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1. Introduction

A Kähler metric on a complex manifold is called extremal if its scalar curva-
ture is a Killing potential, i.e. the momentum of a Hamiltonian Killing vector
field. This concept was introduced in the ’80s by Calabi, who also constructed
extremal Kähler metrics on some compact complex manifolds admitting no
Kähler metrics of constant scalar curvature, e.g. on the complex projective
plane blown-up at one point. On the other hand, not all compact complex
manifolds do admit extremal Kähler metrics and a number of generalisations
have been proposed, among which the concept of (f, ν)-extremal Kähler met-
ric, proposed by Vestislav Apostolov and David M. J. Calderbank in [3], where
f is a Killing potential and ν a real number; the metric is then (f, ν)-extremal
if the so-called (f, ν)-scalar curvature, cf. (6.25) below, is itself a Killing poten-
tial, cf. Definition 1 in [3]. As explained in [3], see also Appendix C in [1] and
[2], this new concept acquires its plain significance in the Sasakian context.
The present notes, largely of expository character, are mainly thought off as
a self-contained introduction to this viewpoint, in particular to its treatment
in [3].
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2. Contact structures

Let N be an oriented manifold of odd dimension n = 2m + 1, equipped with
a contact structure, i.e. a totally non-integrable distribution D of oriented
2m-planes, called the contact distribution or the horizontal distribution. We
denote by L the quotient real line bundle TN/D, and by p the natural pro-
jection from the tangent bundle TN to L = TN/D. We thus get the exact
sequence

(2.1) 0 → D → TN
p−→ L → 0,

and the dual exact sequence

(2.2) 0 → L∗ → T ∗N → D∗ → 0,

where the dual line bundle L∗ is viewed as a subbundle of the cotangent
bundle T ∗N , namely the annihilator of D in T ∗N . The orientation of N and
D determines an orientation on L and L∗. A contact 1-form is a positive
section of L∗. Any two contact 1-forms, θ and θ̃ are then related by

(2.3) θ̃ = f−1 θ,

where f is a positive function, and the contact distribution D is the kernel of
all contact 1-forms.

A vector field Z is called a contact vector field if it preserves the contact
distribution D, i.e. if, for any horizontal vector field, i.e. any section X of
D, LZX = [Z,X] is still a horizontal vector field, where LZ denotes the Lie
derivative along Z. Equivalently, Z is a contact vector field if, for any contact
1-form θ, we have

(2.4) LZθ = ϕ θ,

for some function ϕ. This follows from the following simple computation. For
any horizontal vector field X, we have: dθ(Z,X) = Z · θ(X) − X · θ(Z) −
θ([Z,X]) = −X · θ(Z) − θ([Z,X]); Z is then a contact vector field if and
only if θ([Z,X]) = 0 for any horizontal vector field X, hence if and only if
(ιZdθ+ d(θ(Z)))(X) = (LZθ)(X) = 0, for any horizontal vector field X; this,
in turn, holds if and only if LZθ is proportional to θ.

To any contact 1-form θ is associated its Reeb vector field, T , determined
by the following two conditions

(2.5) θ(T ) = 1, LT θ = ιTdθ = 0.
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In particular, T is everywhere transverse to D and preserves the contact
distribution. If θ̃ = f−1 θ is another contact 1-form, the corresponding Reeb
vector field, T̃ , is given by

(2.6) T̃ = f T + graddθ f,

where graddθ f denotes the horizontal vector field determined by

(2.7) df(X) = −dθ(graddθ f,X),

for any horizontal vector field X (this makes sense, as the restriction of the
2-form dθ to D is everywhere non-degenerate). Indeed, T̃ can be written
T̃ = hT + Z, for some function h, where Z is horizontal. From the condition
θ̃(T̃ ) = 1, we readily infer that h = f , so that T̃ = f T + Z, whereas, the
condition ιT̃dθ̃ = 0 reads: −f−1df(T ) θ− f−2df(Z)θ+ f−1df + f−1 ιZdθ = 0.
From this, we infer df(Z) = 0 and df(X) + dθ(Z,X) = 0, for any horizontal
vector field X.

The Lie algebra — for the usual bracket of vector fields — of contact
vector fields on N is denoted by cont(N,D).

Lemma 1. The map X �→ ξX := p(X) from cont(N,D) to the space, Γ(L),
of smooth sections of L is an isomorphism.

Proof. We first show that the map X �→ ξX is injective. This amounts to
showing that cont(N,D) contains no non-zero horizontal vector field. Let Z
be a horizontal vector field in cont(N,D). For any chosen contact 1-form θ
and for any horizontal vector field X, we have dθ(Z,X) = −θ([Z,X]) = 0,
since [Z,X] is a horizontal vector field; since the restriction of dθ to D is non-
degenerate, il follows that Z = 0. We now show that any section ξ of L is the
image of a (unique) contact vector field, denoted by Xξ. For that, fix a contact
1-form θ and its Reeb vector field T ; then ξT := p(T ) is a positive section of
L and ξ = ϕ ξT , for some function ϕ, so that any vector field whose image
by p is ξ is of the form ϕT + Z, where Z is a horizontal vector field. Then,
LϕT+Zθ = dϕ+ιZdθ is proportional to θ if and only if dϕ(X)+dθ(Z,X) = 0,
for any horizontal vector field, if and only if Z = graddθ ϕ. We then have:

(2.8) Xξ = ϕT + graddθ ϕ.

Remark 1. If the reference contact 1-form θ is replaced by θ̃ = f−1 θ, of Reeb
vector field T̃ = fT +graddθ f , then (2.8) is replaced by Xξ = ϕ̃T̃ +graddθ̃ ϕ̃,
with ϕ̃ = f−1ϕ.
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In the case when ϕ is positive in (2.8), Xξ is the Reeb vector field of the
contact 1-form θ̃ = ϕ−1 θ. The set of Reeb vector fields is then an open cone
in cont(M,D).

3. Positive definite CR-structures

We now assume that the contact distribution D comes equipped with a com-
plex structure, I, which is compatible with the contact structure, meaning
that, for any horizontal vector fields X, Y , the vector field [X, Y ] − [IX, IY ]
is horizontal, or, equivalently, that dθ(IX, IY ) = dθ(X, Y ). We also assume
that dθ(X, IY ) is a positive definite symmetric bilinear form on D and that
I is formally integrable, meaning that

(3.1) [X, Y ] − [IX, IY ] = −I
(
[IX, Y ] + [X, IY ]

)
,

for any horizontal vector fields X, Y . The resulting structure is called a for-
mally integrable positive definite CR-structure or, simply in these notes, a
CR-structure. Once given such a CR-structure, any choice of a contact 1-
form θ, of Reeb vector field T , determines a (positive definite) Riemannian
metric, g, an operator, J , and a 2-form ω, on N , defined by

g(T, T ) = 1, g(T,X) = 0, g(X, Y ) = 1
2dθ(X, JY ),(3.2)

J(T ) = 0, J(X) = I(X),(3.3)

for any horizontal vector fields X, Y , and

(3.4) ω = 1
2dθ.

We then have:

(3.5)

J2 = −1 + θ ⊗ T,

g = ω(·, J ·) + θ ⊗ θ,

ω = g(J ·, ·) = −g(·, J ·),
ω(J ·, J ·) = ω,

g(J ·, J ·) = g − θ ⊗ θ.

Notice that the Reeb vector field T is then the vector field dual to the contact
1-form θ with respect to the metric g. Also notice that T preserves θ, ω and
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D, cf. Section 2, but not g and J in general, LT g and LY J being related
by:

(3.6) LT g(X, Y ) = −g
(
JLTJ(X), Y

)
,

for any vector fields X, Y . In particular, JLTJ is symmetric with respect to g
and JLTJ(T ) = 0. Denote by Dg the Levi-Civita connection of g. In general,
on any Riemannian manifold of metric g, Dg is determined by the following
Koszul formula:

2g
(
Dg

XY, Z
)

= X · g(Y, Z) + Y · g(X,Z) − Z · g(X, Y )(3.7)
+ g

(
[X, Y ], Z

)
+ g

(
[Z,X], Y

)
+ g

(
X, [Z, Y ]

)
,

for any vector fields X, Y, Z. In the current setting, Dg preserves g, but not
T and J ; more precisely:

Lemma 2. For a general CR-structure, DgT and DgJ have the following
expressions:

(3.8) DgT = J − 1
2JLTJ,

and

g
((
Dg

XJ
)
Y, Z

)
= θ(Y )

(
g(X,Z) − 1

2g
(
(LTJ)X,Z

))
(3.9)

− θ(Z)
(
g(X, Y ) − 1

2g
(
(LTJ)X, Y

))
,

for any vector fields X, Y, Z on N . In particular:

(3.10) Dg
TT = 0, Dg

TJ = 0.

Proof. (3.8) is readily derived from (3.7). In order to check (3.9), we first
consider the Schouten bracket [J, J ] = NJ of J , defined by:

NJ(X, Y ) := 1
4
(
[JX, JY ] − J [JX, Y ] − J [X, JY ] + J2[X, Y ]

)
(3.11)

= 1
4
((
Dg

JXJ
)
Y − J

(
Dg

XJ
)
Y −

(
Dg

JY J
)
X + J(DY J)X

)
;

we then consider the expression:

dω(X, Y, Z) − dω(X, JY, JZ)(3.12)
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= g
((
Dg

XJ
)
Y, Z

)
+ g

((
Dg

Y J
)
Z,X

)
+ g

((
Dg

ZJ
)
X, Y

)
− g

((
Dg

XJ
)
JY, JZ

)
− g

((
Dg

JY J
)
JZ,X

)
− g

((
Dg

JZJ
)
X, JY

)
,

and the following commutation formula, derived from (3.8):

J
(
Dg

XJ
)
+

(
Dg

XJ
)
J = Dg

XJ
2 = Dg

Xθ ⊗ T + θ ⊗Dg
XT

= (JX − 1
2
(
(JLTJ)X

)� ⊗ T + θ ⊗
(
JX − 1

2(JLTJ)X
)

(3.13)

where � denotes the dual 1-form with respect to g. From the above, we infer
the following identity:

g
((
Dg

XJ
)
Y, Z

)
= 1

2
(
dω(X, Y, Z) − dω(X, JY, JZ)

)
(3.14)

+ 2g
(
JX,NJ(Y, Z)

)
+ θ(Y )g(X,Z) − θ(Z)g(X, Y ),

for any vector fields X, Y, Z. In the current case, dω = 0 and, since I is
formally integrable, NJ has the following simple expression:

(3.15) NJ(Y, Z) = −1
2ω(Y, Z)T − 1

4θ(Y )JLTJ(Z) + 1
4θ(Z)JLTJ(Y ).

By substituting in (3.14), we eventually get (3.9).

Lemma 3. Let θ̃ and θ be two contact forms, related by θ̃ = f−1θ, where f is
a positive function. The corresponding Reeb vector fields, T̃ and T , are then
related by

(3.16) T̃ = f T + 1
2J gradg f,

where gradg f denotes the gradient of f with respect to the metric g. The
2-form ω̃ = 1

2dθ̃, the operator J̃ and the metric g̃ determined by θ̃ are then
related to ω, J and g by:

ω̃ = f−1
(
ω − 1

2f
−1 df ∧ θ

)
,(3.17)

J̃ = J + 1
2θ ⊗ f−1(gradg f − df(T )T

)
,(3.18)
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and

g̃ = f−1(g − θ ⊗ θ) + f−2 θ ⊗ θ(3.19)

+ 1
4f

−3(|df |2g − (
df(T )

)2)
θ ⊗ θ

+ 1
2f

−2(θ ⊗ (df ◦ J) + (df ◦ J) ⊗ θ
)
.

Proof. For a general contact structure, the Reeb vector field T̃ is related to
T by (2.6); in the current CR case, we clearly have: graddθ f = 1

2J gradg f ,
hence (3.16), while (3.17) readily follows from ω̃ = 1

2dθ̃. We obtain (3.18) by
observing that, for any vector field X, we have: J̃(X) = IXH̃ = JXH̃ , where
XH̃ = X− θ̃(X)T̃ denotes the projection of X to D along T̃ , which is also the
orthogonal projection of X to D with respect to the metric g̃; (3.18) is then
an easy consequence of (3.16) since JT = 0. Finally, since g̃ = ω̃(·, J̃ ·)+ θ̃⊗ θ̃,
(3.19) easily follows from (3.17) and (3.18).

4. The Tanaka connection

The following statement is due to Noboru Tanaka, in [6], also cf. [7]:

Proposition 1. For any contact 1-form θ, of Reeb vector field T , there exist
an unique linear connection, ∇, on N , called the Tanaka connection attached
to θ, which preserves the whole CR-structure (g, J, ω, θ, T,D) and whose tor-
sion, T∇, satisfies the following two conditions:

(4.1) T∇(X, Y ) = 2ω(X, Y )T, T∇(T, JX) + JT∇(T,X) = 0,

for any horizontal vector fields X, Y .

Proof. Since ∇J = 0 and ∇T = 0, from the second condition we readily infer

(4.2) ∇TX = [T,X] − 1
2J(LTJ)(X),

for any horizontal, hence any vector field X. Taking the first condition into
account, we thus get the following expression of T∇:

(4.3) T∇(X, Y ) = 2ω(X, Y )T − 1
2θ(X)(JLTJ)(Y ) + 1

2θ(Y )(JLTJ)(X),
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for any vector fields X, Y on N . Like any connection preserving the metric g,
the Tanaka connection ∇ is related to Dg by the general formula:

g(∇XY, Z)

(4.4)

= g
(
Dg

XY, Z
)
+ 1

2
(
g
(
T∇(X, Y ), Z

)
− g

(
T∇(Y, Z), X

)
− g

(
T∇(X,Z), Y

))
.

In view of (4.3), we thus get:

∇XY = Dg
XY − θ(X)JY − θ(Y )

(
JX − 1

2(JLTJ)(X)
)

(4.5)

+
(
ω(X, Y ) − 1

2g
(
(JLTJ)X, Y

))
T,

for any vector fields X, Y on N . This proves the uniqueness of the Tanaka
connection. In view of (3.8) and (3.9), it is easily checked that the linear
connection ∇ on N defined by (4.5) actually satisfies the above conditions.
This proves the existence part of the Proposition.

5. Sasaki structures

A contact 1-form θ is of Sasakian type or simply Sasakian, if its Reeb vector
field T preserves the operator J , i.e. if

(5.1) LTJ = 0.

Equivalently, in view of (3.6), θ is of Sasakian type if T is Killing with re-
spect to the metric g. The whole structure (g, J, ω,D) is then called a Sasaki
structure. Because of (5.1), in the Sasakian case, the expression of the Tanaka
connection ∇ simply becomes:

(5.2) ∇XY = Dg
XY − θ(X)JY − θ(Y )JX + ω(X, Y )T,

while (4.3) becomes:

(5.3) ∇XY −∇YX − [X, Y ] = 2ω(X, Y )T,

for any vector fields X, Y on N .
In particular, since ∇T = 0 and ∇J = 0, we have

(5.4) DgT = J,
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and

(5.5) Dg
XJ = θ ∧X,

meaning that

(5.6)
(
Dg

XJ
)
(Y ) = θ(Y )X − g(Y,X)T,

for any vector fields X, Y , while

(5.7) ∇TX = [T,X],

for any vector field X and

(5.8) ∇XY = Dg
XY + ω(X, Y )T,

for any horizontal vector fields X, Y .
Conversely, in the Sasaki situation, if the Tanaka connection ∇ is simply

viewed as a connection on D, regarded as a Hermitian complex vector bundle
over N via the complex structure I and the restrictions of ω, g to D, then
∇ may be defined as the unique linear connection on the Hermitian vector
bundle D, which preserves its Hermitian structure and satisfies the condition
(5.7), for any section X of D as well as the condition (5.3), for any two sections
X, Y , of D.

Since T preserves the whole Sasakian structure, the quotient M = N/T
(locally) inherits a Kähler structure, defined as follows. Denote by π the
(local) projection from N to M . Then, the pull-back ot TM coincides with
the contact distribution D, and the metric gM , the complex structure JM
and the Kähler form ωM on M coincide with the restriction of g, J and ω
to the contact distribution D. This makes sense, as D, g, J, ω are T -invariant.
Moreover, the integrability condition (3.1), of I implies the integrability of
JM , and ωM is closed as ω is.

Remark 2. A horizontal vector field X on N descends to a vector field
π∗(X) on M , usually simply denoted by X, if and only it is T -invariant, i.e.
[T,X] = 0 or, equivalently, ∇TX = 0. Conversely, any vector field, X, on M is
the projection of a unique T -invariant horizontal vector field, still denoted by
X, on N , called the horizontal lift of X. Beware however that, if X, Y are two
vector fields on M , regarded as T -invariant horizontal vector fields on N , the
bracket [X, Y ]M on M , as a T -invariant horizontal vector field on N , is not
[X, Y ] in general, but its horizontal part [X, Y ]H := [X, Y ] − θ([X, Y ])T =
[X, Y ] + 2ω(X, Y )T .
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Denote by DgM the Levi-Civita connection of the Kähler manifold M . We
then have:

Lemma 4. The Tanaka connection ∇, viewed as a Hermitian connection on
D, coincides with the pull-back π−1DgM of DgM .

Proof. Denote by D the pull-back π−1DgM of DgM . We then have

(5.9) π∗(DXZ) = DgM
π∗(X)Z,

for any vector field X on N and any vector field Z on M , regarded, in the
left hand side, as a T -invariant horizontal vector field on N , cf. Remark 2
above. Then, since DgM preserves gM , ωM and JM , D preserves the Hermitian
structure of D, whereas DTZ = 0, since π∗(T ) = 0. Since the algebraic
operator DT − LT vanishes on the space of T -invariant sections of D, it is
identically equal to zero (as any element X of D can be locally extended to
a T -invariant section of D). It follows that D satisfies the condition (5.7).
Moreover, since DgM is torsion-free, it follows from (5.9) that DXY −DYX−
[X, Y ] is a multiple of T , for any pair of T -invariant sections X, Y of D,
hence for any sections X, Y of D, so that [X, Y ] = ψ(X, Y )T , for some
2-form ψ on D, which is then equal to the restriction of −2ω to D, since
θ([X, Y ]) = −dθ(X, Y ) = −2ω(X, Y ). It follows that D satisfies the condition
(5.3) as well, hence coincides with ∇, as a connection on D.

Lemma 5. Let θ be a contact 1-form of Sasakian type, T the corresponding
Reeb vector field, g the induced metric on N , ∇ the corresponding Tanaka
connection. Let T̃ = ϕT + 1

2J gradg ϕ be any contact vector field on N . Then,
T̃ preserves the CR-structure (D, I) if and only if

(5.10) ∇JX(J gradg ϕ) = J ∇X(J gradg ϕ),

for any horizontal vector field X on N .
If, moreover, T̃ is T -invariant, then ϕ can then be locally viewed as a

function defined on M and T̃ then preserves the CR-structure if and only
if ϕ is a Killing potential on the Kähler manifold (M, gM , JM , ωM ), meaning
that JM gradgM ϕ is there a Hamiltonian Killing vector field.

Proof. Since T̃ preserves the horizontal distribution D, it preserves the CR-
structure (D, I) if and only if 0 = (LT̃ I)(X) = [T̃ , IX]− I[T̃ , X] = [T̃ , JX]−
J [T̃ , X] = (LT̃J)(X), for any horizontal vector field X. From (5.8), we get

(5.11) [X, Y ] = ∇XY −∇YX − 2ω(X, Y )T,
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for any two horizontal vector fields X, Y . We then have

(LT̃J)(X) =
[
ϕT + 1

2J gradg ϕ, JX

]
− J

[
ϕT + 1

2J gradg ϕ,X

](5.12)

= −dϕ(JX)T

+ 1
2
(
∇J gradg ϕJX −∇JX(J gradg ϕ) − 2ω(J gradg ϕ, JX)T

)

− 1
2
(
J∇J gradg ϕX − J∇X(J gradg ϕ)

)

= 1
2
(
J∇X(J gradg ϕ) −∇JX(J gradg ϕ)

)
.

This shows the first part of Lemma 5. The contact vector field T̃ is T -invariant
if and only if dϕ(T ) = 0. Indeed, [T, T̃ ] = 0 if and only if dϕ(T ) = 0
and J∇T gradg ϕ = 0; now, dϕ(T ) = 0 if and only if gradg ϕ is horizon-
tal; ∇T gradg ϕ is then horizontal as well and therefore cannot be killed by
J , unless it is zero. It follows that ϕ can be viewed as a function defined
on M , whereas the T -invariant, horizontal vector field J gradg ϕ descends to
the Hamiltonian vector field JM gradgM ϕ on M . Then, in view of Lemma 4,
by (5.12), T̃ preserves the CR-structure if and only if DgM

JX(JM gradgM ϕ) −
JMDgM (JM gradgM ϕ = 0, if and only if the Hamiltonian vector field
JM gradgM ϕ) is JM -holomorphic, hence gM -Killing.

Denote by Rg the curvature of Dg on N , defined by

(5.13) Rg
X,Y Z = Dg

[X,Y ]Z −Dg
X

(
Dg

Y Z
)
+ Dg

Y

(
Dg

XZ
)
,

for any vector fields X, Y, Z on N , by R∇ the curvature of ∇, similarly defined,
and by RgM , the curvature of DgM on M , defined by

RgM
X,Y Z = DgM

[X,Y ]MZ −DgM
X

(
DgM

Y Z
)
+ DgM

Y

(
DgM

X Z
)

(5.14)

= ∇[X,Y ]Z −∇X(∇Y Z) + ∇Y (∇XZ) = R∇
X,Y Z,

for any vector fields X, Y, Z on M , regarded as T -invariant horizontal vector
fields in the second expression of the right hand side. Notice that ∇[X,Y ]Z =
∇[X,Y ]HZ, since Z is T -invariant. We then have:

Lemma 6. For any horizontal vector fields X, Y, Z, RgM is related to Rg by

(5.15) RgM
X,Y Z = Rg

X,Y Z + 2ω(X, Y ) JZ + ω(X,Z) JY − ω(Y, Z) JX.
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Proof. Easy consequence of (5.8)–(5.7)–(5.4)–(5.5).

Denote by Ricg, resp. RicgM , the Ricci tensor of g, resp. gM , and by
Scalg, resp. ScalgM , the scalar curvature of g, resp. gM . As a direct corollary
of Lemma 6, we get:

Proposition 2. For any horizontal vector fields X, Y , we have:

(5.16) RicgM (X, Y ) = Ricg(X, Y ) + 2g(X, Y ),

and

(5.17) ScalgM = Scalg +2m.

Proof. We have: RicgM (X, Y ) =
∑2m

i=1 gM (RgM
X,ei

Y, ei), for any orthonormal
horizontal frame and any horizontal vector fields X, Y . We then infer from
(5.15): RicgM (X, Y ) = Ricg(X, Y )−g(Rg

X,TY, T )+3g(X, Y ). Since T is Killing
with respect to g, from (5.4) and (5.5), we infer:

(5.18) Rg
T,X = Dg

X

(
DgT

)
= Dg

XJ = θ ∧X,

for any horizontal vector field X, where the first identity is the general Kostant
formula for Killing vector fields. It follows that g(Rg

X,TY, T ) = g(X, Y ) and
we thus get (5.16). We then have: ScalgM =

∑2m
i=1 RicgM (ei, ei) =∑2m

i=1 Ricg(ei, ei) + 4m = Scalg −Ricg(T, T ) + 4m. From (5.18), we easily
infer:

(5.19) Ricg(T ) = 2mT,

where Ricg is regarded as an endomorphism of TN . We thus get (5.17).

Remark 3. The Sasaki metric g on N , determined by the Sasakian 1-form
θ, is called θ-Einstein if its Ricci tensor Ricg is of the form

(5.20) Ricg = λ g + μ θ ⊗ θ,

for some real functions λ, μ, which are assumed to be constant. If n > 3, i.e.
m > 1, the latter condition is automatically satisfied when (5.20) holds; this
is no longer the case when n = 3, but then (5.20) is always satisfied. On the
other hand, it follows from (5.19) that, for any n ≥ 3, (5.20) implies that

(5.21) λ + μ = 2m.
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It readily follows from (5.16) and (5.19) that the Kähler metric gM is Einstein
if and only if the Sasaki metric g is θ-Einstein, and we then have:

(5.22) λ = ScalgM −4m
2m , μ = 4m(m + 1) − ScalgM

2m .

If gM is Einstein, g is then Einstein if and only if ScalgM = 4m(m + 1).

6. Commuting Sasaki structures and associated Kähler
metrics

In this last section, in addition to the Sasakian contact 1-form θ as above, of
Reeb vector field T , we consider another Sasakian 1-form θ̃ = f−1 θ, of Reeb
vector field T̃ , and we assume that the two Sasakian structure commute,
meaning that [T, T̃ ] = 0, or, equivalently, that df(T ) = 0, i.e. that the vector
field gradg f is horizontal, cf. the proof of Lemma 5.

In view of Lemma 5, f is then a (positive) Killing potential with respect
to the Kähler metric gM . Also notice that f is bi-invariant, i.e. T - and T̃ -
invariant. As a direct consequence of Lemma 5, we have:

Proposition 3. Let θ, θ̃ = f−1 θ be two commuting contact 1-form of Sasa-
kian type, of Reeb vector fields T, T̃ = f T + 1

2J gradg f , as above. Denote
by (M = N/T, gM , JM , ωM ) and (M̃ = N/T̃ , gM̃ , JM̃ , ωM̃ ) the induced (local)
Kähler structure. Denote by C∞

T,f (N,R) the space of bi-invariant real smooth
functions on N , by Pθ, resp. Pθ̃, the space of bi-invariant Killing potentials
relative to gM , resp, gM̃ . Then, the automorphism σf of C∞

T,f (N,R) defined
by

(6.1) σf : ϕ �→ f−1 ϕ,

induces an isomorphism from Pθ to Pθ̃.

Proof. Direct consequence of Lemma 5 and the fact that ϕT + 1
2J gradg ϕ =

f−1ϕ T̃ + 1
2 J̃ gradg̃(f−1ϕ), cf. Remark 1.

We denote by ∇ and ∇̃ the Tanaka connections of θ and θ̃ respectively.
We then have:

Lemma 7. Regarded as Hermitian connections on D, ∇̃ and ∇ are related
by

(6.2) ∇̃XY −∇XY = ηXY, ∇̃TZ −∇TZ = ηTZ,
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with:

ηXY = 1
2f

−1[−df(X)Y − df(Y )X + g(X, Y ) gradg f(6.3)

+ df(JX) JY + df(JY ) JX + ω(X, Y ) J gradg f
]
,

ηTZ = 1
2f

−1
[
f−1df(JZ) gradg f + f−1df(Z) J gradg f(6.4)

+ 1
2f

−1|df |2g JZ − J∇Z gradg f

]
,

for any horizontal vector fields X, Y, Z.

Proof. From (5.8), applied to ∇̃, and from (3.19), we infer that, for any hori-
zontal vector fields X, Y, Z, we have: g̃(Dg̃

XY, Z) = g̃(∇̃XY, Z) =
f−1g(∇̃XY, Z). By (3.19) and the Koszul formula (3.7) for Dg̃, we get:

2g̃
(
Dg̃

XY, Z
)

= 2f−1g(∇̃XY, Z)
(6.5)

= X · f−1g(Y, Z) + Y · f−1g(X,Z) − Z · f−1g(X, Y )
+ g̃

(
[X, Y ], Z

)
+ g̃

(
[Z,X], Y

)
+ g̃

(
X, [Z, Y ]

)
= −f−2df(X) g(Y, Z) − f−2df(Y ) g(X,Z) + f−2df(Z) g(X, Y )

+ f−1X · g(Y, Z) + f−1Y · g(X,Z) − f−1Z · g(X, Y )
+ g̃

(
[X, Y ], Z

)
+ g̃

(
[Z,X], Y

)
+ g̃

(
X, [Z, Y ]

)
,

while, for any horizontal vector field X, Y, Z, it follows from (3.19) that

g̃
(
[X, Y ], Z

)
= f−1g

(
[X, Y ], Z

)
+ 1

2f
−2θ

(
[X, Y ]

)
df(JZ)(6.6)

= f−1g
(
[X, Y ], Z

)
− f−2ω(X, Y ) df(JZ).

By using the Koszul formula again for Dg and (5.8), we eventually get:

g(∇̃XY, Z)

(6.7)

= g(∇XY, Z)

− 1
2f

−1df(X) g(Y, Z) − 1
2f

−1df(Y ) g(X,Z) + 1
2f

−1df(Z) g(X, Y )

− 1
2f

−1df(JZ)ω(X, Y ) + 1
2f

−1df(JX)ω(Y, Z) + 1
2f

−1df(JY )ω(X,Z),
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hence (6.3), since ∇̃XY and ∇XY are both horizontal. To check (6.4), we
start with the identities (5.7), applied to ∇ and ∇̃, and (3.16), to get

(6.8) ηTZ = 1
2f

−1[−2df(Z)T + [J gradg f, Z] −∇J gradg fZ − ηJ gradg fZ
]
.

From (5.11), we infer:
(6.9)
[J gradg f, Z] −∇J gradg fZ − 2df(Z)T = −∇ZJ gradg f = −J∇Z gradg f,

while, by (6.3), we get

ηJ gradg fZ = −1
2f

−1[2df(JZ) gradg f + 2df(Z) J gradg f + |df |2g JZ
]
.

(6.10)

We denote by R∇ the curvature of ∇ and by R∇̃ the curvature of ∇̃, with,
we recall, the convention R∇

X,Y Z = ∇[X,Y ]Z − ∇X(∇Y Z) + ∇Y (∇XZ) and
likewise for R∇̃

X,Y Z. We then have, cf. also [5]:

Lemma 8. For any horizontal vector fields X, Y, Z, R∇̃
X,Y Z and R∇

X,Y Z are
related by:

R∇̃
X,Y Z = R∇

X,Y Z

(6.11)

+ 1
4f2

[
df(Y )df(Z) + df(JY )df(JZ) + g(Y, Z)|df |2 − 2f(∇Y df)(Z)

]
X

− 1
4f2

[
df(X)df(Z) + df(JX)df(JZ) + g(X,Z)|df |2g − 2f(∇Xdf)(Z)

]
Y

− 1
4f2

[
df(Y )df(JZ) − df(JY )df(Z) − ω(Y, Z) |df |2g − 2f(∇Y df)(JZ)

]
JX

+ 1
4f2

[
df(X)df(JZ) − df(JX)df(Z) − ω(X,Z) |df |2g − 2f(∇Xdf)(JZ)

]
JY

− 1
2f2

[
df(Y )df(JX) − df(X)df(JY ) + ω(X, Y ) |df |2

− f(∇Y df)(JX) + f(∇Xdf)(JY )
]
JZ

+ 1
4f2

[
df(JX)ω(Y, Z) − df(JY )ω(X,Z) − 2df(JZ)ω(X, Y )

− df(Y ) g(X,Z) + df(X) g(Y, Z)
]
gradg f
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+ 1
4f2

[
df(X)ω(Y, Z) − df(Y )ω(X,Z) − 2df(Z)ω(X, Y )

+ df(JY ) g(X,Z) − df(JX) g(Y, Z)
]
J gradg f

− 1
2f

[
g(Y, Z)∇X gradg f − g(X,Z)∇Y gradg f

]

− 1
2f

[
ω(Y, Z)J∇X gradg f−ω(X,Z)J∇Y gradg f−2ω(X, Y )J∇Z gradg f

]
.

Proof. For any horizontal vector fields X, Y, Z, we have:

R∇̃
X,Y Z = ∇̃[X,Y ]Z − ∇̃X(∇̃Y Z) − ∇̃Y (∇̃XZ)(6.12)

= R∇
X,Y Z − 2ω(X, Y ) ηTZ − (∇Xη)Y Z + (∇Y η)XZ

− ηX(ηY Z) + ηY (ηXZ).

Then, (6.11) follows from (6.3)–(6.4) by a direct computation.

Remark 4. The above formula holds for commuting Sasaki structures rel-
ative to the CR-structures (D, I), when gradg f is horizontal. In the gen-
eral case, the right hand-side still holds by simply replacing gradg f by its
horizontal part relative to T , i.e. by −J2 gradg f , and, accordingly, |df |2g by
|df |2g − (df(T ))2.

As already mentioned in Lemma 4, the Tanaka connection ∇, acting on
D, is the pull-back of the Levi-Civita connection DgM of the Kähler manifold
M = N/T . For any horizontal vectors X, Y, Z, R∇

X,Y Z is then identified with
RgM

X,Y Z, where RgM denotes the curvature of DgM and X, Y, Z are identified
with π∗(X), π∗(Y ), π∗(Z). The Ricci tensor RicgM (X, Y ), viewed as a sym-
metric bilinear form on D, and the scalar curvature ScalgM of gM , viewed as
a function on N , are then given by

(6.13) RicgM (X, Y ) =
2m∑
i=1

g
(
R∇

X,eiY, ei
)
, ScalgM =

2m∑
i=1

RicgM (ei, ei),

for any g-orthonormal basis {e1, . . . , e2m} of D. Similarly, R∇̃
X,Y Z is identified

with R
gM̃
X,Y Z, where RgM̃ denotes the curvature of DgM̃ and X, Y, Z are identi-

fied with π̃∗(X), π̃∗(Y ), π̃∗(Z), where π̃ denotes the natural projection from N

to M̃ = N/T̃ . The Ricci tensor RicgM̃ (X, Y ), viewed as a symmetric bilinear
form on D, and the scalar curvature ScalgM̃ of gM̃ , viewed as a function on
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N , are then given by

(6.14) RicgM̃ (X, Y ) =
2m∑
i=1

g̃
(
R∇̃

X,ẽiY, ẽi
)

=
2m∑
i=1

g
(
R∇̃

X,eiY, ei
)
,

and

(6.15) ScalgM̃ =
2m∑
i=1

Ric∇̃(ẽi, ẽi) = f
2m∑
i=1

Ric∇̃(ei, ei),

where {ẽ1 := f
1
2 e1, . . . , ˜e2m := f

1
2 e2m} is a g̃-orthonormal basis of D. From

Lemma 8, we then infer:

RicgM̃ (X, Y ) = RicgM (X, Y )

(6.16)

− (m + 2)
2

(
f−2df(X)df(Y ) + f−2df(JX)df(JY )

)

− (m + 2)
2 f−2g(X, Y ) |df |2gM + (m + 2) f−1DgM

X df(Y )

− 1
2g(X, Y ) f−1ΔgM f,

where ΔgM = −∑2m
i=1 D

gM
ei df(ei) denotes the Riemannian Laplacian of gM .

Observe that
∑2m

i=1 D
gM
ei df(JMei) = 0, as JM gradgM f is Killing with respect

to gM , cf. Lemma 5. We thus have:

Proposition 4. For any CR-manifold (N,D, I) of dimension n = 2m+1, let
θ and θ̃ = f−1 θ be two contact 1-forms of Sasakian type, of Reeb vector fields
T and T̃ respectively. Denote by g, resp. g̃, the Riemannian metric induced by
θ, resp. g̃, on N , by (M = N/T, gM , JM , ωM ), resp. (M̃ = N/T̃ , gM̃ , JM̃ , ωM̃ )
the induced (local) Kähler structures, by ScalgM , resp. ScalgM̃ , the scalar cur-
vature of gM , resp. gM̃ , viewed as functions defined on N . Assume moreover
that the two Sasakian structures commute, i.e. that [T, T̃ ] = 0. Then, the
vector field J gradg f is a T -invariant, horizontal vector field on N , which
decends to a Hamiltonian Killing vector field on M , and ScalgM and ScalgM̃
are related by

(6.17) ScalgM̃ = f ScalgM −2(m + 1) ΔgM f − (m + 1)(m + 2) f−1|df |2gM .

Proof. The assertion concerning J gradg f follows from Lemma 5, while (6.17)
is a direct consequence of (6.14)–(6.15)–(6.16).
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Remark 5. Notice that ScalgM and ScalgM̃ , as functions defined on N , are
both T and T̃ -invariant, hence can be both regarded as functions defined on
M and on M̃ .

Denote by π̃∗ρgM̃ the pull-back of the Ricci form ρgM̃ of M̃ by the projec-
tion π̃ from N to M̃ = N/T̃ , and by π∗ρgM the pull-back of the Ricci form,
ρgM , of M , by π. From (6.16), we get:

(
π̃∗ρgM̃

)
(X, Y ) −

(
π∗ρgM

)
(X, Y )

(6.18)

= (m + 2)
2 (dJd log f)(X, Y )− 1

2f
−1(ΔgM f+(m + 2)f−1|df |2gM

)
ωM (X, Y ),

for any horizontal vector fields X, Y , whereas (π∗ρgM )(T,X) = 0 and
(π̃∗ρgM̃ )(T̃ , X) = 0. From the latter and (3.16), we get

(
π̃∗ρgM̃

)
(T,X) = −1

2f
−1(π̃∗ρgM̃

)
(J gradg f,X) = 1

2f
−1 RicgM̃ (gradg f,X),

(6.19)

for any horizontal vector field X. From (6.16), we thus infer:

(
π̃∗ρgM̃

)
(T,X) = 1

2f
−1 RicgM (gradg f,X) − (m + 2)

2 f−3|df |2g df(X)(6.20)

+ (m + 2)
4 f−2(d|df |2g)(X) − 1

4f
−2ΔgM f df(X),

for any horizontal vector field X. Now, since J gradg f is Killing with re-
spect to gM , we have RicgM (gradg f) = 1

2 gradg(ΔgM f), whereas f−2d(|df |2g)−
2f−3|df |2g df = d(f−2|df |2g) and f−1d(ΔgMf) − f−2ΔgM f df = d(f−1ΔgM f),
so that

(6.21)
(
π̃∗ρgM̃

)
(T,X) = (m + 2)

4 d
(
f−2|df |2g

)
+ 1

4d
(
f−1ΔgM f

)
,

for any horizontal vector field X. We thus obtain:

π̃∗ρgM̃ − π∗ρgM = (m + 2)
2 dJd log f − 1

2
(
f−1Δgf + (m + 2) f−2|df |2g

)
ω

(6.22)

+ 1
4θ ∧ d

(
f−1Δgf + (m + 2) f−2|df |2g

)
,
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with the general convention that (Jα)(X) = −α(JX), for any 1-form α and
any vector field X on N .

We then eventually get:

Proposition 5. The 2-forms π̃∗ρgM̃ and π∗ρgM are related by:

(6.23) π̃∗ρgM̃ − π∗ρgM = dτf ,

with

(6.24) τf = (m + 2)
2 f−1Jdf − 1

4
(
f−1Δgf + (m + 2) f−2|df |2g

)
θ.

Proof. Direct consequence of (6.22), by taking into account that ω = 1
2dθ.

In general, for any Kähler manifold (M, g, J, ω), any real function f on
M and any real number ν, the (f, ν) scalar curvature, Scalgf,ν , is defined by

(6.25) Scalgf,ν = f2 Scalg −2(ν − 1) fΔgf − ν(ν − 1) |df |2g,

cf. the Introduction of [3] and references therein. We hen have:

Proposition 6. Let θ and θ̃ = f−1 θ be two commuting contact 1-forms
of Sasakian type, as in Proposition 4. Then the (f,m + 2)-scalar curvature
ScalgMf,m+2 of gM and the scalar curvature ScalgM̃ of gM are related by

(6.26) ScalgM̃ = f−1 ScalgMf,m+2 .

In view of Lemma 5, which is essentially Lemma 2 in [3], the Definition 3
in [3] can be reformulated as follows (recall that Pθ, resp. Pθ̃, denotes the
space of bi-invariant Killing potentials relative to the Kähler metric gM , resp.
gM̃ , cf. Proposition 3:

Definition 1. Let θ be a Sasakian contact 1-form relative to the CR-manifold
(N,D, I), f a positive element of Pθ and ν a real number. Then, the Sasaki
structure (N,D, I, θ) is said to be (f, ν)-extremal if the (f, ν)-scalar curvature
ScalgMf,ν belongs to Pθ.

When f = 1, i.e. when ScalgMf,ν = ScalgM , we retrieve the definition of
extremal Sasaki structure appearing in [4].

In view of Definition 1 above, Propostion 6 can then be reformulated as
follows, cf. Theorem 1 in [3]:
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Proposition 7. Let θ and θ̃ = f−1 θ be two commuting Sasakian contact 1-
forms relative to the CR-structure (D, I). Then, the (local) Kähler metric gM
determined by θ is (f,m + 2)-extremal if and only the (local) Kähler metric
gM̃ determined by θ̃ is extremal.

Proof. As already observed, ScalgM and Scalgg̃ , as functions on N , are both bi-
invariant. In view of Proposition 3, it follows from (6.26) that ScalgM̃ belongs
to Pθ̃ — meaning that gM̃ is extremal — if and only if ScalgMf,m+2 belongs ro
Pθ — meaning that gM is (f,m + 2)-extremal.
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