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On three homework problems from Vaughan Jones∗

Feng Xu

Abstract: This paper contains my previously unpublished work
on three problems proposed by Vaughan Jones.

1. Introduction

Vaughan had the amazing ability to come up with simply stated yet thought-
provoking problems. Often he presented his problems to his friends in mathe-
matics in an entertaining and casual manner, like a playful professor assigning
homework problems to his students, but always in a stimulating way. Over the
years I have had my share of his “homework problems”. Occasionally I man-
aged to make progress on these problems, and I still remember the excitement
I had when sharing my work with him. A few months after his unexpected
death, I came across my notes on some of his problems. It brought back to me
many fond memories of Vaughan, but also a tremendous sense of loss when
reality sunk in. For this special issue in memory of Vaughan, I have decided to
include my contributions to three of Vaughan’s problems. Besides completing
and updating references and adding a few remarks, I have largely kept my
original notes intact.

The reader may ask: “how original are the mathematical contents of these
notes?” Although I am certain that my notes on Problem Two are original, I
am not sure that I can say the same about my notes on Problems Three, and
my main contribution to Problem One is mostly digging out known results
in the literature. Nevertheless I hope that the connections with subfactors in
these notes may still be interesting to some readers. One thing that I am sure is
that these notes have not been published before. However, my published work
in [19] was partially inspired by my notes on Problem One, and my notes on
Problem Two have been circulated in a small group of people (see Appendix
in [2] for a categorical account and [8] for a planar algebra construction of a
related intermediate subfator). Finally, Vaughan has written a better proof
based on my notes on Problem Three in his course on planar algebras (cf. [12]).
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Figure 1: A configuration in meander problem: the dotted non-self intersecting
curve intersects with the solid curve transversely at 8 points.

2. Problem One: A counting problem

This section is essentially a hand written letter I wrote to Vaughan on March 1,
1996. This was when people still mailed letters to each other. Vaughan’s prob-
lem stated in the letter was clearly motivated by his work on Annual Algebras
(cf. [10]). In that paper he found a formula for dimensions of his Annual Alge-
bras by counting the number of non-intersecting pairings that can be drawn
on an annulus. Here we refrain from discussing more background in subfactor
theory and instead refer the reader to more details on his results to [10].

After receiving this letter, Vaughan invited me to give a talk at his famous
Friday afternoon seminar some time in the spring of 1996, where I talked
about this letter and also my related work in [19].

2.1. My letter to Vaughan on March 1, 1996

Dear Vaughan,
The purpose of this letter is to explain an answer to a question you asked

me about two years ago when you were in Geneva. The question is to count all
possible parings of 2n points on the boundary of a disk on a genus g Riemann
Surface with the constraint that the curves connecting these points are drawn
on the Riemann surface without intersections. I will use Ig(n) to denote such
number.

I came across a solution when I was reading a paper about meander
problem and matrix models (in fact I had the dream of using matrix models
to do some calculations in Picu’s free probability theory). I made a copy of
the relevant part of that paper for your convenience. You can also find it
online hep-th/9506030.

As you can see from that paper, a matrix model is devised to count all
possible configurations in Figure 1.

The point is that each intersection is of the form of 4-valent vertex and
hence the potential is of the form B(α)W (β)B(α)W (β) (2 blacks and 2 whites)
in Figure 2.
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Figure 2: 4-valent vertex that is related to the potential in a matrix model.

Figure 3: A specific configuration.

In your counting problem we look for configuration as in Figure 3 where
one can think of black as solid line and white as dotted line.

Hence the potential is W (β)B(α)W (β), i.e., one black and two whites like
in Figure 4.

I use εg(n) to denote the number of pairings that can only be drawn on
a genus g surface, i.e. the pairings that are obtained by using all g handles.
Then

Ig(n) =
∑
g′≤g

εg′(n).

Notice that ε0(n) = (2n)!
n!(n+1)! is the Catalan number. Then use the same for-

malism as in the meander case we have that

(1)
∑
g

N (n+1−2g)εg(n) =
〈
trB2n〉

where the quantity on the right hand side of above is the expectation in
Gaussian Hermitian matrices of size N . In fact, we can use (5.13) of [3] with

Figure 4: Trivalent vertex.
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Figure 5: Counting using annulus 1.

det[I ⊗ I − c
∑

α(B(α))t ⊗ B(α)] replaced by det[I − c
∑

αB
(α)] and carry

through the calculation of (5.14), we get

∑
g

N (n+1−2g)εg(n)m2n =
〈

tr
( ∑

1≤α≤m

B(α)
)2n〉

.

Setting m = 1 we get equation (1). This is much simpler than the meander
case. When I tried to calculate 〈trB2n〉 directly, I realized such a calculation
has already been done, notably by Hare and Zagier in [4] and Itzyson and
Zuber in [5]. It is rather disappointing to see that after some reflections that
εg(n) has already been explicitly determined in [4] by a recursive formula. Let
me quote their formula:

(n + 1)εg(n) = (4n− 2)εg(n− 1) + (2n− 1)(n− 1)(2n− 3)εg−1(n− 2)

where εg(n) = 0 if 2g > n. Hence the recursion formula for Ig(n) is given by

(n + 1)Ig(n) = (4n− 2)Ig(n− 1) + (2n− 1)(n− 1)(2n− 3)Ig−1(n− 2)(2)

with initial condition Ig(0) = 1 for g ≥ 0.
It is interesting to check equation (2) in g = 1 case by using dimension

formula A(p, q) in your annular algebra (cf. [10]) paper and induction. It
follows from equation (2) that

I1(n) = 1
12

(2n)!
n!(n− 2)! + (2n)!

n!(n + 1)! , n ≥ 2.

The computation gets interesting in I1(4) = 84 case (I1(3) = 15, I1(2) = 3).
It is clear if we connect 12 or 18 in Figure 5, the best way is not through

the handle, and this gives us I1(3) = 15 for the number of pairings for the
rest 6 points when we fix 12 or 18. When we connect 13 or 17, the number of
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Figure 6: Counting using annulus 2.

Figure 7: Counting using annulus 3.

pairings for the rest 6 points are on the annulus and given by A(1, 5) = 10;
and when we connect 15, the number of pairings for the rest 6 points are on
the annulus and given by A(3, 3) = 12. Connecting 14 (and similarly 16) case
gets a little trickier. One may think that the best way is to connect 14 passing
through the handle like I did the first time, this will give us the number of
pairings for the rest of 6 points on the annulus and are given by A(2, 4) = 10,
by using the handle to push the points 2, 3 to the other side as in Figure 6.

But if you count all these, you get

15 × 2 + 10 × 4 + 12 = 82.

In fact in connecting 1, 4, there is another possibility: when you close
points 1 and 4, 2 and 3, and let points 8, 7, 6, 5 use the handle which gives us
one more partition (86)(75) that can’t be obtained otherwise as in Figure 7.
This together with similar considerations for 1, 6 gives us two more pairings,
bringing the total number to 84.

I have checked I1(5) = 462 case using similar induction and your dimen-
sion formula A(p, q) for the annular diagrams with p + q = 8. I hope that
equation (2) may be useful in generalizing your annular algebra paper to
possibly higher genus case.

Best Regards, Feng
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3. Problem Two: Does Haagerup subfactor come from
nature?

The Haagerup subfactor and its dual are the finite depth irreducible subfac-
tors with smallest index above 4. Its original construction as presented in
[1] and later in [14] is by hand and heavily computational. Also see [9] for a
different approach. The problem in the title of this section must have been
on Vaughan’s mind early on since the birth of Haagerup subfactor. On the
other hand this may be a hard homework problem since he once remarked to
me that “Maybe in fifty years subfactors like the Haagerup subfactor may be
constructed naturally”.

In the late 1990s I have had extensive discussions with Vaughan on this
problem. Of course “nature” means different things to different people. But
after having produced a large class of exotic subfactors from Conformal Field
Theories (CFT) in [16], I am naturally led to search for the Haagerup sub-
factor or other exotic subfactors in the framework of CFT. If one interprets
nature in this case as the framework of CFT, then the question in the title
of this section is still open today, and there has been extensive work on this
and related questions. See [7] and [20] for related work. My notes in the next
section were dated November 2001, and were handed to Vaughan when I vis-
ited him in Berkeley in early 2002. I have added one formula in the proof of
the only Proposition in the notes for clarity.

3.1. Haagerup subfactor on two legs

The search for Haagerup’s subfactor of index 5+
√

13
2 in CFT such as those in

[16, 17] has proved to be disappointing. Among the negative results we’d like
to point out an exotic subfactor that comes from conformal inclusions

(G2)3 ⊂ (E6)1

The dual principal and principal graphs of this subfactor are given by Fig-
ure 8 and Figure 9 respectively. Here all vertices are also labeled by the
corresponding sectors. All vertices except distinguished ones are represented
by small circles.

Note that if we remove the two small line segments from the central
vertices in the graphs, we get exactly Haagerup’s subfactor of index 5+

√
13

2 .
Hence it is tempting (with apology to Uffe) to call the subfactor Haagerup
subfactor on two legs.
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Figure 8: Principal graph of Haagerup subfactor on two legs.

Figure 9: dual principal graph of Haagerup subfactor on two legs.

Let me say a few words on the labels of the graphs. The numbers (i, j)
label the representations of G2 at level 3, e.g., (1, 0) is corresponds to the
7-dimensional representation. ρ is the endomorphism corresponding to the
conformal inclusion with ρ̄ρ = (0, 0) + (1, 1). a(1,0) are the braided endomor-
phisms introduced in [16]. To explain how we find out the above example let
us remove the two legs from Figures 8 and 9 to get one of the Haagerup’s
subfactor’s principal graphs in Figure 10, and label it as in Figure 10 (we use
the same σ).

The most unusual aspect of Haagerup’s subfactor is the fusion rule algebra
generated by the even vertices of the above graph (cf. [1]):

Aσ = σ−1A, A2 = 1 + A + σA + σ2A, σ3 = 1.

Figure 10: Principal graph of Haagerup subfactor.
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Note that A, σ do not commute. In searching for conformal inclusions with
Z3 symmetry and non-commutative fusion rules, we find (G2)3 ⊂ (E6)1
where Z3 symmetry comes from the center of E6 which is Z3, and non-
commutativity comes from the nontrivial multiplicities in the branching rules
of (G2)3 ⊂ (E6)1. This example is also similar but simpler than the ex-
ample SU(3)9 ⊂ (E6)1 in [17] which is the first counter-example to the
Kac-Wakimoto hypothesis. By using general results in [16] we determine
the principal graphs for the subfactor that comes from conformal inclusions
(G2)3 ⊂ (E6)1 as given in Figures 8 and 9. The complete fusion rules for this
subfactor are given by

A11σ = σ−1A11, A2
11 = 1 + A11 + σA11 + σ2A11 + a(1,0) + ã(1,0),

a(1,0)ã(1,0) = A11 + σA11 + σ2A11, a2
(1,0) = 1 + σ + σ2 + 3a(1,0),

ã(1,0)
2 = 1 + σ + σ2 + 3ã(1,0), σa(1,0) = a(1,0), σã(1,0) = ã(1,0), σ3 = 1.

Note that the non-commutativity relation A11σ = σ−1A11 is the same as in
Haagerup’s subfactor’s case.

However the subfactor in Figure 8 has index 7+
√

21
2 which is about 5.79

and is much bigger than 5+
√

13
2 . From the fusion rule for A2

11 one can see that
the subfactor A11(M) ⊂ M (here M is a type III factor) has an intermediate
subfactor A11(M) ⊂ ρ11(M) ⊂ M with ρ11ρ̄11 = 1 + a(1,0), and so the index
of ρ11(M) ⊂ M is 5+

√
21

2 which is about 4.79.1 But A(M) ⊂ M in Figure 10
has no intermediate subfactor. The similarities between Figures 8 and 10 may
be misleading, but one still wonders if other techniques such as those of [11]
may help one to perform “surgery” to remove the extra legs in Figure 8.

The non-commutativity of Haagerup’s subfactor fusion rules also suggest
to look for the system of nets of inclusions AG ⊂ A where A is a conformal
net, where G is a non-abelian finite group acting properly on A, and AG is
the fixed point subnet. One then looks for the subsectors of representations
AG induced to A. This proves to be fruitless except that index computations
lead us to the following:

Proposition 3.1. Let A be a rational conformal net (cf. [13]). Then the set
of untwisted representations of AG (these are representations of AG coming
from the restrictions of representations of A) is closed under fusion.

1Not surprisingly, according to a referee, this so called 2221 subfactor was known
to Haagerup, but constructed by different methods. See the Appendix in [2] for
further discussions from the categorical point of view.
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This proposition seems to be implicitly conjectured in [6] and perhaps
elsewhere. Here is a proof. For unexplained notations, see [17].

Proof. We use λ, i to label irreducible representations of AG and A on Hilbert
spaces Hλ, H

i. Note that by [18], λ runs over a finite set. Assume that when
restricting H i to AG, H i decomposes as ⊕biλHλ, where biλ are non-negative
integers.

Then by [16], aλ 	 ∑
i biλσi, so dλ ≥ ∑

i biλdi where dλ, di are statistical
dimensions. Note that if b1λ ≥ 1, then aλ 	 b1λ1 and dλ ≥ b1λ. But

∑
λ

b21λ = |G| =
∑
λ

b1λdλ.

It follows that aλ = b1λ1 if b1λ ≥ 1.
In general, let us compute

Pi :=
∑
λ

biλdλ ≥
∑
λ

biλ
∑
j

bjλdj =
∑
λ,j

biλbjλdj .

We will show that the ≥ above is in fact an equality.
Note by [17],

biλ = 〈σiaλ̄1, 1〉 =
∑
μ,j,α

Sλ̄μ

S1μ

Sij

S1j
|ψ(j,μ;α)

1 |2.

So

∑
j

bjλdj =
∑

μ,i,α,j

Sλ̄μ

S1μ

Sij

S1i
|ψ(i,μ;α)

1 |2Sj1

S11
=

∑
μ,α

Sλ̄μ

S1μ
|ψ(1,μ;α)

1 |2 1
S2

11
.

Hence

∑
λ,μ,α

biλ
Sλ̄μ

S1μ
|ψ(1,μ;α)

1 |2 1
S2

11
=

∑
δ,k,βμ,α

Sλ̄δ

S1δ

Sik

S1k
|ψ(k,δ;β)

1 |2
Sλ̄μ

S1μ
|ψ(1,μ;α)

1 |2 1
S2

11

=
∑

k,β,μ,α

1
S2

1μ

Sik

S1k
|ψ(k,μ̄;β)

1 |2|ψ(1,μ;α)
1 |2 1

S2
11
.

Note that by [17] that |ψ(1,μ;α)
1 |2 
= 0 implies that b1μ > 0, and so aμ =

b1μ1, and |ψ(k,μ̄;β)
1 |2 
= 0 implies k = 1. So the above sum is equal to di
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multiplied by a number which is independent of i. Note that when i = 1,
P1 =

∑
λ b1λdλ = |G|, which is also the same as

∑
λ,j

b1λbjλdj .

It follows that the above sum is equal to di|G|. On the other hand we
have

∑
λ

biλdλ =
∑

λ,μ,j,α

Sλ̄μ

S1μ

Sij

S1j
|ψ(j,μ;α)

1 |2Sλ1

S11
=

∑
1,α

1
S2

11

Si1

S11
|ψ(1,1;α)

1 |2

which again is di times a number that is independent of i. Setting i = 1 we
see that ∑

λ

biλdλ = di|G|.

It follows that

Pi =
∑
λ

biλdλ =
∑
λ

biλ
∑
j

bjλdj .

Hence if biλ > 0 for some i, i.e., λ is a non-twisted representation of AG,
then dλ =

∑
j bjλdj , and so aλ =

∑
j bjλσj .

Now let λ, μ be two non-twisted irreducible representations of AG, and
let δ ≺ λμ be an irreducible representation. Then aδ ≺ aλaμ ≺ ∑

imiσi for
some non-negative integers mi. It follows that 〈aδ, σi〉 ≥ 1 for some i, i.e., δ
is non-twisted.

4. Problem Three: Is finite depth equivalent to rationality of
generating function?

This is a problem I heard from Vaughan during a talk in 2012. Since finite
depth subfactors are closely related to unitary rational CFT, if the problem
has a positive answer, it seems to give a more “rational” characterization
of finite depth subfactors. I was hooked immediately by this question, but
was not able to make much progress until a year later. By that time, like
everyone else, I had a phone which took high quality pictures, so instead
of sending Vaughan a regular mail, or delivering my hand written notes to
him in person, I took pictures of my hand written notes on this problem and
sent it as attachment to an email. The following is essentially a copy of my
handwritten notes that are appended to the email message I sent to Vaughan
on May 27, 2013. The only addition is a few sentences giving a more detailed
explanation of a point at the end of proof of the theorem.
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Theorem 4.1. Let N ⊂ M0 be a subfactor with finite index and N ⊂ M0 ⊂
M1 ⊂ · · · ⊂ Mn ⊂ · · · be its Jones tower. Then N ⊂ M0 is of finite depth
if and only if the generating function

∑
n≥0 dim(N ′ ∩ Mn)zn is a rational

function of z.

The proof of this theorem is based on the follow two Lemmas:

Lemma 4.2. Let A = A∗ be n × n Hermitian matrix, and x, y ∈ C. Then∑
m≥0〈x,Amy〉zm is a rational function of z.

Proof. By the spectrum theorem (cf. Chapter 7 of [15]) 〈x,Amy〉 =∫
σ(A) λ

mdμx,y where μx,y is a complex measure on the spectrum of A which
is σ(A) = {λ1, . . . , λn}. Hence

∑
n≥0

〈
x,Amy

〉
zm =

∑
1≤i≤n

∑
m≥0

zmλm
i μx,y(λi) =

∑
1≤i≤n

μx,y(λi)
1

1 − λiz
.

Lemma 4.3. Let A be a bounded self-adjoint operator on a Hilbert space H
with e ∈ H a unit vector. Denote by σ(A) and ρ(A) the spectrum and the
resolvent set of A. If 〈e, (z −A)−1e〉 is a rational function on ρ(A), then the
dimension of the subspace spanned by all vectors Ame,∀m ≥ 0 is finite.

Proof. By the spectrum theorem (cf. Chapter 7 of [15])

∣∣〈e, (z − A)−1e
〉∣∣ =

∣∣∣∣
∫
σ(A)

1
z − λ

dμe(λ)
∣∣∣∣ ≤

∫
σ(A)

1
|z − λ|dμe(λ) ≤ 1

| Im z|

where μe(Ω) = 〈e, PA(Ω)e〉 is the Borel probability measure associated with
the vector e. So if 〈e, (z−A)−1e〉 is a rational function, and λi is a pole, then
λi must be a simple pole: since when z ∈ ρ(A) but z is close to λi, we have
〈e, (z − A)−1e〉 grows like positive multiple of 1

(z−λ)mi
where mi is the order

of the pole at λi. But |〈e, (z−A)−1e〉| ≤ 1
| Im z| . It follows that λi ∈ σ(A) ⊂ R

and mi = 1. Therefore we must have 〈e, (z − A)−1e〉 =
∑

1≤i≤n
αi

z−λi
with

αi 
= 0, λi ∈ σ(A). Let dμ be the point measure supported on λi, 1 ≤ i ≤ n
with mass αi. Then we have

〈
e, (z − A)−1e

〉
=

∫
σ(A)

1
z − λ

dμe(λ) =
∫ 1

z − λ
dμ.

It follows that dμe = dμ, and

〈
e, f(A)e

〉
=

∫
f(λ)dμ
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for all continuous functions f , so the map f(A)e → f(λ) ∈ L2(C, dμ) � Cn

is unitary, and the Lemma is proved.

Now we are ready to prove the theorem. Let Γ denote the principal graph,
and H is the square integrable complex valued functions defined on the ver-
tices of Γ, and e1 the unit vector corresponding to the distinguished vertex of
Γ. By abuse of notations we will also use Γ to denote the adjacency matrix
of the principal graph. Then we have

dim
(
N ′∩M2n

)
=

〈
Γe1,

(
ΓΓt)2nΓe1

〉
, dim

(
N ′∩M2n+1

)
=

〈
e1,

(
ΓΓt)2n+2

e1
〉
.

If Γ is finite, then by Lemma 4.2
∑

n≥0 dim(N ′ ∩ Mn)zn is a rational
function. Note that ‖ΓΓt‖ ≤ [M0 : N ] < ∞. Suppose now that f(z) :=∑

n≥0 dim(N ′ ∩ Mn)zn is a rational function. Then f(z) + f(−z) =
2
∑

n≥0 dim(N ′ ∩ M2n)z2n is also a rational, even, and so
∑

n≥0 dim(N ′ ∩
M2n)zn is a rational function. Denote by A = (ΓΓt)2, e = Γe1. Then∑

n≥0 dim(N ′ ∩ M2n)zn =
∑

n≥0〈e, Ane〉zn = 〈e, (1 − zA)−1e〉 if |z| < 1
‖A‖ .

Let w = 1/z. It follows that
〈
e, (1 − zA)−1e

〉
= w

〈
e, (w − A)−1e

〉

is a rational function of w for |w| > ‖A‖. Apply Lemma 4.3 to conclude that
the span of AmΓe1, ∀m ≥ 0 is finite dimensional. So there are only finitely
many odd vertices, and N ⊂ M0 is of finite depth. Here are more details
on why there are only finitely many odd vertices. Note that Γ is a bipartite
locally finite graph. For any odd vertex v of Γ, 〈v, AmΓe1〉 simply counts
the number of paths of length 2m + 1 from e1 to v. If there are infinitely
odd vertices, then one can choose infinite sequences of odd vertices vi, i ≥ 1
which are further away from e1, and infinite sequence of strictly increasing
integers mi such that vi can be reached from e1 by a path of length 2mi + 1,
but not by any path that has length smaller than 2mi + 1. It follows that
〈vj , AmiΓe1〉 = 0 if i < j and 〈vi, AmiΓe1〉 > 0. If

∑
1≤i≤k ciA

miΓe1 = 0
for some complex numbers ci, then taking inner product with vk we have
ck = 0, and taking successive inner products with vk−1, . . . , v1, we conclude
that AmiΓe1 are linearly independent, which is a contradiction.
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