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1. Introduction

In this paper, we continue and sharpen the discussions of quantitive dif-
ferentiation in [CKN11], and [Che12]. We begin with the most basic case,
f : [0, 1] → R, with f in the Sobolev space H1,2; see Theorem 1.3 below.
While there would be no real harm in assuming that f is differentiable, noth-
ing can be assumed about the second derivative, f ′′, which might not exist.
Quantitative differentiation concerns behavior on all locations and scales. For
the domain, [0, 1], by a “location and scale” we mean a dyadic subinterval.
The sum of the measures of all dyadic subintervals is infinite. Quantitative
differentiation states in a precise quantitative sense, that f looks as linear
we like, apart from a collection of locations and scales, the sum of whose
measures has a definite finite bound. The proof of Theorem 1.3 is given in
Section 2. As explained there, it has a straightforward generalization to the
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case of Rm. Sections 3, 4, deal with PI spaces and riemannian manifolds with
Ricci curvature bounded below.

In Section 3, we give a partial generalization of Theorem 1.3 to PI spaces;
see Theorem 3.8. These are metric measure spaces (X, d, μ), for which the
measure μ is doubling and a Poincaré inequality holds. Here, of necessity,
linear is weakened to harmonic; see Example 1.1, Theorem 3.8 and Exam-
ple 3.1. Under the additional assumption that the norms on the cotangent
spaces are uniformly strongly convex, there is an ε-regularity theorem. If in
addition, (X, d) is a length space and μ-a.e., the squared norm on cotangent
spaces has uniformly bounded convexity, there is an implication for blowup
limit measures μ∞ on tangent cones.1 By [Che99], μ-a.e., every blowup limit
of a Lipschitz function f is a generalized linear function, � : Xx → R, on the
corresponding tangent cone Xx. By definition, this means that � is a constant
multiple of a harmonic distance function. We will show that each such � �≡ 0
gives rise to a product decomposition, μ∞ = dr × Per(Xa

x) of the renormal-
ized limit measure μ∞ on Xx. Here, r is a harmonic distance function and Per
is the perimeter measure of a fixed sublevel set Xa

x := {y ∈ Xx | r(y) ≤ a};
compare Example 3.1. Since |dr|2 ≡ 1, μ∞ = dr × Per(Xa

x) can also be viewed
as a product decomposition for the Dirichlet energy |dr|2μ∞ = μ∞ associated
to the harmonic function r. Specializing Theorem 3.8 to the case of a dis-
tance functions leads to consideration of distance functions r which can be
ε-approximated by harmonic functions h. The quantitative counterpart of the
decomposition dr × Per(Xa

x) applies to the Dirichlet energy |dh|2μ.
In Section 4, we briefly indicate how to obtain a partial generalization

of the quantitative differentiation theorem for Lipschitz functions on spaces
Mm with Ricci curvature bounded below. The result applies to Lipschitz
functions and the conclusion does involve approximation by generalized linear
functions. The the key issue is that of controlling the oscillation of the gradient
of the approximating harmonic function as in Theorem 3.8. The weakening
involves the notion of what is considered a “good domain”. Namely, rather
than approximation by the generalized linear function on the whole domain,
the approximation only takes place on subdomains of a definite size. Also,
the notion of scale, 0 < γ = γ(m, ε) < 1, is allowed to depend on the desired
closeness of the approximation. (Recall that in Sections 1–3, we can take
γ = 1/2.)

In Appendix A, we briefly discuss some applications of quantitative dif-
ferentiation type ideas during the past 25 years. These include a quantitative

1The assumptions on the norm hold if the norm on the cotangent bundle is given
by an inner product.
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bi-Lipschitz nonembedding theorem for the Heisenberg group into the Banach
space L1, quantitative structure theory for riemannian manifolds with Ricci
curvature bounded below and their Gromov-Hausdorff limit spaces, and quan-
titative partial regularity theory for nonlinear elliptic and parabolic geometric
partial differential equations.

The basic case For the basic case, I = [0, 1], we assume a definite bound
on the Dirichlet energy,

´
I |f ′|2. We could as well assume f is smooth, but

with no quantitative information concerning its higher derivatives. We are
interested in the behavior of f when it is examined on all locations and
scales, or equivalently, on all dyadic subintervals. There is an atomic measure
on the collection of dyadic intervals which assigns to each such interval Iin ,
in = 1, . . . , 2n, a mass equal to its its measure ‖Iin‖ = 2−n. For each n, we
have

∑2n
in=1 ‖Iin‖ = 1. Since there are countably values of n, the mass of this

measure is infinite.
Let |J | denote the length of the interval J ⊂ I. Although it so happens

that for intervals, length equals measure, with a view towards generalizations
we use distinct notations, |J |, ‖J‖, as appropriate.

Let |f |J := supx∈J |f(x)| denote the L∞ norm of f | J . The secant line f0
of f | J , is the unique affine linear function which agrees with f at the end
points of J : f0 | ∂J = f | ∂J .

Definition 1.1 (ε-linearity). We say f | J is ε-linear if

|f − f0|J
|J | ≤ ε.(1.1)

The condition of being ε-linear is unchanged if for any constant c, we make
the two rescalings, f → cf , |J | → c|J |. Also, since (1.1) does not involve the
measure, it remains unchanged if the measure is rescaled.

Definition 1.2 (Bad locations and scales). For ε > 0, let Bε denote the
collection of dyadic subintervals of I on which f is not ε-linear.

Theorem 1.3 (Quantitative differentiation). For all ε > 0, f ∈ H1,2(I), we
have

∑
Iin∈Bε

‖Iin‖ ≤ 2ε−2 ·
ˆ
I

|(f − f0)′|2.(1.2)

Equivalently,
∑

Iin∈Bε

‖Iin‖ ≤ 2ε−2 ·
(ˆ

I

|f ′|2 −
ˆ
I

|f ′
0|2

)
.(1.3)
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Remark 1.1 (p > 1). Versions of Theorem 1.3 and its generalizations hold for
H1,p, p > 1; see Section 3. In these cases, the sup norm must be replaced by
a normalized Lχp norm, for appropriate χ > 1.
Remark 1.2 (Secants versus derivatives). Were we to assume a bound on
|f ′′|, we could employ Taylor’s formula with remainder to bound |f(x) −
f(x0) − f ′(x0)(x − x0)|/|x − x0|, for any x0 ∈ J . In Theorem 1.3, we are
bounding |f − f0|J/|J | which, when |f ′′| is large, can be much smaller than
|f(x)−f(x0)−f ′(x0)(x−x0)|/|x−x0|. This happens if f has high frequency
oscillations of correspondingly small amplitude e.g. the function 2−n sin 2nx;
compare Example 2.1 below. In particular, quantitative differentiation is not
differentiation in the usual sense. It is concerned with the accuracy of secant
approximations, not derivatives.
Remark 1.3 (Quantitative differentiation versus telescope estimates). Tele-
scope estimates enable one to conclude that in a quantitative sense, Sobolev
functions are Lipschitz off sets of small measure (or small capacity); see
[KM96]. They are derived from Neumann-Poincaré inequalities by means of
maximal function estimates. They are not directly comparable to the esti-
mates provided by quantitative differentiation. For instance, for any open set
of positive measure, the corresponding set of locations and scales has infinite
measure. Likewise, quantitative differentiation, has nothing directly to say
about maximal functions.
Example 1.1. In the riemannian case, the product decomposition, μ = dr ×
Per(Xa), with r a distance function, is equivalent to the condition that the
level surfaces of r are minimal. This can be seen from the formula Δ =
∂2
r +m ·∂r +Δ̃, where m is the mean curvature of the level surface of r and Δ̃

is the Laplacian on the level surface. For instance, in R
3, consider the doubly

warped product metric

dr2 + e2rdx2 + e−2rdy2.(1.4)

The distance function r is harmonic since the mean curvature of each of its
level surfaces is identically zero. The gradient lines of r are geodesics and
we have the product decomposition μ = dr × Per(Xa) for the riemannian
measure. Note, dr is not parallel and there is no isometric splitting. In this
case, Ric( ∂

∂r ,
∂
∂r ) = −2; for the splitting theorem in case case Ric ≥ 0, see

[CG72].
Remark 1.4 (Some history). Versions of the fundamental phenomenon treated
in Theorem 1.3 and its n-dimensional version, have appeared in several rela-
tively advanced contexts; see e.g. [Dor85, Dav88, Jon90, DS93]. Theorem 1.3 is
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closely related to the case treated in the appendix of [Jon90]. For domains con-
tained in R

n, see the discussion at the end of Section 2 and [KM07, Orp21].2
The proofs we will give are different from those in the above references. While
the proof of Theorem 1.3, requires only elementary calculus and the Schwarz
inequality, it is not taught in standard courses. From a pedological stand-
point, this is unfortunate since it bypasses the opportunity to introduce a
wide-ranging phenomenon in an elementary setting. In actuality, it seems
that many experts are unaware of the statement. Perhaps as a consequence,
the potential of quantitative differentiation ideas for applications in geometric
analysis was slow to be fully appreciated.

2. The 1-dimensional case

In this section we will prove Theorem 1.3.

Dyadic subintervals Recall that for any interval, J , its dyadic subintervals,
Jin , in = 1, . . . , 2n are the intervals obtained by n times repeated bisection of
J . Each Jin = Jin+1 ∪ Jin+1+1 of depth n is the union of two intervals of half
the size. Here in+1 = 2in − 1. The dyadic subintervals of I := [0, 1] are:

Jin = [(in − 1) · 2−n, in · 2−n], (1 ≤ in ≤ 2n, 1 ≤ n < ∞).

Note that if J ⊂ [0, 1] and Jin is a largest dyadic subinterval with Jin ⊂ J ,
then either J ⊂ Jin−1−1 ∪Jin−1 or J ⊂ Jin−1 ∪Jin−1+1. (Here, if in−1 − 1 = −1
or in−1 = 2n−1, we define J ⊂ Jin−1−1 := ∅, respectively Jin−1+1 := ∅.)
Thus, every J is comparable to the union of at most two consecutive dyadic
subintervals. Moreover, every dyadic interval, Jin is contained in precisely
n + 1 dyadic subintervals,

J ⊃ Ji1 ⊃ Ji2 ⊃ · · · ⊃ Jin .(2.1)

Remark 2.1. Relation (2.1) enters crucially at a juncture in the proof where
the order of summation in a double series is reversed; see (2.20).

Prior to proving Theorem 1.3, we consider a basic example first pointed
out to us by Stephen Semmes.
Example 2.1. Set fk(x) = 2−k sin 2kx, for any k. Note that for any k, we have
|f ′| ≤ 1. Consider the restriction of fk(x) = 2−k sin 2kx to some Iin . Note
that for any k, we have |f ′| ≤ 1.

Consider the restriction of fk(x) = 2−k sin 2kx to some Iin .
2We thank Scott Armstrong and Guido De Philippis for pointing out these ref-

erences.
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If |Iin | � 2−k, then a very good linear approximation to the rescaled fk(x)−
fk(x̄) is � ≡ 0.

If |Iin | ∼ 2−k then the rescaled fk(x) − fk(x̄) is just not very linear.
If |Iin | � 2−k, we can take � = f ′

k(x̄)(x− x̄).

Fix N ≥ ε−1 and let kj = 2j , j = 1, . . . N . Consideration of the functions,

gN =
N∑
j=1

1
N

· fkj ,

shows that the estimate in Theorem 1.3 is sharp. Note that since the kj
grow sufficiently fast, the degree of approximability of gN by an affine linear
function on a given scale, is essentially independent of its behavior on all
other scales.

Markov’s inequality To prove Theorem 1.3, it suffices to show

∑
Iin⊂I

‖Iin‖ ·
|f − fn|2Iin

|Iin |2
≤ 2

ˆ
I

|(f − f0)′|2.(2.2)

To see this, note that if Iin ∈ Bε, then by definition, |f − fn|2Iin/|Iin |
2 ≥ ε2.

So restricting the sum in (2.2) to Bε and cross multiplying gives

∑
Iin∈Bε

‖Iin‖ ≤ 2ε−2 ·
ˆ
I

|(f − f0)′|2.(2.3)

Secant approximations

Definition 2.1. The n-th secant approximation fn to f is the function such
that for all Iin , fn | Iin is linear and

fn | ∂Iin = f | ∂Iin .(2.4)

Note that for m ≥ n the (m-n)-th secant approximation to f | Iin is fm | Iin .
If we set fn+1 − fn := φn, then

f − f0 =
∞∑
n=0

φn.(2.5)

For any m ≥ n and Iim ⊂ Iin , we have

φm | ∂Iim = 0.(2.6)
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φn | Iim is linear.(2.7)

Define φim by

φim = φm (on Iim).
φim = 0 (on I \ Iim).

(2.8)

Then,

φm | Iin =
∑

Iim⊂Iin

φim (for fixed m ≥ n).

f − fn | Iin =
∞∑

m=n

∑
Iim⊂Iin

φim .
(2.9)

The energy as a sum over locations and scales It follows from (2.7) and
integration by parts, that:

ˆ
I

φ′
in · φ′

im = 0 (if φin �= φim).(2.10)

Thus,
ˆ
Iin

|df |2 −
ˆ
Iin

|df0|2 =
ˆ
Iin

|(f − f0)′|2 =
∑

Iim⊂Iin

ˆ
Iim

|φ′
im |

2.(2.11)

In particular, this holds for Iin = I.

The Schwarz inequality Let xs,t ≥ 0, s = 1, . . . , 2k, t = 1, . . . , k.

Lemma 2.2.

2k∑
s=1

(
k∑

t=1
xs,t

)2

≤
k∑

t=1
2t ·

⎛
⎝ 2k∑

s=1
x2
s,t

⎞
⎠ .(2.12)

Proof. For fixed s and t = 1, . . . , k, let v ∈ R
k denote the vector whose

components are xs,t2t/2 and let w ∈ R
k denote the vector whose components

are 2−t/2. Applying the Schwarz inequality, |〈v, w〉|2 ≤ |v|2 · |w|2, gives

(
k∑

t=1
xs,t

)2

≤
k∑

t=1
2tx2

s,t.(2.13)
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Summing over s and reversing the order of summation on the r.h.s. gives
(2.12).

Summation over pairs Iim ⊂ Iin For fixed Iin and k, set s = in+k, t = m−n,
1 ≤ s ≤ 2n+k, 1 ≤ t ≤ k.

For Iim ⊂ Iin , set

xs,t = |φn+t|Is = |φm|Iin+k
.(2.14)

By using (2.9), (2.13) and letting k → ∞, we get

|f − fn|2Iin ≤
∑

Iim⊂Iin

2m−n|φm|2Iim .(2.15)

Multiplying through by ‖Iin‖/|Iin |2and summing over Iin ⊂ I, gives

∑
Iin⊂I

‖Iin‖ ·
|f − fn|2Iin

|Iin |2
≤

∑
Iin⊂I

∑
Iim⊂Iin

2m−n · ‖Iin‖|Iin |2
· |φm|2Iim .(2.16)

Fundamental theorem of calculus Put
 
J

h = ‖J‖−1 ·
ˆ
J

h.

If h | ∂J = 0, then by the fundamental theorem of calculus,

|h|J ≤ |J | ·
 
J

|h′|(2.17)

Relation (2.17), together with the Schwarz inequality, implies:

(|h|J)2

|J |2 ≤
 
J

|h′|2.(2.18)

Remark 2.2. Relation (2.18) should be viewed as a Dirichlet-Poincaré-Sobolev
inequality.

We can now prove (2.2). As noted, this will complete prove Theorem 1.3.

Proof of Theorem 1.3. Since |Iim |2/|Iin |2 = 22(n−m), if we take h = φim , then
from (2.16) and (2.18) we get

∑
Iin⊂I

‖Iin‖ ·
|f − fn|2Iin

|Iin |2
≤

∑
Iin⊂I

∑
Iim⊂Iin

2n−m

ˆ
Iim

|φ′
im |

2.(2.19)
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Reversing the order of summation on the r.h.s. of (2.19) and using (2.1), (2.11),
gives

∑
Iin⊂I

‖Iin‖ ·
|f − fn|2Iin

|Iin |2
≤

∑
Iim⊂I

∑
Iin⊃Iim

2n−m ·
ˆ
Iim

|φ′
im |

2(2.20)

= 2
ˆ
I

|(f − f0)′|2.

This proves (2.2), which suffices to complete the proof of Theorem 1.3.

By applying (2.18) on each dyadic subinterval, Iin+1 , summing over in+1,
it follows that the secant approximations fn converge geometrically to f :

Lemma 2.3.

|f − fn|2I ≤ 2−n

(ˆ
I

|f ′|2 −
ˆ
I

|f ′
n|2

)
.(2.21)

Theorem 2.4 and Corollary 2.5 below are direct consequences of Theo-
rem 1.3 and Lemma 2.3. Their scale invariant versions can be applied on any
dyadic subinterval.

Theorem 2.4 (ε-regularity). If for n ≥ | log ε|
ˆ
I

|f ′
n|2 −

ˆ
I

|f ′
0|2 ≤ ε ·

(ˆ
I

|f ′|2 −
ˆ
I

|f ′
0|2

)
,(2.22)

then

|f − f0|2I ≤ ε ·
(ˆ

I

|f ′|2 −
ˆ
I

|f ′
0|2

)
.(2.23)

Corollary 2.5. For all ε > 0 and 0 < η < 1 there exists

n ≤ | log2 η| + 2η−1ε−2 ·
ˆ
I

|(f − f0)′|2(2.24)

such that at most a fraction η of the 2n dyadic intervals, Iin , are in Bε.

The case of R
m In generalizing the above argument to the case of R

m,
one encounters the following point. Typically, there does not exist a linear
function which agrees with a given (say Lipschitz) function on the boundary
of a dyadic cube. One way of dealing with this is the following.
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Every dyadic cube Fm ⊂ R
m can be subdivided into 2mm! congruent

dyadic orthoschemes. By definition, these are m-simplices which are in 1-1
correspondence with sequences of faces F 0 ⊂ F 1 ⊂ · · · ⊂ Fm. The vertices
of such an orthoscheme are the barycenters of the faces in the corresponding
sequence. These decompositions are nested in a manner generalizing (2.1).

From the density of Lipschitz functions in H1,p, it suffices to assume that
f is Lipschitz. Define fn to be the piecewise linear function whose values at
the vertices of each such dyadic orthoscheme of depth n agree with those of f .
The proof of Theorem 3.1 below generalizes mutatis mutandis to show that
fn

Hχp−→ f geometrically. Here, χ > 1 is the constant in the Poincaré-Sobolev
inequality in R

n; compare (3.4). The remainder of the argument is as in the
proof of Theorem 1.3; see (3.16) in the proof of Theorem 3.8 for the relevant
generalization of Lemma 2.2.

3. PI spaces

In this section we consider PI spaces i.e. metric measure spaces, (X, d, μ), for
which a doubling condition and a Poincaré inequality hold. They were intro-
duced by Heinonen and Koskela in their fundamental work on quasiconformal
and quasisymmetric maps; see [HK95]. Differentiation theory for PI spaces
was developed in [Che99]. The theory of Sobolev spaces was introduced via
(three) different approaches in [Ha96, Che99, Sha00]. Here, we continue the
quantitative discussion of Sections 15, 16 of [Che99] and of [Che12].

In [Che99], a function is said to be generalized linear if it is a constant
multiple of a harmonic distance function. Given a Lipschitz function, f : X →
R, it follows that for μ-a.e. x ∈ X and any tangent cone, Xx, any blowup
limit function, � : Xx → R, of f is generalized linear; see Theorem 10.2 of
[Che99]. Under mild assumptions, we will show that a nonzero generalized
linear function gives rise to a splitting of the measure, dr × Per(Xa), where
r is a distance function, Xa := {x | �(x) ≤ a} and Per( · ) is the perimeter
measure. Even for riemannian manifolds, a generalized linear function does
not lead to a splitting of the metric unless the Ricci curvature is nonnegative;
see Example 1.1.

A main result of the present section is a weakened version of Theorem 1.3
in which of necessity, ε-linearity is replaced by ε-harmonicity; see Theorem 3.8.
In this connection, one issue is that of controlling the oscillation of the norm
|df | of the differential of f ; compare the discussion of Section 4 where it is
assumed in addition that the Ricci curvature has a definite lower bound. The
issue is absent if we restrict Theorem 3.8 to the case of distance functions ρ.
However, due to the possibility of uncontrolled oscillations of the measure μ,
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the above restriction need not lead to an ε-product decomposition of μ mod-
eled on dr × Per(Xa). Rather, it leads to an ε-product decomposition of the
measure |dh|2 ×μ, where h is the harmonic function which ε approximates ρ.
This can also be phrased in terms of the modulus of certain path families.

As stated above, a metric measure space, (X, d, μ) is called a PI space if
the measure, μ, is doubling,

μ(B2r(p)) = κ · μ(Br(p)) (κ = κ(R), 0 < r ≤ R),(3.1)

and a (1, p)-Poincaré inequality holds for some p ≥ 1,

 
Br(x)

|f − fav| ≤ τr ·
( 

B2r(x))
|df |p

)1/p

.(3.2)

Here, fav denotes the average value of f on Br(x) and |df | is the norm of the
minimal generalized upper gradient, which is known to be μ-a.e. equal to the
pointwise Lipschitz constant,3

|df | = Lip f(x) = lim
r→0

sup
d(x,y)=r

|f(y) − f(x)|
r

.(3.3)

The basic differentiation theory for PI spaces established in [Che99] includes
the theory of Sobolev spaces H1,p, the fact that that Lipschitz functions are
generalized linear at the infinitesimal level, the existence of a measurable
differentiable structure, the fact that the minimal upper gradient is equal μ-
a.e. to the pointwise Lipschitz constant, the theory of p-harmonic functions
including the maximum principle and the sense in which one can solve the
Dirichlet problem.

From [HK95], a (1, p)-Poincaré inequality implies a Poincaré-Sobolev in-
equality for some definite χ > 1,

( 
Br(x)

|f − fav|χp
)1/χp

≤ τr ·
( 

B2r(x))
|df |p

)1/p

.(3.4)

In dimension 1, as in (2.18), we have χ = ∞. More generally, for Rn, if p = 1,
we have χ = n/(n−1). By a standard argument, a Neuman-Poincaré-Sobolev
inequality implies a Dirichlet-Poincaré-Sobolev inequality on a concentric ball
of 1/3 the radius.

3Part of the relevant theorem states that the limit in (3.3) exists for μ-a.e. x.
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Locations and scales From now on in this section we make convention that
“harmonic” means p-harmonic for some p (which our estimates depend). As
in Section 2, we will be concerned with the behavior of f on all locations
and scales. We interpret this as follows. For some sufficiently small γ with
γ ≤ γ(κ, τ, p) and 0 < τγ < 1, consider a sequence of maximal τγn-separated
subsets {xin} such that {xin} ⊃ {xim} if m ≥ n. One can view the collection
of locations and scales as the union over n of the set of Voronoi cells, Din ,
associated to {xin} for each fixed n.
Remark 3.1. For technical reasons, particularly if we do not assume that
(X, d) is a length space, it is better to consider the collection of balls
{Bγ(n−3)(xin)} and on every scale, divide these into a definite number of
families of well separated balls. Since this point plays no essential role, to
simplify the exposition, we will ignore it and work with Voronoi cells (and
corresponding Poincaré inequalities) rather than balls.

Secant approximations Let f : B1(x) → R, f ∈ H1,p. The solvability of
the Dirichlet problem for the Voronoi cells, Din , implies that as in Section 2,
we can define a sequence of piecewise p-harmonic secant approximations, fn,
such that fn |Din is p-harmonic and fn | ∂Din = f | ∂Din . The corresponding
sequence of energies is monotone nondecreasing since as n increases, a stronger
constraint on the piecewise harmonic function fn is imposed. Also, |dfn|Lp ≤
|df |Lp since this holds on each Din . In the following result on convergence of
secant approximations, the assumption of strict convexity plays a role.

Theorem 3.1. If μ-a.e., the pointwise norm on cotangent spaces is strictly
convex, then fn

H1,p
−→ f . Moreover, fn

Lχp−→ f geometrically.

Proof. As noted above, on each Din , we have |dfn|Lp ≤ |df |Lp . Thus, for fixed
n, applying the Poincaré-Sobolev inequality, (3.4), on each Din and summing
gives:

∑
in

μ(Din)
( 

Din

|f − fn|χp
)1/χ

≤ (τγ)np ·
∑
in

ˆ
Din

|df − dfn|p(3.5)

≤ (τγ)np
ˆ
B1(x)

(|df | + |dfn|)p

≤ 2p(τγ)np
ˆ
B1(x)

|df |p.

Since τγ < 1, we have fn
Lχp−→ f and the convergence is at a geometric rate;

compare (2.21).
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Clearly, the sequence, |dfn|Lp is nondecreasing and bounded above by
|df |Lp . However, since the H1,p norm behaves lower semicontinuously un-
der Lp convergence, (3.5) implies that lim supn→∞ |dfn|Lp ≥ |f |Lp . Thus,
limn→∞ |dfn|Lp = |f |Lp . By Remark 4.49 of [Che99], it now follows that
fn

H1,p
−→ f .

Remark 3.2. The energy sequence, |dfn|pLp
, can be viewed as a monotone quan-

tity which, according to the Dirichlet-Poincaré-Sobolev inequality, is coercive
in the sense that it controls the Lχp norm.
Remark 3.3. In considerable generality one can make a bi-Lipschitz change of
metric such that the new metric on the cotangent space is given by an inner
product; see [Che99]. In what follows, we make a weaker assumption, namely,
the uniform strong convexity of | · |2.

Strong convexity and coercivity If the function f on the vector space V is
convex, then

1
2f(w) + 1

2f(v) − f

(1
2(v + w)

)
≥ 0.

Given f , the quantity on the left depends only on the vector space structure.
Given in addition, a norm, | · |, on V , the function f is said to be strongly
convex if for some m > 0,

1
2f(w) + 1

2f(v) − f

(1
2(v + w)

)
≥ 1

2m · |v − w|2.

In the following Lemma 3.2 and in Theorem 3.5, we will assume that μ-a.e. the
square of the norm on the cotangent bundle, | · |2, is uniformly strongly convex.
This condition can be expressed in any of the following three equivalent ways,
each of which is useful. Namely, for some m > 0 and μ-a.e. x, we have:

1
2 |v|

2 + 1
2 |w|

2 −
∣∣∣∣12(v + w)

∣∣∣∣
2
≥ m

2 · |v − w|2,(3.6)

|w|2 − |v|2 ≥ 2
(∣∣∣∣v + 1

2(w − v)
∣∣∣∣
2
− |v|2

)
+ m|v − w|2,(3.7)

|w|2 ≥ |v|2 + 2
(∣∣∣∣v + 1

2(w − v)
∣∣∣∣
2
− |v|2

)
+ m|v − w|2.(3.8)

Note that if the norm comes from an inner product, then equality holds
in (3.6) with m = 1/2.
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Lemma 3.2 (Coercivity). Assume that the norm on the cotangent bundle of
(X, d, μ) is uniformly strongly convex. Let f ∈ H1,2 and f − f0 ∈ H1,2

0 , with
f0 harmonic and f0 | ∂Ω = f | ∂Ω. Then for any Ω,

ˆ
Ω
|df |2 −

ˆ
Ω
|df0|2 ≥ m ·

ˆ
Ω
|df − df0|2.(3.9)

Proof. Apply (3.7) pointwise with v = df0, w = df . Since 2f0+ 1
2(f−f0) | ∂Ω =

2f0 | ∂Ω, the global minimizing property of 2df0 implies (3.9).

Note: The assumption of uniform strong convexity will be in force through-
out the remainder of this section.

Corollary 3.3.
ˆ

Ω
|df |2p −

ˆ
Ω
|df0|2p ≥ mp ·

ˆ
Ω
|df − df0|2p.(3.10)

Let φn := fn+1 − fn. Using Vornonoi cells, Din , in place of dyadic subin-
tevals, Iin , define φin as in (2.8). Summing (3.10) over n gives the following
counterpart of (1.3). It states in scale invariant form that the energy differ-
ence on scale 1 bounds a definite positive multiple of the sum of the energies
on all locations and scales.

Corollary 3.4 (Sum over scales).
ˆ
Din

|df |2p −
ˆ
Din

|df0|2p ≥ mp
∑

Dim⊂Din

ˆ
Dim

|dφin |2p.(3.11)

We also get the following ε-regularity theorem.

Theorem 3.5 (ε-regularity). If for n ≥ | log ε|
ˆ
Din

|f ′
n|2p −

ˆ
Din

|f ′
0|2p ≤ ε ·

(ˆ
Din

|f ′|2p −
ˆ
Din

|f ′
0|2p

)
(3.12)

then

|f − f0|2pDin
≤ ε ·

(ˆ
Din

|f ′|2 −
ˆ
Din

|f ′
0|2

)
(3.13)
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Quantitative differentiation For χ as in the Poincaré-Sobolev inequality (3.4),
set

|g|Br(x) :=
( 

Br(x)
|g|χp

)1/χp

Definition 3.6 (ε-harmonicity). Let f0 be harmonic with f0 | ∂Br(x) =
f ∂Br(x). We say f |Br(x) is ε-harmonic if

|f − f0|Br(x)

r
≤ ε.(3.14)

Definition 3.7 (Bad locations and scales). For ε > 0, let Bε denote the
collection of Voronoi cells on which f is not ε-harmonic.

Theorem 3.8 (Quantitative differentiation). For all ε > 0, f ∈ H1,p(I), we
have

∑
Din∈Bε

μ(Din) ≤ κpε−2 ·
ˆ
B1(x)

|d(f − f0)|p.(3.15)

Proof. An examination of the proof of Theorem 1.3 shows the following. Sup-
pose γ, with 0 < γ ≤ γ(κ, p), is chosen sufficiently small relative to κ, p. Then
(modulo a standard covering argument) the only additional required modifi-
cation is the following generalization of Lemma 2.2 whose proof is completely
analogous to the proof of that lemma.

Let xs,t ≥ 0, s = 1, . . . , κk, t = 1, . . . , k.

Lemma 3.9.

(3.16)
κk∑
s=1

(
k∑

t=1
xs,t

)2

≤
k∑

t=1
κt ·

⎛
⎝ κk∑

s=1
x2
s,t

⎞
⎠ .

Remark 3.4 (Quantitative Hölder continuity). It is shown in [KS01] that De
Giorgi’s method for proving Hölder continuity in R

n can be adapted to the
case of p-harmonic functions, and more generally, quasiminimizers, on PI
spaces. In particular, in a quantitative sense, such functions are Hölder con-
tinuous. As a consequence, when applied to say 1-Lipschitz functions, the
conclusion of Theorem 3.8 can be supplemented by adding ε-Cα-Hölder. (In
this degree of generality, harmonic functions need not be Lipschitz unless an
additional condition holds; see [KRS03].)



2856 Jeff Cheeger

Harmonic distance functions It was observed in Section 7 of [Che99] that
a harmonic distance function has a representation in terms of its boundary
values; see (3.19) below. To this end, recall the definition of the upper and
lower McShane extensions, u∗, u∗ of an L-Lipschitz function u defined on a
closed subset E ⊂ X. We define

u∗(x) = max
y∗∈E

u(y∗) − L · d(x, y∗).

u∗(x) := min
y∗∈E

u(y∗) + L · d(x, y∗).
(3.17)

Then u∗, u
∗ are L-Lipschitz and

u∗(x) = u = u∗ (on E).
u∗(x) ≤ u ≤ u∗ (on X).

(3.18)

Thus, u∗ and u∗ are the minimal and maximal extensions of u |E which are
L-Lipschitz

For a generalized linear functions, �, and A = ∂Br(x), uniqueness for
solutions of the Dirchlet problem implies that a generalized linear function
has a representation in terms of its boundary values:

�∗ = � = �∗.(3.19)

Product decompositions μ = dr × Per(Xa) In this subsection, we consider
product decompositions of μ associated to generalized linear functions, or
equivalently, harmonic distance functions. We assume that (X, d) is a length
space. For brevity, we will restrict attention to p = 2. The general case is
similar. For convenience, in the following definition we make a normalization
which can always be achieved by scaling. Let ρ : B2(x) → R denote a distance
function. Then |dρ| ≡ 1. Assume further that the range of ρ is [−2, 2] and
ρ(x) = 0; compare (3.19).

Definition 3.10 (Cylinder). The set C is a cylinder if it is the union of all
minimal geodesic segments, γ(s) ⊂ B2(x) of length 1 and joining ρ−1(1) to
ρ−1(0) ∩B1/2(x). For 0 < s ≤ 1, set Cs := C ∩ ρ−1(s).

Definition 3.11 (Cross section). Set A(s) := Per(Cs)(ρ−1(s)).

It follows from the coarea formula (see Proposition 4.2 of [Mir03]) that

μ(Cr) =
ˆ r

0
A(s) ds.(3.20)
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Assume now that ρ is also harmonic. To indicate this special case we write
� for ρ, where |d�|2 ≡ 1.
Remark 3.5. In this instance, the cylinder Cr is a special case of what is
known as a flux tube.
Were we in the smooth riemannian case, application of the divergence theorem
to the vector field � · ∇�, would give:

μ(Cr) = rA(r).(3.21)

Note in this connection that the contribution to the r.h.s. from the “curved”
part of ∂Cr vanishes since the ∇� is tangent to this part. Thus, we are left
with the contribution, A(r), from �−1(r) along which the normal derivative
of � is ≡ 1. Differentiating (3.20), (3.21), gives d

dr (r · A(r)) = A(r). Thus,

d

dr
A(r) = 0,(3.22)

which is equivalent to the product decomposition

μ = dr × A(a) (for μ−a.e. a).(3.23)

A variant of the above argument can be carried out in the PI case if
in addition to (3.6)–(3.8), we assume that μ-a.e. the squared norm on the
cotangent space is C1 smooth, with a definite upper bound on the convexity;
see (3.24) below. For temporary notational convenience, set E(v) = |v|2 and
let dE denote the differential of E viewed as a function on a fixed cotangent
space TX∗

x. We assume that for some constant, 0 < M < ∞,

E(w) − E(v) − dE(v)(w − v) ≤ M · E(w − v).(3.24)

Remark 3.6. Relation (3.24) holds if the norm comes from an inner product.
In that case, we have equality for M = 1 and dE(v)(w− v) = 2〈v, v−w〉. In
general, dE(v)(w− v) is the directional derivative of the norm function | · |2
at the point v in the direction w − v. Alternatively, as in the case of inner
products, it is equal to 2|v| times the component of (w−v) in the direction of
v/|v| with respect to the direct sum splitting of the tangent space at v given
by the v direction and the tangent space to the level set E−1(v).

Under the above assumptions, for any Ω with finite perimeter, we have
the following. Let h : Ω → R be harmonic and let φ | ∂Ω ≡ 0. Then for
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t > 0, (3.24) gives

0 ≤
ˆ

Ω
(E(dh± tdφ) − E(dh) ≤

ˆ
Ω
±tdE(dh)(dφ) + t2M · E(dφ).(3.25)

Thus, |
´
Ω |dE(dh)(dφ)| ≤ tM

´
Ω E(dφ). Since t can be taken arbitrarily

small, this implies
ˆ

Ω
dE(dh)(dφ) = 0.(3.26)

Let s(x) = d(x, ∂Ω) denote distance to ∂Ω. For δ > 0 let ψ ≡ 1 on
Ω \ Tδ(∂Ω). On Tδ(∂Ω), put ψ := δ−1s. Let φ = ψh. From (3.26) we get

0 =
ˆ

Ω\Tδ(∂Ω)
|dh|2 +

ˆ
Tδ(∂Ω)

d(dh)(ψ · dh + dψ · h).(3.27)

If we use the coarea formula on Tδ(∂Ω), and let δ → 0, the first term on the
r.h.s. goes to zero and we get:

Proposition 3.12.
ˆ

Ω
|dh|2 =

ˆ
∂Ω

h · dh
ds

,(3.28)

where the integral on r.h.s. is with respect to the the perimeter measure Per(Ω)
on ∂Ω.

By applying (3.28) to the h and to 1 − h we get:

Corollary 3.13 (Equipartition for cylinders). For 0 ≤ a ≤ 1,
ˆ
Ca

|dh|2 = a

ˆ
C1

|dh|2.(3.29)

Using Corollary 3.13 and arguing as in (3.20)–(3.23) gives:
ˆ r

a

A(s) = rA(r).

d

dr
A(r) ≡ 0.

(3.30)

Theorem 3.14. Let (X, d, μ) denote a PI space which is a length space
and for which (3.6)–(3.8) and (3.24) hold. Let C denote a cylinder as in
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Definition 3.10. Let � : C → R denote a harmonic distance function. Then
on C, the measure μ has a product decomposition μ(Cr) = r × A(a), for
almost all a ∈ [0, 1].

ε-harmonic distance functions In this subsection we continue the discussion
of Section 15, 16, of [Che99]. Specifically, we consider ε-harmonic distance
functions. We show that Theorem 3.8 leads to a quantitative counterpart of
the product decomposition μ(Cr) = r × A(a) of Theorem 3.14; see Theo-
rem 3.15. As indicated by (3.29) and Example 3.1 below, this applies to the
measure |dh|2μ, though not necessarily to μ itself.
Example 3.1. Let h = r + εφ(r/ε) where φ : R+ → R+ is a smooth function
with 1/2 ≤ φ′ ≤ 1, φ(1) = 0. Thus, h(1) = 1. Then the distance function r is
ε-harmonic if h is harmonic with respect to the measure with density A(r) ·dr
if h′′ + (A′/A)h′ = 0. Thus, h(s) determines A(s) up to a constant multiple
and we can choose

A = 1
h′ = 1

1 + φ′(r/ε) .(3.31)

Note that the measure with density A−1(s) · ds is weakly close to 1 since
ˆ r

0
A−1(s) = h(r) = r + εφ(r/ε).(3.32)

On the other hand, it is easy to construct examples which show that no
matter how small we take ε > 0, the measure with density A(s) ds need not
be weakly close a measure with density c ds for some constant c. For this, use
the identities (1 + x) + (1− x) = 2, while 1/(1 + x) + 1/(1− x) = 2/(1− x2),
for 0 < x ≤ 1/2.

If for suitable ε � 1, take φ = 1
2 sin(r/ε). Then φ′(r/ε) is highly oscilla-

tory. If instead we take h = r + ε2 sin(r/ε) then g is close 1 and the measure
is close to splitting. However, the mean curvature A′/A is highly oscillatory.
Note that in these cases, |dh|2 = |h′|2 and

ˆ 1

0
(h′)2Adr =

ˆ 1

0
h′ = 1.(3.33)

Theorem 3.8, leads to a corresponding ε-equidistribution result for the
Dirichet energy on cylinders.
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Theorem 3.15 (ε-equidistribution). For all ε > 0, there exists δ > 0 such
that if r : C1 → [0, 1] is a distance function and h is a harmonic function
such that |r − h|L2χ < δ, then

∣∣∣∣
ˆ
Ca

|dh|2 − a

ˆ
C1

|dh|2
∣∣∣∣ < ε

ˆ
C1

|dh|2.(3.34)

Proof. Recall the (quantitative) bound of [KS01] on the Hölder continuity of
harmonic functions which was mentioned in Remark 3.4. From this and the
fact that r is a distance function we can assume that |r − h| < ε where the
norm is the uniform norm on the cylinder C1.

Let h0 denote the harmonic function on C1 such that h0 |C1 = r |C1. By
the maximum principle, it follows that |h− h0| < 2ε. Now, the claim follows
from (3.29) of Corollary 3.13.

Remark 3.7. Theorems 3.8, 3.15, are potentially of interest in connection with
several previous works. Keith showed that distance functions can be used to
provide an atlas for the differentiable structure; see [Kei04]. Bate showed that
the existence of a Lipschitz differentiable structure on a metric measure space
can be characterized in terms of the existence of sufficiently many independent
Alberti representations; see [Bat15]. The decomposition, μ∞ = dr×Per(Xa),
is an Alberti representation of a very special type; [Alb93]. Eriksson-Bique
showed that RNP-differentiability spaces are PI rectifiable; see [EB19].

4. Ricci curvature bounded below

In the context of spaces with Ricci curvature bounded below, one can pass
from Theorem 3.8, to a weakened quantitative differentiation theorem for Lip-
schitz functions. Here, although the approximation is by almost generalized
linear functions the notion of scale γ = γ(m, ε) is allowed to depend on the
guaranteed accuracy of the approximation. Additionally, the notion of what
constitutes a good location and scale is weakened in that the generalized lin-
ear approximation is not asserted to hold on the entire domain, but only on
subdomains of at least a definite size. The main issue is that of controlling
the oscillation of the gradient of the approximating harmonic function; see
Theorem 4.2. This is the one we will discuss.

In the context of structure theory for spaces with Ricci curvature bounded
below, the quantitative discussion of harmonic functions which are close to
distance functions began with [Col96a, Col96b, CC96]; see also [CG72]. A
key result of [CC96] is Theorem 6.62, the quantitative splitting theorem. In
present context, the pertinent hypothesis in Theorem 6.62 is the assumption
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that the oscillation of the norm gradient of the relevant harmonic function is
sufficiently small; see (6.32) of [CC96] and compare also p. 951 of [CCM95].
This is the subject of our next result.

Theorem 4.1. For all ε > 0 there exists γ = γ(m, ε), with 0 < γ < 1,
such that the following holds. Let RicMm ≥ −(m − 1), ∂B3(x) �= ∅ and let
h : B2(x) → R be harmonic with |h| ≤ 1. Then for all n ≥ 1,

 
Bγn (x)

| |dh| − |dh|av | < ε.(4.1)

Proof. By the Cheng-Yau gradient estimate, without essential loss of gener-
ality, we can assume say |dh| ≤ 1 on B1(x). Given ε > 0, by scaling we can
reduce to the case, Ric ≥ −δ(ε) > 0 sufficiently small. To simplify the exposi-
tion we will assume Ric ≥ 0, which again entails no essential loss of generality;
see (6.32) of [CC96]. Then by Bochner’s formula, it follows that |dh|2 is sub-
harmonic. Now, (4.1) follows from Theorem 4.2 below which can be viewed as
an effective version of P. Li’s mean value theorem for bounded subharmonic
functions. Li’s theorem ([Li86]) states that that if g : Mn → R is a bounded
subharmonic function on a complete manifold Mn with RicMn ≥ 0, then

lim
r→∞

 
Br(x)

g = sup
Mm

g.(4.2)

A very short proof of (4.2) is given on p. 952 of [CCM95]. A variation on that
argument gives the following effective result.

Theorem 4.2. There exists r(m, ε) with 1 ≥ r(m, ε) > 0 such that the fol-
lowing holds. If RicMm ≥ −(n − 1), and k : B1(x) → (0, 1] is subharmonic
with maxB̄1(x) k = 1, then there exists r with 1 ≥ r ≥ r(m, ε) such that

 
Br(x)

|k − kav| < ε.(4.3)

Proof. Set kr = maxBr(x) k. Since k is subharmonic, by the maximum prin-
ciple, kr is a monotone nondecreasing function of r. Let 0 < γ = γ(ε,m) <
1/2, c(m) ≥ 1, be specified below. Put ε′ = ε/c(m). The argument on
p. 952 of [CCM95] shows that c(m) can be chosen such that the following
holds. If for some integer i, we have kγ2i+2 ≥ (1 − ε′)kγ2i , then

 
Bs(x)

k ≥ (1 − ε/2)
 
Bγ2i (x)

k (for all s with γ2i+1 ≤ s ≤ γ2i).(4.4)
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Let N be the least integer such that (1 − ε′)2N < ε. Then either (4.4)
holds for some i ≤ N − 1, or (since k ≤ 1) we have kγn+2 ≤ ε. In the latter
case, once γ has been specified, we are done. So assume (4.4) holds for some
i ≤ N − 1. By observing Vol(Bγ2i+1(x)) from y ∈ ∂B2(x), it follows from
relative volume comparison that there exists c1 = c1(n) such that

Vol(Bγ2i+1(x)) ≤ c1γ
−1 · Vol(Bγ2i(x)).(4.5)

By taking γ < ε/2c1, it follow from (4.4), (4.5) that (4.3) holds.

This completes the proof of Theorem 4.1.

Remark 4.1 (Generalizations). The above discussion extends in a straightfor-
ward way to the solutions to the solutions to elliptic equations as considered
in [CC96]. A particularly significant case is the of solutions to the Poisson
equation whose values on some ∂Br(x) agree with those of the distance func-
tion r2.
Remark 4.2. It should also be possible to extend the above discussion to the
synthetic Ricci context.

Appendix A. Some recent applications

Here, we very briefly summarize some recent consequences of quantitative
differentiation ideas in geometric analysis. As noted in [CKN11, Che12], there
are 3 essentials for a quantitative differentiation theorem to hold.

1) A locally defined nonnegative energy E(f).
2) An a priori bound on the global energy E(f).
3) Coercivity: If in a quantitative sense, the energy difference E(fn)−E(f0)

is sufficiently small and n is sufficiently large, then in a suitable scale
invariant sense, f is close to the minimizer. Hence, approximate special
structure is present.

In Theorem 1.3, 3) follows from the Dirichlet-Poincaré-Sobolev inequality,
(2.18), written in a form which is summable over scales.

Prior to the importation of quantitative differentiation ideas, a typical
result in partial regularity theory gave a lower bound on the Hausdorff codi-
mension of the singular set for the problem in question. (An exception was
the fundamental work of Simon on rectifiability of singular sets; [Sim95].)
Pioneering contributions were due to De Giorgi, Federer, Fleming, Almgren,
Simons, Schoen and Uhlenbeck. These results were gotten by iterated blow
up arguments, also known as dimension reducing; [Fed70]. In the context of
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partial regularity theory, quantitative differentiation can be thought of as a
quantitative replacement for the iterated blow up technique.

In [CK10], by means of blow up arguments, it was proved that a 1-
Lipschitz map from the 3-dimensional Heisenberg group with its Carnot-
Carathéodory metric to the space L1 cannot be bi-Lipschitz. Quantitative
differentiation ideas were used in [CKN11] to show that such a 1-Lipschitz
map must compress distances by any preassigned amount, somewhere on or
above a definite scale. In this discussion, the relevant special structure turns
out to be almost monotone sets. These are shown to be almost half-spaces.
Both the kinematic formula of [Mon05] and the Poincaré-Sobolev inequality
play a key role in establishing 1) and 2). Relation 3) is quite nontrivial.

Beginning with [CN13], beyond lower bounds on Hausdorff codimension,
the importation of quantitative differentiation (and related ingredients) into
nonlinear elliptic/parabolic geometric pde led to bounds on the volumes of
tubes around singular sets of a fixed positive radius. Apart from borderline
cases, these, were sharp. Crucially, there is a definite amount of regularity
outside the given tube. Examples include Einstein metrics, minimal subman-
ifolds, harmonic maps, mean curvature flow, harmonic map flow. In these
instances, even after finding the relevant energy, the proof of coercivity can
be highly nontrivial. Other key ingredients included the quantitative stratifica-
tion, quantitative cone splitting and covering arguments; see [CN13]. Typically
these results depend on the existence of some sort of elliptic or parabolic es-
timate in involving a coercive monotone quantity. Often (though not in the
case of Lipschitz maps to L1) the monotone quantity can be viewed as an
energy density and the monotonicity holds pointwise.

To address the borderline cases in partial regularity theory, Naber-Valtorta
and Jiang-Naber isolated the concept of a neck region and developed a decom-
position and structure theory for such regions. Roughly speaking, these are
transition regions between the regular and singular parts. The fine behavior
in these borderline cases depends on the particular equation. For minimiz-
ing harmonic maps, the gradient is shown to be quantitatively in weak L3;
[NV17]. A well known example shows that L3 is false. On the other hand,
in the noncollapsed Einstein case, the full curvature tensor has a definite L2
bound; [JN21]. The earlier quantitative differentiation ideas, which were not
as intensively technical, gave Lp for all p < 3 and Lp for all p < 2 respectively.
Of equal importance, the neck region theory also provides structure theorems
for singular sets in the form of generally applicable rectifiability theorems.
For a recent application of neck region theory to the structure of noncol-
lapsed Gromov-Hausdorff limit spaces with Ricci curvature bounded below,
see [CJN21].
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