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Abstract: We investigate the restriction to fixed-points and change
of coefficient functors in RO(C2)-graded equivariant cohomology,
with applications to the equivariant cohomology of spaces with a
trivial C2-action for Z and F2 coefficients. To this end, we study the
nonequivariant spectra representing these theories and the corre-
sponding functors. In particular, we show that the RO(C2)-graded
homology class determined by a Real submanifold Y (in the sense
of Atiyah) of a Real compact manifold X encodes the total Steen-
rod square of the dual to Y C2 in XC2 .
Keywords: C2-equivariant cohomology, Steenrod squares, real
spaces.

1 Introduction 2788

2 The spectra EZ(p) and EF2(p) 2794

2.1 First properties of EZ(p) and EF2(p) 2797

2.2 Decomposing EZ(p) and EF2(p) 2799

2.3 The theories represented by EZ(p) and EF2(p) 2803

2.4 On the pairings μp,q and μ̄p,q 2809

3 Applications 2812

3.1 Total Steenrod squares 2812

3.2 Poincaré duality and total Steenrod squares 2815

Received February 4, 2022.
2010 Mathematics Subject Classification: Primary 55N91.
∗Partially supported by FCT/Portugal through CAMGSD, IST-ID, projects

UIDB/04459/2020 and UIDP/04459/2020.

2787

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


2788 Pedro F. dos Santos and Paulo Lima-Filho

4 Example: BUn 2819

A On the singular cohomology of BOn 2822

References 2824

1. Introduction

In the foundational paper [1], M. Atiyah introduced the notions of Real spaces
and Real vector bundles over Real spaces, which are the basic objects in the
construction of Atiyah’s KR-theory. In a nutshell, a Real space in the sense of
Atiyah is a space X with an action of the cyclic group C2 = {1, ς}, and a Real
vector bundle over X consists of a complex vector bundle E → X endowed
with an antilinear involution ς : E → E covering the action of C2 on X.

Real algebraic geometry is a primary source of Real spaces, for a real
algebraic variety X gives rise to the Real space X(C) consisting of the set of
complex points of X endowed with the analytic topology, under the complex
conjugation involution ς : X(C) → X(C). In particular, if Y ⊂ X is a regu-
larly embedded real subvariety, its normal bundle NY |X yields a Real vector
bundle NY |X(C) → Y (C) over Y (C).

In analogy with algebraic geometry, we denote the fixed point set XC2 of
a Real space X by X(R) and call it the set of real points of X. In this context,
a based Real space is a pair (X, x0) with x0 ∈ X(R) a real point of X and, as
usual, for a Real space X we let X+ denote the Real pair (X ∪ {+},+).

The equivariant Chern classes for KR-theory take values in ordinary
RO(C2)-graded equivariant cohomology, a theory introduced in [11] for an
arbitrary compact Lie group G. Given a based G-space X, the theory assigns
a group H̃α

G(X;M) for each α in the ring of orthogonal representations of G,
provided that the coefficients system M is a Mackey functor. It is common to
denote the corresponding unreduced theory by Hα

G(X;M). The usual axioms
of an equivariant cohomology theory are satisfied, but the suspension axiom
takes the form H̃α

G(X;M) ∼= H̃α+V
G (SV ∧X;M), where SV = V ∪{∞} is the

one-point compactification of an orthogonal representation space V .
In this paper we deal primarily with the case G = C2, and write RO(C2) =

Z·1⊕Z·σ, where 1 and σ are the trivial and sign representations, respectively.
Aiming at algebraic geometric applications, we use the motivic notation for
RO(C2)-graded equivariant cohomology. Namely, given n, p ∈ Z we denote

(1.1) Hn,p(X;M) := H
(n−p)·1+pσ
C2

(X;M).
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In this paper, we mostly consider the Mackey functors Z and F2, where R

denotes the constant Mackey functor associated to the abelian group R. We
will also restrict our attention to the subring H∗,∗(X;M)+ ⊂ H∗,∗(X;M)
consisting of elements in degrees (n, p) with n, p ≥ 0.

For the trivial group G = {1}, equivariant cohomology is just (nonequiv-
ariant) singular cohomology H∗

sing(X;R), with coefficients in R. The group
inclusion {1} ⊂ C2 determines a transformation of cohomology theories

(1.2) R : Hn,p(X;R) → Hn
sing(X;R),

usually called the restriction or forgetful functor.
The cohomology of the quotient H∗

sing(X/C2;R) is included naturally in
H∗,•(X;R) as the subring of elements with bidegree (n, 0), n ∈ Z. Under
this isomorphism the restriction functor R is induced by the quotient map
X → X/C2.

It is useful to note that the image of R is actually a subgroup of the
invariants H∗

sing(X;R(p))C2 under the simultaneous action of C2 on X and
on R(p) := R ⊗ Z · σp. In other words, the image of R lies in the group
of invariants H∗

sing(X;R)+ of singular cohomology when p is even or in the
group of anti-invariants H∗

sing(X;R)− when p is odd.
For a Real space X, the inclusion ιR : X(R) ↪→ X along with the epimor-

phism � : Z → F2 induces various maps between cohomology groups that fit
into the commutative cube displayed below.

H∗
sing(X;Z(•))C2

ι∗
R

�

H∗
sing(X(R);Z(•))C2

�

H∗,•(X;Z)+

R

ι∗
R

�

H∗,•(X(R);Z)+

�

R

H∗
sing(X;F2)C2

ι∗
R

H∗
sing(X(R);F2)C2

H∗,•(X;F2)+
R

ι∗
R

H∗,•(X(R);F2)+
R

Figure 1: “The Cube”.
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This paper addresses the faces of this cube, with emphasis on the infor-
mation encoded in the restriction maps ι∗

R
: Hn,p(X;R)+ → Hn,p(X(R);R)+,

with R = Z or R = F2.
A particularly pleasant example is the C2-space BUn under the complex

conjugation action, where BUn(R) = BOn. In this case, we explicitly describe
all maps appearing in the cube.

We apply the results to study equivariant characteristic classes for Real
bundles. Recall that, in the motivic notation, the p-th equivariant Chern class
cp(E) of a Real vector bundle E → X takes values in H2p,p(X;Z), where Z

has the trivial C2 action. Similarly, with F2 coefficients the p-th equivariant
Chern class is denoted c̄p(E) and takes values in H2p,p(X;F2).

Even when the action of C2 on X is trivial the equivariant Chern classes of
a Real bundle E⊗C → X, obtained from an ordinary vector bundle E → X,
offer a unifying perspective that encodes the Stiefel-Whitney classes of E,
their Steenrod squares and the Pontryagin classes, all at once. To make this
assertion more precise, we need to introduce some notation.

Notation 1.1 (The RO(C2)-graded cohomology of a point). Let Mn,p :=
Hn,p(∗;Z) and M

n,p
2 := Hn,p(∗;F2) denote the equivariant cohomology groups

of a point with coefficients in Z and F2, respectively. The bigraded subring
M+ := ⊕n,p≥0M

n,p ⊂ M can be presented as M+ = Z[a, u], where deg(a) =
(1, 1), deg(u) = (0, 2) and 2a = 0. Here the generator a is represented by
the map aσ : S0 = {Sσ}C2 ↪→ Sσ, while the generator u is determined by
R(u) = 1 ∈ H0(∗;Z).

Similarly, M2+ := ⊕r,s≥0 M
r,s
2 ⊂ M2 is a polynomial ring M2+ = F2[ρ, τ ],

with deg(ρ) = (1, 1) and deg(τ) = (0, 1), where ρ is represented by aσ and τ is
determined by R(τ) = 1 ∈ H0(∗;F2). Furthermore, the change of coefficients
homomorphism � : M+ → M2+ is given by

(1.3) � : a → ρ and � : u → τ 2.

Now, consider a space X as a C2-space with a trivial C2-action, in other
words, X = X(R). It follows from the discussion in §2.2.2 that an element
α ∈ Hn,p(X;Z) can be canonically written as

(1.4) α =
�p/2�∑
s=0

αs · ap−2sus,

where {
αs ∈ Hn−p+2s

sing (X;F2), 0 ≤ s < p/2
αp/2 ∈ Hn

sing(X;Z), if p is even
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and a, u are the generators in the cohomology ring of a point, as in Nota-
tion 1.1. We show in Corollary 4.2 that the n-th equivariant Chern class of
E ⊗ C is given by

(1.5) cn(E ⊗ C) =
∑

0≤s<n/2
Sq2s(wn(E)) · a2(n−s)us + pn/2(E) · un/2,

where Sq2s(wn(E)) is the 2s-th Steenrod square of the n-th Stiefel-Whitney
class of E and pn/2(E) is the n/2-th Pontryagin class of E when n is even
and 0, otherwise.

With F2 coefficients the RO(C2)-graded equivariant cohomology on a
space with trivial action is simpler but still encodes interesting information. In
[8] it is shown that H∗,•(X;F2) ∼= M

∗,•
2 ⊗F2H

∗
sing(X;F2), where H∗

sing(X;F2) is
identified with H∗,0(X;F2), as explained above. In §2.2.3, we write an element
β ∈ Hn,p(X;F2) on a trivial Real space X canonically as

(1.6) β =
p∑

k=0
βk · ρp−kτk,

where ρp−kτk is the generator of Mp−k,p
2 and βk ∈ Hn−p+k

sing (X;F2). In partic-
ular, we can introduce a map Sqρ,τ : H∗

sing(X;F2) → H2∗,∗(X;F2), called the
total Steenrod square, defined on β ∈ Hp

sing(X;F2) by

Sqρ,τ (β) =
p∑

i=0
Sqi(β) · ρp−iτ i ∈ H2p,p(X;F2).

It follows from the Cartan formulas that Sqρ,τ is a ring homomorphism, and
we will show that classes of the form Sqρ,τ (β) occur often in geometric con-
texts as restrictions of C2-equivariant (2p, p)-classes to the set of real points.

A typical example of this phenomenon is the restriction of the equivariant
mod 2 Chern classes. We show in §3.2 that if E → X is a vector bundle on a
trivial Real space X whose n-th Stiefel-Whitney class is ωn, then

(1.7) c̄n(E ⊗ C) = Sqρ,τ (ωn).

As another example, we consider a Real submanifold Y ⊂ X of codi-
mension c in a Real manifold X and show in Theorem 3.19 that the restric-
tion (αY )|X(R) := ι∗

R
(αY ) to the real points X(R) of the fundamental class

αY ∈ H2c,c(X;F2) is precisely given by

(1.8) (αY )|X(R) = Sqρ,τ

(
αY (R)

)
.
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I.e., this restriction encodes all Steenrod powers of the fundamental class
αY (R) ∈ Hc

sing(X(R);F2).
A version of this equivariant perspective on the total Steenrod square

operator appears in the literature in the context of Borel C2-equivariant
cohomology. For example, from [9] one can derive formulas that are simi-
lar to (1.5) and (1.7) when ordinary equivariant cohomology is replaced by
H∗

sing(−×C2 EC2;F2) and H∗
sing(−×C2 EC2;Z).

Actually, one of the standard constructions of the Steenrod squares uses
Borel cohomology on the coinduced C2-space NC2X = X2 (with the transpo-
sition involution) and the restriction to its set of real points NC2X(R) = X.
In Example 3.5 we approach the construction of Steenrod squares using the
RO(C2)-graded equivariant groups H2p,p(NC2X;F2) instead.

In order to study the restriction maps Hn,p(X;R)+ → Hn,p(X(R);R)+,
displayed in the cube and establish the properties used in applications, we
provide a brief discussion of the orthogonal equivariant Eilenberg-MacLane
spectra HR [13] representing ordinary RO(C2)-graded equivariant cohomol-
ogy when R is a C2-algebra.

Then, for each p ≥ 0 and R-module M we consider the (non-equivariant)
orthogonal spectrum

(1.9) EM (p) :=
(
Σpσ−pHM

)C2 ,

where Σpσ−p is the suspension by the virtual representation p · σ − p · 1, and
(−)C2 is the fixed point functor; see [13, Ch. II], [17, Exs. 3.8, 3.9].

The non-equivariant spectrum EM (p) is defined so that the associated
cohomology groups of a space X are given by

EM (p)n(X) := [Σ∞X+, Σ
nEM (p)] =

[
Σ∞X+, Σ

pσ+n−pHM
]
C2

(1.10)
= Hn,p(X;M),

where, for the second identity, X is considered a C2-space with the trivial
action. In particular, the homotopy groups of the spectra are given by

(1.11) π−n(EM (p)) = EM (p)n(∗) = Hn,p(∗;M), n ∈ Z.

In §2 we translate operations that occur on HR-modules to the non-
equivariant HRC2-modules EM (p). The cases where M = Z or M = F2
are of particular interest, and from these constructions we highlight various
morphisms of HZ-modules

Rp : EZ(p) → HZ (restriction functor)(1.12)
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� : EZ(p) → EF2(p) (change of coefficients)(1.13)
μp,q : EZ(p) ∧HZ EZ(q) → EZ(p + q) (pairings)(1.14)

and morphisms of HF2-modules

Rp : EF2(p) → HF2 (restriction functor)(1.15)
μ̄p,q : EF2(p) ∧HF2 EF2(q) → EF2(p + q) (pairings)(1.16)

From (1.11), we know that π−nEZ(p) = Mn,p, and π−nEF2(p) = M
n,p
2 .

Therefore, using the equivalence between the derived category DR of R-
modules and the derived category of DHR of HR-modules (see [16], [6, IV.§2]
and [18, Thm. 5.1.6]), we know that EZ(p) and EF2(p) admit decompositions
as suspensions of Eilenberg-MacLane spectra

(1.17) fp :
∨
i∈Z

Σ−iHMi,p =
∨

0≤s≤�p/2�
Σ2s−pHMp−2s,p 	−−→ EZ(p)

and

(1.18) f̄p :
∨
i∈Z

Σ−iHM
i,p
2 =

∨
0≤k≤p

Σk−pHM
p−k,p
2

	−−→ EF2(p).

It follows that for a space X one has natural decompositions

En
Z(p)(X) ∼=

⊕
0≤s≤�p/2�

Hn−p+2s
sing (X,Mp−2s,p),

En
F2(p)(X) ∼=

⊕
0≤k≤p

Hn−p+k
sing (X;Mp−k,p

2 )

which, together with the presentations of M∗,∗ and M
∗,∗
2 in Notation 1.1, give

rise to (1.4) and (1.6).
The following properties of the cohomology theories Em

Z
(p) and Em

F2
(p)

are shown in Corollary 2.30, Corollary 2.33 and Proposition 2.35. Here we
let δ : H∗

sing(X;F2) → H∗+1
sing (X;Z) denote the usual Bockstein homomor-

phism, and recall that δ(γ) = 0 when γ is the reduction mod 2 of an integral
class.

Properties: Given

α ∈ Em
Z (p)(X), α′ ∈ En

Z(q)(X), β ∈ Em
F2(p)(X) and β′ ∈ En

F2(q)(X),
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denote by α � α′ ∈ Em+n
Z

(p + q)(X) and β � β′ ∈ Em+n
F2

(p + q)(X) the multi-
plication maps induced by μp,q with Z and F2 coefficients, respectively. Then:

Rp(α) = Rp

⎛⎝�p/2�∑
r=0

αr · ap−2rua

⎞⎠ =

⎧⎨⎩αp/2 , if p is even
δ
(
α�p/2�

)
, if p is odd

⎫⎬⎭ ∈ Hn
sing(X;Z),

Rp(β) = Rp

(
p∑

k=0
βk · ρp−kτk

)
= βp ∈ Hn

sing(X;F2),

�(α) =
∑

0≤r<p/2

{
αr · ρ + Sq1(αr) · τ

}
ρp−2r−1τ 2r + ᾱ p

2
· τp ∈ EF2(p)n(X),

α � α′ =
p+q
2∑

k=0

⎧⎨⎩ ∑
r+s=k

(αrα
′
s) +

∑
r+s=k−1

δ(ᾱr)δ(ᾱ′
s)

⎫⎬⎭ (ap+q−2kuk) + (α p
2
α′

q
2
) · u

p+q
2

∈ EZ(p + q)m+n(X),

β � β′ =
p+q∑
k=0

∑
r+s=k

(βrβ′
s) · ρp+q−kτk ∈ EF2(p + q)m+n(X),

where, by convention, αp/2 = 0 when p is odd and ᾱp/2 denotes the mod 2-
reduction of αp/2.

The paper is organized as follows. In Section 2 we introduce the spectra
classifying the cohomology theories Em

Z
(p) and Em

F2
(p) and establish their

properties. In Section 3 we apply these results to the computation of the
restriction map H∗,∗(BU1;F2) → H∗,∗(BO1;F2). We also show how Steenrod
squares can be defined using ordinary C2-equivariant cohomology. Finally, in
Section 3.2 we compute ι∗

R
: H∗,∗(BUn;Z) → H∗,∗(BOn;Z), describe Poincaré

duality for compact Real manifolds and prove the restriction formula (1.8)
for Real submanifolds.

The original motivation for the work in this paper came from the questions
posed in the preliminary versions of [10] and also by the results in [14] on the
representation of Steenrod squares by algebro-geometric constructions.

2. The spectra EZ(p) and EF2(p)

In this section we discuss the nonequivariant cohomology theories EZ(p)(−)
and EF2(p)(−) defined in (1.10) by studying their representing spectra EZ(p)
and EF2(p). We start by recalling notation and basic definitions pertaining to
C2-spectra and reviewing the construction of EZ(p) and EF2(p).
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We work in the topological category T of based compactly generated
weakly Hausdorff topological spaces and refer to its objects as spaces. Let
TC2 be the category whose objects are spaces equipped with a C2-action, and
morphisms are continuous maps.

Given a C2-space X, a discrete ring R and an R-module M , let MX
be the free R-module generated by X. With the appropriate topology, MX
becomes a topological R[C2]-module whose elements are often called 0-cycles
on X with coefficients in R. Whenever (X, xo) ∈ TC2 is a based C2-space,
we let M ⊗X be the quotient module MX/M{x0} and call its elements the
reduced 0-cycles on X. Observe that MX ∼= M ⊗X+.

If M has the trivial C2-action the fixed submodule (M ⊗ X)C2 has two
natural submodules: the 0-cycles on fixed points M⊗XC2 and the submodule
of averaged cycles:

(2.1) (M ⊗X)av :=

⎧⎨⎩∑
g∈C2

g · z | z ∈ M ⊗X

⎫⎬⎭ .

Consider the countably infinite sum of the (left) regular representation
Uall := R[C2]⊕R[C2]⊕ · · · with its usual C2-inner product. We identify Uall

with C∞ = C ⊕ C ⊕ · · · under the complex conjugation action. Using this
identification let U := R∞ ⊂ Uall. In the language of [13], Uall is a complete
C2-universe and U is a trivial C2-universe.

Denote by IC2 the collection of all finite dimensional real C2-inner prod-
uct subspaces of Uall. These are the objects of the topological C2-category
– also denoted IC2 – whose C2-space of morphisms IC2(V,W ) are the iso-
metric isomorphisms under the conjugation action. Similarly, the topological
category obtained by considering inner product subspaces of U is denoted I .
An IC2-space is a continuous G-functor X : IC2 → TC2 . Denote the cate-
gory of IC2-spaces and natural transformations by IC2T . The corresponding
nonequivariant notions of I -functor and category I T of I -spaces are de-
fined similarly.

Example 2.1. The sphere I -functor S : I → TC2 sends V to SV = V ∪
{∞}, with ∞ as its base-point. In the same fashion, the sphere IC2-functor
SC2 : IC2 → TC2 sends V to SV = V ∪ {∞}.

Definition 2.2. Let X, Y be IC2-functors.

1. The external smash product X � Y := ∧ ◦ (X × Y ) : IC2 ×IC2 → TC2

is the functor defined by (X � Y )(V,W ) = X(V ) ∧ Y (W ).
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2. An orthogonal C2-spectrum is an IC2-space X : IC2 → TC2 together
with a structural C2-map σ : X � SC2 → X ◦ ⊕ satisfiying unit and as-
sociativity properties. The category of orthogonal C2-spectra is denoted
by IC2S .

Definition 2.3. A (nonequivariant) orthogonal spectrum is an I -space X :
I → T together with a structural map σ : X�S → X ◦⊕ satisfiying unit and
associativity properties. The value of X on Rn is usually denoted Xn instead
of X(Rn). The category of orthogonal spectra is denoted by I S .

Example 2.4. If N is an abelian group, the assignment n → N ⊗Sn defines
an orthogonal spectrum HN whose structural map HN � S → HN ◦ ⊕ on a
pair (n,m) is the map (N ⊗ Sn) ∧ Sm −→ N ⊗ Sn+m induced by the smash
product of spheres: (

∑
i nixi) ∧ y → ∑

i(nixi ∧ y), for ni ∈ Z, xi ∈ Sn and
y ∈ Sm. It is called the Eilenberg-MacLane spectrum associated to N .

Example 2.5. If M is a Z[C2]-module, the assignment V → M ⊗SV defines
an orthogonal C2-spectrum HM whose structural map HM � SC2 → HM ◦⊕
on a pair (V,W ) is the C2-map

(
M ⊗ SV

)
∧SW −→ M⊗SV⊕W coming from

the smash product of spheres. It is shown in [3] that HM is an equivariant
Eilenberg-MacLane spectrum representing ordinary RO(C2)-graded equivari-
ant cohomology with coefficients in the Mackey functor M associated to M .

Definition 2.6. Let (−)C2 : IC2S → I S denote the C2-fixed-point func-
tor, from orthogonal C2-spectra to non-equivariant spectra [13] and let p ≥ 0.
Then given a Z[C2]-module M , denote by EM (p) the nonequivariant spectrum(
Σp·σ−p·1HM

)C2 .

Remark 2.7. The fixed point spectrum EM (p) can also be computed by
first replacing the suspension Σp·σ−p·1HM by the equivalent Ω-C2-spectrum
n → Ωp·1HM(n + p · σ) and then taking levelwise fixed points:

EM (p)n =
(
Ωp·1HM(p · σ + n · 1)

)C2
= Ωp

(
HM(p · σ + n · 1)C2

)
= Ωp {M ⊗ Sp+n,p}C2 .

Example 2.8. If p = 0, then EM (0) = HMG is the ordinary Eilenberg-
MacLane spectrum associated to the group MG. Indeed, we have

EM (0)n = (HM(n · 1))C2 =
{
M ⊗ Sn,0

}C2
= MC2 ⊗ Sn.

Remark 2.9. Unravelling the definitions one sees that

π−n (EZ(p)) = Mn,p and π−n (EF2(p)) = M
n,p
2 .
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2.1. First properties of EZ(p) and EF2(p)

2.1.1. Restriction functors At the level of spectra, the forgetful or group
restriction functor Rp : EM (p) → HM is given by restriction to the trivial
subgroup, that is, by forgetting the C2-structure. For the spectrum EM (p) this
translates to the composite Ωp {M ⊗ Sn+p,p}C2 ⊂ Ωp {M ⊗ Sn+p} ∼= M⊗Sn.

2.1.2. Pairings and mod 2 reduction Given p, q ≥ 0 and taking M = Z

or M = F2, there is a map of (IC2 × IC2)-spaces

(2.2) EM (p) � EM (q) −→ EM (p + q) ◦ ⊕

induced by the ring product M ×M → M and by the composite

(2.3) (Sp·σ ∧ Sm) × (Sq·σ ∧ Sn) → Sp·σ ∧ Sm ∧ Sq·σ ∧ Sn

χm,q·σ−−−−→ Sp·σ ∧ Sq·σ ∧ Sm ∧ Sn = S(p+q)·σ ∧ Sm+n,

where χm,q·σ is the transposition Sm ∧ Sq·σ ∼= Sq·σ ∧ Sm. A universality
argument [17, (1.6)] shows that (2.2) induces a pairing of orthogonal spectra

(2.4) μp,q : EM (p) ∧ EM (q) → EM (p + q).

When q = 0 the pairing EM (p) ∧ HM → EM (p) turns EM (p) into an HM -
module and (2.4) induces HM -module morphisms

(2.5) μp,q : EM (p) ∧HM EM (q) → EM (p + q).

The spectra EZ(p) and EF2(p), for p ≥ 0, are related by an obvious mod 2
reduction map of spectra compatible with the pairings (2.5).

Definition 2.10. The ring epimorphism � : Z → F2 yields HZ-module maps
EZ(p) → EF2(p), also denoted �, that fit into a commutative diagram of HZ-
modules

(2.6) EZ(p) ∧HZ EZ(q)

�∧�

μp,q EZ(p + q)
�

EF2(p) ∧HF2 EF2(q) μ̄p,q
EF2(p + q).
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2.1.3. The shift maps Given p ≥ q ≥ 0 and M as above, the inclusions
Sn = {Sq·σ+n}C2 ↪→ Sq·σ+n induce a morphism

(2.7) aqσ : S → ΣqEM (q)

which, in turn, gives an HM -module map

(2.8) aqσ∗ : Σ−qHM → EM (q).

Definition 2.11. Given p, q ≥ 0 and M as above, define

âq : Σ−qEM (p) −→ EM (p + q)

as the map of HM -modules given by the composite

Σ−qEM (p) = EM (p) ∧HM Σ−qHM
1∧aqσ∗

âq

EM (p) ∧HM EM (q)
μp,q

EM (p + q).

Remark 2.12. Note that aqσ∗ in (2.8) is âq : Σ−qE(0) → EM (q).

Notation 2.13. To distinguish from the case M = Z, when M = F2 we will
write ρ̂q instead of âq.

Remark 2.14. It follows that the map Mn−q,p → Mn,p+q represented by âqσ
is multiplication by aq. Similarly the map M

n−q,p
2 → M

n,p+q
2 is multiplication

by ρq. The maps (2.7) yield generators for π−1(EZ(1)) and π−1(EF2(1)) that
will be useful later on.

Proposition 2.15. For p = 1 the maps (2.7) induce a commutative diagram

S−1

ã ρ̃

EZ(1) � EF2(1),

where ã and ρ̃ represent, respectively, the generators

a ∈ π−1(EZ(1)) = M1,1 ∼= F2 and ρ ∈ π−1(EF2(1)) = M
1,1
2

∼= F2.

Abusing notation we will also use a and ρ to denote ã and ρ̃, respectively.
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Remark 2.16. The proposition, in particular, expresses the fact that the
change of rings map � : EZ(1)→EF2(1) induces an isomorphism M1,1 ∼=−→ M

1,1
2 .

As for the maps âq and ρ̂q these fit in a commutative diagram

Σ−qHZ
âq

Σ−q�

EZ(q)
�

Σ−qHF2
ρ̂q

EF2(q).

Definition 2.17. Let u: S → EZ(2) be a representative for u ∈ M0,2. Set
uq+1 := μq,2 ◦ (uq ∧ u) : S = S ∧ S → EZ(q + 2) (where u1 = u).

Note that, for each q ≥ 0, uq represents uq ∈ M0,2q.

Definition 2.18. For each q ≥ 0, denote by uq
∗ : HZ −→ EZ(2q) the HZ-

module map determined by uq. Also, denote by ûq the composite

EM (p) = EM (p) ∧HZ HZ
1∧uq

∗

ûq

EM (p) ∧HZ EZ(2q)
μp,2q EM (p + 2q).

(2.9)

It follows that Mn,p → Mn,p+2q represented by ûq is multiplication by uq.

2.2. Decomposing EZ(p) and EF2(p)

In this section we construct explicit decompositions of EZ(p) and EF2(p) as
wedges of Eilenberg-MacLane spectra, utilizing particular geometric models
that are suitable for our applications and bear a direct relationship with
algebraic geometric constructions.

2.2.1. Fixed and averaged cycles Here we use the model for HM de-
scribed in Example 2.5 to exhibit representatives for the generators of M+
and M2+, using the subgroup of averaged cycles of (2.1), as follows. For a
finite C2-CW-complex X and R = Z or F2, the following exact sequence is
also a fibration functorial on X.

(2.10) 0 → (R⊗X)av av−−−→ {R⊗X}C2 χ−−→ F2 ⊗XC2 → 0.

When R = Z, it turns out that (Z⊗X)av ∼= Z ⊗ (X/C2) and the map
av is simply the Z-linear extension of the inclusion X/C2 → (Z⊗X)C2 that
sends [x] ∈ X/C2 to the orbit x + σ · x.
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When R = F2, then (F2 ⊗X)av ∼= F2 ⊗
(
{X/C2} /XC2

)
. Indeed, the

subgroup F2⊗XC2 is precisely the kernel of the F2-linear map F2⊗(X/C2) →
(F2 ⊗X)C2 given by [x] → x + σ · x. It follows that one obtains an inclusion
F2⊗{X/C2} /F2⊗(XC2) ∼= F2⊗

(
{X/C2} /XC2

)
→ (F2⊗X)C2 that identifies

F2 ⊗
(
{X/C2} /XC2

)
with (F2 ⊗X)av.

Remark 2.19. In the case R = F2 we denote the the map χ in (2.10) by χ̄
and write the topological short exact sequence of 0-cycles as

(2.11) 0 → F2 ⊗
(
{X/C2} /XC2

)
av−−→ (F2 ⊗X)C2 χ̄−−→ F2 ⊗XC2 → 0.

Note that this sequence is naturally split, for the inclusion F2 ⊗ XC2 ↪→
(F2 ⊗ X)C2 is a section of χ̄.

2.2.2. The decomposition of EZ(p) By Remark 2.9, when p = 1, we
have EZ(1) ∼= Σ−1HF2 since the only nonzero homotopy group is F2. Also
EF2(1) ∼= Σ−1HF2 ∨HF2. Using the projections χ and χ̄ of (2.10) and (2.11)
we construct an equivalence EZ(1) → Σ−1HF2, and a right homotopy inverse
to ρ̂ : Σ−1HF2 → EF2(1).

Corollary 2.20. For each p ≥ 1, there are HZ-module maps χ : EZ(p) →
Σ−pHF2 and χ̄ : EF2(p) → Σ−pHF2 that fit in a homotopy commutative dia-
gram of HZ-modules:

Σ−pHZ

�

âp EZ(p)
�

χp

Σ−pHF2
ρ̂p EF2(p)
χ̄p

In particular, χ1 is an equivalence. Furthermore, χ̄1 is a right homotopy
inverse to ρ̂.

Proof. Consider the projection χp,n : {Z⊗ Sp+n,p}C2 → F2 ⊗ Sn coming
from (2.11). It defines an HZ-module map χp : EZ(p) → Σ−pHF2 as in the
diagram. Similarly, the projection χ̄p,n : {F2 ⊗ Sp+n,p}C2 → F2 ⊗ Sn defines
χ̄p : EF2(p) → Σ−pHF2 with the desired properties.

Unravelling definitions, it follows that both χ1 and χ̄ induce isomorphisms
at the level of π−1 and that χ̄ ◦ ρ̂ is the identity. Hence the statements about
χ1 and χ̄ follow.
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Before constructing the proposed decompositions we use the maps âr and
ûs to relate the spectra EZ(p) for different values of p.

Proposition 2.21. Fix p ≥ 0. Then

1. The composition HZ = EZ(0) û−→ EZ(2) R2−→ HZ is an equivalence.
2. The following diagram commutes in the derived category of HZ-modules.

EZ(p) û

Rp

EZ(p + 2)

Rp+2

HZ.

3. In the level of homotopy groups, the homomorphisms induced by the
maps âq in Definition 2.11 and ûq in (2.9), for each q > 0, correspond
to the multiplication maps by powers of the generators a ∈ M1,1 and
u ∈ M0,2. As a consequence, for every p, the map

âp+1 ∨ û : Σ−p−1EZ(1) ∨ EZ(p) −→ EZ(p + 2),

is an isomorphism in the homotopy category of HZ-modules.

Proof. The first two statements follow from the properties of the maps ûq,
the generator u ∈ M0,2 and the restriction functor (see Definition 2.18 and
Notation 1.1).

The last assertion follows from the fact that the pairings (2.2) come from
the equivariant ring spectra structure on HZ, and the ring structure of M∗,• =
H∗,•(∗;Z), where the multiplication maps below are isomorphisms

u· : Mn,p → Mn,p+2, n, p ≥ 0, and a· : Mn,p → Mn+1,p+1, n ≥ 1, p ≥ 0.

The next result gives an explicit decomposition of EZ(p) as a wedge of
Eilenberg-MacLane spectra.

Corollary 2.22. One has an equivalence of HZ-modules

fp :

⎛⎝ ∨
0≤s<p/2

Σ2s+1−pEZ(1)

⎞⎠ ∨
∨

s=p/2
EZ(0) ∨s(âp−1−2sûs)∨ û

p
2−−−−−−−−−−−−→ EZ(p),

where the summand
∨

s=p/2 EZ(0) is to be understood as 0 whenever p is odd.
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Remark 2.23. In the case p = 2 one has maps

û : EZ(0) → EZ(2) and â : Σ−1EZ(1) → EZ(2),

giving f2 = â ∨ û. We also have χ2 : EZ(2) → Σ−2HF2 � Σ−1EZ(1) and
R2 : EZ(2) → HZ = EZ(0). It follows from Corollary 2.20 and Proposi-
tion 2.21 that the map χ2 ∨ R2 : EZ(2) → Σ−2HF2 ∨ EZ(0) is the inverse of
f2 in the stable homotopy category.

Remark 2.24. Using the equivalence f̃1 : Σ−1HF2 → EZ(1), inverse to χ1 in
the homotopy category, we can rewrite fp as

∨
0≤s≤p/2

fp,s :
( ∨

0≤s<p/2
Σ2s−pHF2

)
∨∨s=p/2 HZ

fp EZ(p),

∨
0≤s≤p/2 Σ2s−pHMp−2s,p

fp

∼=

where fp,s :=
(
âp−1−2sûs

)
◦ Σ2s+1−p(f̃1) for s < p/2, and fp,p/2 = ûp/2 when p

is even.

2.2.3. The decomposition of EF2(p) The decomposition of EZ(p) above
is determined by the ring M+. The main difference in decomposing EF2(p)
lies existence of the generator τ ∈ M

0,1
2 = π0EF2(1) satisfying τ 2 = �(u).

Hence, to decompose EF2(p) we first exhibit an explicit representative of τ .
Recall that S1,1/C2 ∼= S(P0) ∼= [−1, 1] and

{
S1,1}C2 ≡ S0. Then identify(

S1,1/C2
)
/
{
S1,1}C2 ∼= [−1, 1]/∂[−1, 1] ∼= S1. The “averaging” maps

av : S1+n ≡
{(

S1,1 ∧ Sn,0
)
/C2
}
/
(
S1,1
)C2 −→

{
F2 ⊗ S1+n,1

}C2

induce a map of spectra τ : S −→ EF2(1) that represents the generator τ ∈
π0(EF2(1)). The element τq+1 = μ̄q,1 ◦ (τq∧τ) represents τ q+1, for each q ≥ 0.
One gets a map of HF2-modules

(2.12) τ q∗ : HF2 −→ EF2(q)

determined by τq. We also denote by τ̂ q the map of HF2-modules given by
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the composition

EF2(p) = EF2(p) ∧HF2 HF2

τ̂q

1∧τq
∗ EF2(p) ∧HF2 EF2(q)

μ̄p,q EF2(p + q)

Finally, recall from Notation 2.13 the shift maps ρ̂p.

Proposition 2.25. Fix p ≥ 0. Then,

1. The composition HF2 = EF2(0) τ̂−→ EF2(1) R̄1−→ HF2 is an equivalence.
2. The following diagram commutes in DF2 .

EF2(p)
τ̂

R̄p

EF2(p + 1)

R̄p+1

HF2.

3. Since in the level of homotopy groups, the homomorphisms induced by
ρ̂ and τ̂ , correspond to multiplication by the generators ρ ∈ M

1,1
2 and

τ ∈ M
0,1
2 , the map

ρ̂p+1 ∨ τ̂ : Σ−p−1HF2 ∨ EF2(p) −→ EF2(p + 1)

is an equivalence of HF2-modules.

Proof. The proof follows the arguments used to prove Proposition 2.21.

As with integer coefficients, we obtain the following decomposition, which
is analogous to that of Remark 2.24.

Corollary 2.26. For each p ≥ 0, one has a canonical equivalence of HF2-
modules

(2.13) f̄p = ∨0≤s≤p fp,s : ∨0≤s≤p Σs−pHM
p−s,p
2 −→ EF2(p),

with fp,s = ρ̂p−sτ̂ s.

2.3. The theories represented by EZ(p) and EF2(p)

In this section we study in detail the cohomology theories represented by the
spectra EZ(p) and EF2(p) and explicitly determine the group restriction and
the reduction of coefficients functors.
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Definition 2.27. Given a space X and R = Z or F2, denote by

(2.14) ER(p)n(X) := [X+,ΣnER(p)]

the n-th cohomology group of X with values in ER(p), for n ∈ Z. For β ∈
H∗

sing(X;R), denote by β̄ ∈ H∗
sing(X;F2) the class

β̄ =
{
β, if R = F2

�(β), if R = Z,

where � : H∗
sing(X;Z) → H∗

sing(X;F2) denotes reduction of coefficients.

1. It follows from Remark 2.24 that one can univocally write an element

α ∈ EZ(p)n(X) ∼=
⊕

0≤s≤�p/2�
Hn−p+2s

sing (X;Mp−2s,p)

in the form α =
∑�p/2�

s=0 αs · ap−2sus, where ap−2sus is the generator of
Mp−2s,p and

αs ∈
{
Hn−p+2s

sing (X;F2), if 0 ≤ s < p/2;
Hn

sing(X;Z), if p is even, and s = p/2.

2. Similarly, using the decomposition (2.13) we can write an element

β ∈ En
F2(X) ∼=

⊕
0≤k≤p

Hn−p+k
sing (X;Mp−k,p

2 )

in the form β =
∑p

k=0 βk · ρp−kτk, where ρp−kτk is the generator of
M

p−k,p
2 and βk ∈ Hn−p+k

sing (X;F2).

Our main interest in the spectra ER(p) and associated cohomology the-
ories ER(p)∗ lies in their relation to the equivariant cohomology of trivial
C2-spaces X, which by definition of these spectra becomes:

H∗,•(X;Z)+ ∼=
⊕

p≥0,n≥0
EZ(p)n(X) and H∗,•(X;F2)+ ∼=

⊕
p≥0,n≥0

EF2(p)n(X).

Remark 2.28. It is relevant to note that the representation of elements
α ∈ EZ(p)n(X) given in Definition 2.27 reflects the M-module structure of
H∗,•(X;Z) as follows:

H∗,•(X;Z)+ ∼= H∗(X;Z) ⊗ Z[u] ⊕ H∗(X;F2) ⊗ aF2[a, u];
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see Remark 2.34. Similarly, the representation of elements in En
F2

(p)(X) re-
flects the M2-module structure of H∗,•(X;F2);∼= M

∗,•
2 ⊗F2H

∗
sing(X;F2) proved

in [8].

2.3.1. The group restriction functors Understanding the functors in-
duced in cohomology by the restriction maps R : EM (p) → HM , with M = Z

or F2, amounts to determining the classes

Rp ∈ [EZ(p),HZ]HZ
∼=
{

HomZ(M0,p,Z) ∼= Z, if p is even
Ext1Z(M1,p,Z) ∼= Z/2, if p is odd ,

(2.15)

and

R̄p ∈ [EF2(p),HF2]HF2
∼= HomZ(M0,p

2 ,F2) ∼= Z/2.(2.16)

Proposition 2.29. The maps Rp and R̄p represent the generators of the
cyclic groups [EZ(p),HZ]HZ and [EF2(p),HF2]HF2 , respectively, for all p ≥ 0.

Proof. The statement for R̄p follows by induction, using Proposition 2.25 and
the fact that τ : Mj−1,p

2 → M
j,p
2 is an isomorphism for 1 ≤ j ≤ p.

Similarly, it follows from Proposition 2.21 that the statement holds for
Rp when p is even, and that the statement for p odd will follow from the case
p = 1 and induction.

To prove the statement for p = 1, observe that S1,1 ∧S1 = S2,1 is isomor-
phic to the complex projective line P1(C) as a C2-space under complex conju-
gation. It is easily checked that the infinite symmetric product SP∞(P1(C))
is C2-homeomorphic to the infinite complex projective space P∞(C), and that
the natural topological group-completion map

c1 : P∞(C) = SP∞(P1(C)) ↪→ Z⊗ P1(C)

is an equivariant homotopy equivalence. Furthermore, if ι2 ∈ H2
sing(Z ⊗

P1(C),Z) is the canonical class of Z ⊗ P1(C), then c∗1(ι2) = c1(O(1)) is the
first Chern class of the hyperplane bundle O(1) over P∞(C). Now, consider
the following commutative diagram

(2.17) P∞(R) ιR

c1,R 	

P∞(C)

c1	

F2 ⊗ S1 {
Z⊗ P1(C)

}C2	
χ1,1

ιR
Z⊗ P1(C),
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where c1,R is the restriction of c1 to the fixed point sets and χ1,1 is the “fixed
mod averaged” map described in the proof of Corollary 2.20. If L → P∞(R)
is the dual of the tautological line bundle, then

c∗1,R ◦ ι∗R(ι2) = ι∗R ◦ c∗1(ι2) = ι∗Rc1(O(1))
= c1(ι∗RO(1)) = c1(L⊗ C) = δ(w1(L)),

where δ : H1
sing(P∞(R);F2) → H2

sing(P∞(R);Z) is the connecting homomor-
phism for 0 → Z

×2−→ Z → F2 → 0 and w1(L) ∈ H1
sing(P1(R);F2) is the first

Stiefel-Whitney class of L. Since R1 : EZ(1) → HZ is induced by{
Z⊗ (S1,1 ∧ Sn)

}C2
=
{
Z⊗ (P1(C) ∧ Sn−1)

}C2
↪→ Z⊗ (P1(C) ∧ Sn−1),

one concludes that R1 is non-trivial and hence it represents the generator of
[EZ(1),HZ]HZ = Ext1Z(M1,1,Z).

Using the notation above, the following result expresses Proposition 2.29
in terms of cohomology functors.

Corollary 2.30. Let X be a space and fix p ≥ 0. Then:

1. The map Rp : EZ(p)n(X) → Hn
sing(X;Z) is given by

Rp

⎛⎝ ∑
0≤s≤�p/2�

αs · ap−2sus

⎞⎠ =
{
αp/2, if p is even,
δ
(
α�p/2�

)
, if p is odd,

where δ : Hk
sing(X;F2) → Hk+1

sing (X;Z) is the Bockstein homomorphism.
2. The map R̄p∗ : EF2(p)n(X) → Hn

sing(X;F2) is given by

R̄p

⎛⎝ ∑
0≤k≤p

βk · ρp−kτk

⎞⎠ = βp.

Example 2.31. In the particular case of the real projective space, we obtain

H∗,•(P∞(R);Z)+ = H∗(P∞(R);Z) ⊗ Z[u] ⊕ H∗(P∞(R);F2) ⊗ aF2[a, u]
= Z[η]/〈2η〉 ⊗ Z[u] ⊕ F2[w1] ⊗F2 aF2[a, u]
= Z[η, u]/〈2η〉 ⊕ F2[w1, a, u] · a.

Here η ∈ H2
sing(P∞(R);Z) is the generator and w1 is the first Stiefel-Whitney

class of the the tautological bundle. Note that η = δ(w1), where δ is the
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Bockstein homomorphism for the sequence 0 → Z
×2−→ Z → F2 → 0. Since

� ◦ δ = Sq1, we conclude that η · a = Sq1(w1) · a = w2
1a, and this completely

determines the bigraded ring structure of H∗,•(P∞(R);Z)+.

2.3.2. The mod-2 reduction of coefficients functor We now focus on
the map of HZ-modules

(2.18) �p : EZ(p) −→ EF2(p), p ≥ 1

and determine the class of �p in [EZ(p),EF2(p)]HZ.
We have

[ΣaHM,ΣbHF2]HZ =

⎧⎪⎪⎨⎪⎪⎩
HomZ(M,F2), if b = a

Ext1Z(M,F2), if b = a + 1
0, otherwise.

Hence

[EZ(p),EF2(p)]HZ

(2.19)

∼=
⊕

0≤r≤�p/2�

{
HomZ(Mp−2r,p,Mp−2r,p

2 ) ⊕ Ext1Z(Mp−2r,p,Mp−1−2r,p
2 )

}
.

It is clear that all summands in the decomposition above are isomorphic to
Z/2, except when p is even and r = p/2, since Ext1Z(M0,p,M−1,p

2 ) = 0.

Proposition 2.32. The class of �p in [EZ(p),EF2(p)]HZ is precisely the ele-
ment whose components in the decomposition above are all non-zero.

Proof. First consider the case p = 1, where we have an isomorphism

[EZ(1),EF2(1)]HZ

∼=−−−−−−→
χ̄1∗⊕R̄1∗

[EZ(1),Σ−1HF2]HZ ⊕ [EZ(1),HF2]HZ

∼= HomZ(M1,1,M1,1
2 ) ⊕ Ext1Z(M1,1,M0,1

2 )
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induced by the maps in the commutative diagram

EZ(1)

R1

�1

	
χ1

EF2(1)

χ̄1

R̄1Σ−1HF2 ≡ Σ−1HM2
1,1

HZ � HF2 ≡ HM
0,1
2 ,

since χ̄1 ∨ R̄1 is the homotopy inverse of f̄1, see Corollary 2.26. Therefore,

(χ̄1, R̄1) ◦ �1 = (χ1,R1).

This concludes the proof in the case p = 1, since by Corollary 2.20 and
Proposition 2.29 both χ1 and R1 are nontrivial.

Similarly, when p = 2 one has isomorphisms

ρ̂∗ : [Σ−1EZ(1),Σ−1EF2(1)]HZ

∼=−−→ [Σ−1EZ(1),EF2(2)]HZ and

τ̂ 2
∗ : [EZ(0),EF2(0)]HZ

∼=−−→ [EZ(0),EF2(2)]HZ.

On the other hand, the commutative diagram

Σ−1EZ(1) ∨ EZ(0) 	
f1=â∨û

Σ−1�1∨�0

EZ(2)
�2

Σ−1EF2(1) ∨ EF2(0)
ρ̂∨τ̂2

EF2(2)

gives f∗1 (�2) =
(
ρ̂Σ−1�1, τ̂

2�0
)

and the result follows from the case p = 1 and
the fact that �0 represents the generator of [EZ(0),EF2(0)]HZ = [HZ,HF2]HZ.

When p ≥ 2 the result follows by induction along with Propositions 2.21
and 2.25, which give

[EZ(p),EF2(p)]HZ

∼= [Σ1−pEZ(1),Σ1−pEF2(1)]HZ ⊕ [EZ(p− 2),EF2(p− 2)]HZ

∼= [EZ(1),EF2(1)]HZ ⊕ [EZ(p− 2),EF2(p− 2)]HZ.
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Corollary 2.33. Given a space X, the homomorphism

� : EZ(p)n(X) → EF2(p)n(X)

is defined on α =
∑�p/2�

s=0 αs(ap−2sus) by

(2.20) �(α) =
∑

0≤s<p/2

{
αsρ + Sq1(αs)τ

}
ρp−2s−1τ 2s + ᾱp/2 · τp,

where, by convention, ᾱp/2 = 0 when p is odd and otherwise ᾱp/2 denotes the
mod 2-reduction of αp/2.

2.4. On the pairings μp,q and μ̄p,q

In this section we study the functors in cohomology induced by the pairings
μp,q and μ̄p,q; see Definition 2.10. This is accomplished by determining the
class of μp,q in [EZ(p) ∧HZ EZ(q);EZ(p + q)]HZ and the class of μ̄p,q in
[EF2(p) ∧HF2 EF2(q);EF2(p + q)]HF2 .

Given spaces X and Y , these pairings induce natural external products �
and �̄ that fit into the following commutative diagram.

(2.21) EZ(p)m(X) ⊗ EZ(q)n(Y )
�p⊗�q

� EZ(p + q)m+n(X × Y )
�p+q

EF2(p)m(X) ⊗ EF2(q)n(X)
�̄

EF2(p + q)m+n(X × Y )

We have seen in §2.1.2 that these pairings are compatible with change
of coefficients and restriction functors. Furthermore, they are used to define
the maps û, τ̂ , â and ρ̂ that give the homotopy commutative diagrams of HZ-
modules below:

EZ(p) û

�p

EZ(p + 2)
�p+2

EF2(p) τ̂
EF2(p + 1)

τ̂
EF2(p + 2)

and
Σ−1EZ(p) â

Σ−1�p

EZ(p + 1)
�p+1

Σ−1EF2(p) ρ̂
EF2(p + 1).
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Therefore, taking Y = {pt} in (2.21) yields compatible pairings

EZ(p)m(X) ·Mn,q �

�p⊗�

EZ(p + q)m+n(X)
�p+q

EF2(p)m(X) ·Mn,q
2 �̄

EF2(p + q)m+n(X)

where � : M+ → M2+ is the change of coefficients homomorphism (1.3).

Remark 2.34. Using Definition 2.27 one can give a simple description of the
maps in the diagrams above. Namely, given α =

∑
0≤k≤�p/2� αk · ap−2kuk ∈

EZ(p)n(X) then

α � a =
∑

0≤k≤�p/2�
αk · ap−2k+1uk ∈ EZ(p + 1)n+1(X), and(2.22)

α � u =
∑

0≤k≤�p/2�
αk · ap−2kuk+1 ∈ EZ(p + 2)n(X).(2.23)

Similarly, given β =
∑

0≤k≤p βk · ρp−kτk ∈ EF2(p)n(X) then

β �̄ ρ =
∑

0≤k≤p

βk · ρp−k+1τk ∈ EF2(p + 1)n+1(X), and(2.24)

β �̄ τ =
∑

0≤k≤p

βk · ap−kτk+1 ∈ EF2(p + 1)n(X).(2.25)

The general exterior product is determined in the following result.

Proposition 2.35. Let X, Y be spaces and p, q ≥ 0.

1. With F2-coefficients, the product in (2.21) is completely determined by
the singular cohomology ring, (2.24), (2.25) and the bigraded ring M

∗,•
2 .

More precisely, given ᾱ =
∑p

r=0 ᾱr · ρp−rτ r ∈ EF2(p)m(X) and β̄ =∑q
s=0 β̄s · ρq−sτ s ∈ EF2(q)n(Y ), then

ᾱ �̄ β̄ =
p+q∑
k=0

∑
r+s=k

(ᾱr × β̄s) · ρp+q−kτk.

2. With Z-coefficients, the product in (2.21) is completely determined by
(2.22), (2.23) and the rules
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(a) If α ∈ Hm
sing(X;Z)=EZ(0)m(X) and β ∈ Hn

sing(Y ;Z)=EZ(0)n(Y )
then

(α · 1) � (β · 1) = (α× β) · 1 ∈ EZ(0)m+n(X × Y ),

where × denotes the exterior product in singular cohomology.
(b) If α·a ∈ EZ(1)m(X) with α ∈ Hm−1

sing (X;F2), and β ∈ EZ(0)n(Y ),
then

(α · a) � (β · 1) = (α× β) · a,
where β denotes the image of β under reduction of coefficients.

(c) If α · a ∈ EZ(1)m(X) and α′ · a ∈ EZ(1)m(Y ) then

(α · a) � (α′ · a) = (α× α′) · a2 + {δ(α) × δ(α′)} · u,

where δ denotes the Bockstein map.

Proof. The result with F2-coefficients is shown in [8, Lemma 3.7].
To prove the statement with Z-coefficients, we use the compatibility

of multiplication with the restriction and reduction of coefficients functors.
Therefore, since EZ(0)∗ is singular cohomology, the first assertion follows.

Now, given α·a ∈ EZ(1)m(X), and β ·1 ∈ EZ(0)n(Y ), write (α·a)�(β ·1) =
A · a ∈ EZ(1)m+n(X × Y ). It follows from (2.20) that �((α · a) � (β · 1)) =
A · ρ + Sq1(A) · τ . On the other hand, with F2-coefficients one has

� (α · a � β · 1) = �(α · a) �̄ �(β · 1)

=
{
α · ρ + Sq1α · τ

}
�̄ {β̄ · 1}

= (α× β̄) · ρ + (Sq1α× β̄) · τ.

Hence, A = α× β̄ (note that Sq1(β̄) = 0) and the second statement follows.
Similarly, given α · a ∈ EZ(1)m(X), and β · a ∈ EZ(1)n(Y ), write

(α · a) � (β · a) = A · a2 + B · u ∈ EZ(2)m+n(X × Y ).

Applying the restriction functor from §2.3.1 gives

B = R2 ((α · a) � (β · a)) = R1(α · a) × R1(β · a) = δ(α) × δ(β).

Now, we use reduction of coefficients and Corollary 2.33 to get

� ((α · a) � (β · a)) = A · ρ2 + Sq1(A) · ρτ + B̄ · τ 2.
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On the other hand, with F2-coefficients one has

� ((α · a) � (β · a)) = �(α · a) �̄ �(β · a)
=
{
α · ρ + Sq1α · τ

}
�̄
{
β · ρ + Sq1β · τ

}
= (α× β) · ρ2 + (Sq1α× β) · ρτ

+ (α× Sq1β) · ρτ + (Sq1α× Sq1β) · τ 2

= (α× β) · ρ2 + Sq1(α× β) · ρτ + (Sq1α× Sq1β) · τ 2.

Therefore, A = α× β (note that δ(α) × δ(β) = Sq1α× Sq1β).

3. Applications

In this section we introduce a ring homomorphism Sqρ,τ from the singular
cohomology with F2 coefficients of a space X to its equivariant cohomology
with coefficients in F2, which we call the total Steenrod square map, for reasons
that will become apparent from the definition. This homomorphism resurfaces
in the study of equivariant Poincaré duality in a Real compact manifold X.
In particular, it provides a necessary condition for an equivariant class in the
real locus X(R) to be dual to the class [Y (R)] represented by the real locus
Y (R) of a Real submanifold Y ⊂ X.

3.1. Total Steenrod squares

Definition 3.1. Let X be a Real space under the trivial action of C2. For
α ∈ Hk(X;F2) define the total Steenrod square

Sqρ,τ (α) =
k∑

i=0
Sqi(α) · ρk−iτ i ∈ H2k,k(X;F2).

Remark 3.2. By Cartan’s formula, for α ∈ Hr(X;F2), β ∈ Hs(X;F2),
we have Sqρ,τ (α) Sqρ,τ (β) = Sqρ,τ (αβ). Therefore, the total Steenrod square
gives a ring homomorphism Sqρ,τ : H∗

sing(X;F2) −→ H2∗,∗(X;F2)+.

Example 3.3. Consider the the classifying space BU1 with its Real space
structure induced by complex conjugation. We have BU1 = P∞(C) and
BU1(R) = BO1 = P∞(R). The bigraded cohomology of BU1, the classify-
ing space for Real line bundles, is a polynomial ring in one variable just as
in the nonequivarant case: H∗,∗(BU1;F2) = M

∗,∗
2 [c̄1], where c̄1 is the mod 2

reduction of the Real first Chern class c1 ∈ H2,1(BU1;Z); see [5].
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Let ιR : BO1 ↪→ BU1 denote the inclusion of the real points. It follows
from Proposition 2.29 that ι∗

R
c1 = ω1 · a, where ω1 ∈ H1(BO1;F2) is the

generator. Now, from Corollary 2.33 we get

(3.1) ι∗Rc̄1 = ι∗R�c1 = �ι∗Rc1 = �(ω1 · a) = ω1ρ + Sq1 ω1 · τ = Sqρ,τ (ω1).

Furthermore, it follows from Remark 3.2 that ι∗
R
c̄k1 = Sqρ,τ (ω1)k = Sqρ,τ (ωk

1 ).
As a result, all restrictions of equivariant classes of degree (2k, k) from BU1
to BO1 are total Steenrod squares.

Example 3.4. Consider the Real space X = F2 ⊗S2,1. This is a K(F2(1), 2)
space and, as such, it comes with a canonical class ι2,1 ∈ H2,1(X;F2), which
is classified by the identity map. It follows from Remark 2.19 that the set of
real points of X can be written as the following product:

X(R) ∼= F2 ⊗ S1,0 × F2 ⊗ S2.

Denote by ι1 ∈ H1(F2 ⊗ S1,0;F2) and ι2 ∈ H2(F2 ⊗ S2;F2) the canonical
classes. We have ι∗

R
ι2,1 = α1ρ + α2τ , with αi ∈ H i(X(R);F2).

From Corollary 2.30 it follows that α2 = Rι∗
R
ι2,1 = 1× ι2, and that α1 is

classified by χ̄1,1 ◦ ιR. Therefore, α1 = ι1 × 1 and one gets

ι∗Rι2,1 = (1 × ι2)ρ + (ι1 × 1)τ.

We conclude that ι2,1 does not restrict to a total Steenrod square.

Example 3.5. Let X be a based space, and consider the coinduced C2-space
NC2X := X ∧X, with the transposition involution ς(x ∧ y) := (y ∧ x). Given
α ∈ H̃k(X;F2) classified by a map f : X → F2⊗Sk, consider the composition

X ∧X
f∧f−−−→ F2 ⊗ Sk ∧ F2 ⊗ Sk ∧−−→ F2 ⊗ S2k Tk∗−−−→ F2 ⊗ S2k,k,

where ∧ denotes the additive map induced by (x, y) → x∧ y from Sk ×Sk to
S2k, and Tk∗ : F2 ⊗ S2k → F2 ⊗ S2k,k is the homeomorphism induced by the
linear isomorphism

Tk : Rk ⊕ Rk � (v, w) → (v + w, v − w) ∈ R2k,k.

The result is an equivariant map P(f) : NC2X → F2 ⊗ S2k,k classifying a
cohomology class P(α) ∈ H̃2k,k(NC2X;F2) that satisfies RP(α) = α× α.
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In the universal case X = F2 ⊗ Sk, one takes the generator α = ιk ∈
H̃k(F2 ⊗ Sk;F2) and the resulting class P(ιk) is represented by the map

F2 ⊗ Sk ∧ F2 ⊗ Sk ∧−→ F2 ⊗ S2k Tk∗−−→ F2 ⊗ S2k,k.

Restricting P(α) to the fixed points (NC2X)(R) = X and using the decom-
position H̃2k,k(X;F2) ∼= ⊕2k

i=kH̃
i
sing(X;F2) we obtain classes in Hk+i(X;F2)

for 0 ≤ i ≤ k that determine the restricted class.
Denote by Pbor(α) ∈ H̃2k,k(NC2X∧EC2+;F2) the pullback of P(α) under

the projection π : X ×EC2 → X and note that H̃∗,∗(−∧EC2+;F2) is (0, 1)-
periodic because H̃∗,∗(S0,0 ∧ EC2+;F2) = F2[ρ, τ, τ−1] (see [4, Prop.1.15]).

It follows that

Pbor(α)τ−k ∈ H̃2k,0(NC2X ∧ EC2+;F2) = H̃2k(NC2X ∧C2 EC2+;F2)

is the class PC2(α) discussed in [15], where it is called the Steenrod power
of α. It is shown in [15] that the restriction of PC2(α) to the fixed points of
NC2X ∧C2 EC2+ yields a class corresponding to total Steenrod square under
the natural decomposition H̃2k(X ∧ BC2+;F2) = ⊕2k

i=0H̃
i(X;F2). Now, the

pullback homomorphism

π∗ : H2k,k({NC2X}(R);F2) → H2k,k({NC2X}(R) ∧ EC2+;F2)

is determined by π∗ : M+
2 → H̃∗,∗(S0,0 ∧ EC2+;F2), which is the monomor-

phism ρ → ρ, τ → τ .
We conclude that under the identification of X with {NC2X}(R) via the

diagonal map, we have

(3.2) ι∗RP(α) = Sqρ,τ (α).

Example 3.6. Once again, consider the C2-space NC2X for a based space
X. One can produce a transformation PZ : Hk

sing(X;Z) → H2k,k(NC2X;Z) by
modifying the previous example. The universal case is classified by the map

NC2(Z⊗ Sk) = Z⊗ Sk ∧ Z⊗ Sk ∧−−−→ Z⊗ S2k Tk∗−−−−→ Z⊗ S2k,k.

Given α ∈ H̃k(X;Z) and restricting PZ(α) to X = (NC2X)(R) yields
classes P i

Z
(α), with

P i
Z(α) ∈

{
Hk+2i

sing (X;F2), if 0 ≤ i < k/2;
H2k

sing(X;Z), if k is even, and i = k/2.
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Now apply mod 2 reduction of coefficients, as in the previous example, to ob-
tain �ι∗

R
P(α) = Sqρ,τ (�α) ∈ H2k,k(X;F2). It follows from (2.20) and Corol-

lary 2.30 that

(3.3) P i
Z(α) =

{
Sq2i(�α), if 0 ≤ i < k/2;
α2, if k is even, and i = k/2.

3.2. Poincaré duality and total Steenrod squares

In this section we discuss Poincaré duality for Real manifolds. We consider
a compact Real manifold X and a Real submanifold Y ⊂ X of codimen-
sion d. In the case of F2 coefficients, we identify the restriction to X(R)
of the Poincaré dual αY ∈ H2d,d(X;F2) with the total Steenrod square
Sqρ,τ

(
αY (R)

)
∈ H2d,d(X(R);F2) of the dual αY (R) of Y (R) in X(R).

Definition 3.7. Let (X, ς) be a Real space and let E → X be a vector (real
or complex) bundle. A C2-vector bundle structure on E is a linear involution
ς̃ : E → E that covers ς.

Let (X, ς) be a Real space and let E → X be a complex vector bundle
of rank n. A Real vector bundle structure on E is an anti-linear involution
ς̃ : E → E that covers ς. We say that (E, ς̃) → (X, ς) is a Real vector bundle.

Note that, in particular, a rank r Real vector bundle is a C2-real vector
bundle of rank 2r.

Example 3.8. Let Grr,n denote the real Grassmanian scheme parametrizing
r-planes in affine n-space. Then Grr,n(C) is a Real variety and the tautological
r-plane bundle γr → Grr,n(C) is a rank r Real vector bundle.

Definition 3.9. A smooth manifold X is called a Real manifold if it has a
Real space structure (X, ς) and a compatible Real vector bundle structure on
the tangent bundle TX (that is, covering ς).

Example 3.10. If X is a smooth real algebraic variety then X(C) with the
involution ς determined by complex conjugation is a Real manifold.

Example 3.11. Let X be a complex n-manifold and consider its conju-
gate manifold Xς , which comes with a natural anti-holomorphic homeomor-
phism ς : X → Xς . The complex manifold RC/RX := X × Xς becomes a
Real 2n-manifold under the natural anti-holomorphic involution Tς : (x, y) →
(ς−1y, ςx). Furthermore, one has a diffeomorphism Δς : X ∼= {RC/RX}(R)
given by x → (x, ςx). As a C2-space RC/RX is isomorphic to NC2X+.
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Remark 3.12. More generally, when X is an algebraic scheme over C, one de-
fines its Weil restriction RC/RX which is a real scheme satisfying RC/RX(R) =
X(C) and RC/RX(C) = X(C)×C (ς∗X)(C), where ς∗X = X ×ς Spec(C) and
ς is the automorphism of Spec(C) given by complex conjugation.

Definition 3.13 ([12]). Let E be an RO(C2)-graded equivariant cohomology
theory and let E → X be C2-real vector bundle rank r over a Real space X.
Denote by Th(E) the Thom space of E. An E -orientation of E is a class
μ ∈ E r,s(Th(E)) for some s ≥ 0 such that, for each K < C2 and, for each in-
clusion i : C2/K → X, the restriction i∗α ∈ E 2r,s(Th(i∗E);Z) is a generator
of the free E ∗,∗(C2/K)-module E ∗,∗(Th(i∗E)).

In [4, Prop. 1.11] it is shown that Real vector bundles E → X of rank r
have HZ-orientation classes of bidegree (2r, r). Applying mod 2 reduction, it
follows that Real vector bundles are HF2-oriented.

Theorem 3.14. A Real compact manifold X of dimension n satisfies equiv-
ariant Poincaré duality, which takes the following form in motivic notation:

PD: Hr,s(X;F2) → H2n−r,n−s(X;F2).

Furthermore, the isomorphism PD is given by the cap product with the fun-
damental equivariant homology class [X] ∈ H2n,n(X;F2) ∼= F2.

Proof. Since as remarked above TX is HF2-oriented with orientation in de-
gree (2n, n), the result is a direct application of [12, Prop. III.6.5].

Remark 3.15. The restriction of a rank r Real vector bundle E → X over a
Real space X to its real points X(R) is the complexification of a rank r real
vector bundle denoted EC2 or E(R).

Example 3.16. The Thom space Th(E) of a Real rank r vector bundle
E → X is a Real space whose set of real points is the Thom space Th(EC2)
of EC2 .

Proposition 3.17. Given a Real compact submanifold i : Y ↪→ X of dimen-
sion m the cohomology class PD−1(i∗[Y ]) ∈ H2(n−m),n−m(X;F2) is repre-
sented by the Thom class of the normal bundle of Y in X. It is called the
Poincaré dual of Y .

Proof. Let π : NY/X → Y be the normal bundle to Y in X, identified with a
tubular neighborhood of Y in X. Denote by Th(NY/X) its Thom-space, and
let

μ ∈ H̃2n−2m,n−m(Th(NY/X);F2) = H2n−2m,n−m(X,X −NY/X ;F2)
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be the corresponding Thom class. Now, respectively denote by

[X] ∈ H2n,n(X;F2) and [Y ] ∈ H2m,m(Y ;F2)

the fundamental classes of X and Y . We need to show that μ∩ [X] = i∗([Y ]).
We have H̃2n,n(Th(NY/X);F2) = H2n,n(X,X−NY/X ;F2) ∼= F2, and using

the restriction functor R one sees that the image of [X] in H2n,n(X,X −
NY/X ;F2) is the generator. Now, taking the cap product with μ yields a map

μ ∩ − : H2n,n(X,X −NY/X ;F2) → H2m,m(X,X −NY/X ;F2)

that factors through H2m,m(NY/X ;F2) → H2m,m(X,X − NY/X ;F2), and the
composition with π∗ : H2m,m(NY/X ;F2) → H2m,m(Y ;F2) gives the Thom iso-
morphism map. This is proved in [4, Prop.1.13] with Z coefficients. The proof
in the case of F2 coefficients is exactly the same.

Definition 3.18. Let M be a compact n-dimensional manifold with connected
components M1, . . . ,Mr. If θ ∈ Hk(M ;F2) is given by θ =

∑r
i=1 θi with θi ∈

H(Mi;F2), we write its Poincaré dual as PD−1(θ) :=
∑r

i=1 PD−1(θi), where
PD−1(θi) is the Poincaré dual of θi in Mi.

Theorem 3.19. Let X be a compact Real manifold of dimension n and let
Y ↪→ X be a Real submanifold of dimension m. Set d = n−m, and denote by
[Y ] ∈ H2m,m(X;F2) the homology class represented by Y and by [Y (R)] the
corresponding class of Y (R) in H2m(X(R);F2). Let

αY ∈ H2d,d(X;F2) and αY (R) ∈ Hd(X(R);F2)

denote the Poincaré duals of [Y ] and [Y (R)], respectively. Then we have

ι∗RαY = Sqρ,τ

(
αY (R)

)
,

where ιR denotes the inclusion of the set of components of X(R).

Proof. Abbreviate H∗,∗(−;F2) to H∗,∗(−). Let π : NY/X → Y denote the
normal bundle to Y in X. Note that the restriction of π to the real points,
π(R) : NY/X(R) → Y (R) is the normal bundle to Y (R) in X(R).

Let Th(NY/X) and Th(NY/X(R)) be the Thom-spaces of NY/X and
NY/X(R), respectively, and let tX/Y ∈ H2d,d(Th(NY/X)) and tX/Y (R) ∈
Hd

sing(Th(NY/X(R));F2) denote the corresponding Thom classes. By Proposi-
tion 3.17, the result will follow once we show that ι∗

R
(tX/Y ) = Sqρ,τ (tX/Y (R)).
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We have Th(NY/X) = P(NY/X ⊕ 1)/P(NY/X), and the equivariant pro-
jective bundle formula yields a short exact sequence

0 → H̃2d,d(Th(NY/X)) → H2d,d(P(NY/X ⊕ 1)) → H2d,d(P(NY/X)) → 0.

Therefore H̃2d,d(Th(NY/X)) is identified with the kernel of the surjective map
of the sequence and, if ξ ∈ H2,1(P(NY/X ⊕ 1)) denotes the first Chern class
of the Real line bundle O(1), then tX/Y is identified with its generator:

tX/Y = ξd + ξd−1c̄1(NY/X) + · · · + c̄d(NY/X).

Since the restriction of π to the real points π(R) : NY/X(R) → Y (R) is
the normal bundle to Y (R) in X(R), we have

Th(NY/X(R)) = PR(NY/X(R) ⊕ 1R)/PR(NY/X(R)).

By the usual projective bundle formula for real bundles, the Thom class
tX/Y (R) ∈ Hd

sing(Th(NY/X(R));F2) is

tX/Y (R) = wd
1 + wd−1

1 ω1(NY/X(R)) + · · · + ωd(NY/X(R)),

where w1 ∈ H1
sing(PR(NY/X(R) ⊕ 1R);F2) is the Stiefel-Whitney class of the

real line bundle O(1) over PR(NY/X(R) ⊕ 1R).
It follows from (3.1) that ι∗

R
ξ = Sqρ,τ (w1) and more generally from (4.3)

below that ι∗
R
c̄i(NY/X) = Sqρ,τ (ωi(NY/X(R))). Finally, since Sqρ,τ is a ring

homomorphism, we get

ι∗R(tX/Y ) = ι∗R

(
ξd + ξd−1c1(NY/X) + · · · + cd(NY/X)

)
= Sqρ,τ

(
wd

1 + wd−1
1 ω1(NY/X(R)) + · · · + ωd(NY/X(R))

)
= Sqρ,τ (tX/Y (R)).

Example 3.20. Consider X = C/{Z +
√
−1Z} with the structure of Real

compact manifold on dimension 1 induced by complex conjugation. It is the
set of complex points of an elliptic curve defined over Q.

As C2-space, X ∼= S1,0 × S1,1. Under this identification, we have X(R) =
S1,0 × {0,∞} and the group H2,1(X;F2) ∼= F2 ⊕ F2 is generated by η :=
η1,0 × η1,1 and θ := ρη1,0 × 1, where

η1,0 ∈ H̃1,0(S1,0;F2) = F2, η1,1 ∈ H̃1,1(S1,1;F2) = F2,
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are generators and ∞ is used as the base point in both representation spheres.
Consider the Real submanifolds of dimension zero Y0 := {(0, 0)} and

Y∞ := {(0,∞)}. Denote by [Y0] and [Y∞] the corresponding generators in
H0,0(X;F2) ∼= H0(X(R);F2) ∼= F2 ⊕ F2.

It is easy to check that η1,0 ∩ [S1,0] = [{0}] and η1,1 ∩ [S1,1] = [{0}],
hence η ∩ [X] = [Y0]. Applying the restriction functor gives R(θ ∩ [X]) = 0
and, therefore, PD(θ) = [Y0] + [Y∞]. Using the notation of Theorem 3.19
gives αY0 = η and αY∞ = η + θ. For the Poincaré duals of Y0 and Y∞
in X(R), we have αY0(R) = η1 × 1{0} and αY∞(R) = η1 × 1{∞}, where
η1 = R(η1,0) ∈ H1

sing(S1,0;F2) is the generator, and 1{0}, 1{∞} denote the
obvious idempotents in H0({0,∞};F2).

Noting that i∗0η1,1 = ρ and i∗∞η1,1 = 0, where i0, i∞ denote the in-
clusions of {0} and {∞} in S1,1, we see that restriction to the real points
yields

ι∗RαX0 = ρη1,0 × 1{0} = Sqρ,τ

(
η1 × 1{0}

)
, and

ι∗RαX∞ = ρη1,0 × 1{0} + ρη1,0 × 1{0,∞} = ρη1,0 × 1{∞}

= Sqρ,τ

(
η1 × 1{∞}

)
.

4. Example: BUn

In this section we consider the maps appearing in “the cube” (Figure 1), when
X = BUn under the complex conjugation action. It is well known, see [5],
that the equivariant cohomology of BUn with Z or F2 coefficients is free over
the cohomology of a point:

H∗,•(BUn;Z) = M[c1, . . . , cn]
H∗,•(BUn;F2) = M2[c̄1, . . . , c̄n],

where cj ∈ H2j,j(BUn;Z), is the j-th equivariant Chern class of the universal
quotient bundle over BUn and c̄j ∈ H2j,j(BUn;F2) is its reduction mod 2.

For notational simplicity, instead of using the full positive cone the equiv-
ariant cohomology of BUn we will compute the maps of the “the cube” on
subrings generated by the bases {c1, . . . , cn} and {c̄1, . . . , c̄n} over the posi-
tive cones of the coefficients:

H∗,•(BUn;Z)† := M+[c1, . . . , cn] = Z[a, u; c1, . . . , cn](4.1)
H∗,•(BUn;F2)† := M2+[c̄1, . . . , c̄n] = F2[ρ, τ ; c̄1, . . . , c̄n],(4.2)
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This avoids dealing with coefficients in the negative cones of M and M2.
On the other hand, the integral cohomology ring of BOn can be written

as a quotient H∗
sing(BOn;Z) ∼= Rn/In of a polynomial ring Rn[pj ,yI ] in a

certain collection of variables {pj ,yI | j = 1, . . . , n, I ∈ Jn}; see [2, 7]. For
the reader’s convenience, we recall this presentation in Appendix A.

Using the notation from Theorem A.1, the various cohomology groups of
BUn and BOn are summarized in the table below.

Table 1: Cohomology groups

BUn BOn

H∗
sing(−;Z) Z[c1, . . . , cn] Z[pj ,yI ]/In

H∗,•(−;Z)† Z[a, u; c1, . . . , cn] Z[u; pj ,yI ]/In ⊕ aF2[a, u, w1, . . . , wn]

H∗,•(−;F2)† F2[ρ, τ ; c̄1, . . . , c̄n] F2[ρ, τ ;w1, . . . , wn]

H∗
sing(−;F2) F2[c̄1, . . . , c̄n] F2[w1, . . . , wn]

In the next result we use the following notation:

w2I := w2i1 · · ·w2ir ∈ H
2|I|
sing(BOn;F2), when I = (i1, . . . , ir)

β2j :=
j−1∑
k=0

Sq2k (w2j) · a2j−2kuk + (−1)jpj · uj ∈ H4j,2j(BOn;Z)

β2j+1 :=
j∑

k=0
Sq2k (w2j+1) · a2j+1−2kuk ∈ H4j+2,2j+1(BOn;Z)

Proposition 4.1. If X = BUn under complex conjugation, then X(R) =
BOn and all maps in Figure 1 are determined by the change of coefficient
maps M → M2 and the diagram below, where the cohomology of BUn is
displayed on the left column and that of BOn is on the right. (See Table 1 for
notation.)

Proof. To understand ι∗
R
, consider the commutative diagram

BU1 × · · · ×BU1
η BUn

BO1 × · · · ×BO1

jR

ηR
BOn

ιR

where the horizontal maps classify n-fold direct sums of line bundles and the
vertical ones denote inclusion of the real points, which classify the complex-
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Z[a, u; c1, . . . , cn] Z[u,pj ,yI ]
In

⊕ aF2[a, u;wr]

F2[ρ, τ ; c̄1, . . . , c̄n] F2[ρ, τ ;w1, . . . , wn]

� �

ι∗
R

ι∗
R

ck

ck βk

yI wjapj

wjρ + Sq1(wj)τw2
2jc̄k Sq1(w2I)

c̄k Sqρ,τ (wk)

Figure 2: Maps in the equivariant cohomology (front face of cube).

ification of real line bundles. Using Kunneth formula and Example 3.3 we
compute the restriction map ι∗

R
with F2 coefficients as follows. First observe

that j∗
R

is given by

M
∗,•
2 [t1, . . . , tn] ∼= H∗,•(BU×n

1 ;F2) ⊃ H2,1(BU×n
1 ;F2) � ti

j∗
R

M
∗,•
2 [x1, . . . , xn] ∼= H∗,∗(BO×n

1 ;F2) ⊃ H2,1(BO×n
1 ;F2) � Sqρ,τ (xi).

Next, observe that (3.1) gives

η∗R (ι∗R c̄k) = j∗Rη
∗c̄k = j∗Rσk(t1, . . . , tn) = σk(j∗Rt1, . . . , j∗Rtn)

= σk(Sqρ,τ x1, . . . , Sqρ,τ xn) = Sqρ,τ σk(x1, . . . , xn) = η∗R Sqρ,τ wk,

where σi is the i-th elementary symmetric function. Since η∗
R

: H∗(BOn;F2) →
H∗(BO×n

1 ;F2) is injective, it follows from the decomposition (1.6) that so is
the map on equivariant cohomology η∗

R
: H∗,•(BOn;F2) → H∗,•(BO×n

1 ;F2).
Therefore,

(4.3) ι∗Rc̄k = Sqρ,τ (wk) =
k∑

r=0
Sqr(wk) · ρk−rτ r.

To determine ι∗
R

with Z coefficients, first observe that as a consequence of
decompositions (1.4), (1.6) and the computation of � in Corollary 2.33, the
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map

H∗,•(BOn;Z) �⊕R−−−→ H∗,•(BOn;F2) ⊕ H∗
sing(BOn;Z(•))C2

is injective. Then, ι∗
R

is completely determined by the rest of the diagram,
and a routine verification shows that ι∗

R
(ck) = βk.

Corollary 4.2. Let X be a Real space and let E → X be a Real vector bundle
of rank n. Denote by ιR the inclusion X(R) ⊂ X. Then ι∗

R
E = E(R) ⊗R C

where E(R) → X(R) is a real vector bundle of rank n, and we have

ι∗Rcn(E) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j−1∑
k=0

Sq2k(w2j(E(R)))a2j−2kuk+(−1)jpj(E(R)) · uj , n = 2j

j∑
k=0

Sq2k (w2j+1(E(R))) · a2j+1−2kuk, n = 2j + 1.

Proposition 4.1 summarizes the most relevant face of Figure 1 (the cube).
For the reader’s convenience, we conclude the paper with an explicit descrip-
tion of all maps in the cube for BUn. The diagram below, along with Table 1,
exhibits the necessary information. Note that the left column displays the
cohomology of BUn and the right column corresponds to BOn.

The left vertical arrows have been explained in (4.1) and (4.2), and the
non-equivariant � is explained in Theorem A.1. The identity R ◦ � = �R on
the left-hand side results from the fact that the equivariant Chern classes are
sent to the non-equivariant ones under the restriction (forgetful) functor.

Recall that the reduction mod 2 of the non-equivariant Chern class ck of
the complexified universal quotient bundle over BOn is w2

k and, along with the
fact that H∗

sing(BOn;Z)tor = 2H
∗
sing(BOn;Z) injects into H∗

sing(BOn;F2) under
�, one concludes that ι∗

R
(c2j) = (−1)jpj and that ι∗

R
(c2j+1) = pjy{1/2} +y2

{j}.
Indeed, the latter expression is equal to δ (w2jw2j+1) = δ

(
Sq2j(w2j+1)

)
, see

[19], for

� ◦ δ
(
Sq1(w2jw2j+1)

)
= Sq1(Sq2j(w2j+1)) = Sq2j+1(w2j+1) = w2

2j+1.

This determines ι∗
R
. The rest of the diagram is explained in Proposition 4.1.

Appendix A. On the singular cohomology of BOn

Fix n ∈ N and denote Jn := {1
2}∪

{
1, . . . , n2

}
. Now, let Pn be the set of those

non-empty I ⊂ Jn such that {1/2, n/2} �⊂ I, when n > 1, and consider the
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Z(•)[c1, . . . , cn]C2 Z(•)[pj ,yI ]
In

C2

Z[a, u; c1, . . . , cn] Z[u,pj ,yI ]
In

⊕ aF2[a, u;wr]

F2[ρ, τ ; c̄1, . . . , c̄n] F2[ρ, τ ;w1, . . . , wn]

F2[c̄1, . . . , c̄n] F2[w1, . . . , wn]

R

� �

R

R

� �

R

ι∗
R

ι∗
R

ι∗
R

ι∗
R

c2j
c2j+1

(−1)jpj
pjy 1

2
+ y2

j

ck pj yI

pj yI

0

〈a〉ck

ck

c2j
c2j+1

β2j ,
β2j+1,

wja yI pj

Sq1(w2I)
w2

2jc̄k wjρ + Sq1(wj)τ

c̄k Sqρ,τ (wk) wk ρ

c̄k w2
k wk 0

ck

c̄k

pj yI

w2
2j Sq1(w2I)

Figure 3: Cube for BUn explained.

polynomial algebra

Rn := Z [pi, yI | i ∈ Jn, I ∈ Pn]

over Z with generators pi, yI , where i ∈ Jn and I = {i1 < i2 < · · · < ir} ⊂
Jn, and having degrees deg(pi) = 4i, deg(yI) = 1+2|I|, with |I| = i1+· · ·+ir.

Define an ideal In ⊂ Rn using the following convention. If n is even and
{n/2, 1/2} ⊂ I ∪ J then yI∪J means y{n/2}y(I∪J)−{n/2,1/2}. The relations
generating the ideal In ⊂ Rn are as follows.

1. p{1/2} = y{1/2}
2. 2yI = 0

3. yIyJ =

⎧⎪⎪⎨⎪⎪⎩
yI∪JyI∩J + yI−JyJ−I ·

∏
i∈I∩J pi, if I �⊂ J, I ∩ J �= ∅;∑

i∈I y{i}y(J−I)∪{i} ·
∏

j∈I−{i} pj , if I ⊂ J ;∑
i∈I y{i}y(I∪J)−i, if I ∩ J = ∅

4.
∑

i∈I y{i}yI−{i} = 0;
5. If n is even, then y{1/2} pn/2 = y2

{n/2}.
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Theorem A.1 ([2, 7]). For n ≤ ∞, H∗
sing(BO(n);Z) ∼= Rn/In. Under the

reduction map � : H∗
sing(BO(n);Z) → H∗

sing(BO(n);F2) the class yI maps to
Sq1(

∏
i∈I w2i), where w2i is the 2i-th Stiefel-Whitney class, and the class pi

maps to w2
2i.

Remark A.2. The generator yI corresponds to δ (w2i1 · · ·w2ir), where I =
{i1 < i2 < · · · < ir} and δ is the Bockstein map. The last statement in the
theorem follows from the identity ρ ◦ δ = Sq1. Note that w1 can appear in
the expression

(A.1) w2I :=
∏
i∈I

w2i,

since 1/2 ∈ Jn.
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