized entropy can also be defined for an algebra A of Type II∞,
with the difference that in this case, because there is no canonical normaliza-
tion of a tracial weight of A, entropy is really only naturally defined up to an
additive constant, the same for all states. At first sight, one might think that
because the algebras of local regions in quantum field theory are of Type III,
entropy of a Type II algebra would have little application in physics. In fact,
this thought is probably one reason that entropy of an algebra of Type II has
been relatively little-studied. However, Type II algebras can appear in black
hole physics [24] and also in certain random matrix models [22], so there is
indeed some physical motivation to study entropy for Type II.

In this article, we observe that entropy for a state ϕ of a Type II algebra
can be interpreted as a relative entropy S(ϕ||τ). This implies that in a trace-
preserving inclusion of Type II algebras B ⊂ A, the entropy of any state
increases, cf. [20]. Our main result is a bound on the entropy increase in
terms of the Jones index [A : B].

Vaughan Jones made fundamental contributions in multiple areas of math-
ematics and mathematical physics. He always was extremely interested in
applications of operator algebras to physics. The Jones index of a subfac-
tor was an important tool in his discoveries in von Neumann algebra theory,
mathematical physics, and knot theory. We hope therefore that the modest
contribution to the theory of the Jones index that we make here would have
pleased Vaughan, and we are happy to dedicate this article to his memory.
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2. Noncommutative probability spaces

Let (X,μ) be a probability space and f ∈ L1(X,μ), with f > 0 almost
everywhere, and

∫
X fdμ = 1. Define the entropy S(f) of the random variable

f by

S(f) = −
∫
X
f log fdμ =

∫
X
f log f−1dμ.

Lemma 2.1. S(f) ≤ 0.

Proof. Note that − log is a convex function, thus

− log
( ∫

X
f−1dν

)
≤ −

∫
X

log f−1dν

by Jensen inequality, for every probability measure ν on X. Therefore, setting
dν = fdμ, we have

S(f)=
∫
X
f log f−1dμ=

∫
X

log f−1dν≤ log
( ∫

X
f−1dν

)
=log

( ∫
X

1dμ
)

= 0.
(1)

Note that
S(f) = −S(ν||μ)

where S(ν||μ) is the relative entropy of the between the states μ and ν on the
von Neumann algebra L∞(X,μ), indeed

S(ν||μ) =
∫

(log f − log 1)dν =
∫

f log fdμ.

Let now A be a finite von Neumann algebra, thus there exists a normal faithful
trace τ (τ is unique if A is a factor once τ is normalised with τ(1) = 1). If ϕ
is a normal faithful state of A, there exists a positive, non singular operator
ρ affiliated with A such that

ϕ(x) = τ(ρx), x ∈ A,(2)

thus τ(ρ) = 1.
We define the entropy Sτ (ϕ) of ϕ w.r.t. τ as

Sτ (ϕ) = −τ(ρ log ρ).
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Setting τ0 = 1
τ(1)τ , we have ϕ = τ0(ρ0·) with ρ0 = τ(1)ρ, therefore

Sτ0(ϕ) = −τ0(ρ0 log ρ0) = Sτ (ρ) − τ(1) log τ(1)

so we can assume that τ is normalised with τ(1) = 1.

Proposition 2.2. If τ is normalised, we have

Sτ (ϕ) ≤ 0,

possibly Sτ (ϕ) = −∞, and Sτ (ϕ) = 0 iff ϕ = τ .

Proof. By considering the von Neumann algebra generated by ρ, the state-
ment follows by (1). Alternatively, the statement is a consequence of the
following proposition.

Let A be an arbitrary von Neumann algebra and ϕ, ψ normal, positive,
faithful linear functionals on A. Araki’s relative entropy [1] is defined by

S(ϕ||ψ) = −(ξϕ, log Δξψ ,ξϕξϕ),(3)

where ξϕ, ξψ are any cyclic vector representatives of ϕ, ψ on the underlying
Hilbert space H (we may assume that A is in a standard form). Here Δξϕ,ξψ is
the relative modular operator between ϕ and ψ [21], i.e. Δξϕ,ξψ = S∗

ξϕ,ξψ
Sξϕ,ξψ

with Sξϕ,ξψ the closure of the map xξψ �→ x∗ξϕ, x ∈ A. The right hand side
of (3) is well defined for all ϕ, ψ by

S(ϕ||ψ) =
∫ ∞

0
log s d(ξϕ, esξϕ)

with Δξψ ,ξϕ =
∫∞
0 s des the spectral resolution of Δξψ ,ξϕ . Indeed

S(ϕ||ψ) ≥ ϕ(1)
(
logϕ(1) − logψ(1)

)
,

possibly S(ϕ||ψ) = +∞. Recall also that, if ϕ is a state, then

S(ϕ||λψ) = S(ϕ||ψ) − log λ, λ > 0.(4)

Note that S(ϕ||ψ) can be easily defined also if ϕ, ψ are not faithful, see [18];
for simplicity we mostly consider the faithful case.

Proposition 2.3. Let τ be a normal faithful trace on A. Then

Sτ (ϕ) = −S(ϕ||τ),

where S(ϕ||τ) is Araki’s relative entropy (3) between τ and ϕ on A.



A note on continuous entropy 2505

Proof. The relative modular operator Δξτ ξϕ (w.r.t. vector representatives
ξϕ, ξτ of ϕ, τ in the natural cone) is equal to ρ−1. Therefore

S(ϕ||τ)=−(ξϕ, log Δξτ ,ξϕξϕ)=(ξϕ, log ρ ξϕ)=ϕ(log ρ)=τ(ρ log ρ)=−Sτ (ϕ).

Due to the above proposition, the entropy Sτ depends on the choice of the
tracial state τ . However, if A is a type II1 factor, the tracial state is unique.

Since the relative entropy is monotone, we infer that the Sτ is monotone.

Corollary 2.4. If B ⊂ A is a von Neumann subalgebra and τ a normal
faithful trace on A. Then

Sτ (ϕ|B) ≥ Sτ (ϕ),

where Sτ (ϕ|B) is the entropy of the restriction of ϕ to B w.r.t. τ |B.

Proof.
Sτ (ϕ|B) = −S(ϕ|B||τ |B) ≥ −S(ϕ||τ) = Sτ (ϕ).

We have the additivity of Sτ .

Proposition 2.5. Let Ai be von Neumann algebras with tracial normal faith-
ful states τi, i = 1, 2, and τ = τ1 ⊗ τ2 the trace on A = A1 ⊗A2. Then

Sτ (ϕ1 ⊗ ϕ2) = Sτ1(ϕ1) + Sτ2(ϕ2)

for any normal faithful states ϕi on Ai.

Proof.

Sτ (ϕ1⊗ϕ2) = S(ϕ1⊗ϕ2||τ1⊗ τ2) = S(ϕ1||τ1)+S(ϕ2||τ2) = Sτ1(ϕ1)+Sτ2(ϕ2).

Suppose now Mn is type In factor, namely Mn is the n×n matrix algebra.
Let Tr be the trace on Mn, thus Tr(1) = n and

Tr = nτ,

with τ the normalised trace. With ϕ a state on Mn, the von Neumann entropy
of ϕ is defined by

SvN(ϕ) = −Tr(σ log σ),
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with σ the density matrix associated with ϕ, namely

ϕ(x) = Tr(σx), x ∈ Mn,(5)

Note that the von Neumann entropy on type I factor is not monotone.
We now compare Sτ (ϕ) with SvN(ϕ). With ρ and σ as in (2) and (5),

clearly we have
nσ = ρ

thus the following holds as particular case of (4).

Proposition 2.6. If τ is normalised, we have

Sτ (ϕ) = SvN(ϕ) − log n.

Proof. We have

SvN(ϕ) = −Tr(σ log σ) = −nτ
(ρ
n

log ρ

n

)
= −τ

(
ρ log ρ

n

)
= −τ(ρ log ρ) + log n = Sτ (ϕ) + log n.

As a consequence, the entropy Sτ (ϕ) on Mn satisfies the bound

− log n ≤ Sτ (ϕ) ≤ 0;(6)

Sτ (ϕ) = 0 iff ϕ is the tracial state τ , while Sτ (ϕ) = − log n iff ϕ is a pure
state.

Now, the von Neumann entropy is additive:

SvN(ϕ1 ⊗ ϕ2) = SvN(ϕ1) + SvN(ϕ2)

therefore, if ϕ1 is a state on A and ϕ2 is a state on Mn, we have

Sτ (ϕ1 ⊗ ϕ2) = Sτ (ϕ1) + Sτ (ϕ2) = Sτ (ϕ1) + SvN(ϕ2) − log n.

Let A1,A2 be von Neumann algebras ϕ a normal faithful state on A = A1⊗A2
and ψk a faithful normal state on Ak, k = 1, 2. Recall the subadditivity
property of the relative entropy [18, Cor. 5.21]:

S(ϕ||ψ1 ⊗ ψ2) ≥ S(ϕ|A1 ||ψ1) + S(ϕ|A2 ||ψ2).
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Proposition 2.7. Let A be a finite von Neumann algebra with faithful normal
tracial state τ . If ϕ is a faithful state on A⊗Mn, then

Sτ (ϕ|A) + SvN(ϕ|Mn) − Sτ (ϕ) ≥ log n.

The equality occurs iff ϕ = ϕ|A ⊗ ϕ|Mn.

Proof. We have

Sτ (ϕ) = −S(ϕ||τ) = −S(ϕ||τA ⊗ τMn) ≤ −S(ϕ|A||τA) − S(ϕ|Mn ||τMn)
= Sτ (ϕ|A) + Sτ (ϕ|Mn) = Sτ (ϕ|A) + SvN(ϕ|Mn) − log n.

3. A bound for the entropy increase

Let B ⊂ A be an inclusion of von Neumann algebras and let τ be a faithful
normal tracial state on A. In case A, B are factors, V. Jones defined the
index [A : B] as the ratio of Murray and von Neumann’s coupling constants.
In the more general non factor case, Pimsner and Popa [19] gave a proba-
bilistic definition of the index [A : B]ε, with ε : A → B the trace preserving
expectation:

[A : B]ε = λ−1,(7)

with λ ≥ 0 the best constant such that

ε(x) ≥ λx(8)

for all positive x ∈ A. The above inequality is called the Pimsner-Popa in-
equality.

If A and B are II1 factors and ε is the unique trace preserving conditional
expectation ε : A → B, then

[A : B]ε = Jones index of B ⊂ A.

We shall later comment on the case A is not of type II1.
Let now B ⊂ A be an arbitrary inclusion of von Neumann algebras with

a normal faithful conditional expectation ε : A → B. Given normal states ϕ
and ψ on A, recall the formula [18, Thm. 5.15] for the relative entropy

S(ϕ||ψ · ε) = S(ϕ|B||ψ|B) + S(ϕ||ϕ · ε).(9)
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Lemma 3.1. Let B ⊂ A be an inclusion of von Neumann algebras and
ε : A → B a finite index normal conditional expectation. Then

S(ϕ||ϕ · ε) ≤ log[A : B]ε

for every faithful normal state of A.

Proof. As ε(x) ≥ λx, for all positive x ∈ A, with λ the inverse of the index,
we have

ϕ · ε ≥ λϕ

and this implies

S(ϕ||ϕ · ε) ≤ S(ϕ||λϕ) = − log λ,(10)

where the first inequality follows by Corollary 4.3 and the equality S(ϕ||λϕ) =
− log λ is a particular case of (4).

Proposition 3.2. Let B ⊂ A be an inclusion of von Neumann algebras,
τ a finite normal faithful trace on A and ε : A → B the trace preserving
expectation. For every normal faithful state ϕ on A, we have

Sτ |B(ϕ|B) − Sτ (ϕ) ≤ log[A : B]ε,(11)

where [A : B]ε is the index w.r.t. ε.

Proof. Taking ψ = τ in formula (9), we have

S(ϕ||τ) = S(ϕ|B||τ |B) + S(ϕ||ϕ · ε),(12)

namely
Sτ |B(ϕ|B) − Sτ (ϕ) = S(ϕ||ϕ · ε).

As by Lemma 3.1

S(ϕ||ϕ · ε) ≤ S(ϕ||λϕ) = − log λ = log[A : B]ε,

the bound (11) follows.

It is known that if A is infinite-dimensional, then the quantity [A : B]ε
as we have defined is equal to the Jones index [A : B]. For finite-dimensional
A, this is actually not the case. For example, if A = Mn, B = C, then
[A : B] = n2 but [A : B]ε = n. The definition of [A : B]ε can be modified as
follows to coincide with the Jones index [A : B] in all cases: [A : B] is the
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inverse of the largest constant λ such that ε − λ · id is completely positive.
However, except in the case that A is finite-dimensional, ε−λ·id is completely
positive if and only if it is positive, and this refinement is unnecessary.

We conclude by providing a bound as in Proposition 3.2 for the increase
of S(τ ||ϕ). Note that, with A, τ , ϕ as in (2), we have

S(τ ||ϕ) = −τ(log ρ) ≥ 0,

similarly as in (1).

Proposition 3.3. With the notations in Proposition 3.2, we hav

S(τ ||ϕ) − S(τ |B||ϕ|B) ≤ log[A : B]ε.

Proof. Clearly
ϕ|B = τ

(
ε(ρ) ·

)
,

and ε(ρ) ≥ λρ by the Pimsner-Popa inequality. So

log
(
ε(ρ)

)
≥ log(λρ) = log ρ + log λ

because the logarithm is an operator monotone function. Therefore

S(τ ||ϕ) − S(τ |B||ϕ|B) = −τ
(
log(ε(ρ)

)
+ τ(log ρ) ≤ − log λ = log[A : B]ε.

It would be to interesting estimate supϕ S(ϕ · ε||ϕ) too.
Note that, by the argument in the proof of Theorem 5.4, if Ai and Bi are

increasing sequences of matrix subalgebras of dimension n2
i and m2

i such that
∪iAi, ∪iBi are weakly dense in A, B, then

Sτ |B(ϕ|B) − Sτ (ϕ) = lim
i

(
Sτi|Bi

(ϕi|Bi) − Sτi(ϕi)
)

= lim
i

(
SvN(ϕi|Bi) − SvN(ϕi) + log(ni/mi)

)
.

Furthermore, if Bi ⊂ Ai and εBi+1εAi = εBi , where εAi , εBi denote the trace
preserving expectations onto Ai, Bi, then by [19, Prop. 2.6] we have

[A : B]ε = lim
i

[Ai : Bi] = lim
i
n2
i /m

2
i ,

therefore

Sτ |B(ϕ|B) − Sτ (ϕ) = lim
i

(
SvN(ϕi|Bi) − SvN(ϕi)

)
+ 1

2 log[A : B]ε.
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4. State/weight relative entropy

Let A be a von Neumann algebra and ϕ, ψ positive, normal, linear functionals
on A. We recall Kosaki’s variational formula [12]. Fix any ∗-strongly dense
linear subspace V of A containing the identity. Then

S(ϕ||ψ) = sup
n∈N

sup
x∈V

{
ϕ(1) log n−

∫ ∞

1/n

(
ϕ(y(t)∗y(t)) + t−1ψ(x(t)x(t)∗)

)dt
t

}
,

(13)

where V is the set of all step functions x : (1/n,∞) → V with finite range,
and x(t)+ y(t) = 1. The advantage of Kosaki’s formula is that it has all main
properties built in it.

Let now ϕ be a positive, normal, faithful linear functional on A and ψ
a normal, faithful, semifinite weight on A, see [21, Chapter VII] (semifinite
means that the definition domain of ψ is weakly dense in A). We may assume
that A acts standardly on the GNS Hilbert space Hϕ of ϕ. Let ϕ′ be the
normal, faithful, positive linear functional on the commutant A′ of A given
by

ϕ′ = (ξϕ, · ξϕ),(14)

where ξϕ ∈ Hϕ is the GNS vector. Let dψ/dϕ′ be Connes’ spatial derivative
between ψ and ϕ′ [3].

We define the relative entropy between ϕ and ψ by

S(ϕ||ψ) = −(ξϕ, log(dψ/dϕ′) ξϕ),(15)

provided the above formula is well defined; this is the case, in particular, if ξϕ
belongs to the domain of log(dψ/dϕ′). More generally, let dψ/dϕ′ =

∫∞
0 s des

be the spectral resolution of dψ/dϕ′, then

S(ϕ||ψ) = −
∫ ∞

0
log s d(ξϕ, esξϕ)(16)

provided either the positive or the negative part of log s belongs to the space
L1(R+, d(ξϕ, esξϕ)). If S(ϕ||ψ) is well defined, then S(ϕ||ψ) can take any real
value or S(ϕ||ψ) = ±∞. We shall say that S(ϕ||ψ) is finite if S(ϕ||ψ) is well
defined and S(ϕ||ψ) �= ±∞.

If ψ is bounded, then dψ/dϕ′ is equal to the relative modular operator
Δξψ ,ξϕ , where ξψ is a cyclic vector representative of ψ in Hϕ, so S(ϕ||ψ)
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is Araki’s relative entropy (3) and is well defined for every normal faithful
state ϕ.

If ψ = τ is tracial, it follows, similarly as in Proposition 2.3, that dτ/dϕ′ =
ρ−1 with ρ the density matrix of ϕ as in (19), so

S(ϕ||τ) = −Sτ (ϕ) = τ(ρ log ρ)(17)

and S(ϕ||τ) is finite iff τ(|ρ log ρ|) < ∞ (see Section 5).
In particular, if A is a type I factor and τ is the usual trace Tr on A, we

have
S(ϕ||Tr) = − von Neumann entropy of ϕ.

Note that S(ϕ||ψ) can be defined also if the weight ψ is not semifinite by
restricting both ϕ and ψ to the weak closure of the definition domain of ψ.

In the following, we shall use following elementary integral formula for
the logarithm function:

− log λ =
∫ ∞

0

(
(t + 1)−1 − λ(t + λ)−1)dt

t
, λ > 0.(18)

Lemma 4.1. Let A be a von Neumann algebra, ϕ a positive, normal, faithful
linear functional on A and ψ1, ψ2 normal, faithful, semifinite weights on A.
If S(ϕ||ψ1) and S(ϕ||ψ2) are well defined, then

ψ1 ≤ ψ2 =⇒ S(ϕ||ψ1) ≥ S(ϕ||ψ2).

Proof. We have ψ1 ≤ ψ2 =⇒ dψ1/dϕ
′ ≤ dψ2/dϕ

′ [21, Prop. 3.10]. On the
other hand, dψk/dϕ

′ = (dϕ′/dψk)−1, so

ψ1 ≤ ψ2 =⇒ dϕ′/dψ1 ≥ dϕ′/dψ2 =⇒ log(dϕ′/dψ1) ≥ log(dϕ′/dψ2)

because the logarithm is an operator monotone function. The right hand
inequality means that (ξ, log(dϕ′/dψ1ξ) ≥ (ξ, log(dϕ′/dψ2ξ) for all ξ in the
common domain of log(dϕ′/dψ1) and log(dϕ′/dψ2) and follows by (18). So we
have

ψ1 ≤ ψ2 =⇒ −(ξϕ, log(dψ1/dϕ
′) ξϕ) ≥ −(ξϕ, log(dψ2/dϕ

′) ξϕ)

if ξϕ is in the common domain. The more general case follows by the spectral
theorem.
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We shall say that ψ has a bounded entropy approximation w.r.t. ϕ if
S(ϕ||ψ) is well defined and there exists a sequence of positive, normal, faithful
linear functionals on A such that ψk(x) ↗ ψ(x) for every positive x ∈ A, and
S(ϕ||ψk) is finite for some k, hence for all larger k.

Lemma 4.2. Let A be a von Neumann algebra, ϕ a positive, normal, faithful
linear functional on A and ψ a normal, faithful, semifinite weight on A. If
ψ has a bounded entropy approximation w.r.t. ϕ with the ψk’s as above, then
S(ϕ||ψk) ↘ S(ϕ||ψ).

Proof. By [21, Cor. 3.13], we have dψk/dϕ
′ ↘ dψ/dϕ′. By formula (18)

and Lebesgue monotone convergence theorem, we then have the convergence
−(ξϕ, log(dψk/dϕ

′)ξϕ) ↘ −(ξϕ, log(dψ/dϕ′)ξϕ), where the expectation val-
ues are understood by the spectral theorem as in eq. (16). So the Lemma is
proved.

Corollary 4.3. Let A be a von Neumann algebra, ϕ a normal, faithful, pos-
itive linear functional on A and ψ a normal, faithful, semifinite weight on A
with bounded entropy approximation w.r.t. ϕ.

If B is a von Neumann algebra and α : B → A a completely positive,
normal, faithful, unital map such that ψ ·α is semifinite. Then S(ϕ ·α||ψ ·α) ≤
S(ϕ||ψ).

Proof. Let ψk be a bounded entropy approximation sequence as above. For k
large enough,

S(ϕ · α||ψ · α) ≤ S(ϕ · α||ψk · α) ≤ S(ϕ||ψk),

where the first inequality also means that S(ϕ · α||ψ · α) is well defined, and
follows by Lemma 4.1. The second inequality follows by Kosaki’s, see also [23].
Then the corollary is a consequence of Lemma 4.2 by letting k → ∞.

Lemma 4.4. Let A be a von Neumann algebra, ϕ, ψ faithful normal positive
linear functional on A with S(ϕ||ψ) < ∞ and ε : A → B a normal faithful
conditional expectation. If ϕ(1) = 1 and ψ · ε = ψ, we have

S(ϕ||ψ) − S(ϕ|B||ψ|B) ≤ log[A : B]ε.

Proof. Of course, we may assume that [A : B]ε < ∞. By eq. (4), we may also
assume that ψ(1) = 1. We then immediately get

S(ϕ||ψ) − S(ϕ|B||ψ|B) = S(ϕ||ϕ · ε) ≤ log[A : B]ε,

where the equality is given by (9) and the inequality by Lemma 3.1.
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5. The bound in the semifinite case

Let A be a von Neumann algebra and τ a normal, faithful, semifinite trace on
A. With ϕ a faithful, normal state on A, there exists a positive, non-singular,
selfadjoint operator ρ affiliated to A (density matrix) such that ϕ = τ(ρ ·);
namely ϕ(x) = τ(ρ1/2xρ1/2) for all positive x ∈ A. The entropy Sτ (ϕ) is
defined by

Sτ (ϕ) = −τ(ρ log ρ),(19)

provided τ(x) is well defined with x ≡ ρ log ρ, namely either τ(x+) < ∞ or
−τ(x−) < ∞, where x± is the positive/negative part of x. So Sτ (ϕ) is not
defined for every normal state ϕ. We shall say that Sτ (f) is finite if both
τ(x+) and τ(x−) are finite, namely τ(|ρ log ρ|) < ∞.

Note that, even if A is a type II∞ factor, Sτ depends on the choice of the
trace τ , as the trace is unique only up to rescaling. However, the difference
of entropies between two states is independent of the chosen trace τ , due to
the relation

Sλτ (ϕ) = Sτ (ϕ) + log λ, λ > 0.(20)

The case τ is unbounded shows important differences with the case τ is
bounded and the notion of entropy Sτ (ϕ) needs care. If A = L∞(R, dt) and
τ is the Lebesgue integral, the state ϕ is given by the integral with a positive
density function f ∈ L1(R, dt) and∫

f log fdt = −Sτ (ϕ)

is the differential entropy of f introduced by Shannon. The differential en-
tropy is neither positive nor negative definite. Moreover, it is not the limit
of the discrete entropy under a discrete approximation, indeed one needs a
logarithmic rescaling, see [4, Chapter 8].

Lemma 5.1. Let A be a von Neumann algebra, τ a normal, faithful, semifi-
nite trace on A and ϕ a normal, faithful, positive linear functional on A with
finite entropy (19). Then τ has a bounded entropy approximation w.r.t. ϕ.

Proof. Let ρ be the density matrix of ϕ w.r.t. τ . By assumptions τ(ρ) < ∞,
τ(|ρ log ρ|) < ∞. Let gk be a sequence of positive Borel functions on (0,∞)
such that gk ↗ 1 pointwise and τ(|ρk log ρk|) < ∞, with ρk = ρgk(ρ). Thus
τ(ρk) < ∞, ρk ↗ ρ. With ψk = τ(ρk ·), by the relation (17) the ψk’s give a
bounded entropy approximation for S(ϕ||τ).
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As shown in [20], Sτ is monotone, provided the entropies are finite.

Proposition 5.2. Let B ⊂ A be an inclusion of von Neumann algebras and
τ a normal, faithful, semifinite, trace τ on A such that τ |B is semifinite. If
Sτ (ϕ) is finite, then Sτ |B(ϕ|B) is well defined and

Sτ |B(ϕ|B) − Sτ (ϕ) ≥ 0.

Proof. By Corollary 4.3, S(ϕ||τ) − S(ϕ|B||τ |B) ≥ 0, so the statement follows
by eq. (17).

We shall show that the bound by the logarithm of the index (11) still
holds in the II∞ case, by extending the arguments in the previous section.
Clearly, the entropy increase Sτ |B(ϕ|B)− Sτ (ϕ) is independent of rescaling of
τ due to (20).

Now, let ε : A → B be a faithful normal conditional expectation. A defi-
nition of the index [A : B]ε for arbitrary inclusions of factors is given by the
spatial theory [13], or by the crossed product [14], and agrees with the Jones
index in the II1 case with ε the trace preserving expectation. If A is a type III
factor and B̃ ⊂ Ã is the crossed product inclusion of von Neumann algebras
in Takesaki’s duality, then the index [A : B]ε shows up as the trace scaling
factor

τ · γ = [A : B]ετ(21)

with γ : Ã → B̃ the canonical endomorphism and τ the canonical trace on Ã
[14].

The Pimsner-Popa inequality still holds, cf. [15]. Indeed λ = [A : B]−1
ε

is the best constant such that ε − λ · id is (completely) positive. In the non
factor case, [A : B]ε is defined as the inverse of the best constant in the
Pimsner-Popa inequality.

Lemma 5.3. Let B ⊂ A be an inclusion of von Neumann algebras and τ a
normal, faithful, semifinite, trace τ on A such that τ |B is semifinite. There
exists a type I subfactor F ⊂ B and a tensor decomposition

B = B0 ⊗F ⊂ A0 ⊗F = A

such that τ = τ0 ⊗ Tr, with τ0 a tracial state on A1 and Tr the usual trace
on F . If ε : A → B is the trace preserving expectation, then we have a
corresponding tensor decomposition of ε

ε = ε0 ⊗ id,
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with ε0 : A0 → B0 preserving τ0, and

[A : B]ε = [A0 : B0]ε0 .

Proof. The Lemma is essentially Proposition 2.3 of [14].

Theorem 5.4. Let A be a von Neumann algebra with a normal, faithful,
semifinite trace τ , B ⊂ A a von Neumann subalgebra such that τ |B is semifi-
nite and ε : A → B the trace preserving expectation. If ϕ is a normal faith-
ful state on A such that Sτ (ϕ) is finite, then Sτ (ϕ|B) is finite too and we
have

Sτ (ϕ|B) − Sτ (ϕ) ≤ log[A : B]ε,(22)

where [A : B]ε is the index w.r.t. ε and Sτ (ϕ|B) ≡ Sτ |B(ϕ|B).

Proof. Fix the state ϕ. By Lemma 5.1, there exists a sequence of positive lin-
ear functionals ψk that give a bounded entropy approximation for τ w.r.t. ϕ.
Thus S(ϕ||ψk) ↘ S(ϕ||ψ) and S(ϕ||ψk) is finite for large k; so S(ϕ|B||ψk|B) is
finite too for large k because the relative entropy is monotone.

Now, ψk(x) ↗ τ(x) for all positive x ∈ A, therefore ψk(ε(x)) ↗ τ(ε(x)) =
τ(x) for all positive x ∈ A. Moreover, S(ϕ||ψk ·ε) is finite for large k by formula
(9) and Lemma 3.1. So we can assume that ψk = ψk · ε.

By Lemma 4.4 we have S(ϕ||ψk) − S(ϕ|B||ψk|B) ≤ log[A : B]ε, therefore
by Lemma 4.2 we get

S(ϕ||τ) − S(ϕ|B||τ |B) = lim
k

(
S(ϕ||ψk) − S(ϕ|B||ψk|B)

)
≤ log[A : B]ε

and the proof is complete due to the relation (17).

We end up this section by pointing out that the entropy of a state in
a semifinite factor A depends only on the approximate inner equivalence.
Namely,

ϕ1 ∼ ϕ2 =⇒ Sτ (ϕ1) = Sτ (ϕ2),

where ϕ1 ∼ ϕ2 means that the norm closed orbit by inner automorphisms in
the predual A∗ of A generated by ϕ1 and ϕ2 are the same; namely ϕ2 belongs
to the norm closure of {ϕ1 · Adu : u unitary of A}, where Adu denotes the
inner automorphism of A implemented by the unitary u ∈ A. This follows
because ϕ1 ∼ ϕ2 iff the trace spectral density on the spectral family of the
density matrices ρi of ϕi coincide, i = 1, 2, [10, Lemma 4.3]. Thus, in this case,



2516 Roberto Longo and Edward Witten

if ρi =
∫∞
0 λdei,λ is the spectral resolution of ϕi, we have τ(e1,λ) = τ(e2,λ) so

that

−τ(ρi log ρi) = −
∫ ∞

0
λ log λ dτ(ei,λ)

is independent of i (assuming the entropy is well defined).

6. The optimal bound

We now show that the bound given by Theorem 5.4 is optimal for inclusions
of infinite dimensional factors.

Let B ⊂ A be an inclusion of factors and ε : A → B be a normal faithful
expectation. The index of B ⊂ A w.r.t. ε is finite if Haagerup’s dual operator
valued weight ([9], see [21]) is a bounded map ε−1 : B′ → A′. Then ε−1

is a scalar multiple of a conditional expectation ε′ : B′ → A′ and Kosaki’s
definition of the index [13] is given by

ε−1 = [A : B]εε′.(23)

Unless A is finite dimensional, the index [A : B]ε defined in (23) coincides
with the index defined by the inequality (8), so we do not use a different
symbol and specify the meaning of [A : B]ε if necessary.

In the following, we assume that [A : B]ε is finite and that A acts stan-
dardly on a Hilbert space H. Let ϕ be a faithful normal state on A and
ξϕ ∈ H be a cyclic vector in H such that ϕ = (ξϕ, · ξϕ) on A. Denote by ϕ′

the state on B′ given by ϕ′ = (ξϕ, · ξϕ).
The following relation has been derived by F. Xu in [25, Prop. 2.4]:

SA(ϕ||ϕ · ε) + SB′(ϕ′||ϕ′ · ε−1) = 0,

therefore by (4)

SA(ϕ||ϕ · ε) + SB′(ϕ′||ϕ′ · ε′) = log[A : B]ε,(24)

where SA, SB′ denote the relative entropy in A, B′ and [A : B]ε is the index
in (23). Here, the involved states are normal but not necessarily faithful, the
relative entropies are defined, for example, by Kosaki’s formula.

The identity (24) is closely related to the functorial normalisation of the
modular Hamiltonian in [16]. In the finite dimensional case, it has been dis-
cussed in [17].
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Recall that a von Neumann algebra A is σ-finite iff it admits a faithful
normal state; this is the case if A acts on a separable Hilbert space. For
simplicity, the von Neumann algebras in this sections are σ-finite.

With B ⊂ A be an inclusion of factors on a Hilbert space H, we call
A′ ⊂ B′ the dual inclusion on H.

Lemma 6.1. A finite index inclusion of factors C ⊂ D is isomorphic to the
dual A′ ⊂ B′ of an inclusion of factors B ⊂ A, with A acting standardly on
a Hilbert space (namely there exists a cyclic and separating vector for A), iff
either D is infinite dimensional or dim(C)2/dim(D) is an integer.

Proof. Suppose first that D is of type II1. There exists a Jones’ tunnel sub-
algebra E ⊂ C for C ⊂ D, namely E is a subfactor of C such that E ⊂ C ⊂ D
is Jones’ extension [11]. Let C act standardly on a Hilbert space H, and let
E ⊂ C ⊂ C1 be the Jones’ extension of E ⊂ C on H. Then C ⊂ D is isomorphic
to C ⊂ C1. On the other hand, C ⊂ C1 is dual of C′

1 ⊂ C′ and C′ acts standardly
on H. So our lemma is proved in this case.

The case D is an infinite factor is similar; in this situation, E = γ(D) with
γ : D → C the canonical endomorphisms [14].

If D is finite dimensional, namely D is a matrix algebra, it is easy to see
that a tunnel subalgebra E ⊂ C for C ⊂ D is a matrix subalgebra E ⊂ C such
that dim(D)/dim(C) = dim(C)/dim(E). Since D is isomorphic to the tensor
product C⊗(C′∩D), a tunnel subalgebra E ⊂ C for C ⊂ D exists iff C contains
a subalgebra isomorphic to C′ ∩D, namely iff dim(C′ ∩D) = dim(D)/dim(C)
divides dim(C), that is iff dim(D) divides dim(C)2. The rest of the finite
dimensional proof is as in the type II1 case.

Note that the condition that dim(C)2/dim(D) is an integer in Lemma 6.1
implies that the inverse of the Jones index [D : C] w.r.t. the trace is the best
constant in the Pimsner-Popa inequality (8) for trace preserving expectation;
indeed this holds iff dim(C)2 ≥ dim(D) [19, 6.5 Examples].

By the above lemma, both next Proposition 6.2 and Corollary 6.3 remain
true if A is finite dimensional and dim(B)2/dim(A) is an integer. We state
them in the infinite dimensional case for simplicity.

Proposition 6.2. Let B ⊂ A be an inclusion of infinite dimensional factors
and ε : A → B an expectation with finite index. Then

log[A : B]ε = sup
ϕ

SA(ϕ||ϕ · ε),(25)

where the supremum is taken over all normal states ϕ of A.
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Proof. The inequality SA(ϕ||ϕ·ε) ≤ log[A : B]ε has been shown in Lemma 3.1,
and it also follows from (24). The proposition is going to be proved by using
eq. (24).

We may assume that A is in a standard form. We choose a faithful normal
state ϕ on A such that ϕ · ε = ϕ; therefore SA(ϕ||ϕ · ε) = 0. With ξϕ and ϕ′

as above, eq. (24) gives

SB′(ϕ′||ϕ′ · ε′) = log[A : B]ε

showing that the bound log[A : B]ε = log[A′ : B′]ε′ in (25) is optimal for the
dual inclusion A′ ⊂ B′ with dual expectation ε′. So the proposition follows
by Lemma 6.1.

In order eq. (24) to hold, A was assumed to be in standard form. If A
is finite dimensional, (25) does not hold in general with [A : B]ε defined in
(23) according to Kosaki. Indeed, we have SA(ϕ||ϕ · ε) ≤ − log λ, with λ the
Pimsner-Popa bound in (8), and in this case λ−1 may be strictly less than
Kosaki’s index.

Let A be a semifinite factor and B ⊂ A a subfactor. If the index B ⊂ A
is finite (w.r.t. some expectation), then B is semifinite too. In this case, the
trace τ of A has a semifinite restriction to B and [A : B]ε < ∞, with ε the
τ -preserving expectation, see (21) and [15].

Corollary 6.3. Let A be a semi-finite, infinite dimensional factor. If B ⊂ A
is a finite index subfactor and ε : A → B the expectation preserving the trace
τ , then

sup
ϕ

{
Sτ (ϕ|B) − Sτ (ϕ)

}
= log[A : B]ε,

where the supremum is taken over all normal states ϕ of A such that Sτ (ϕ)
and Sτ (ϕ|B) are finite.

Proof. Suppose first that the trace τ is bounded. Then eq. (12) in the proof of
Proposition 3.2 shows that Sτ (ϕ|B) − Sτ (ϕ) = log[A : B]ε if ϕ is a maximum
point in eq. (25). See also [6].

If τ is unbounded, we consider again a state ϕ of A such that SA(ϕ||ϕ·ε) =
log[A : B]ε. We take a sequence of bounded entropy approximation functionals
ψk for τ w.r.t. ϕ with ψk · ε = ψk as in the proof of Theorem 5.4. As S(ϕ||ψk)
is finite, also S(ϕB||ψk|B) is finite by Lemma 4.4. Therefore ψk|B is a sequence
of bounded entropy approximation for τ |B w.r.t. ψk|B. By Lemma 4.2, we so
have

S(ϕ||ψk) → S(ϕ||τ), S(ϕ|B||ψk|B) → S(ϕ|B||τ |B).
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By eq. (9), we have

S(ϕ||ψk)−S(ϕ|B||ψk|B) = S(ϕ||ψk ·ε)−S(ϕ|B||ψk|B) = S(ϕ||ϕ·ε) = log[A : B]ε,

thus

S(ϕ||τ) − S(ϕ|B||τ |B) = lim
k

(
S(ϕ||ψk) − S(ϕ|B||ψk|B)

)
= log[A : B]ε,

that is Sτ (ϕ|B) − Sτ (ϕ) = log[A : B]ε due to the identity (17).

More generally, let B ⊂ A be an inclusion of von Neumann algebras with
a finite index expectation ε : A → B. We shall say that ε has scalar index
[A : B]ε if eq. (23) holds for a scalar [A : B]ε. This is the case if the centers
of A and B are finite dimensional and have trivial intersection, with ε the
minimal expectation [8].

The identity (24) still holds in this case, by the same proof. It follows that
Corollary 6.3 remains true if B ⊂ A is an inclusion of properly infinite von
Neumann algebras which has finite scalar index [A : B]ε.

7. Further comments

Structures in the physical literature (see [7, 5]) suggest to consider the entropy
relative to a linear subspace, not only relative to an algebra. We consider such
a notion and a few comments.

Let A be a von Neumann algebra and ϕ, ψ positive, normal, linear func-
tionals on A. Given a linear subspace V ⊂ A containing the identity, we
set

SV (ϕ||ψ) = sup
n∈N

sup
x∈V

{
ϕ(1) log n−

∫ ∞

1/n

(
ϕ(y(t)∗y(t)) + t−1ψ(x(t)x(t)∗)

)dt
t

}
,

(26)

where V is the set of all step functions x : (0,∞) → V with finite range, and
x(t) + y(t) = 1.

If V is ∗strongly dense in A, this is of course Kosaki’s formula (13) for
the relative entropy; namely

SV (ϕ||ψ) = SA(ϕ||ψ).

We list the following basic properties of SV , whose proof is immediate. A is
a von Neumann algebra, ϕ, ψ, φ normal, positive linear functionals on A and
V ⊂ A a unital linear space.
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a) φ ≤ ψ implies SV (ϕ||φ) ≥ SV (ϕ||ψ).
b) SV̄ (ϕ||ψ) = SV (ϕ||ψ) with V̄ the ∗strong closure of V .
c) Monotonicity. If W ⊂ V is a unital linear subspaces, then SW (ϕ||ψ) ≤

SV (ϕ||ψ).
d) Martingale convergence. Let Vi ⊂ A be an increasing net of unital linear

subspaces with V ≡ ∪iVi. Then SVi(ϕ||ψ) ↗ SV (ϕ||ψ).

If now ϕ is a positive, normal, linear functional and ψ a normal, semifinite,
faithful weight on A, we set

SV (ϕ||ψ) = inf
φ≤ψ

SV (ϕ||φ),(27)

where the infimum is taken over the set Pψ of all positive, normal, linear
functionals φ on A such that φ ≤ ψ. We recall that

ψ(x) = sup
{
φ(x) : φ ∈ Pψ

}
, for all positive x ∈ A,

[21, Thm. 1.11].
Suppose that τ is a semifinite, faithful normal trace on A and ρ is the

density matrix of ϕ w.r.t. τ . Recall that

Sτ (ϕ) = −SA(ϕ||τ),(28)

provided the Sτ (ϕ) = −τ(ρ log ρ) is well defined. We may define Sτ (ϕ) for
all states by the above formula with the right hand side given by (27) with
V = A.

If V ⊂ A is a linear subspace containing the identity as above, we then
set

Sτ,V (ϕ) ≡ −SV (ϕ||τ).

If W ⊂ V is a unital linear subspace, it follows from c) above that

W ⊂ V =⇒ SV (ϕ||τ) ≤ SW (ϕ||τ),

therefore the monotonicity property holds for Sτ,V (ϕ):

Sτ,V (ϕ) ≤ Sτ,W (ϕ),

in particular Sτ,A(ϕ) ≤ Sτ,V (ϕ).
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