A remark on calibrations and Lie groups

Nigel Hitchin
Dedicated to Blaine Lawson on the occasion of his 80th birthday

Abstract

We use the notion of the principal three-dimensional subgroup of a simple Lie group to identify certain special subspaces of the Lie algebra and address the question of whether these are calibrated for invariant forms on the group.

Keywords: Calibration, Lie group, bi-invariant form, three-dimensional subgroup.

1. Introduction

The notion of a calibrated differential form φ, as introduced in [3], has become very important especially in the study of Calabi-Yau, G_{2} and $\operatorname{Spin}(7)-$ manifolds, where φ is a covariant constant form. On the other hand, the manifolds which have most covariant constant forms, namely compact simple Lie groups G, have received less attention, although they are addressed in $[12,8,9,11]$.

Recall that the cohomology of a simple Lie group G of rank ℓ is an exterior algebra on ℓ generators with harmonic representatives φ_{i} of odd degree d_{i} which are covariant constant. The Cartan 3 -form φ_{1} is the generator of smallest degree and Tasaki [12] showed that this defines a calibration and moreover that a three-dimensional subgroup associated to the highest root is calibrated for this form and is volume-minimizing. He also showed that the Hodge dual $* \varphi_{1}$ calibrates the codimension 3 subspace of non-regular elements of G.

Amongst the three-dimensional subgroups there is a particularly distinguished one, the principal three-dimensional subgroup, and Kostant showed [6] that under the action of this group the Lie algebra decomposes $\mathfrak{g}=$ $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{\ell}$ into irreducible representations of $S O(3)$ whose dimensions are precisely the degrees d_{i} of the generators of the cohomology. The

Received October 8, 2021.
2010 Mathematics Subject Classification: Primary 53C38, 53A10; secondary 17B20.
author conjectured in [5] that there is an exact fit here - that for each subspace V_{i} there exists a corresponding generator which restricts nontrivially. To the author's knowledge this has not yet been confirmed, though there is some information in [1]. In any case, if the restriction is non-zero it opens up the possibility of more complex calibrated submanifolds.

In this paper we observe first that the function defined by φ_{i} on the Grassmannian of oriented subspaces of \mathfrak{g} of dimension d_{i} has a critical point on V_{i}. If this critical value is nonzero then any submanifold of dimension d_{i} tangential to a conjugate of V_{i} will be minimal [11]. If the non-zero value is the maximum then φ_{i} defines a calibration and any such submanifold is volume minimizing.

We then search for non-zero values by using the transitive action of groups on odd-dimensional spheres $S^{2 m+1}$, and an argument initiated by X.Liu [8]. This consists of pulling back the volume form on the sphere and averaging over the group to produce an invariant form on G of degree $2 m+1$. We use the well-known list of groups with transitive actions to show that in each case the pull-back of the volume form restricted to a corresponding V_{i} is non-negative and hence its average is non-zero, providing some evidence for the conjecture. The relevant degrees are $2 n-1$ for $S O(2 n)$ and $S U(n), 4 n-1$ for $S p(n), 7$ for $\operatorname{Spin}(7)$ and 15 for $\operatorname{Spin}(9)$.

Finally we mention the entirely different context [5] in which the conjecture arose, involving the moduli space of stable bundles on a curve C.

2. Invariant forms

Let G be a compact simple Lie group. The covariant constant forms on G are the bi-invariant forms and these are defined as multilinear alternating forms α on \mathfrak{g} by

$$
\alpha\left(a_{1}, \ldots, a_{2 m+1}\right)=p\left(a_{1},\left[a_{2}, a_{3}\right], \ldots\left[a_{2 m}, a_{2 m+1}\right]\right)
$$

where p is an adjoint-invariant polynomial of degree $m+1$. These polynomials correspond under the Chern-Weil homomorphism to characteristic classes like Chern or Pontryagin classes and we shall often label the invariant forms this way - as classes of degree $2 m+2$ in the cohomology $H^{*}\left(B_{G}\right)$ of the classifying space. The Killing form is a quadratic polynomial and yields the Cartan 3form.

The irreducible representations of the three-dimensional group $S U(2)$ are symmetric powers \mathbf{S}^{n} of the standard complex 2-dimensional representation \mathbf{S}. The space \mathbf{S}^{n} may be thought of as the action on homogeneous polynomials
$p\left(z_{1}, z_{2}\right)$ of degree n, or more conveniently the polynomial $p(z)=p\left(z_{1} / z_{2}, 1\right)$ and is therefore of dimension $n+1$. Since $-1 \in S U(2)$ acts trivially if n is even, these are the irreducibles for $S O(3)$ and are real. When n is odd they are quaternionic representations of $S U(2)$.

The Clebsch-Gordon formula tells us how to decompose a tensor product: if $m \geq n$ then

$$
\mathbf{S}^{m} \otimes \mathbf{S}^{n}=\mathbf{S}^{m+n} \oplus \mathbf{S}^{m+n-2} \oplus \cdots \oplus \mathbf{S}^{m-n}
$$

The decomposition involves contraction with the skew form on \mathbf{S} and it follows then that $\mathbf{S}^{n} \otimes \mathbf{S}^{n}=\mathbf{S}^{2 n} \oplus \mathbf{S}^{2 n-2} \oplus \cdots$ and the skew part $\Lambda^{2} \mathbf{S}^{n}=\mathbf{S}^{2 n-2} \oplus$ $S^{2 n-6} \oplus \cdots$.

The generators of the cohomology $H^{*}(G)$ have degrees $d_{i}=2 \lambda_{i}+1$ where λ_{i} are the exponents of the Lie algebra. For completeness we list them:
$A_{\ell}: 1,2,3, \ldots, \ell, \quad B_{\ell}: 1,3,5, \ldots, 2 \ell-1, \quad C_{\ell}: 1,3,5, \ldots, 2 \ell-1$.
$D_{\ell}(\ell$ odd $): 1,3,5, \ldots, 2 \ell-3, \quad F_{4}: 1,5,7,11, \quad G_{2}: 1,5$.
$E_{6}: 1,4,5,7,8,11, \quad E_{7}: 1,5,7,9,11,13,17, \quad E_{8}: 1,7,11,13,17,19,23,29$.
In this list for each group the exponents are distinct, but for D_{ℓ} where ℓ is even the exponent $\ell-1$ occurs twice. In terms of $S O(4 n)$ characteristic classes the two invariants can be taken to be the Euler class and a Pontryagin class of the same degree. The generators are not unique, just as we can take a basis of invariant polynomials for $S U(n)$ as $\operatorname{tr} a^{k}(k=2, \ldots, n)$ or the coefficients of $\operatorname{det}(\lambda-a)$.

Kostant's theorem [6] tells us that under the action of the principal threedimensional subgroup, which is unique up to conjugation, $\mathfrak{g}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{\ell}$ where $V_{i} \cong \mathbf{S}^{2 \lambda_{i}}$. Clearly $\lambda_{1}=1$ gives the Lie algebra of the subgroup.

As an example, the irreducible representation \mathbf{S}^{n} defines a homomorphism $S U(2) \rightarrow S U(n+1)$ whose image is the principal three-dimensional subgroup and the Lie algebra $\mathfrak{s u}(n+1)$ is isomorphic to the trace zero elements in $\operatorname{Hom}\left(\mathbf{S}^{n}, \mathbf{S}^{n}\right) \cong \mathbf{S}^{n} \otimes \mathbf{S}^{n}$. The Clebsch-Gordon formula gives $\mathbf{S}^{2} \oplus \cdots \oplus \mathbf{S}^{2 n}$ as the decomposition $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{\ell}$.

3. Critical points

Given an invariant form φ_{i} of degree d_{i} we can evaluate it on an oriented d_{i}-dimensional subspace of \mathfrak{g} to obtain a function f_{i} on the oriented Grassmannian $\widetilde{G} r\left(d_{i}, \mathfrak{g}\right)$ of such subspaces.

Theorem 3.1. The function f_{i} has a critical point at $\left[V_{i}\right]$.
Proof. Using the metric on the Grassmannian, the gradient of f_{i} at $\left[V_{i}\right]$ is a tangent vector which, by virtue of the adjoint invariance of φ_{i}, is invariant under the action of $S U(2)$ which stabilizes $\left[V_{i}\right]$. The tangent space of the Grassmannian at $\left[V_{i}\right]$ is isomorphic to $\operatorname{Hom}\left(V_{i}, \mathfrak{g} / V_{i}\right)$, but as we have seen, except for the case D_{ℓ} where ℓ is even, the exponents are distinct and so the irreducible V_{i} does not occur in the decomposition of \mathfrak{g} / V_{i}. By $S U(2)$ invariance, the homomorphism is zero and so the gradient is zero. It therefore remains to consider the case of $S O(4 n)$.

The principal three-dimensional subgroup in $S O(4 n)$ acts reducibly on $\mathbf{R}^{4 n}$. It is the representation $1 \oplus \mathbf{S}^{4 n-2}$ and so $\mathfrak{g} \cong \Lambda^{2}\left(1 \oplus \mathbf{S}^{4 n-2}\right)=\mathbf{S}^{4 n-2} \oplus$ $\Lambda^{2}\left(\mathbf{S}^{4 n-2}\right)$. Denote by V the first subspace here. Using the Clebsch-Gordon decomposition we have $\Lambda^{2}\left(\mathbf{S}^{4 n-2}\right)=\mathbf{S}^{8 n-6} \oplus \mathbf{S}^{8 n-10} \oplus \cdots \oplus \mathbf{S}^{2}$ which contains a copy of $\mathbf{S}^{4 n-2}$ which we call V^{\prime}.

If e_{0}, e_{1}, \ldots is an orthonormal basis of $1 \oplus \mathbf{S}^{4 n-2}$ with e_{0} spanning the trivial component then $\left(e_{0}, e_{1}, \ldots\right) \mapsto\left(-e_{0}, e_{1}, \ldots\right)$ is an orientation-reversing involution σ commuting with $S O(3)$ and acting as -1 on V and +1 on V^{\prime}. The invariant polynomial on $\mathfrak{s o}(4 n)$ defined by the Pfaffian $\sqrt{\operatorname{det} a}$ changes sign under change of orientation so it defines an invariant form φ such that $\sigma^{*} \varphi=-\varphi$, hence φ evaluated on V^{\prime} is zero since $\sigma=1$ there. We therefore associate V to φ and V^{\prime} to φ^{\prime}, defined by the Pontryagin class, and consider the corresponding functions f, f^{\prime}. Pontryagin classes are of course orientationindependent. The function f^{\prime} is σ-invariant and so its gradient at $\left[V^{\prime}\right]$ is an invariant element of $\operatorname{Hom}\left(V^{\prime}, V\right)$, but the action here is -1 , so the gradient vanishes and this is a critical point. The case of f is similar, taking into account the fact that σ changes orientation on V.

4. Groups acting on spheres

4.1. The invariant forms

We focus now on a family of covariant constant forms which arise geometrically. If a simple group G acts transitively on an odd-dimensional sphere then we have the projection $p: G \rightarrow S^{2 m+1}=G / H$ and averaging over G the pull-back $p^{*} \omega$ of the volume form on $S^{2 m+1}$ gives an invariant $(2 m+1)$-form. Since $p^{*} \omega$ is H-invariant this is equivalent to averaging over the sphere as in [8]. We know in advance that this form is non-zero for, by [7] (see also [10]), the stabilizer H is not homologous to zero and so the cohomology class $\left[p^{*} \omega\right] \neq 0$.

The groups acting transitively on spheres are well-known, especially from their appearance as special holonomy groups. For a simple group G and an odd-dimensional sphere we have:

$$
S O(2 n), \quad S U(n), \quad S p(n), \quad \operatorname{Spin}(7) \subset S O(8), \quad \operatorname{Spin}(9) \subset S O(16)
$$

A universal multiple of the invariant form which the averaging produces can be labelled by a characteristic class which restricts to zero in the cohomology $H^{*}\left(B_{H}\right)$ of the classifying space of the stabilizer H of the action. The group H stabilizes a vector in an even-dimensional space so this is the Euler class for $S O(2 n)$, the Chern class c_{n} for $S U(n)$, the Chern class $c_{2 n}$ for $S p(n) \subset$ $S U(2 n)$. The last two examples in the list are stabilizers of a vector in the spin representation and expressing the Euler class for the spin representation in terms of the basic weights gives multiples of $p_{1}^{2}-4 p_{2}$ for $\operatorname{Spin}(7)$ and $p_{1}^{4}-8 p_{1}^{2} p_{2}+16 p_{2}^{2}-64 p_{4}$ in the case of $\operatorname{Spin}(9)$ (see also [2]).

We want to prove that the invariant form is non-zero on the component $\mathbf{S}^{2 m} \subset \mathfrak{g}$, the tangent space at the identity. As in [8], the translate of $p^{*} \omega$ from a general point g with $p(g)=v \in S^{2 m+1} \subset \mathbf{R}^{2 m+2}$ to the identity gives a form on the Lie algebra which, evaluated on $\left(a_{1}, \ldots, a_{2 m+1}\right), a_{i} \in \mathfrak{g}$, is $\operatorname{det}\left(v, a_{1} v, a_{2} v, \ldots, a_{2 m+1} v\right)$. If $\left(a_{1}, \ldots, a_{2 m+1}\right)$ forms a basis for $\mathbf{S}^{2 m}$ and this is nonnegative and not identically zero for all v in the sphere, then the average will be positive and the invariant form will be nonzero. We proceed to consider the different cases.

4.2. The case $S O(2 n)$

As noted above, the principal 3-dimensional subgroup in this case arises from a reducible representation $1 \oplus \mathbf{S}^{2 n-2}$ and the subspace $V_{i} \subset \mathfrak{s o}(2 n)$ of dimension $2 n-1$ is spanned by $a_{i}=e_{0} \otimes e_{i}-e_{i} \otimes e_{0}$ for $1 \leq i \leq 2 n-1$. Then $a_{i}(v)=v_{i} e_{0}-v_{0} e_{i}$ and, since $\|v\|^{2}=1$,

$$
v \wedge a_{1} v \wedge \cdots \wedge a_{2 n-1} v=v_{0}^{2 n-2} e_{0} \wedge e_{1} \wedge \cdots \wedge e_{2 n-1}
$$

This is non-negative hence the average is non-zero.
This formula is Example 3.7 in [8], where Lemma 3.5 in that paper shows that in $\mathfrak{s o}(2 n)$ for general a_{i}

$$
\begin{equation*}
\operatorname{det}\left(v, a_{1} v, a_{2} v, \ldots, a_{2 n-1} v\right)=\|v\|^{2} Q_{2 n-2}(v) \tag{1}
\end{equation*}
$$

where $Q_{2 n-2}(v)$ is homogeneous in v of degree $2 n-2$. In our situation where $a_{1}, \ldots, a_{2 n-1}$ span one of the spaces V_{i}, this will be an invariant of the $S U(2)$ action on $\mathbf{R}^{2 n}$ and the focus of our attention in the other cases.

4.3. The case $S U(n)$

Here the principal three-dimensional subgroup is the action of $S U(2)$ in its irreducible representation \mathbf{S}^{n-1}, and so its image in $S U(n)$ is a copy of $S U(2)$ for n even and $S O(3)$ for n odd. The $2 n$-1-dimensional subspace V_{i} is $\mathbf{S}^{2 n-2}$ and so we have an inclusion

$$
\mathbf{S}^{2 n-2} \subset \operatorname{Hom}\left(\mathbf{S}^{n-1}, \mathbf{S}^{n-1}\right) \cong \mathbf{S}^{n-1} \otimes \mathbf{S}^{n-1}
$$

and we can recognize this from the Clebsch-Gordon formula.
In terms of polynomials $p(z)$ it is the adjoint of the multiplication map, but a more convenient description is to identify \mathbf{S}^{m} with $H^{0}\left(\mathrm{P}^{1}, \mathcal{O}(m)\right)$, holomorphic sections of the line bundle of degree m on the projective line. Since each \mathbf{S}^{m} has either a nondegenerate skew or symmetric form we also have an invariant identification $\mathbf{S}^{m} \cong H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-m-2)\right)$ by Serre duality. Then we have a natural tensor product map
$H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-2 n)\right) \otimes H^{0}\left(\mathrm{P}^{1}, \mathcal{O}(n-1)\right) \rightarrow H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-n-1)\right) \cong H^{0}\left(\mathrm{P}^{1}, \mathcal{O}(n-1)\right)$
which realizes the map $\mathbf{S}^{2 n-2} \otimes \mathbf{S}^{n-1} \rightarrow \mathbf{S}^{n-1}$. This is the action of $V_{i} \subset \mathfrak{s u}(n)$ on \mathbf{C}^{n}.

Consider first the case where $n=2 m+1$ is odd, then $\mathbf{S}^{n-1}=\mathbf{S}^{2 m}$ is even and has a real structure and so we can write a complex vector $v=$ $v_{1}+i v_{2}$ where v_{1}, v_{2} are real. Of course $S U(n)$ does not preserve the real structure, only the three-dimensional subgroup does. Now $\mathbf{S}^{4 m} \subset \mathbf{S}^{2 m} \otimes \mathbf{S}^{2 m}$ is symmetric and real and elements of $V_{i} \subset \mathfrak{s u}(2 m+1)$ are of the form $i A$ for a real symmetric matrix A.

As in equation (1), we are concerned with the expression $v \wedge a_{1} v \wedge \cdots \wedge$ $a_{2 n-1} v$ considering \mathbf{C}^{n} as a real vector space where the a_{j} lie in V_{i}. This vanishes when some linear combination of the a_{i} has v as a real eigenvector. But the a_{i} are skew adjoint so it can only be the zero eigenvalue. Now each $a \in V_{i}$ is of the form $i A$ for A real, and so $i A\left(v_{1}+i v_{2}\right)=-A v_{2}+i A v_{1}$ and if this vanishes then $A v_{1}=0=A v_{2}$.

Represent A as an element $[\alpha]$ of $H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-2 n)\right)$ and v_{1} as a section s of $\mathcal{O}(n-1)$ then $A v_{1}=0$ has an interpretation in algebraic geometry: consider the exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}(-2 n) \xrightarrow{s} \mathcal{O}(-n-1) \rightarrow \mathcal{O}_{D}(-n-1) \rightarrow 0
$$

where D is the divisor of zeros of s. Then the long exact cohomology sequence gives

$$
0 \rightarrow H^{0}\left(D, \mathcal{O}_{D}(-n-1)\right) \xrightarrow{\delta} H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-2 n)\right) \xrightarrow{s} H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-n-1)\right) \rightarrow 0
$$

so that $[\alpha] s=0$ if and only if $[\alpha]=\delta t$ for a section t of $\mathcal{O}(-n-1)$ on the zero-dimensional cycle D.

Let s_{1} and s_{2} be two sections representing v_{1}, v_{2} which have a common zero x then the cycles D_{1}, D_{2} intersect and taking t as a section of $\mathcal{O}(-n-1)$ on x defines $\delta(t)=[\alpha]$ which annihilates both s_{1} and s_{2}. Hence $[\alpha]$ represents a linear combination of a_{j} such that $v \wedge a_{1} v \wedge \cdots \wedge a_{2 n-1} v$ vanishes when $v=v_{1}+i v_{2}$ and v_{1}, v_{2} are represented by s_{1}, s_{2} which have a common zero. These are polynomials $p_{1}(z), p_{2}(z)$ of degree $n-1$ and the condition for a common zero is the vanishing of the resultant

$$
R\left(p_{1}, p_{2}\right)=a_{0}^{n-1} b_{0}^{n-1} \prod_{i, j}\left(\lambda_{i}-\mu_{j}\right)=a_{0}^{n-1} \prod_{i} p_{2}\left(\lambda_{i}\right)
$$

where λ_{i}, μ_{j} are the roots of $p_{1}(z)=a_{0} z^{n-1}+\cdots+a_{n-1}, p_{2}(z)=b_{0} z^{n-1}+\cdots+$ b_{n-1}. This is a polynomial in $v=v_{1}+i v_{2}$ homogeneous of degree $2 n-2$. Its vanishing implies $Q_{2 n-2}$ from equation (1) vanishes, but these two invariant polynomials have the same degree and the resultant is irreducible hence they are multiples of each other.

The real structure on \mathbf{S}^{n-1} is inherited from the quaternionic structure of S so a real polynomial of degree $2 m$ satisfies $p(-1 / \bar{z})=\bar{z}^{-2 m} \overline{p(z)}$ and there is a free involution $\lambda \mapsto-1 / \bar{\lambda}$ on the roots of p. Let $\lambda_{1}, \ldots, \lambda_{m},-1 / \bar{\lambda}_{1}, \ldots$, $-1 / \bar{\lambda}_{m}$ be the roots of p_{1}, then

$$
R\left(p_{1}, p_{2}\right)=a_{0}^{2 m} \prod_{i=1}^{m} p_{2}\left(\lambda_{i}\right) p_{2}\left(-1 / \bar{\lambda}_{i}\right)=\left(a_{0} \prod_{i=1}^{m} \bar{\lambda}_{i}^{-1}\right)^{2 m} \prod_{i=1}^{m}\left|p_{2}\left(\lambda_{i}\right)\right|^{2} .
$$

Reality implies $a_{2 m}=\bar{a}_{0}$ so that the product of the roots is \bar{a}_{0} / a_{0} and $a_{0} \prod_{1}^{m} \bar{\lambda}_{i}^{-1}$ is real. Hence the resultant is non-negative and averaging gives a non-zero evaluation of the form.

When $n=2 m$ is even, $\mathbf{S}^{2 m-1}$ has a complex symplectic structure and a quaternionic structure: an antilinear involution J with $J^{2}=-1$. Then $\mathbf{S}^{4 m-2} \subset \mathbf{S}^{2 m-1} \otimes \mathbf{S}^{2 m-1}$ is symmetric which places it in the Lie algebra of complex symplectic transformations. But it is also real and so commutes with J. In this case if a linear combination of the a_{i} annihilates v it annihilates $J v$ so we again have a 2-dimensional kernel and the criterion is the vanishing of the resultant of two polynomials $-p$ and its transform p^{*} by J where $p^{*}(z)=z^{2 m-1} \overline{p(-1 / \bar{z})}$. Then the resultant $R\left(p, p^{*}\right)$ is

$$
\left(a_{0} \bar{a}_{2 m-1}\right)^{2 m-1} \prod_{i, j}\left(\lambda_{i}+\bar{\lambda}_{j}^{-1}\right)
$$

$$
=\left(a_{0} \bar{a}_{2 m-1}\right)^{2 m-1} \prod_{i}\left(\left|\lambda_{i}\right|^{2}+1\right) \prod_{i<j}\left|\lambda_{i} \bar{\lambda}_{j}+1\right|^{2}\left(\prod_{j} \bar{\lambda}_{j}^{-1}\right)^{2 m-1}
$$

and since $\prod_{j} \bar{\lambda}_{j}=-\bar{a}_{2 m-1} / \bar{a}_{0}$ this expression is non-positive. Again the average is non-zero.

4.4. The case $\boldsymbol{S p}(\boldsymbol{n})$

The group $S p(n) \subset S U(2 n)$ is the subgroup which commutes with a quaternionic structure J and we have just observed that the appropriate V_{i} does just that, so that it lies in the Lie algebra $\mathfrak{s p}(n)$. The result follows from the previous section.

4.5. The case $\operatorname{Spin}(7)$

Here the principal three-dimensional subgroup of $\operatorname{Spin}(7)$ projects to the principal one in $S O(7)$. This is the irreducible representation \mathbf{S}^{6} and from the characters we deduce that the 8-dimensional spin representation is $1 \oplus \mathbf{S}^{6}$. This means that the subgroup fixes a spinor and so lies in the stabilizer G_{2}.

The Lie algebra of G_{2} decomposes as $\mathbf{S}^{2} \oplus \mathbf{S}^{10}$ and $\mathfrak{s o}(7)=\mathbf{S}^{2} \oplus \mathbf{S}^{6} \oplus$ \mathbf{S}^{10} with respect to the same 3-dimensional group. It follows that \mathbf{S}^{6} is the orthogonal complement of \mathfrak{g}_{2}. Translated around $\operatorname{Spin}(7)$ this is the horizontal subspace for the fibration $p: \operatorname{Spin}(7) \rightarrow S^{7}$. This is a Riemannian submersion so $p^{*} \omega$ is always non-zero on this subspace.

4.6. The case $\operatorname{Spin}(9)$

The defining 9-dimensional representation is here \mathbf{S}^{8} and, from the characters again, the 16 -dimensional spin representation is $\mathbf{S}^{10} \oplus \mathbf{S}^{4}$. In the Lie algebra $\mathfrak{s o}(9) \cong \Lambda^{2} \mathbf{S}^{8}$ the 15 -dimensional component is \mathbf{S}^{14} and we are concerned with its action on $\mathbf{S}^{10} \oplus \mathbf{S}^{4}$. Since $\Lambda^{2}\left(\mathbf{S}^{10} \oplus \mathbf{S}^{4}\right) \cong \Lambda^{2}\left(\mathbf{S}^{10}\right) \oplus\left(\mathbf{S}^{10} \otimes \mathbf{S}^{4}\right) \oplus \Lambda^{2} \mathbf{S}^{4}$ there are copies of \mathbf{S}^{14} in the first two summands and the action is a linear combination of the two.

We consider again when a linear combination of $a_{1}, \ldots, a_{15} \in V_{i}$ has a non-trivial kernel. Suppose $(p, q) \in \mathbf{S}^{10} \oplus \mathbf{S}^{4}$ are polynomials in the kernel of $a \in \mathbf{S}^{14}$ then we may write this as $\left(A p+B q,-B^{T} p\right)=0$ where $a=(A, B) \in$ $\Lambda^{2}\left(\mathbf{S}^{10}\right) \oplus\left(\mathbf{S}^{10} \otimes \mathbf{S}^{4}\right)$. Now $B^{T}: \mathbf{S}^{4} \rightarrow \mathbf{S}^{10}$ is given by the map

$$
H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-16)\right) \otimes H^{0}\left(\mathrm{P}^{1}, \mathcal{O}(4)\right) \rightarrow H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-12)\right)
$$

as in Section 4.3 and B by the map

$$
H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-16)\right) \otimes H^{0}\left(\mathrm{P}^{1}, \mathcal{O}(10)\right) \rightarrow H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-6)\right)
$$

for a class $[\beta] \in H^{1}\left(\mathrm{P}^{1}, \mathcal{O}(-16)\right) \cong \mathbf{S}^{14}$. If p, q have a common zero then there exists $[\beta]$ with $B p=0, B^{T} q=0$ represented by a class supported at a single point in P^{1}, the common zero. If we take this point to be $z=0$ then $[\beta]$ can be identified with the polynomial $z^{14} \in \mathbf{S}^{14}$.

Consider now $A: \mathbf{S}^{10} \rightarrow \mathbf{S}^{10}$ defined by z^{14}. This consists of contracting in $\mathbf{S}^{14} \otimes \mathbf{S}^{10}$ seven pairs of terms and symmetrizing. If p vanishes at 0 , contraction with z^{14} vanishes also. We deduce that the vanishing of the resultant $R(p, q)$ is a condition for the existence of $a \in V_{i}$ which annihilates (p, q). This is a polynomial in the coefficients of degree $4+10=14$. But $Q_{2 n-2}(v)=Q_{14}(v)$ in (1) is of degree 14 and so Q_{14} is a multiple of the resultant of two real polynomials u, v of even degrees 4, 10. As in Section 4.3, this is non-negative.

5. Conclusion

We have shown that in certain degrees and certain groups there exists an invariant form which is nonvanishing on V_{i}. This is true for V_{1} for any G, where of course the Cartan three-form restricts non-trivially to any threedimensional subgroup, not just the principal one. When G has rank $\ell=2$ we have $\mathfrak{g}=V_{1} \oplus V_{2}$, an orthogonal decomposition, and the Hodge star of the Cartan 3 -form calibrates V_{2} so all cases are covered. Another example is the group $S U(4)$ which acts transitively on S^{7} and also on S^{5} under the homomorphism $S U(4) \rightarrow S O(6)$, identifying $S U(4)$ with $\operatorname{Spin}(6)$, so we have forms in all degrees $3,5,7$ in this case, but for higher rank the arguments in this article only relate to a restrictive number of forms.

6. Polyvector fields

We conclude with a brief discussion of the origin in [5] of the conjecture that for each subspace V_{i} there is an invariant form φ_{i} on \mathfrak{g} which restricts nontrivially. The context is a Riemann surface C of genus $g>1$ and the moduli space M of stable holomorphic principal G^{c}-bundles P on C for a complex simple Lie group G^{c}. The cotangent space at a point of M is isomorphic to $H^{0}(C, \operatorname{ad}(P) \otimes K)$ where K is the canonical bundle and evaluating an invariant polynomial p of degree k defines a holomorphic section of K^{k} on C. Taking the dual of $H^{0}\left(C, K^{k}\right)$ this yields a map $H^{1}\left(C, K^{1-k}\right) \rightarrow H^{0}\left(M, S^{k} T\right)$ which is well-known to be injective and to generate holomorphic sections
of the symmetric powers $S^{k} T$ of the tangent bundle which commute using the Schouten-Nijenhuis bracket [4], or equivalently define Poisson-commuting functions on the cotangent bundle $T^{*} M$.

If we now use an invariant alternating form φ of degree d then evaluation yields a section of K^{d} and dually we have a map $H^{1}\left(C, K^{1-d}\right) \rightarrow H^{0}\left(M, \Lambda^{d} T\right)$ into the space of polyvector fields on M and these also Schouten-commute [5]. However, whereas using the spectral curve one can see that in the symmetric case the map is injective, for the skew-symmetric case this is not apparent. Instead consider the G^{c}-bundle associated to a rank 2 stable bundle V by the principal homomorphism $S L(2, \mathbf{C}) \rightarrow G^{c}$ then we can restrict a form φ_{i} to the subspace $H^{0}\left(C, S^{2 \lambda_{i}} V \otimes K\right) \subset H^{0}(C, \operatorname{ad}(P) \otimes K)$. By Riemann-Roch this has dimension $\left(2 \lambda_{i}+1\right)(g-1)$ so if the conjecture held then choosing $n=2 \lambda_{i}+1$ holomorphic sections s_{j} with $s_{1} \wedge s_{2} \wedge \cdots \wedge s_{n}$ not identically zero, we could deduce that φ_{i} gives a nonzero section of $K^{d_{i}}$. There may of course be simpler ways of achieving this.

References

[1] N. Bushek and S. Kumar, Hitchin's conjecture for simply-laced Lie algebras implies that for any simple Lie algebra. Differ. Geom. Appl., 35 (2014), 210-223. MR3254304
[2] T. Friedrich, Weak $\operatorname{Spin}(9)$ structures on 16-dimensional Riemannian manifolds. Asian J. Math., 5 (2001), 129-160. MR1868168
[3] R. Harvey and H. B. Lawson Jr., Calibrated geometries. Acta Math., 148 (1982), 47-157. MR0666108
[4] N. J. Hitchin, Stable bundles and integrable systems. Duke Math. J. 54 (1987), 91-114. MR0885778
[5] N. J. Hitchin, Stable bundles and polyvector fields, in: Complex and Differential Geometry, W. Ebeling et al. (eds.), Springer Proceedings in Mathematics 8. Springer Verlag, Heidelberg (2011), 135-156. MR2964473
[6] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Am. J. Math. 81 (1959), 9731032. MR2032983
[7] T. Kudo, Homological properties of fibre bundles. J. Inst. Polytech. Osaka City Univ. 1 (1950), 101-114. MR0042117
[8] X. Liv, Volume minimizing cycles in compact Lie groups. Am. J. Math. 117 (1995), 1203-1248. MR1350596
[9] X. Liu, Rigidity of the Gauss map in compact Lie groups. Duke Math. J. 77 (1995), 447-481. MR1321066
[10] Y. Matsushima, On a type of subgroups of a compact Lie group. Nagoya Math. J. 2 (1951), 1-15. MR0040308
[11] C. Robles, Parallel calibrations and minimal submanifolds. Ill. J. Math. 56 (2012), 383-395. MR3161330
[12] H. TASAKI, Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces. Tsukuba J. Math. 35 (1985), 117-131. MR0794664

Nigel Hitchin
Mathematical Institute
Woodstock Road
Oxford OX2 6GG
UK
E-mail: hitchin@maths.ox.ac.uk

