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A note on the primitive cohomology lattice of a
projective surface

Chris Peters

Abstract: The isometry class of the intersection form of a compact
complex surface can be easily determined from complex-analytic
invariants. For projective surfaces the primitive lattice is another
naturally occurring lattice. The goal of this note is to show that
it can be determined from the intersection lattice and the self-
intersection of a primitive ample class, at least when the primitive
lattice is indefinite. Examples include the Godeaux surfaces, the
Kunev surface and a specific Horikawa surface. There are also some
results concerning (negative) definite primitive lattices, especially
for canonically polarized surfaces of general type.
Keywords: Complex projective surfaces, primitive intersection
lattice.
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1. Introduction

The intersection form of a compact connected orientable 4n-dimensional man-
ifold X is the bilinear, symmetric form on HX = H2n(X,Z)/(torsion) given by
cup product. By Poincaré duality this form is unimodular , that is, its Gram
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matrix has determinant ±1. The pair consisting of HX and the intersection
pairing is called the intersection lattice of X.

If X ⊂ PN is a smooth compact complex manifold with hyperplane section
H, the orthogonal complement of the class of Hn in H2n(X,Z) is called
the (middle) primitive cohomology, denoted PX . Precise knowledge of
this lattice and its group of isometries turns out to be useful, especially for
arithmetic questions. This motivates interest in the main result of this note
which deals with the case of surfaces (=Theorem 4.1):

Theorem. Let X be a complex projective surface with pg(X) �= 0 and let
c ∈ HX be a primitive representative of an ample divisor. Then the isometry
class of the lattice c⊥ is uniquely determined by the following data:

1. the triple (b1(X), c21(X), c2(X)) of topological invariants,
2. whether or not c is characteristic
3. the self-intersection of c.

The above result implies in particular that for a given surface X the
primitive lattice does not depend on the particular choice of the projective
embedding of X, but only on the degree of X. The proof of the theorem
uses firstly Nikulin’s reformulation of the classical classification results on
integral quadratic forms in terms of the discriminant quadratic form and,
secondly, on a fine analysis of the type of intersection lattices occurring for
projective surfaces based on the Enriques classification. This result is effective
as illustrated for surfaces with small c21, e.g. for some Horikawa surfaces. See
Examples 4.2.

The assumption pg(X) �= 0 is equivalent to PX being indefinite, a pre-
requisite for applying Nikulin’s results. However in the definite situation
one can in several instances still determine the isometry class of the primi-
tive intersection lattice making use of a series of investigations by G. Wat-
son [18, 19, 20, 21, 22, 23, 24, 25]. See Remark 4.3.
Remark 1.1. Primitive cohomology plays a central role in Hodge theory since
the Hodge decomposition together with the intersection pairing gives PX the
structure of a polarized pure Hodge structure of weight 2n. To explain why
this is the case, consider an embedding X ⊂ PN . The Hodge structure on the
middle primitive cohomology in smooth families {Xs}s∈S of smooth varieties
embedded in the same PN gives rise to a period map S → Γ\D where D is
a suitable period domain and where Γ, the (maximal) monodromy group, is
the isometry group of the primitive lattice of a fibre Xs (all such groups are
isomorphic). More precisely, since monodromy preserves the polarization, Γ
is the subgroup of the isometry group of P = PXs inducing the identity on
the discriminant group P ∗/P .
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Conventions and notations

• A lattice is a free Z-module of finite rank equipped with a non-degen-
erate symmetric bilinear integral form which is denoted with a dot.

• A rank one lattice Ze with e.e = a is denoted 〈a〉, orthogonal direct
sums by ⦹. Other standard lattices are the hyperbolic plane U , and
the root-lattices An, Bn (n ≥ 1), Dn, n ≥ 4. and En, n = 6, 7, 8. Their
p-adic localizations will be denoted by the same symbol. More details
are given below in Section 2.

• If one replaces the form on the lattice L by m-times the form, m ∈ Z,
this scaled lattice is denoted L(m).

• An inner product space over a field k is a k-vector space equipped with
a non-degenerate symmetric bilinear form over k. It will likewise be
denoted with a dot.

• The signature of a non-degenerate symmetric bilinear integral form b is
denoted by (b+, b−) and the index by τ = b+ − b−. The signature of the
intersection lattice HX = H2n(X,Z)/torsion, X a compact connected
orientable 4n-dimensional manifold, will be denoted by τ(X). If X is
projective, its “primitive cohomology” is the integral primitive cohomol-
ogy (classes of HX orthogonal to an ample class) and is denoted by PX .

2. On lattices

Unimodular lattices

As is well known (cf. [13, 14]) if a unimodular form is indefinite, its isometry
class is uniquely determined by the signature and type of the form. The type of
a bilinear symmetric form by definition is even or odd. Being even means that
x.x is even for all elements x of the lattice and odd otherwise. The results
from loc. cit. state that odd unimodular forms are diagonalizable over the
integers. This is evidently not the case for unimodular even forms. Instead
these are orthogonal sums of three building blocks, the hyperbolic plane U ,
the positive definite root lattice E8, and its negative E8(−1). The first has
rank two and has a basis {e, f} for which e.e = f.f = 0 and e.f = 1. The
root lattice E8 has rank 8 with form given in the basis by the Coxeter matrix
for the root lattice E8, that is by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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It turns out that every indefinite even unimodular form is isometric to ⦹sU ⦹

⦹tE8, a lattice of index t ≥ 0, or to ⦹sU ⦹ ⦹tE8(−1) if the index equals
−t < 0.

For definite forms the situation is more complicated. The number of non-
isometric lattices grows rapidly with the rank. See e.g. [16, Ch. IV § 2.3].

Characteristic elements

To test whether the form on a lattice L is even or odd, one makes use of
a characteristic element c ∈ L. By definition it has the property that
c.x + x.x is even for all x ∈ L. Such characteristic elements exist if the
discriminant of L is odd as one easily sees by reduction modulo 2. In fact,
characteristic classes exist for inner product spaces over the field F2. Of course,
if c ∈ L is not isotropic and L is even, then c⊥ is an even lattice, but this
holds also if c is characteristic in an odd lattice L. For later use I set this
apart:

Lemma 2.1. If L is a lattice with odd discriminant and c ∈ L not isotropic,
i.e. c · c �= 0, then c⊥ is an even lattice if and only if c is a characteristic
element.

Remark 2.2. An odd unimodular indefinite lattice being diagonalizable, the
reader may be surprised that it can have unimodular even sublattices. That
this is indeed the case can be illustrated with the lattice L = 〈1〉⦹〈1〉⦹〈−1〉.
The basic observation is that L is isometric to 〈1〉⦹U . Explicitly, if {e1, e2, e3}
is an orthogonal basis for L, then c = 2c′, c′ = e1 + e2 + e3 is a characteristic
element with c′.c′ = 1 and c⊥ is the lattice with basis {e1 + e3, e2 + e3}
isometric to U .

Discriminant forms and the genus

Let L be a lattice. We recall the concept of discriminant group and dis-
criminant form. Remark that the pairing on L extends to a Q-bilinear pair-
ing on L ⊗ Q and induces the Q/Z-valued form on the discriminant group
A(L) = L∗/L, L∗ = HomZ(L,Z) given by

bL : A(L) × A(L) → Q/Z, x̄.ȳ 
→ x.y mod Z

(discriminant bilinear form).

Even lattices come with an integral quadratic form q given by q(x) = 1
2b(x, x)

and for these one considers a finer invariant, the discriminant quadratic
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form
qL : A(L) → Q/Z, x̄ 
→ q(x) mod Z.

The discriminant form is completely local in the sense that it decomposes
into p-primary forms where p is a prime dividing the discriminant. More
precisely, it is the orthogonal sum of the discriminant forms of the localizations
Lp = L ⊗ Qp and so it ties in with the genus of the lattice, i.e. the set
of isometry classes {Lp}p prime together with L ⊗ R. A celebrated result of
V. Nikulin [15, Cor. 1.16.3] emphasizes the role of the discriminant form in
determining the genus:

Theorem. The genus of non-degenerate lattice is completely determined by
its type, rank, index and the discriminant form.

It is well known that the number of isometry classes in a genus is finite.
It is also called the class number of the genus.

For applications in geometry it is important to have a criterion for class
number 1 lattices. This is often the case in the indefinite situation as stated
by another result due to V. Nikulin [15, 1.13.3 and 1.16.10] and M. Kneser
[10]:

Theorem 2.3. Let L be a non-degenerate indefinite lattice of rank r. Its
class number is 1 in the following instances:

1. In case L is even and the discriminant group of L can be generated by
≤ r − 2 elements. Hence, in this case L is uniquely determined by its
rank, index and the discriminant quadratic form.

2. In case L is odd, and the discriminant group of L can be generated by
≤ r − 3 elements. Hence, in this case L is uniquely determined by its
rank, index and the discriminant bilinear form.

These results will be in particular applied to primitive sublattices of L,
i.e. sublattices S such that L/S is free of torsion. In case S is well understood,
one can say much about its orthogonal complement:

Lemma 2.4. Let S be a primitive non-degenerate sublattice of L and T = S⊥

then disc (S) = ±disc
(
S⊥) and (A(S), bS) is isometric to (A(T ),−bT ).

For proofs, see e.g. [9, 11].

Intersection lattices

Lemma 2.4 has the following implication for intersection lattices:
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Corollary 2.5. Let X be a compact connected orientable 4n-dimensional
manifold X with indefinite intersection form and let c ∈ HX be primitive with
c.c �= 0. If HX is even assume that bn(X) ≥ 4 and if HX is odd and c is
not characteristic, assume that bn(X) ≥ 5. Then the isometry class of c⊥ is
uniquely determined by the signature (b+, b−) of HX and the integer c.c.

Proof. The discriminant form of Z.c equals 〈1/(c.c)〉 and by Lemma 2.4 the
discriminant form for T := c⊥ equals −〈1/(c.c)〉 and, in particular, is a torsion
form on a length one group. The assumptions imply that 1 ≤ rank(T )− 2 in
the even case, and 1 ≤ rank(T ) − 3 in the odd case. Since T is odd if and
only if c is not characteristic, the statement follows.

Assume now that X is a compact orientable 4-dimensional manifold with
intersection lattice HX . The second Stiefel–Whitney class w2 is a characteristic
class for the inner product space H2(X,F2). To pass to integral cohomology
one uses the reduction mod 2 map, induced by the natural projection Z →
Z/2Z:

ρ2 : H2(X,Z) → H2(X,Z/2Z).(1)

Any lift of w2 under ρ2 is an integral characteristic element since the intersec-
tion pairing is compatible with reduction modulo 2. In the special case where
X is a compact almost complex manifold of complex dimension 2, there is a
canonical choice for a lift, namely the first Chern class c1. We note a simple
consequence:

Lemma 2.6. The intersection pairing on a compact almost-complex surface
X is even if c1(X) is divisible by 2 in integral cohomology. The converse is
true if H1(X,Z) is free of 2-torsion.

If c21(X) �= 0, and c1(X) = kc with c primitive, then the lattice c1(X)⊥ ⊂
H2(X,Z) is a non-degenerate even lattice of discriminant ±c.c.

Proof. The preceding remarks show that if c1(X) is divisible by 2 in cohomol-
ogy, x.x is even for all x ∈ H2(X,Z). For the converse, consider the long exact
sequence associated to 0 → Z

×2−−→ Z → Z/2Z → 0 and use that the intersec-
tion pairing on H2(X,F2) is non-degenerate. Here surjectivity of the map ρ2
(cf. (1)) is used which follows since by Poincaré-duality, H3(X,Z) � H1(X,Z)
– which has no 2-torsion by assumption.

The penultimate assertion is also clear since c1.x + x.x = x.x is even
for all x ∈ c1(X)⊥. The assertion about the discriminant is a special case of
Lemma 2.4.
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3. Complex algebraic surfaces

Invariants

Let X be a compact complex projective surface. It is well known that the
Chern numbers, a priori complex invariants, are in fact (oriented) topological
invariants. This is clear for c2(X) since it can be identified with the Euler
number e(X). To see that c21(X) is a topological invariant, one invokes a deep
theorem, the index theorem ([6, Thm. 8.2.2]):

Theorem 3.1 (Index theorem – special case). For a compact differentiable
4-manifold X admitting a complex structure, the index τ(X) satisfies

τ(X) = 1
3(c21(X) − 2c2(X)).

For algebraic surfaces the Hodge decomposition gives two more invariants
for X, namely q(X) = 1

2b1(X) and pg(X) = dimH2,0(X). In particular, q is
a topological invariant. Because of Noether’s formula [1, p. 26],

χ(X) := 1 − q(X) + pg(X) = 1
12(c21(X) + c2(X)),(2)

also pg is a topological invariant.
Recalling that since c1 is a characteristic element for the intersection

lattice, these observations make it possible to determine the isometry class of
HX from the type of c1 together with the integer invariants c21 and c2.

Example 3.2. A K3 surface by definition is a surface with b1 = 0 and
trivial canonical bundle and so c1 = 0 and pg = 1, q = 0 implying 2 = 1

12c2.
Hence b2 = 24 − 2 = 22. The index theorem gives τ = 1

3(−48) = −16 and
since the intersection lattice is even, it is isometric to ⦹3U ⦹ ⦹2E8(−1).

An Enriques surface has pg = q = 0 while c1 is 2-torsion. A similar
reasoning shows that U ⦹ E8(−1) is its intersection lattice.

For algebraic surfaces (and more generally for compact Kähler surfaces)
there is a characterization of the signature in terms of Hodge numbers:

Lemma 3.3 ([1, Thm. IV.2.6]). Let X be a compact Kähler surface. Then the
signature of X equals (2pg(X)+1, h1,1(X)−1) where h1,1(X) = dimH1,1(X).
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Surface classification

I also make use of the Enriques classification of surfaces. The notion of a
minimal surface plays an essential role. All surfaces are obtained from these
by repeated blowing up in points. In the present context it is important to
recall how the intersection lattice changes under a blow-up. Since blowing up
X in a point does not affect H i, i �= 2 and replaces H2(X) by H2(X) ⊕ Z,
where the summand Z is generated by the exceptional curve which has self-
intersection −1, one has:

Lemma 3.4. Let X be a compact complex surface and let X̃ be the surface
obtained by blowing up X in a point. Then H

X̃
= HX ⦹ 〈−1〉. In particular,

the intersection lattice of a non-minimal surface is odd.
Moreover c21(X̃) = c21(X) − 1, c2(X̃) = c2(X) + 1 and τ(X̃) = τ(X) − 1.

In the Enriques classification – besides the already mentioned classes (K3
surfaces, Enriques surfaces) – some other classes appear. Firstly the ratio-
nal and ruled surfaces which by definition are obtained from the projective
plane, respectively a minimal ruled surface by repeatedly blowing up and
blowing down. Then there are the elliptic surfaces which by definition admit
a holomorphic map onto a curve such that the general fibre is an elliptic
curve. Among these are some ruled surfaces, the Enriques surfaces and some
K3 surfaces. Next, there are so-called bi-elliptic or hyperelliptic surfaces and,
finally, the large class of properly elliptic surfaces which by definition have
Kodaira dimension 1. The surfaces with Kodaira dimension 2 are called “sur-
faces of general type”. Together these exhaust the classification (see e.g. [2]).
Summarizing, replete with invariants, one has:

Theorem 3.5 (Enriques classification). Every minimal complex projective
surface belongs to exactly one of the following classes ordered according to
their Kodaira dimension κ:

κ Class b1 pg c21 c2
−∞ minimal rational surfaces 0 0 8 or 9 4 or 3

ruled surfaces of genus > 0 2g 0 8(1 − g) 4(1 − g)
0 Two-dimensional tori 4 2 0 0

K3 surfaces 0 1 0 24
Enriques surfaces 0 0 0 12
bielliptic surfaces 2 0 0 0

1 minimal properly elliptic surfaces 0 ≥ 0
2 minimal surfaces of general type > 0 > 0
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In the next section one considers indefinite primitive lattices. Here I dis-
cuss the – rather small – list of surfaces having definite primitive lattices.
First of all, these cannot be positive definite:

Lemma 3.6. Let X be a complex projective surface. Then H2(X,R) is pos-
itive definite if and only if b2(X) = 1 and so PX �= 0 cannot be positive
definite.

Proof. Lemma 3.3 implies that the signature of a primitive lattice is
(2pg, h1,1 − 1) which is positive definite precisely if b2 = τ = 2pg + 1. More-
over, X is minimal of general type and one finds c21 = 10pg − 8q + 9 and
c2 = 2pg − 4q + 3. Now invoke the Bogomolov–Miyaoka–Yau inequality (cf.
[1, §VII.4]), stating

c21 − 3c2 ≤ 0,(3)

which gives 4pg + 4q ≤ 0 and so pg = q = 0. But then b2 = 1 which forces
PX = 0.

Secondly, as to negative definite PX , by Lemma 3.4 one may restrict to
minimal surfaces and hence, inspecting the table from Theorem 3.5, one sees:

Lemma 3.7. Let X be complex projective surface with PX �= 0 and negative
definite. Then X is either rational or ruled, a (possibly blown-up) Enriques
surface, an elliptic surface with pg = 0 or a surface of general type with
pg = 0.

Remark 3.8. In the definite situation there might be more isometry classes in
the genus. There are however instances where the class number is exactly one.
For minimal surfaces that are canonically polarized and with pg = 0 this can
be used to determine the primitive cohomology. See the table in Remark 4.3.

In the next section one also needs the following result:

Lemma 3.9. Let X be a complex projective surface with b2(X) ≤ 4 and
pg(X)=1. Then X is a minimal algebraic surface satisfying c21(X)=3c2(X) =
18, q(X) = 0 (and so b2(X) = 4).

Proof. Assume that X is minimal elliptic. Since pg = 1 the surface is either
K3 or properly elliptic. However, since b2 ≤ 4, the surface cannot be K3. So
it is properly elliptic with invariants c21(X) = 0 and c2(X) = 12(pg(X) −
q(X) + 1) = 12(2 − q). On the other hand c2(X) = 2 − 4q(X) + b2(X) and
so 4 ≥ b2(X) ≥ 2pg + 1 = 3 must be even and hence b2(X) = 4, but then
c2(X) = 12(2− q(X)) = 6− 4q(X) which is impossible. If X is not minimal,
for its minimal model we have b2 ≤ 3 and so it also does not exist



2684 Chris Peters

If X is of general type, then from c2(X) = 2 − 4q(X) + b2(X) > 0 one
finds q(X) = 0. Since b2(X) = 3, 4, from 24 = c21(X) + c2(X) one finds that
either (c1(X), c2(X)) = (19, 5) or = (18, 6). The inequality (3) excludes the
first possibility and then b2(X) = 4. If X were not minimal and X̃ its minimal
model, then b2(X̃) = 3 which is excluded by the previous calculation.

Remark 3.10. Since X satisfies c21(X) = 3c2(X), by S.T. Yau’s results [26],
its universal cover is the unit ball. The existence of a surface with pg(X) =
1, q(X) = 0 and c21(X) = 18 is not known.1 These are of course far from
simply connected. For simply connected surfaces the maximum c21 seems to
be 12 (G. Urzua, unpublished).

4. On primitive intersection lattices of surfaces

The main result is as follows.

Theorem 4.1. Let X be complex projective surface whose primitive lattice
PX is indefinite. Let h ∈ HX be a primitive ample class. Then

1. If HX is even, the isometry class of PX is uniquely determined by the
triple (b1(X), c21(X), c2(X)) of topological invariants together with h.h.

2. In case HX is odd, this depends in addition to h being characteristic or
not: In case h is characteristic, PX is even and otherwise it is odd. If
the latter occurs, one assumes in addition that b2(X) �= 4.

Proof. This is a direct consequence of Corollary 2.5. Indeed, since τ(X) =
1
3(c21(X)− c2(X)), the index of PX equals τ(X)− 1 and rank(PX) = b2(X)−
1 = c2(X)−2b1(X)−1. The result follows from Corollary 2.5 and Lemma 3.9.
Indeed, the latter result implies that b2(X) ≥ 4.

Examples 4.2. 1. For a complex projective surface X with c21(X) = 1
and KX ample and X embedded by a suitable multiple of KX , one has
PX � ⦹sU⦹⦹tE8(−1) since the index is negative by the index formula
(cf. Theorem 3.1). The Noether inequality [1, Theorem VII.3.1] stating
that pg ≤ 1

2c
2
1 + 2 implies that pg ≤ 2. Furthermore, in case q > 0,

O. Debarre [4, 5] has show that 2pg ≤ c21 so that pg = 0 in the present
situation. From this and the Noether formula (2), one arrives at the
following sets of possible invariants:

1Sai Kee Yeung explained to me that based on work of Cartwright–Steger (C.R.
Math. Ac. Sc. Paris 348) and Prasad–Yeung (Inv. Math. 186 & 182), one can
construct unramified double covers of fake projective planes with these invariants.
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χ 1 2 3
c2 11 23 35

(pg, q) (0, 0) (1, 0) (2, 0)
(s, t) (0, 1) (2, 2) (4, 3)

Here are some surfaces within this range of invariants (the list is far
from complete!):

• The so-called Godeaux-type surfaces, i.e. those with pg = q = 0
and c21 = 1. For concrete examples, see e.g. [1, §VII.10]. Here PX is
unimodular and negative definite of rank 8. It is known that then
PX � E8(−1) (cf. Table 1).

• The Kynev surface from [12, 17] with c21 = 1, pg = 1 and q = 0 (so
that c2 = 23).

• E. Horikawa’s (simply connected) surface from [7] with c21 = 1,
c2 = 35 (so that b2(X) = 33).

2. The simplest non-unimodular PX are obtained for surfaces X with
c21(X) = 2 and KX ample and X embedded by a suitable multiple
of KX . Here disc (PX) = ±2. As before, using Noether’s inequality, De-
barre’s inequality and the Noether formula, one arrives at the following
sets of possible invariants:

χ 1 2 3 4
c2 10 22 34 46

(pg, q) (0, 0), (1, 1) (1, 0) (2, 0) (3, 0)

These surfaces are known to exist. I give some examples:

• The numerical Campedelli surfaces, i.e., those with pg = q = 0
and c21 = 2. Again, for examples see e.g. [1, §VII.10] For these, PX

is negative definite of rank 2 and with disc (PX) = −2. It is known
that PX � E7(−1). See Remark 4.3 and Table 1 below.

• The surfaces with pg = q = 1 and c21 = 2 have been completely
classified. See [3]. Here PX has signature (2, 9) and discriminant
−2. Such a lattice is isometric to 〈2〉 ⦹ U ⦹ E8(−1). This follows
from Theorem 2.3 since the given lattice has the correct signature
and discriminant form.

• Horikawa’s surface with c21 = 2, pg = 3, q = 0 (and c2 = 46)
from [8]. Here PX has signature (6, 37) and discriminant −2. Such
a lattice is isometric to 〈2〉 ⦹ ⦹5U ⦹ ⦹4E8(−1).
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3. Let X be an Enriques surface. Then HX � U ⦹ E8(−1). Let c be a
primitive vector in the U component, say c = e + f where {e, f} is the
standard basis of U . Then c⊥ � 〈−2〉 ⦹ E8(−1). By the main theorem
in [23] this lattice has class number 1. By loc. cit. for vectors of the
form c′ = d.e+ f , d �= ±1, the class number of the lattice (c′)⊥ is larger
than 1.
In fact, to interpret Watson’s results, one has to be careful since his
terminology differs form what is nowadays usual. First of all, Watson
only considers quadratic forms and so the associated bilinear forms (the
polar forms) are always even. His notation compares to the one used
in this note as follows: P = U , Q = 〈2〉, B = A2. E = E8 so that the
two forms of rank 9 having class number 1 are F9 = E8 ⦹ 〈2〉 and G9,
an indecomposable form of discriminant 8 (in loc. cit. the discriminant
of forms of odd rank have been divided by 2). The last form is not
isometric to E8 ⦹ 〈8〉 since (G9)2 = ⦹3U ⦹ A2 ⦹ 〈−3.23〉.

Remark 4.3. If PX is definite, Theorem 2.3 does not apply. However, there
are lists of low rank definite lattices that have one isometry class in its genus.
See e.g., [18, 19, 20, 21, 22, 23, 24, 25]. This leads to the following table.

Table 1: List of lattices PX for X canonically polarized with χ(X) = 12
c21, rank(PX) lattice discrim. form

(1, 8) E8(−1) 0
(2, 7) E7(−1) 〈−1/2〉
(3, 6) E6(−1) 〈1/3〉
(4, 5) D5(−1) 〈−1/4〉
(5, 4) A4(−1) 〈−4/5〉
(6, 3) A2(−1) ⦹ 〈−2〉 〈1/3〉 ⦹ 〈−1/2〉
(7, 2)

(
−4 1
1 −2

)
〈1/7〉

(8, 1) 〈−8〉 〈−1/8〉

That the given lattices of rank 8, 2 and 1 have class number 1 is trivial
or else well known. For other ranks I refer to the cited articles by G. Watson.
The lattices in the table indeed have rank 9−k and discriminant group Z/kZ,
k = c21 and so these match with those for which the results in loc. cit. show
that the class number of the genus equals one.
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