
Pure and Applied Mathematics Quarterly
Volume 19, Number 6, 2827–2840, 2023

The generality of closed G2 solitons
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Abstract: The local generality of the space of solitons for the
Laplacian flow of closed G2-structures is analyzed, and it is shown
that the germs of such structures depend, up to diffeomorphism, on
16 functions of 6 variables (in the sense of É. Cartan). The method
is to construct a natural exterior differential system whose integral
manifolds describe such solitons and to show that it is involutive
in Cartan’s sense, so that Cartan-Kähler theory can be applied.

Meanwhile, it turns out that, for the more special case of gradi-
ent solitons, the natural exterior differential system is not involu-
tive, and the generality of these structures remains a mystery.
Keywords: G2-structures, solitons.

1. Introduction

For the necessary background on G2-structures and the notation and conven-
tions that this article uses, the reader may consult [2] and, especially, [3].

1.1. G2-structures

A (smooth) G2-structure on a 7-manifold M is a (smooth) 3-form φ ∈ Ω3(M)
that is definite in the sense that, for any nonzero tangent vector v ∈ TxM ,
the 7-form (v φ)∧(v φ)∧φ ∈ Λ7(T ∗

xM) is also nonzero. The space of definite
3-forms on M7 will be denoted Ω3

+(M).
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Given a σ ∈ Ω3
+(M), there is a unique metric gσ and orientation ∗σ (i.e.,

the Hodge star operator defined by gσ and the orientation) such that

(1.1) (X σ) ∧ (Y σ) ∧σ = 6〈X, Y 〉gσ ∗σ1

for all vector fields X and Y on M .
It is not difficult to prove the first-order 6-form identity [2]

(1.2)
(
∗σd(∗σσ)

)
∧ ∗σσ + (∗σdσ) ∧σ = 0.

In particular, the equations dσ = d(∗σσ) = 0 represent only 35 + 21 − 7 =
49 first-order equations on a G2-structure σ. (It is easy to see that these
49 equations are independent, i.e., there are no further algebraic relations
between σ, dσ and ∗σd(∗σσ) beyond those implied by (1.2).)

1.2. Relation with holonomy

Fernández and Gray [7] proved that, if σ and ∗σσ are both closed forms,
then σ is gσ-parallel. This, in particular, implies that the holonomy of gσ
is isomorphic to a subgroup of G2 ⊂ SO(7). Conversely, if the holonomy of
a metric g on M7 is contained in G2, then there exists a definite 3-form σ
(unique up to replacement by −σ if the holonomy of g is isomorphic to G2)
satisfying dσ = d(∗σσ) = 0 and such that g = gσ. This characterization has
been essential in all constructions of metrics on 7-manifolds with holonomy
G2, indeed, in even proving their existence.

While it is easy to write down a local formula for the ‘generic’ closed
G2-structure σ, the full equations dσ = d∗σσ = 0 are highly nonlinear (as
well as being overdetermined). In [2], it was shown how to interpret these
equations as an involutive exterior differential system (see [4]) and analyze
their local generality in the sense of Élie Cartan. In particular, it was shown
that the ‘general’ solution, up to diffeomorphism, depends on six functions of
six variables.

One way of expressing this in terms that are, perhaps, more familiar is
the following: Suppose that one considers the space J k of k-jets of germs of
solutions of dσ = d∗σσ = 0 on a neighborhood of 0 ∈ R

7 with the property
that the standard coordinates on R

7 are geodesic normal coordinates for gσ
at 0 and the value of σ at 0 takes a standard form.1

1This nearly removes the diffeomorphism ambiguity. In order to completely re-
move it, one would have to quotient by the natural action of G2 on these jet spaces.
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Let δk = dimJ k − dimJ k−1 and consider the Poincaré series P (t) =
δ0 + δ1 t + δ2 t

2 + · · · . Then

(1.3) P (t) = t2
( 14

(1−t)2 + 21
(1−t)3 + 21

(1−t)4 + 15
(1−t)5 + 6

(1−t)6
)
.

In particular, the ‘leading term’ contributing to the growth of δk, namely
6t2/(1−t)6, is the same, up to a degree shift, as the ‘leading term’ describing
the growth of k-jets of 6 functions of 6 variables.

1.3. Solitons

D. Joyce pioneered the approach to constructing compact examples of met-
rics with holonomy G2 by starting with a ‘soft’ construction of a closed G2-
structure σ on certain 7-manifolds with the property that d(∗σσ) had suffi-
ciently small norm (in comparison with other geometric features of gσ) and
showing that, in such situations, one could ‘perturb’ the given closed G2-
structure σ to a nearby one that was also co-closed. (See the fundamental
reference [12] and the original papers cited therein for details.)

The many successes of R. Hamilton’s program for using the Ricci flow in
Riemannian geometry inspired the idea of canonically ‘improving’ a closed
G2-structure σ0 on a compact 7-manifold M by considering the so-called
‘Laplacian flow’

(1.4) d σ

dt
= Δgσ σ

with σ0 as initial condition. In particular, a fixed point of this flow, i.e., a
closed G2-structure on M that satisfies Δgσ σ = 0, would satisfy dσ = d∗σσ =
0 and hence lead to a metric gσ with holonomy contained in G2. It has been
shown [6] that the closed G2-Laplacian flow on a compact 7-manifold has
short-time existence and uniqueness.

Meanwhile, Hitchin [10, 11] observed that the above Laplacian flow is (up
to a constant factor) the gradient flow of the volume functional

V(σ) =
∫
M

σ ∧ ∗σσ

on the space Z(M,γ) ⊂ Ω3
+(M) of closed G2-structures in a fixed deRham

cohomology class γ ∈ H3
dR(M). Hitchin has shown that any critical points of

V in Z(M,γ) ⊂ Ω3
+(M) must be local maxima.
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However, there need not be any critical points even if the flow exists for
all time, as the example in Remark 18 of [3] shows.

It is not clear just what sort of singularities one might encounter in the
Laplacian flow, and one strategy for gaining some intuition, based on the
strategy that worked in the case of Ricci flow, is to study the so-called ‘soliton’
solutions.

Definition 1. Let λ be a fixed real constant. A pair (σ,X), where σ is a
closed G2-structure on M7 and X is a vector field on M7, is a λ-soliton for
the G2-Laplacian flow if

(1.5) Δσ σ = λσ + LXσ.

If, in addition, X = ∇gσf for some function f on M , the pair (σ,X) will be
said to be a gradient λ-soliton.

It is not difficult to show that, if (σ,X) is a λ-soliton for the G2-Laplacian
flow on M and Φτ : M → M is the time-τ flow of X, then the time-dependent
G2-structure

(1.6) φ(t) = eλtΦ∗
f(t,λ)σ

where f(t, 0) = t and f(t, λ) = (1 − e−λt)/λ when λ 	= 0, satisfies the initial
condition φ(0) = σ and the Laplacian flow equation

(1.7) d φ

dt
= Δgφ φ.

Many explicit examples of such λ-solitons are now known. Most of the
known examples are constructed using some version of ‘dimensional reduc-
tion’, i.e., assuming some sort of symmetry, thereby reducing the problem to
geometric data on a lower dimensional manifold, see [1, 8, 9, 13, 14].

The goal of this article is to investigate the local generality, in É. Cartan’s
sense, of the space of λ-solitons. A straightforward count of equations reveals
that, locally, this is 70 equations for the 42 unknowns in (σ,X), so the local
generality of the solutions of these equations is not at all clear. Moreover, the
system is degenerate (in particular, every direction is characteristic) because
it is evidently invariant under diffeomorphisms.

2. Basic identities

In this section, I will assume that (σ,X) is a λ-soliton for the G2-Laplacian
flow equation on M7 and explain how to express this condition naturally in
terms of an exterior differential system.
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2.1. Expression in differential forms

Because of the fundamental identity (1.2), the closedness of σ implies that(
∗σd(∗σσ)

)
∧∗σσ = 0, so there is a 2-form τ that satisfies

(2.1) d(∗σσ) = τ ∧σ = −∗στ.

(See §4.6 of [3].) Moreover, τ satisfies

(2.2) dτ = Δσσ = λσ + LXσ = λσ + d(X σ),

which can be rewritten as

(2.3) d(τ −X σ) = λσ.

As explained in §2.6 of [3], every 2-form β ∈ Ω2(M) can be written
uniquely as a sum β = β7 + β14 where ∗σβ14 = −β14∧σ while ∗σβ7 = 1

2 β7∧σ.
In what follows, set β = τ −X σ, so that β14 = τ and β7 = −X σ. Then
(2.3) can be rewritten as the 3-form equation

(2.4) 0 = dβ − λσ.

We already have the 4-form equation

(2.5) 0 = dσ

since σ is closed. Using the above algebraic identities, (2.1) can be written as
a 5-form equation

(2.6) 0 = d(∗σσ) − τ ∧σ = d(∗σσ) + 2
3 ∗σβ − 1

3 β ∧σ.

Finally, taking the exterior derivative of this last equation and using the
equations found so far, we have the 6-form equation

(2.7) 0 = d(∗σβ).

The virtue of the equations (2.4–7) is that they only involve the con-
stant λ, the definite 3-form σ (and its algebraically associated Hodge star
operator), and the 2-form β. In fact, this is enough to recover the structure
of a λ-soliton for the closed G2-Laplacian flow.
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Proposition 1. Let λ be a constant, and let σ ∈ Ω3
+(M) and β ∈ Ω2(M)

satisfy equations (2.4–7). Then for the unique vector field X on M such that
β7 = −X σ, the pair (σ,X) is a λ-soliton for the closed G2-Laplacian flow.
Conversely, if (σ,X) is a λ-soliton for the closed G2-Laplacian flow, then
setting β = − ∗σ d(∗σσ) −X σ defines a pair (σ, β) that satisfies (2.4–7).

Proof. This is a matter of unwinding the definitions. We have dσ = 0, and
then equation (2.6) implies that τ = β14 and that d(∗σσ) = τ∧σ, so that dτ =
Δσσ. Then (2.4) becomes (2.3). The converse follows in the same way.

Remark 1. The reader may wonder why (2.7) was included, since it is a con-
sequence of the other three equations just by applying the exterior derivative
to (2.6). Moreover, when λ is nonzero, (2.5) follows from (2.4), so it might
seem that (2.5) could be omitted as well, at least when λ is nonzero.

The reason is that I want to make explicit all of the first-order equations
satisfied by the pair (σ, β). The four equations (2.4–7) are the vanishing of a
3-form, a 4-form, a 5-form, and a 6-form, which is potentially

35 + 35 + 21 + 7 = 98

independent first order equations. However, the identity (1.2), shows that
these 98 equations are not independent; they ‘overlap’ by at least 7 equations.

In fact, the overlap is exactly the 7 equations of the fundamental iden-
tity (1.2) since it is easy to see that, for a generic σ ∈ Ω3

+(M) and β ∈ Ω2(M),
the only relation among the forms

dβ, dσ, d(∗σσ), d(∗σβ)

is the fundamental identity relating the middle two. Thus, the equations (2.4–
7) constitute exactly 91 independent (quasi-linear) first order equations on
the pair (σ, β), a fact to which I will return.

Indeed, I am going to argue that this system of 91 equations is involutive
in É. Cartan’s sense, so that the Cartan-Kähler Theorem can be applied to
prove local existence of solutions and describe their ‘degree of generality’. By
contrast, the ‘determined’ system of 35 + 21 = 56 first-order equations for
(σ, β) represented by combining (2.4) and (2.6) is certainly not involutive.

3. Formulation as an exterior differential system

I now want to explain how the above system of 91 first-order partial differ-
ential equations for the pair (σ, β), which is a section of a smooth bundle of
fiber rank 35 + 21 = 56 over M7, can be interpreted as defining an exterior
differential system for such pairs.
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3.1. A differential ideal

Let Λ3
+(T ∗M) ⊂ Λ3(T ∗M) denote the open subset of the bundle of 3-forms

on M7 whose (local) sections are the (local) G2-structures on M . Similarly,
let Λ2(T ∗M) denote the bundle of 2-forms on M .

Let X ⊂ Λ3(T ∗M) ⊕ Λ2(T ∗M) denote the set of pairs (s, b) with s ∈
Λ3

+(T ∗
mM) and b ∈ Λ2(T ∗

mM) for some m ∈ M . This X is open in Λ3(T ∗M)⊕
Λ2(T ∗M) and is a smooth fiber bundle over M with a submersive base pro-
jection π : X → M , with π(s, b) = m. Let π∗ : Λk(T ∗M) → Λk(T ∗X) denote
the induced ‘pullback’ mapping.

There exist natural ‘tautological’ forms on X that are defined as follows:
For each (s, b) ∈ X, let s(s,b) = π∗(s) and let b(s,b) = π∗(b). Then s (respec-
tively, b) is a smooth 3-form (respectively, 2-form) on X with the ‘reproduc-
ing’ property that, for any section (σ, β) : M → X, there holds (σ, β)∗(s) = σ
and (σ, β)∗(b) = β. Moreover, because exterior derivative commutes with
pullback, the identities (σ, β)∗(ds) = dσ and (σ, β)∗(db) = dβ hold as well.

I will need an extension of this construction: Since, for any s ∈ Λ3
+(T ∗

mM),
there is a well-defined Hodge star operator ∗s : Λp(T ∗

mM) → Λ7−p(T ∗
mM),

there also exists a smooth 4-form t (respectively, 5-form, p) on X with the
property that t(s,b) = π∗(∗ss) (respectively, p(s,b) = π∗(∗sb)). These two forms
have the ‘reproducing’ property that, for any section (σ, β) : M → X, there
holds (σ, β)∗(t) = ∗σσ and (σ, β)∗(p) = ∗σβ.

Finally, there exists a smooth 7-form ω on X with the property that
ω(s,b) = π∗(∗s1) that will be used below, so I introduce it now.

Note that all of the forms s, t, b, p, and ω are π-semibasic, i.e., their
interior product with any π-vertical vector field on X vanishes identically.

Now, by construction, for any constant λ and any section (σ, β) : M → X,
one has

(3.1)

(σ, β)∗(db − λ s) = dβ − λσ

(σ, β)∗(ds) = dσ
(σ, β)∗(dt + 2

3 p − 1
3 b ∧ s) = d(∗σσ) + 2

3 ∗σβ − 1
3 β ∧σ

(σ, β)∗(dp) = d(∗σβ)

This motivates defining the differential forms Υi ∈ Ωi(X),

(3.2)

Υ3 = db − λ s,
Υ4 = ds,
Υ5 = dt + 2

3 p − 1
3 b ∧ s,

Υ6 = dp.
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Note the identities

(3.3)

dΥ3 = −λΥ4,

dΥ4 = 0,
dΥ5 = 2

3 Υ6 − 1
3 Υ3 ∧ s − 1

3 b ∧Υ4,

dΥ6 = 0,

which imply that the algebraic ideal Iλ in Ω∗(X) generated by Υ3,Υ4,Υ5,Υ6
is differentially closed. Consequently, Iλ is an exterior differential system
on X.

The interest in Iλ is explained by the following result.

Proposition 2. A section (σ, β) : M → X is an integral manifold of Iλ if
and only if it comes from a λ-soliton for the closed G2-Laplacian flow. In
particular, a 7-dimensional integral manifold of Iλ that is transverse to the
fibers of π : X → M is locally the graph of a section (σ, β) : M → X that
comes from a λ-soliton for the closed G2-Laplacian flow.

Proof. It has been shown that a pair (σ, β) comes from a λ-soliton for the
closed G2-Laplacian flow if and only if the pair satisfies the equations (2.4–7).
Since this vanishing is exactly the vanishing of the righthand sides of (3.1),
the definitions given in (3.2) and the definition of Iλ show that this vanishing
is equivalent to the section (σ, β) being a 7-dimensional integral manifold
(necessarily transverse to the π-fibers) of Iλ. The rest of the statement follows
immediately.

3.2. Involutivity

I can now state the main result of this article.

Theorem 1. The exterior differential system Iλ with independence condition
ω is involutive, with Cartan characters

(s0, s1, s2, s3, s4, s5, s6, s7) = (0, 0, 1, 3, 7, 15, 23, 7).

Proof. The proof will be by Cartan’s Test for involutivity (see, for exam-
ple, [4]).

The first thing to check for each (s, b) ∈ X is the dimension of the space
of 7-dimensional integral elements E ⊂ T(s,b)X of Iλ on which ω is non-
vanishing. I claim that this dimension is 301 = 392 − 91.

To see this, choose a splitting T(s,b)X = kerπ′(s, b) + W , where π′(s, b) :
W → Tπ(s,b)M is an isomorphism. Then an integral element E ⊂ T(s,b)X
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on which ω is non-vanishing can be thought of as the graph of a linear map
L : W → ker π′(s, b), i.e., it can be identified with an element of the vector
space Hom(W, kerπ′(s, b)). Because the four tautological forms s, b, t, and p
are π-semi-basic, it follows that the mapping of Hom(W, ker π′(s, b)) into the
98-dimensional vector space

Λ3(W ∗) ⊕ Λ4(W ∗) ⊕ Λ5(W ∗) ⊕ Λ6(W ∗)

induced by evaluating (Υ3,Υ4,Υ5,Υ6) on the graph of L in the vector space
Hom(W, kerπ′(s, b)) is an affine mapping. Moreover, its image lies in the 91-
dimensional subspace cut out by the fundamental identity. Finally, looking
at the ‘leading terms’ of (Υ3,Υ4,Υ5,Υ6), i.e., (db, ds, dt, dp) and considering
their interpretation as

(
dβ, dσ, d(∗σσ), d(∗σβ)

)
,

one sees that the leading order part is a linear mapping that is surjective onto
this 91-dimensional subspace.

Consequently, the set V(Iλ, ω) of admissible integral elements of Iλ at
(s, b) ∈ X is a (nonempty) affine subspace of Hom

(
W, kerπ′(s, b)

)
of dimen-

sion S = 56× 7− 91 = 392− 91 = 301. Indeed V(Iλ, ω) is a smooth subman-
ifold of Gr(7, TX), the Grassmann bundle of 7-dimensional subspaces of the
tangent spaces to X.

It remains to compute the Cartan characters and apply Cartan’s Test.
Now that it has been established that the space of admissible integral elements
of Iλ at each point is nonempty, the Cartan characters can be computed by
considering just the leading terms listed above.

First, recall that it was established in [2] that the Cartan characters of
the (involutive) equation D(σ) =

(
dσ, d(∗σσ)

)
= (0, 0) relative to any flag

are
(s0, s1, s2, s3, s4, s5, s6, s7) = (0, 0, 0, 1, 4, 10, 13, 7),

Meanwhile, once σ is fixed, the characters of the involutive first-order system
D(β) =

(
dβ, d(∗σβ)

)
= (0, 0) for β a 2-form on a manifold with a specified

G2-structure σ are

(s0, s1, s2, s3, s4, s5, s6, s7) = (0, 0, 1, 2, 3, 5, 10, 0).

It follows that there exists an integral flag of the combined system with char-
acters

(s0, s1, s2, s3, s4, s5, s6, s7) = (0, 0, 1, 3, 7, 15, 23, 7).
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It follows that
∑7

k=0 k sk = 301 = S, the dimension of the space of integral
elements of Iλ at (s, b). Thus, equality holds in Cartan’s Test, which implies
that such a flag is Cartan-regular. Consequently, the system is involutive, as
was to be shown.

Remark 2. Since M is assumed to be smooth, it also carries a real-analytic
structure (in fact, many, but all of them are equivalent), and X will naturally
inherit a real-analytic structure once one is chosen on M . Because of the
nature of their construction, the forms Υ3,Υ4,Υ5,Υ6 will be real-analytic
with respect to the real-analytic structure on X. Hence Iλ is real-analytic
with respect to any real-analytic structure on X.

Corollary 1. For any (s, b) ∈ X with π(s, b) = m ∈ M , there exists a λ-
soliton (σ, β) for the closed G2-Laplacian flow on an m-neighborhood U ⊂ M
such that (σm, βm) = (s, b). In fact, for any 7-dimensional integral element
E ⊂ T(s,b)X of Iλ on which ω is non-vanishing, there exists such a (σ, β) :
U → X such that (σ, β)′(s, b)(TmM) = E.

Proof. In light of Theorem 1 and Remark 2, Corollary 1 follows immediately
from the Cartan-Kähler Theorem.

Remark 3 (Generality in Harmonic Coordinates). Since the last nonzero char-
acter of Iλ is s7 = 7, the naïve statement is that local λ-solitons for the closed
G2-Laplacian flow depend on ‘seven functions of seven variables’ in Cartan’s
terminology.2 However, this reflects the fact that the equations are invariant
under the full diffeomorphism group in dimension 7, which itself is described
(locally) by specifying seven functions of seven variables.

There are a number of methods of, at least partially, ‘normalizing’ the
local solutions by choosing special coordinates. The simplest one perhaps,
is to ask how general the local solutions are when presented in harmonic
coordinates for the associated metric gσ. One way to see this is to specialize
to the case M = R

7 with standard coordinates u = (ui) and impose the
conditions d

(
∗σ(dui)

)
= 0. This can be added to the exterior differential

system by defining the seven 6-forms

(3.4) Φi = π∗(∗s(dui)) ∈ Λ6(T ∗
(s,b)X)

and then defining the extended ideal I+
λ generated by Iλ and the seven closed

7-forms dΦi. Following the same argument as that used in Theorem 1, one
2The Cartan characters si indicate how much essential choice there is in building

up a solution to the equations via a sequence of (possibly underdetermined) Cauchy
problems.
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can show that the system I+
λ on X is also involutive, but now with characters

(3.5) (s0, s1, s2, s3, s4, s5, s6, s7) = (0, 0, 1, 3, 7, 15, 30, 0).

One can interpret the local integrals of I+
λ as λ-solitons for the closed

G2-Laplacian flow that are presented in harmonic coordinates. In Cartan’s
terminology, such solitons depend locally on s6 = 30 functions of six variables.
However, the choice of a local harmonic function, given σ, depends on 2
functions of six variables, so a choice of a harmonic coordinate system depends
on 2×7 = 14 functions of six variables. Thus, one can argue that local solitons
(σ, β) depend on 16 = 30− 14 functions of six variables, in the sense that the
rate of growth of the dimensions of the k-jets of solutions up to diffeomorphism
is the same as the rate of growth of 16 functions of 6 variables.
Remark 4 (Analyticity). Another reason for considering the presentation of
λ-solitons (σ, β) in harmonic coordinates is that it makes clear the regularity
of such structures. Because the last nonzero character of I+

λ is s6 = 30, it
follows [5, Chapter V] that the complex characteristic variety ΞE ⊂ P

(
(E ⊗

C)∗
)
� CP

6 is a subvariety of (complex) dimension 5 for every integral el-
ement E. Because of the G2-invariance of the system and the fact that G2
acts transitively on (real) 2-planes in R

7, the only possibility for the support
of this characteristic variety for a given solution (σ, β) on a neighborhood of
a point u ∈ R

7 is the set of complex co-vectors in P
(
(T ∗

uR
7)⊗C

)
that are null

for gσu . In particular, the complex characteristic variety has no real points,
implying that the associated PDE system is (overdetermined) elliptic. Con-
sequently, λ-solitons that are C1,α in harmonic coordinates (for some α > 0)
must be real-analytic in those coordinates [15].

4. The gradient case

In this final section, I will discuss what is known about the special case that
the λ-soliton (σ,X) is a gradient soliton, i.e., X = ∇gσf for some function f .
This case is interesting partly because, in the case of solitons for the Ricci flow,
particularly in dimension 3, the gradient solitons are the most important.
Remark 5 (Ricci solitons in dimension 3). Just for comparison, it might be
interesting to note that the generality analysis for general Ricci solitons in
dimension 3, i.e., pairs (g,X) of a metric g and a vector field X on a manifold
M3 that satisfy

(4.1) Ric(g) = λ g + LXg,
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shows that, up to local diffeomorphism, the local solutions of this system de-
pend on s2 = 6 functions of two variables. If one adds the ‘gradient condition’
that X = ∇gf for some function f , then one sees that, up to local diffeomor-
phism, the local solutions satisfying this extra condition depend on s2 = 2
functions of two variables. In both cases, the associated exterior differential
system is involutive. See [4, §5.5] for the gradient case.

Many explicit examples of gradient λ-solitons are known, as can be seen
by looking at the examples constructed in the articles [1, 8, 9, 13, 14]. How-
ever, as of this writing, it is not known what their generality is in the sense
of É. Cartan. I will conclude this article by explaining where the difficulty
lies.

4.1. Formulation

The gradient λ-soliton case, where X = ∇gσf for some function f , is locally
equivalent to requiring that X�, the 1-form that is gσ-dual to the vector field
X, be closed.

Starting with the algebraic identity of 5-forms

(4.2) (X σ) ∧σ = 2X� ∧ ∗σσ

and applying the exterior derivative to the left hand side of (4.2) gives

(4.3) d
(
(X σ) ∧σ

)
= d(X σ) ∧σ = (dτ − λσ) ∧ σ = 0,

since d(∗σσ) = τ∧σ and dσ = 0 implies dτ∧σ = 0. Meanwhile applying the
exterior derivative to the right hand side of of (4.2) (which is closed because
of (4.3)) gives

(4.4) 0 = 2 d(X�) ∧ ∗σσ − 2X� ∧ τ ∧σ.

In particular, if d(X�) = 0, which is the condition for a gradient λ-soliton,
it follows that X�∧τ∧σ = 0, which is a algebraic relation on X and τ that is
equivalent to

(4.5) X τ = 0,

i.e., the vanishing of a 1-form that is bilinear in X and τ .
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4.2. Non-involutivity

The condition d(X�) = 0 is expressed in terms of β as

(4.6) d
(
∗σ(β ∧ ∗σσ)

)
= 0.

Thus, it is natural to study the gradient case by augmenting the differ-
ential ideal Iλ by adding to it the closed 2-form dz, where z is the 1-form on
X defined as

z(s,b) = π∗(∗s(b ∧ ∗ss)
)
.

Unfortunately, as (4.5) shows, this augmented differential ideal does not
have any admissible integral elements at any (s, b) ∈ X for which the 6-form(
∗s(b∧∗ss)

)
∧b∧s is nonzero. Hence, the augmented ideal is not involutive.

The standard ‘next step’ in such a case is to pull back the augmented dif-
ferential ideal to the (nonsmooth) subvariety Z ⊂ X on which z∧b∧s = 0 and
check that exterior differential system on Z for involutivity. Unfortunately,
calculation shows that that exterior differential system is not involutive either,
even on the smooth locus of Z.

Two successive applications of the standard prolongation procedure to
this system does not yield an involutive exterior differential system, and the
calculations become increasingly complicated. So far, no method has been
found that leads to an involutive system whose solutions correspond to the
gradient λ-solitons.

As a result, the generality of the gradient λ-solitons remains unknown as
of this writing. All we have is a collection of the various examples already
mentioned to show that gradient λ-solitons do, indeed, exist.
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