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Abstract: Let g be a simple finite dimensional complex Lie algebra
and let ĝ be the corresponding affine Lie algebra. Kac and Waki-
moto observed that in some cases the coefficients in the character
formula for a simple highest weight ĝ-module are either bounded
or are given by a linear function of the weight. We explain and gen-
eralize this observation using Kazhdan-Lusztig theory, by comput-
ing values at q = 1 of certain (parabolic) affine inverse Kazhdan-
Lusztig polynomials. In particular, we obtain explicit character
formulas for some ĝ-modules of negative integer level k when g is
of type Dn, E6, E7, E8 and k � −2,−3,−4,−6 respectively, as
conjectured by Kac and Wakimoto.

The calculation relies on the explicit description of the canonical
basis in the cell quotient of the anti-spherical module over the affine
Hecke algebra corresponding to the subregular cell. We also present
an explicit description of the corresponding objects in the derived
category of equivariant coherent sheaves on the Springer resolu-
tion, they correspond to irreducible objects in the heart of a cer-
tain t-structure related to the so called non-commutative Springer
resolution.

1. Introduction

1.1.

Let g be a simple finite dimensional Lie algebra over C and let ĝ = g[t±1] ⊕
CK ⊕ Cd be the corresponding affine Lie algebra.

Computing characters of highest weight ĝ-modules is a classical problem
of representation theory. For example, for integrable modules the answer is
given by the Kac character formula which can be viewed as a direct gener-
alization of the Weyl character formula for characters of finite dimensional
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representations of g. In the general case, the character formula involves the
affine Kazhdan-Lusztig polynomials (or rather their evaluation at q = 1).
While conceptually deep and algorithmically computable, this answer is much
more complicated than the explicit expression appearing in the Kac character
formula. It is unlikely that an essential simplification is possible in general,
however, it is interesting to explore special cases when a simple character for-
mula exists. In particular, in [22] the second author and Wakimoto identified
(partly conjecturally) cases when the coefficients in the sum appearing in the
character formula either take values 0, ±1 (for g of type An, n � 2) or depend
linearly on the indexing weight (for g of type D or E). In the present paper
we partly prove their conjecture and extend their results, while connecting
it to the Kazhdan-Lusztig theory. Instead of working with the (parabolic)
Kazhdan-Lusztig polynomials directly, we analyze them using their relation
to the Grothendieck group of equivariant coherent sheaves on the Springer
resolution constructed from the Langlands dual group. Elementary geometric
properties of the Springer resolution provide a transparent explanation for al-
gebraic properties of Kazhdan-Lusztig polynomials and allow one to compute
some of them effectively.

We should mention that most information about the canonical bases we
use is already contained in Lusztig’s work [34, 35]. The new result in this
direction we provide is the realization of the basis elements as classes of
explicit objects in the derived category of coherent sheaves, which arise as
irreducible objects in the heart of a certain t-structure.

In order to present the content of this work in more detail we introduce
further notation. Let g∨ be the Langlands dual Lie algebra. Let N ⊂ g∨ be
the nilpotent cone. Let h ⊂ g be a Cartan subalgebra, Q∨ ⊂ h the coroot
lattice, and W ⊂ End(h) the Weyl group of g. Let G∨ be the adjoint group
with Lie algebra g∨.

Let ĥ ⊂ ĝ be the Cartan subalgebra of ĝ, containing h. Let Ŵ = W �Q∨

be the affine Weyl group. For γ ∈ Q∨ we denote by tγ the corresponding
element of Ŵ and by wγ ∈ Ŵ the shortest element of the coset tγW ⊂ Ŵ .

1.2. Characters of certain irreducible ĝ-modules

Recall the notion of two-sided cells in Ŵ , which are certain subsets in Ŵ
(the main reference is [30], see also [16] for a short exposition). There exists
a canonical bijection between the set of two-sided cells in Ŵ and G∨-orbits
on N (see [31]). We denote by Oc ⊂ N the nilpotent orbit, corresponding to
a cell c ⊂ Ŵ .
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Let c = csubreg ⊂ Ŵ be the cell, corresponding to the subregular nilpotent
orbit. For ν ∈ Q∨ let cν ⊂ Ŵ be the two-sided cell that contains wν .

We can now describe the main results of this paper. Pick Λ ∈ ĥ∗. Let
L(Λ) be the irreducible ĝ-module with highest weight Λ. Assume that the
level of L(Λ) is greater than −h∨ and that Λ + ρ̂ is integral quasi-dominant
(these notions are defined in Section 2.1.5 and Definition 2.4). Let w ∈ Ŵ be
the longest element such that w(Λ + ρ̂) is dominant.

It follows from [19, Section 0.3] (see Theorem A.1 and Equation (3.7)) that
the character of L(Λ) can be expressed in terms of values at q = 1 of affine
inverse Kazhdan-Lusztig polynomials mwγ

w (q) for γ ∈ Q∨ (see [25, Section 2]
or Appendix A for the definitions). Using this observation, we derive explicit
formulas for characters of L(Λ) such that the corresponding w lies in c and
is equal to wν for some ν ∈ Q∨ (see Theorems 2.9, 2.16). We describe such Λ
explicitly and compare formulas that we obtain with the results of [22], partly
proving [22, Conjecture 3.2] (see Propositions 2.13, 2.15, 2.19, 2.21). Let us
now describe the approach that we use to compute the values mwγ

wν (1) = mwγ
wν .

Consider the Ŵ -module M := ZŴ⊗ZWZsign, called the anti-spherical Ŵ -
module. This module contains a standard basis {Tγ | γ ∈ Q∨} and a canonical
basis {Cγ | γ ∈ Q∨} in the sense of Kazhdan-Lusztig (see Appendix A for
details). By definition,

(1) tγ · 1 = Tγ =
∑
ν∈Q∨

mwγ
wν
Cν .

We explicitly describe a certain quotient of the module M and then consider
the image of (1) in this quotient to determine the numbers mwγ

wν for wν ∈ c
(see the next section for more details).

1.3. Modules over Ŵ via Springer theory

Let us recall the “coherent” realization of the module M and then describe
the approach that we use to compute mwγ

wν for wν ∈ c.
Let π : Ñ → N be the Springer resolution. For γ ∈ Q∨ we denote by

OB(γ) the corresponding line bundle on the flag variety B of G∨ and by
OÑ (γ) its pull back to Ñ . For every G∨-invariant locally closed subvariety
X ⊂ N there is a natural action Ŵ � KG∨(π−1(X)) (see [33]), where by
KG∨(π−1(X)) we denote the Grothendieck group of G∨-equivariant coherent
sheaves on π−1(X).
Remark 1.1. This action comes from the identification ZŴ ∼−→KG∨(Ñ×N Ñ )
(see [33, Sections 7, 8] or [11, 26]), and the algebra structure on KG∨(Ñ ×N
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Ñ ) is given by convolution. The algebra KG∨(Ñ ×N Ñ ) acts naturally on
KG∨(π−1(X)).

It is known (see, for example, [11]) that KG∨(Ñ ) is isomorphic to the
anti-spherical Ŵ -module M . The standard basis of M � KG∨(Ñ ) can be
described explicitly: it consists of classes of line bundles OÑ (γ), γ ∈ Q∨. The
canonical basis does not have any explicit description. It can be shown that
the canonical basis consists of classes of irreducible objects of the heart of the
“exotic” t-structure on the derived category Db(CohG∨(Ñ )) (see [5] and [7]
for details).

Let U ⊂ N be an open G∨-invariant subvariety. Set Ũ := π−1(U).
It follows from [7, §11.3] that the kernel of the restriction homomorphism
KG∨(Ñ ) � KG∨(Ũ) is freely generated (as a module over Z) by elements
Cν such that Ocν �⊂ U . In particular, KG∨(Ũ) admits a canonical basis
parametrized by {ν ∈ Q∨ | Ocν ⊂ U}.

Recall now that our goal is to compute the numbers mwγ
wν for wν ∈ c, where

c ⊂ Ŵ is the cell, corresponding to the subregular nilpotent. The numbers
mwγ

wν are determined by equation (1) as follows.
Consider U = Oe∪O

reg ⊂ N , where Oe ⊂ N is the G∨-orbit of a subreg-
ular nilpotent element e ∈ N . It follows from the above that the canonical
basis in KG∨(Ũ) is parametrized by {1} ∪ {ν ∈ Q∨ | wν ∈ c}. For γ, ν ∈ Q∨

such that wν ∈ c∪{1} let T̄γ and C̄ν be the images of Tγ and Cν in KG∨(Ũ).
Taking the image of (1) in KG∨(Ũ), we conclude that

tγ · 1̄ = T̄γ =
∑

ν∈Q∨, wν∈c∪{1}
mwγ

wν
C̄ν .

So, to compute the coefficients mwγ
wν as above, it is enough to describe the

Ŵ -module structure on KG∨(Ũ) and the canonical basis {C̄ν | wν ∈ c∪ {1}}
in it. Let us describe the answer.

The cell c has an explicit description (see [29, Proposition 3.8]): it consists
of elements w ∈ Ŵ with unique reduced decomposition. The subset {w ∈ c |
w = wν for some ν ∈ Q∨} consists of elements w ∈ c such that the reduced
decomposition of w ends by s0 (simple reflection, corresponding to the 0th
vertex of the Dynkin diagram of ĝ). This set can be described explicitly (see
Corollary 5.2 and Lemma 6.1). It turns out that for g of type D, E it is
parametrized by the set Î of vertices of the Dynkin diagram of ĝ, and for
sln (n � 3) it is parametrized by Z (that should be considered as the set of
vertices of the Dynkin diagram A∞).

We prove (see Proposition 5.16) that in types D, E the Ŵ -module
KG∨(Ũ)⊗Zsign is isomorphic to the integral form ĥZ of the Cartan subalgebra
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ĥ ⊂ ĝ, i.e. that
KG∨(Ũ) � (ZQ∨ ⊕ ZK ⊕ Zd) ⊗ Zsign

as Ŵ -modules. After this identification the canonical basis consists of d and
minus simple coroots of ĝ.

In type A we identify KPGLn(Be) with (h∞,Z ⊕ Zd) ⊗ Zsign and describe
explicitly the Ŵ -action on the latter (see Section 6.4.2 and Proposition 6.17).
After this identification the canonical basis consists of d and minus simple
coroots of sl∞.

1.4. Structure of the paper

The paper is organized as follows. In Section 2 we recall the structure theory
and representation theory of affine Lie algebras (see Section 2.1), we then
give character formulas for certain L(Λ) (see Theorem 2.5 for types D, E
and Theorem 2.16 for type A) and rewrite them in more explicit terms (see
Propositions 2.13, 2.15 for types D, E and Propositions 2.19, 2.21 for type A).
In Section 3 we recall categories O for ĝ and describe characters of irreducible
ĝ-modules via values at q = 1 of (affine) inverse Kazhdan-Lusztig polynomials.
In Section 4 we recall the Springer resolution and the geometric realization
of the anti-spherical Ŵ -module M , we also recall some information about
the canonical basis, in particular, we describe explicitly the canonical basis
of KG∨(Ũ). In Section 5 we describe Ŵ -module KG∨(Ũ) explicitly for g of
type D, E (see Proposition 5.16). We then compute mwγ

wν for wν ∈ c and
derive Theorem 2.9 (see Section 5.3). In Section 6 we describe Ŵ -module
KPGLn(Ũ) explicitly (see Proposition 6.17). We then compute mwγ

wν for wν ∈ c
and derive Theorem 2.16 (see Section 6.7). In Section 7 we discuss possible
generalizations. Appendix A contains the information about Kazhdan-Lusztig
bases that we use.

2. Affine Lie algebras and their representation theory

2.1. Affine Lie algebras: structure theory and irreducible highest
weight modules [21]

2.1.1. Simple Lie algebra g: notations Let g be a simple finite dimen-
sional Lie algebra over C. We fix a Catan subalgebra h ⊂ g and denote by
Δ the set of roots of (h, g) and by W the Weyl group of (h, g). Let Q be the
root lattice of g. Let α1, . . . , αr ∈ Δ be a set of simple roots, and θ ∈ Δ be
the highest root. We denote by Δ+ ⊂ Δ the set of positive roots and set
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ρ := 1
2
∑

α∈Δ+ α. We fix the nondegenerate invariant symmetric bilinear form
( , ) on g normalized by (θ, θ) = 2. Let α∨

1 , . . . , α
∨
r ∈ h be the simple coroots

defined by
〈αj , α

∨
i 〉 = aij ,

where A = (aij)i,j=1,...,r is the Cartan matrix of g. Let Δ∨ be the W -orbit of
{α∨

1 , . . . , α
∨
r }. We also denote by θ∨ ∈ h the highest coroot of Δ∨.

2.1.2. Affine Lie algebra ĝ We denote by ĝ the affine Lie algebra, corre-
sponding to g. Recall that

ĝ := g[t±1] ⊕ CK ⊕ Cd

with the bracket defined as follows (a, b ∈ g, m,n ∈ Z):

[atm, btn] = [a, b]tm+n + m(a, b)δm,−nK, [d, atn] = natn, [K, ĝ] = 0.

The Lie algebra ĝ has a nondegenerate invariant symmetric bilinear form
( , ) defined by

(atm, btn) = δm,−n(a, b), (CK ⊕ Cd, g[t±1]) = 0,
(K,K) = (d, d) = 0, (K, d) = 1.

This bilinear form restricts to a nondegenerate bilinear form on the Cartan
subalgebra of ĝ:

ĥ := h⊕ CK ⊕ Cd.

We extend every γ ∈ h∗ to the linear function on ĥ by setting 〈γ,CK ⊕
Cd〉 = 0. Let δ ∈ ĥ∗ be the linear function given by 〈δ, h⊕CK〉 = 0, 〈δ, d〉 = 1.
Set α0 := δ − θ ∈ h∗, α∨

0 := K − θ∨ ∈ h. Then {α0, α1, . . . , αr} are simple
roots of ĝ and {α∨

0 , α
∨
1 , . . . , α

∨
r } are simple coroots. Define the fundamental

weights Λi ∈ ĥ∗ by

〈Λi, α
∨
j 〉 := δi,j , i, j = 0, 1, . . . , r.

We denote by η : ĥ ∼−→ ĥ∗ the identification induced by the bilinear form
( , ).

From now on, we assume for simplicity that g is of type A,D,E. So we
have

η(α∨
i ) = αi, η(θ∨) = θ, η(α∨

0 ) = α0, η(K) = δ, η(d) = Λ0, i = 1, . . . , r.



Subregular orbits and explicit character formulas 87

2.1.3. Root system of ĝ Let Δ̂ be the root system of ĝ. Recall that Δ̂
can be decomposed as a disjoint union of the sets of real and imaginary roots:

Δ̂ = Δ̂re ∪ Δ̂im,

where
Δ̂re = {α + nδ | α ∈ Δ, n ∈ Z}, Δ̂im = {nδ | n ∈ Z �=0}.

A root α ∈ Δ̂ is called positive if it can be obtained as a nonnegative
linear combination of simple roots αi ∈ Δ̂, i = 0, 1, . . . , r. The subset of Δ̂,
consisting of positive roots, will be denoted Δ̂+ ⊂ Δ̂ and can be described as
follows:

Δ̂+ = Δ̂re
+ ∪ Δ̂im

+ ,

where

Δ̂re
+ = Δ+ ∪ {α + nδ | α ∈ Δ, n ∈ Z�1}, Δ̂im

+ = {nδ | n ∈ Z�1}.

To every γ ∈ Δ̂re we associate the corresponding coroot γ∨ ∈ ĥ, defined
by γ∨ := α∨ + nK ∈ ĥ if γ = α + nδ ∈ ĥ∗.

2.1.4. Weyl group of ĝ Let Ŵ be the Weyl group of ĝ. The group Ŵ is
the subgroup of Aut(ĥ) generated by the reflections si defined by

(2) si(x) := x− 〈αi, x〉α∨
i , x ∈ ĥ, i = 0, 1, . . . , r.

For γ ∈ Q∨ define the operator tγ ∈ Aut(ĥ) by

tγ(x) = x + 〈δ, x〉γ − ((x, γ) + 1
2 |γ|

2〈δ, x〉)K,

where |γ|2 = (γ, γ).
The group Ŵ is generated by si, i = 1, . . . , r, and tγ , γ ∈ Q∨, so that we

obtain the identification
Ŵ = Q∨

�W.

Remark 2.1. Note that ĥ contains CK as the trivial subrepresentation of Ŵ .
Note also that CK ⊕ h ⊂ ĥ is a subrepresentation: for x ∈ CK ⊕ h the action
of tγ is given by

tγ(x) = x− (x, γ)K, γ ∈ Q∨.
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The group Ŵ is a Coxeter group generated by reflections s0, s1, . . . , sr
and so is equipped with the length function


 : Ŵ → Z�0,

where 
(w) is the length of a shortest expression of w in terms of the si.
Recall that

(3) ε(w) := (−1)�(w) = det
ĥ
w and ε(tγ) = 1 for all γ ∈ Q∨.

2.1.5. Irreducible highest weight representations of ĝ and their char-
acters Let b = h ⊕ n+ ⊂ g be the Borel subalgebra, corresponding to our
choice of simple roots α1, . . . , αr. One defines the corresponding Borel subal-
gebra of ĝ:

b̂ := ĥ⊕ n+ ⊕
⊕
n>0

gtn.

Given Λ ∈ ĥ∗ one extends it to the character of b̂ by zero on all other
summands. Then there exists a unique irreducible ĝ-module L(Λ) with highest
weight Λ. Let us recall the construction of L(Λ). Consider the Verma module

M(Λ) := U(ĝ) ⊗
U(b̂) CΛ,

where CΛ is the one dimensional representation of b̂ given by the character Λ.
Then L(Λ) is the unique (nonzero) irreducible quotient of the module M(Λ).
Let κ = Λ(K) be the scalar by which K ∈ ĝ acts on L(Λ) (and M(Λ)). This
scalar is called the level of L(Λ) (and the level of Λ), and is denoted by κ(Λ).

For μ ∈ ĥ∗ and a ĝ-module M let Mμ ⊂ M be the (generalized) weight
space of M with weight μ. The characters of M = L(Λ) or M(Λ) are defined
as the following (formal) series:

chM :=
∑
μ∈ĥ∗

(dimMμ) · eμ,

here eμ are formal exponentials such that eμ1 · eμ2 = eμ1+μ2 (note that
dimMμ < ∞).
Remark 2.2. Note that one can consider eμ as a function on ĥ whose value on
h ∈ ĥ is equal to eμ(h). Then chM can be considered as the series (chM)(h) =
trM eh. This series is convergent in the domain {h ∈ ĥ | Re(αi(h)) > 0,
i = 0, 1, . . . , r}.
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We set
ρ̂ := ρ + h∨Λ0,

where h∨ is the dual Coxeter number (= 1
2 the eigenvalue on g of the Casimir

element). Recall that 〈ρ̂, α∨
i 〉 = 1 for every i = 0, 1, . . . , r, and ρ̂ =

∑r
i=0 Λi.

Set
R̂ := eρ̂

∏
α∈Δ̂+

(1 − e−α)mult(α).

Then
R̂ chM(Λ) = eΛ+ρ̂.

The main result of this note are explicit formulas for characters of modules
L(Λ) for certain Λ of integer level κ(Λ) > −h∨.
Remark 2.3. Note that the condition that the level of Λ is greater than −h∨

is equivalent to the fact that the level of Λ + ρ̂ is positive.

2.2. Motivation and main result

2.2.1. Motivation and Kac-Wakimoto conjecture We start with the
following definition.
Definition 2.4. An element Λ ∈ ĥ∗ is called regular if it has trivial stabilizer
w.r.t. Ŵ � ĥ∗; this condition is equivalent to 〈Λ, α∨〉 �= 0 for all α ∈ Δ̂re

+ .
Element Λ is called singular if it is not regular (i.e. has nontrivial stabilizer
in Ŵ ). An element Λ ∈ ĥ∗ is called integral if 〈Λ, α∨

i 〉 ∈ Z, i = 0, 1, . . . , r; Λ
is called dominant (resp. quasi-dominant) if 〈λ, α∨

i 〉 ∈ Z�0 for i = 0, 1, . . . , r
(resp. for i = 1, . . . , r).

Consider the following (shifted) action of Ŵ on ĥ∗:

w ◦ Λ := w(Λ + ρ̂) − ρ̂.

For λ ∈ ĥ∗ we denote by Ŵλ ⊂ Ŵ the stabilizer of λ w.r.t. the shifted action.
Recall that by [23] for any Λ ∈ ĥ∗ of level κ(Λ) > −h∨ one has

(4) R̂ chL(Λ) =
∑
w∈Ŵ

c(w)ew(Λ+ρ̂) for some c(w) ∈ Z.

In addition, if Λ is quasi-dominant integral, one has (use W -invariance of
chL(Λ))

c(utγ) = ε(u)c(tγ), u ∈ W, γ ∈ Q∨.
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The motivation for this work is the following theorem proven in [22, Sec-
tion 3].

Theorem 2.5. Let g be a simple Lie algebra of type Dn (n � 4) or E6, E7,
E8 and Λ be a weight of ĝ of negative integral level κ such that the following
conditions hold:

(i) Λ is quasi-dominant integral,
(ii) there exists a root α ∈ Δ+, such that (Λ + ρ̂, δ−α) = 0, and if β ∈ Δ̂+

is orthogonal to Λ + ρ̂, then β = δ − α,
(iii) (extra hypothesis) in (4) one has: c(tγ) is a linear function in γ ∈ Q∨

plus constant.

Then

(5) R̂ chL(Λ) = 1
2

∑
u∈W

ε(u)
( ∑

γ∈Q∨
(〈α, γ〉 + 1)eutγ(Λ+ρ̂)

)
.

Example 2.6. Let us give examples of Λ, satisfying conditions (i), (ii) of
Theorem 2.5 for g of type D4. To Λ ∈ ĥ∗ we associate the element w ∈ Ŵ
that is the longest element such that λ := w ◦ Λ is dominant. Then the
following is a partial list of Λ of level −1, satisfying conditions (i) and (ii) of
Theorem 2.5 (we label the branching node of the Dynkin diagram of D4 by
2), and the corresponding α ∈ Δ+ and w ∈ Ŵ , λ ∈ ĥ∗:

1) Λ = −Λ0, α = θ = α1 + 2α2 + α3 + α4, w = s0, λ = −Λ0,
2) Λ = −2Λ0 + Λk, α = θ − α2, w = s2s0, λ = Λk − Λ2,
3) Λ = −3Λ0 + Λ2, α = θ − α2, w = s2s0, λ = Λ0 − Λ2,
4) Λ = −3Λ0 + Λk + Λl, α = θ − α2 − αp, w = sps2s0, λ = −Λp,
5) Λ = −4Λ0 + 2Λk + Λl, α = θ − α2 − αl, w = slsps2s0, λ = −Λl,
6) Λ = −5Λ0 +2Λk +Λl +Λp, α = θ−α2 −αk, w = skspsls2s0, λ = −Λk,
7) Λ = −4Λ0 + 3Λk, α = θ − α2 − αp − αl, w = s2slsps2s0, λ = Λk − Λ2,

where k, l are distinct elements of the set {1, 3, 4} and p ∈ {1, 3, 4} \
{k, l}.

Examples 1)–4) are given in [22, Example 3.5].
Example 2.7. Let g be of type Dn (n � 4), E6, E7, E8 and let b be the
maximal among the coefficients ai in θ =

∑r
i=1 aiαi. Then there is no Λ,

satisfying conditions (i) and (ii) of Theorem 2.5 if κ(Λ) < −b, and there
is only one, Λ = −bΛ0, if κ(Λ) = −b. Furthermore, Λ = −κΛ0 for κ ∈ Z,
1 � κ � b always satisfies conditions (i) and (ii) of Theorem 2.5, and then
α = θ − ∑κ−1

i=1 αi, w = sκ−1 . . . s0, where we label vertices of the Dynkin
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diagram of ĝ in such a way that the affine vertex has label 0 and i, i + 1 are
adjacent for i ∈ {0, 1, . . . , b− 2} (so, in particular, the label of the branching
point is b− 1).

It is conjectured in [22, Conjecture 3.2] that if g is of type D4, E6, E7, E8,
then the extra hypothesis (iii) holds (so we obtain the character formula
(5) for L(Λ) such that Λ satisfies conditions (i), (ii) of Theorem 2.5). The
main motivation of this work was to prove this conjecture in some cases. For
example, in the case of g = D4 we prove the conjecture in Examples 2.6 1)–4)
(but not for 5)–7)). We don’t know how to prove the conjecture in general.

We will actually compute (under some conditions) the numbers c(tγ) ex-
plicitly that will allow us to compute characters of L(Λ) for certain Λ that
appear in Theorem 2.5 and also of certain other Λ (see Theorem 2.9 and
Propositions 2.13, 2.15 below).

2.2.2. Main result: types D and E Let g be of type Dn (n � 4), E6,
E7, E8. Before formulating the main result for types D and E we need to
introduce some notation.

Let I be the set of vertices of the Dynkin diagram of g. We fix a labeling
of I by the numbers 1, . . . , r. Let Î = I ∪ {0} be the set of vertices of the
Dynkin diagram of ĝ. For i ∈ Î consider the unique segment in Î, connecting
i and 0. Let l be the length of this segment (i.e. this segment consists of l+ 1
vertices). Let

0 = j0, j1, . . . , jl−1, jl = i

be the set of vertices that form the segment above. We set

wi := sisjl−1 . . . sj1s0.

Remark 2.8. Note that for i = 0 we have w0 = s0.
We are now ready to describe the main result. The following theorem

holds (see Section 5.3 for the proof).

Theorem 2.9. Let g be of type Dn (n � 4) or E6, E7, E8. Pick i ∈
{0, 1, . . . , r} and let λ ∈ ĥ∗ be an integral weight, such that λ + ρ̂ is dom-
inant, Λ = w−1

i ◦ λ is quasi-dominant and wi is the longest element in the
coset Ŵλwi. Then

(6) R̂ chL(Λ) =
∑
u∈W

ε(uwi)
∑
γ∈Q∨

〈
Λi, γ + |γ|2

2 K

〉
eutγwi(Λ+ρ̂).
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Remark 2.10. Note that we are not assuming in Theorem 2.9 that the level of
Λ is negative. Actually, Lemma 2.11 below implies that κ(Λ) � 0 in case (a)
and κ(Λ) � −b in case (b) of this lemma (here b is as in Example 2.7 above).

The following lemma describes explicitly all the pairs λ, i, satisfying the
conditions of Theorem 2.9.

Lemma 2.11. Let g be of type Dn (n � 4) or E6, E7, E8. Elements λ ∈ ĥ∗,
i ∈ {0, 1, . . . , r} as in Theorem 2.9 are described as follows. There are two
possibilities:

(a) λ + ρ̂ is regular dominant integral and i is an arbitrary element of Î,
(b) λ = −Λi +

∑
k �=i mkΛk + xδ for some i ∈ {0, 1, . . . , r}, x ∈ C, and

mk ∈ Z�0.

Proof. Let us first of all show that if λ, i are as in Theorem 2.9, then either
λ + ρ̂ is regular or λ = −Λi +

∑
k �=imkΛk + xδ.

Indeed, assume that λ + ρ̂ is not regular. Recall that λ + ρ̂ is dominant,
so its stabilizer in Ŵ (with respect to the standard non shifted action of Ŵ )
is generated by some simple reflections si1 , . . . , sit . Our goal is to show that
t = 1 and i1 = i. Otherwise there exists d ∈ {1, . . . , t} such that id �= i.
Consider the element

w′ := sidwi = sidsisjl−1 . . . sj1s0

and note that w′−1 ◦ λ = w−1
i ◦ λ is quasi-dominant (by our assumptions).

We claim that 
(w′) = 
(wi) + 1 or equivalently 
(w′−1) = 
(w−1
i ) + 1. To

see this we need to show that w−1
i (αid) is a positive root. If id does not lie

in the set {0, j1, . . . , jl−1} and id is not adjacent to i, then w−1
i (αid) = αid

is clearly positive. If αid is adjacent to i = jl and is not equal to jl−1, then
w−1
i (αid) = αid +αi is positive. Finally, if id = jp for some p ∈ {0, 1, . . . , l−1},

then we have w−1
i (αid) = αjp+1 is positive.

So we have shown that 
(w′) = 
(wi) + 1, w−1
i ◦ λ is quasi-dominant and

w′ = sidwi ∈ Ŵλwi. This contradicts to our assumptions (we assumed that
wi is the longest element in Ŵλwi). So we conclude that Ŵλ = {1, si} and λ
must be of the form −Λi +

∑
k �=i mkΛk with mk being nonnegative.

It remains to show that if λ, i satisfy assumption (a) or (b) of Lemma 2.11,
then they satisfy the assumptions of Theorem 2.9. The only nontrivial part
is to check that w−1

i ◦ λ = w−1
i (λ + ρ̂) − ρ̂ is quasi-dominant.

Let us decompose λ =
∑

k mkΛk + xδ. We have λ+ ρ̂ =
∑

k(mk + 1)Λk +
xδ. We need to apply w−1

i = s0sj1 . . . sjl−1si to λ + ρ̂ and show that after
substituting ρ̂ we get quasi-dominant element. Indeed, recall that if j ∈ Î,
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then the action of sj on some Λk is equal to Λk if k �= j, the action of sj on
Λj is equal to −Λj plus the sum of Λj′ , where j′ ∈ Î runs through all vertices
that are adjacent to j. We easily conclude that the coefficient of w−1

i (λ + ρ̂)
in front of some Λjp (p ∈ {1, . . . , l}) is equal to mjp−1 + 1 > 0, the coefficient
in front of Λ0 is equal to −(m0 +mj1 + · · ·+mjl−1 +mi+ l+1) and coefficients
in front of other Λk are at least mk + 1, so are positive. We have shown that
w−1
i ◦ λ is quasi-dominant.

Remark 2.12. The last paragraph of the proof of Lemma 2.11 can be omitted
since it follows from Lemma 3.11 below.

The following proposition shows how to deduce formulas for characters of
(certain) modules appearing in [22, Conjecture 3.2] from Theorem 2.9 (note
that we get the same character formula as in [22, Theorem 3.1]).

Proposition 2.13. Let g be of type Dn (n � 4) or E6, E7, E8. Assume that
λ = −Λi +

∑
k �=i mkΛk + xδ for some i ∈ {0, 1, . . . , r}, x ∈ C and mk ∈ Z�0

for k �= i. Let Λ = w−1
i ◦ λ and α = w−1

i (αi) + δ. Then we have

(7) R̂ chL(Λ) = 1
2

∑
u∈W

ε(u)
( ∑

γ∈Q∨
(〈α, γ〉 + 1)eutγ(Λ+ρ̂)

)
.

Proof. It follows from Lemma 2.11 that λ, i satisfy conditions of Theorem 2.9.
So the character of L(Λ) is computed using the formula (6). Pick u ∈ W ,
γ ∈ Q∨ and let us compute the coefficient of (6) in front of eutγ(λ+ρ̂). Assume
first that i = 0. It follows that λ = Λ, i = 0 and wi = s0. Since s0 = sθt−θ

and s0(Λ + ρ̂) = Λ + ρ̂, we conclude that usθtsθ(γ)−θ(Λ + ρ̂) = utγ(Λ + ρ̂), so
the coefficient in front of eutγ(Λ+ρ̂) in (6) is equal to

− ε(u)
〈

Λ0, γ + |γ|2
2 K

〉
+ ε(u)

〈
Λ0, sθ(γ) − θ + |sθ(γ) − θ|2

2 K

〉
= ε(u)

( |sθ(γ) − θ|2
2 − |γ|2

2

)
= ε(u)(〈θ, γ〉 + 1).

Assume now that i �= 0. Note that λ+ ρ̂ = si(λ+ ρ̂), hence, usitsi(γ)(λ+
ρ̂) = utγ(λ + ρ̂), so the coefficient in front of eutγ(λ+ρ̂) is equal to

ε(uwi)
〈

Λi, γ + |γ|2
2 K

〉
− ε(uwi)

〈
Λi, si(γ) + |γ|2

2 K

〉
= ε(uwi)〈Λi, α

∨
i 〉〈αi, γ〉 = ε(uwi)〈wi(α− δ), γ〉 = ε(uwi)〈α,w−1

i γ〉.
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Consider the element w′
i := witθ = sisjl−1 . . . sj1sθ. We have shown that

the coefficient in front of

eutγ(λ+ρ̂) = eutγwi(Λ+ρ̂) = e
uw′

itw′
i
−1(γ)−θ

(Λ+ρ̂)

is equal to

ε(uwi)〈α,w−1
i γ〉 = ε(uw′

i)〈α, tθ(w′
i
−1
γ)〉

= ε(uw′
i)〈α,w′

i
−1
γ − (θ, w′

i
−1
γ)K〉 = ε(uw′

i)〈α,w′
i
−1
γ〉

= ε(uw′
i)(〈α,w′

i
−1
γ − θ〉 + 〈α, θ〉),

so it remains to check that (α, θ) = 1. Indeed, recall that α = w−1
i (αi)+ δ, so

(α, θ) = (w−1
i (αi), θ) = (αi, wi(θ)) = −(αi, wi(δ − θ))

= −(αi, wi(α0)) = (αi, sisjl−1 . . . sj1α0)
= (αi, α0 + αj1 + · · · + αjl−1 + αi) = 1.

Remark 2.14. In order to identify formulas (5) and (7), we need to show
that if α = w−1

i (αi) + δ, then (δ − α,Λ + ρ̂) = 0 and α ∈ Δ+. Note that
(αi, λ + ρ̂) = 0 and λ + ρ̂ = wi(Λ + ρ̂). It follows that (w−1

i (αi),Λ + ρ̂) = 0,
so indeed (δ − α,Λ + ρ̂) = 0. Note also that

w−1
i (αi) = s0sj1 . . . sjl−1si(αi)

= −αi − αjl−1 − · · · − αj1 − α0 = −δ + θ − αj1 − · · · − αjl−1 − αi,

so α = θ − αj1 − · · · − αjl−1 − αi ∈ Δ+.
The following proposition gives formulas for characters of certain L(Λ)

for regular Λ + ρ̂ of nonnegative level.

Proposition 2.15. Let g be of type Dn (n � 4) or E6, E7, E8. Pick i ∈
{0, 1, . . . , r} and let λ ∈ ĥ∗ be integral such that λ + ρ̂ is regular dominant.
Set Λ = w−1

i ◦ λ, then

R̂ chL(Λ) =
∑
u∈W

ε(uwi)
∑
γ∈Q∨

〈
Λi, γ + |γ|2

2 K

〉
eutγwi(Λ+ρ̂).

Proof. Follows from Theorem 2.9 together with Lemma 2.11.
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2.2.3. Main result: type A Assume that g = sln. Recall that Q∨ is
the sublattice of Z⊕n, consisting of (a1, . . . , an) such that

∑n
k=1 ak = 0. Let

ε1, . . . , εn be the standard basis of Z⊕n. For i ∈ Z let [i] ∈ {0, 1, . . . , n − 1}
be the class of i modulo n. We set

wi =

⎧⎪⎪⎨⎪⎪⎩
s[i]s[i−1] . . . s1s0 for i > 0,
s0 for i = 0,
s[−i]s[−i+1] . . . s[−1]s0 for i < 0,

and for i ∈ Z, k = 1, . . . , n, and a ∈ Z we set

zi(aεk) :=
{
|Z�i ∩ [k, k + (a− 1)n] ∩ (k + nZ)| for a ∈ Z�0,

−|Z�i ∩ [k + an, k − n] ∩ (k + nZ)| for a ∈ Z�0.

We are now ready to describe the main result for type A. The following
theorem holds (see Section 6.7 for the proof).

Theorem 2.16. Let g be sln (n � 3). Pick i ∈ Z and let λ ∈ ĥ∗ be an integral
weight, such that λ + ρ̂ is dominant, Λ = w−1

i ◦ λ is quasi-dominant and wi

is the longest element in the coset Ŵλwi. Then

R̂ chL(Λ) = −
∑
u∈W

ε(uwi)
∑
γ∈Q∨

( n∑
k=1

zi(−〈εk, γ〉εk)
)
eutγwi(Λ+ρ̂).

Similarly to the D, E case (see Lemma 2.11) the pairs λ, i, satisfying the
conditions of Theorem 2.16 can be described explicitly.

Lemma 2.17. Let g be sln (n � 3). Elements λ ∈ ĥ∗, i ∈ Z as in Theo-
rem 2.16 are described as follows. There are two possibilities:

(a) λ + ρ̂ is regular dominant and i is an arbitrary element of Z,
(b) λ = −Λ[i] +

∑
k �=[i] mkΛk + xδ for some i ∈ Z, x ∈ C, and mk ∈ Z�0.

Proof. Same as the proof of Lemma 2.11.

The following lemma will be useful.

Lemma 2.18. For i ∈ Z \ nZ, a ∈ Z we have

zi(−aε[i]) − zi(−aε[i]+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for a � 0, i /∈ [[i] − an, [i] − n]
−1 for a � 0, i ∈ [[i] − an, [i] − n]
0 for a � 0, i /∈ [[i], [i] + (−a− 1)n]
1 for a � 0, i ∈ [[i], [i] + (−a− 1)n]
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=

⎧⎪⎪⎨⎪⎪⎩
1 for i ∈ [[i], [i] + (−a− 1)n]
0 for i /∈ [[i] − an, [i] + (−a− 1)n]
−1 for i ∈ [[i] − an, [i] − n].

Proof. Straightforward.

Proposition 2.19. Let g = sln, n � 3. Pick i ∈ Z and assume that λ =
−Λ[i] +

∑
k �=[i] mkΛk + xδ for some mk ∈ Z�0, x ∈ C. Set Λ = w−1

i ◦ λ. Then
we have

R̂ chL(Λ) =
∑
u∈W

ε(u)
∑

γ∈Q∨, 〈Λn−1,γ〉�0

eutγ(Λ) for i � 0,(8)

R̂ chL(Λ) =
∑
u∈W

ε(u)
∑

γ∈Q∨, 〈Λ1,γ〉�0

eutγ(Λ) for i � 0,(9)

where Λ1, Λn−1 ∈ h∗ are the corresponding fundamental weights of sln.

Proof. We have

(10) R̂ chL(Λ) =
∑
u∈W

−ε(uwi)
∑
γ∈Q∨

( n∑
k=1

zi(−〈εk, γ〉εk)
)
eutγwi(Λ+ρ̂).

Recall that λ + ρ̂ = wi(Λ + ρ̂) and s[i](λ + ρ̂) = λ + ρ̂. Assume first that
i /∈ nZ. Decompose γ =

∑n
k=1 akεk. We have eutγ(λ+ρ̂) = e

us[i]ts[i](γ)(λ+ρ̂), so
the coefficient in front of eutγ(λ+ρ̂) is equal to the sum

−ε(uwi)
( n∑

k=1
zi(−〈εk, γ〉εk)

)
+ ε(uwi)

( n∑
k=1

zi(−〈εk, s[i](γ)〉εk)
)

= −ε(uwi)
(
zi(−a[i]ε[i]) + zi(−a[i]+1ε[i]+1) − zi(−a[i]+1ε[i])−zi(−a[i]ε[i]+1)

)
= ε(uwi)

(
(zi(−a[i]+1ε[i])−zi(−a[i]+1ε[i]+1))−(zi(−a[i]ε[i])−zi(−a[i]ε[i]+1))

)
.

Decompose i = kn + [i], k ∈ Z�0. Using Lemma 2.18, we conclude that

zi(−a[i]ε[i]) − zi(−a[i]ε[i]+1) =
{

1 for i ∈ [[i], [i] + (−a[i] − 1)n]
0 for i /∈ [[i], [i] + (−a[i] − 1)n]

(11)

=
{

1 for k ∈ [0,−a[i] − 1]
0 for k /∈ [0,−a[i] − 1]
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=
{

1 for −a[i] − k − 1 � 0
0 for −a[i] − k − 1 < 0,

zi(−a[i]+1ε[i]) − zi(−a[i]+1ε[i]+1) =
{

1 for i ∈ [[i], [i] + (−a[i]+1 − 1)n]
0 for i /∈ [[i], [i] + (−a[i]+1 − 1)n]

(12)

=
{

1 for −a[i]+1 − k − 1 � 0
0 for −a[i]+1 − k − 1 < 0.

It follows that the coefficient in front of eutγ(λ+ρ̂) is equal to ε(uwi) times
the difference of (12) and (11).

Let us now compute the coefficient in front of eutγ(λ+ρ̂) in (8). We first
should write utγwi = u′tγ′ , u′ ∈ Sn, γ′ ∈ Q∨. Let us compute u′, γ′. Recall
that wi = s[i]s[i−1] . . . s1s0 and let w′

i be the element, obtained from wi by
replacing s0 with sθ in the decomposition above. It is clear that u′ = uw′

i.
Let us now compute γ′. Recall that i = kn + [i], k ∈ Z�0 and decompose
k + 1 = l(n− 1) + p, l ∈ Z�0, 1 � p � n− 1.

We have

γ′ = w′
i
−1(γ) + pεn −

p∑
j=1

εj + l
(
(n− 1)εn −

n−1∑
j=1

εj
)
,

so

〈Λn−1, γ
′〉 = 〈Λn−1, w

′
i
−1(γ)〉−k−1 = 〈w′

i(Λn−1), γ〉−k−1 = −a[i]+1−k−1.

Now eu
′tγ′ (Λ+ρ̂) gives

(13) ε(uwi) ·
{

1 for −a[i]+1 − k − 1 � 0
0 for −a[i]+1 − k − 1 < 0

to the coefficient in front of eu
′tγ′ (Λ+ρ̂) in (8). Another part comes from

e
us[i]ts[i](γ)wi(Λ+ρ̂), it is easy to see that the corresponding coefficient is equal

to

(14) − ε(uwi) ·
{

1 for −a[i] − k − 1 � 0
0 for −a[i] − k − 1 < 0,
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so the total coefficient of (8) in front of eu′tγ′ (Λ+ρ̂) is equal to the sum of (13)
and (14). This sum is clearly equal to the difference of (12) and (11) times
ε(uwi).

Assume now that i ∈ nZ. Let us identify (10) and (8) in this case. We
have eutγ(λ+ρ̂) = eusθtsθ(γ)−θ(λ+ρ̂), so the coefficient in front of eutγ(λ+ρ̂) is equal
to

− ε(uwi)
( n∑

k=1
zi(−〈εk, γ〉εk)

)
+ ε(uwi)

( n∑
k=1

zi(−〈εk, sθ(γ) − θ〉εk)
)

= −ε(uwi)
(
zi(−a1ε1) + zi(−anεn) − zi(−(an − 1)ε1) − zi(−(a1 + 1)εn)

)
= ε(uwi)

(
(zi(−(an − 1)ε1) − zi(−anεn)) − (zi(−a1ε1)−zi(−(a1 + 1)εn))

)
.

Decompose i = kn, k ∈ Z�0. We have

zi(−(an − 1)ε1) − zi(−anεn) =
{

1, if an + k − 1 � 0
0, if an + k − 1 < 0,

zi(−a1ε1) − zi(−(a1 + 1)εn) =
{

1, if k + a1 � 0
0, if k + a1 < 0.

Let us now compute the (total) coefficient in front of eutγ(λ+ρ̂) in (8).
Decompose k+1 = l(n−1)+p, l ∈ Z�0, 1 � p � n−1. We have utγwi = u′tγ′ ,
where u′ = uw′

i,

γ′ = w′
i
−1(γ) + pεn −

p∑
j=1

εj + l
(
(n− 1)εn −

n−1∑
j=1

εj
)
.

It follows that 〈Λn−1, γ
′〉 = −a1 − k − 1, so eu

′tγ′ (Λ+ρ̂) gives

ε(uwi) ·
{

1 for −a1 − k − 1 � 0
0 for −a1 − k − 1 < 0.

Recall also that eutγ(λ+ρ̂) = eusθtsθ(γ)−θ(λ+ρ̂), so the corresponding coefficient
is

−ε(uwi) ·
{

1 for −an − k � 0
0 for −an − k < 0.
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We see that the (total) coefficient of both (10) and (8) in front of eutγ(λ+ρ̂)

is equal to

ε(uwi) ·

⎧⎪⎪⎨⎪⎪⎩
1 for an + k > 0 > a1 + k

0 for an + k � 0, a1 + k < 0 or an + k > 0, a1 + k � 0
−1 for a1 + k � 0 � an + k.

Formula (9) follows from (8), using the involution of the Dynkin diagram
of ŝln, which keeps the 0th node fixed.

Restricting attention to the negative level cases in Theorem 2.16 yields
the following corollary, proven in [22, Theorem 1.1] by different methods.

Corollary 2.20. For Λ = −(1 + i)Λ0 + iΛn−1, i ∈ Z�0, we have

R̂ chL(Λ) =
∑
u∈W

ε(u)
∑

γ∈Q∨, 〈Λn−1,γ〉�0

eutγ(Λ).

For Λ = −(1 + i)Λ0 + iΛ1, i ∈ Z�0 we have

R̂ chL(Λ) =
∑
u∈W

ε(u)
∑

γ∈Q∨, 〈Λ1,γ〉�0

eutγ(Λ).

Proposition 2.21. Let g = sln (n � 3). Pick i ∈ Z and let λ ∈ ĥ∗ be integral
such that λ + ρ̂ is regular dominant. Set Λ := w−1

i ◦ λ, then

R̂ chL(Λ) = −
∑
u∈W

ε(uwi)
∑
γ∈Q∨

n∑
k=1

zi(−〈εk, γ〉εk)eutγwi(Λ+ρ̂).

Proof. Follows from Theorem 2.16 together with Lemma 2.17.

2.2.4. Main steps of the proof of Theorem 2.9 Let us describe the
main steps of the proof of Theorem 2.9. Proof of Theorem 2.16 is similar. We
use notations of Theorem 2.9.

The first observation is that

(15) R̂ chL(Λ) =
∑
w∈Ŵ

ε(ww−1
i )mw

wi
ew

−1(λ+ρ̂),

where mw
wi

= mw
wi

(1) are values at q = 1 of inverse Kazhdan-Lusztig polyno-
mials mw

wi
(q) for Ŵ (see [19, Section 0.3] or Theorem A.4 below).
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Using that Λ is integral quasi-dominant, we conclude from (15) that

R̂ chL(Λ) =
∑
γ∈Q∨

ε(wγw
−1
i )mwγ

wi

∑
u∈W

ε(u)euw
−1
γ (λ+ρ̂)

= ε(wi)
∑
γ∈Q∨

∑
u∈W

ε(wγu)mwγ
wi
euw

−1
γ (λ+ρ̂)

= ε(wi)
∑
γ∈Q∨

∑
u∈W

ε(u)mwγ
wi
eut−γ(λ+ρ̂),

where wγ ∈ tγW is the shortest element of the coset tγW .
By the definitions together with Proposition A.6 below, the values mwγ

wi (1)
are computed as follows. Consider the group algebra ZŴ . This algebra admits
two bases Hw and Cw, w ∈ Ŵ , called, respectively, the standard and the
canonical basis (see Appendix A for the definitions). Recall the anti-spherical
Ŵ -module

M = ZŴ ⊗ZW Zsign.

Taking images of Hw, Cw under the natural surjection Ŵ � M , we obtain
standard and canonical bases in M to be denoted H ′

w, C ′
w respectively.

Then we have

(16) H ′
wγ

=
∑
ν∈Q∨

ε(wγw
−1
ν )mwγ

wν
C ′

wν
,

and our goal is to compute the numbers mwγ
wi . Set

Tγ := ε(wγ)H ′
wγ
, Cν := ε(wν)C ′

wν
.

We see that

(17) Tγ =
∑
ν∈Q∨

mwγ
wν
Cν .

The module M has a “coherent” realization as the equivariant K-theory
KG∨(Ñ ) of the Springer resolution for the Langlands dual group G∨ (see [11]).
It follows from [3, 7] that after the identification M � KG∨(Ñ ) elements Tγ

correspond to the classes of natural line bundles OÑ (γ) on Ñ . Elements of the
canonical basis Cν correspond to classes of irreducible objects in the “exotic”
t-structure on Db(CohG(Ñ )) defined and studied in [5, 7].

Recall that our goal is to compute the numbers mwγ
wi . It turns out that all

these numbers are already “contained” in a certain quotient of the Ŵ -module
KG∨(Ñ ). Let us describe this quotient in our situation.
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Let e ∈ N be a subregular nilpotent element of g∨ and recall that Oe ⊂ N
is the corresponding nilpotent orbit. Recall also that Oreg ⊂ N is the regular
nilpotent orbit, so that U = O

reg∪Oe is an open G∨-invariant subvariety of N .
Recall that Ũ ⊂ Ñ is the preimage of U . We have the natural surjection of Ŵ -
modules KG∨(Ñ ) � KG∨(Ũ). It follows from the results of the first author
(see [7, §11.3]) that the kernel of this surjection is spanned over Z by Cν for
wν /∈ {1, w0, w1, . . . , wr}.

Taking the image of the equality (17) in KG∨(Ũ), we conclude that

(18) T̄γ = C̄0 +
∑

i=0,1,...,r
mwγ

wi
C̄νi ,

where by x̄ we mean the image of the element x ∈ M � KG∨(Ñ ) in KG∨(Ũ)
and νi is the image of wi in Q∨ � Ŵ/W .

It turns out (see Proposition 5.16) that the Ŵ -module KG∨(Ũ) is iso-
morphic to ĥZ ⊗Zsign (with the Ŵ -action on ĥZ given by (2)). The canonical
basis elements C̄0 and C̄νi are d ⊗ 1 and −α∨

i ⊗ 1. Using the equation (18),
this allows us to compute the numbers mwγ

wi explicitly.

3. Categories O for ĝ and characters of irreducible modules
via Kazhdan-Lusztig polymomials

3.1. Category Oκ for ĝ and its decomposition into blocks

Consider a module L(Λ) of integer level κ(Λ) > −h∨, Λ ∈ ĥ∗. The module
L(Λ) is an object of the (affine) category O, denoted by Oκ and defined as
follows (see, for example, [18, Section 3]). Set Q̂+ :=

∑
i∈Î Z�0αi.

Definition 3.1. The category Oκ is the full subcategory of the category of
ĝ-modules of level κ, consisting of ĝ-modules N such that

(a) N =
⊕

μ∈ĥ∗ Nμ, where Nμ is a generalized μ-weight space for ĥ,
(b) dimNμ < ∞,
(c) for any μ ∈ ĥ∗ there exists only finitely many β ∈ μ + Q̂+ such that

Nβ �= 0.

Let us recall the block decomposition of the category Oκ. Irreducible
objects of this category are precisely L(Λ) such that κ = κ(Λ). The category
Oκ can be decomposed into blocks Oκ,ξ as follows. Let ĥ∗/◦Ŵ be the set
of equivalence classes with respect to the shifted Ŵ -action. For Λ ∈ ĥ∗ let
Λ ∈ ĥ∗/◦Ŵ be the class of Λ.
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Definition 3.2. For ξ ∈ ĥ∗/◦Ŵ let Oκ,ξ ⊂ Oκ be the full subcategory of Oκ,
consisting of modules, all of whose composition factors are L(Λ) with Λ = ξ.

Proposition 3.3. The category Oκ decomposes as a direct sum as follows:

Oκ =
⊕

ξ∈ĥ∗/◦Ŵ

Oκ,ξ.

Proof. Follows from [13, Theorem 5.7].

The subcategory Oκ,Λ, corresponding to an integral Λ, is called an integral
block. Let Oκ,ξ be an integral block; then there exists the unique λ ∈ ξ such
that λ + ρ̂ is dominant integral (since κ(Λ) > −h∨).

Recall that Ŵλ ⊂ Ŵ is the stabilizer of λ (w.r.t. the ◦ action). Fixing an
integral λ ∈ ĥ∗, such that λ + ρ̂ is dominant, we obtain the identification

Ŵλ\Ŵ ∼−→ Irr(Oκ,ξ), w �→ L(w−1 ◦ λ).

For w ∈ Ŵλ\Ŵ let Lw and Mw ∈ Oκ,ξ be simple and Verma modules,
corresponding to the coset w i.e.:

Lw := L(w−1 ◦ λ), Mw := M(w−1 ◦ λ).

Definition 3.4. For an integral λ ∈ ĥ∗ such that λ + ρ̂ is dominant let λŴ
be the subset of Ŵ , consisting of maximal length representatives of left Ŵλ-
cosets Ŵλ\Ŵ .

We have the bijection λŴ ∼−→ Ŵλ\Ŵ that sends w to Ŵλw. For w ∈ λŴ
let Lw, Mw ∈ Oκ,ξ be simple and Verma modules, corresponding to the coset
Ŵλw:

Lw := Lw, Mw := Mw.

3.2. Classes of irreducible objects of a regular integral block Oκ,ξ

Let Oκ,ξ be a regular integral block. Consider the Grothendieck K-group
K0(Oκ,ξ) of the category Oκ,ξ. For an object N ∈ Oκ,ξ we denote by [N ] ∈
K0(Oκ,ξ) the corresponding class. For v ∈ Ŵ and w ∈ Ŵ let mw

v be deter-
mined by:

(19) [Lv] =
∑
w∈Ŵ

ε(wv−1)mw
v [Mw].

Remark 3.5. The numbers mw
v are given by the affine inverse Kazhdan-Lusztig

polynomials mw
v (q) evaluated at q = 1 (see Theorem A.4 or [19, Section 0.3]).



Subregular orbits and explicit character formulas 103

3.3. Classes of irreducible objects of integral blocks Oκ,ξ

Let Oκ,ξ be an integral block of level κ > −h∨ (we are not assuming that ξ
is regular).

Proposition 3.6. Pick v ∈ λŴ . We have

[Lv] =
∑
w∈Ŵ

ε(wv−1)mw
v [Mw] =

∑
w∈λŴ

ε(wv−1)
( ∑

u∈Ŵλ

ε(u)muw
v

)
[Mw].

Proof. The claim can be deduced from [18, Theorem 1.1]. It also follows from
the equality (19) by using translation functors (see [13, Theorem 5.13] or [18,
Section 3]).

3.4. Subcategory Rκ ⊂ Oκ and irreducible objects in integral
blocks Rκ,ξ

We will be interested in integral quasi-dominant Λ (see Definition 2.4). The
last condition corresponds to the fact that L(Λ) lies in the subcategory Rκ ⊂
Oκ, defined as follows.
Definition 3.7. The category Rκ is the full subcategory of Oκ, consisting of
modules N ∈ Oκ such that the action of g[t] on N is locally finite. For a block
Oκ,ξ we denote by Rκ,ξ ⊂ Oκ,ξ the full subcategory of Oκ,ξ by objects in Rκ.

Let us now describe irreducible objects of the category Rκ,ξ. We start
from the case when ξ ∈ ĥ∗/◦Ŵ is regular (see Definition 2.4).
Definition 3.8. Let Ŵ f be the set of minimal length representatives of right
W -cosets in Ŵ . We have Ŵ f ∼−→ Ŵ/W � Q∨ and let ν �→ wν be the inverse
bijection.

Lemma 3.9. For integral regular ξ the category Rκ,ξ is the Serre subcategory
of Oκ,ξ whose irreducible objects are Lv, v ∈ Ŵ f .

Proof. It is clear that Rκ,ξ ⊂ Oκ,ξ is the Serre subcategory. It remains to
show that Lv ∈ Rκ,ξ iff v ∈ Ŵ f . Indeed, let us first of all note that v ∈ Ŵ f iff
v−1(λ+ ρ̂) is quasi-dominant (indeed, if v ∈ Ŵ f and v−1(λ+ ρ̂) is not quasi-
dominant then there exists i ∈ {1, . . . , r} such that 〈v−1(λ + ρ̂), α∨

i 〉 < 0,
so 〈λ + ρ̂, v(α∨

i )〉 < 0 i.e. v(α∨
i ) is negative, hence, 
(vsi) = 
(v) − 1 that

contradicts to v ∈ Ŵ f , similarly if v−1(λ+ ρ̂) is quasi-dominant but v /∈ Ŵ f

then there exists i ∈ {1, . . . , r} such that v(α∨
i ) is negative that contradicts

to 〈v−1(λ + ρ̂), α∨
i 〉 > 0).
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It remains to show that L(Λ) ∈ Rκ iff Λ is quasi-dominant. Assume
that L(Λ) ∈ Rκ and consider the g-submodule of L(Λ) generated by the
highest weight vector of L(Λ). This is a finite dimensional module with highest
weight Λ|h. It follows that Λ|h is dominant i.e. Λ is quasi-dominant.

Assume now that Λ is quasi-dominant. Let V (Λ) be the irreducible (finite
dimensional) representation of g with highest weight Λ|h. Consider V (Λ) as
a module over ĝ+ := g[t]⊕CK ⊕Cd, letting tg[t] act via zero, K act via the
multiplication by Λ(K), and d act via the multiplication by Λ(d). Consider
the induced module Indĝ

ĝ+
V (Λ) := U(ĝ) ⊗U(ĝ+) V (Λ). It is easy to see that

Indĝ

ĝ+
V (Λ) ∈ Rκ. Since L(Λ) is a quotient of Indĝ

ĝ+
V (Λ), we conclude that

L(Λ) ∈ Rκ.

In general (for singular ξ) irreducible objects of Rκ,ξ ⊂ Oκ,ξ can be de-
scribed as follows. Recall that irreducible objects of Oκ,ξ are in bijection
with λŴ .
Definition 3.10. Let λŴ f be the intersection λŴ ∩ Ŵ f ⊂ Ŵ . Using the
identification Ŵ f ∼−→Q∨, we can identify λŴ ∩ Ŵ f with the subset of Q∨ to
be denoted λQ∨.

Lemma 3.11. For integral ξ the category Rκ,ξ is the Serre subcategory of
Oκ,ξ whose irreducible objects are Lv, v ∈ λŴ f , where λ ∈ ξ is such that
λ + ρ̂ is dominant integral.

Proof. Clearly Rκ,ξ is a Serre subcategory of Oκ,ξ. It follows from the proof
of Lemma 3.9 that an irreducible object Lv ∈ Oκ,ξ (v ∈ λŴ ) lies in Rκ,ξ iff
the element v−1 ◦ λ is quasi-dominant.

It remains to show that v ∈ λŴ f iff v−1 ◦ λ is quasi-dominant. Indeed,
assume that v ∈ λŴ is such that Λ := v−1 ◦ λ is quasi-dominant. It follows
that Λ+ ρ̂ = v−1(λ+ ρ̂) pairs with all α∨

i , i = 1, 2, . . . , r, by positive numbers.
If v /∈ W f , then there exists i ∈ {1, 2, . . . , r} such that 
(vsi) = 
(v)−1. This
is equivalent to v(αi) ∈ Δ̂−. On the other hand we have

(20) 〈λ + ρ̂, v(α∨
i )〉 = 〈v−1(λ + ρ̂), α∨

i 〉 = 〈Λ + ρ̂, α∨
i 〉 > 0.

Recall now that λ + ρ̂ is quasi-dominant, so the pairing 〈λ + ρ̂, v(α∨
i )〉 must

be nonpositive, contradicting to (20).
Assume now that v ∈ λŴ f . Then v ∈ Ŵ f , and since λ+ ρ̂ is dominant, it

is clear that Λ + ρ̂ = v−1(λ + ρ̂) is quasi-dominant (same argument as in the
proof of Lemma 3.9). It remains to show that there is no i ∈ {1, . . . , r} such
that 〈Λ + ρ̂, α∨

i 〉 = 0. Assume that such i exists. Then si(Λ + ρ̂) = Λ + ρ̂, i.e.
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(vsi)−1 ◦λ = v−1◦λ, hence, vsi ∈ Ŵλv. Recall that v is the longest element of
Ŵλv, so 
(vsi) = 
(v)− 1, and that contradicts the fact that v is the shortest
element of vW (since vsi ∈ vW and vsi is shorter than v).

3.5. Classes of irreducibles of regular integral block Rκ,ξ

Assume that ξ ∈ ĥ∗/◦Ŵ is regular integral and consider the corresponding
category Rκ,ξ.

Proposition 3.12. Suppose that v ∈ Ŵ f . Then we have

(21) [Lv] =
∑

w∈Ŵ f

ε(wv−1)
∑
u∈W

ε(u)mw
v [Mwu].

Proof. This follows from W -invariance of chLv.

Recall now that we have the bijection Ŵ f ∼−→Q∨ and the inverse bijection
sends ν to wν . Then the equality (21) can be rewritten as follows: for v = wν

we have
[Lv] =

∑
γ∈Q∨

ε(wγv
−1)

∑
u∈W

ε(u)mwγ
v [Mwγu].

3.6. Classes of irreducibles of integral block Rκ,ξ

Assume now that Rκ,ξ is an arbitrary (possibly singular) integral block.

Theorem 3.13. For v ∈ λŴ f we have

[Lv] =
∑

w∈Ŵ f

ε(wv−1)
∑
u∈W

ε(u)mw
v [Mwu](22)

=
∑

w∈λŴ f

ε(wv−1)
∑
u∈W

ε(u)
( ∑

σ∈Ŵλ

ε(σ)mσw
v

)
[Mwu].

Proof. Follows from Proposition 3.6 and the W -invariance of chLv.

Equivalently the equality (22) can be rewritten as follows. Pick v ∈ λŴ f ,
then

[Lv] =
∑
γ∈Q∨

ε(wγv
−1)

∑
u∈W

ε(u)mwγ
v [Mwγu](23)

=
∑

γ∈λQ∨

ε(wγv
−1)

∑
u∈W

ε(u)
( ∑

σ∈Ŵλ

ε(σ)mσwγ
v

)
[Mwγu].

Remark 3.14. Note that if w ∈ λŴ f and σ ∈ Ŵλ, then σw ∈ Ŵ f .
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3.7. Characters of L(Λ) ∈ Rκ,ξ

Recall that we are assuming that Λ is integral and quasi-dominant. This
corresponds to the fact that L(Λ) ∈ Rκ,ξ, where ξ = Ŵ ◦Λ. Let λ ∈ ξ be the
(unique) element such that λ + ρ̂ is dominant. Let v ∈ λŴ f be the element
such that Λ = v ◦ λ.

The equality (23) can be obviously rewritten in the following way:

[L(Λ)] =
∑
γ∈Q∨

ε(wγv
−1)

∑
u∈W

ε(u)mwγ
v [M((u−1w−1

γ ) ◦ λ)].

Hence the formula for the character of L(Λ) is

R̂ chL(Λ) =
∑
γ∈Q∨

ε(wγv
−1)

∑
u∈W

ε(u)mwγ
v euw

−1
γ (λ+ρ̂).

Let ν ∈ Q∨ be such that v = wν . We conclude that

R̂ chL(Λ) =
∑
γ∈Q∨

∑
u∈W

ε(uwγwν)mwγ
wν
eu(w−1

γ tγ)t−γ(λ+ρ̂)(24)

=
∑
γ∈Q∨

∑
u∈W

ε(uwν)mwγ
wν
eut−γ(λ+ρ̂).

So all the information about the character of L(Λ) is contained in the numbers
mwγ

wν for γ ∈ Q∨.

3.8. Description of mwγ
wν

via anti-spherical module M

In this section we recall some results of Appendix A. Consider the group
algebra ZŴ . Then ZŴ admits two bases Hw and Cw, indexed by Ŵ , and
called, respectively, the standard and the canonical basis (whose definition
involves deformation of ZŴ to the Hecke algebra of Ŵ , see Appendix A
for details). Recall the anti-spherical module M = ZŴ ⊗ZW Zsign. Module M

admits the standard basis H ′
w and canonical basis C ′

w indexed by w ∈ Ŵ f and
defined as the image of Hw and Cw under the natural surjection ZŴ � M .

By Theorem A.4 we have

(25) H ′
wγ

=
∑
ν∈Q∨

ε(wγw
−1
ν )mwγ

wν
C ′

wν
.

We set
Tγ := ε(wγ)H ′

wγ
, Cν = ε(wν)C ′

wν
.
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For ν, γ ∈ Q∨ we see that

(26) Tγ =
∑
ν∈Q∨

mwγ
wν
Cν .

Remark 3.15. Note that mwν
wν

= 1.

4. Geometry of Springer resolution and realization of M

We will analyze mwγ
wν based on the “coherent” realization of M (as the equiv-

ariant K-theory of the Springer resolution for the Langlands dual group G∨).
Let us first of all recall basic things about the Springer resolution.

4.1. Springer resolution

Recall that G∨ is the adjoint group with Lie algebra g∨, B is the flag variety of
g∨ and N ⊂ g∨ is the variety of nilpotent elements. Recall also that Ñ = T ∗B
and π : Ñ → N is the projection (Springer) map.

The lattice Q∨ is the root lattice of G∨ that identifies with the weight
lattice Hom(T,C×) of characters of a maximal torus T ⊂ G∨ (here we use
that G∨ is adjoint). For γ ∈ Q∨ we denote by OB(γ) := G∨ ×B

C−γ the
corresponding G∨-equivariant line bundle on B, and OÑ (γ) is the pull back
of OB(γ) to Ñ .

The variety Ñ contains an open G∨-orbit O
reg (we identify O

reg ⊂ N
with its preimage in Ñ ). The complement Ñ \ O

reg is the divisor in Ñ .
It is a standard fact that the irreducible components of this divisor are
parametrized by simple coroots α∨ = α∨

i , i = 1, . . . , r, as follows. Let B ∈ B
be a Borel subgroup and let Pα∨ ⊃ B be the minimal parabolic, corre-
sponding to α∨. Let πα∨ : B = G∨/B � G/Pα∨ be the projection. Set
Ñα∨ := T ∗(G∨/Pα∨) ×G∨/Pα∨ B. The differential of πα∨ provides the closed
embedding iα∨ : Ñα∨ ⊂ Ñ . Subvarieties Ñα∨ ⊂ Ñ are precisely the irreducible
components of Ñ \Oreg.

The following exact sequence is standard (see, for example, [5, Equa-
tion (13)] or [1, Lemma 5.3]).

Lemma 4.1. There is a canonical (in particular, G∨-equivariant) exact se-
quence of (coherent) sheaves on Ñ :

(27) 0 → OÑ (α∨) → OÑ → iα∨∗OÑα∨
→ 0.
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4.2. Realization of M via the equivariant K-theory of Ñ and
canonical basis

For a group H, acting on an algebraic variety X, we let KH(X) denote the
Grothendieck group of H-equivariant coherent sheaves on X.

Theorem 4.2 (See e.g. [11]). We have a canonical isomorphism M �
KG∨(Ñ ), such that the element Tγ is sent to [OÑ (γ)], the action of γ ∈
Q∨ ⊂ Ŵ corresponds to the automorphism induced by the functor F �→
F ⊗O

Ñ
OÑ (γ).

We will need some information about the image of Cν in KG∨(Ñ ). Recall
the notion of a two-sided cell in Ŵ (see [30]). These are certain subsets in Ŵ ,
the set of two-sided cells comes equipped with a partial order. There exists
a canonical bijection between the set of two-sided cells and G∨-orbits on N
(see [31]). The order on two-sided sets corresponds to the adjunction order
on nilpotent orbits (see [6, Theorem 4(b)]).

We will write Oc for the orbit, corresponding to the two sided cell of c,
and O�c for its closure. Let Õc, Õ�c be the (reduced) preimages of Oc, O�c

in Ñ .
Let KG∨

�c (Ñ ) ⊂ KG∨(Ñ ) denote the subgroup generated by classes of
sheaves supported on Õ�c. Let KG∨

<c (Ñ ) ⊂ KG∨(Ñ ) denote the subgroup
generated by classes of sheaves supported on Õ�c \ Õc.

Theorem 4.3 ([7, §11.3]). The Z-module KG∨
�c (Ñ ) is spanned by the elements

of the canonical basis Cν such that wν ∈c′�c. The quotient KG∨
�c (Ñ )/KG∨

<c (Ñ )
has a Z-basis, consisting of classes of Cν , wν ∈ c.

Corollary 4.4. For every open G∨-invariant locally closed subvariety U ⊂ N
and Ũ = π−1(U), the kernel of the surjection KG∨(Ñ ) � KG∨(Ũ) is spanned
over Z by {Cν | Owν �⊂ U}.

Proof. Follows from Theorem 4.3.

In fact, [3, 7] provide more information on the images of Cν in KG∨(Ñ ):
these are exactly the classes of irreducible objects in the heart of a certain
t-structure on Db(CohG∨(Ñ )), the so called exotic t-structure, introduced in
[5] (and called “perversely exotic” in [8]). Recall their explicit description.

Theorem 4.5. There exist a G∨-equivariant vector bundle E on Ñ with the
following properties.
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0) The structure sheaf O is a direct summand in E. Also, E∗ is globally
generated.

1) Let A = End(E)op. Then the functor F �→ RHom(E ,F) provides equiv-
alences

Db(Coh(Ñ )) ∼= Db(A −mod),
Db(CohG∨(Ñ )) ∼= Db(A −modG

∨),

where A −mod is the category of finitely generated A-modules.
2) Irreducible objects in the heart of the exotic t-structure are in bijection

with pairs (O,M) where O is a G∨-orbit in N and M is an irreducible
equivariant module for A|O.
More precisely, given (O,M) as above there exists an object LO,M ∈
Db(A−modG

∨) uniquely characterized by the following properties: LO,M

is supported on the closure of O, its restriction to the open subset O of
its support is isomorphic to M

[
− codim(O)

2

]
; for every orbit O

′ �= O

the object i∗
O′(LO,M ) is concentrated in cohomological degrees less than

codim(O′)
2 and the object i!

O′(LO,M ) is concentrated in cohomological de-
grees greater than codim(O′)

2 . The object LO,M is irreducible in the heart of
the exotic t-structure and every such irreducible is isomorphic to LO,M

for some (O,M).
3) The classes of LO,M form the canonical basis in M , where we identified

KG∨(Ñ ) � M using the map [O(γ)] �→ T−γ.

Proof. The vector bundle E is introduced in [8, Theorem 1.5.1], which asserts
that E is a tilting generator, i.e. statement 1) holds. It contains O as a di-
rect summand by [8, Theorem 1.8.2 (a,1)]. Statements 2), 3) follow from [8,
Theorem 6.2.1].

It remains to show that E∗ is globally generated. Recall from [8, §1.8] a
collection of tilting vector bundles on Ñ parametrized by alcoves, here E cor-
responds to the fundamental alcove and E∗ is the tilting bundle corresponding
to the anti-fundamental one. A vector bundle V is globally generated iff for
every morphism from f : V → kx, where kx is a skyscraper sheaf, there exists
a morphism φ : O → V such that f ◦ φ �= 0. It is easy to see that when V is a
dilation equivariant vector bundle on Ñ , it suffices to consider x in the zero
section G∨/B∨ ⊂ Ñ . Moreover, it is enough to prove a similar statement over
a field k of a large positive characteristic. In that case, we can apply localiza-
tion functor corresponding to the point −2ρ in the anti-fundamental alcove
to translate this statement into one in the representation theory of the Lie
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algebra g∨ over k. The localization equivalence relates the functor of global
sections to translation to the singular central character −ρ, a skyscraper sheaf
is identified with a module M∗

0 where M0 is a baby Verma module with high-
est weight zero, while E∗ (pulled back to the formal neighborhood of the zero
section) is identified with a projective generator in the corresponding cate-
gory of g∨-modules. Thus the statement reduces to showing that translation
functor T−2ρ→−ρ does not kill any nonzero submodule of M∗

0 . This follows
from the standard fact that the adjunction arrow M∗

0 → T−ρ→−2ρT−2ρ→ρM
∗
0

is injective.

Remark 4.6. Notice that the isomorphisms between KG∨(Ñ ) and the anti-
spherical module M in Theorem 4.2 and in Theorem 4.5 are different: one
sends [O(γ)] to Tγ while the other sends it to T−γ . Both are natural from some
perspective and both appear in the literature. A related issue is the choice
of the isomorphism between the weight lattice and the Picard group of the
flag variety: we use the one sending a dominant weight to a semi-ample line
bundle, thus the weights of the action of a Borel subgroup on the nilpotent
radical of its Lie algebra correspond to negative roots, while some authors
prefer the opposite convention (see [11, Section 6.1.11]). We will work with
the isomorphism of Theorem 4.2, see below.

For technical reasons we prefer to work with the globally generated tilting
bundle E∗ rather than with E . Thus we set A = End(E∗)op = Aop and consider
the equivalence Db(Coh(Ñ )) ∼= Db(A − mod), F �→ RHom(E∗,F). In this
approach it is more natural to use the isomorphism between KG∨(Ñ ) and
the anti-spherical module M sending [O(γ)] to Tγ , see Theorem 4.2. With
this identification, elements of the canonical basis correspond to classes LO,M

where O is a G∨-orbit in N and M is an irreducible equivariant module for
A|O characterized as in Theorem 4.5 (2).

For e ∈ N let Ae denote the corresponding specialization of A.
We recall an explicit description of (complexes of) coherent sheaves cor-

responding to some irreducible A-modules. Let A = A − mod, the category
of finitely generated A-modules. We identify A with the corresponding full
subcategory in Db(Coh(Ñ )). For e ∈ N let Ae be the full subcategory in A,
consisting of objects set-theoretically supported on π−1(e).

Recall that e is a subregular nilpotent.
Irreducible components of Be are parametrized by Ĩ; here Ĩ = I if the

Dynkin diagram of g is simply laced (see Sections 5.1 and 6.3 below) and Ĩ is
the set of vertices of the unfolding of the Dynkin graph in general (see [37]).
Each irreducible component Πi, i ∈ Ĩ, is isomorphic to P

1.
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Lemma 4.7 (cf. [9, Example 5.3.3]). Let e ∈ N be a subregular nilpotent.
The irreducible objects in Ae are: OΠi(−1)[1], Oπ−1(e) where π−1(e) is the
schematic fiber of the Springer map π.

Proof. Property 1) in Theorem 4.5 shows that E is tilting, i.e. Ext>0(E , E) =
0. Since O is a direct summand of E , it follows that H1(E) = H1(E∗) = 0.
Using that E is globally generated we conclude that E|Πi is a sum of copies
of OΠi and OΠi(1) (note that RΓ has homological dimension 1 so H1 is right
exact, thus H1(E) = 0 implies H1(E|Πi) = 0).

It is then clear that OΠi(−1)[1] lies in the heart.
Since O is a direct summand in E it follows that the objects F such that

RΓ(F) = 0 form a Serre subcategory A0
e in Ae.

For an object F supported on π−1(e) with RΓ(F) = 0, each cohomology
sheaf of F is an extension of sheaves of the form OΠi(−1), see, for example,
[27, Theorem 2.3]. It follows that A0

e consists of objects of the form F [1] where
F is an extension of OΠi(−1) and that OΠi(−1)[1] are irreducible.

We know that the classes of irreducible objects form a basis in the Grothen-
dieck group K(Coh(π−1(e)) which is isomorphic to homology of π−1(e) and
has dimension |Ĩ|+1. Thus there exists a unique irreducible L0 not isomorphic
to OΠi(−1)[1]. It remains to show that L0 ∼= Oπ−1(e). In the usual t-structure
there exists a filtration of Oπ−1(e) starting with kp for some point p ∈ Be

with the other terms being OΠi(−1). Since kp clearly lies in the heart of our
t-structure, we see that Oπ−1(e) is also in the heart, and is a subobject of kp.

It is clear that Hom(OΠi(−1)[1],Oπ−1(e)) vanishes. We check that Hom
vanishing in the other direction also holds. To this end, consider the Slodowy
variety S̃e, resolving the Slodowy slice Se to e ∈ N (see [37]). We have an
exact sequence

(28) 0 → O
S̃

(1)
e

(−π−1(e)) → O
S̃

(1)
e

→ Oπ−1(e) → 0.

Since Se is affine, O
S̃

(1)
e

(−π−1(e)) is globally generated, which yields

Hom(Oπ−1(e),OΠi(−1)[1]) = 0.

It follows that both socle and cosocle of Oπ−1(e) is the sum of copies of L0. If
Oπ−1(e) �= L0, then we get a nonconstant endomorphism of Oπ−1(e) but again
using the exact sequence (28) we see that Γ(Oπ−1(e)) is one dimensional.

Remark 4.8. According to [8], base change of A to a slice to a nilpotent orbit
is derived equivalent to the resolution of the slice, this yields a t-structure on
the resolution of the slice. When e is subregular, the resolution of the slice
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coincides with the minimal resolution of a rational (Kleinian) singularity.
Comparing Lemma 4.7 with [27, Theorem 2.3] one sees that in this case the
above t-structure coincides with one arising from the MacKay equivalence
between the derived category of the resolution and the derived category of
the orbifold.

Assume now g is of type D or E. Then the centralizer ZG∨(e) is unipotent.
It is clear each of the above irreducibles carries a unique equivariant ZG∨(e)
structure. For g = sln (n � 3) we have Ze � C

× (recall that Ze ⊂ ZG∨(e)
is the reductive part); for a C

×-equivariant sheaf F and k ∈ Z we denote by
F〈k〉 the same sheaf but with the C

×-equivariant structure twisted by the
character t �→ tk of C×. It is clear that each of the above irreducibles carries
unique (up to a shifting by k ∈ Z) ZG∨(e)-equivariant structure.

We will use the same notation for the resulting ZG∨(e)-equivariant sheaves,
as well as for the corresponding G∨-equivariant sheaves on the schematic
preimage of the orbit π−1(Oe)

ι−→ Ñ .
Consider U = Oe ∪ O

reg. We record a description of the canonical basis
in KG∨(Ũ) stemming from Theorem 4.5 and Lemma 4.7.

Proposition 4.9. For g of type Dn (n � 4) or E6, E7, E8 the canonical
basis of KG∨(Ũ) consists of classes of

O
Ũ
, ι∗Oπ−1(Oe)[−1], and ι∗OΠi(−1), i = 1, . . . , r.

For g = sln (n � 3) the canonical basis of KG∨(Ũ) consists of classes of

O
Ũ
, ι∗Oπ−1(Oe)[−1]〈k〉, and ι∗OΠi(−1)〈k〉, i = 1, . . . , n− 1, k ∈ Z.

Proof. We use the description of the canonical basis provided by the Theo-
rem 4.5. It is easy to see that OÑ satisfies the properties in Theorem 4.5 (2),
so it corresponds to an element of the canonical basis (this is just the image
of the unit element in the affine Hecke algebra).

Also, Theorem 4.5 together with Lemma 4.7 show the existence of ir-
reducible objects in the heart of the exotic t-structure whose restriction to
Ũ coincides with the other objects listed in the Proposition (note that the
objects that appear in Lemma 4.7 should be shifted by [− codimOe

2 ] = [−1]).
Thus the statement follows from Theorem 4.5 (3).

Remark 4.10. The canonical basis in the corresponding module over the affine
Hecke algebra was computed by other methods in [35] for type A and in [34]
for types D and E. It is not hard to check that the basis in Proposition 4.9
after applying Grothendieck-Serre duality to it (see [33, Sections 6.10, 6.11,
6.12]) agrees with those earlier results.
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5. The subregular type D, E case

In this section we assume that g is of type D or E. Since g is simply-laced,
we have g = g∨. Recall that e ∈ g is the subregular nilpotent element and
c ⊂ Ŵ is the corresponding two-sided cell. Recall the Ŵ -module KG∨(Ũ),
and that this module has a (canonical) basis C̄ν parametrized by ν such that
the corresponding wν lies in c ∪ {1}. Let us describe such ν, wν explicitly.

The following proposition follows from [29, Proposition 3.8], see also [40,
Proposition 3.6].

Proposition 5.1. The cell c, corresponding to the subregular nilpotent e,
consists of all nonidentity elements w ∈ Ŵ that have unique reduced decom-
position.

Corollary 5.2. Let c be as in Proposition 5.1. The elements ν ∈ Q∨ such
that wν ∈ c can be described as follows. The set of possible ν is parametrized
by Î. For i ∈ Î let us connect i with 0 ∈ Î by the segment:

0 = j0, j1, . . . , jl−1, jl = i.

Then the element νi is equal to

(29) νi = sisjl−1 . . . sj1(θ) = θ − α∨
j1 − · · · − α∨

jl−1
− α∨

i

and the corresponding wνi is

wνi = wi = sisjl−1 . . . sj1s0.

Proof. It easily follows from Proposition 5.1 that the elements of c of the form
wν are precisely the elements wi, i ∈ Î. Recall now that

wi = sisjl−1 . . . sj1s0 = sisjl−1 . . . sj1sθt−θ = tsisjl−1 ...sj1 (θ)sθsj1 . . . sjl−1si.

We conclude that ν that corresponds to wi is equal to sisjl−1 . . . sj1(θ). It
remains to note that

sisjl−1 . . . sj1(θ) = sisjl−1 . . . sj1(δ − α0)
= δ − sisjl−1 . . . sj1(α0) = δ − (α0 + αj1 + · · · + αjl−1 + αi)
= θ − αj1 − · · · − αjl−1 − αi.

Remark 5.3. Note that ν0 = θ, w0 = s0.
Our goal is to identify Ŵ -module KG∨(Ũ)⊗Zsign with ĥZ = ZQ∨⊕ZK⊕

Zd.
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5.1. Structure of K(Be)

Let us first of all describe the geometry of the variety Be. Recall that Be

is the fiber over e of the Springer resolution π : Ñ → N . Directly from the
definitions we have

Be = {b′ ∈ B | e ∈ nb′},

where nb′ ⊂ b is the unipotent radical of the Borel subalgebra b′.
The following lemma is standard (see [37]).

Lemma 5.4. For every i = 1, . . . , r there exists the unique parabolic subal-
gebra pe,i such that

(1) pe,i is conjugate to the standard minimal parabolic subalgebra, corre-
sponding to α∨

i ,
(2) the nilradical of pe,i contains e.

We denote the corresponding parabolic subgroup by Pe,i ⊂ G∨.

For i ∈ 1, . . . , r let Pi = G∨/Pe,i be the variety of parabolic subalgebras
of g∨ of type pe,i. The following proposition is standard (see [37]).

Proposition 5.5. The variety Be has r irreducible components Πi, i =
1, . . . , r. The component Πi, corresponding to i ∈ I, is the fiber of the mor-
phism B → Pi over the point pe,i (in particular, Πi � P

1). For i �= j com-
ponents Πi, Πj intersect iff (αi, αj) = −1. If this is the case, then Πi, Πj

intersect transversally at one point.

We pick any point p ∈ Be and denote by [Cp] the class in K(Be) of the
skyscraper sheaf Cp.
Remark 5.6. Note that [Cp] does not depend on the point p. Indeed, it is
enough to check this for P

1 where every skyscraper sheaf is equal to [OP1 ] −
[OP1(−1)].

For m ∈ Z we denote by Om
i the class of OΠi(m) in K(Πi). We denote

by omi ∈ K(Bi) the direct image of Om
i under the closed embedding Πi ⊂ Bi.

The following lemma holds by [34, Section 3.4].

Lemma 5.7. The Z-module K(Be) is spanned by omi , i = 1, . . . , r, m ∈ Z,
subject to relations

omi − om−1
i = omj − om−1

j , om+1
i − omi = omi − om−1

i , i, j = 1, . . . , r.
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Remark 5.8. The relations follow from the standard exact sequences on P
1

(and their twistings by OP1(m)):

0 → OP1(−1) → OP1 → Cp → 0,
0 → OP1(−1) → O⊕2

P1 → OP1(1) → 0.
(30)

Corollary 5.9 ([34, Section 3.4]). The Z-module K(Be) has a basis o−1
i ,

i = 1, . . . , r, [Cp].

Proof. Easily follows from Lemma 5.7.

Remark 5.10. Note that for every i ∈ I we have [Cp] = o0
i − o−1

i and, more
generally, omi − om−1

i = [Cp] for every m ∈ Z.
The following lemma holds by [34, Lemma 3.6].

Lemma 5.11. For γ ∈ Q∨ we have

(a) tγ([Cp]) = [Cp],
(b) tγ(omi ) = o

m+〈αi,γ〉
i .

The following lemma holds by [34, Lemmas 3.7, 3.8].

Lemma 5.12. For i ∈ I we have

(a) si([Cp]) = −[Cp],
(b) si(o−1

i ) = o−1
i .

The following lemma holds by [34, Lemma 3.12].

Lemma 5.13. If i, j ∈ I are such that (αi, αj) = 0, then si(o−1
j ) = −o−1

j .

The following lemma holds by [34, Lemma 3.11].

Lemma 5.14. If i, j ∈ I are such that (αi, αj) = −1, then si(o−1
j ) =

−o−1
j − o−1

i .

Recall that Zsign is the one dimensional sign representation of Ŵ . We
finally obtain the following proposition.

Proposition 5.15. There is an isomorphism of Ŵ -modules

K(Be) � (hZ ⊕ ZK) ⊗ Zsign,

given by
K ⊗ 1 �→ [Cp], α∨

i ⊗ 1 �→ −o−1
i , i = 1, . . . , r.
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Proof. The only nontrivial part is to compare the action of tα∨
j

on o−1
i with

the action of tα∨
j

on α∨
i . If (αi, αj) = 0, then we have

tα∨
j
(o−1

i ) = o−1
i

as desired. If (αi, αj) = −1, then we have

tα∨
j
(o−1

i ) = o−2
i = o−1

i − [Cp].

Finally, if i = j then we have

tα∨
i
(o−1

i ) = o1
i = o0

i + Cp = o−1
i + 2[Cp].

5.2. Structure of KG∨(Ũ)

Let us describe the Ŵ -module KG∨(Ũ) (recall that g is of type D, E). Recall
that we have the closed embedding ι : Õe ⊂ Ũ (where Õe is the schematic
preimage of Oe ⊂ U). It induces the homomorphism ι∗ : KG∨(Õe) → KG∨(Ũ)
of Ŵ -modules. Note also that we have the natural identification KG∨(Õe) =
K(Be).

Recall that by Theorem 4.3 and Corollary 4.4 we have an exact sequence
of Ŵ -modules

0 → K(Be)
ι∗−→ KG∨(Ũ) −→ KG∨(Oreg) → 0.

Proposition 5.16. There is an isomorphism of Ŵ -modules

KG∨(Ũ) � (hZ ⊕ ZK ⊕ Zd) ⊗ Zsign = ĥZ ⊗ Zsign,

given by (i ∈ {1, 2, . . . , r})

K �→ ι∗[Cp], α∨
0 �→ ι∗[Oπ−1(e)], α∨

i �→ −ι∗o
−1
i , d �→ [O

Ũ
].

The images of the elements of the canonical basis under this isomorphism
are as follows:

C̄0 = T̄0 �→ d, C̄νi �→ −α∨
i , i = 0, 1, . . . , r,

where the νi are defined by (29).

Proof. Recall that KG∨(Ũ) has a basis

ι∗[Cp], ι∗o−1
1 , . . . , ι∗o

−1
r , [O

Ũ
].
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Moreover, ι∗[Cp], ι∗o−1
1 , . . . , ι∗o

−1
r form the submodule isomorphic to K(Be) �

(hZ ⊕ CK) ⊗ Zsign (see Proposition 5.15).
It remains to compute the action of Ŵ on [O

Ũ
]. The module KG∨(Ũ) is

the quotient of KG∨(Ñ ), where the surjection KG∨(Ñ ) � KG∨(Ũ) is induced
by the restriction Ñ ⊃ Ũ . Moreover, we have the identification of Ŵ -modules

KG∨(Ñ ) � ZŴ ⊗ZW Zsign, [O(γ)] �→ Tγ .

In particular, [OÑ ] ∈ KG∨(Ñ ) identifies with 1 ∈ ZŴ ⊗ZW Zsign, so W acts
on [OÑ ] via the sign representation. It remains to compute the action of Q∨

on [O
Ũ
]. In other words we need to compute the action of the elements tα∨

i
,

i = 1, . . . , r on [O
Ũ
]. By the definitions and Lemma 4.1 we have

tα∨
i
· [O

Ũ
] = [O

Ũ
(α∨

i )] = [O
Ũ
] − ι∗o

0
i = [O

Ũ
] − ι∗o

−1
i − ι∗[Cp].

It remains to recall that the action of tα∨
i

on d is given by

tα∨
i
(d) = d + α∨

i −K.

The isomorphism of Ŵ -modules KG∨(Ũ) � ĥZ ⊗ Zsign follows.
The claim about the canonical basis follows from Proposition 4.9. The

fact that the element Cνi is equal to −α∨
i but not −α∨

j for some other j can
be easily seen from the equality (use (29)):

tνi(d) = d + νi −K = d− α∨
0 − α∨

j1 − · · · − α∨
i

together with Remark 3.15.

Remark 5.17. One can avoid the use of Proposition 4.9 in the proof of Propo-
sition 5.16 and instead use results of [34] on the canonical basis in KG∨(Be)
together with [8, Theorem 5.3.5]. Recall that the canonical basis from [34] dif-
fers from the one in Proposition 4.9 by applying Grothendieck-Serre duality
to it.

5.3. Computation of mwγ
wi

and the proof of Theorem 2.9

Recall now that by Equation (17) we have

Tγ =
∑

mwγ
wν
Cν .
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Taking the image of this equality in KG∨(Ũ) � ĥZ ⊗ Zsign and using Propo-
sition 5.16, we see that

tγ(d) = d−
∑

i=0,1,...,r
mwγ

wi
α∨
i .

So we can compute mwγ
wi . Indeed, this is the coefficient in front of −α∨

i in

tγ(d) − d = γ − 1
2 |γ|

2K.

We conclude that

(31) mwγ
wi

=
〈
−Λi, γ − 1

2 |γ|
2K

〉
=

〈
Λi,−γ + |γ|2

2 K

〉
.

We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9. Let i, λ, Λ be as in Theorem 2.9. Combining (24) and
(31), we conclude that

R̂ chL(Λ) =
∑
γ∈Q∨

∑
u∈W

ε(uwi)mw−γ
wi

eutγ(λ+ρ̂)

=
∑
γ∈Q∨

∑
u∈W

ε(uwi)
〈

Λi, γ + |γ|2
2 K

〉
eutγwi(Λ+ρ̂),

which is precisely the statement of Theorem 2.9.

6. The subregular type A case

In this section we assume that g = sln for some n ∈ Z�3. Recall that our goal
is to describe the Ŵ -module KPGLn(Ũ) and the canonical basis in it.

6.1. Structure of Ŵ , its extended version Ŵ ext

Recall that Q∨ is the cocharacter lattice of SLn that is equal to the character
lattice of PGLn. We can identify Q∨ with the following sublattice of Zn:

Q∨ = {(a1, . . . , an) ∈ Z
n | a1 + · · · + an = 0}.

Recall that ε1, . . . , εn is the standard basis of Zn. Simple coroots α∨
i ∈ Q∨ are

α∨
i = εi − εi+1, i = 1, . . . , n− 1, and the Weyl group of sln is Sn. The action
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of Sn on Q∨ is the standard action via permutations. Recall that

Ŵ = Q∨
� Sn.

The group Ŵ can be described as follows. It is the group of all permu-
tations σ : Z → Z such that σ(i + n) = σ(i) + n and

∑n
i=1(σ(i) − i) = 0.

The group of all permutations σ : Z → Z such that σ(i + n) = σ(i) + n is
isomorphic to Sn � Z

n.
Let us recall the description of the elements s0, s1, . . . , sn−1, tγ in these

terms. Element si is given by

(32) si(j) =

⎧⎪⎪⎨⎪⎪⎩
j + 1 for j ≡ i (mod n),
j − 1 for j ≡ i + 1 (mod n),
j otherwise.

For a lattice element γ = (a0, . . . , an−1) ∈ Z
n the corresponding element

tγ of Zn
� Sn is given by

tγ(k) = k + a[k]n,

where [k] ∈ Z/nZ � {0, 1, . . . , n − 1} is the class of k modulo n. So the
element tεk is given by

tεk(j) =
{
j + n for j ≡ k (mod n),
j otherwise.

Let P∨ be the cocharacter lattice of PGLn. We can identify P∨ with the
following quotient of Zn:

P∨ = Z
⊕n/Z(ε1 + · · · + εn).

We have a natural embedding Q∨ ⊂ P∨. It will be useful to consider the the
extended affine Weyl group

Ŵ ext := P∨
� Sn.

For γ ∈ Z
n we denote by tγ ∈ Ŵ ext the corresponding element of Ŵ ext. The

group Ŵ ext is generated by tε1 , . . . , tεn , s1, . . . , sn−1.
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6.2. Parametrization of the canonical basis of KPGLn(Ũ)

Recall that e ∈ sln is the subregular nilpotent element and c ⊂ Ŵ is the
corresponding two-sided cell. Recall that the module KPGLn(Ũ) has a canon-
ical basis C̄ν parametrized by ν such that wν ∈ c ∪ {1}. It follows from
Proposition 5.1 that the set of wν as above is given by

Lemma 6.1. The elements wν ∈ c can be described as follows. The set of
possible ν is parametrized by Z. For i ∈ Z, the corresponding element wi is
equal to

wi =

⎧⎪⎪⎨⎪⎪⎩
s[i]s[i−1] . . . s1s0 for i > 0
s0 for i = 0,
s[i]s[i+1] . . . s[−1]s0 for i < 0

and νi is the image of wi in Q∨ � Ŵ/Sn.

6.3. Description of Be and C
×-equivariant line bundles on it

Let us now recall the explicit description of Be.
The element e can be described as follows. Let V = C

n be the standard
representation of sln and let v1, . . . , vn be the standard basis of Cn. Then the
element e is:

e(vn−1) = e(vn) = 0, e(vi) = vi+1, i = 1, . . . , n− 2.

For every (ordered) basis b1, . . . , bn of V let F(b1, . . . , bn) be the flag

{0} ⊂ SpanC(b1) ⊂ SpanC(b1, b2) ⊂ · · · ⊂ SpanC(b1, . . . , bn−1) ⊂ V.

To every (k, a) ∈ ({1, . . . , n− 1} × C) ∪ {(0, 0)} we associate the flag

Fk,a = F(vn−1, vn−2, . . . , vn−k+1, vn−k + avn, vn, vn−k−1, vn−k−2, . . . , v1).

The irreducible components of Be are parametrized by k ∈ {1, 2, . . . , n− 1}:

Πk = {Fk,a | a ∈ C} ∪ {Fk+1,0}.

For k = 1, 2, . . . , n we set

pk−1,k := Fk−1,0 = F(vn−1, . . . , vn−k+1, vn, vn−k, vn−k−1, . . . , v1).

For k = 2, . . . , n− 1 we have pk−1,k = Fn−k,0 = Πk ∩ Πk−1.
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Our first goal is to describe the action of Ŵ on KPGLn(Õe). It will be
more convenient to describe the action of Ŵ ext on KSLn(Õe) first. Recall that

KPGLn(Õe) = KZe,PGLn (Be), KSLn(Õe) = KZe,SLn (Be),

where Ze,PGLn ⊂ PGLn, Ze,SLn ⊂ SLn are reductive parts of the centralizers
of e.

We have the identifications (compare the second identification with [35,
Section 5.1])

C
× ∼−→Ze,PGLn ⊂ PGLn, t �→ diag(1, 1, . . . , 1, t),

C
× ∼−→Ze,SLn ⊂ SLn, t �→ diag(t−1, t−1, . . . , t−1, tn−1).

We obtain two actions of C× on Be. The first action sends a flag Fk,a to
the flag Fk,ta and the second action sends Fk,a to the flag Fk,tna.

Fix 1 � k � n− 1 and consider the following action of C× on P
1.

(33) t · [x : y] = [tnx : y].

The following lemma is straightforward (compare with [35, Section 5.4], [15,
Section 3.6]).

Lemma 6.2. Let C× act on P
1 via (33). For every collection of integers i, j,

satisfying i− j = nm for some m ∈ Z, there exists the unique C
×-equivariant

line bundle on P
1 such that t ∈ C

× acts via tj at the fiber over [1 : 0] and acts
via ti at the fiber over [0 : 1]. Every C

×-equivariant line bundle on P
1 can be

obtained in this way. We denote the line bundle above by Oj,i.

Remark 6.3. The Euler characteristic of Oj,i is equal to m + 1, so Oj,i is
isomorphic to OP1(m) as a line bundle.

Recall again that we have the action of C× � Ze,SLn on Be, which acts on
every Πk via (33). We identify KZe,SLn (pt) = Z[ξ±1], KZe,PGLn = Z[ξ±n]. For
k ∈ {1, . . . , n − 1} and a, b ∈ Z such that a − b ∈ nZ we denote by Ob,a

k the
line bundle on Πk whose fiber over pk−1,k is ξb and the fiber over pk,k+1 is ξa.

Lemma 6.4. For every a, b ∈ Z such that a− b ∈ nZ we have

Ob,a
k + Oa,b

k = (ξa + ξb)O0,0
k .

Proof. Use the Euler sequence for Πk � P
1 (see (30)).
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For k = 1, . . . , n− 1 we set

Ok := [O0,−n
k ].

Remark 6.5. Note that the line bundle O0,−n
k has degree m = −1, i.e. is

isomorphic to OΠk
(−1).

Let Cp0,1 be the skyscraper sheaf of the point p0,1 ∈ Be.

Lemma 6.6. We have

[OBe ] = [Cp01 ] +
n−1∑
k=1

ξnOk.

Proof. Recall that O0,−n
k is a line bundle whose fiber over pk−1,k is 1 and the

fiber over pk,k+1 is ξ−n. Clearly we have an exact sequence

0 → ξnO0,−n
n−1 → OBe → O∪n−2

k=1Πk
→ 0.

The claim follows by induction.

We set

O0 := −[OBe ] = −[Cp01 ] −
n−1∑
k=1

ξnOk.

We finally extend Ok to every k ∈ Z in such a way that Ok = ξnOk+n

for every k ∈ Z. The set {Ok | k ∈ Z} forms a basis of the Z-module
KZe,PGLn (Be).

6.4. Modules h∞,Z, ĥ∞,Z over Sn � Z
n, Ŵ

6.4.1. Module h∞,Z Using the identification of Zn
� Sn with the permu-

tations Z → Z, we obtain the action of Zn
�Sn � Z

⊕Z that sends εi to εσ(i).
Consider now the action of Z[ξ±n] on Z⊕Z given by ξn · εi = εi−n.
Remark 6.7. Note that Z

n
� Sn-action on Z

⊕Z commutes with the Z[ξ±n]-
action.

Let h∞,Z ⊂ Z
⊕Z be the submodule, consisting of elements (ai)i∈Z such

that
∑

i∈Z ai = 0. We obtain the action Ŵ � h∞,Z. Module h∞,Z has a
Z-basis {α∨

i , i ∈ Z}, where α∨
i = εi − εi+1.

Remark 6.8. Recall that h∞,Z is a Ŵ -module over Z[ξ±n]. We can consider the
quotient h∞,Z/(ξn−1)h∞,Z. It is easy to see that Ŵ -module h∞,Z/(ξn−1)h∞,Z

is isomorphic to hZ ⊕ ZK via [α∨
i ] �→ α∨

i , i = 0, 1, . . . , n− 1.
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Remark 6.9. Let us define the symmetric bilinear form ( , ) on h∞,Z. Consider
the symmetric bilinear form ( , ) on Z⊕Z given by (εi, εj) = δ[i],[j]. We denote
by ( , ) its restriction to h∞,Z. It is clear that ( , ) is Z

n
� Sn-invariant. It is

also clear that

(α∨
i , α

∨
j ) =

⎧⎪⎪⎨⎪⎪⎩
2 if [i] = [j],
−1 if [i], [j] ∈ Z/nZ are adjacent,
0 otherwise.

6.4.2. Module ĥ∞,Z Recall the Ŵ -module h∞,Z. Set

ĥ∞,Z := h∞,Z ⊕ Zd

and define the Ŵ -module structure on it by (i = 1, . . . , n− 1)

tα∨
i
(d) = d + εi − εi+1−n, w(d) = d, w ∈ Sn.

Clearly, we have an exact sequence of Ŵ -modules

0 → h∞,Z → ĥ∞,Z → Ztriv → 0.

Remark 6.10. Recall the bilinear form ( , ) on h∞,Z. It can be extended to the
bilinear from on ĥ∞,Z by (d, αi) = 0 for i /∈ nZ and (d, αi) = 1 for i ∈ nZ,
(d, d) = 0. It is easy to see that this form is Ŵ -invariant.

We can extend the action of Ŵ on ĥ∞,Z to the action of Z
n
� Sn on

Z
⊕Z ⊕ Zd via

tεi(d) = d + εi.

For γ ∈ Z
n let us describe explicitly the element tγ(d). For k ∈ Z we set

Λ∞
k :=

∑
l�k

ε∗l ∈ h∗∞.

Clearly
〈Λ∞

i , α∨
k 〉 = δi,k.

For a ∈ Z>0 we have

taεk(d) = d + εk + · · · + εk+(a−1)n,
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so
〈Λ∞

i , taεk(d)〉 = |Z�i ∩ [k, k + (a− 1)n] ∩ (k + nZ)|.
For a < 0 we have

taεk(d) = d− εk−n − · · · − εk+an,

so
〈Λ∞

i , taεk(d)〉 = −|Z�i ∩ [k + an, k − n] ∩ (k + nZ)|.
For i ∈ Z, k = 1, . . . , n, and a ∈ Z we set

(34) zi(aεk) :=
{
|Z�i ∩ [k, k + (a− 1)n] ∩ (k + nZ)| for a ∈ Z�0,

−|Z�i ∩ [k + an, k − n] ∩ (k + nZ)| for a ∈ Z�0.

We conclude that for γ = a1ε1 + a2ε2 + · · · + anεn ∈ Q∨ we have

tγ(d) = d +
∑
i∈Z

( n∑
k=1

zi(akεk)
)
α∨
i .

6.5. Structure of modules KZe,SLn (Be), KZe,PGLn (Be)

The main reference for this section is [35]. The goal of this section is to
construct an isomorphism of Ŵ -modules h∞,Z � KZe,PGLn (Be). We describe
the action of Ŵ ext on KZe,SLn (Be) first.

The set {Ok}k=1,...,n−1 ∪ {[Cp0,1 ]} forms a basis of the Z[ξ±1]-module
KZSLn (e)(Be). The following lemma holds by [35, Section 5.11].

Lemma 6.11. We have (k = 1, 2, . . . , n− 1)

sl(Ol−1) = −Ol−1 − Ol for l = 2, . . . , n− 1,
sl−1(Ol) = −Ol − Ol−1 for l = 2, . . . , n− 1,

sk(Ok) = Ok,

sl(Ok) = −Ok for l �= k − 1, k, k + 1,
sl([Cp0,1 ]) = −[Cp0,1 ] for l = 2, . . . , n− 1,

s1([Cp0,1 ]) = −[Cp0,1 ] + (1 − ξn)O1.

Let Lk−1,k be the line bundle on Be whose fiber over ({0} ⊂ D1 ⊂ · · · ⊂
Dn−1 ⊂ V ) is Dk/Dk−1 (see [35, Section 5.1]). By definition, the action of t−εk

on KZSLn (e)(Be) is given by the tensor product with the line bundle Lk−1,k.
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The fiber of Lk−1,k over pl−1,l is equal to ξ−1 if k �= l and ξn−1 if k = l. We
conclude that

t−εk([O
b,a
l ]) = [Ob−1,a−1

l ] = ξ−1[Ob,a
l ] if l �= k − 1, k,(35)

t−εk([O
b,a
k−1]) = [Ob−1,a+n−1

k−1 ],(36)
t−εk([O

b,a
k ]) = [Ob+n−1,a−1

k ].(37)

Lemma 6.12. We have

[Cpk−1,k ] = [O0,0
k ] − [On,0

k ], [Cpk,k+1 ] = [O0,0
k ] − [O0,−n

k ],
[Cpk−1,k ] = [Cpk,k+1 ] + (1 − ξn)Ok,

[Cp01 ] = [Cpk−1,k ] +
k−1∑
l=1

(1 − ξn)Ol.

Proof. All of these equalities directly follow from the standard exact sequences
on P

1.

Corollary 6.13. We have

[O0,0
k ] = [Cp01 ] + Ok +

k∑
l=1

(ξn − 1)Ol = −
k−1∑
l=0

Ol − ξn
n−1∑

l=k+1
Ol.

Proof. By Lemma 6.12

[O0,0
k ] = [Cpk,k+1 ] + [O0,−n

k ] = [Cpk,k+1 ] + Ok

= [Cp01 ] + Ok +
k∑

l=1
(ξn − 1)Ol = −

k−1∑
l=0

Ol − ξn
n−1∑

l=k+1
Ol.

Lemma 6.14. We have

t−εk([Cp0,1 ]) = ξ−1[Cp0,1 ], k = 2, . . . , n− 1,
t−ε1([Cp0,1 ]) = ξn−1[Cp0,1 ],

t−εk(Ol) = ξ−1Ol if l �= k − 1, k,

t−εk(Ok−1) = ξ−1([Cpk−1,k ] + Ok−1) = −ξ−1
( k−2∑

l=0
Ol + ξn

n−1∑
l=k

Ol

)
,

t−εk(Ok) = ξ−1(−[Cpk−1,k ] + Ok) = ξ−1
( k∑

l=0
Ol + ξn

n−1∑
l=k

Ol

)
.
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Proof. The first three equalities follow from the fact that the fiber of Lk−1,k
over pl−1,l is ξ−1 if k �= l and ξn−1 if k = l.

Since [O−1,−1
k−1 ] = ξ−1[O0,0

k−1] and using Corollary 6.13, we conclude that

[O−1,−1
k−1 ] = ξ−1[O0,0

k−1] = −ξ−1
k−2∑
l=0

Ol − ξn−1
n−1∑
l=k

Ol.

We see that

t−εk([O
0,−n
k−1 ]) = [O−1,−1

k−1 ] = −ξ−1
( k−2∑

l=0
Ol + ξn

n−1∑
l=k

Ol

)
.

By Lemma 6.4 [O0,−n
k ] + [O−n,0

k ] = (1 + ξ−n)[O0,0
k ], so

[O0,−n
k ] = −[O−n,0

k ] + (1 + ξ−n)[O0,0
k ].

Using (37) we see that

t−εk([O
0,−n
k ]) = t−εk(−[O−n,0

k ] + (1 + ξ−n)[O0,0
k ])

= ξ−1(−[O0,0
k ] + (1 + ξ−n)[On,0

k ])

= ξ−1(Ok + ξnOk − [O0,0
k ]) = ξ−1

( k∑
l=0

Ol + ξn
n−1∑
l=k

Ol

)
.

Combining all the relations, we get the Ŵ ext-representation KZe,SLn (Be)
with Z[ξ±1]-basis O1, . . . ,On−1, [Cp0,1 ] and the following action of Ŵ ext (here
k ∈ {1, . . . , n− 1}):

sk(Ok−1) = −Ok−1 − Ok,

sk−1Ok = −Ok − Ok−1,

sk(Ok) = Ok,

sl(Ok) = −Ok for l �= k − 1, k, k + 1,
sk([Cp0,1 ]) = −[Cp0,1 ], k = 2, . . . , n− 1,
s1([Cp0,1 ]) = −[Cp0,1 ] + (1 − ξn)O1,

t−εk([Cp0,1 ]) = ξ−1[Cp0,1 ], k = 2, . . . , n− 1,
t−ε1([Cp0,1 ]) = ξn−1[Cp0,1 ],

t−εk(Ol) = ξ−1Ol if l �= k − 1, k,



Subregular orbits and explicit character formulas 127

t−εk(Ok−1) = −ξ−1
( k−2∑

l=0
Ol + ξn

n−1∑
l=k

Ol

)
= −ξ−1

k−2∑
l=k−n

Ol,

t−εk(Ok) = ξ−1
( k∑

l=0
Ol + ξn

n−1∑
l=k

Ol

)
= ξ−1

k∑
l=k−n

Ol.

Proposition 6.15. There is an isomorphism of Ŵ -modules over Z[ξ±n]:

h∞,Z ⊗ Zsign � KZe,PGLn (Be),

given by

α∨
k ⊗ 1 �→ −Ok, k ∈ Z, [Cp0,1 ] �→ α∨

1−n + · · · + α∨
−1 + α∨

0 = ε1−n − ε1.

Proof. Directly follows from the formulas for the action of Ŵ ext on KZe,SLn (Be)
above together with the fact that tα∨

k
= tεk ◦ t−εk+1 .

6.6. Structure of KPGLn(Ũ)

Recall that by Theorem 4.3 we have an exact sequence of Ŵ -modules

0 → KZe,PGLn (Be) → KPGLn(Ũ) → Zsign → 0.

We have already described Ŵ -module KZe,PGLn (Be) explicitly. So in order to
describe the action of Ŵ on KPGLn(Ũ) we just need to compute the action of
Ŵ on [O

Ũ
]. Since KPGLn(Ũ) is the quotient of KPGLn(Ñ ), we have w([O

Ũ
]) =

ε(w)[O
Ũ
] for w ∈ Sn. It remains to determine the action of tα∨

k
, k = 1, . . . , n−

1, on [O
Ũ
].

Lemma 6.16. We have

tα∨
k
([O

Ũ
]) = [O

Ũ
] +

k−1∑
l=k+1−n

Ol.

Proof. Indeed, using Lemma 4.1 and Corollary 6.13 we obtain

tα∨
k
([O

Ũ
]) = [O

Ũ
(α∨

k )] = [O
Ũ
] − [ι∗O0,0

k ]

= [O
Ũ
] − [Cp01 ] − Ok +

k∑
l=1

(1 − ξn)Ol = [O
Ũ
] +

k−1∑
l=k+1−n

Ol.
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Proposition 6.17. We have an isomorphism of Ŵ -modules KPGLn(Ũ) �
ĥ∞,Z ⊗ Zsign. This isomorphism is given by

C̄0 �→ d⊗ 1, C̄νi �→ −α∨
i , i ∈ Z.

Proof. Follows from Proposition 6.15, Lemma 6.16 and Proposition 4.9.

Remark 6.18. One can avoid the use of Proposition 4.9 in the proof of Propo-
sition 6.17 and instead use results of [35] on the canonical basis in KG∨(Be)
together with [8, Theorem 5.3.5], see also [15].

6.7. Computation of mwγ
wi

and the proof of Theorem 2.16

Recall now that
tγ · 1 = Tγ =

∑
ν

mwγ
wν
Cν .

Taking the image of this equality in KPGLn(Ũ) � ĥ∞,Z ⊗ Zsign and using
Proposition 6.17, we see that

tγ(d) = d−
∑
i∈Z

mwγ
wi
α∨
i .

So we can compute mwγ
wi . Indeed, this is just the coefficient in front of

−α∨
i in

tγ(d) − d =
∑
i∈Z

( n∑
k=1

zi(〈εk, γ〉εk)
)
α∨
i .

We conclude that

(38) mwγ
wi

= −
n∑

k=1
zi(〈εk, γ〉εk).

We are now ready to prove Theorem 2.16.

Proof of Theorem 2.16. Let i, λ, Λ be as in Theorem 2.9. Combining (24)
and (38), we conclude that

R̂ chL(Λ) =
∑
γ∈Q∨

∑
u∈W

ε(uwi)mw−γ
wi

eutγ(λ+ρ̂)

= −
∑
γ∈Q∨

∑
u∈W

ε(uwi)
( n∑

k=1
zi(−〈εk, γ〉εk)

)
eutγwi(Λ+ρ̂)

that is precisely the statement of Theorem 2.16.
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7. Possible generalizations

7.1. Non-simply laced case

Recall that in this paper we restrict ourselves to the simply laced case. One
can consider arbitrary simple Lie algebra g. Using an approach similar to
the one in this paper it should be possible to obtain explicit formulas for
characters of certain ĝ-modules L(Λ) (“corresponding” to the subregular cell
in Ŵ ). We plan to return to this in the future.1 The relevant question here is
the explicit description of the Ŵ -module KZe(Be) (e is a subregular nilpotent
of g∨). Let us describe the conjectural answer.
Remark 7.1. Note that the Ŵ -module K(Be) is described in [35, Section 6].

Consider the affine Lie algebra ĝ and the corresponding (affine) Weyl
group Ŵ (see Section 2.1.4 or [21], [32, Section 1.6]). Our goal is to describe
the Ŵ -module structure on KZe(Be). The Dynkin diagram of (ĝ)∨ can be ob-
tained from a simply laced affine Dynkin diagram by folding (see for example
[36, Section 14.1.5]). We denote the simply laced affine Lie algebra above by
k and denote by W (k) its Weyl group.
Remark 7.2. Note that (ĝ)∨ is a twisted affine Lie algebra (see Example 7.4).

Assume for simplicity that g is Bn or F4. By [29, Corollary 3.3] there is
an embedding Ŵ ⊂ W (k) that sends a simple reflection of Ŵ to the product
of simple reflections over the corresponding orbit of folding. Let t̃Z ⊂ k be the
(integral form of the) “reflection” representation of W (k) and t̂Z = t̃⊕ Zd be
the “Cartan” representation. Using the embedding Ŵ ⊂ W (k) we obtain the
action of Ŵ on t̃Z, t̂Z. The following conjecture will be proven (and generalized
to other types) in [28].

Conjecture 7.3. Assume that g is Bn (n � 3), F4. We have isomorphisms
of Ŵ -modules

KZe(Be) � t̃Z ⊗ Zsign, K
G∨(Ũ) � t̂Z ⊗ Zsign.

Example 7.4. Assume for example that g = Bn. Then ĝ = B̃n, hence, (ĝ)∨ =
A

(2)
2n+1. We conclude that k = D̃2n. For g = F4 we have (ĝ)∨ = E

(2)
6 so k = Ẽ7.

Remark 7.5. For g = Bn, F4 it is easy to see that the rank of KZe(Be) (over Z)
is equal to the rank of t̃Z. Indeed, recall that by [37, Section 6.2] variety Be

can be identified with the fiber of the Springer resolution over a subregular
nilpotent element of the unfolding of g. It follows that K(Be) has a basis,

1This will be done in the joint paper [28] of the third author and Kenta Suzuki.
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consisting of [OΠi(−1)], [OBe ], where i runs through the set of simple roots of
the unfolding of g (recall that to every long simple root αi of g corresponds the
unique simple root of the unfolding of g and to every short root αi correspond
two simple roots αi± of the unfolding of g). Recall also that Ze � S2. Using
the same argument as in [34, Section 1.25], one can show that the basis of
KZe(Be) can be described as follows: for every long simple root αi of g we
consider [OΠi(−1)+], [OΠi(−1)−], where ± correspond to two different Ze-
equivariant structures on OΠi(−1), we also have [O±

Be
] and finally for every

short simple root αi (of g) we have [OΠi+
(−1) � OΠi−

(−1)] (this is the class
supported on Πi+ �Πi−). So we see that to every long root of ĝ (in particular,
to the affine root) we associate two basis elements of KZe(Be) and every short
root corresponds to the unique basis element of KZe(Be). It follows that the
rank of KZe(Be) is equal to the number of vertices of the unfolding of the
Dynkin diagram of (ĝ)∨ i.e. the number of simple roots of k (the rank of t̃Z).

7.2. Case of arbitrary nilpotent e

One can try to use a similar approach to the one in this paper to compute
characters of more general ĝ-modules L(Λ) such that the level of Λ is greater
than −h∨ and Λ + ρ̂ is integral quasi-dominant. Let w ∈ Ŵ be the longest
element such that w(λ + ρ̂) is dominant. Let c ⊂ Ŵ be the two-sided cell
that contains w. Let e ∈ g∨ be the corresponding nilpotent element (not
necessarily subregular). For e′ ∈ N we say that e′ is over e if e is contained
in the closure of the orbit Oe′ = G∨ · e′. Let U ⊂ N be the union of the Oe′

such that e′ is over e; this is an open subset of N . Set Ũ := π−1(U).
It follows from the above that the character of L(Λ) can be extracted

from the Ŵ -module KG∨(Ũ) and the canonical basis in it. Recall that Ũ was
constructed starting from a nilpotent element e ∈ g∨.

Recall that an element e ∈ N is called distinguished if it is not contained in
a proper Levi subalgebra. Apparently the simplest case to consider is the case
when e is very distinguished i.e. if every element e′ ∈ N over e is distinguished.
If this is the case then the module KG∨(Ũ) is clearly finite dimensional. It
follows that the function γ �→ mwγ

wν is a quasi-polynomial in this case. Degrees
and periods of these quasi-polynomials will be estimated in the Appendix in
[28] (written by first and third authors joint with Kenta Suzuki), the main
technical tool is the localization theorem in equivariant algebraic K-theory.
Example 7.6. A regular element is always very distinguished. A subregular
element is very distinguished except in types An and Bn, when it is not
distinguished. There are also other examples: one in F4, two in E7, three in
E8, etc., see e.g. [2].
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Remark 7.7. Recall (see Proposition 5.1) that the cell c such that Oc is sub-
regular consists of elements w �= 1 with a unique minimal decomposition (see
Proposition 5.1 below). A similar (but more complicated) description of the
next case, which includes most very distinguished examples, should follow
from [14].

Another interesting case to consider is the case of g = sln and e being
the two-block nilpotent, see [4] for the parametrization and description of the
irreducible objects in the heart of the exotic t-structure in this case.

Appendix A. Basic facts about Kazhdan-Lusztig
polynomials

A.1. Canonical and standard bases in Hecke algebra Hq(Ŵ )

The Hecke algebra Hq = Hq(Ŵ ) over Z[q±1] is an Z[q±1]-algebra with free
Z[q±1]-basis {Hw}w∈Ŵ whose multiplication is determined by the following:

HwHv = Hwv if 
(wv) = 
(w) + 
(v),
(Hs + 1)(Hs − q) = 0 for s ∈ {s0, s1, . . . , sr}.

We can define the Hecke algebra Hq(W ) similarly.
We define an involutive ring endomorphism Hq(Ŵ ) � h �→ h ∈ Hq(Ŵ )

by ∑
w∈Ŵ

awHw =
∑
w∈Ŵ

awH
−1
w−1 ,

where q = q−1. Let � be the Bruhat order on Ŵ .

Proposition A.1 ([24]). For any v ∈ Ŵ there exists a unique Cv ∈ Hq(Ŵ ),
satisfying the following conditions:

Cv =
∑
w�v

Pw,v(q)Hw

with Pv,v(q) = 1 and Pw,v(q) ∈ Z[q] of degree � (
(v)−
(w)−1)/2 for w ≺ v,

Cv = q−�(v)Cv.

The polynomials Pw,v(q) are called Kazhdan-Lusztig polynomials. Let
us now introduce inverse Kazhdan-Lusztig polynomials mw

v (q) (see [25, Sec-
tion 2] where they are denoted by Qv,w(q)). These polynomials are determined
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by:
Hw =

∑
v�w

ε(wv−1)mw
v (q)Cv.

Remark A.2. Note that in [25] the polynomials mw
v (q) are denoted by Qv,w(q).

We change this notation since we have already reserved “Q” for the coroot
lattice Q∨.

Lemma A.3. For v, w ∈ Ŵ we have mw
v (q) = mw−1

v−1 (q).

Proof. Consider the anti-automorphism i of Hq(Ŵ ) given by i(Hx) = Hx−1 ,
i(q) = q. Map i commutes with the involution •. The claim follows.

The following Theorem holds by [19, Section 0.3] together with Lem-
ma A.3:

Theorem A.4. For a dominant integral weight λ ∈ ĥ∗ we have

chL(v−1 ◦ λ) =
∑
w∈Ŵ

ε(wv−1)mw
v (1) chM(w−1 ◦ λ).

A.2. Canonical and standard bases in the anti-spherical module

Define the algebra homomorphism χ : Hq(W ) → Z[q] by χ(Hw) = ε(w). We
define the induced module M (anti-spherical module over Hq(Ŵ )) by

M := Hq(Ŵ ) ⊗Hq(W ) Z[q]

and define ϕ : Hq � M by ϕ(h) = h⊗ 1.
It is easily checked that M � m �→ m ∈ M is well defined by

ϕ(m) = ϕ(m).

For γ ∈ Q∨ set H ′
wγ

:= ϕ(Hwγ ). It is easily seen that M is a free Z[q±1]-
module with basis {H ′

wγ
}γ∈Q∨ .

Proposition A.5 ([12]). For any ν ∈ Q∨ there exists a unique C ′
wν

∈ M,
satisfying the following conditions.

C ′
wν

=
∑

γ∈Q∨, wγ�wν

P̃wγ ,wν (q)H ′
wγ

with P̃wν ,wν (q) = 1 and P̃wγ ,wν (q) ∈ Z[q] of degree � (
(wν) − 
(wγ) − 1)/2
for wγ ≺ wν .

C ′
wν

= q−�(wν)C ′
wν
.
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It easily follows from Proposition A.5 and Theorem A.1 that

(39) C ′
wν

= ϕ(Cwν ) and ϕ(Cw) = 0 if w �= wν for any ν ∈ Q∨,

so
M = Hq/〈Cw | w /∈ {wν | ν ∈ Q∨}〉.

Polynomials P̃wγ ,wν (q) are called parabolic Kazhdan-Lusztig polynomials. Let
us now define the parabolic inverse Kazhdan-Lusztig polynomials m̃wγ

wν (q).
Following [19, Equation (2.40)], we define them by

H ′
wγ

=
∑

ν∈Q∨, wν�wγ

ε(wγw
−1
ν )m̃wγ

wν
(q)C ′

wν
.

The following proposition holds by [38] (see also [19, Proposition 2.7]).

Proposition A.6. For ν, γ ∈ Q∨ we have m̃wγ
wν (q) = mwγ

wν (q).

Proof. Easily follows from the fact that ϕ(Hwγu) = ε(u)H ′
wγ
, u ∈ W together

with (39).

So we conclude that

H ′
wγ

=
∑
ν∈Q∨

ε(wγw
−1
ν )mwγ

wν
(q)C ′

wν
.

Let us now modify bases H ′
wγ

, C ′
wν

as follows:

Tγ := ε(wγ)H ′
wγ
, Cν := ε(wν)C ′

wν
.

We have
Tγ =

∑
ν∈Q∨

mwγ
wν

(q)Cν .

Remark A.7. The numbers m̃wγ
wν (1) = mwγ

wν (1) = mwγ
wν are matrix coefficients

of the transition matrix from classes of standard sheaves on the affine Grass-
mannian of G to classes of irreducible objects (IC sheaves) (see [19, Corol-
lary 5.5] for details). Set M = M/(q − 1) = ZŴ ⊗ZW Zsign. After the iden-
tification KG∨(Ñ ) � M elements Tγ become [OÑ (γ)] and Cγ are classes of
irreducible objects in the heart of the “exotic” t-structure on Db(CohG∨(Ñ ))
(see [3, 5, 7] for details).



134 Roman Bezrukavnikov et al.

Acknowledgements

We thank Victor Ostrik for helpful correspondence.
It is a great pleasure and an honor to dedicate this work to Corrado De

Concini, a master of connecting algebra to geometry in ways beautiful and
profound.

R.B. was partially supported by the NSF grant DMS-2101507.

References

[1] P. Achar, Perverse coherent sheaves on the nilpotent cone in good
characteristic, in: Recent Developments in Lie Algebras, Groups
and Representation Theory, Proc. Symp. Pure Math., vol. 86, 1–23
(2012). MR2976995

[2] J. Adams, Closure diagrams for nilpotent orbits in exceptional groups,
http://www.liegroups.org/tables/unipotentOrbits/unipotentOrbits.pdf.

[3] S. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine
flags and Langlands dual group, Israel J. Math. 170 (2009), 135–
184. MR2506322

[4] R. Anno and V. Nandakumar, Exotic t-structures for two-block
Springer fibers, Trans. Amer. Math. Soc. 376(3) (2023), 1523–
1552. MR4549684

[5] R. Bezrukavnikov, Cohomology of tilting modules over quantum
groups and t-structures on derived categories of coherent sheaves, Inv.
Math. 166(2) (2006), 327–357. MR2249802

[6] R. Bezrukavnikov, Perverse sheaves on affine flags and nilpotent
cone of the Langlands dual group, Israel J. Math., 170 (2009), 185–
206. MR2506323

[7] R. Bezrukavnikov, On two geometric realizations of an affine Hecke
algebra, Publ. IHES 123(1) (2016), 1–67. MR3502096

[8] R. Bezrukavnikov, and I. Mirković. Representations of semisimple
Lie algebras in prime characteristic and the noncommutative Springer
resolution, Annals of Mathematics 178 (2013), 835–919. MR3092472

[9] R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of
modules for a semisimple Lie algebra in prime characteristic, Ann. of
Math. (2) 167 (2008), 945–991, with an appendix by R. Bezrukavnikov
and S. Riche. MR2415389

https://mathscinet.ams.org/mathscinet-getitem?mr=2976995
http://www.liegroups.org/tables/unipotentOrbits/unipotentOrbits.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=2506322
https://mathscinet.ams.org/mathscinet-getitem?mr=4549684
https://mathscinet.ams.org/mathscinet-getitem?mr=2249802
https://mathscinet.ams.org/mathscinet-getitem?mr=2506323
https://mathscinet.ams.org/mathscinet-getitem?mr=3502096
https://mathscinet.ams.org/mathscinet-getitem?mr=3092472
https://mathscinet.ams.org/mathscinet-getitem?mr=2415389


Subregular orbits and explicit character formulas 135

[10] R. Bezrukavnikov, I. Mirković, and D. Rumynin, Singular localiza-
tion and intertwining functors for reductive Lie algebras in prime char-
acteristic, Nagoya Math. J. 184 (2006), 1–55. MR2285230

[11] N. Chriss and V. Ginzburg, Representation Theory and Complex Ge-
ometry, vol. 42. Birkhäuser, Boston 1997. MR1433132

[12] V. V. Deodhar, On some geometric aspects of Bruhat orderings II.
The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111
(1979), 483–506. MR0916182

[13] V. V. Deodhar, O. Gabber and V. Kac, Structure of some categories
of representations of infinite-dimensional Lie algebras, Adv. Math. 45
(1982) 92–116. MR0663417

[14] R. M. Green, T. Xu, Classification of Coxeter groups with finitely
many elements of a value 2, Algebraic Combinatorics 3(2) (2020), 331–
364. MR4098999

[15] I. Gordon and D. Rumynin, Subregular representations of sln and sim-
ple singularities of type An−1. II, Representation Theory of the American
Mathematical Society 8 (2004), 328–345. MR2077485

[16] J. E. Humphreys, Representations of reduced enveloping algebras and
cells in the affine Weyl group, Contemporary Mathematics 413 (2006),
63–72. MR2262365

[17] M. Kashiwara, Kazhdan-Lusztig conjecture for symmetrizable Kac-
Moody Lie algebra, in: The Grothendieck Festschrift, Vol. II, Progr.
Math., vol. 87, 407–433. Birkhäuser, Boston (1990). MR1106905

[18] M. Kashiwara, T. Tanisaki, Characters of irreducible modules with
non-critical highest weights over affine Lie algebras, in: Representations
and Quantizations (Shanghai, 1998). China High Education Press, Bei-
jing (2000). MR1802178

[19] M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig conjecture for sym-
metrizable Kac-Moody Lie algebra. II. Intersection cohomologies of Schu-
bert varieties, in: Operator Algebras, Unitary Representations, Envelop-
ing Algebras, and Invariant Theory (Paris, 1989), Progr. Math., vol. 92,
159–195. Birkhäuser Boston, Boston, MA, (1990). MR1103590

[20] M. Kashiwara, T. Tanisaki, Parabolic Kazhdan-Lusztig polynomials
and Schubert varieties, J. Algebra 249(2) (2002), 306–325. MR1901161

[21] V. Kac, Infinite Dimensional Lie Algebras. Cambridge University Press
1990. MR1104219

https://mathscinet.ams.org/mathscinet-getitem?mr=2285230
https://mathscinet.ams.org/mathscinet-getitem?mr=1433132
https://mathscinet.ams.org/mathscinet-getitem?mr=0916182
https://mathscinet.ams.org/mathscinet-getitem?mr=0663417
https://mathscinet.ams.org/mathscinet-getitem?mr=4098999
https://mathscinet.ams.org/mathscinet-getitem?mr=2077485
https://mathscinet.ams.org/mathscinet-getitem?mr=2262365
https://mathscinet.ams.org/mathscinet-getitem?mr=1106905
https://mathscinet.ams.org/mathscinet-getitem?mr=1802178
https://mathscinet.ams.org/mathscinet-getitem?mr=1103590
https://mathscinet.ams.org/mathscinet-getitem?mr=1901161
https://mathscinet.ams.org/mathscinet-getitem?mr=1104219


136 Roman Bezrukavnikov et al.

[22] V. Kac, M. Wakimoto, On characters of irreducible highest weight
modules of negative integer level over affine Lie algebras, in: Lie Groups,
Geometry, and Representation Theory, Progress in Math., vol. 326, 235–
252. Birkhäuser (2018). MR3890211

[23] V. Kac and D. Kazhdan, Structure of representations with highest
weight of infinite-dimensional Lie algebras, Adv. in Math 34(1) (1979),
97–108. MR0547842

[24] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and
Hecke algebras, Invent. Math. 53 (1979), 165–184. MR0560412

[25] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality,
Proc. Sympos. Pure Math. 36 (1980), 185–203. MR0573434

[26] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjec-
ture for Hecke algebras, Invent. Math. 87 (1987), 153–215. MR0862716

[27] M. Kapranov, E. Vasserot, Kleinian singularities, derived categories
and Hall algebras, Math. Ann. 316(3) (2000), 565–576. MR1752785

[28] V. Krylov, K. Suzuki, Kazhdan-Lusztig polynomials on subregular
affine Weyl group elements in non simply-laced Lie algebras, in prepa-
ration. (With an appendix by R. Bezrukavnikov, V. Krylov, and K.
Suzuki.)

[29] G. Lusztig, Some examples of square integrable representations of
semisimple p-adic groups, Trans. Amer. Math. Soc. 277(2) (1983), 623–
653. MR0694380

[30] G. Lusztig Cells in affine Weyl groups, Advanced Studies in Pure Math.
6 (1985), 255–287. MR0803338

[31] G. Lusztig Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 36(2) (1989), 297–328. MR1015001

[32] G. Lusztig, Monodromic systems on affine flag manifolds, Proceedings
of the Royal Society of London. Series A: Mathematical and Physical
Sciences 445(1923) (1994), 231–246. MR1276910

[33] G. Lusztig, Bases in equivariant K-theory, Representation Theory of
the American Mathematical Society 2 (1998), 298–369. MR1637973

[34] G. Lusztig, Subregular nilpotent elements and bases in K-theory, Cana-
dian Journal of Mathematics 51(6) (1999), 1194–1225 MR1756878

https://mathscinet.ams.org/mathscinet-getitem?mr=3890211
https://mathscinet.ams.org/mathscinet-getitem?mr=0547842
https://mathscinet.ams.org/mathscinet-getitem?mr=0560412
https://mathscinet.ams.org/mathscinet-getitem?mr=0573434
https://mathscinet.ams.org/mathscinet-getitem?mr=0862716
https://mathscinet.ams.org/mathscinet-getitem?mr=1752785
https://mathscinet.ams.org/mathscinet-getitem?mr=0694380
https://mathscinet.ams.org/mathscinet-getitem?mr=0803338
https://mathscinet.ams.org/mathscinet-getitem?mr=1015001
https://mathscinet.ams.org/mathscinet-getitem?mr=1276910
https://mathscinet.ams.org/mathscinet-getitem?mr=1637973
https://mathscinet.ams.org/mathscinet-getitem?mr=1756878


Subregular orbits and explicit character formulas 137

[35] G. Lusztig, Notes on affine Hecke algebras, in: Iwahori-Hecke Algebras
and Their Representation Theory, 71–103. Springer, Berlin, Heidelberg
(2002). MR1979925

[36] G. Lusztig, Introduction to Quantum Groups. Springer Science and
Business Media 2010. MR2759715

[37] P. Slodowy, Simple Singularities and Simple Algebraic Groups, LNM,
vol. 815. Springer Verlag (1980). MR0584445

[38] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilt-
ing modules, Representation Theory 1 (1997), 83–114. MR1444322

[39] T. Yuichiro. Localization theorem in equivariant algebraic K-theory,
Journal of Pure and Applied Algebra 96 (1994), 73–80. MR1297442

[40] X. Tianyuan, On the subregular J-rings of Coxeter systems, Algebras
and Representation Theory 22 (2019), 1479–1512. MR4034792

Roman Bezrukavnikov
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
USA
E-mail: bezrukav@math.mit.edu

Victor Kac
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
USA
E-mail: kac@math.mit.edu

https://mathscinet.ams.org/mathscinet-getitem?mr=1979925
https://mathscinet.ams.org/mathscinet-getitem?mr=2759715
https://mathscinet.ams.org/mathscinet-getitem?mr=0584445
https://mathscinet.ams.org/mathscinet-getitem?mr=1444322
https://mathscinet.ams.org/mathscinet-getitem?mr=1297442
https://mathscinet.ams.org/mathscinet-getitem?mr=4034792
mailto:bezrukav@math.mit.edu
mailto:kac@math.mit.edu


138 Roman Bezrukavnikov et al.

Vasily Krylov
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
USA
Department of Mathematics
National Research University Higher School of Economics
6 Usacheva st.
Moscow 119048
Russian Federation
E-mail: krvas@mit.edu

mailto:krvas@mit.edu

	Introduction
	
	Characters of certain irreducible g"0362g-modules
	Modules over W"0362W via Springer theory
	Structure of the paper

	Affine Lie algebras and their representation theory
	Affine Lie algebras: structure theory and irreducible highest weight modules ka
	Simple Lie algebra g: notations
	Affine Lie algebra g"0362g
	Root system of g"0362g
	Weyl group of g"0362g
	Irreducible highest weight representations of g"0362g and their characters

	Motivation and main result
	Motivation and Kac-Wakimoto conjecture
	Main result: types D and E
	Main result: type A
	Main steps of the proof of Theorem 2.9


	Categories O for g"0362g and characters of irreducible modules via Kazhdan-Lusztig polymomials
	Category O for g"0362g and its decomposition into blocks
	Classes of irreducible objects of a regular integral block O,
	Classes of irreducible objects of integral blocks O,
	Subcategory RO and irreducible objects in integral blocks R,
	Classes of irreducibles of regular integral block R,
	Classes of irreducibles of integral block R,
	Characters of L() R,
	Description of mww via anti-spherical module M

	Geometry of Springer resolution and realization of M
	Springer resolution
	Realization of M via the equivariant K-theory of N"0365N and canonical basis

	The subregular type D, E case
	Structure of K(Be)
	Structure of KG(U"0365U)
	Computation of mwwi and the proof of Theorem 2.9

	The subregular type A case
	Structure of W"0362W, its extended version W"0362Wext
	Parametrization of the canonical basis of KPGLn(U"0365U)
	Description of Be and C-equivariant line bundles on it
	Modules h,Z, h"0362h,Z over Sn Zn, W"0362W
	Module h,Z
	Module h"0362h,Z

	Structure of modules KZe,SLn(Be), KZe,PGLn(Be)
	Structure of KPGLn(U"0365U)
	Computation of mwwi and the proof of Theorem 2.16

	Possible generalizations
	Non-simply laced case
	Case of arbitrary nilpotent e

	Basic facts about Kazhdan-Lusztig polynomials
	Canonical and standard bases in Hecke algebra Hq(W"0362W)
	Canonical and standard bases in the anti-spherical module

	Acknowledgements
	References

