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Abstract: We discuss one of the many topics that illustrate the in-
teraction of Blaine Lawson’s deep geometric and analytic insights.
The first author is extremely grateful to have had the pleasure of
collaborating with Blaine over many enjoyable years. The topic to
be discussed concerns the fruitful interplay between nonlinear po-
tential theory; that is, the study of subharmonics with respect to a
general constraint set in the 2-jet bundle and the study of subsolu-
tions and supersolutions of a nonlinear (degenerate) elliptic PDE.
The main results include (but are not limited to) the validity of the
comparison principle and the existence and uniqueness to solutions
to the relevant Dirichlet problems on domains which are suitably
“pseudoconvex”. The methods employed are geometric and flex-
ible as well as being very general on the potential theory side,
which is interesting in its own right. Moreover, in many important
geometric contexts no natural operator may be present. On the
other hand, the potential theoretic approach can yield results on
the PDE side in terms of non standard structural conditions on a
given differential operator.
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Our main aim is to give a partial survey of a research endeavor which was
initiated in a trio of papers of Harvey and Lawson [22], [23] and [24] published
in 2009 that has grown into a wide ranging investigation with many interesting
and important avenues still to pursue. For simplicity of the exposition and
in order to make the discussion more accessible to analysts, we will focus on
the Euclidean setting of open subsets X of R", although X could also be a
Riemannian manifold as in [26] and [30], or an almost complex manifold as
n [35]. We will emphasize the fruitful interplay between nonlinear potential
theory; that is, the study of the family of F-subharmonics with respect to a

given subequation (constraint set)

(1.1) FCT*X)=XxJ*=XxRxR"x8(n), XcCR"
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and the study of solutions/subsolutions/supersolutions of a given fully non-
linear (elliptic) PDE

(1.2) F(x, J*u) := F(z,u(x), Du(z), D*u(z)) =0, x€ X C R"

determined by a given operator F € C(J?*(X)). The equation (1.2) will also
be written more succinctly as

(1.3) F(J?u) =0 on X.

Here J? is the vector space of 2-jets. We will use the notation J2u for the
second order Taylor development of u indifferently with respect to the differ-
entiability of u. This interplay has been developed in detail in [12], [13], [11]
and [14].

Given the fully nonlinear setting, one cannot expect solutions to be regular
in general, and distribution theory is generally available for convex subequa-
tions or equations in divergence form. Hence all notions are to be interpreted
pointwise in the viscosity sense that will be recalled in Definition 2.4 (see [34]
for the equivalence of the distributional approach and the viscosity approach
in the convex case).

There is a satisfying unification that comes from a potential theoretic
(pluripotential theoretic) viewpoint as it includes classical (Laplacian) sub-
harmonics, convex and quasiconvex functions as well as new geometric po-
tential theories (some of which are useful for theoretical physics) as well as
an immense universe of first and second order potential theories determined
by classes of (degenerate) elliptic operators.

We now describe the main motivating principles. There are many op-
portunities for cross-fertilization and synergy between the potential theory
and the operator theory. First, the conditions imposed on a constraint set
F correspond to and encode structural conditions on the operator F'; for
instance, a convex constraint set J corresponds to a concave operator F.
Second, the subequation F “frees” a given PDE from any particular form of
F (many different F' correspond to the same F); this is an important point
in the work of Krylov [52] on the general notion of ellipticity. Moreover, F
“liberates” the user from needing an operator F' to apply nonlinear elliptic
potential theory. Third, “forgetting” about the operator leads to interesting
questions that at first glance might not seem important for operator theory
and provides a “machine” for formulating new conjectures and theorems. For
instance, taking one’s cue from known results in pluripotential theory or con-
vex analysis, one is led to seek generalizations in other potential theoretic
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situations as well. Some examples of this will be discussed in Subsection 1.2
below. In this way, one can find “welcome surprises” in the operator theory.
Fourth, along with a rich abundance of geometrically motivated potential
theories, there are many new PDEs to discover. For example, as will be dis-
cussed in Subsection 1.1, while every calibrated geometry has an underlying
potential theory, known “natural” smooth operators are “rare gems”. Never-
theless, for any given subequation J, one can construct several “non smooth”
operators. One good example is the construction of the so-called canonical
operator associated to a given subequation. This is a canonical construction
that is scattered out, first in [26, Remark 14.11] and [25, Examples 3.4 and
3.5] and then better explained in [43, subsection on canonical operators in
section 6] and [11, Proposition 11.17]. It includes the truncated Laplacians,
among the many examples, so it might be referred to as the “canonical eigen-
value operator construction”. These operators are discussed a bit further in
Example 1.16. Another good example is the signed distance operator

(1.4) Flog) = dist.(J, OF,) JEF, |
—dist(J,0F,) J€ J*\ Fu

where

(1.5) Fo={JeJ*: (x,J) € F}

is the fiber of F over x € X. The operator (1.4) was studied in the pure
second order case in Theorem 3.2 of [52]. Finally, in the rare cases when a
natural operator F' is known for a fixed F-potential theory, the operator F
will have much to say about the potential theory; for example, by taking
derivatives of the equation.

Having stated the main aims and philosophical motivations, we proceed
to describe the origins and objectives, along with key concepts, nice features,
some results and significant examples which illustrate the theory. We begin
with discussion of the origins of the investigation which led to a hierarchy of
potential theories.

1.1. Potential theories: from calibrations to subequations

The story begins in calibrated geometry. The geometric side of calibrated
geometry was developed to emphasize the calibrated submanifolds which are
those submanifolds for which the calibration restricts to be the volume form.
Said infinitesimally, a calibration ¢ of degree p restricts to be a function on
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the Grassmannian of oriented p-planes where it attains a maximum value of
one on the subset G(¢) of p-planes calibrated by ¢. In turn, a submanifold is
calibrated by ¢ if its tangent planes are calibrated by ¢.

The basic example (beyond calibrated geodesics), going back to Wirtinger
in the last century, is the Kéhler /symplectic form on C* = R?". Here the cal-
ibrated submanifolds are simply the complex curves in C”. This geometric
example, which has an analytic side involving a rich and well developed po-
tential theory (or more precisely a pluripotential theory), then cries out for a
pluripotential theory for other calibrations, providing the impetus to search
for general ¢-potential theories.

The ¢-subharmonic (or ¢-plurisubharmonic) functions u are easy to define
for smooth functions (see [22]). One simply requires that the restriction of u to
¢-submanifolds is classically subharmonic (with respect to the Laplacian A).
This imposes a constraint on the second derivative (Hessian matrix) D?u of
u at each point. This constraint condition is that D?u restricts to have trace
zero on any p-plane calibrated by ¢. More precisely, by identifying a p-plane
W with the orthogonal projection Py onto W and by using the natural inner
product on the space S(n) of second derivatives (i.e. the symmetric matrices),
the second derivative constraint set determined by G(¢) is just the polar cone

(1.6) G(¢)°:={AeS(n): (A Py) =tr(Aw) >0, YW € G(¢)}

of the set G(¢). This C*™ potential theory suffices for many purposes (see
[22]) where it was noticed, as a (big) surprise, that the calibration plays a
minor role subordinate to the set G(¢) of distinguished/calibrated p-planes,
including the case of G being the full set of p-planes (see [24], [27], [28] and
[31]), thus extending the realm of ¢-potential theories to G-potential theories.

In fact, replacing G(¢) by any closed set G C S(n) and then defining
“G-submanifolds” and “G-plurisubharmonic functions” as above, it is still
possible to obtain a robust G-pluripotential theory. Again, the constraint
condition on the second derivatives of a function u at each x € X

(1.7) (D*u(x), Py) := tr (DQu(x)W) >0, VIV €G; ie., D*u(z) € G°,

defines G-plurisubharmonicity of « on X. These functions u are characterized
by their restrictions to G-submanifolds M that are also minimal; « is subhar-
monic with respect to the induced Laplacian on M (see [33]). Therefore it is
justified to state that

G-pluripotential theory is the correct pluripotential theory for the geometry
of minimal G-submanifolds.
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Note that if G := G(¢) with ¢ a calibration, each G-submanifold is au-
tomatically actually absolutely volume minimizing (see [21]) and hence a
minimal submanifold. Potential theory based on a closed subset G of the
p-Grassmanian will be referred to as the geometric case.

This unifies many known cases and includes lots of new interesting cases.
First, as our basic motivation, this includes classical pluripotential theory in
complex analysis by taking G to be the Grassmannian of complex lines in C™
as a subset of real 2-planes. Second, taking G to be the full Grassmannian
G(1,R™) of real lines in R™ we include convex function theory, providing more
precision to the well-known parallel between pseudoconvexity and convexity.
Third, this leads to new surprising examples not related to calibrations. As
an example, for each degree p, let G be the full Grassmannian of p-planes
in R™. One obtains a p-pluripotential theory associated with the geometry of
all minimal submanifolds of dimension p. Another noteworthy new example
is Lagrangian pluripotential theory, defined by taking G = LAG to be the
set of Lagrangian n-planes in C™. This is the appropriate potential theory for
minimal Lagrangian submanifolds [41]. These are the two cases where new
natural polynomial operators were discovered. First, the p-fold sum operator
whose domain is the subequation G(p, R™)° (see [24, (10.12)]) and second the
Lagrangian Monge-Ampére operator (see [24, (10.11)] and [41]).

For the next level of generality, one can focus entirely on the second
derivative constraint set F C S(n), which in the geometric case is given by
the polar F = G° of GG. There is surprising simplicity here as well. Other
than F being closed, a single condition on F described below, which is
called positivity (P), is needed. This condition (P) ensures that the notion
of F-subharmonicity for upper semicontinuous u agrees with the definition
D?u(z) € F for C? functions. Such sets F are called subequations in S(n).
This is the pure second order constant coefficient case. This condition, besides
providing the weakest possible condition ensuring coherence between the two
definitions of F-subharmonicity should also be viewed as the weakest possible
form of ellipticity.

As with classical potential theory (for the Laplacian), the regularity of a
general G-subharmonic function should only be required to be upper semi-
continuous. This extension, although carried out with Dirichlet duality and
subaffine functions in [24], is equivalent to a viscosity theory formulation (see
Remark 4.9 of [24]). The viscosity approach is more direct and can used easily
for potential theories for subequation constraint sets with variable coefficients
and dependence on all the jet variables (as will be discussed in the next
paragraph). However, the (Dirichlet) duality continues to be important. It
clarifies the notion of superharmonics and leads to straightforward proofs
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of the comparison principle. This is examined extensively in the constant
coefficient setting in [11].

As a final step in the delineation of a hierarchy of potential theories, it
is natural to consider the extension from a pure second order constraint on
second derivatives in the Euclidian setting of open subsets X C R" to the case
of X being a Riemannian manifold [26] or an almost complex manifold [35].
In local coordinates, this constraint will have variable coefficients and may
depend on the full Taylor development up to second order (not just second
derivatives). Returning to the Euclidian setting, this suggests considering
subequation constraint sets F C J 2(X ) =X xJ 2 and their associated
potential theories. The needed axioms for a robust potential theory are given
in Definition 2.1 Briefly stated, one adds two additional axioms (negativity
(N) and topological stability (T)) to the positivity (P) and requiring that F be
closed. The interplay between nonlinear potential theory and fully nonlinear
elliptic PDEs most naturally takes place at this level of the hierarchy. This
will be discussed further, beginning in Subsection 1.3.

An important part of the story is that in studying this hierarchy of possi-
ble levels of potential theories; ¢-subharmonics, G-subharmonics and finally
F-subharmonics, a distinguished (differential) operator F' is missing from
the picture. This absence of an operator has advantages (and disadvantages)
which have been noted above, and will be amplified below.

1.2. Potential theoretic results suggested by complex analysis

A surprising number of results in complex analysis (of several variables) can
be established in greater generality in nonlinear potential theory. We mention
seven such topics that were suggested by results in pluripotential theory. Most
will be stated in the pure second order case, but they provide impetus for
investigating them at all levels of the potential theory hierarchy. Here we are
sketchy, leaving many definitions to the references. Hence, rather than giving
formal statements of theorems, we will recall the main results informally.

1) The Andreotti-Frankel Theorem for subequations F C S(n): (see
[27] for details). First, F-conver domains can be defined. Then the notion of
F-free submanifolds extends that of totally real submanifolds and one has the
following result.

An F-conver domain has the homotopy type of a CW -complex of dimension
less than or equal to the maximal dimension of an F-free subspace.

This maximal dimension is easy to calculate in the multitude of examples.
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2) The Levi Problem in p-convex geometry: In [31] this problem is
solved, including the case of non-integer p. One has

Local p-convexity implies global p-convexity:

3) Boundary pseudoconvexity: For bounded domains 2 with smooth
boundary the following local to global result was established in Theorem 5.12
of [26] for cone subequations F C S(n):

If 092 is strictly F-pseudoconvex at each point, then 02 has a smooth strictly
F-subharmonic defining function.

For subequations F C S(n) which are not cones, boundary convexity for
F is governed by the asymptotic behavior of F at infinity. This asymptotic
behavior is captured by a new subequation which is a cone, so that the
above can be applied. See also Corollary 11.8 of [26] (and an incomplete
discussion after the proof) for the general case.

If strictness is dropped, then boundary pseudoconvexity does not imply
existence of a global plurisubharmonic defining function in complex analy-
sis. On the other hand, Forsterni¢ recently proved that this is the case if
G = G(p,R") and F = G° (see [18]). This is particularly interesting as it
runs counter to our point made here that generally speaking several complex
variables is usually the source of results for the other potential theories.

4) F-pluriharmonics for subequations 7 C S(n): These functions are
the analogue of the real part of holomorphic functions. They are defined by
requiring that the second derivative belongs to the largest linear subspace of
F, referred to as the edge of F (see [44]). In particular, in Theorem 9.3 of [44]
conditions on F are found that ensure that the family of functions that can
be written locally as the maximum of a finite number of F-pluriharmonics
suffices for solving the F-Dirichlet problem via the Perron process.

5) Removable singularities for subequations 7 on manifolds: Pluri-
potential methods for proving removable singularity theorems in several com-
plex variables can be extended to F-pluripotential theory and used to prove

Removable singularity theorems in F-potential theory.

See [32] for details.

6) Tangents to subharmonics: Kieselman’s theory of tangents to pluri-
subharmonic functions in complex analysis extends to JF-plurisubharmonic
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functions if F is in a broad family of convex cones. The tangents to an F-
plurisubharmonic function w can be used to study the singularities of u. See
[42] and [40] for details. It is shown that

Tangents always exist and are mazximal functions.

Maximal functions can be thought of as F-subharmonic functions with cer-
tain singularities allowed. The strongest form of uniqueness of tangents is
when strong uniqueness holds; that is, the tangent of an F-plurisubharmonic
function equals the density times the Riesz kernel. It is shown that, except
for P (where it is false)

Strong uniqueness of tangents holds if F is O(n) invariant.

This strong uniqueness fails in all three of the basic cases F = P, F = P¢
(the case studied by Kieselman) and F = Py (the quarternionic case).

7) A Bombieri-H6rmander-Siu type structure theorem: The result
for the sets of high density for a plurisubharmonic function in complex analysis
has a weakened version which extends to F-subharmonic functions for many
convex F C S(n), concluding that

Strong uniqueness of tangents implies that sets of high density are discrete.

See section 14 of [42] for details.

Recently, Chu [10] dramatically improved this result by showing that the
singular set of an F-subharmonic function stratifies, and proving each stratum
is a rectifiable set.

1.3. The Dirichlet problem

Much can be said about the interplay between potential theory and operator
theory by studying the Dirichlet problem. We will focus here on the Euclidian
(coordinate chart) setting. We assume that X is an open subset in R™ and
consider bounded domains Q2 CC X with smooth (i.e. C?) boundaries and
boundary data functions ¢ € C(0912). One can state the standard Dirichlet
problem in a vague form as:

(DP) — Vague Formulation: Find a function h € C(Q) which satisfies:

1) his a solution on £, and
2) hjaao = .
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In order to be precise as to the meaning of solution in 1), one needs to
start with either a subequation constraint set F C J2(X) or an operator F
on the 2-jets J2(X). We want to make both choices and then bring them
together.

The Dirichlet problem involves three basic questions: uniqueness, ex-
istence and regularity. Uniqueness follows from the comparison principle

(1.8) (Comparison) u<w ond = u<w onf)

for every pair of subharmonics/superharmonics for F (or for every pair of
subsolutions/supersolutions to the equation F(J?u) = 0). Existence is estab-
lished by Perron’s method. The candidate solution is defined pointwise as the
upper envelope

(1.9) u(z) :=supw(z), =€,
wEF

of the Perron family § of subsolutions w with wjpq < ¢. For comparison,
roughly speaking, the size, but not the shape of the domain €2 can be of impor-
tance. By contrast, for existence one has a dichotomy between subequations
F where existence holds for all domains (with 92 smooth), and subequations
JF with an interesting distinguished boundary geometry of F-pseudoconvexity
required for existence (see Subsection 1.4 below). It is important to have a
condition on the boundary 02 which is a local (geometrical) requirement.
Finally, the vast and important regularity question will, in essence, not be
treated here.

We now begin to describe the main ingredients in the two approaches, po-
tential theory and operator theory. The potential theoretic formulation starts
with a constraint set F C J?(X), while the operator theoretic formulation
starts with an operator F' whose domain is a subset G C J%(X) (G = J?*(X)
is allowed and, in fact, is frequently required in the literature). Additional
conditions must be imposed in either case.

(DP) — Potential Theoretic Formulation: Find h € C(2) which satis-
fies:
1a) h is F-subharmonic on ) (i.e. J>+*h C F, for each z € Q).
1b) —h is F-subharmonic on Q (i.e. J>+(—h) C F, for each z € Q). Equiv-
alently, we will say that h is F-superharmonic on ).
2) hjpo = .
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Here and below, Int denotes the interior of a set, F, := {J € J*: (z,J) € F}
is the fiber of F over z, and F is the dual of F (see Definition 2.2). The space
J2Fh of upper test jets of h at x are defined in (2.6) (also see Defintion 2.4).
One can easily see that the definition 1b) is equivalent to saying that the lower
test jets of h satisfy J2~h C (Int F,)¢, for each z € 2. Additional conditions
placed on the constraint set F are made precise in Definition 2.1. They are
summarized by saying that F is a subequation.

The operator theoretic formulation of (DP), although standard, requires
some explanation including the imposition of some conditions on the operator
F and its domain G, which we give now for the sake of completeness.

Definition 1.1 (Proper elliptic operators). An operator F' € C(G) where
either

G=J%X) (unconstrained case)

or
G C J*(X) is a subequation constraint set  (comstrained case).

is said to be proper elliptic if for each x € X and each (r,p, A) € G, one has

(1.10) F(x,r,p,A) < F(x,r+s,p,A+P) Vs<0inR, VP >0inS(n).

The pair (F,G) will be called a proper elliptict (operator-subequation) pair.

The minimal monotonicity (1.10) of the operator F' parallels the minimal
monotonicity properties (P) and (N) for subequations F. It is needed for
coherence and eliminates obvious counterexamples for comparison. This is
explained for subequations after Definition 2.4. A given operator F' must
often be restricted to a suitable background constraint domain G C J 2(X ) in
order to have this minimal monotonicity (the constrained case). The historical
example clarifying the need for imposing a constraint is the Monge-Ampeére
operator

(1.11) F(D?*u) = det(D%u),

where one restricts the operator’s domain to be the convexity subequation
G=P:={AecSn):A>0} The scope of the constrained case is perhaps

1Such operators are often referred to as proper operators (starting from [15]). We
prefer to maintain the term “elliptic” to emphasise the importance of the degenerate
ellipticity (P-monotonicity in A) in the theory.
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best illustrated by the more general Gdrding-Dirichlet operators. See Exam-
ple 1.12, with (1.11) the fundamental case. These polynomial operators F' of
degree m have an ordered sequence of Garding eigenvalues A1 (A) < --- Ay, (A)
which determine branches of the equation F(J?u) = 0. The notion of
branches well illustrates the interplay between potential theory and opera-
tor theory and will be discussed in Example 1.15.

The unconstrained case, in which F is proper elliptic on all of J2(X) is
the case usually treated in the literature and is perhaps best illustrated by
the canonical operators mentioned above.

We now recall the precise notion of solutions in the operator theoretic
formulation of the Dirichlet problem. The definitions again make use of up-
per/lower test jets.

Definition 1.2 (Admissible viscosity solutions). Given F' € C'(G) with G C
J?(X) a subequation on an open subset X C R™

(a) a function u € USC(X) is said to be an (G-admissible) viscosity subso-
lution of F(J?u) =0 on X if for every € X one has

(1.12) Je 2ty = JegG, and F(z,J)>0;

(b) a function u € LSC(S?) is said to be an (G-admissible) viscosity super-
solution of F(J*u) =0 on X if for every x € X one has

(1.13) J € J> u = either [ J € G, and F(z,J) <0 ] or J¢&G,.

A function u € C() is an (G-admissible viscosity) solution of F(J*u) = 0
on X if both (a) and (b) hold.

In the unconstrained case where G = 7 2(X ), the definitions are standard.
In the constrained case where G C J 2(X ), the definitions give a systematic
way of doing of what is sometimes done in an ad-hoc way (see [48] for opera-
tors of Monge-Ampere type and [55] for prescribed curvature equations). Note
that (1.12) says that the subsolution u is also G-subharmonic and that (1.13)
is equivalent to saying that F'(x,J) < 0 for the lower test jets which lie in
the constraint G,.

(DP)’ — Operator Theoretic Formulation: Find h € C(2) which satisfies:
1a) hisa (G-admissible) subsolution of F(J*h) = 0 on ) (Definition 1.2(a)).
1b) h is a (G-admissible) supersolution of F(J*h) = 0 on Q (Definition

1.2(b)).
2) hjpa = .
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We now discuss the equivalence of the potential theoretic and opera-
tor theoretic formulations of the Dirichlet problem; that is, the equivalence
of (DP) for a given subequation F and (DP)’ for a given (proper elliptic)
operator-subequation pair (F,G). By the definitions, the equivalence of 1a)
and la)’ is the same as the following equivalence: for each = € {2 one has

J2Th C F, & both J>thC G, and F(x,J)>0 foreach J€ J>Th.
This holds if and only if one has the correspondence relation
(1.14) F={(z,J)€G: F(z,J) > 0}.

In addition, the equivalence of 1b) and 1b)" is the same as the following
equivalence: for each = € ) one has

(1.15) J2F(=h) C Fy & J &Gy or [J € Goand F(z,J) < 0], V.J € J> h.

Using duality (2.2) and J2*(—h) = —J2~h one can see that that the equiv-
alence (1.15) holds if and only if one has compatibility

(1.16) Int F ={(z,J) € G: F(z,J) >0},
which for subequations F defined by (1.14) is equivalent to
(1.17) OF ={(z,J) € F: F(x,J) =0}.

The pair of equivalences la) < la) and 1b) < 1b) is referred to as the
correspondence principle and will be discussed futher in Section 4. These
considerations can be summarized in the following result.

Theorem 1.3 (Correspondence Principle). Suppose that F' € C(G) is proper
elliptic and F, defined by the correspondence relation (1.14), is a subequation.
If compatibility (1.16) is satisfied, then h € C(Q) satisfies the correspondence
principle: 1la) < la)’ and 1b) < 1b)'. In conclusion, the two formulations

(DP) and (DP) are equivalent.

Remark 1.4 (On compatibility). Given one of either a proper elliptic pair
(F,G) or a subequation F, finding the other so that both the correspondence
relation (1.14) and compatibility (1.16) hold can be impossible, easy or in be-
tween requiring some work. For example, given any subequation F the pair
(F, J*(X)) with F the signed distance operator (1.4) will do. Other natural
choices of (F, J?(X)) with F given, which require some additional work, are
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the canonical operators introduced in [43]. In the other direction, in Subsec-
tion 1.5 we will present various examples of determining the subequation F
given a proper elliptic pair (F,G). In particular, finding F is easy in Exam-
ples 1.6 and 1.7, requires some work in Examples 1.8, 1.9, 1.12 and 1.10, and
is impossible in Example 1.18.

1.4. Boundary pseudoconvexity

The potential theoretic approach to the Dirichlet problem (DP) naturally
leads to an appropriate notion of pseudoconvexity for 92 (smooth) required
for existence. This is perhaps best illustrated by focusing on the case of a
constant coefficient pure second order subequation F C S(n) which is a
cone. The definition, with roots in [7], is given in [24, section 5] with several
equivalent formulations.

Definition 1.5 (Boundary pseudoconvexity). A smooth boundary 02 is said
to be strictly F-pseudoconver at x € 0€) if

(1.18) dtg >0 such that A, +tFP.,) € Int F, Vit > t,

where A, denotes the second fundamental form of 9€) at = with respect to the
inward pointing unit normal e(z) and Pz is orthogonal projection onto the
normal line through e(z) (the eigenvalues of A, are the principal curvatures
of 00 at z).

These (cone) subequations F divide into two kinds, those with and those
without a boundary geometry. By those without a boundary geometry we
mean that all boundaries 0€) are strictly F-pseudoconvex at all points. This
is equivalent to requiring that

(1.19) VAeS(n),Veec S Fty>0 st. A, +tP, € IntF, Vit >to,
Taking A = 0 implies
(1.20) P, € Int F for every e € S" 1.

Conversely, if (1.20) holds then P, 4+ A € Int F for € > 0 small, which is
equivalent to (1.19). This proves that F has no boundary (geometric) restric-
tion for existence for the (DP) if and only if F is strictly elliptic, since (1.20)
is one of the ways of defining strict ellipticity. This proves that

the strictly elliptic potential theories are exactly the ones without a boundary
pseudoconverity geometry.
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It is easy to see that none of the geometric potential theories F = G°, G a
closed subset of G(n, R™)), satisfy (1.20); i.e. none are strictly elliptic, so each
has a boundary geometry. This geometry has the following nice description

o0 is strictly F = G°-pseudoconvex at x € 9 < the restriction of the
second fundamental form Az to any k-plane W € G which is also tangential,
i.e. W C T,0%), has strictly positive trace.

1.5. Some examples of PDEs

The potential theory approach to treating nonlinear PDEs is well illustrated
by many examples of operators (and classes of operators). We mention a few
here.

Ezxample 1.6 (Perturbed Monge-Ampeére). With fixed M € C(92,S(n)) and
f € C(Q) non-negative, consider

(1.21) det(D*u+ M(z)) = f(z), ©€QCCR™

This is an important test example of Krylov [51, Example 8.2.4] for prob-
abilistic and analytic methods. It is also noteworthy because it fails to sat-
isfy the standard viscosity structural conditions for comparison as given in
Crandall-Ishii-Lions [15, condition (3.14)] unless M is the square of a Lip-
schitz continuous matrix valued function. In [12], comparison is proved for
general continuous M (along with the existence of a unique continuous so-
lution of the Dirichlet problem on strictly convex domains). The potential
theoretic proof, makes use of the compatible subequation whose fibers are
defined by

Fo={AecSn): A+M(z)>0and F(z,A) := det(A+M(z))— f(x) > 0}.

This was done with the introduction and application of the notion of (Haus-
dorff) continuity of the fiber map

©:0Q — p(S(n)) defined by O(z) := F,, Va e

This is a representative example of the “constrained case” in which operators
F come with domains; that is, F' must be restricted to G defined by its fibers
G, ={AeS(n): A+ M(x) > 0}.

Ezample 1.7 (Special Lagrangian potential equation). With phase function
0 € C(Q,I) where I = (—nm/2,nm/2) consider

(1.22) G(D*u) = zn:arctan (M(D?*u)) = 0(x), =€ QCcCR™
k=1
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The geometric interpretation of this equation is that the graph of the gra-
dient of v will have Lagrangian phase 6 (see [21]). Comparison for constant
phases, as well as existence/uniqueness for the Dirichlet problem via Per-
ron’s method, was proven in [24]. For non-constant phases, comparison is
difficult and only recently completely settled. The operator G is particularly
difficult to analyze if the non-constant phase 6 assumes a special phase value
Op = (n—2k)r/2,k = 1,...n — 1. Comparison was proven in [17] if h has
range in the first/last intervals I determined by 6. This is the “relatively
easy” case where G is concave/convex. Comparison was proven in [13] for
phases taking values in any phase interval

(123) Ik: (Qk_l,ek), k‘:Ln
There the key was to establish the fiber regularity of the fiber map
O(x):={AeSn): F(x,A):=G(A)— h(xz) >0},

which is false across the special phase values. Recently, counterexamples to
comparison have been given in [6] when the phase takes on a critical value.
Combining comparison with the appropriate pseudoconvexity assumption on
Q) yields existence/uniqueness for the Dirichlet problem for phases taking
values in the intervals (1.23), as shown in [46] (including a study of the needed
pseudoconvexity). This leaves open the interesting and unresolved question
as to whether uinqueness holds for the Dirichlet problem if the phase takes on
a critical value. Example 1.7 is a representative example of the unconstrained
case (also pure second order) where the operator G is increasing on all of
S(n).

Ezample 1.8 (Eigenvalue equation for k-Hessian operators). With k =1,...n
and p € R fixed, consider

(1.24) Si(D*u) 4 pululf~t =0, z€QCCR",
where for A € S(n) the k-Hessian operator is defined by

Sk(A) == 0k (A(A) = oM (A), ..., \(A)) = Z Aiy (A) - N (A).

1<i1 << <n

Since the equation is k-homogeneous, one can search for eigen-directions
(rays) u that solve (1.24) for an eigenvalue p. The operator Sy is degenerate
elliptic (increasing in A) when restricted to the closed cone

Y ={A€S(A): A(A) e Ty} with[y :={A€R":0;(A) >0,j =1,...,k},
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the (closed) Gdrding cone associated to o (kth elementary symmetric poly-
nomial). Notice that S, interpolates between Si(D?*u) = tr(D?*u) = Au and
Sn(D?*u) = det(D?u). One uses ¥, as a background (subequation cone) con-
straint set; that is, one looks for k-convex subharmonics and uses k-convex
lower test functions for supersolutions. The interesting case concerns u < 0
and g > 0 where the equation has the “wrong”’ monotonicity in w. In [5],
a maximum principle characterization of a generalized principal eigenvalue
in the sense of Berestycki-Nirenberg-Varadhan [3] is proven as well as the
existence of a corresponding eigenfunction vanishing on the boundary. An
important step in the proof is to prove an a priori Holder estimate, which
is needed for compactness in an iterative scheme for the construction of the
eigenfunction. The proof shows that the theory of admissibility constraints
extends in a natural way the technique pioneered by Ishii-Lions [48] in the
unconstrained case.

Ezample 1.9 (Hyperbolic affine sphere equation). With X C R™ open and
f € C(X) non-negative consider the following equation on X

(1.25) [—u]"2 det(D?u) = f.

The geometric interpretation of the equation emerges by setting h := —f so
that the equation becomes

(1.26) det(D?u) = (h/u)"*?,

which for u convex and neqative describes the graphing function of a hy-
perbolic affine sphere with (constant) mean curvature h < 0 as discussed in
Cheng-Yau [9]. Comparison for the equation (1.25) was established in [13].
This is another representative (gradient-free) example of the constrained case,
where (F,G) with

F(x,r,A) == (—r)"™det A — f(z) and G=Q:=N xP.

Ezample 1.10 (Optimal transport equations). With X C R™ open, f € C(X)
non-negative and g € C'(R™) non-negative, consider the following equation
on X

(1.27) g(Du) det(D?*u) = f.

The functions f and g represent the source and target densities respectively
which should have the same mass (L'-norm) (see [16] and [56] for more de-
tails).
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Comparison has been shown for constant target densities g in [13]. For
non-constant g, one requires the additional monotonicity property of direc-
tionality; that is, there exists a closed convex cone D C R™ with non-empty
interior and vertex at the origin for which

(1.28) g(p+q) > g(p) for each p,q € D.

Examples of g with directionality include

9(p) = —pn with D = {(p',pn) €R": p, >0}
and for k € {1,...n}
k
g(p):Hpj with D = {(p1,...pn) € R" : p; >0 for each j =1,...k}

j=1

For target densities g with directionality, comparison has been shown for
constant source densities f in [11] and for non-constant f in [14].

Remark 1.11. Examples 1.9 and 1.10 have a product structure
F(x,u, Du, D*u) = g(x,u)h(z, Du)G(z, D*u) — f(z).

This structure helps with the correspondence principle. One illustration of this
is provided by considering the following pair of constant coefficient gradient-
free operators

F(r,A) = —rdet(A) and G(r,A):=—r+det(A).

The first operator is proper elliptic when restricted to the subequation Q =
N x P and with F := {(r,A) € Q: F(r,A) > 0} one has the compatibility

OF ={(r,A) e F: F(r,A) =0}

and hence the correspondence principle. On the other hand, while G is also
proper elliptic when restricted to Q (or even R x P), the boundary of

G:={(r,A) e Q: G(r,A) >0}

includes A x {0}, so that all negative C? affine functions will be G-harmonic
but the operator G is not zero on them. Thus the correspondence principle
fails here.
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Next we discuss perhaps what is perhaps the most interesting and impor-
tant class of examples. They illustrate why the constrained case is required.

FEzample 1.12 (Garding-Dirichlet operators). These nonlinear operators are
obtained from Géarding’s beautiful theory of hyperbolic polynomials [19]. We
briefly give the precise definition and enumerate a few examples. See [25] and
[24], [26], [30] and [11] for an extensive discussion.

Definition 1.13 (Hyperbolic polynomials). A homogeneous real polynomial
F of degree m on S(n) is I-hyperbolic if F(I) > 0 and for all A € S(n) the
one variable polynomial F'(sI 4+ A) has all m roots real.

In keeping with the example F'(A) := det A, it is useful to focus on the
negatives of the roots of F'(sI + A), which are called Garding I-eigenvalues
and are denoted by Aj(A),..., Ay, (A). Hence

(1.29) F(sl+A) =F(A) [[(s+Aj(A)) and F(A (I A
j=1

7=1
The open Garding cone
(1.30) ={AeSn): Aj(A)>0,j=1,...,m}

is a convex cone, which, along with F', has many nice properties.
Definition 1.14 (Garding-Dirichlet operator?). An I-hyperbolic polynomial
operator F' of degree m on S(n) is called a Gdrding-Dirichlet operator if
P C T; that is, if

(1.31) A>0 = A(A)>0, j=1,...,m

In this case

(1.32) (F,F :=T) is a compatible operator-subequation pair.

Also note that by (1.32) Apin(A) is the canonical operator for the Garding
subequation J :=I" since

Aj(A+t[):Aj(A)+t, jzl,...,m

2Perhaps they should be called Gdriding-Monge-Ampére operators instead.
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Here are some important examples. Let A1 (A), ..., A, (A) denote the stan-
dard eigenvalues of A € S(n). Of course, the Monge-Ampeére operator

F(A) = det A = ﬁ A (A)

j=1

is the prototype. We leave it to the reader to see that these examples are
polynomials. Perhaps the most interesting are those for which F := T is
geometrically defined; i.e. the cone subequation F := I equals the polar G°
of a closed subset G of one the Grassmanians. Two new examples of this
special nature are as follows.

1. The p-fold sum operator ([24, p. 39] and [29, Proposition 7.11]):
This is the operator

(1.33) F(A) = H Ny (A) +---+ X (A), wherep=1,...n.

1< <lp

The degree of F is (7) and the closed Garding cone is ' = G(p, R")°. The

canonical operator for I is the sum of the first (smallest) p standard eigen-
values; i.e. the p-th truncated Laplacian (see [24] and [4]).

2. The Lagrangian Monge-Ampére operator ([41, section 5]): This
is the operator

(1.34) F(A) ::H<;trAi,uli~-i,un>.

Here A € §(2n) is a real symmetric form on R?" = C", and £y ...+ u, are
the eigenvalues of the skew Hermitian part of A. The 2" Gérding eigenvalues
are the factors % tr A4y £+ - -+ p1,,. The Garding subequation I is geometric.
It is the polar of G := LAG C Gg(n,C"™), the set of Lagrangian n-planes. The
plurisubharmonic functions; i.e. the I'-subharmonic functions are those upper
semicontinuous functions that restrict to be A-subharmonic on Lagrangian
affine planes in C™.

A classical example, which is not geometric for k # 1,n is the k-Hessian
operator Si,(D?u) discussed in Example 1.8. Two more new non geometric
examples, which have similarities with one another, are the following.
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3. The d-uniformly elliptic operator ([38, Appendix B]): This is the
operator

(1.35) F(A):=det (A+(tr A)I) with 6 > 0,
The Garding eigenvalues of F' are
Aj(A)=Xj(A) +dtr(A), j=1,...n
Hence the canonical operator for the Garding subequation T is
Apmin(A) = Anin(A) + d tr A.

4. The Pucci-Garding-Monge-Ampére operator ([30, section 4.5],
[38, Appendix B], and in particular [43, Example 6.10]): Fix 0 <
A < A and consider the the “cube” in eigenvalue space

C)\,A = {AES(n) )\ISASA]} CPCS(H)

Its polar P, , := Cy 5 contains P° = P and hence is a subequation called the
Pucci or Pubcz'—Gc‘irding cone. The cone on Cy a, denoted by Cone(Cy 5 ), has
a finite set of extreme rays through a subset S of the vertices of Cy . The
Pucci-Garding-Monge-Ampere operator F) » is defined to be the product of
the linear functionals in the set S. The factors are the Garding [-eigenvalues
of Iy A. The closed Garding cone is the Pucci cone P, , . Its canonical operator
is the minimal eigenvalue, which is easily seen to be

Amin(A) = Mr AT 4+ Atr A~ >0,

where A = AT + A~ is the decomposition of A into positive and negative
parts, and hence

Pia={A€S(n): MrAT +AtrA- >0}

Note that the Pucci-Garding operator Fy 5 has degree |S].

The operator Sy and the operators 1., 3., and 4. above which involve the
real eigenvalues of A € §(n) have complex and quaternionic analogues that
are also Garding-Dirichlet operators. See [25, section 5], [24, section 10] and
[26, section 15] for more details.

The next family of examples provides a good illustration of the interplay
between potential theory and operator theory.
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FEzample 1.15 (Branches). The potential theory/subequation approach pro-
vides a direct way of extending the Dirichlet problem (DP) for the Monge-
Ampere operator to the other branches Ay of det(D?u) = 0, where, except
for k = 1, there is no natural smooth operator F' defining the solutions (or
Aj-subharmonics). The branch Ay C S(n) for k = 1,...n is the subequation
defined by

(1.36) Ay :={A e S(n): M\(A) >0},

where A\j(A) < --- < \,(A) are the ordered eigenvalues of A € S(n). Despite
the fact that det(D?u) is not a proper elliptic operator on Ay, the (DP)
for Ag-harmonics is meaningful. Existence and uniqueness for all boundary
functions ¢ € C(092) under the appropriate geometrical conditions on 02
was established in [24]. This theorem extends to branches of a more general
Gérding-Dirichlet operator F' = g of degree m defined by

Al ={Ae8(n):A}(A) >0}, k=1,...m.

These branches have a so-called canonical operator, which we discuss
next. Canonical operators well illustrate the unconstrained case.

Ezample 1.16 (Canonical operators). For clarity we focus on the pure second
order constant coefficient subequation case F C S(n). See the list of refernces
before the formula (1.4) above for more information. A canonical operator for
F is by definition a function F' € C(S(n)) with the following two properties:

(1.37) F(A+P)>F(A), VA€ S(n)and P> 0
and for some constant ¢ > 0
(1.38) FA+tl)=F(A)+ct, YVAe S(n)andt e R.

Proposition 1.17 (Existence and uniqueness of canonical operators). Given
a subequation F C S(n), there exists a unique canonical operator F with

F={AeS8n): F(A) >0}.

The proof can be summarized succinctly by defining F' by requiring
Ag + F(Ao).[ € OF forall Ag L1 (1e trAg = O)

and then extending F' to all A = Ay +tI € S(n), Ay L I by formula (1.38).
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The canonical operator F' for some of the examples above are as follows.
One has A;(A) for the convexity subequation P, A\j(A) + --- A\, (A) for the p-
fold subequation defined by (1.7) with G = G(p,R™), 5 tr A— iy — - - - — u, for
the Lagrangian subequation defined by (1.7) with G = LAG. As mentioned
above, the Garding subequation F = I has canonical operator Api,(A), the
minimal Garding eigenvalue operator. The k-th branch has canonical operator
the k-th Garding eigenvalue operator. The construction of a canonical oper-
ator extends to subequations F C J?(X) if there is sufficient monotonicity
(see section 11.4 of [11]).

We conclude this subsection with one last example. As we have indicated,
a general principle is that comparison holds with sufficient monotonicity. With
insufficient monotonicity comparison can fail even in the constant coefficient
case and even on arbitrarily small balls.

Ezample 1.18 (Comparison fails). Consider the operators F,G € C(R™ x
S(n),R) defined by

F(p,A) == Main(M(p,A)) and G(p, A) = Amax(M(p, A))
with M = M, is the S(n)-valued function defined for o € (1, 4+00) by
M(p, A) := A+ |p|"= (P,s +aP,)) ifp#0 and M(0,A) := A.

where for p # 0, P,, P, are the projections onto the subspaces [p], [p]*; that
is,
1
P, = Wp@p and P,. =1-PF,.

These operators are studied in [11]. Existence for the Dirichlet problem holds
on all balls (with continuous Dirichlet data). The comparison principle, max-
imum principle and uniqueness of solutions fail on all arbitrarily small balls
about every point. A partial explanation of these failures is that the max-
imal monotonicity cones for the associated (compatible) subequations F, G
are M := {0} x P C R" x §(n), which have empty interior.

2. Fundamental aspects of nonlinear potential theory

In this section, we give a brief review of some key notions and fundamental
results in the theory of F-subharmonic functions defined by a subequation
constraint set F.
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2.1. Subequations, subharmonics and duality

Suppose that X is an open subset of R™ with 2-jet space denoted by J?(X) =
X x (R x R™ x §(n)). A good definition of a constraint set with a robust
potential theory was given in [26] (also for manifolds).

Definition 2.1 (Subequations). A set F C J2(X) is called a subequation
(constraint set) if

(P) F satisfies the positivity condition (fiberwise); that is, for each z € X
(r,p,A)€F, = (r,pA+P)eF,, YP>0inS(n)

(T) F satisfies three conditions of topological stability:

(T1) F = Int F;
(T2) Fe=1Int (), VzelX;
(T3) (Int F), = Int (F,), Vz€X.

(N) F satisfies the negativity condition (fiberwise); that is, for each z € X
(r,p,A) € Fy = (r+s,pA)€F, Vs<0inR.

Notice that by property (T1), F is closed in J2(X) and each fiber F,
is closed in J2 by (T2). In addition, the interesting case is when each fiber
F, is not all of J2, which we almost always assume. Also notice that in
the constant coefficient pure second order case F C S(n), property (N) is
automatic and property (T) reduces to (T1) F = Int F, which is implied by
(P) for F closed. Hence in this case subequations F C S(n) are closed sets
simply satisfying (P).

The conditions (P), (T) and (N) have various (important) implications
for the potential theory determined by F. Some of these will be mentioned
below (see the brief discussion following Definition 2.4).

Next is duality, a notion first introduced in the pure second order coeffi-
cient case in [24].

Definition 2.2 (The dual subequation). For a given subequation F C J*(X)
the Dirichlet dual of F is the set F C J*(X) given by?

(2.1) F = (—Int F)* = —(Int F)° (relative to J2(X)).

3Here and below, ¢ denotes the set theoretic complement of a subset.
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With the help of property (T), the dual can be calculated fiberwise
(22)  Fp = (—Int (F,))° = —(Int (F,))° (relative to J?), Vz e X.
This is a true duality in the sense that one can show
(2.3) % —F and Fisasubequation = F is a subequation.

Now comes the notion of F-subharmonicity for a given subequation F C
J?(X). There are two different natural formulations for differing degrees of
regularity. The first is the classical formulation.

Definition 2.3 (Classical or C? subharmonics). A function u € C?(X) is
said to be F-subharmonic on X if

(2.4) J2u := (u(z), Du(z), D*u(x)) € Fp, Yz € X

T

with the accompanying notion of being strictly F-subharmonic if
(2.5) J2u € Int (F,) = (Int F),, Ve X.

For merely upper semicontinuous functions u € USC(X) with values in
[—00, +00), one replaces the 2-jet J2u with the set of C? upper test jets

(2.6)  J>Tu:={J?p: pis C* near z, u < ¢ near z with equality at x},

thus arriving at the following viscosity formulation.

Definition 2.4 (Semicontinuous subharmonics). A function v € USC(X) is
said to be F-subharmonic on X if

(2.7) JE u C F,, Yo e X.

We denote by F(X) the set of all F-subharmonics on X.

We now recall some of the implications that properties (P), (T) and (N)
have on an JF-potential theory. Property (P) is crucial for C%-coherence,
meaning classical F-subharmonics are F-subharmonics in the sense (2.7),
since for u which is C? near z, one has

JEu = J2u+(0,0,P) where P={PecS(n): P>0}.
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The natural notion of w € LSC(X) being F-superharmonic using lower test
jets is

(2.8) JE7w C (Int (F,))°, Vo€ X,

x

which by duality and property (T) is equivalent to —w € USC(X) satisfying

(2.9) J2H(—w) C Fp, VzeX.
That is,
(2.10) w is F-superharmonic < —w is F-subharmonic.

Next note that property (T) insures the local existence of strict classical
F-superharmonics at points € X for which F, is non-empty. One simply
takes the quadratic polynomial whose 2-jet at = is J € Int (F,). Finally,
property (N) eliminates obvious counterexamples to comparison. The simplest
counterexample is provided by the constraint set 7 C J?(R) in dimension
one associated to the equation u” —u = 0.

2.2. Monotonicity

This fundamental notion appears in various guises. It is a useful and unifying
concept. One says that a subequation F is M-monotone for some subset

M cC J*(X) if
(2.11) Fr+ M, C F, for each z € X.

For simplicity, we will restrict attention to (constant coefficient) monotonicity
cones; that is, monotonicity sets M for F which have constant fibers which
are closed cones with vertex at the origin.

First and foremost, the properties (P) and (N) are monotonicity proper-
ties. Property (P) for subequations F corresponds to degenerate elliptic op-
erators F' and properties (P) and (N) together correspond to proper elliptic
operators. Note that (P) plus (N) can be expressed as the single monotonicity

property
(2.12) Fs+ My C F, foreachz e X
where

(2.13) Mo =N x{0} x P C J*=RxR" x S(n)
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with
(2.14) N:={reR: r<0} and P:={PeS(n): P>0}

Hence M, will be referred to as the minimal monotonicity cone in J?2. How-
ever, it is important to remember that My C J? is not a subequation since
it has empty interior so that property (T) fails.

Combined with duality and fiberegularity (defined in Subsection 2.3), one
has a very general, flexible and elegant geometrical approach to comparison
when a subequation F admits a constant coefficient monotonicity cone sube-
quation M. A key ingredient to this approach is the Subharmonic Addition
Theorem:

(2.15) F+MCF = F(X)+FX)c MX).

This result reduces the comparison principle for F to the Zero Mazimum
Principle for the constant coefficient dual cone subequation M; that is, for
all Q cCc X

(2.16) (ZMP) 2<0ond = z<0onodQ,

VY z € USC(Q)NM(£). This reduction of comparison to (ZMP) will be referred

to as the monotonicity-duality method and will be discussed in Section 3.
Monotonicity is also used to formulate reductions when certain jet vari-

ables are “silent” in the subequation constraint F. for example, one has

(pure second order) F,+ M(P)C Fp: M(P)=RxR"xP
(gradient free) F, + M(N,P)C Fp: MWN,P):=N xR" x P

M(P) and M(N,P) are fundamental constant coefficient (cone) subequations
which can be identified with P C S(n) and Q := N x P C Rx S(n). One can
identify F with subsets of the reduced jet bundles X xS(n) and X x (RxS(n)),
respectively, “forgetting about” the silent jet variables (see Chapter 10 of [11]).

Two important “reduced” examples are worth drawing special attention
to.

Ezample 2.5 (The convexity subequation). The convexity subequation is F =
X x M(P) and reduces to X x P which has constant coefficients (each fiber
is P) and for u € USC(X)

u is P-subharmonic < wu is locally convex
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(away from any connected components where © = —00).
The convexity subequation has its canonical operator F € C(S(n),R)
defined by the minimal eigenvalue F'(A) := Apin(A), for which

(2.17) P={AecSMn): An(A) > 0}.
The dual subequation F has constant fibers given by
(2.18) P ={Ae8MN): Amax(d) >0}

which is the subaffine subequation. The set 75(X ) of dual subharmonics agrees
with SA(X) the set of subaffine functions defined as those functions u €
USC(X) which satisfy the subaffine property (comparison with affine func-
tions): for every @ CC X one has

(2.19) u<a ondl = wu<a onfl, forevery a affine.

The fact that P(X) = SA(X) is shown in [24]. The subaffine property for  is
stronger than the maximum principle for u since constants are affine functions.
It has the advantage over the maximum principle of being a local condition
on u. This leads to the comparison principle for all pure second order constant
coefficient subequations [24] and extends to variable coefficient subequations
[13] using a notion of fiberegularity, as will be discussed in Section 3.

FEzample 2.6 (The convexity-negativity subequation). The constant coeffi-
cient gradient-free subequation F = X x M(N,P) reduces to X x Q C
X x (R x 8(n)) whose (constant) fibers are

(2.20) Q=NxP={(r,A) eRxS8(n):r<0 and A>0}.
The (reduced) dual subequation has (constant) fibers
(2.21) Q={(r,A)eRx8(n):r<0 or AeP}

The set Q(X) of dual subharmonics agrees with SA*(X), the set of sub-
affine plus functions defined as those functions u € USC(X) which satisfy
the subaffine plus property: for every 2 CC X one has

(2.22) u<a ond = wu<a onf), forevery a affine with a5 >0,

from which the (ZMP) for Q subharmonics follows immediately. The fact that
Q(X) = SAT(X) is shown in [11] together with the additional equivalence

(2.23) SAT(X) :={u € USC(X): u* := max{u,0} € SA(X) = P(X)},
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The validity of the (ZMP) for Q-subharmonics leads to the comparison prin-
ciple by the monotonicity-duality method for all gradient free subequations
with constant coefficients in [11] and extends to variable coefficient gradient-
free subequations in [13], using the notion of fiberegulaity.

2.3. Fiberegularity

This fundamental notion can be used to pass from constant coefficient sube-
quations (and operators) to ones with variable coefficients.

Definition 2.7. A subequation F C J?(X) is fiberegular if the fiber map ©
is (Hausdorff) continuous; that is, if the set-valued map

0:X = K(J? defined by O(z):=F,, v€X

is continuous when the closed subsets K(J?) of J? are equipped with the
Hausdorff metric

o U) = inf —J inf —J
dy (P, ) maX{igg;,ngJ J!\,j}é%}g@\w JH}

where

11| = [1(r,p, A)]| = max{m, pl, max \Ak<A>|}

1<k<n
is taken as the norm on J2.

This notion was first introduced in [12] in the special case F C X x S(n).
We will also refer to © as a continuous proper elliptic map since it takes values
in the closed (non-empty and proper) subsets of J? satisfying properties (P)
and (N). If F is M-monotone for some (constant coefficient) monotonicity
cone subequation, fiberegularity has the more useful equivalent formulation:
there exists Jy € Int M such that for each fixed 2 CC X and n > 0 there
exists § = d(n, ) such that

(2.24) r,yeQr—yl<d = O(x)+nJy C O(y).

Note that property holds for each fixed Jy € Int M (see [14]) and that in the
pure second order and gradient-free cases there is a “canonical” reduced jet
Jo=1¢€ 8(n)and Jy = (—1,I) € R x §(n), respectively. Also note that
fiberegularity is uniform on bounded domains as the § in (2.24) is independent
of z,y € (L
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Fiberegularity is crucial since it implies the uniform translation prop-
erty for subharmonics: if u € F(Q), then there are small C? strictly F-
subharmonic perturbations of all small translates of u which belong to F(£2s),

where Q5 := {x € Q : d(z,00) > d}.

Theorem 2.8 (Uniform translation property for subharmonics). Suppose
that a subequation F is a fibereqular and M-monotone on 0 CC R™ for
some monotonicity cone subequation M. Suppose that M admits a strict
approximator; that is, there exists 1 € USC(Q) N C2(Q) which is strictly M-
subharmonic on Q. Givenu € F(Q), for each 8 > 0 there exist n = n(v,0) > 0
and § = (¢, 0) > 0 such that

(2.25) Uy = Tyu + 0 belongs to F(Qs), Yy € Bs(0),

where Tyu(-) == u(- —y).

In the pure second order and gradient-free cases (F C 2 x S(n) and
F C 2 x (R x 8(n)), one always has a quadratic strict approximator 1
and the theorem holds for all continuous coefficient F which are minimally
monotone (with M = P C S(n) and M = Q@ = N x P C R x §(n)
respectively) as shown in [12], [13]. The general M-monotone and fiberegular
case is treated in [14]. In this general case, the hypothesis of the existence
of a strict approximator ¢ creates no additional problems if the objective
is to prove comparison. This is because one knows from [11, Theorem 6.2]
that the existence of a strict approximator ¢ for M ensures the validity of
the (ZMP) for M, which is needed for our monotonicity duality method.
Moreover, the (constant coefficient) monotonicity cone subequations which
admit strict approximators are well understood by the study made in [11].

2.4. Subharmonic addition for quasiconvex functions

Many results about F-subharmonic functions w are more easily proved if
one assumes that u is also locally quasiconvex.* Then, one can make use of
quasiconvex approximation to extend the result to semicontinuous u. Here we
discuss some of the main results in this direction. See [53] for an extensive
treatment, which borrows heavily from [36] and [37].

4We have adopted the term quasiconvex which is consistent with the use of quasi-
plurisubharmonic function in several complex variables. Quasiconvex functions are
sometimes referred to as semiconvex functions, although this term is a bit mislead-
ing. They are functions whose Hessian (in the viscosity sense) is locally bounded
from below.
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Definition 2.9. A function v : C' — R is A-quasiconver on a convex set
C C R if there exists A € Ry such that u+ 3| - |? is convex on C. A function
u: X — R is locally quasiconvex on an open set X C R™ if for every x € X,
u is A-quasiconvex on some ball about x for some A € R,.

Such functions are twice differentiable for almost every® z € X by a
very easy generalization of Alexandroff’s theorem for convex functions (the
addition of a smooth function has no effect on differentiability). This is one of
the many properties that quasiconvex functions inherit from convex functions.
Quasiconvex functions are used to approximate v € USC(X) (bounded from
above) by way of the sup-convolution, which for each £ > 0 is defined by

1
(2.26) u(z) = sup <u(y) - —ly— :L‘2> , veX.
yEX 25

One has that u® is %—quasiconvex and decreases pointwise to u as € — 0%,
There is an underlying pure second order potential theory for A-quasiconvex
functions on X; namely with respect to the A-quasiconvezity subequation

(2.27) Pr:={Ae€S(n): A+ I € P}.

Two important results follow.

Theorem 2.10 (The Almost Everywhere Theorem). For locally quasiconvex
functions u

J2u = (u(z), Du(z), D*u(z)) € Fp for LM-ae. € X <+= uc F(X).

This result is proven [37]. The main point in the proof is to control the
measure of the set of upper contact points near x if u is quasiconvex. This
control comes from either of two results obtained independently by Slodkowski
[54] and Jensen [49]. These two measure theoretic results are shown to be
equivalent in [36].

Theorem 2.11 (The Subharmonic Addition Theorem: Quasiconvex Version).
Suppose that the subequations F,G and H satisfy

(Jet addition) Fo+ Gy CHy, foreachze X.
Ifue F(X) and v € G(X) are locally quasiconvez, then

(Subharmonic addition) u+veHX).

SWith respect to the Lebesgue measure on R™.
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This result appears in [37] and follows easily from the almost everywhere
theorem. Subharmonic addition extends to u,v € USC(X) by quasiconvex
approximation in various situations. This extension has been accomplished
for constant coefficient subequations F in [11], for subequations associated
to inhomogeneous pure second order equations in [43] and for fiberegular
M-monotone subequations F in [14].

Subharmonic addition is very important when combined with the follow-
ing implication between monotonicity and jet addition

(2.28) Fodt My CFy, = FotFy C/K/lvm, for each = € X.

This combination has a very interesting consequence. If M is a monotonicity
cone subequation for F, then sums of F-subharmonics and F-subharmonics
are M-subharmonics. Thus, when M has constant coefficients, comparison
for F reduces to the validity of the zero maximum principle (ZMP) for M-
subharmonics where M has constant coefficients since M does. This is a
constant coefficient potential theory and has been analyzed extensively in [11],
where the validity of the (ZMP) is well understood for constant coefficient
monotonicity cone subequations. This will be briefly reviewed at the end of
Section 3 below.

2.5. A “tool kit” for F-subharmonics (subsolutions)

Some of the “nuts and bolts” of handling F-subharmonic functions are briefly
described here. The first result is both useful for checking whether a given
function is F-subharmonic and also sheds light on the notion of viscosity
subsolutions.

Lemma 2.12 (Definitional Comparison). Let F C J2(X) be a subequation
and consider u € USC(X).

(a) If w is F subharmonic on X, the following form of comparison holds
on any bounded domain 2 CC X:

u+v<00nd2 = u+v<0onf

for each v € USC(Q) N C2(Q) which is strictly F-subharmonic on Q.

(b) Conversely, suppose that for each x € X there are arbitrarily small
neighborhoods Q0 CC X about x where the above form of comparison
holds. Then u is F-subharmonic on X.
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Part (a) is a well-known principle in the viscosity theory of PDEs and is
here recast on the potential theory side with the help of duality. Part (b) is
novel (also for its natural formulation on the operator theory side in both con-
strained and unconstrained cases) and shows that the fundamental notion
in viscosity theory is the validity of this form of the comparison principle. The
proof of definitional comparison can be found in [11] for constant coefficient
F and in [14] for the general case.

The next tool is often used to show that a given function is F-subharmonic
by a contradiction argument.

Lemma 2.13 (Bad Test Jet Lemma). Let F C J*(X) be a subequation.
Suppose that u € USC(X) is not F-subharmonic at xo € X. Then there exist
€>0,p>0 and a 2-jet J ¢ F, such that the (unique) quadratic function Q;
with Jf,OQJ = J is an upper test function for u at x in the following e-strict
sense:

u(r) — Q(z) < —€lr —x0|>  Va € By(zg) with equality at xg.

This is merely the contrapositive of the definition of being subharmonic
in g making use of e-strict upper test jets yield an equivalent definition see
[26].

In addition to the C2-coherence property and the uniform translation
property (for continuous M-monotone F) discussed above, one has many
additional properties which are useful in various constructions.

Proposition 2.14 (Elementary properties of F(X)). Let F C J?(X) be a
subequation. Then the following properties hold:

(i) local: w e USC(X) is locally F-subharmonic < u € F(X);

(i) maximum: u,v € F(X) = max{u,v} € F(X);

(iii) sliding: uwe F(X) = u—me F(X) foranym > 0;

(iv) decreasing limits: if {uy}ren C F(X) is a decreasing sequence then
w = limg_y o0 ug € F(X);

(v) uniform limits: if {ug}treny C F(X) locally uniformly converges to
u then u € F(X);

(vi) families locally bounded above: if § C F(X) is a non-empty
family of functions which are locally uniformly bounded from above, then
the upper semicontinuous envelope® u* of the Perron function u(-) =
sup,,ez w( - ) belongs to F(X).

6We recall that u*(z) := limsup, o+ {u(y) : y € X N B,.(x)} for each x € X
and that u® is the minimal USC(X) function with v < u* on X.
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Furthermore, if F has constant coefficients, the following also holds:
(vii) translation: ue F(X) <= u(-—vy) € F(X +y), for any y € R"™.

These are familiar properties for the viscosity theory of nonlinear elliptic
PDEs, although stated typically only in the unconstrained case. See [26] for
the proofs of this general potential theoretic version.

3. Comparison by monotonicity, duality and fiberegularity

In this section, we present a clean, elegant and flexible method for proving
comparison (the comparison principle) in nonlinear potential theory. It makes
use of the two ingredients monotonicity and duality, along with some form
of regularity of the subequation. There are three incarnations of the needed
regularity: constant coefficients, tameness for subequations defined by inho-
mogeneous equations, and fiberegularity. The method works when a given
subequation admits a suitable constant coefficient monotonicity cone sube-
quation M. When the comparison principle is combined with a correspon-
dence principle, comparison can be transferred to nonlinear elliptic PDEs.

3.1. Statement and history of the general result

The method has evolved from the constant coefficient pure second order case
[24]. The general theorem in Euclidian space is the following result [14, The-
orem 4.3].

Theorem 3.1 (A general comparison theorem). Let Q@ C R™ be a bounded do-
main. Suppose that a subequation F C J?(2) is fiberegular and M-monotone
on Q for some monotonicity cone subequation M. If M admits a C?-strict
subharmonic 1 on Q, then comparison holds for F on Q; that is,

(CP) u<wond) = u<wonf

for all u € USC(Q) which are F-subharmonic on 2, and for all w € LSC(Q)
which are F-superharmonic on €.

The evolution of this result can be summarized in the following way.

(1) For 7, = F C S(n) (constant coefficient pure second order) see [24],
where M = P and 1(z) := 1|z|%. Here one can say

(CP) holds for all subequations F C S(n) and for all domains @ CC R™.
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(2) For F C Q x 8(n) (fiberegular variable coefficient pure second order)
see [12], where M = P and ¢(z) := 1|z|>. Here one can say

(CP) holds for all fiberegular subequations F C Q x S(n) and for all
domains Q@ CC R™.

Of course an interesting case here is an inhomogeneous subequation F
defined by F(D?u)— f(x) > 0. In [43], assuming a condition called tame
on the operator F', (CP) was established. One can show that F' tame
implies that F is fiberegular, so this result is a special case of (2).

(3) For 7, = F C R x S(n) (constant coefficient gradient free) see [26,
Theorem 13.4] where M = Q = N x P and ¢(z) = 1(|z|* — R?),
R > 0. Here one can say

(CP) holds for all subequations F C R x S(n) and for all domains
Q CCR".

(4) For F C 2 x (R x 8(n)) (fiberegular variable coefficient gradient-free)
see [13], where M = Q = N x P and ¢(z) := i(|z]> — R?),R > 0.
Here one can say

(CP) holds for all fiberegular subequations F C Q@ X R x S(n) and for
all domains Q CC R™.

(5) For F, = F C J?() (general constant coefficients) see [11], where
there is also a complete study of which cones M admit 1.

(6) For the general case F C J%(Q2) (fiberegular) see [14], where one im-
ports the class of admissible cones M from the constant coefficient case.

3.2. Outline of the proof
The main steps in the proof are the following.
Step 1: First, use duality to reformulate (CP) as:
(CP?) u+v<0ond = wu+v<0onQ

for all u € USC(Q) N F(Q) and v € USC(Q)NF(Q) (both subharmonic). De-
fine v := —w and then the equivalence in (2.10) translates to the equivalence
of (CP) and (CP’). Next, note that (CP’) is just the zero maximum principle
(ZMP) for the sum of F and F subharmonics:

(3.1) (ZMP) z<0ond = z<0on d,

Yz € USC(Q) N (F(Q) + F(R)). Thus it remains to prove (ZMP) in (3.1).
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Step 2 (Jet Addition): Establish the fundamental jet addition formula
([30, Lemma 4.1.2])

(3.2) Fod My CFo = FotFs Cﬂx, for each = € X.
This formula follows from elementary properties of duality and monotonicity.

Step 3: Establish the Almost Everywhere Theorem and the quasiconvex
version of the Subharmonic Addition Theorem (see Theorems 2.10 and 2.11
to conclude

z=u+ve M)

if u e F(Q) and v € F(Q) are locally quasiconvex. This difficult step relies
on the Jensen or Slodkowski or Federer Lemmas.

Step 4: Use fiberegularity to prove the full Subharmonic Addition Theo-
rem

F(Q) + F(Q) € M().

Step 5: Apply the following constant coefficient result [11, Theorem 6.2].

Theorem 3.2 (The Zero Maximum Principle for Dual Monotonicity Cones).
Suppose that M is a constant coefficient monotonicity cone subequation that
admits a C?-strict subsolution v on a domain 0 CC R"™. Then the zero
maximum principle holds for M on Q; that is,

(ZMP) 2<00nd2 = 2<0o0nQ

for all z € USC(Q) N M(Q).
Proof. Mis a (constant coefficient) subequation and hence satisfies the slid-
ing property

z—meM(Q) foreach m e [0,+00).

Since z —m < 0 on 92 compact
z—m+ep <0on Jd for each e sufficiently small.

Since z—m € M(f) and since ey € C(Q)NC2(€) is strictly M-subharmonic,

by the definitional comparison Lemma 2.12 (with F = Mand F = M = M)
one has

z—m+ep <0on Q for each e sufficiently small.

Passing to the limit for ¢ — 07, and then m — 0% yields z < 0 on Q. O
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The utility of the General Comparison Theorem 3.1 is greatly facilitated
by the detailed study of monotonicity cone subequations in [11], which we
briefly review. There is a three parameter fundamental family of monotonicity
cone subequations consisting of

MR = {(rp.A) € 7% r <ol peD, 4> 1]

where
v € [0,400), R € (0, +00] and D C R",

where D is a directional cone; that is, a closed convex cone with vertex at the
origin and non-empty interior (see Definition 5.2 and Remark 5.9 of [11]). The
family is fundamental in the sense that for any monotonicity cone subequa-
tion, there exists an element M (v, D, R) of the family with M(vy,D, R) C M
(see Theorem 5.10 of [11]. Hence if F is an M-monotone subequation, then it
is M(v, D, R)-monotone for some triple (v, D, R). Moreover, from Theorem
6.3 of [11], given any element M = M(y,D, R) of the fundamental family,
one knows for which domains Q CC R™ there is a C?-strict M-subharmonic
and hence for which domains €2 one has the (ZMP) for M-subharmonics
according to Theorem 3.2. There is a simple dichotomy. If R = 400, then
arbitrary bounded domains {2 may be used, while in the case of R finite, any
Q) which is contained in a translate of the truncated cone Dg := D N Bg(0).

4. The correspondence principle

In this section, we discuss structural conditions on a given proper elliptic
operator F’ with domain G C J 2 (X)) which ensure that the constraint set F
defined by the compatibility relation (1.14)

(4.1) F={(z,J)eG: F(z,J)>0}}

satisfies the two conditions needed for the the Correspondence Principle of
Theorem 1.3. We recall that these two conditions are:

(4.2) F defined by (4.1) is a subequation (in the sense of Definition 2.1)
and compatibility (1.16) between F and F":

(4.3) It F ={(z,J) € G: F(z,J) >0},
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or equivalently
(4.4) OF ={(x,J) e F: F(x,J) =0}.

F defined by (4.1) will be a subequation if it satisfies the three properties
of positivity (P), negativity (N) and topological stability (T). The first two
(P) and (N) are equivalent to the (fiberwise) monotonicity property that for
each r € X

(r,p,A)eF, = (r+s,p,A+P)eF,, Vs<0inR,P>0in S(n),

which clearly follows from the same monotonicity property for the domain G
and and the proper ellipticity of F' on G (see (1.10)):

F(x,r+s,p, A+P) > F(x,r,p, A), ¥V (r,p,A) € G, s <0inR, P > 0in S(n).

This leaves the topological property (T). Recall that this property requires
the three conditions

(T1) F = Int F;
(T2) Fr=1Int (Fp), VzeX,;
(T3) (Int F), =Int (F,), VeeX.

In the constant coefficient case, property (T) reduces to property (T1). In
the gradient free case, one can show that property (T1) follows from prop-
erties (P) and (N) since F is closed. In the general constant coefficient case,
a sufficient condition for (T1) is that F is closed and is M-monotone for
some monotonicity cone subequation (see Proposition 4.7 of [11]). F defined
by (4.1) is closed by the continuity of F. Hence, if (F,G) is a constant coeffi-
cient M-monotone pair, then F defined by (4.1) is indeed a subequation.

In the variable coefficient case, assuming that (F,G) is an M-monotone
pair, then the argument above (fiberwise) yields the property (T2). This leaves
properties (T1) and (T3). It is not hard to see that if F is closed, then
properties (T2) plus (T3) imply (T1) (see Proposition A.2 of [14]). Hence for
a M-monotone pair (F,G), the constraint set F defined by (4.1) will be a
subequation if F is closed and satisfies (T3). Moreover, since the inclusion
(Int F), C Int (F,) is automatic for each € X, (T3) reduces to the reverse
inclusion, which holds provided that F is M-monotone and fiberegular in the
sense of Definition 2.7. This fact is proved in Proposition A.5 of [14]. Moreover,
as shown in Theorem 6.1 of [14], F will be fiberegular if G is fiberegular
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provided that F' satisfies a mild regularity condition (see (4.5) below). In
addition, fiberegularity of F ensures that F is closed (see Proposition A.6 of
[14]). We collect some of these observations in the following Lemma.

Lemma 4.1. Suppose that (F,G) is an M-monotone operator-subequation
pair for some monotonicity cone subequation, with G = J*(X) or G C J?(X)
a fiberegular subequation. Suppose that (F,G) satisfies the reqularity condition:
for some fixed Jy € Int M, given @ CC X and n > 0, there exists § =
d(n, Q) > 0 such that

(4.5) F(y,J+nJy) > F(x,J), Ya,y € Q with |z —y| <.

Then the constraint set F defined by (4.1) is a (fiberegular M-monotone)
subequation.

Finally, we discuss structural conditions on a proper elliptic operator F
with domain G C J?(X) for which the constraint set F defined by (4.1) satis-
fies compatibility (4.3) (or equivalently (4.4)). In the situation of Lemma 4.1,
which ensures that F defined by (4.1) is a subequation, by the topological
property (T3) it suffices to have (4.3) fiberwise; that is,

(4.6) IntF, ={J€G,: F(z,J) >0}, VaeX.

This condition is often easily checked for a given pair (£, G) which determines
F by checking that F'(z,J) = 0 for J € 0F, and using some strict mono-
tonicity such as: for each x € X with some fixed Jy € Int M there exists
to > 0 such that

(4.7) Flz,J+tJy) > F(x,.J), Ve (0,t),YJ € 0F,.

Compatibility in this situation of a homogeneous equation F(J?u) = 0 is
relatively simple because one need only pay attention to F' in a neighborhood
of the zero locus of F' (with domanin G).

More structure is required if one would like to treat the inhomogeneous
equation

(4.8) F(J?u) =, e O(X)

for a given constant coefficient operator F'. This is true even for constant
sources 1) = c¢. This case has been studied extensively in [11], which we now
review. There the domain G was denoted instead by F, which we will also
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do below. In the constrained case, where F C J? is a (constant coefficient)
subequation, compatibility is defined by the two conditions

(4.9) ing is finite (and denoted by ¢q)
and
(4.10) OF ={JeF: F(J)=co}.

Given an operator-subequation pair (F,F), the values ¢ € F(F) are called
admissible levels of F, since otherwise the level set {F = ¢} is empty.

More is needed in order to treat the inhomogeneous equation F'(J?u) = ¢
for all of the admissible levels. In order to avoid some obvious pathologies,
one must assume that the operator F' € C(F) is topologically tame; that
is, for each admissible level ¢ € F(F),

(4.11) the level set F(c) :={J € F: F(J) = c} has empty interior.

This condition serves an additional purpose. Namely, if (F,F) is a proper
elliptic operator-subequation pair with F' topologically tame, then for every
admissible level ¢ € F'(F) the upper level set

(4.12) Feo={JeF: F{J)>c}

satisfies the topological property (T). Hence each F. is a subequation since
properties (P) and (N) are encoded by the proper ellipticity. The obvious
pathologies eliminated by topological tameness of F' are explained in [11,
section 11.1]. For example, if some admissible level set F(c) has non-empty
interior, then one has many counterexamples for comparison by considering
perturbations v + ¢ of a local C? solution to F(J?v) = ¢ with ¢ smooth,
compactly supported and with small C?-norm.

Some strict monotonicity for the operator F' provides a convenient struc-
tural condition on the operator which eliminates such pathologies. More pre-
cisely, for constant coefficient compatible pairs (F, F) which are M-monotone
for some monotonicity cone subequation M, topological tameness (4.11) is
equivalent the following structural condition of strict M-monotonicity
on F":

(4.13)  3Jy € It M such that F(J +tJo) > F(J), V.J € F, Vt > 0.

In the gradient-free case this monotonicity is the weakest possible notion
of being strictly proper elliptic. Moreover, these equivalent notions (4.11)
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and (4.13) are also equivalent to any one of the following three conditions
(see Theorem 11.10 of [11]):

1) F(J+ Jy) > F(J) for each J € F and each Jy € Int M,
2) {J € F:F(J)>c}=IntF. for each admissible level ¢ € F(F);
3) F(c¢) = F.N (=F.) for each admissible level ¢ € F(F).
Combining compatibility with strict M-monotonicity, one has a corre-
spondence principle for the solutions of the inhomogeneous equation (4.8),
which are precisely the Fy-harmonics for the subequation with fibers

(4.14) Fpw ={F € F: F(J)>¢(2)}, z€X.

More precisely, one has the following result whose proof follows directly from
the proof of the constant source case 1) = ¢ given in Theorem 11.13 of [11].

Theorem 4.2 (Correspondence principle). Suppose that (F,F) is a com-
patible M-monotone (operator-subequation) pair for some monotonicity cone
subequation M with F strictly M-monotone in the sense (4.13). Then, for
any ¢ € C(X) taking values in F(F), a functionu € C(X) is an F-admissible
solution of the equation

(4.15) F(J?u(z)) = (x), VeeX

if and only if u is Fy-harmonic in X. In particular, for u € USC(X) and
w € LSC(X) one has

u is an F-admissible subsolution of (4.15) < u is Fy-subharmonic in X
and

w is an F-admissible supersolution of (4.15) < —w is fw-subharmonz’c in X.
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