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On module categories related to Sp(N − 1) ⊂ Sl(N)
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In memoriam of Vaughan Jones with gratitude

Abstract: Let V = CN with N odd. We construct a q-deformation
of EndSp(N−1)(V ⊗n) which contains EndUqslN (V ⊗n). It is a quo-
tient of an abstract two-variable algebra which is defined by adding
one more generator to the generators of the Hecke algebras Hn.
These results suggest the existence of module categories of
Rep(UqslN ) which may not come from already known coideal sub-
algebras of UqslN . We moreover indicate how this can be used to
construct module categories of the associated fusion tensor cate-
gories as well as subfactors, along the lines of previous work for
inclusions Sp(N) ⊂ SL(N).
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The problem of classifying module categories of a given tensor category arises
in different contexts such as conformal field theory and the study of subfac-
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tors. A lot of progress has been made for module categories of fusion cat-
egories coming from quantum groups (or Wess-Zumino-Witten models) in
recent work by Edie-Michell (see [5]), building on work of Jones, Ocneanu,
Gannon, Schopieray, Evans and Pugh and others. But in many cases, a de-
tailed description of those module categories such as the fusion rules, algebras
etc is still not available.

It is well-known that Rep(H) is a module category of Rep(G) for an
inclusion of groups H ⊂ G. The basic idea here is to find a subgroup H
of a Lie group G for which one can find analogs of the module Rep(H) in
fusion categories related to G. This was successfully carried out in [27] and
[28] for inclusions Sp(N) ⊂ SL(N), N even, and O(N) ⊂ SL(N) × Z2 for
arbitrary N > 1. It allowed a detailed description of these module categories
in terms of the well-known combinatorics of these groups (see Section 5). The
current paper roughly contains the analogous results of the paper [27] for the
inclusions Sp(N − 1) ⊂ SL(N) for N odd.

Here is our approach in more detail, formulated for the group G = SL(N)
for simplicity. We denote the quotient tensor category of tilting modules of
the quantum group UqslN modulo negligible modules for q a root of unity by
Rep(UqslN ). It is often also denoted by SU(N)k for q2 a primitive (N + k)th
root of unity. We study the following questions: Find a subgroup H ⊂ SL(N)
for which we can find

(a) a q-deformation of Rep(H) which is a module category of Rep(UqslN ),
(b) a quotient of said q-deformation for q a root of unity which is a module

category of Rep(UqslN ),
(c) a subfactor corresponding to the module category in (b) if it is unita-

rizable.

Before describing the results in this paper in more detail, we would like to
make a few general remarks about this approach. It is known that Question (a)
can be solved if H is the group of fixed points under a period 2 automorphism
via coideal subalgebras, see work of Letzter [15] and of Noumi and Sugitani
[17]. It follows from work in [16] that the examples in [28] indeed correspond
to special cases of the work in [15] and [17]. However, it is also clear that
not all module categories constructed via coideal algebras allow solutions of
Questions (b) and (c). This can be seen e.g. for SL(3), where all module
categories of the corresponding fusion categories are known due to work of
Gannon and Evans and Pugh, see [7].

As stated in the title, we consider the inclusion of Sp(N − 1) ⊂ SL(N)
for N odd. One of the main results of this paper is the construction of a
sequence of two-parameter algebras Cn = C

(N)
n (q) which contain the Hecke
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algebras Hn(q) of type An−1 as subalgebras. For q �= ±1 it suffices to add one
more generator e, corresponding to the projection onto the trivial Sp(N − 1)
submodule 1 ⊂ V , where V = C

N is the vector representation of SL(N). In
order to get the correct algebra in the classical limit q → ±1, we also need
additional generators to obtain nontrivial morphisms between the two copies
of the trivial representation in V ⊗2. We give a presentation of these algebras
via generators and relations and an explicit basis. Another important result
is the proof of the existence of an extension of the Markov trace for Hn to
the algebras Cn which satisfies a generalized Markov condition.

We now give a more detailed description of the results of this paper which
will also explain how these algebras can be used to construct module cate-
gories. We fix notations in the first section and prove a number of combina-
torial and algebraic results concerning EndSp(N−1)(V ⊗n). We derive relations
for a q-deformation of EndSp(N−1)(V ⊗n) which contains the Hecke algebra Hn

as a subalgebra in the second section. These relations are essentially forced
by the fusion respectively restriction rules for Sp(N − 1) ⊂ SL(N) and a
generalized Markov condition (see Condition (2.9) or the discussion here for
Section 4). In particular, we show that only two solutions are possible for
fixed q �= ±1 and N > 1 odd. Hence we have two possible choices Cn,±
of extensions of Hn subject to our conditions. As they are closely related,
see Remark 2.9, we will often just use the notation Cn for either of these
cases. We also define a version of Cn depending on two parameters q and p,
which specializes to the original version for p = qN . It is then shown that
for N > 2n the dimension of these algebras is at most dim EndSp(N−1)(V ⊗n),
and explicit spanning sets are determined. We define representations of C(N)

n

into End(V ⊗n) in the third section. It is shown that their images in the clas-
sical limit q = 1 concide with EndSp(N−1)(V ⊗n). We conclude from this that
the given spanning sets in the previous section are actually bases. Section
4 contains a proof that we can extend the Markov trace tr of the Hecke
algebra Hn to a trace on Cn satisfying the generalized Markov condition
tr(cgn) = tr(c)tr(gn) for all c ∈ Cn. In the last section, we first briefly de-
scribe how this paper has been influenced by the work of Vaughan Jones,
even though this will be pretty obvious to experts anyways. We then indicate
how our algebras can be used to construct module categories and subfactors.
To do so, we consider the quotients Hn and Cn of the algebras Hn and Cn

modulo the annihilator ideals of the Markov trace tr. The objects of the cat-
egory and of the module category are given by idempotents in Hn and Cn

respectively, and the module action comes from the natural inclusion map
Cn ⊗ Hm → Cn+m. To illustrate this, we restate results from [27] and [28]
in the language of module categories which was not used there. This shows,
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in particular, that Problems (a)–(c) have been solved for the inclusions con-
sidered in those papers. We finally discuss how the approach in this paper
can be used to give detailed descriptions for a large class of module cate-
gories.

1. Fusion rules for the embedding of Sp(N − 1) ⊂ SL(N),
N odd

1.1. Fusion rules

Let V = C
N with N odd. We fix a symplectic bilinear form ( , )′ on V with

1-dimensional kernel spanned by the nonzero vector vo and a complement V ′

of vo on which the form ( , )′ is nondegenerate; see e.g. Lemma 3.5 for an
explicit realization with q = 1. This defines an embedding Sp(N−1) ⊂ SL(N)
such that V decomposes into the direct sum V ′ ⊕ Cvo as an Sp(N − 1)
module. Recall that the finite-dimensional simple representations of Sp(N−1)
are labelled by Young diagrams with ≤ (N − 1)/2 rows, with the (N − 1)-
dimensional simple representation V ′ labeled by the Young diagram with one
box. If V ′

λ is a simple representation of Sp(N − 1) labeled by the Young
diagram λ, we have

(1.1) V ′
λ ⊗ V ′ ∼=

⊕
μ↔λ

V ′
μ,

where μ ranges over all Young diagrams which can be obtained from λ by
either adding or removing a box. One deduces from this the tensor product
rule

(1.2) V ′
λ ⊗ V ∼= V ′

λ ⊕
⊕
μ↔λ

V ′
μ,

with μ as in (1.1).

1.2. Bratteli diagrams and path bases

The inclusions of the algebras

· · · ⊂ EndSp(N−1)(V ⊗n) ⊂ EndSp(N−1)(V ⊗n+1) ⊂ · · ·

are conveniently described by a Bratteli diagram. It follows from the tensor
product rules (1.2) that its vertices at level n are labeled by Young diagrams



Module categories 2577

λ with |λ| ≤ n, where |λ| denotes the number of boxes in the Young diagram.
A diagram λ at level n is connected with a diagram μ at level n + 1 if λ
differs from μ by at most one box. The multiplicity of Vλ in V ⊗n is then given
by the number of paths of length n from level 0 to level n. As we only have
multiplicities 0 or 1, we obtain a basis of Hom(V ′

λ, V
⊗n) labeled by the paths

of length n which end in λ for any irreducible Sp(N − 1) module Vλ labeled
by λ. This basis is unique up to rescaling by nonzero scalars. Below is the
part of the Bratteli diagram containing level 1 and level 2.

� � ��
�

�
�

���������

�
�

�
�

� �

�
�

�
�

∅ [1] [2] [1,1]

∅ [1]

Inclusion diagram

EndSp(N−1)(V ⊗2)

EndSp(N−1)(V )

1.3. Multiplicities for large N

The tensor product rule (1.2) allows us to calculate the multiplicity mn,λ of
the simple module V ′

λ in V ⊗n. If N > 2n, there are no restrictions on Young
diagrams, and we can give closed formulas for the multiplicities mn,λ. To do
so, we define integers hr inductively by h0 = 1, h1 = 1 and

(1.3) hr+1 = hr + rhr−1.

We denote by dλ the dimension of the simple Sn module labeled by the Young
diagram λ, where the number of boxes |λ| of λ is equal to n. There exists a
well-known explicit formula for it in terms of the hook lengths of λ. We will
need the following well-known identities

(1.4)
∑
μ<λ

dμ = dλ and
∑
ν>λ

dν = (n + 1)dλ,

where |λ| = n, and μ and ν range over all Young diagrams which can be
obtained by removing a box from λ (for μ) or adding a box to λ (for ν).

Proposition 1.1. (a) The multiplicity mn,λ of the simple module V ′
λ in

V ⊗n for N > 2n is equal to hn−|λ|
( n
|λ|
)
dλ.
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(b) We have the identity

∑
|λ|=n−r

mn,λdλ = hr
n!
r!

(c) If N > 2n, we have dim EndSp(N−1)(V ⊗n) =
∑n

r=0 h
2
r
n!
r!
(n
r

)
.

Proof. We will prove (a) by induction on n, with the claim easily checked for
n = 1. It follows from (1.2) that V ′

λ ⊂ V ′
μ ⊗ V if and only if μ = λ or μ is

obtained by removing or adding a box from/to λ. In each of theses cases V ′
λ

appears with multiplicity 1. It follows that

mn,λ = mn−1,λ +
∑
μ<λ

mn−1,μ +
∑
ν>λ

mn−1,ν .

Using the induction assumption, the identities (1.3), (1.4) and the identity(n−1
k+1

)
(k + 1) =

(n−1
k

)
(n− 1 − k), we obtain

mn,λ = hn−|λ|−1

(
n− 1
|λ|

)
dλ+

∑
μ<λ

hn−|λ|

(
n− 1
|λ| − 1

)
dμ+

∑
ν>λ

hn−|λ|−2

(
n− 1
|λ| + 1

)
dν

= hn−|λ|−1

(
n− 1
|λ|

)
dλ+hn−|λ|

(
n− 1
|λ| − 1

)
dλ+hn−|λ|−2

(
n− 1
|λ| + 1

)
dλ(|λ|+1)

= dλ[hn−|λ|−1

(
n− 1
|λ|

)
+hn−|λ|

(
n− 1
|λ| − 1

)
+hn−|λ|−2

(
n− 1
|λ|

)
(n− 1 − |λ|)

= dλ[
(
n− 1
|λ|

)
(hn−|λ|−1 + hn−|λ|−2(n− 1 − |λ|)) + hn−|λ|

(
n− 1
|λ| − 1

)

= dλhn−|λ|

((
n− 1
|λ|

)
+

(
n− 1
|λ| − 1

))
.

This proves part (a). Part (b) follows from this and the identity
∑

|λ|=n−r d
2
λ =

(n−r)!. Part(c) similarly follows from this, part (a) and dim EndSp(N−1)(V ⊗n)
=

∑
|λ|≤nm

2
n,λ.

1.4. Description of EndSp(N−1)(V ⊗n)

We denote by E ∈ End(V ) the projection onto the trivial representation Cvo
of Sp(N − 1) with kernel V ′, and by U the antisymmetrization map

U : v ⊗ w �→ v ∧ w = v ⊗ w − w ⊗ v, v, w ∈ V.
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The elements Ui ∈ End(V ⊗n) are defined for 1 ≤ i < n by

(1.5) Ui = 1 ⊗ 1 ⊗ · · · ⊗ U ⊗ · · · ⊗ 1,

where U acts on the i-th and (i + 1)-st factors in V ⊗n. Observe that the flip
G : v ⊗ w ∈ V ⊗2 �→ w ⊗ v is related to U by the simple formula G = 1 − U .
We now extend the bilinear form ( , )′ to a non-degenerate bilinear form ( , )
on V by defining

(1.6) (vo, vo) = 1 and (vo, v′) = 0 = (v′, vo) for all v′ ∈ V ′.

If (v′i) and (w′
i) are dual bases of V ′ with respect to ( , )′, we obtain the

canonical vector vo ⊗ vo +
∑

i v
′
i ⊗w′

i ∈ V ⊗2 for the form ( , ). We define the
element F ∈ End(V ⊗2) by

F (v ⊗ w) = (v, w) (vo ⊗ vo +
∑
i

v′i ⊗ w′
i).

The elements Fi and Gi in End(V ⊗n) are defined in the same way as Ui

in (1.5). It is well-known that the element F can be used to calculate the
trace of an element A ∈ End(V ) by

Tr(A)F = F (A⊗ 1)F.

Let us now decompose V ⊗n into the direct sum of three Sp(N − 1) sub-
modules as follows. Write V ⊗n =

⊕
λmλVλ, where mλ is the multiplicity of

the simple module Vλ in V ⊗n. For given n, we call the diagram λ an old /
recent / new diagram in V ⊗n if Vλ has appeared for the first time in V ⊗m

with m ≤ n− 2 / m = n− 1 / m = n. We define

V ⊗n
old =

⊕
λ old

mλV
′
λ,

and V ⊗n
rec and V ⊗n

new accordingly. Then it follows from the tensor product
rule (1.2) that λ is an old / recent/ new diagram if |λ| ≤ n− 2/|λ| = n− 1 /
|λ| = n.

Theorem 1.2 (See e.g. [26], Proposition 4.10). Let V be a finite-dimensional
self-dual G-module. Then EndG(V ⊗n

old ) is given by a Jones basic construction
for EndG(V ⊗n−2) ⊂ EndG(V ⊗n−1). Moreover, it coincides with the two-sided
ideal in EndG(V ⊗n) generated by Fn−1, which is spanned by elements of the
form aFn−1b, with a, b ∈ EndG(V ⊗n−1 ⊗ 1).
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Theorem 1.3. The algebra EndSp(N−1)(V ⊗n) is generated by the symmetric
group Sn, acting via permutations of the factors of V ⊗n, the element E⊗1n−1
and the element F1.

Proof. The proof goes by induction on n, with n = 1 obviously true. The claim
follows for End(V ⊗n)old from Theorem 1.2 and the induction assumption.
If V ′

λ ⊂ V ⊗n
new, i.e. |λ| = n, it follows from the tensor product rules that

V ′
λ ⊂ (V ′)⊗n. In this case, the claim follows from Brauer’s classical result.

It also implies that Wλ = Hom(V ′
λ, V

⊗n) is an irreducible Sn module. To
deal with the remaining cases, observe that the elements Gi, 1 ≤ i < n and
T = (1−2E)⊗1n−1 satisfy the relations of the Weyl group W (Bn) of type Bn.
Hence the quotient modulo the ideal generated by Fn−1 is also a quotient of
the group algebra of W (Bn). We will finish the proof in the next section after
a brief review of the representation theory of W (Bn).

1.5. Weyl group of type Bn

The Weyl group W (Bn) of type Bn can be defined via generators t and
si, 1 ≤ i < n and relations such that the si are simple reflections of the
symmetric group (e.g. we can take si = (i, i + 1)) and such that t commutes
with si for i > 1 and satisfies s1ts1t = ts1ts1. It is well-known that it is
isomorphic to the semidirect product (Z/2)n � Sn, with t corresponding to
(1, 0, . . . , 0) ∈ (Z/2)n, and with Sn permuting the coordinates of elements
of (Z/2)n. The irreducible representations of W (Bn) are labeled by pairs of
Young diagrams (λ, μ) with |λ|+ |μ| = n. They can be constructed as follows
(see e.g. [21], Chapter 8 for details):

Let φ be a character of (Z/2)n such that φ(εi) = −1 for i ≤ r and
φ(εi) = 1 for i > r; here εi is the i-th unit vector in (Z/2)n. The centralizer of
φ consists of all g ∈ W (Bn) such φ(gxg−1) = φ(x) for all x ∈ (Z/2)n. It is easy
to see that for our choice of φ the centralizer is equal to (Z/2)n� (Sr×Sn−r).
Let Wλ and Wμ be irreducible representations of Sr and Sn−r. Then Wλ⊗Wμ

becomes an irreducible representation of (Z/2)n � (Sr × Sn−r), where the
action of x ∈ (Z/2)n is given by the scalar φ(x). It can then be shown that
inducing this representation up to W (Bn) yields an irreducible representation
of W (Bn) of dimension

(n
r

)
dλdμ.

Conclusion of Proof of Theorem 1.3. Let |λ| = n−1. Then E⊗E⊗1n−2, and
hence also F1 acts as 0 on Hom(Vλ, V

⊗n), with Vλ an irreducible Sp(N − 1)-
module. Hence we can view Hom(Vλ, V

⊗n) as a W (Bn)-module on which
E⊗ 1n−1 acts nontrivially; indeed, the module Cvo⊗Vλ

∼= Vλ is in the image
of E ⊗ 1n−1. As Cv0 ⊗ Vλ ⊂ Cvo ⊗ (V ′)⊗n−1, it also follows that Ei acts as
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0 on Cvo ⊗ Vλ for i > 1. Hence the action of (Z/2)n on Cvo ⊗ Vλ is given
by the functional φ : x ∈ (Z/2)n �→ (−1)x1 . We obtain that Hom(Vλ, V

⊗n)
contains an irreducible W (Bn)-module labeled by ([1], λ). By the previous
discussion it has dimension n dλ = wn,λ = dim Hom(Vλ, V

⊗n). Hence W (Bn)
and therefore also Cn acts irreducibly on Hom(Vλ, V

⊗n).

2. A q-deformation of EndSp(N−1)(V ⊗n)

The goal of this paper is to study q deformations of Rep(Sp(N − 1)) at the
categorical level which are compatible with the deformation of Rep(Sl(N))
to UqslN and with the embedding Sp(N − 1) ⊂ Sl(N). As we shall see, this
leads to a structure different from Rep(UqspN−1).

2.1. Hecke algebras

The Hecke algebra Hn = Hn(q) of type An−1 is defined via generators gi,
1 ≤ i < n and relations

gigi+1gi = gi+1gigi+1, 1 ≤ i < n− 1,

together with g2
i = (q − q−1)gi + 1 and gigj = gjgi for |i− j| �= 1. Defining

ui = q1 − gi,

the relations above translate to u2
i = (q + q−1)u, uiuj = ujui for |i − j| �= 1

and

(2.1) uiui+1ui − ui = ui+1uiui+1 − ui+1.

We replace Rep(Sl(N)) by the representation category of the Drinfeld-
Jimbo quantum group UqslN . It was shown in [10] that the generalization of
the map U of the previous subsection can then be defined with respect to
a basis {vi} for V by U(vi ⊗ vi) = 0 and by defining its restriction to the
ordered basis vectors vi ⊗ vj and vj ⊗ vi, i < j by the matrix

(2.2) U =
[
q−1 −1
−1 q

]
.

The elements Ui ∈ End(V ⊗n) are defined for 1 ≤ i < n as in (1.5).
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2.2. Dimensions and traces

We review some basics about dimension functions for representations of quan-
tum groups, see [22] and [12], XIV.4 for more details. Let W be an UqslN -
module with dual module W ∗. Then there exist canonical morphisms

bW : 1 → W ⊗W ∗ and d′W : W ⊗W ∗ → 1

such that for a ∈ End(W ) we define

(2.3) Trq(a) = d′W (a⊗ 1)bW .

We remark that while Trq does not satisfy the trace property Trq(ab) =
Trq(ba) in general, its restriction to EndUqslN (W ) is indeed a trace. There
exists an element q2ρ ∈ UqslN such that Trq(a) = Tr(aq2ρ), see [20], (7.1.1).
We will only need to know its action on W = V ⊗n, where we have

(2.4) Trq(a) = Tr(aD⊗n), a ∈ End(V ⊗n), D = diag(q2i−N−1).

More generally, we can define a partial trace (also referred to as a contraction,
or a conditional expectation) EX : End(X ⊗W ) → End(X) by

(2.5) EX(a) = (1X ⊗ d′W )(a⊗ 1W ∗)(1X ⊗ bW ),

which satisfies Trq(a) = Trq(EX(a)). If we take X = W = V = C
N , the vector

representation of UqslN , it follows from the discussion above that EX(U) =
Trq(U)1V , as V is irreducible. One deduces from this more generally that

(2.6) En(Un) = Tr(Un)1,

where En is the partial trace from End(V ⊗n+1) to End(V ⊗n).
As usual, we define the q-number [k] = (qk − q−k)/(q − q−1). Then the

q-dimension of the irreducible UqslN module Vμ with highest weight μ is given
by (see e.g. [1], (3.2))

(2.7) dimq Vμ =
∏

1≤i<j≤N

[μi − μj + j − i]
[j − i] .

The dimension of a simple Uqsp2k-module V ′
λ labeled by the Young diagram
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λ is given by

dimq V
′
λ =

∏
i<j

[λi−λj+j−i][λi + λj + 2k + 2 − i− j]
[j − i][2k + 2 − i− j]

k∏
i=1

[2λi + 2k + 2 − 2i]
[2k + 2 − 2i] .

(2.8)

Remark 2.1. Let H
(N)
n be the image of the Hecke algebra Hn in the repre-

sentation in V ⊗n. Then we refer to the trace tr on Hn such that tr(pμ) =
dimq Vμ/[N ]n (as in (2.7)) for a minimal idempotent pμ in the direct sum-
mand of Hn labeled by μ as the Markov trace on H

(N)
n . It was shown in [24]

that the quotient Hn modulo the annihilator ideal of tr is indeed isomorphic
to H

(N)
n for q not a root of unity.

2.3. Posing the question

We can now make the above mentioned problem of finding a module category
M corresponding to a q-deformation for the embedding Sp(N − 1) ⊂ SL(N)
more precise as follows: We fix N and denote by H

(N)
n the image of the Hecke

algebra Hn in the representation in V ⊗n for V = C
N . Then we want to find

extensions Cn = C
(N)
n of H(N)

n such that

(a) Cn ⊂ Cn+1,
(b) H

(N)
n ⊂ Cn

∼= EndSL(N)(V ⊗n) ⊂ EndSp(N−1)(V ⊗n) at least for q not a
root of unity,

(c) (Markov property) There exists a normalized trace tr on Cn extend-
ing the Markov trace on the Hecke algebra H

(N)
n compatible with the

embedding Cn ⊂ Cn+1 for all n such that tr(e) = 1/[N ] and

(2.9) tr(cgn) = tr(c)tr(gn) for all c ∈ Cn.

Remark 2.2. Condition (b) is a consequence of the right module action of
the Rep(UqslN ) object V ⊗n on the M object 1 corresponding to the triv-
ial represention of spN−1, while Condition (a) is a consequence of the right
module action of the Rep(UqslN ) object V on the M object 1 ⊗ V ⊗n. We
require condition (c) as a necessary condition to also get a module action of
the fusion tensor category, viewed as a quotient of Rep(UqslN ). Informally,
a negligible Rep(UqslN )-endomorphism of V ⊗n should remain negligible also
as an element of EndM(1 ⊗ V ⊗n) and of EndM(1 ⊗ V ⊗n+1) in the desired
module category M. This seems to be a fairly restrictive condition, which is
not satisfied for arbitrary module categories of Rep(UqslN ).
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The following lemma will only be needed for n ≤ 2 in this paper (but
more later).

Lemma 2.3. If a trace tr on Cn as in (c) exists, its value on a minimal idem-
potent pλ in the direct summand of Cn labeled by λ is equal to dimq V

′
λ/[N ]n,

with dimq V
′
λ given in (2.8).

Proof. We view D as the representation of an element of Sp(N − 1) with
eigenvalues q±2j , 1 ≤ j ≤ (N − 1)/2. These are exactly the eigenvalues of the
element q2ρ′ for ρ′ half the sum of the roots of Sp(N − 1) in its vector repre-
sentation V ′. Hence the value of tr for p̃λ is given by the symplectic character
χλ(q2ρ′)/[N ]n, where p̃λ is a minimal idempotent in EndSp(N−1)(V ⊗n). It is
well-known that an irreducible SL(N)-module labeled by μ decomposes as a
direct sum of Sp(N−1)-modules labeled by Young diagrams with fewer boxes
than μ except possibly for μ itself (see [4]). By assumption Hn ⊂ Cn has the
same inclusion pattern as EndSL(N)(V ⊗n) ⊂ EndSp(N−1)(V ⊗n). Hence tr(pλ)
is already determined by the values tr(pν) for minimal idempotents pν ∈ Cn

labeled by diagrams ν with |ν| < |λ| and by the value of tr on minimal
idempotents of Hn. Hence we can show the claim by induction on |λ|.

2.4. First structure coefficients

As a simple but important special case of the tensor product rule (1.2), we
obtain that V ⊗2 decomposes as an Sp(N − 1)-module into the direct sum

(2.10) V ⊗2 ∼= 2 · 1 ⊕ 2V ′ ⊕ V ′
2Λ1 ⊕ V ′

Λ2 ;

here 1 is the trivial representation and V ′
2Λ1

and V ′
Λ2

denote the nontrivial
spN−1 representations which appear in the symmetrization respectively an-
tisymmetrization of (V ′)⊗2; see also the Bratteli diagram in Section 1.2. Let
V2Λ1 and VΛ2 denote the symmetrization and antisymmetrization of V ⊗2 re-
spectively. Then one checks easily, using the dimension formulas in Section 2.2
and the tensor product formulas in Section 1.1 that

Vλ
∼= V ′

λ ⊕ V ′ ⊕ 1, for λ = 2Λ1,Λ2,

as an Sp(N−1) module. It follows from (2.10) that C2 has two nonisomorphic
2-dimensional irreducible representations, and two one-dimensional represen-
tations. As the image of u1 is equal to VΛ2 , it follows from the restriction rules
above that u1 acts as a rank 1 matrix in the representations of C2 labeled by
1, V ′ and V ′

Λ2
. It follows similarly from the tensor product rules (1.1) that e
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acts as a rank 1 idempotent in the two 2-dimensional representations of C2.
Hence we can assume the two 2-dimensional representations to be of the form

e �→
[
1 0
0 0

]
⊕

[
1 0
0 0

]
,(2.11)

u1 �→
[

a
√
ab√

ab b

]
⊕

[
c

√
cd√

cd d

]
,(2.12)

for suitable complex scalars a, b, c, d. Using (1.2) again, we obtain (for N ≥ 5)
that

(2.13) V ⊗3 ∼= 4 · 1 ⊕ 6V ⊕ · · · .

For N = 3, we have to make the following adjustments: In (2.10), the rep-
resentation V ′

Λ2
does not appear, and in (2.13) the representation V ′ only

appears with multiplicity 5.

Lemma 2.4. The matrix entries above satisfy a + b = [2] = c + d and, if
ab �= 0, (a − c)2 = 1. Moreover, there exists a 4-dimensional representation
of the Hecke algebra H3 with u1 given by the matrices in (2.12) and u2 by the
same matrix blocks, with the second and third basis vectors permuted.

Proof. The first statement follows from the fact that each of the matrix blocks
in (2.12) has rank 1 and its only possible nonzero eigenvalue is [2]. We now
consider the representation of the Hecke algebra H3 on the four-dimensional
space Hom(1, V ⊗3). It follows from the definition of path bases that u1 can
be represented by the 4 by 4 matrix ρ(u1) with the two diagonal blocks as in
(2.12). As Cv0 ⊗ V ⊗2 ∼= V ⊗2 as an Sp(N − 1) module, we can also assume
that u2 is represented by the first matrix block in (2.12) on the span of the
first and third path, while it is given by a 2 by 2 block with diagonal entries c′
and d′ on the remaining two paths. Checking the Hecke algebra relation (2.1)
for the (1,1) entry, we deduce that c′ = c, and hence also d′ = d. Checking
relation (2.1) for entries (1,2) and (2,1), one deduces that the off-diagonal
entries in the c′, d′ block of u2 are equal to

√
cd. This determines the matrix

for u2 as claimed. But then the (21) entry of both the left and the right hand
side of relation (2.1) reads as

√
ab(a2 + bc− 1) =

√
ab(ac + cd).

Substituting b = [2] − a and d = [2] − c, and dividing by
√
ab, we obtain

(a− c)2 = 1, as claimed.
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Corollary 2.5. Let e(3) be the projection onto the path 0 → 0 → 0 → 0.

(a) If a = c + 1, then (u1u2 − u1)e(3) = (u2u1 − u2)e(3), or, equivalently,
(g1g2 + g1)e(3) = (g2g1 + g2)e(3),

(b) If a = c + 1, then (u1u2 + u1)e(3) = (u2u1 + u2)e(3), or, equivalently,
(g1g2 − g1)e(3) = (g2g1 − g2)e(3).

Proof. This follows from the explicit matrices as described in the proof of
Lemma 2.4.

2.5. Relations from Markov property

Recall that the Markov property (2.9) requires tr(cun) = tr(c)tr(un) for any
c ∈ Cn.

Lemma 2.6. The Markov property only holds if the matrix entries in (2.12)
are as follows (where N = 2k + 1):

a = [k](q1/2 + q−1/2)
[k + 1/2] , c = [k − 1/2]

[k + 1/2] , if a = c + 1,

a = −(q1/2 − q−1/2)(qk − q−k)
qk+1/2 + q−k−1/2 , c = qk−1/2 + q−k+1/2

qk+1/2 + q−k−1/2 , if a = c− 1.

Proof. It follows from the definitions and Lemma 2.3 that tr(e) = 1/[N ] and

tr(u) = [2] [N ][N − 1]
[2]

1
[N ]2 = [N − 1]

[N ] .

Using the explicit matrix representations (2.11) and (2.12) and the weights
of the traces in Lemma 2.3, we obtain

tr(ue) = 1
[N ]2 (a + c([N ] − 1)).

It follows from the Markov property tr(ue) = tr(u)tr(e), with N = 2k + 1
that

a + c([2k + 1] − 1) = [2k].
By Lemma 2.4, we have a = c ± 1. Let us consider the case a = c + 1.
Substituting this into the last equation we obtain

c = [2k] − 1
[2k + 1] = [k − 1/2]

[k + 1/2] = qk−1/2 − q−k+1/2

qk+1/2 − q−k−1/2 .

The formula for a follows from a = c+1. The case a = c−1 goes similarly.
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2.6. Correction for q → 1

We assume in this section that a = c − 1. It follows from Lemma 2.6 that
ab = 0 for q = 1 in this case. This would make the representation in the
first matrix block in (2.12) reducible. This can be avoided by introducing the
elements u12 and u21 defined below; they correspond to intertwiners between
the two copies of the trivial representation in V ⊗2. We shall show later that
one can make sense of them also at q = 1. It will be convenient to define

(2.14) [N ]+ = qN/2 − q−N/2

q1/2 − q−1/2 and [N ]− = qN/2 + q−N/2

q1/2 + q−1/2 .

Observe that

b = [2] − a = qk+1 + q−k−1

[N ]−
,

√
ab = −i(q1/2 − q−1/2)

[N ]−

√
[N ] − 1,

where we used the identity [k](qk+1 + q−k−1) = [N ]− 1, and where the choice
of sign for

√
ab will turn out to be immaterial. Let e(2) be the subprojection

of e which is nonzero only in the first matrix block in (2.11). We define the
element

u21 = [N ]−
−i(q1/2 − q−1/2)

(1 − e(2))u1e(2)(2.15)

= i[N ]−
−q1/2 − q−1/2u1e(2) + i(q1/2 − q−1/2)[k]e(2),

where we used e(2)u1e(2) = ae(2). We similarly define u12 = ut21 by the
same expression as in 2.15 with u1 and e(2) interchanged. By construction,
it follows that the elements u21 and u12 are represented by the matrices
u21 =

√
[N ] − 1E21 and u12 =

√
[N ] − 1E12, where Eij are matrix units in

the first 2×2 matrix block in (2.12). The following results follow immediately
from this.

Lemma 2.7. We have u12u21 = ([N ] − 1)e(2), u21u12e(2) = 0 = e(2)u21u12
and the element P = e(2) + u12 + u21 + u21u12 satisfies P 2 = [N ]P .
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2.7. Summary of relations

The following is a preliminary definition of the algebras Cn. The precise, but
less intuitive definition of the algebras Cn in various versions will be given in
the following section.

Definition 2.8. Fix N = 2k + 1. Then we define the algebra Cn,± = C
(N)
n,±

via generators e, ui, 1 ≤ i < n with the following relations:

(a) The elements ui satisfy the Hecke algebra relations,
(b) We have a sequence of idempotents e(r) defined inductively by e(0) = 1,

e(1) = e and

e(r+1) = e(r)ure(r) −
q(N−2)/2 − q−(N−2)/2

qN/2 − q−N/2 e(r), for Cn,+,

e(r+1) = q(N−2)/2 + q−(N−2)/2

qN/2 + q−N/2 e(r) − e(r)ure(r), for Cn,−.

(c) For j < r we have (uj−1uj − uj−1)e(r) = (ujuj−1 − uj)e(r) for Cn,+ and
(uj−1uj + uj−1)e(r) = (ujuj−1 + uj)e(r) for Cn,−.

Remark 2.9. 1. In spite of fractions in the exponents, it is not hard to
check that the relations only depend on q and not on the choice of a
square root q1/2. E.g. we have

q(N−2)/2 − q−(N−2)/2

qN/2 − q−N/2 = qN−1 + qN−2 + · · · + q1−N

qN + qN−1 + · · · + q−N
.

2. Let e±(q) and ui,±(q) be the generators of Cn,±(q) for a given choice of
q respectively. Then we can check that the maps

e−(q) �→ e+(−q), ui,−(q) �→ −ui,+(−q), 1 ≤ i < n,

define an isomorphism between Cn,−(q) and Cn,+(−q).

2.8. Alternative definitions of the algebras Cn

We make the following adjustments for the precise definition of the algebra
Cn = Cn(p, q) as an algebra depending on two variables p and q. First, we
substitute p = qN in the previous relations. Secondly, we introduce additional
generators which will only be relevant for the important classical limit q → 1
for Cn,− (respectively for q → −1 for Cn,+). It will be comparatively easy
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to prove for this version of the algebra that its dimension is indeed given by
its upper bound, see Theorem 3.7. We also expect this fact to be true for
specializations of the parameters, after possibly suitably rescaling our basis
elements.

Definition 2.10 (Two variable definition). We define the algebra Cn =
Cn,± = Cn,±(p, q) over the field C(p, q) of rational functions in the variables
p and q as follows: We have generators ui, e(r) for 1 ≤ i, r < n with the
following relations:

(a) The elements ui satisfy the Hecke algebra relations,
(b) The elements e(r) are idempotents which satisfy the relations

e(r+1) = e(r)ure(r) −
p1/2q−1 − qp−1/2

p1/2 − p−1/2 e(r), for Cn,+,

e(r+1) = p1/2q−1 + qp−1/2

p1/2 + p−1/2 e(r) − e(r)ure(r), for Cn,−.

(c) For j < r we have (uj−1uj − uj−1)e(r) = (ujuj−1 − uj)e(r) for Cn,+ and
(uj−1uj + uj−1)e(r) = (ujuj−1 + uj)e(r) for Cn,−.

Remark 2.11. Similarly as e.g. for the algebras defined in [2], this definition
is not convenient if we are interested in obtaining the classical limits for
q → 1 and p = qN → 1. This can be addressed by introducing additional
generators. It will be shown in Section 3 that one can make sense of these
additional elements if q → 1.

Definition 2.12 (Extended definition for Cn(qN , q)). We now let p = qN

as before. We add to the usual generators ui, e(r) for 1 ≤ i, r < n also the
elements

1
q1/2 + q−1/2uie(r),

1
q1/2 + q−1/2 e(r)ui, 1 ≤ i < r < n, for Cn,+,

1
q1/2 − q−1/2uie(r),

1
q1/2 − q−1/2 e(r)ui, 1 ≤ i < r < n, for Cn,−.

The relations are the same as in Definition 2.8.

2.9. Basic structure results

We will prove existence of nontrivial representations of the algebras Cn,± in
the next section.
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Proposition 2.13. (a) The map Φ given by e �→ e(r+1), ui �→ e(r)ur+i

defines a homomorphism of Cn−r onto e(r)Cne(r).
(b) The algebras Cn,± are spanned by the Hn − Hn bimodules Hne(r)Hn,

0 ≤ r ≤ n. In particular, they are finite dimensional.
(c) The span Ir of

⋃
s≥r Hne(s)Hn is a two-sided ideal of Cn for 1 ≤ s ≤ n.

Proof. The homomorphism property in (a) follows directly from the relations.
For (b), we observe that the claimed spanning set contains the generators
of Cn. It hence suffices to show that multiplying it by a generator from the
right or left will still produce an element in the span. This is obviously true
for the generators ui. We prove the claim for multiplication by e by induction
on n, with the statement obviously true for n = 1. Observe that the Hecke
algebra Hn is spanned by elements of the form au1b or a, with a, b ∈ H2,n,
where H2,n is the subalgebra generated by u2, u3, . . . , un−1 and 1. We then
have, using e(r) = ee(r), and with c as in Lemma 2.6,

e(au1b)e(r) = a(eu1e)be(r) = c abe(r) + ae(2)be(r).

But now e(2)be(r) ∈ e(2)H2,ne(2) ⊂ Φ(eHn−1e) by (a). Hence, by induction
assumption, we have

e(2)be(r) ∈ span
⋃
s

Φ−1(Hn−1e(s)Hn−1) ⊂ span
⋃
s

Hn−1e(s)Hn−1.

The proof for multiplication by e from the right goes completely analogously.
This finishes the proof of statement (b). The surjectivity statement in (a)
now follows from (b), as Φ maps e(s) to e(s+1). Our proof of (b) also implies
statement (c).

2.10. Dimension estimates

We will explicitly construct spanning sets for the algebras Cn which will later
be shown to be bases. To do so, we shall use two well-known facts about
Hecke algebras, here only formulated for Hecke algebras for type A (see [9]
for details). Let si, 1 ≤ i < n be a set of simple reflections for the symmetric
group Sn (say si = (i, i + 1)). Then any element w ∈ Sn can be written as
a product of simple reflections. Any such expression for w with the minimal
number of factors is called a reduced word, and the number of factors is called
the length �(w) of w. In the case of the symmetric group, the length �(w) can
also be defined as the number of pairs i < j such that w(i) > w(j). Replacing
the elements si by generators gi in such an expression defines an element
hw ∈ Hn which does not depend on the choice of reduced expression for w.
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It is easy to see that the shortest elements in the left cosets of Sr ⊂ Sn

are given by permutations w which satisfy w(i) < w(j) for any 1 ≤ i < j ≤ r,
and that the shortest elements in the left cosets of Sr × Sn−r ⊂ Sn are given
by permutations w which also satisfy the additional conditions w(i) < w(j)
for all r < i < j ≤ n. It is well-known (and easy to check for these cases) that
each such coset contains a unique element of lowest length.

Definition 2.14. If w ∈ Sn and hw the corresponding element in Hn, we
define hT

w = hw−1 . If S ⊂ Hn we define ST = {hT , h ∈ S}. Using these
conventions, we define Cn,r = {hw}, where w ranges over the shortest elements
in the left cosets of Sr ⊂ Sn, and we define Dn,r = {hw}, where now w ranges
over the shortest elements of the left cosets of Sr × Sn−r ⊂ Sn. Finally, we
define Br inductively by B0 = ∅, B1 = {1} and

Br+1 = Br ∪
r⋃

j=1
gjgj+1 · · · grBr−1.

We remark that |Cn,r| = [Sn : Sr] = n!/r! and that |Dn,r| =
(n
r

)
, and that

DT
n,r contains the elements hw with w running through the shortest elements

of the right cosets of Sr × Sn−r ⊂ Sn.

Lemma 2.15. (a) We have |Br| = hr, with hr as in (1.3).
(b) The set Cn,rBre(r) spans Hne(r).

Proof. Statement (a) follows from the definitions of hr in (1.3) and Br. To
establish statement (b), let us first prove it in the special case n = r by
induction on r. This is obviously true for r = 1. We now prove by downward
induction from s = r − 1 to s = 1 that

(∗) Hrgrgr−1 · · · gse(r+1) ⊂ Hre(r+1) + Hrgre(r+1).

For s = r− 1 it follows from relation (c) that grgr−1e(r+1) = (gr−1gr − gr−1 +
gr)e(r+1). This implies Hrgrgr−1e(r+1) is contained in the right hand side of
the claim. The induction step for s < r − 1 is shown in the same way. As
Hr+1 = Hr +

∑r
s=1 Hrgrgr−1 · · · gs, it follows that

Hr+1e(r+1) = Hre(r+1) + Hrgre(r+1)(2.16)

= Hre(r+1) +
r∑

j=1
Hr−1gr−1gr−2 · · · gje(r−1)gre(r+1),

where the summand for j = r is defined to be equal to Hr−1e(r−1)gre(r+1). The
claim for n = r follows from (∗) and the definition of Br+1. The general claim
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for n > r follows from this and the fact that Hn = Cn,rHr =
⋃

hw∈Cn,r
hwHr.

Lemma 2.16. We have the following inequalities:

(a) dimHne(r) ≤ n!
r!hr,

(b) dimHne(r)Hn ≤ n!
r!
(n
r

)
h2
r,

(c) We have dimCn ≤ ∑n
r=0

n!
r!
(n
r

)
h2
r.

Proof. It follows from the inductive definition of Cr,n that |Cr,n| = n!/r! This
and Lemma 2.15 imply claim (a). The inequality in (b) follows from (a) and
the surjective map Hn⊗Hr+1,nHn → Hne(r)Hn. Finally, claim (c) follows from
the fact that Cn is spanned by the subspaces Hne(r)Hn, 0 ≤ r ≤ n.

2.11. An explicit spanning set

We use the notations from Definition 2.14.

Proposition 2.17. The set B(r) = Cr,nBr,ne(r)BT
n,rDT

r,n spans Hne(r)Hn for
1 ≤ r ≤ n, and hence B =

⋃B(r) spans Cn.

Proof. We have already proved in Lemma 2.15 that the set Cn,rBre(r) spans
Hne(r). One can show the same way that the set e(r)BT

r spans e(r)Hr. The
claim now follows from this and the fact that DT

n,r contains the elements of
minimal lengths for all right cosets of Hr ×Hn−r ⊂ Hn.

3. Tensor product representations

We will give explicit representations of the algebras Cn = Cn,+ in this section.
In view of Remark 2.9, these representations can be easily modified to repre-
sentations of the algebras Cn,−. As before, let V = C

N with N = 2k + 1 and
let {vi} denote the standard basis of CN . We define vo =

∑N
i=1 αivi, where

αi = q(k+1−i)/2/
√∑k

i=−k q
i. The sign of the square root is immaterial, but

fixed throughout the paper. Observe that vTo vo = 1.

3.1. A matrix for e

We define the N by N matrix E = vov
T
o . Moreover, we modify the Hecke

algebra representation in (2.2) to u �→ U , where the matrix U is defined by

(3.1) U| span{vi⊗vj ,vj⊗vi} =
[
q−1 1
1 q

]
, i < j.
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with the matrices Ui defined as in (1.5). We then consider the map Φ which
maps the generators of Cn into End(V ⊗n) given by

(3.2) Φ : e �→ E ⊗ 1n−1, ui �→ Ui, 1 ≤ i < n.

Lemma 3.1. The map Φ is compatible with relation (b), mapping the element
e(n) to E⊗n. In particular, we have

E ⊗ E = (E ⊗ 1)U(E ⊗ 1) − qk−1/2 − q−k+1/2

qk+1/2 − q−k−1/2E ⊗ 1.

Proof. Observe that Evi = αivo for all i. As the image of E is spanned by vo,
it suffices to check the claim for vectors of the form vo⊗vj . We then calculate

U(vo ⊗ vj) =
j−1∑
i=1

αi(q−1vi ⊗ vj+vj ⊗ vi)+
N∑

i=j+1
αi(qvi ⊗ vj+vj ⊗ vi),

(E ⊗ 1)U(vo ⊗ vj) =
j−1∑
i=1

α2
i q

−1vo ⊗ vj + αiαjvo ⊗ vi

+
N∑

i=j+1
α2
i qvo ⊗ vj + αiαjvo ⊗ vi

= αj

N∑
i=1

vo ⊗ αivi + βvo ⊗ ej ,

where

β = −α2
j +

j−1∑
i=1

α2
i q

−1 +
N∑

i=j+1
α2
i q.

It is now straightforward to check that αj
∑N

i=1 vo ⊗ αivi = (E ⊗E)(vo ⊗ vj)
and

β = qk−1 + qk−2 + · · · + q1−k∑k
i=−k q

i
= qk−1/2 − q−k+1/2

qk+1/2 − q−k−1/2 ,

where the last equality is obtained by multiplying both numerator and de-
nominator by q1/2−q−1/2. This proves the second statement in the claim. We
can now show by induction on n that Φ can be extended to a homomorphism
which maps e(n) to E⊗n.
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3.2. Checking relation (c)

Let {vi} and vo be as above. Then we have

Lemma 3.2.
(U1U2 − U1)v⊗3

o = (U2U1 − U2)v⊗3
o .

Proof. This is a straightforward calculation. It is manageably tedious if one
checks it separately on the span of all possible permutations of vi ⊗ vj ⊗ vm
for any choice of indices i, j and m. If all indices are mutually distinct, one
obtains two 6 × 6 matrices for U1 and U2, both with three 2 × 2 blocks.
Moreover, the coefficient for each of these vectors in the basis expansion of
v⊗3
o is equal to αiαjαm. Hence it suffices to check the claim for these two 6×6

matrices, applied to the vector (1, 1, 1, 1, 1, 1)T , which is not very hard. The
case where two indices coincide is done similarly and easier, only involving
3 × 3 matrices.

Remark 3.3. If we define the algebra C̃3 like the algebra C3 without relation
(c), it can be shown that C̃3 modulo its radical is isomorphic to C3.

3.3. Classical limits

It will be more convenient to consider the representations for Cn,−, i.e. we ba-
sically replace q by −q in the matrix Φ(e) and in the coefficients of the vector
vo, see Remark 2.9. We are going to show that the elements 1

q1/2−q−1/2uie(r)
still make sense in our representation even at q = 1.

Lemma 3.4. (a) The matrix coefficients of 1
q1/2−q−1/2UiE(r) in the tensor

product representation of Cn,− are well-defined also at q = 1, up to the
choice of the square root q1/2.

(b) The elements E⊗2, 1
q1/2−q−1/2U1E

⊗2 and 1
q1/2−q−1/2E

⊗2U1 generate an
algebra which is isomorphic to the 2 × 2 matrices if [N ] �= 1.

Proof. We calculate

Uv⊗2
o =

∑
i<j

αiαj(q−1 − 1)vi ⊗ vj + (q − 1)vj ⊗ vi).

It follows that also the coefficients in the expression for 1
q1/2−q−1/2Uv⊗2

o are in
Z[q±1/2]. As all columns of E⊗2 are proportional to v⊗2

o , claim (a) follows.
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Recall the definition of u21 in Definition 2.15. It follows from part (a) and
the equations below (2.14) that Φ(u21) and Φ(u12) are well-defined and that

Φ(u21u12) =
−[N ]2−

(q1/2 − q−1/2)2
(1 − E⊗2)UE⊗2U(1 − E⊗2)

has the nonzero eigenvalue

−[N ]2−a−([2] − a−)
(q1/2 − q−1/2)2

= [k](qk+1 + q−k−1) = [N ] − 1.

3.4. An embedding of Sp(N − 1) into Sl(N)

Let A be the N ×N matrix (with N = 2k + 1 odd) defined by

aij =
{

(−q−1)k+1−(i+j)/2 if i < j,

−(−q−1)k+1−(i+j)/2 if i > j.

As usual, we assume fixed choices of (−q)1/2 and of (−q−1)1/2 in all these
formulas such that their product is equal to −1.

Lemma 3.5. The matrix A has rank N − 1 in a neighborhood of q = 1,
with kernel vo =

∑2k+1
j=1 (−q)(k+1−j)/2vj. Hence we obtain a symplectic form

(v, w) = vTAw for q = 1 whose restriction to any complement V ′ of vo is
nondegenerate.

Proof. We check that

(Avo)i =
i−1∑
j=1

−(−q−1)k+1−(i+j)/2(−q)(k+1−j)/2

+
2k+1∑
j=i+1

(−q−1)k+1−(i+j)/2(−q)(k+1−j)/2

=
2k+1∑
j=2

(−q−1)(k+1−i)/2(−1)k+1−j = 0.

To determine the rank at q = 1, we observe that after conjugation by the
diagonal matrix D = diag((−1)(k+1−i)/2) the matrix entries become equal to
aij = (−1)k+1−i for i < j and aij = −aji for i > j. It is now easy to see that
the transformed matrix has eigenvectors (1, 0, 0, . . . ,±1), (0, 1, 0, . . . ,±1, 0)
etc. This proves the claim about the rank.
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Proposition 3.6. Fix N = 2k + 1 and let V = C
N . If q = 1, the repre-

sentation of Cn,− into End(V ⊗n) surjects onto EndSp(N−1)(V ⊗n), where the
embedding of Sp(N − 1) ⊂ Sl(N) is defined via the symplectic form given by
the matrix A in Lemma 3.5 at q = 1. In particular, dimC(q) Cn,−(qN , q) ≥
dim EndSp(N−1)(V ⊗n).

Proof. The image of Cn,− in End(V ⊗n) at q = 1 contains the usual action of
the symmetric group Sn on V ⊗n and the projection E ∈ End(V ) onto Cvo. By
Lemma 3.4, it also acts as a full 2× 2 matrix algebra on Hom(1, V ⊗2). So, in
particular, it also must contain the projection F . It follows from Theorem 1.3
that Cn,−(q) maps surjectively onto EndSp(N−1)(V ⊗n) for q = 1. This implies
the estimate about the dimensions.

3.5. A basis for Cn(p, q)

It will be convenient to consider the 2-variable version Cn(p, q) of Cn, as
defined in Definition 2.10.

Theorem 3.7. The spanning set in Proposition 2.17 is a basis for the two-
variable version Cn(p, q), viewed as an algebra over the field of rational func-
tions in p and q. In particular, we have dimCn(p, q) =

∑n
r=0 h

2
r
n!
r!
(n
r

)
.

Proof. It follows from Proposition 3.6 and Lemma 2.16(c), that
dimCn,−(qN , q) is equal to dim EndSp(N−1)(V ⊗n) if N > 2n. Hence the span-
ning set B in Proposition 2.17 is a basis for these values, i.e. for p = qN .

If we have a linear combination
∑

b∈B αbb = 0 in the C(p, q) algebra
Cn,−(p, q), for certain rational functions αb ∈ C(p, q), it would follow that
αb(q, qN ) = 0 for all odd N > 2n and all b ∈ B. Hence (p− qN )|αb for all odd
N > 2n. This is possible only if αb = 0, for all b ∈ B. Hence B is also a basis
for the algebra Cn,−(p, q). The claim can be similarly shown for Cn,+(p, q)
using Remark 2.9.

3.6. Semisimplicity

We can now use standard techniques to also prove that the algebras Cn are
semisimple for generic values. We give some details for the reader’s conve-
nience.

Theorem 3.8. The 2 variable algebra Cn(p, q) as well as the complex algebra
Cn for generic values (i.e. for an open and dense subset) of the parameters
are semisimple.
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Proof. Let D(p, q) = det(Tr(bibj)) be the discriminant for the algebra Cn;
here (bi) is the basis in Theorem 3.7 and Tr is the trace on End(Cn). We
have seen in Proposition 3.6 and Theorem 3.7 that the image of the algebra
Cn(qN , q) in the tensor product representation is semisimple and faithful in
the limit q → 1 for N > 2n. Hence the discriminant D(qN , q), and therefore
also D(p, q) must be a nonzero rational function. Hence Cn is semisimple as
stated.

4. Markov traces

Recall that we defined Trq on End(V ⊗n) in Section 2.2 by Trq(a)=Tr(aD⊗n),
where a ∈ End(V ⊗n) and D = diag(q2i−N−1), see (2.3) and also (2.4). We
define a functional φ on Cn = C

(N)
n as a normalized pull-back of Trq by

(4.1) φ(c) = 1
[N ]nTrq(Φ(c)), c ∈ Cn.

Observe that φ(1) = 1. It is the goal of this section to show that the functional
φ defines a trace tr on Cn which satisfies the Markov condition (2.9). To do so,
we first prove some basic properties of φ in Lemma 4.1, most of which are easy
consequences of the definitions. We then prove certain algebraic identities for
the ideal Hne(n)Hn in Section 4.1. This allows us to prove the trace property
of φ for that ideal in the following section. The general claim is then proved
by downwards induction on r for the ideals Ir = ⊕n

s=rHne(s)Hn.

Lemma 4.1. The functional φ has the following properties.

(a) The restriction of φ to Hn defines a trace.
(b) φ(c1gn−1c2) = φ(c1c2)φ(gn−1) for all c ∈ Cn−1.
(c) φ(e(r)) = φ(e)r = 1

[N ]r .
(d) φ(ch) = φ(hc) for all h ∈ Hn, c ∈ Cn.

Proof. Part (a) follows from the discussion in Section 2.2, and part (b) follows
from (2.6). We also have for n = r = 1 and for Cn,+

Trq(E) = Tr(ED) =
N∑
i=1

q2i−N−1q(N+1)/2−i/[N ]+ =
N∑
i=1

qi−(N+1)/2/[N ]+ = 1.

One deduces from this that

Trq(E⊗r) = Tr((ED)⊗r)Tr(D⊗n−r) = [N ]n−r,
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from which follows claim (c). As Φ(h) commutes with D⊗n for all h ∈ Hn,
we have

Trq(Φ(ch)) = Tr(Φ(c)Φ(h)D⊗n) = Trq(Φ(c)D⊗nΦ(h))=Trq(Φ(h)Φ(c)D⊗n)
= Trq(Φ(hc)).

4.1. Technical lemmas for the ideal Hne(n)Hn

It follows directly from the relations that the map

(4.2) Θn : gi �→ gn−i, 1 ≤ i < n

induces an automorphism of the Hecke algebra Hn which will be denoted by
the same letter. Also observe that if wo ∈ Sn is defined by wo(i) = n − i,
and we denote the corresponding map on V ⊗n given via permutation of the
factors by the same letter, we have

(4.3) woUiwo = Un−i(q−1),

where Ui(q−1) is given by the same matrix as Ui, with every occurrence of q
replaced by q−1.

Lemma 4.2. We have

Trq(Φ(h1)E⊗nΦ(h2)) = Tr(Φ(h1)E⊗n(q−1)Φ(h2))
= Tr(Φ(Θn(h1))E⊗nΦ(Θn(h2))).

Proof. To avoid cumbersome notation, we denote Hi = Φ(hi) in this proof.
Then we have

Trq(H1E
⊗nH2) = Tr(H1(D1/2ED1/2)⊗nH2) = Tr(H1E

⊗n(q−1)H2),

from which follows the first equality in the statement. Now observe that
the structure coefficients in the defining relations of Cn are invariant under
q ↔ q−1. Hence we also obtain a representation of Cn via the assignment

e �→ E(q−1), ui �→ Ui(q−1), 1 ≤ i < n.

As E⊗nHE⊗n = αE⊗n for some scalar α, it also follows E⊗n(q−1)H(q−1) ×
E⊗n(q−1) = αE⊗n(q−1) for the same scalar. Applying this to H = H2H1, we
obtain

Tr(H1E
⊗nH2) = Tr(E⊗nH2H1E

⊗n) = α
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= Tr(E⊗n(q−1)H2H1(q−1)E⊗n(q−1)) = Tr(Θn(H1)E⊗n(q−1)Θn(H2)),

where Θn(Hi) coincides with Φ(Θn(hi)). This proves the second equality.

Lemma 4.3. We have e(n)he(n) = e(n)Θn(h)e(n) for all h ∈ Hn.

Proof. The claim is proved by induction on n, with n = 1, 2 being trivially
true. For the induction step from n − 1 to n first observe that for any A ∈
End(V ⊗n−1) we have

E⊗n(A⊗1)E⊗n=E⊗n−1AE⊗n−1⊗E = E⊗E⊗n−1AE⊗n−1 = E⊗n(1⊗A)E⊗n,

as E⊗n−1AE⊗n−1 is a scalar multiple of E⊗n−1. We define the homomor-
phism sh : Hn−1 → Hn via sh(ui) = ui+1. If H ∈ Φ(Hn−1), it follows that
E⊗nsh(H)E⊗n = E⊗nHE⊗n. Moreover, by induction assumption, we have

E⊗n(Θn−1(H) ⊗ 1)E⊗n = E⊗n(H ⊗ 1)E⊗n.

Hence we have

(4.4) e(n)he(n) = e(n)sh(Θn−1(h))e(n) = e(n)Θn(h)e(n),

which proves the claim for h ∈ Hn−1. Let now h = h′gn−1 with h′ ∈ Hn−1.
We first observe that for h ∈ Hn, e(n−1)he(n−1) is a linear combination of
αe(n−1) + βe(n). Using e(n)e(n−1) = e(n), one deduces easily that

e(n)he(n−1) = e(n)he(n).

If e(n−1)h
′e(n−1) = γe(n−1), we calculate

e(n)he(n) = e(n)h
′e(n−2)gn−1e(n) = γe(n)gn−1e(n) = γ(c′ + 1)e(n).

On the other hand,

e(n)Θn(h)e(n) = e(n)Θn(h′)g1e(n) = e(n)Θn(h′)eg1e(n),

where we used that Θn(h′) ∈ H2,n commutes with e. But then

e(n)Θn(h)e(n) = e(n)Θn(h′)(c′ + 1)e(n) = γ(c′ + 1)e(n),

by (4.4). We now prove the claim for h = h′gn−1gn−2 · · · gn−s by induction
on s, with the case for s = 1 just shown. Using the relation (gn−s+1gn−s −
gn−s+1)e(n) = (gn−sgn−s+1 − gn−s)e(n), we obtain

e(n)h
′gn−1gn−2 · · · gn−se(n)
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= e(n)(h′gn−s−h′)gn−1gn−2 · · · gn−s+1e(n)+e(n)(h′gn−s)gn−1gn−2 · · · gn−s+2e(n).

The claim now holds for each summand on the right hand side by induction
assumption. After applying Θn to it, it can be easily shown that it is equal
to e(n)Θ(h)e(n).

4.2. Trace property of φ

We will need the following simple observation:
Remark 4.4. Let A be a semisimple algebra, and let I ⊂ A be a two-sided
ideal. If ψ : A → C is a functional satisfying ψ(cd) = ψ(dc) for all c, d ∈ I,
then we also have ψ(ca) = ψ(ac) for all a ∈ A and c ∈ I. Indeed, we can
write a = aI + aJ with aI ∈ I and aJ ∈ J where J is a two-sided ideal of A
such that IJ = 0. The claim follows from aJc = 0 = caJ .

Theorem 4.5. The functional φ satisfies the Markov property φ(cgn−1) =
φ(c)φ(gn−1) for all c ∈ Cn−1 and the trace property φ(cd) = φ(dc) for all
c, d ∈ Cn. Hence there exists a trace on Cn satisfying Condition (2.9).

Proof. The first claim follows from Lemma 4.1(b). We will prove the second
claim by induction on n, which is certainly true for the abelian algebra C1. Let
Ir =

⊕
s≥r Hne(s)Hn. We will prove that the restriction of φ to Ir satisfies the

trace property by downwards induction. We define the functional α : Hn → C

by
e(n)he(n) = α(h)e(n).

It follows from Lemma 4.2 and Lemma 4.3 that

[N ]nφ(h1e(n)h2) = Tr(Φ(Θn(h1))E⊗nΦ(Θn(h2))
= Tr(E⊗nΦ(Θn(h2h1))E⊗n) = Tr(E⊗nΦ(h2h1)E⊗n) = α(h2h1).

Then we calculate

[N ]nφ(a1e(n)a2b1e(n)b2) = [N ]nα(a2b1)φ(a1e(n)b2) = α(a2b1)α(b2a1).

One calculates in the same way that also [N ]nφ(b1e(n)b2a1e(n)a2) =
α(a2b1)α(b2a1). This proves the claim for r = n. For the induction step,
we first prove

(4.5) φ(he(s)) = φ(e(s)he(s)) for all h ∈ Hn, s ≥ r.
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For s > r, this is clear as the restriction of φ to Hne(s)Hn is a trace by
induction assumption. For s = r, we will prove the claim for h ∈ Hm by
induction on m ≥ r. If m = r, this follows from the fact that φ defines a trace
on Hre(r)Hr by the first part of this proof. For the induction step, it suffices
to prove the claim for elements of the form h = h1gmh2, h1, h2 ∈ Hm. But by
Markov property, see Lemma 4.1(b), we have

φ(h1gmh2e(r))=φ(gm)φ(h1h2e(r))=φ(gm)φ(e(r)h1h2e(r))=φ(e(r)h1gmh2e(r)),

where we used the induction assumption for h1h2 ∈ Hm.
Let now ai, bi ∈ Hn, i = 1, 2. Then we can write e(r)a2b1e(r) = (h+k)e(r) =

e(r)(h + k) with h ∈ Hr+1,n and k ∈ Ir+1. Using ke(r) = e(r)k = k, it follows
from (4.5) that

(4.6) φ(hk) = φ(hke(r)) = φ(e(r)hke(r)) = φ(e(r)he(r)k),

where we used that φ is a trace on Ir+1. We then calculate, using (4.6)

φ(a1e(r)a2b1e(r)b2) = φ(a1e(r)(h + k)e(r)b2)
= φ(b2a1e(r)(h + k)e(r)) by Lemma 4.1(d)
= φ(e(r)b2a1e(r)(h + k)e(r)) by (4.5) and Remark 4.4
= φ(e(r)b2a1e(r)a2b1e(r)).

We similarly calculate

φ(b1e(r)b2a1e(r)a2) = φ(e(r)a2b1e(r)b2a1e(r)).

The trace property now follows from the induction assumption, using the fact
that e(r)Cne(r) ∼= Cn−r, see Proposition 2.13.

5. Conclusions and future research

5.1. Historical context

When the author of this paper visited Columbia University as a postdoc in
the first half of 1986, Vaughan suggested as a project with my host, J. Birman,
that we try to find an algebraic interpretation of the Kauffman polynomial.
This resulted in the definition of a new algebra (independently discovered by
J. Murakami) which turned out to be a q-deformation of Brauer’s centralizer
algebra, see [4, 2]. This algebra was subsequently used to construct subfactors
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of type BCD, among other applications. A different q-deformation of Brauer’s
centralizer algebra was found in [27], see also [16]. It contained the Hecke
algebra Hn as a subalgebra. It was shown in [28] that it could also be used
to construct subfactors, as well as module categories of Rep(UqslN ) and of
the related fusion tensor categories Rep(UqslN ) for q a root of unity (they are
often also referred to as SU(N)k). This will be sketched below. In particular,
we could explicitly calculate the indices and first principal graphs of these
subfactors. This, in turn, also allows us to give an explicit description of
the algebras corresponding to these module categories. So while the current
paper is purely algebraic, it is closely related to research in which Vaughan
was interested. In particular, the idea of a Markov trace which plays a crucial
role in finding the relations for the algebras Cn goes back to him. It should
also be noted that the first module categories for fusion categories related to
SU(2) were already constructed by Vaughan and his collaborators in [8].

5.2. Markov traces, module categories and subfactors

It was shown in [24] that the quotient Hn(q) of Hn(q) modulo the annihilator
of the Markov trace tr is semisimple for all n, with tr as in Remark 2.1. We
expect the same to be true for the quotient Cn(q) modulo the annihilator
ideal of its extension, which was shown to exist in Theorem 4.5. E.g. it is not
hard to see that for q not a root of unity the quotient is isomorphic to the
image of Cn(q) in its representation in End(V ⊗n), see Section 3. Assuming
this, the construction of the module category goes as follows:

It was shown in [13] (see also [23] for a variation of this construction) that
Rep(UqslN ) for q not a root of unity and Rep(UqslN ) for q a root of unity
can be reconstructed from the quotients Hn(q) modulo the annihilator ideal
of a suitable version of the Markov trace. Here the objects are given by idem-
potents of Hn(q). We similarly define the module category M whose objects
are idempotents in Cn(q). If pM ∈ Cm(q) and pH ∈ Hn(q) are idempotents,
we define the module action by

pM ⊗ pH := pMshm(pH),

where the algebra homomorphism shm : Hn(q) → Cn+m(q) is defined by
shm(gi) = gi+m ∈ Cn+m(q). It follows from the relations that pM ⊗ pH is
an idempotent in Cn+m(q). Finally, if the quotients Hn(q) and Cn(q) allow
compatible C∗ structures, we can construct subfactors N ⊂ M from the
inclusions limn→∞Hn(q) ⊂ Cn(q) following the procedure in [24], Section 1.



Module categories 2603

5.3. Results in [27] and [28]

We give an outline of the results in these papers which give a good idea of the
results to be expected in the approach outlined in the previous subsection.
A q-version Brn(q) of Brauer’s centralizer algebra (see [4]) was defined in [27]
by again adding one more generator e to the generators of the Hecke algebras
Hn(q). As in this paper, the relations were forced by the condition that the
extension of the Markov trace on Hn(q) to the algebras Brn(q) satisfy an
analog of the Markov condition (2.9). Subfactors were constructed from these
algebras as outlined in the previous section. Their indices and first principal
graphs are given in [28] Sections 3F and 3G. Instead of copying the results
there, we just state an easy consequence of these results which only appears
implicitly in [28]:

Let q = eπi/(N+k). Then the category constructed from the quotients
Hn(q) is equivalent to the fusion category SU(N)k (or Rep(UqslN ) in the
notation of this paper). For simplicity, we assume a trivial twist (see [13]
or [23] for details). It is well-known that the simple objects of SU(N)k are
labeled by the Young diagrams λ with ≤ N − 1 rows such that λ1 ≤ k.
Recall that a module category over a tensor category can be defined via an
algebra object in the given tensor category (see [19]). We will reformulate the
following theorem in a somewhat more conceptual way in Remark 5.2.

Theorem 5.1. Let N be even. Then SU(N)k has an algebra object A =
IndAd(1), where IndAd(1) is the direct sum of simple objects Vλ such that
N | |λ| and the number of boxes in each column of λ is even.

Proof. We consider the inclusion of von Neumann factors N ⊂ M con-
structed in [28], Theorem 3.4 for case (c) listed before that theorem. It follows
from the explicit description of its principal graph in [28], Section 3G that the
von Neumann algebra M, viewed as an N − N bimodule, decomposes into
a direct sum of simple N −N bimodules labeled by exactly the Young dia-
grams which appear in IndAd(1). As M has a multiplication, it follows that
A in the statement is an algebra object in the category of N −N bimodules.
It is known that this category is equivalent to Ad(SU(N)k, the subcategory
of SU(N)k whose simple objects are labeled by Young diagrams λ such that
N | |λ| (see e.g. [25], Theorem 4.4).

Remark 5.2. 1. It is well-known that the restriction to Sp(N) of a simple
SU(N)-module labeled by the Young diagram λ contains the trivial repre-
sentation of Sp(N) if and only if the number of boxes in each column of λ is
even. Hence the algebra in Theorem 5.1 can be viewed as a natural analog in
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SU(N)k of the induction of the trivial representation of PSp(N) to PSU(N).
It would seem plausible that similar algebras exist which correspond to in-
ducing the trivial representation of PSp(N) or Sp(N) to quotients of SU(N)
modulo a subgroup of its center. This seems to be compatible with Edie-
Michell’s classification results of module categories of SU(N)k, see [5] and [6].
This possible generalization of our result became evident after conversations
with Edie-Michell.

2. Similarly, one can construct module categories and algebras from cases
(a) and (b) before [28], Theorem 3.4. As they are related to embeddings
of the full orthogonal group O(N), we would need as larger group the group
SU(N)×Z/2 of unitary matrices u with | det(u)| = 1. It should be possible to
obtain module categories of SU(N)k from this via a Z/2 orbifold construction.
One obtains algebra objects for these cases in the same way as it was done in
Theorem 5.1. Again, one would expect algebra objects and module categories
corresponding to each quotient group SU(N)/Z, where Z is a subgroup of
the center of SU(N).

3. A complete realization of all module categories for all fusion tensor
categories of type SU(3)k has been given in [7]. Using their results, one can
show that the general approach outlined here also works in the setting of this
paper for the special case N = 3, i.e. for the embedding of Sp(2) ⊂ SL(3).
Indeed, the explicit calculations in [7] were useful in the initial phase of finding
relations for our algebras. Here the algebra object coming from the subfactor
constructed there would be the direct sum of all simple objects in SU(3)k
labeled by Young diagrams λ with 3| |λ|. These subfactors seem to be closely
connected to subfactors constructed by F. Xu in [30].

5.4. Classification of module categories of WZW-fusion categories

A lot of progress in classifying module categories has recently been made
by Edie-Michell [5], building on the works of Ocneanu, Gannon, Schopieray,
Evans and Pugh, and others. Very roughly speaking these module categories
can be divided into exceptional and non-exceptional module categories. It
appears that we can find realizations for all non-exceptional module categories
of fusion tensor categories of type SU(N)k using the construction sketched
in this paper and its generalizations in Remark 5.2 together with the orbifold
construction. This was done in collaboration with Edie-Michell. It would also
be interesting to find out whether non-exceptional module categories of fusion
categories of other Lie types could similarly be realized via the constructions
in this paper for certain subgroups in connection with orbifolds.
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5.5. Co-ideal subalgebras

As mentioned in the introduction, module categories of a Drinfeld-Jimbo
quantum group Uqg can be defined for the sub-Lie algebra h consisting of
the fixed points of an order 2 Lie algebra automorphism, see [15] and [17].
It would be interesting to see whether our (proposed) module category of
UqslN could be realized by a suitable co-ideal deformation of the universal
enveloping algebras UspN−1 ⊂ UslN .
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