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In this article, we celebrate the 80th birthday and remarkable career of
H. Blaine Lawson, Jr. For more than half a century, Lawson has been a lead-
ing figure in mathematics. His work, a masterful combination of differential
geometry, topology, algebraic geometry and analysis, has been enormously in-
fluential. He has made numerous fundamental contributions to diverse areas
involving these subjects. He can be seen as a true “Renaissance man,” com-
bining profound mathematical insight with a remarkable talent for expressing
his discoveries with elegance and clarity.

Roughly speaking, Lawson has changed the focus of his research every 10
to 15 years, in each instance, illuminating new fields of study with his unique
insight and perspective. In the narrative that follows, we will endeavor, albeit
with notable omissions, to showcase his most significant achievements. The
order of presentation is essentially chronological. We will conclude with a
concise overview of his highly influential expository work.
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1. Minimal variaties, foliations and nonpositive curvature
(1970–1979)

By the late 1960s, it was well established that the study of geodesics in a rie-
mannian manifold was a powerful tool to understand the manifold itself. As a
natural extension, it became clear that understanding the minimal subman-
ifolds, though more difficult, would be similarly important. The particular
case in which the ambient manifold is the round n-sphere is important for a
different reason as well. Any singularity of a minimal variety is, up to first
order, described by its tangent cone. Hence, to understand such singularities
it is necessary to understand minimal cones. On the other hand, a cone is
minimal if and only its intersection with the unit sphere is a minimal sub-
variety of the sphere. Thus, to a significant extent, understanding minimal
variety singularities in general, hinges on understanding minimal varieties in
the round sphere.

Lawson’s first dramatic breakthrough in this area appeared in the re-
markable paper [Law70a], published in the Annals of Mathematics. At that
time, there were only two known examples of closed minimal surfaces in S3,
the totally geodesic S2 and the Clifford Torus. Lawson proved the existence
of infinitely many closed minimal surfaces in S3. More precisely, he proved
the existence of embedded examples of every genus, and immersed examples
of every topological type except for the projective plane (for which no min-
imal immersion exists). His ingenious method was to construct a piece of
the example by solving the Plateau problem for a suitable piecewise geodesic
boundary curve, and then to extend by Schwarz reflection to get a closed
example. This method has proven to be extremely powerful and continues to
be used. Here are some examples. It was used to construct interesting new
examples in S2 × R (Rosenberg), in the polydisk boundary (Banchoff), and
in R

3 (Karcher). More recently, this method was a key ingredient in the proof
of existence of “genus-g helicoids” in R

3; see [HTW16]. In [KPS88], Karcher,
Pinkall, and Sterling used a method reminiscent of Lawson’s to construct
counterexamples to the longstanding conjecture that any closed embedded
minimal surface in S3 divides it into regions of equal volume. More recently,
Choi and Soret [CS16] used a variant of Lawson’s method to construct the
first examples of closed embedded minimal surfaces in S3 with no plane of
symmetry.

Another beautiful and fundamental result in [Law70a] is a duality be-
tween minimal surfaces in S3 and constant mean curvature surfaces in R

3.
From this and his examples in S3, Lawson could deduce existence of com-
plete, periodic, embedded constant mean curvature surfaces in R

3 lying be-
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tween parallel planes. Once again, this construction proved to be a power-
ful tool. For example, using a gluing method, the analytic aspects of which
are highly nontrivial, Kapoules was able to construct 3-ended analogs of the
classical Delaunay constant mean curvature surfaces in R

3. However, by tak-
ing advantage of Lawson’s duality, Grosse-Brauckmann, Kusner, and Sullivan
[GBKS03] were able to construct those surfaces in much more elementary way,
and to analyze the moduli space of all such examples.

Continuing his tour de force work in the subject, Lawson published a pa-
per in Inventiones Math. [Law70b], proving that all closed embedded minimal
surfaces in S3 are standardly embedded i.e. that they divide the complement
into two standardly embedded handlebodies. This paper stimulated subse-
quent related results by Meeks-Yau, Rubinstein, Freedman, and others. In
[Law70b], also appeared the famous “Lawson Conjecture”, asserting that the
Clifford torus is the only minimal embedded torus in S3. (He had already found
infinitely many immersed minimal tori.) This conjecture attracted much at-
tention over the ensuing decades, with various partial results, until eventually,
more than 40 years later, it was finally proved by Simon Brendle [Bre13].

In the following year, together with Wu-Yi Hsiang, Lawson published a
very influential paper, [HL71], in which they vastly increased the number
of known examples of closed minimal hypersurfaces in n-spheres. Elsewhere,
Lawson showed that for a great many of their examples, the corresponding
cone is actually area-minimizing. As Hsiang and Lawson stated, “the nonlin-
earity of the problem makes even the construction of explicit examples rea-
sonably difficult, and at the same time, makes such examples indispensable
guidelines for research.” Indeed, their examples have been extremely useful
for much further work on minimal varieties and on area-minimizing cones.

In an entirely different direction, in his Annals paper [Law71], Lawson
proved that for each k ≥ 1, there exists a codimension 1 C∞-foliation of
the sphere S2k+3. Even for the case of S5, these were the first such exam-
ples, the existence of which had been conjectured by Reeb. Lawson’s work on
foliations provided the first opportunity for the exercise of his exceptional tal-
ent for mathematical exposition. In 1975 he was awarded the Steele Prize for
Mathematical Exposition of the AMS for his survey article entitled Foliations
[Law74].

In yet another direction was the work of Lawson and S.-T. Yau. The
famous theorem of Preismann (1942) states that for a compact manifold of
strictly negative curvature, any abelian subgroup of the fundamental group
is cyclic. The conjecture that this holds for solvable fundamental groups was
proved by Yau [Yau71] who, at the time, was a student in Lawson’s rieman-
nian geometry course. The two of them went on to prove additional theorems
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on compact manifolds of nonpositive curvature [LY72]. One such, the Max-
imal Torus Theorem, states that, if π1(X) contains a subgroup Z

k, then X
contains a totally geodesic flat k-torus T k. Another, the Splitting Theorem,
states essentially that, if π1(X) splits as a product, then X splits as a rieman-
nian product. Closely related contemporary work was done by Detlef Gromoll
and Joe Wolf [GW71].

During this same period, Lawson published several other influential pa-
pers on a variety of different, though not unrelated, topics.

With Yau, [LY74], he showed that a compact smooth manifold that admits
a smooth action of a compact connected non-abelian Lie group also admits a
riemannian metric whose scalar curvature is everywhere positive. Combined
with results of Nigel Hitchin, [Hit74], this severely restricts the possible degree
of symmetry of any exotic sphere which does not bound a spin manifold.

In Lawson’s joint paper with Jim Simons, “On stable currents and their
application to global problems in real and complex geometry”, [LS73], a num-
ber of beautiful rigidity theorems are proved. They showed in particular that
no nontrivial minimal variety in Sn can be stable, and that every stable mini-
mal variety in complex projective space is a positive algebraic cycle. This last
result gave a new perspective on the Hodge Conjecture.

A few years later, in [LO77], published in Acta Mathematica, Lawson
and Bob Osserman constructed a collection of counterexamples, demonstrat-
ing that many of the deep results (existence, uniqueness, regularity) for non-
parametric minimal surfaces in codimension 1 utterly fail in higher codimen-
sions. One example was the cone on the graph of the Hopf map which gave a
Lipschitz (but not C1) function f : R4 → R

3 whose graph was minimal. Later,
using the coassociative calibration, (see below), Harvey and Lawson showed,
that this graph is locally absolutely area-minimizing. In recent years, there
has been a substantial amount of work devoted to finding geometrically nat-
ural boundary data hypotheses that are sufficient to exclude the pathologies
which were uncovered in [LO77].

It was around this time that the first papers in Lawson’s remarkable,
and ultimately prolific, collaboration with F. Reese Harvey appeared. One
of their earliest works was “On boundaries of complex analytic varieties, I”
[HL75a] published in the Annals of Mathematics. This paper represented
a major accomplishment in the field of several complex variables. It vastly
generalized the classical Hartog’s Theorem and the subsequent work of S.
Bochner. Later, it became known simply as the Harvey-Lawson Theorem. It
stated, for example, that a compact oriented submanifold of C

n of dimen-
sion 2k − 1 > 1 bounds a holomorphic chain, i.e. an integral combination of
complex k-dimensional subvarieties, if and only if all its tangent planes are
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maximally complex, i.e. contain a complex subspace of real codimension 1.
For a compact oriented curve γ, this necessary and sufficient condition means
that the integral of every holomorphic 1-form in C

n over γ must vanish. In
these results, the manifolds are allowed to have singular sets of appropriate
dimension, and C

n can be replaced by any Stein manifold. In Part II, [HL77],
analogous results were established with C

n replaced by P
n \ Pm.

In [HL83], Harvey and Lawson gave an intrinsic characterization of Kähler
manifolds. Specifically, they proved that, if a compact complex manifold car-
ries no positive (1,1)-currents which are the (1,1)-components of boundaries,
then the manifold admits a Kähler metric. This paper has been important in
the modern theory of complex surfaces.

Around the same time, Harvey and Lawson wrote a paper on calibrated
foliations, [HL82a], in which they characterize oriented foliations of a compact
manifold X with the following property: There exists a riemannian metric on
X such that every foliation current is homologically mass minimizing. In
particular, this condition means that every domain in a leaf of the foliation is
homologically mass minimizing for its boundary and that all compact leaves
are of least mass in their homology classes. As they showed: The property
holds if and only if every d-closed foliation current is non-zero in homology.
In codimension 1, this translates to saying that every compact leaf (oriented
by the foliation) is nontrivial in homology.

To be precise, Lawson’s collaboration with Reese Harvey began in the Fall
semester, 1972, at the Institute for Advanced Study, with [HL75b, HL75a] and
[HL77]. In actuality, they had overlapped for two years (1964-66) as graduate
students at Stanford. Their collaboration has intensified over the years, with
56 published papers to date, and no end in sight.

2. Gauge theories, calibrated geometries and scalar
curvature (1980–1989)

Calibrated geometries Some of Lawson’s most fundamental and far-reaching
contributions have been connected to his work with Reese Harvey on Calibra-
tions. Indeed, their work in this area has exerted an enormous influence on the
development of differential geometry ever since the 1970s, to the point where
Calibrations and Calibrated Geometries has been awarded its own Mathemat-
ics Subject Classification, 53C38, by the International Mathematical Union.

The initial motivation was to explore whether Federer’s theorem and its
proof (see below) could be generalized. Their fundamental discovery was that
natural and highly significant generalizations do indeed exist.
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The notion of a calibration, i.e., a closed p-form φ on a riemannian man-
ifold (Mn, g) with the property that

φ(v1, . . . , vp) ≤ ||v1 ∧ · · · ∧ vp||g

for all tangent vectors v1, . . . , vp ∈ TxM and all x ∈ M , is a special case of
what was known as a null Lagrangian in the calculus of variations, whose
classical underpinnings go back to Euler.

The essential fact, now known as the “Fundamental Lemma of Calibra-
tions”, is that if P p ⊂ M is an oriented submanifold-with-boundary with the
property that P ∗φ equals the induced volume form of P (in which case, one
says that P is calibrated by φ), then (P, ∂P ) has minimal g-volume among all
cycles in M representing the relative homology class [(P, ∂P )] ∈ Hp(M,∂P ).

The first important application of this idea in differential geometry was
Federer’s 1969 observation that Wirtinger’s Inequality in Kähler geometry
implies that, for a Kähler manifold (M,ω), the form φ = 1

p!ω
p calibrates

the p-dimensional complex subvarieties, hence implying that they are volume
minimizing in their homology classes.

In a series of papers beginning in 1977, Harvey and Lawson developed
a theory of calibrations that generalized and extended much of the differ-
ential geometric theory of Kähler manifolds and their complex subvarieties,
discovering in the process whole new realms of geometric applications as well
as their connections with theoretical physics. Their 1982 foundational paper,
“Calibrated Geometries” [HL82b], both laid out the theory in a broad per-
spective and developed specific examples that have been, and continue to be,
enormously influential.

In addition to setting the theory of Kähler manifolds in a wider context,
they consider the specific example of Kähler manifolds M with trivial canon-
ical bundle. By the celebrated theorem of S.-T. Yau, a compact manifold of
this kind has a Kähler metric g for which the holomorphic volume form Υ is
parallel. In [HL82b], Harvey and Lawson showed that, if one writes Υ = φ+iψ,
where φ and ψ are real-valued, then φ is itself a calibration for g, calibrating
the so-called special Lagrangian submanifolds of (M, g). This class of volume-
minimizing submanifolds led to a rich new theory, whose importance was soon
recognized. Once the central role in string theory of Kähler 3-folds with trivial
canonical bundles was realized, the interpretation of duality in string theory
led directly to the study of their special Lagrangian submanifolds as the key
to understanding the physicists’ predictions of duality. This culminated in the
famous ‘SYZ conjecture’ of Strominger, Yau, and Zaslow, which stimulated
enormous developments in both differential geometry and theoretical physics,
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especially after MacLean’s 1998 thesis showing that the moduli space of such
submanifolds is smooth.

In their exhaustive exploration of calibrated submanifolds, Harvey and
Lawson also discovered a connection with the issue of completing the classifi-
cation of riemannian manifolds with special holonomy. According to a classical
result of Marcel Berger, nearly all possible riemannian holonomy groups were
known, but as of 1980, there still remained the problem of proving existence
in two exceptional cases, G2 in dimension 7 and Spin(7) in dimension 8. In the
G2 case, it was known that if a riemannian 7-manifold (M7, g) with holonomy
G2 existed, it would support a parallel 3-form, φ, and its dual 4-form, ∗φ, of
a particular algebraic kind. Harvey and Lawson showed that these special
forms would necessarily be calibrations with a rich geometry of calibrated
submanifolds. For example, the graph of the example of Lawson and Osser-
man mentioned above is shown to be calibrated by just such a form on R

7.
The publication of [HL82b] inspired a shift of focus for the holonomy prob-
lem from directly studying the metric g to studying, instead, the calibration
φ and its dual. This was a crucial insight; it led Bryant in 1984 to an exis-
tence proof for metrics with holonomy G2 in dimension 7, as well as to an
analysis of their local generality [Bry85]. Further, it was the key insight that
led Dominic Joyce eight years later to his construction of compact manifolds
with holonomy G2.

An entirely parallel story can be told for riemannian 8-manifolds with
holonomy Spin(7), which support a parallel 4-form that is a calibration, the
so-called Cayley calibration [Bry87]. This, too, has led to an enormous body
of theory that is still vigorously under development, involving deep problems
in differential geometry, as well as in theoretical high-energy physics.

In another direction, during the same period, together with Marie-Louise
Michelsohn, Lawson wrote two impressive Inventiones Math. papers [LM84b,
LM84a] concerning hypersurfaces with positive mean curvature.

Gauge theories The advent of Yang-Mills theory marked a remarkable mo-
ment in mathematics, where the confluence of ideas from differential geom-
etry, topology and physics spawned deep breakthroughs and set whole new
paradigms and areas of research.

Starting with their joint work with Jim Simons [BLS79], Jean-Pierre
Bourguignon and Lawson made important contributions to the study of non-
abelian gauge field theories in two subsequent papers [BL81] and [BL82].

Consider a compact riemannian manifold M , endowed with a principal
G-bundle P , where G is a compact Lie group. The Yang-Mills functional, on
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the space CP of connections on P , is defined as

(1) ∇ 
−→ Y M (∇) = 1
2

∫
M

||R∇||2,

where R∇ is the curvature of ∇ ∈ CP and || · || is a suitable norm. The Yang-
Mills connections are precisely the critical points of this functional, and of
particular interest are the local minima.

For the sphere S4, the absolute minima are precisely the self-dual or anti-
self-dual connections. In [BLS79] the authors show that any other critical
point cannot be a local minimum. The proof follows from second-variation
formulas and the action of conformal vector fields on the curvature tensor.
These techniques are used to show that for Sn, with n ≥ 5, no local minima
exist.

In the influential paper [BL81], Bourguignon and Lawson prove a series of
results about Yang-Mills fields on locally homogeneous spaces. In particular,
they expand and strengthen previous results, and show that any weakly stable
Yang-Mills field over S4, with G = SU2, SU3 or U2 is either self-dual or anti-
self-dual. This was based on fundamental ideas from Bourguignon. When
G = SU2, they show that, on an arbitrary compact orientable riemannian
4-manifold, a weakly stable Yang-Mills field is either self-dual, anti-self-dual
or an abelian field.

The authors utilize Weitzenböck formulas on bundles of Lie algebra-
valued forms, and prove more general theorems on gap-phenomena, study-
ing explicit C 0-neighborhoods of self-dual fields. They also study topological
restrictions coming from Pontrjagin and Euler numbers, exhibit explicit exam-
ples over quotients Sn/Γ of spheres, and introduce the notion of self-duality.

In addition to the joint work with Bourguignon on non-abelian gauge
theory, Lawson wrote a beautiful exposition on The theory of gauge fields in
four dimensions [Law85]. See §6.

Scalar curvature One of Lawson’s most fundamental contributions is his
joint work with Misha Gromov, devoted to the understanding of positive
scalar curvature. This subject has a very long history. In the 1960s, Lichnerow-
icz (and earlier Schrödinger [Sch20]) observed that the square of the Dirac
operator D on a riemannian spin manifold M has the form D2 = ∇∗∇ + R

4 ,
where R is the scalar curvature and the term ∇∗∇ is clearly self-adjoint and
non-negative. As an immediate consequence, when the manifold M is com-
plete and R > ε > 0, all index invariants associated to D must vanish. In par-
ticular, when M is compact, the Atiyah-Singer Theorem immediately implies
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that Â(M) = 0 if M admits a metric of positive scalar curvature. By using a
fancier version of index theory, Hitchin eventually refined this to show that
there is a Z/2-valued obstruction to positive scalar curvature on spin mani-
folds in dimensions 1 or 2 mod 8. The Gauss-Bonnet Theorem also implies that
a closed 2-manifold M admits a metric of positive scalar curvature if and only
if M = S2 or RP2, while M admits a metric of negative scalar curvature if and
only if χ(M) < 0. However, the apparent symmetry in this result between the
cases of positive and negative scalar curvature is broken in higher dimensions.

The big breakthrough came around 1979, through the work of Schoen-
Yau [SY79], and Gromov-Lawson [GL80a, GL80b]. The paper [SY79] was an
inspiration to Gromov and Lawson, and it was also the first step in the proof of
the positive mass conjecture. Gromov and Lawson found further obstructions,
some using the Atiyah-Singer Index Theorem for Families, and many more
from the fundamental group of M and stable minimal hypersurfaces. One of
the important concepts of Gromov and Lawson was that of enlargeability, the
existence of finite coverings with ε-contracting maps of positive degree onto
a sphere of the same dimension for each ε > 0. A key idea was to tensor the
spinor bundle with the pull back of a vector bundle on the sphere with non-
trivial Chern class. With positive scalar curvature and ε sufficiently small,
this twisted Dirac operator will again have vanishing index.

Furthermore, a novel technology for creating new manifolds of positive
scalar curvature out of old ones was developed, based on surgery in codimen-
sion k ≥ 3. These techniques were developed independently by Schoen-Yau
in [SY79], and Gromov-Lawson [GL80a, GL80b]. The surgery results led to
an amazing conclusion by Gromov and Lawson: if a closed manifold Mn is
simply connected and non-spin, with n ≥ 5, it always admits a metric of
positive scalar curvature. This explains why Lichnerowicz’s method fails to
find an obstruction to positive scalar curvature in the non-spin case. In the
spin case, Gromov and Lawson formulated and came close to proving the con-
jecture that, in dimensions n ≥ 5, the Lichnerowicz-Hitchin obstructions are
the only obstructions to positive scalar curvature for simply connected spin
manifolds. This conjecture was eventually proved by Stephan Stolz [Sto92].

The cases of non-simply connected and of open manifolds proved more
difficult. But the technology of Gromov-Lawson, along with the minimal sur-
face method of Schoen-Yau [SY79] was further developed in [GL83]. Here are
a few of the results from this paper:

1. The space of positive scalar curvature metrics on S7 has infinitely many
connected components;

2. An enlargeable spin manifold cannot admit a metric of positive scalar
curvature;
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3. A manifold which admits a hyperbolic metric of finite volume cannot
admit a complete metric of positive scalar curvature;

4. In many cases, if M is a closed manifold that does not admit positive
scalar curvature, then M×R cannot admit a complete metric of positive
scalar curvature;

5. An oriented closed 3-manifold can have a metric with positive scalar
curvature only if it is a connected sum of 3-manifolds with finite funda-
mental group and copies of S1 × S2. (This can be improved to “if and
only if” using the results of Perelman on Ricci flow.)

The paper [GL83] led to the firm belief that the positive scalar curvature
problem is closely related to the Novikov Conjecture, an idea that was borne
out in the work of J. Rosenberg [Ros83, Ros86a, Ros86b]. It also contained an
explicit conjecture about a necessary and sufficient condition for a compact
spin manifold to admit positive scalar curvature. While the original form of
the Gromov-Lawson Conjecture is not exactly right, it is now known that a
modification of it is true “stably”, as long as the fundamental group of the
manifold in question satisfies the Baum-Connes Conjecture, for instance, if
it is amenable. In summary, the work of Gromov and Lawson set the agenda
for an entire avenue of research which has remained active for 40 years, and
has led to hundreds of research papers.

Finally, a hugely influential contribution of Lawson and Marie-Louise
Michelson in this field is the book “Spin Geometry” [LM89], which has become
the definitive source on spin structures, Dirac operators, and their geometric
applications, including questions related to positive scalar curvature. What
makes this book unique is the combination of breadth of topics and clarity of
exposition.

3. Algebraic geometry and homotopy theory (1990–2005)

Algebraic cycles are a fundamental tool in the study of algebraic varieties
and the source of many fundamental invariants and outstanding conjectures
in the field, such as the theory of Chow groups [Ful98], the Hodge Conjecture
[Lew99] and Grothendieck’s Standard Conjectures [Kle94].

Lawson’s seminal work, Algebraic Cycles and Homotopy Theory [Law89],
utilizes a blend of geometric measure theory and homotopy theory to study
algebraic cycles on complex projective algebraic varieties. This work led to the
development of new homology and cohomology theories for complex algebraic
varieties that were a precursor of Voevodsky’s motivic cohomology.

In general terms, keys ideas used in the duality results of Friedlander and
Lawson (described below) inspired the work in [FV00], and are manifest in
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the proof of the isomorphism between Voevodsky’s motivic cohomology and
Bloch’s higher Chow groups [SV00]. These are central results that played
a significant role in the solution of outstanding problems such as the Milnor
Conjecture that led to the awarding of the Fields Medal to Voevodsky in 2002.

Let’s place Lawson’s work in the proper context along with its relation
to classical theories and motivic cohomology. Recall that an algebraic p-cycle
on a variety X is an element of the free abelian group Zp(X) generated by
the p-dimensional irreducible subvarieties of X. In the language of schemes,
Zp(X) can be seen as the free abelian group on the p-dimensional points
of X.

Lawson’s inspiration stemmed from the study of moduli spaces and Chow
groups, along with the classical Dold-Thom theorem [DT58], and the work of
Almgren [Alm62] representing singular homology as the homotopy groups of
spaces of integral currents with a suitable topology.

The classical Chow groups, the main invariants in enumerative geometry
and intersection theory, have the form Ap(X) := Zp(X)/∼, where ∼ is a
suitable equivalence relation such as rational, algebraic or homological equiv-
alence; see [Ful98]. Roughly speaking, one says that σ ∼rat τ (respectively,
σ ∼alg τ) if one can deform σ into τ through a family of cycles parametrized
by rational (respectively, algebraic) curves, and that σ ∼hom τ if σ and τ
represent the same homology class. Naïvely, one may say that the different
Chow groups above describe the group π0(Zp(X)) of connected components
for different “topologies” on Zp(X).

From the differential-geometric standpoint, an algebraic p-cycle on a com-
plex projective variety X defines a closed integral current �σ� ∈ I2p(X), on
the associated analytic space (also denoted by X). The assignment σ 
→ �σ�
embeds Zp(X) as a closed subgroup of I2p(X) in the flat-norm topology
[Law89]. The resulting topology on Zp(X) has several alternative character-
izations of a more algebraic nature [LF94].

The first insight on the relevance of this topology is the isomorphism
π0(Zp(X)) ∼= Ap(X) = Zp(X)/∼alg, where the latter is the Chow group for
algebraic equivalence, described above. For p = 0, the Dold-Thom theorem
[DT58] states that πj(Z0(X)) ∼= Hj(X,Z), for all j ≥ 0, thereby recovering
singular homology. This leads to the question of which additional information
on X is captured by the topology of Zp(X), with p > 0. This is one of the
driving questions behind Lawson’s work on algebraic cycles.

The resulting overall picture can be summarized in the diagram below,
where the motivic side is related to rational equivalence and A

1-homotopy
theory, in the same fashion that Lawson’s theory is related to algebraic equiv-
alence and classical homotopy theory. Ultimately, Lawson’s work provides a
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fascinating bridge between the purely algebraic geometric/motivic universe
and its differential geometric/topological counterpart, as we summarize next.

Alg. Geom./Motivic Lawson’s holom./top. Diff. Geom./Top.

Alg. K-theory Semi-top./Holom K-theory Top. K-theory

Motivic cohom/hom Lawson hom/Morphic cohom Sing. hom/cohom

Rational Equiv. Algebraic Equiv. Homol. Equiv.

Lawson homology for algebraic varieties To describe the main result in
[Law89] consider a hyperplane P

n ⊂ P
n+1 and x0 ∈ P

n+1 \ Pn. For each sub-
variety V ⊂ P

n let Σ/V ⊂ P
n+1 be the join V #x0 consisting of the union of

all projective lines from points of V to x0. Extending this assignment linearly
gives the complex suspension homomorphism Σ/ : Zp(X) −→ Zp+1(Σ/X).
Lawson’s complex suspension theorem states that Σ/ is a homotopy equiva-
lence.

Inspired by this result, Eric Friedlander introduced the Lawson homology
groups of a complex projective variety X in [Fri91], defined as the homotopy
groups LpHn(X) := πn−2p(Zp(X)), n ≥ 2p. For general varieties this was
done in [LF92]. The bigrading is closely related to Hodge structures and one
should think of n as the topological degree and p as the “holomorphic degree”
(or weight).

The main properties of Lawson homology are the following.

1. (Functoriality) L∗H•(−) is a covariant functor for proper maps and
contravariant for flat maps [Fri91, LF92] and [LF94].

2. (Localization sequences) Given a closed subvariety Y ⊂ X denote U =
X \ Y . Then one has a natural long exact sequence [LF92, LF93a]

· · · → LpHn(X) → LpHn(U) → LpHn−1(Y ) → LpHn−1(X) → · · · .

3. (Cycle maps to ordinary homology) There are natural cycle maps

c : LpHn(X) → HBM

n (X;Z), n ≥ 0,

into Borel-Moore homology; [LF93b, FM94].
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4. (Cycle maps from Higher Chow Groups) If X has dimension d, one has
natural maps

CHp(X,n) → Ld−ppHn+2(d−p)(X),

from the Bloch’s Higher Chow groups of X to its Lawson homology,
extending the natural homomorphism CHp(X) → A p(X) from the
Chow groups of cycles modulo rational equivalence to cycles modulo
algebraic equivalence [FG93].

5. (Local-to-Global spectral sequences) There is a spectral sequence

E2
p,q = Hn−p(X,LrHn+q) =⇒ LrHp+q(X),

where LrHk denotes the sheaf associated to the presheaf U 
→ LrHk(U)
[FG93].

6. (Intersection theory) There is a fully developed intersection theory that
gives L∗H•(X) the structure of a bigraded ring when X is smooth
[FG93].

7. (Suspension isomorphism) For a projective variety X one has

Σ/ : LpHn(X) ∼= Lp+1Hn+2(Σ/X).

Morphic cohomology and duality In a series of joint papers, Friedlander and
Lawson developed a corresponding bivariant theory of topologized algebraic
cocycles Z p(X;Y ) on a variety X with values in a quasiprojective variety
Y ; see [FL92, FL97, FL98], along the lines of [FM81]. In [FV00] this was
introduced in the motivic context.

Once again, there is a corresponding homotopy equivalence Z p(X;Y ) ∼=
Z p(X; Σ/Y ) that allows one to introduce the cohomological counterpart of
Lawson homology, called morphic cohomology groups in [FL92]. This is similar
to defining singular cohomology using Eilenberg-MacLane spaces, and it goes
as follows. Consider the affine spaces Y = A

m and define

LsHk(X) := π2s−kZ
s(X,Am),

for 2s ≥ k and m sufficiently large. It is worth mentioning that Lawson’s
suspension theorem translates into an algebraic homotopy invariance property
for the cocycles functor Z s(X) �−→ Z s(X × A

1), corresponding to similar
properties in Morel-Voevodsky’s A

1-homotopy theory [MV99].
Morphic cohomology satisfies all the expected properties, such as func-

toriality; bigraded ring structure; localization exact sequences and cycle maps
Φ: LsHk(−) → Hk(−;Z), 2s ≥ k, into ordinary cohomology [FL92]. There
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are also Chern classes ck ∈ LkH2k(−) defined for algebraic vector bundles,
that transform under Φ into the standard topological Chern classes.

At a much deeper level lies the duality isomorphism between morphic
cohomology and Lawson homology in [FL97], stating that for a smooth pro-
jective variety X of dimension n one has a natural isomorphism

LsHk(X)
∼=−→ Ln−sH2n−k(X).

Under the natural transformations Φ into singular homology and cohomology,
these isomorphisms are carried over to the Poincaré duality map Hk(X;Z)

∼=−→
H2n−k(X;Z). Overall, the relationship between Lawson homology and mor-
phic cohomology can be summarized by saying that they satisfy the axioms
of a Poincaré duality theory with supports for algebraic varieties, or a Bloch-
Ogus theory [BO74], as shown in [Fri00].

The key ingredient to prove duality is the graphing theorem, from [FL92],
that shows the existence of a continuous homomorphism

(2) Z s(X;Y ) := Mor(X,Z s(Y )) ↪→ Z s(X × Y ),

that becomes a weak homotopy equivalence when X and Y are non-singular.
At first sight, one may think that duality for non-singular varieties is

to be expected. However, in this context the result relies on a deep moving
lemma for families, proven over arbitrary fields in [FL98]. Contrary to differ-
ential topology, where transversality of submanifolds is achieved via smooth
homotopies, “moving lemmas” for algebraic cycles were the source of many
failed attempts to have a rigorous framework for intersection theory prior to
Fulton-MacPherson’s approach via deformations to the normal cone [FM77].
An independent corollary of the results in [FL98] is that one can finally pro-
vide a rigorous account of the aforementioned constructions of the classical
Chow rings and intersection theory via moving cycles.

There are strong results and conjectures relating motivic and Lawson
homology. Most notably, Suslin and Voevodsky showed that, for complex
quasiprojective varieties, motivic homology and Lawson homology with finite
coefficients coincide. This led to a conjecture by A. Suslin (still unsolved),
which goes as follows. Let π : (Var/C)analytic → (Var/C)Zar be the change of
sites functor. Then, for any complex quasiprojective variety U ,

LqHn(U) ∼= H
n(U, tr≤qRπ∗Z).

Essentially, Suslin’s conjecture is the equivalent of Bloch-Kato’s conjecture
with Z-coefficients for morphic cohomology, in the case of complex varieties.
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Homotopy-theoretic applications Apart from the algebraic geometric impact
of Lawson’s work on algebraic cycles, there are unexpected applications to ho-
motopy theory. The complex suspension theorem provides an explicit homo-
topy equivalence Z q(Pn) 
 Z×∏q

j=1 K(Z, 2j). In [LM88] Lawson and Michel-
sohn show that the inclusion Grq(Pn) → Z q(Pn)1, of the Grassmannian of
codimension q planes in P

n into the space of all algebraic cycles of degree 1
in P

n, stabilizes to give a map c : BUq −→ Z q(P∞)1 ∼= 1 × ∏q
j=1 K(Z, 2j)

that classifies the total Chern class of the universal quotient q-plane bundle
over the classifying space BUq of the unitary group. Using the naturality of
the constructions, they show that these maps stabilize to give the classifying
map of the total Chern class map in reduced K-theory

c : BU −→ Z ∞ := 1 ×
∏
j≥1

K(Z, 2j).

The Whitney sum of bundles is represented by a Hopf map ⊕ : BU ×
BU → BU induced by the direct sum of linear subspaces. At the level of
algebraic cycles, this operation extends to the projective join of algebraic
cycles. Lawson and Michelsohn [LM88] show that the operation #: Z ∞ ×
Z ∞ −→ Z ∞, induced by the join, classifies the cup product. More precisely,
if Y is a topological space, consider Z0(Y ) := 1 ×∏

j≥1 H
2j(Y,Z) as a group

under the cup product. Then the join induces the group operation

∪ : Z0(Y ) × Z0(Y ) → Z0(Y )

and the Whitney formula follows from the fact that the join # extends the
sum ⊕ of subspaces.

By bringing in the infinite loop space machinery from [May72, Seg74],
Boyer, Lawson, Lima-Filho, Mann and Michelsohn [BLLF+93] used the argu-
ments above to give an affirmative answer to a question, conjectured about
20 years earlier by G. Segal in [Seg75]. This was a surprising “reverse” out-
come of Lawson’s work, for he was originally utilizing homotopy theoretic
tools to study algebraic geometric objects, and at the end his algebraic ge-
ometry constructions were used to settle open questions in homotopy theory.
In a nutshell, the main result shows that there is an infinite loop space struc-
ture on Z ∞ induced by the join # of algebraic cycles such that the inclusion
c : (BU,⊕) → (Z ∞,#) is a map of infinite loop spaces. In particular, there
is a generalized cohomology theory Z∗ having Z0(Y ) as its 0-th group and such
that the total Chern class map extends to a map c : bu∗ → Z∗ of generalized
cohomology theories.
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These constructions are essentially motivic and have been generalized to
represent Chern classes from algebraic K-theory to motivic cohomology and
other contexts, as in [FW02] and [Wal06].

Equivariant homotopy theory and families of spectra The tools used in
[BLLF+93] to construct connective spectra have been further expanded in
many directions by Lawson, his students and collaborators. A general ac-
count of these constructions is given in [Law03] and further generalized in
[LF99]. A brief summary of these developments goes as follows.

1. The suspension theorem is generalized to the equivariant context in
[LLFM98] with applications to equivariant K-theory and generalized
equivariant cohomology [LLFM96].

2. In [LLFM03] and [LLFM05], Lawson et al. study real and quaternionic
algebraic cycles and their relation to the classical groups and charac-
teristic classes for various topological K-theories.

3. In [dS03], P. dos Santos develops Lawson homology for real varieties and
develops a treatment of characteristic classes for Atiyah’s KR-theory
with values in ordinary equivariant cohomology. The quaternionic coun-
terpart of these results appear in [dSLF04].

Euler-Chow series and other developments Lawson’s study of moduli spaces
of effective cycles goes further back to earlier work with S. S. T. Yau [LSteY87],
where they study holomorphic actions of the circle group and calculate, as
an example, the Euler characteristic of the Chow varieties Cp,d(Pn) of effec-
tive algebraic cycles of degree d on projective spaces. In view of the work
developed in [Law89], this calculation led to the definition of the Euler-Chow
series

Ep(X) :=
∑
α

χ(Cp,α(X)) tα

of a projective variety X. See [Eli94, ELF98] and [ES02]. In the case p = 0,
the Euler-Chow series is given simply by MacDonald’s formula E0(X) =∑

d≥0 χ(SPd(X))td = ( 1
1−t)

χ(X), where SPd(X) = C0,d(X) is the d-fold sym-
metric product of X.

A motivic version Ep(X) of the Euler-Chow series, with coefficients in
the ring of homological Chow motives K0(ChMot) of complex varieties, was
introduced in [EK09]. This series is closely related to Kapranov’s motivic
zeta function [Kap00], which can be seen from the case p = 0. The Euler
characteristic, seen as a motivic measure, takes the motivic Chow series into
the Euler-Chow series, generalizing the relationship between the motivic zeta
function and MacDonald’s formula.
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4. Characteristic forms, subvarieties and differential
characters (1993–2005)

One of the areas of Lawson’s work with Reese Harvey started with their in-
vestigation of singular connections and characteristic currents [HL93]. This
theory has many applications which directly relate smooth invariants in ge-
ometry to singularities of maps. For a very simple example consider a complex
k-dimensional vector bundle E → X with connection on a compact manifold,
and a section σ of E transversal to the zero section. Then from their theory
of singular connections they construct a form S with integrable coefficients,
such that

(3) dS = ck(E) − div(σ).

Here ck(E) is the kth Chern form and div(σ) is the manifold of zeros of σ. Their
results covered an immense variety of applications: Thom-Porteous Formulas
for the kth degeneracy locus of a map between bundles, invariants for pairs
of almost complex structures, or foliations, the formulas of MacPherson for
degeneracies of mappings. Many other applications can be found in [HL95,
HL00]. This also led to a new and quite useful approach to Morse Theory,
with wide-ranging applicability [HL01]. See, for example, the work in [HM06]
on Novikov Theory.

Spark complexes As is well known, a homology or cohomology theory on
manifolds can be given by a wide variety of complexes, and this is one reason
why such theories are so useful. With this perspective, Harvey and Lawson
developed a simple and elegant theory of spark complexes, which they used
to show the abundance of ways one can represent various theories.

A spark complex is a triple of complexes

F

E I
⊂ ⊃

where F = F 0 d−−→ F 1 d−−→ · · · (same for E and I), so that H∗(E) = H∗(F )
and Ek ∩ Ik = {0}, for k > 0. A spark is an element a ∈ F k such that

da = φ− r, φ ∈ Ek+1 and r ∈ Ik+1,

(φ and r are unique and d-closed). Two sparks a, a′ of degree k are equivalent
if a− a′ = db + s for b ∈ F k−1 and s ∈ Ik. Note that φ = φ′ and r − r′ = ds.
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Defining

(4) Ĥ
k = the equivalent classes of sparks of degree k

gives two basic homomorphisms Ĥk d1→ Ek+1 and Ĥ
k d2→ Hk+1(I). A sub-spark

complex is an inclusion of spark complexes

F ′

E′ I ′

F

E I

⊂ ⊃

⊂

⊂

⊂⊃

such that E = E′ and H∗(I) = H∗(I ′). Two spark complexes are compatible
if they are both sub-spark complexes of a third. A key result states:

(5) Compatibility gives a canonical isomorphism of the Ĥ
k’s.

Differential characters One of the most fruitful applications of Harvey–
Lawson’s theory of spark complexes lies in their work on differential char-
acters. This comes as a nice and natural consequence of the explicit na-
ture of the L2

loc-form S in the expression dS = ck(E) − div(σ), explained
in (3).

The theory of differential characters has its genesis in the work of Jeff
Cheeger, presented first in the Convegno di Geometria, Rome, 1971 [Che73],
and Cheeger-Simons [CS73] where they developed, on the base-space level,
invariants associated to the Chern-Simons invariants on total spaces of prin-
cipal bundles [CS74]. These new objects provide a lift of the Weil homomor-
phism at the level of the ring structure. The theory was further developed
in [Sim74], and carried forward by J. Simons, S.-S. Chern and J. Cheeger;
see [CS74]. It must be said that the work of Cheeger-Simons was only pub-
lished in final form 14 years later, in [CS85]. From their inception, differential
characters were shown to have many applications to geometry (e.g., prov-
ing non-existence of conformal immersions), and later on they became very
important in theoretical physics.

Utilizing spark complexes, Harvey, Lawson and John Zweck [HLZ03] ex-
hibited a myriad of ways to represent differential characters, much as homol-
ogy and cohomology classes can be represented. Some representations coming
from interesting bi-complexes, some closely aligned to the original definition.
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For example, they can be represented by a family of currents T (i.e., forms
with distribution coefficients) such that

dT = ϕ−R

where ϕ is a smooth form and R is a manifold-like object (such as a sub-
manifold, or a submanifold with singularities, a rectifiable current, a singular
cycle, etc.). Under the spark complex formalism, the groups Hk obtained from
these T ’s, as in (4), give exactly the space of differential characters. In fact,
as a consequence of (5) one can vary the choice of currents and manifold-
like objects greatly, and the quotient is always the same. In particular, the
representation of differential characters by forms with singularities, that was
introduced in [Che73], is one of the various forms that spark complexes en-
capsulate the theory. (Incidentally, the fact that differential characters have
an analytic interpretation was noted in the foundational paper of Cheeger
and Simons [CS73].)

Harvey, Lawson and Zweck showed in [HLZ03] that differential characters
on a compact oriented manifold X obey a Poincaré-Pontryagin Duality. If
H

k(X) is the group of characters of degree k and if X has dimension n, then

H
n−k−1(X) ×H

k(X) → R, given by (a, b) 
→ (a ∗ b)([X])

is non-degenerate and gives an isomorphism H
n−k−1(X) → Hom (Hk(X),R)

onto the differential homomorphisms.
Note that we have not discussed a product in Ĥ

∗. However, there is a prod-
uct defined by Jeff Cheeger [Che73] on differential characters, whose original
definition involved the fact that the limit of cup product under subdivision is
a wedge product for a (suitable) singular theory based on cubes, and whose
motivation was the aforementioned lifting of the Weil homomorphism. In
[HLZ03] a different way of defining this product, at the level of complexes,
was given. The two products agree, and carry over by the canonical isomor-
phisms above to the spark classes of any other compatible complex.

The general theory of spark complexes goes far beyond differential charac-
ters. In [HL08] the theory gave a new ∂-character theory that is an expansion
of Deligne cohomology.

In a different direction, Harvey and Lawson gave a complete projective
version of the classical notion of the algebraic hull of a set X ⊂ C

n, and also
a projective analogue of the classical Gelfand Transform [HL06]. This led to
a conjecture that, if γ ⊂ P

n is a compact real analytic curve, then γ̂P \ γ is a
complex curve of Pn \ γ with γ as boundary (where γ̂P is the projective hull
of γ). This is a natural analogue of a classical result of John Wermer [Wer58],
and the conjecture is still outstanding despite many partial results.
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5. Geometric PDEs and plurisubharmonicity (2005–present)

Harvey and Lawson have continued to develop fundamental new ideas in cal-
ibration theory, extending their original work into an extremely fertile gen-
eralization of the notion of plurisubharmonicity from the theory of complex
manifolds to calibrated manifolds in general, developing a natural geometric
generalization of potential theory in calibrated geometries. The key idea is
to introduce the notions of ϕ-plurisubharmonicity, and (X;ϕ)-convexity on
a calibrated manifold (X;ϕ). The foundational paper is: An introduction to
potential theory in calibrated geometry [HL09c]. A duality theory between pos-
itive currents and plurisubharmonic functions is developed in [HL09b]. The
potential theories they have found have all the fundamental properties of the
classical case. In particular there is now a notion of ϕ-harmonic functions on
(X;ϕ), and one can solve the Dirichlet problem for these functions on any
domain whose boundary is “ϕ-convex”. These and other applications of their
ideas in calibration theory have already led to some remarkable advances. In
particular, we now know many more examples, far beyond the Kähler case,
in which we can completely classify the homologically minimizing cycles in
certain riemannian manifolds, including many symmetric spaces for which the
local geometry of minimizing cycles is quite rich. (See [GMM95] for example.)

Later, Harvey and Lawson expanded the notion of ϕ-subharmonicity be-
yond calibrated manifolds to a general geometric context [HL11b]. This was
quite surprising, since one could use any closed subset of the Grassmannian
of p-planes (see below). An attractive case is when G is the whole Grass-
mannian. Here the potential theory is related to p-convexity. They discussed
p-subharmonicity in real and complex manifolds. Moreover, they defined a
new operator of Monge-Ampère type, given by the product of all p-fold sums
of the eigenvalues of D2u (or Hess u on a riemannian manifold). The Dirichlet
Problem was solved for this operator on p-convex domains.

A very important special case takes place on symplectic manifolds with a
Gromov metric. Here a new operator MALag of Monge-Ampère type was dis-
covered [HL18b]. One way it can be understood is in terms of representations
of the spinor groups. The homogeneous and inhomogeneous Dirichlet Prob-
lem for MALag have been solved, in the viscosity sense, in great generality
[HL13b, HL19].

The results above have now been extended by Harvey and Lawson to the
case of fully non-linear, possibly degenerate, elliptic differential equations.
They discovered a hidden symmetry in their general theory which gave new
insights and, for example, led to the right boundary conditions for the Dirich-
let problem. Their approach was to consider subequations, that is, constraint
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sets for subsolutions. For equations of the form F(D2u) = 0, where the condi-
tion for subsolutions is F(D2u) ≥ 0, this is simply a closed set F ⊂ Sym2(Rn)
(symmetric n× n-matrices) with the positivity property that

F + P ⊂ F where P = {A : A ≥ 0}.

Subsolutions u of class C2 are functions which satisfy D2u ∈ F . Supersolutions
v are defined similarly by requiring −v to be a subsolution of the Dirichet
dual equation

F̃ ≡ −(∼ IntF ).

Note the duality property that

˜̃
F = F.

Note that the operator F has vanished from the picture! The set F gives
a potential theory of functions which can be extended to the upper semicon-
tinuous case using subaffine functions. (This extension is equivalent to the
viscosity extension.) A solution u is a subsolution such that −u is a superso-
lution.

The independence of the operator is very useful for calibrated geometries,
since the F is easy to define, but many times a nice algebraic operator is
elusive or non-existent. In fact, the independence allows one to study all geo-
metric subequations. Here one starts with a closed set G in the Grassmannian
G(p,Rn) of p-planes in R

n and defines

F (G) = {A ∈ Sym2(Rn) : tr(A
∣∣
P
) ≥ 0,∀P ∈ G}.

If G is the set of lines in R
n, or complex lines in C

n or quaternionic lines in
H

n, one gets the Monge-Ampère subequations. Other relevant examples were
discussed above.

The independence of F also means that F gives a unified approach to
the wide class of operators which have the same solution, namely D2u ∈ ∂F .
This gives a much richer approach to the equation. For example, this family
of operators has much to say about the potential theory defined by F . Con-
versely, the F -potential theory gives insights to all the associated equations.
See [CHLP23] for a full elaboration of this and much more.

This work was originally done in Euclidean space [HL09a]. Then Harvey
and Lawson established an important generalization to manifolds [HL11a].
One of the key ideas was their new concept of jet equivalence of equations
and subequations. This allowed one to solve the Dirichlet problem for almost
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all natural operators on riemannian manifolds. It also lead to analytic results
on almost complex manifolds. This is because for natural operators given, say,
by symmetric functions of the eigenvalues of the riemannian Hess(u), or from
i∂∂u, the operator is locally jet equivalent to a constant coefficient operator!

In [HL11a] they introduced a weak notion of comparison which had two
important properties:

1. It is invariant under jet equivalence;
2. If one can establish comparison locally, then comparison holds globally.

Thus, in the presence of a global strictly F -subharmonic function, local weak
comparison implies global comparison, which immediately implies the main
results. These and many other results are explained in the survey paper
[HL13b].

This work led to further interesting results. They wrote two important
papers on tangents to viscosity subsolutions in R

n [HL18a, HL17]. They in-
troduced a new algebraically defined and easily computable invariant of a
subequation F , called the Riesz characteristic pF , which governs much of the
behavior of subsolutions. The name comes from the fact that, when p ≡ pF
is finite, the classical pth Riesz kernel Kp(|x|), where

Kp(t) =

⎧⎪⎪⎨⎪⎪⎩
t2−p if 1 ≤ p < 2
log t if p = 2
− 1

tp−2 if 2 < p < ∞.

is a solution of the non-linear equation determined by F .
When p is finite, there is an associated tangential p-flow on F -subharmonic

functions u at each point x0, given for x0 = 0 by

ur(x) =
{
rp−2u(rx) if p �= 2, and
u(rx) −M(u, r) if p = 2,

where
M(u, r) ≡ sup

|x|≤r
u.

The tangents to u at 0 ∈ R
n are defined to be the set, T0(u), of cluster

points of the flow above. When F is convex, these cluster points are taken in
L1

loc(Rn). When 1 ≤ pF < 2 (but F not necessarily convex), they can be taken
in the local β-Hölder norm for β < 2 − p. In either case, U ∈ T0(u) if and
only if there exists a sequence rj ↓ 0 such that urj → U (in the appropriate
space). They prove that tangents are always F -subsolutions.
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A basic result is the Existence of Tangents: If F is convex or if pF < 2,
then tangents always exist. Another such result is the existence of an up-
per semi-continuous density function. In [HL18a] two fundamental theorems
establishing the strong Uniqueness of Tangents are proved. Namely, Every
tangent is a Riesz kernel. This holds for all O(n)-invariant convex cone equa-
tions and their complex and quaternionic analogues, with the single excep-
tion of the homogeneous Monge-Ampère equations, over R,C or H, where the
uniqueness fails. It also holds for a large class of geometrically defined sube-
quations which includes those coming from calibrations. They also establish
a discreteness result and a Hölder continuity theorem for subsolutions, when
the Riesz characteristic p satisfies 1 ≤ p < 2.

Their notion of tangents was inspired by the results of Hörmander and
Kiselman in complex analysis. In fact this is true of much of the Harvey-
Lawson work in this area, going back for example to the Poincaré-Lelong
formula, which was motivation for the results described in Section 4.

Two foundational theorems of Harvey and Lawson provide important un-
derpinnings for nonlinear potential theory, and in particular, for all the geo-
metric cases.

First, they established a “Restriction Theorem” for viscosity solutions
to fully nonlinear pde’s on manifolds [HL14]. This fact is often very valu-
able to have in hand. In the geometric case, it says that a function u is G-
plurisubharmonic in the viscosity sense on a riemannian manifold X ⇐⇒ the
restriction of u to every minimal G-submanifold M ⊂ X (one with TxM ∈ G

for all x) is ΔM -subharmonic.
Second, in [HL13a] Harvey and Lawson proved that for fully nonlinear

pde’s, when it is possible to define subharmonics via distribution theory
(which requires the use of linearizations), this definition agrees with the vis-
cosity definition of a subsolution. The proof requires some technicalities. Sur-
prisingly, this result was not part of classical viscosity theory, even for a linear
operator!

They were also able to solve the Dirichlet problem with prescribed asymp-
totic singularities. This is to say, suppose we have a differential equation given
by a subequation F of Riesz characteristic p on a manifold X, and we are
given points p1, . . . , pN in a domain Ω ⊂ X. Suppose we assign functions, like
the pth-Riesz kernel, at each of these points. Then, given some assumptions
on Ω, one can solve the Dirichlet problem with a solution which is asymptotic
to the given singularity at each pk [HL16].

They also solved the inhomogeneous Dirichlet problem for fully nonlinear
operators on manifolds where the right hand side f is allowed to take on all
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acceptable values [HL19]. In many examples, acceptable means f ≥ 0, not
just f > 0.

With the fundamental tools mentioned above, Harvey and Lawson were
able to solve the Dirichlet Problem for the complex Monge-Ampère equation
on almost complex manifolds [HL15], and to solve a conjecture of Nefton Pali.
Together with Szymon Pliś, they used their obstacle version of the Dirichlet
Problem to establish smooth approximations of plurisubharmonic functions
on almost complex manifolds [HLP16].

6. Expository work

Apart from his many ground-breaking mathematical achievments, Lawson’s
expository works have been hugely important and influential. For his survey
article entitled “Foliations” [Law74], he was awarded the Steele Prize for
Mathematical Exposition of the American Mathematical Society 1975.

Lawson’s 1980 book “Lectures on minimal submanifolds, I” [Law77] gives
an excellent and accessible introduction to the theory.

Lawson was invited to give the principal series of lectures for the CBMS
conference held at Santa Barbara in August 1983. The write up was pub-
lished by the AMS in 1985 [Law85]. The lectures summarize the differential
geometric work of Donaldson and others which, when combined with results
of Freedman, led to a spectacular advance in the theory of 4-manifolds and a
significant new connection between differential geometry and topology. The
lectures are aimed both at specialist and nonspecialists, including topologists
who wish to see a thorough treatment of the differential-geometric aspects of
the theory.

Upon its publication in 1989 by Princeton University Press, “Spin ge-
ometry”, by Lawson and Marie-Louise Michelson [LM89] became an instant
classic and the standard reference work for the theory of Clifford algebras,
spinors, index theory for Dirac operators and related subjects. Presently, this
remarkable book has 1,343 citations on MathSciNet and 3,924 citations on
Google Scholar.

In summary, the scientific output of H. Blaine Lawson, Jr., that we have
recounted in this overview is phenomenal. Surely, the flow of new ideas will
continue in the years to come.
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