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Abstract: Let g be a simple finite dimensional complex Lie algebra
and let g be the corresponding affine Lie algebra. Kac and Waki-
moto observed that in some cases the coefficients in the character
formula for a simple highest weight g-module are either bounded
or are given by a linear function of the weight. We explain and gen-
eralize this observation using Kazhdan-Lusztig theory, by comput-
ing values at ¢ = 1 of certain (parabolic) affine inverse Kazhdan-
Lusztig polynomials. In particular, we obtain explicit character
formulas for some g-modules of negative integer level k when g is
of type D,,, Egs, E7, Es and k > —2,—3,—4, —6 respectively, as
conjectured by Kac and Wakimoto.

The calculation relies on the explicit description of the canonical
basis in the cell quotient of the anti-spherical module over the affine
Hecke algebra corresponding to the subregular cell. We also present
an explicit description of the corresponding objects in the derived
category of equivariant coherent sheaves on the Springer resolu-
tion, they correspond to irreducible objects in the heart of a cer-
tain t-structure related to the so called non-commutative Springer
resolution.

1. Introduction
1.1.

Let g be a simple finite dimensional Lie algebra over C and let § = g[t*!] @
CK @ Cd be the corresponding affine Lie algebra.

Computing characters of highest weight g-modules is a classical problem
of representation theory. For example, for integrable modules the answer is
given by the Kac character formula which can be viewed as a direct gener-
alization of the Weyl character formula for characters of finite dimensional
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representations of g. In the general case, the character formula involves the
affine Kazhdan-Lusztig polynomials (or rather their evaluation at ¢ = 1).
While conceptually deep and algorithmically computable, this answer is much
more complicated than the explicit expression appearing in the Kac character
formula. It is unlikely that an essential simplification is possible in general,
however, it is interesting to explore special cases when a simple character for-
mula exists. In particular, in [22] the second author and Wakimoto identified
(partly conjecturally) cases when the coefficients in the sum appearing in the
character formula either take values 0, +1 (for g of type A,, n > 2) or depend
linearly on the indexing weight (for g of type D or E). In the present paper
we partly prove their conjecture and extend their results, while connecting
it to the Kazhdan-Lusztig theory. Instead of working with the (parabolic)
Kazhdan-Lusztig polynomials directly, we analyze them using their relation
to the Grothendieck group of equivariant coherent sheaves on the Springer
resolution constructed from the Langlands dual group. Elementary geometric
properties of the Springer resolution provide a transparent explanation for al-
gebraic properties of Kazhdan-Lusztig polynomials and allow one to compute
some of them effectively.

We should mention that most information about the canonical bases we
use is already contained in Lusztig’s work [34, 35]. The new result in this
direction we provide is the realization of the basis elements as classes of
explicit objects in the derived category of coherent sheaves, which arise as
irreducible objects in the heart of a certain t-structure.

In order to present the content of this work in more detail we introduce
further notation. Let gV be the Langlands dual Lie algebra. Let A' C gV be
the nilpotent cone. Let h C g be a Cartan subalgebra, Q¥ C b the coroot
lattice, and W C End(h) the Weyl group of g. Let GV be the adjoint group
with Lie algebra gV.

Let h C g be the Cartan subalgebra of §, containing h. Let W = W x QV
be the affine Weyl group. For v € Q¥ we denote by ¢, the Correspondlng

element of W and by wy € W the shortest element of the coset t,W C w.
1.2. Characters of certain irreducible g-modules

Recall the notion of two-sided cells in W, which are certain subsets in W
(the main reference is [30], see also [16] for a short exposition). There exists
a canonical bijection between the set of two-sided cells in W and GV-orbits
on N (see [31]). We denote by O, C N the nilpotent orbit, corresponding to
acellcC W.
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Let ¢ = csubreg C W be the cell, corresponding to the subregular nilpotent
orbit. For v € QY let ¢, C W be the two-sided cell that contains w,y,.

We can now describe the main results of this paper. Pick A € H* Let
L(A) be the irreducible g-module with highest weight A. Assume that the
level of L(A) is greater than —h" and that A + p is integral quasi-dominant
(these notions are defined in Section 2.1.5 and Definition 2.4). Let w € W be
the longest element such that w(A + p) is dominant.

It follows from [19, Section 0.3] (see Theorem A.1 and Equation (3.7)) that
the character of L(A) can be expressed in terms of values at ¢ = 1 of affine
inverse Kazhdan-Lusztig polynomials my, (¢) for v € QV (see [25, Section 2]
or Appendix A for the definitions). Using this observation, we derive explicit
formulas for characters of L(A) such that the corresponding w lies in ¢ and
is equal to w, for some v € QY (see Theorems 2.9, 2.16). We describe such A
explicitly and compare formulas that we obtain with the results of [22], partly
proving [22, Conjecture 3.2] (see Propositions 2.13, 2.15, 2.19, 2 21). Let s
now describe the approach that we use to compute the values m,,) (1) = mwy

Consider the W-module M := ZW@ZW Zsign, called the anti-spherical W-
module. This module contains a standard basis {T | v € Q} and a canonical
basis {C, | v € @'} in the sense of Kazhdan-Lusztig (see Appendix A for
details). By definition,

(1) ty-1=Ty= > miC,.

veRvy

We explicitly describe a certain quotient of the module M and then consider
the image of (1) in this quotient to determine the numbers my, for w, € c
(see the next section for more details).

1.3. Modules over W via Springer theory

Let us recall the “coherent” realization of the module M and then describe
the approach that we use to compute my, for w, € c.

Let 7: N — N be the Springer resolution. For v € QV we denote by
Og(7y) the corresponding line bundle on the flag variety B of GV and by
@) /\7(7) its pull back to N. For every G"-invariant locally closed subvariety

X C N there is a natural action W ~ K& (771(X)) (see [33]), where by
K€ (77%(X)) we denote the Grothendieck group of G'V-equivariant coherent
sheaves on 7~ 1(X).

Remark 1.1. This action comes from the identification ZW — K¢ (ﬁ ><~NN )
(see [33, Sections 7, 8] or [11, 26]), and the algebra structure on K (N x s
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N ) is given by convolution. The algebra K¢ (ﬁ xn N ) acts naturally on
K9 (n71(X)).

It is known (see, for example, [11]) that K GY(N) is isomorphic to the
anti-spherical W-module M. The standard basis of M ~ K (N) can be
described explicitly: it consists of classes of line bundles O(7), v € @”. The
canonical basis does not have any explicit description. It can be shown that
the canonical basis consists of classes of irreducible objects of the heart of the
“exotic” t-structure on the derived category D?(Coh®" (N)) (see [5] and [7]
for details).

Let U C N be an open GV-invariant subvariety. Set U := 7~ }(U).
It follows from [7, §11.3] that the kernel of the restriction homomorphism
KS'(N) - K& (U) is freely generated (as a module over Z) by elements
C, such that O, ¢ U. In particular, KC"(U) admits a canonical basis
parametrized by {V e’ |0, cU}.

Recall now that our goal is to compute the numbers m,, for w, € c, where
¢ C W is the cell, corresponding to the subregular nilpotent. The numbers
m,, are determined by equation (1) as follows.

Consider U = O, UQ*8 C N, where O, C N is the GV-orbit of a subreg-
ular nilpotent element e € N. It follows from the above that the canonical
basis in K¢ (U) is parametrized by {1} U{v € Q" | w, € c}. For v,v € Q"
such that w, € cU{1} let T, and C, be the images of T, and C,, in K& (T).
Taking the image of (1) in K¢ (U), we conclude that

Li=T,= Y m%0,

veQV,w,ecU{1}

So, to compute the coefficients my,, as above, it is enough to describe the
W-module structure on K€" (U) and the canonical basis {C,, | w, € cU{1}}
in it. Let us describe the answer.

The cell ¢ has an explicit description (see [29, Proposition 3.8]): it consists
of elements w € W with unique reduced decomposition. The subset {w € ¢ |
w = w, for some v € QV} consists of elements w € ¢ such that the reduced
decomposition of w ends by sy (simple reflection, corresponding to the Oth
vertex of the Dynkin diagram of g). This set can be described explicitly (see
Corollary 5.2 and Lemma 6.1). It turns out that for g of type D, E it is
parametrized by the set T of vertices of the Dynkin diagram of g, and for
sl, (n > 3) it is parametrized by Z (that should be considered as the set of
vertices of the Dynkin diagram A). .

We prove (see Proposition 5.16) that in types D, E the W-module
K&’ (17 ) ® Zsign is isomorphic to the integral form bz of the Cartan subalgebra
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h C g, i.e. that
KC(U) ~ (2Q" & ZK ® Zd) ® Lign

as W-modules. After this identification the canonical basis consists of d and
minus simple coroots of g.

In type A we identify KF9Ln(B,) with (heoz ® Zd) ® Zsign and describe
explicitly the W-action on the latter (see Section 6.4.2 and Proposition 6.17).
After this identification the canonical basis consists of d and minus simple
coroots of sls.

1.4. Structure of the paper

The paper is organized as follows. In Section 2 we recall the structure theory
and representation theory of affine Lie algebras (see Section 2.1), we then
give character formulas for certain L(A) (see Theorem 2.5 for types D, E
and Theorem 2.16 for type A) and rewrite them in more explicit terms (see
Propositions 2.13, 2.15 for types D, E and Propositions 2.19, 2.21 for type A).
In Section 3 we recall categories O for g and describe characters of irreducible
g-modules via values at ¢ = 1 of (affine) inverse Kazhdan-Lusztig polynomials.
In Section 4 we recall the Springer resolution and the geometric realization
of the anti-spherical W-module M , we also recall some information about
the canonical basis, in particular, we describe explicitly the canonical basis
of KG"(U). In Section 5 we describe W-module K¢ (U) explicitly for g of
type D, E (see Proposition 5.16). We then compute my, for w, € c and
derive Theorem 2.9 (see Section 5.3). In Section 6 we describe W-module
KPGLn (17} explicitly (see Proposition 6.17). We then compute muy, for w, € ¢
and derive Theorem 2.16 (see Section 6.7). In Section 7 we discuss possible
generalizations. Appendix A contains the information about Kazhdan-Lusztig
bases that we use.

2. Affine Lie algebras and their representation theory

2.1. Affine Lie algebras: structure theory and irreducible highest
weight modules [21]

2.1.1. Simple Lie algebra g: notations Let g be a simple finite dimen-
sional Lie algebra over C. We fix a Catan subalgebra h C g and denote by
A the set of roots of (b, g) and by W the Weyl group of (b, g). Let @ be the
root lattice of g. Let a1,...,a,. € A be a set of simple roots, and 8 € A be
the highest root. We denote by A, C A the set of positive roots and set
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= % >aea, @ We fix the nondegenerate invariant symmetric bilinear form
on g normalized by (,6) = 2. Let ay,...,a) € h be the simple coroots

(o, ) = aij,
where A = (ajj)ij=1,., is the Cartan matrix of g. Let AV be the W-orbit of
{af,..., &)} We also denote by ¥ € b the highest coroot of AVY.

2.1.2. Affine Lie algebra g We denote by g the affine Lie algebra, corre-
sponding to g. Recall that

g:=gt*'| o CK @ Cd
with the bracket defined as follows (a,b € g, m,n € Z):
[at™, bt"] = [a, bJt"™ ™ + m(a,b)0pm,—n K, [d,at"] = nat™, [K,g] = 0.

The Lie algebra g has a nondegenerate invariant symmetric bilinear form
(, ) defined by

(at™, bt") = 6y _n(a,b), (CK @ Cd, g[t*']) = 0,
(K,K)=(d,d) =0, (K,d) = 1.

This bilinear form restricts to a nondegenerate bilinear form on the Cartan
subalgebra of g:

h:=h®CK & Cd.

We extend every v € h* to the linear function on E by setting (7, CK @
Cd) =0.Let 0 € 6* be the linear function given by (5, h@CK) = 0, (d,d) = 1.
Set ag :=0 — 0 € b*, o := K — 6" € bh. Then {«ap, 1,...,q,} are simple
roots of g and {ay,ay,...,a)/} are simple coroots. Define the fundamental
weights A; € H* by

<Ai70‘}/> = 52',]‘7 1,7=0,1,...,7

We denote by n: HL)H* the identification induced by the bilinear form

(;)

From now on, we assume for simplicity that g is of type A, D, E. So we
have

n(ey) = ai, n(0Y) =0, nlay) = ap, n(K) =6, n(d) = A, i =1,...,7.

2
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2.1.3. Root system of § Let A be the root system of g. Recall that A
can be decomposed as a disjoint union of the sets of real and imaginary roots:

A _ Areuﬁim,
where
A ={a+nd|aeA nel}, A™ ={nd|n e Zy}.

A oot a € A is called positive if it can be obtained as a nonnegative
linear combination of simple roots «; € A ¢ =0,1,...,7. The subset of A
consisting of positive roots, will be denoted A+ cA and can be described as
follows:

A Are Aim
A, =ATyUAm
where

A=A, U{a+nd|laeA neZs}, A™={nd|neZs).

To every v € A we associate the corresponding coroot vV € G, defined
by 7V :=a" +nK € hif vy =a +nd € h*.

2.1.4. Weyl group Aof g Let W be the Weyl group of g. The group W is
the subgroup of Aut(h) generated by the reflections s; defined by

(2) si(z) =2 — (g, x)a), z€b,i=0,1,...,r

For v € QY define the operator ¢, € Aut(ﬁ) b
1
(@) = 2+ (6,2 = ((5,7) + 5 I8, 2)) K

where |7]* = (7,7).
The group W is generated by s;, i =1,...,r, and ¢, v € QV, so that we
obtain the identification

W=0Q"xW.
Remark 2.1. Note that H contains CK as the trivial subrepresentation of w.

Note also that CK & h C 6 is a subrepresentation: for x € CK @ b the action
of t, is given by

ty(z) =2 — (2,7)K, v € Q".
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The group W is a Coxeter group generated by reflections sg, s1,..., s,
and so is equipped with the length function

£ W%Z}O,

where ((w) is the length of a shortest expression of w in terms of the s;.
Recall that

(3) e(w) := (=1)") = detzw and (t,) = 1 for all v € Q.

2.1.5. Irreducible highest weight representations of g and their char-
acters Let b = b @ ny C g be the Borel subalgebra, corresponding to our
choice of simple roots aq, ..., a,. One defines the corresponding Borel subal-
gebra of g:

o~

b=hon, & Pat™

Given A € 6* one extends it to the character of b by zero on all other
summands. Then there exists a unique irreducible g-module L(A) with highest
weight A. Let us recall the construction of L(A). Consider the Verma module

M(A) = U(9) @y Ca,

u(o)
where C, is the one dimensional representation of b given by the character A.
Then L(A) is the unique (nonzero) irreducible quotient of the module M (A).
Let k = A(K) be the scalar by which K € g acts on L(A) (and M (A)). This
scalar is called the level of L(A) (and the level of A), and is denoted by x(A).

For € b* and a g-module M let M, C M be the (generalized) weight
space of M with weight p. The characters of M = L(A) or M(A) are defined
as the following (formal) series:

ch M := Y (dim M,) - e,
peh*
here e# are formal exponentials such that et - e#2 = eM1TH2 (note that
dim M, < 00).

Remark 2.2. Note that one can consider e/ as a function on 6 whose value on
h € b is equal to e#®). Then ch M can be considered as the series (ch M)(h) =
trpr e”. This series is convergent in the domain {h € b | Re(as(h)) > 0,
i=0,1,...,r}
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We set
pi=p+h'Ao,
where hY is the dual Coxeter number (= 1 the eigenvalue on g of the Casimir
element). Recall that (p, o)) =1 for every i=0,1,...,r,and p= > oA
Set

j% — e/p\ H (1 N efa)mult(a).

Then
Rch M(A) = M.
The main result of this note are explicit formulas for characters of modules
L(A) for certain A of integer level k(A) > —hV.

Remark 2.3. Note that the condition that the level of A is greater than —hY
is equivalent to the fact that the level of A + p is positive.

2.2. Motivation and main result

2.2.1. Motivation and Kac-Wakimoto conjecture We start with the
following definition.

Definition 2.4. An element A € b* is called regular if it has trivial stabilizer
w.r.t. W ~ b*; this condition is equivalent to (A,aV) # 0 for all a € Are
Element A is called singular if it is not regular (i.e. has nontrivial stablhzer
in W). An element A € b* is called integral if (A\,af) € Z,i=0,1,...,r; A
is called dominant (resp. quasi-dominant) if (\, o)) € Z>o for i = 0,1,...,r
(resp. fori=1,...,7).

Consider the following (shifted) action of W on b*:
woA:=w(A+p)—p.

For \ € E* we denote by W)\ cWw the stabilizer of A w.r.t. the shifted action.
Recall that by [23] for any A € b* of level x(A) > —h" one has

(4) Rch L(A) = > c(w)e“’(/wﬁ) for some c(w) € Z.
wGV/I\/
In addition, if A is quasi-dominant integral, one has (use W-invariance of
ch L(A))
c(uty) = e(u)c(t,), ue W, v € Q".
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The motivation for this work is the following theorem proven in [22, Sec-
tion 3].

Theorem 2.5. Let g be a simple Lie algebra of type D, (n > 4) or Eg, E7,
Eg and A be a weight of g of negative integral level k such that the following
conditions hold:

(1) A is quasi-dominant integral,
(ii) there exists a root o € Ay, such that (A+p,0 —a) =0, and if B € A
is orthogonal to A + p, then f =6 — «,
(iit) (extra hypothesis) in (4) one has: c(ty) is a linear function in v € QV
plus constant.

Then

(5) Reh L(A) = % 3 5(u)( 3 () + 1)e“tv<A+3>).

ueWw YEQV

Ezample 2.6. Let us give examples of A, satisfying conditions (i), (i7) of
Theorem 2.5 for g of type Dy. To A € h* we associate the element w € W
that is the longest element such that A := w o A is dominant. Then the
following is a partial list of A of level —1, satisfying conditions (i) and (i) of
Theorem 2.5 (we label the branching node of the Dynkin diagram of Dy by
2), and the corresponding v € Ay and w € 171\/, A€ 6*:

1) A=—Ap, a=0=a1 +2ay + ag + ag, w = s9, A = — Ay,

2) A= =2Ag+ A, a =0 — g, w =595y, A=A — Ao,

3) A= -3Ng+ Ao, a =0 — g, w= 5959, A\ = Ay — Ao,

4) A= -3N+ A+ A\, a=0— g — ap, w=5p525, A = —A,,

5) A= —4Ng+ 20, + Aj, o = 0 — g — oy, w = §18pS250, A = —Ay,

6) A=—bAg+20,+ N+ Ay, a=0—as— o, W= 5SpsiS250, A = —Ag,
) A

7

—4No 4+ 3Ap, a =0 — g — ap — q, W = 5251555250, A = A — Ag,
where k, [ are distinct elements of the set {1,3,4} and p € {1,3,4} \
{k,1}.

Examples 1)-4) are given in [22, Example 3.5].

Ezample 2.7. Let g be of type D,, (n > 4), Eg, E7, Fg and let b be the

maximal among the coefficients a; in 6 = >°!_; a;a;. Then there is no A,

satisfying conditions (i) and (i) of Theorem 2.5 if k(A) < —b, and there

is only one, A = —bAy, if k(A) = —b. Furthermore, A = —kAq for k € Z,

1 < k < b always satisfies conditions (7) and (i¢) of Theorem 2.5, and then

a=0-— Z;:ll Qi W = Sx_1-...80, where we label vertices of the Dynkin
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diagram of g in such a way that the affine vertex has label 0 and 7, 7 + 1 are
adjacent for i € {0,1,...,b— 2} (so, in particular, the label of the branching
point is b — 1).

It is conjectured in [22, Conjecture 3.2] that if g is of type Dy, Eg, E7, Es,
then the extra hypothesis (ii7) holds (so we obtain the character formula
(5) for L(A) such that A satisfies conditions (i), (¢¢) of Theorem 2.5). The
main motivation of this work was to prove this conjecture in some cases. For
example, in the case of g = D4 we prove the conjecture in Examples 2.6 1)—4)
(but not for 5)-7)). We don’t know how to prove the conjecture in general.

We will actually compute (under some conditions) the numbers c(t.) ex-
plicitly that will allow us to compute characters of L(A) for certain A that
appear in Theorem 2.5 and also of certain other A (see Theorem 2.9 and
Propositions 2.13, 2.15 below).

2.2.2. Main result: types D and E Let g be of type D,, (n > 4), Eg,
FE;, Eg. Before formulating the main result for types D and E we need to
introduce some notation.

Let I be the set of vertices of the Dynkin diagram of g. We fix a labeling
of I by the numbers 1,...,r. Let I = 1U{0} be the set of vertices of the
Dynkin diagram of g. For i € I consider the unique segment in I connecting
i and 0. Let [ be the length of this segment (i.e. this segment consists of [ + 1
vertices). Let

O:j07j17"'7jl—17jl:i

be the set of vertices that form the segment above. We set
Ww; ‘= SiSjFl Ce Sjlso.

Remark 2.8. Note that for i = 0 we have wy = sg.

We are now ready to describe the main result. The following theorem
holds (see Section 5.3 for the proof).

Theorem 2.9. Let g be of type D, (n > 4) or Eg, E7, Es. Pick i €
{0,1,...,7r} and let \ € b* be an integral weight, such that A\ + p is dom-
tant, A = w;l o A\ s quasi-dominant and w; is the longest element in the
coset I//I\/Awi. Then

~ 2 N
6)  RL(d)=Y e(uw) Y <Am+ % K>eut7wi<A+p>,

ueW YeQY
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Remark 2.10. Note that we are not assuming in Theorem 2.9 that the level of
A is negative. Actually, Lemma 2.11 below implies that ~(A) > 0 in case (a)
and k(A) > —b in case (b) of this lemma (here b is as in Example 2.7 above).

The following lemma describes explicitly all the pairs A, 4, satisfying the
conditions of Theorem 2.9.

Lemma 2.11. Let g be of type D,, (n > 4) or Eg, Er, Es. Elements \ € b*,
i € {0,1,...,7} as in Theorem 2.9 are described as follows. There are two
possibilities:

a) A+ p is regular dominant integral and i is an arbitrary element o [A,
p
(b)) A= =N + 3pimuy + 26 for some i € {0,1,...,7}, z € C, and
my € Z}O.

Proof. Let us first of all show that if A, ¢ are as in Theorem 2.9, then either
A+ pis regular or A = —A,; + Zk# mgAy + 6.
Indeed, assume that A + p is not regular. Recall that A + p is dominant,
so its stabilizer in W (with respect to the standard non shifted action of W)
is generated by some simple reflections s;,, ..., s;,. Our goal is to show that
= 1 and i3 = i. Otherwise there exists d € {1,...,t} such that iy # i.
Consider the element

o _
w = S, w; = SidSiSjl,l . Sj180
—1 _ . . . .
and note that w'~" o A = w; ! o \ is quasi-dominant (by our assumptions).

We claim that £(w') = £(w;) + 1 or equivalently £(w'™') = £(w; ') + 1. To
see this we need to show that w; ' (ay,) is a positive root. If ig does not lie

in the set {0,71,...,5i-1} and iq is not adjacent to 4, then w; *(a;,) = au,
is clearly positive. If «;, is adjacent to ¢ = j; and is not equal to j;_1, then
w;  (y,) = i, +a; is positive. Finally, if iy = Jp forsome p € {0,1,...,1—1},

then we have w; Hoy,) = aj,,, is positive.

So we have shown that ¢(w’) = (w;) + 1, w; ' o \ is quasi-dominant and
w' = s;,w; € I//I\/,\wi. This contradicts to our assumptions (we assumed that
w; is the longest element in WXLUJ So we conclude that W,\ ={1,s;} and A
must be of the form —A; + Zk# myAr with m; being nonnegative.

It remains to show that if A, 7 satisfy assumption (a) or (b) of Lemma 2.11,
then they satisfy the assumptions of Theorem 2.9. The only nontrivial part
is to check that w; ! o A = w; (A + p) — p is quasi-dominant.

Let us decompose A = >, mpAg + xd. We have A+ p = >, (my + 1) A +
x6. We need to apply w; " = s0sj, ...5;_,5; to A+ p and show that after
substituting p we get quasi-dominant element. Indeed, recall that if j € I ,
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then the action of s; on some Ay is equal to Ay, if & # j, the action of s; on

A; is equal to —A; plus the sum of Aj/, where j' € T runs through all vertices

that are adjacent to j. We easily conclude that the coefficient of w, Y\ +p)

in front of some A;, (p € {1,...,1}) is equal to m;, , +1 > 0, the coefficient

in front of Ay is equal to —(mo+m;, +---+m;, , +m;+1+1) and coefficients

in front of other Ay are at least my + 1, so are positive. We have shown that
~1

w; o A is quasi-dominant. O

Remark 2.12. The last paragraph of the proof of Lemma 2.11 can be omitted
since it follows from Lemma 3.11 below.

The following proposition shows how to deduce formulas for characters of
(certain) modules appearing in [22, Conjecture 3.2] from Theorem 2.9 (note
that we get the same character formula as in [22, Theorem 3.1]).

Proposition 2.13. Let g be of type D,, (n > 4) or Eg, E7, Es. Assume that
A= =N+ 2 Mg + 26 for some i € {0,1,...,r}, 2 € C and my, € Zxo
fork #i. Let A =w; ' o\ and a = w; *(oy) + 0. Then we have

(7) Rehi(d) =5 3 = X () + Dertt9).

ueW yeQY

Proof. 1t follows from Lemma 2.11 that A, ¢ satisfy conditions of Theorem 2.9.
So the character of L(A) is computed using the formula (6). Pick v € W,
~v € Q" and let us compute the coefficient of (6) in front of e“t>*+#). Assume
first that ¢ = 0. It follows that A = A, i = 0 and w; = sg. Since sg = Sgt_y
and so(A 4 p) = A + p, we conclude that uset,,()—g(A 4 p) = uty(A + D), so
the coefficient in front of e*(A+7) in (6) is equal to

— 5(u)<A077 + gK> + €(u)<A0,39(fy) -0+ MK>

Y (O R

Assume now that i # 0. Note that A+ p = s;(\ 4 p), hence, us;ts, ()(A +
p) = uty (X + p), so the coefficient in front of vt (\+P) s equal to

E(Uwi)</\i,7 + ¢K> - E(Uwz‘)</\i7 si(v) + ¢K>

= e(uw;) (A, 0%\'/><042'77> = e(uw; ) (wi(a — 0),7v) = e(uw;){a, w;lfy).
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Consider the element w] := w;tg = ;55 , ...Sj 9. We have shown that
the coefficient in front of

!
euty(/\+;7\) _ eutwwi(A+/p3 _ e“witwgfl(w)—e(/\"';)

is equal to

e(uws) (o, wi ') = e(uwy){a, to(w; 7))
e(uwf) (o, wi ™'y = (0, 0] ) K) = e(uw)){a, wi ')
e (uw)) (o, wi ™'y = 0) + (0, 6)),

so it remains to check that (a,6) = 1. Indeed, recall that o = w; *(c;) + 6, so

(0, 0) = (wi (a0), 0) = (0, w3(0)) = (v, wi(6 = )
= — (i, wi(ap)) = (v, 8i85,_, .- - 85, 00)
:(ai,Oéo—i-Odjl+"'+(1j171+04i)=1. [
Remark 2.14. In order to identify formulas (5) and (7), we need to show
that if @ = w; *(a;) + 6, then (6 —a,A+p) = 0 and a € A,. Note that
(i, A\ +p) = 0and A + p = w;(A + p). Tt follows that (w; (), A +p) = 0,
so indeed (6 — o, A + p) = 0. Note also that

wi_l(ozi) = 5085, ... 8, Si()

Z—Oél'—Oéjl 1—---—04]-1—aO:—6+9—aj1—---—ocjlfl—ozi,

soa=0—oj —-—oj,_, —a; € AL
The following proposition gives formulas for characters of certain L(A)
for regular A + p of nonnegative level.

Proposition 2.15. Let g be of type Dy, (n > 4) or Eg, E7, Eg. Pick i €
{0,1,...,7} and let A\ € b* be integral such that \ + p is reqular dominant.
Set A = wi_l o\, then

~ 2
Rch L(A) = Z e(uw;) Z <Ai,’Y + w2|K>6ut'ywi(A+;).

ueW yeEQY

Proof. Follows from Theorem 2.9 together with Lemma 2.11. O
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2.2.3. Main result: type A Assume that g = sl,. Recall that QY is
the sublattice of Z®", consisting of (ay,...,a,) such that Y7, ar = 0. Let
€1,...,€, be the standard basis of Z®". For i € Z let [i| € {0,1,...,n — 1}
be the class of i modulo n. We set

S[i]5[i—1] - - - 5150 for i > 0,
w; = 4 S for i =0,

S[—4]S[=i+1] - - - S[-1]S0 for i < 0,
and fori € Z, k=1,...,n, and a € Z we set

. (a ) |Z<, N [k, k + (a - 1)TL] N (k} + nZ)\ for a € Z)o,
A€ ) 1=
g —|ZgiN[k+an,k —n]N(k+nZ)| forae€ Zg.

We are now ready to describe the main result for type A. The following
theorem holds (see Section 6.7 for the proof).

Theorem 2.16. Let g be sl, (n > 3). Picki € Z and let A € b* be an integral
weight, such that X\ + p is dominant, A = wi_1 o X\ is quasi-dominant and w;
is the longest element in the coset Wyw;. Then

n

R L) = — 3 eluwy) 37 (32 2~ {ex vyex) e A7),

ueW yeQV k=1
Similarly to the D, E case (see Lemma 2.11) the pairs A, i, satisfying the

conditions of Theorem 2.16 can be described explicitly.

Lemma 2.17. Let g be sl, (n > 3). Elements A\ € b*, i € Z as in Theo-
rem 2.16 are described as follows. There are two possibilities:

(a) A+ p is regular dominant and i is an arbitrary element of Z,

(b)) A= —Ap + k) Mk + 26 for some 1 € Z, x € C, and my, € L.

Proof. Same as the proof of Lemma 2.11. O
The following lemma will be useful.

Lemma 2.18. Fori € Z\ nZ, a € Z we have

0 fora>=0,i¢][[i] —an,[i] —n]
sil—aer) — zi(—aen) = —1 fora>0, i€ [[i]—an,[i] —n]
ATTE AT T 0 fora <0, i ¢ [[i] i) + (—a — 1)

1 fora<0, i€}, [i]|+(—a—1)n
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1 forie|[i,i]+ (—a—1)n]
=<0 fori¢l[i] —an,[i] + (—a—1)n]
=1 forie€ [[i] — an,[i] — n].

Proof. Straightforward. O

Proposition 2.19. Let g = sl,, n > 3. Pick i € Z and assume that A\ =
=N+ Dk MmNk + 20 for some my, € Zzo, v € C. Set A = w; o N, Then
we have

(8) Rch L(A) = Z e(u) Z e M) for i >0,
ueW YEQY, (An—1,7)20
9) Rch L(A) = Z e(u) Z e W) for i <0,
ueW VEQY, (A1,7)>0

where Ay, A,_1 € b* are the corresponding fundamental weights of s, .

Proof. We have
(10)  RchL(A) = Y —e(uw;) > (Z e e ) ot wi (A7)
ueW vEQV k=1

Recall that A + p = w;(A + p) and s;(A + p) = A + p. Assume first that

ts (A
i ¢ nZ. Decompose v = Y7, ager. We have et o) = "5l ! 3

the coefficient in front of eut+(+0) ig equal to the sum

uw2 (En:zl ek, )+5(uwl)<i:a(-(Gk,S[ﬂ(’Y»ﬁk))

k=1 k=1
= —e(uw;) (Zi(_a[i]e[i]) + Zi(_a[i]+1€[i]+1) - Zi(_a[i]+1€[i])_Zi(_a[i]e[i]-i-l))
= e(uw;) ((Zz‘(—a[i]ﬂﬁ[i])—Zz‘(—a[z'}+1€[z’]+1))—(Zz‘(—a[i]qi])—Zi(—a[i]ﬁ[i]ﬂ)))
Decompose i = kn + [i], k € Z>¢. Using Lemma 2.18, we conclude that

for ¢ 1, |2 ap) — 4n
(11)  zi(—apew) — zi(—apeye) = {; for i Z Hj, H E a[i - B”}

_{1 for k € [0, —

._.

[
0 fork¢|[0,— ]
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_{1 for—am—k;—l>0
0 for —ap —k—1<0,
(12)
1 for i € [[i], [i] + (—ap)+1 — 1)n]
0 for i ¢ [[i, i) + (~ags1 — )
{1 for —aj —k—=120

0 for —ap —k—1<0.

Zi(_a[i}JrlE[i}) - Zi(_a[i]+1€[i]+1) = {

It follows that the coefficient in front of e+ ig equal to e(uw;) times
the difference of (12) and (11).

Let us now compute the coefficient in front of e**+7) in (8). We first
should write utyw; = uw'ty, v € S,, 7' € QY. Let us compute «',7". Recall
that w; = s[8;-1) .- 5180 and let w; be the element, obtained from w; by
replacing so with sy in the decomposition above. It is clear that v’ = uwy.
Let us now compute 7. Recall that i = kn + [i], k¥ € Z>( and decompose
k+1=Iln—1)+p l€Zsp,1<p<n—1

We have

1 for —ap—k—120
(13) e(uwz) . { or a[z]+1

0 for —ap —k—-1<0

to the coefficient in front of et o) in (8). Another part comes from
eusmts[ﬂ”)wi(m@, it is easy to see that the corresponding coefficient is equal

to

1 fOI“—(Zm—/C—l}O

14 — DE
(14) & (uwi) {0 for —ap —k—1<0,
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so the total coefficient of (8) in front of 'ty (A7) g equal to the sum of (13)
and (14). This sum is clearly equal to the difference of (12) and (11) times
e (uw;).

Assume now that i € nZ. Let us identify (10) and (8) in this case. We

have et (A+0) — e“s"tss(ﬂ—"(’wﬁ), so the coefficient in front of ¢“+O+0) is equal
to

e(uw;) (i —(€x,y )+€ uw;) (izz (€rs sy —9>€k))

k=1
= —z—:(uwi)(zi(—alel) + zi(—anen) — zi(—(a, — 1)er) — zi(— (a1 + 1)en))

= c(uwy) ((5:(=(an = Der) = zi(—anen)) = (zi(—are1) = 2i( (a1 + D)en)) )
Decompose ¢ = kn, k € Zxo. We have

1, ifa,+k—-1>0
1, ifk+a >0
zi(—aer) = zi(—(a + 1)en) = {o if k+a; <0

Let us now compute the (total) coefficient in front of eut:(A+p) ip (8).
Decompose k+1 = l(n—1)+p,l € Z>o, 1 < p < n—1. We have ut w; = u't,,
where v = uw},

n—1
v = wi () + pen — Zq—l—l(n—l Ze])

Jj=1

It follows that (A, 1,7') = —a; —k — 1, so ety (A+p) gives

(un) 1 for—a1—k—120
e(uw;) -
0 for —a; —k—1<0.

Recall also that ettrO+9) = 6“59t59(7>*9()‘+@, so the corresponding coefficient

is
1 for —a, — k=0
—e(uwy) -
0 for —a, —k <O.
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We see that the (total) coefficient of both (10) and (8) in front of e (\+7)
is equal to

1 fora, +k>0>a1+k
e(uw;) -0 fora,+k<0,a1+k<0ora,+k>0,a1+k>0
-1 foraq+k>02>a,+k.

_Formula (9) follows from (8), using the involution of the Dynkin diagram
of sl,,, which keeps the 0th node fixed. O

Restricting attention to the negative level cases in Theorem 2.16 yields
the following corollary, proven in [22, Theorem 1.1] by different methods.

Corollary 2.20. For A = —(1+41)Ag +iM,_1, i € Z>p, we have

Rch L(A) = " =(u) > et (),

uew YEQY, (Ap—1,7)>0

For A = —(14i)Ag + 1Ay, i € Z>p we have

Rch L(A) = Z e(u) Z et ()

uew YEQY, (A1,7)20

Proposition 2.21. Let g = sl, (n > 3). Picki € Z and let X € b* be integral
such that X\ + p is reqular dominant. Set A := w; Lo A, then

RChL(A) =— Z e (uw;) Z Zzl (e, ) ex)e utwwi(AJr;)\).

ueWw YEQV k=1

Proof. Follows from Theorem 2.16 together with Lemma 2.17. O

2.2.4. Main steps of the proof of Theorem 2.9 Let us describe the
main steps of the proof of Theorem 2.9. Proof of Theorem 2.16 is similar. We
use notations of Theorem 2.9.

The first observation is that

(15) RehL(A) = 3 e(ww ym, ev 'O+,
weW

where mj), = mj; (1) are values at ¢ = 1 of inverse Kazhdan-Lusztig polyno-

mials m) (¢) for W (see [19, Section 0.3] or Theorem A.4 below).
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Using that A is integral quasi-dominant, we conclude from (15) that

Rch L(A) = Z e(wyw; H)my Z e(u)e“w;l(’vra

w.
YEQY ueW

=c(w) > > E(wvu)mgje"wil(”g)
YEQV ueW

=e(w) Y Y e(wymyet 0,

YEQY ueWw

where w,, € t,WW is the shortest element of the coset ¢, W.

By the definitions together with Proposition A.6 below, the values my,; (1)
are computed as follows. Consider the group algebra ZW. This algebra admits
two bases H,, and Cy, w € W, called, respectively, the standard and the
canonical basis (see Appendix A for the definitions). Recall the anti-spherical

W-module
M = ZW @z ZLign.

Taking images of H,,, C\, under the natural surjection W — M , we obtain
standard and canonical bases in M to be denoted H,,, C!, respectively.
Then we have

(16) HY, = 3 elwywyymic,,

Wry
reQVv
and our goal is to compute the numbers my,,; . Set
T, = 5(w7)H1’UW, C, =e(wy,)C,, .
We see that

(17) T,= Y miC,.

reQVv

The module M has a “coherent” realization as the equivariant K-theory
KC"(N) of the Springer resolution for the Langlands dual group G (see [11]).
It follows from [3, 7] that after the identification M ~ K& (N\) elements T,

correspond to the classes of natural line bundles O /\7(7) on N. Elements of the
canonical basis C), correspond to classes of irreducible objects in the “exotic”
t-structure on D?(Coh®(N)) defined and studied in [5, 7].

Recall that our goal is to compute the numbers my . It turns out that all
these numbers are already “contained” in a certain quotient of the W-module

KC"(N). Let us describe this quotient in our situation.
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Let e € N be a subregular nilpotent element of gV and recall that O, C N
is the corresponding nilpotent orbit. Recall also that Q™8 C N is the regular
nilpotent orbit, so that U = Q™8UQ, is an open G"-invariant subvariety of /.
Recall that U C A is the preimage of U. We have the natural surjection of W-
modules K& (N) — K (U). It follows from the results of the first author
(see [7, §11.3]) that the kernel of this surjection is spanned over Z by C, for
wy, ¢ {1, wp,wq,...,w}.

Taking the image of the equality (17) in K€" (U), we conclude that

(18) T,=Co+ 3 mC,

i=0,1,...,r

where by Z we mean the image of the element z € M ~ K&’ (ﬁ) in K& ((7)
and v; is the image of w; in QY ~ W/W

It turns out (see Proposition 5.16) that the W-module K¢ (U) is iso-
morphic to f)Z ® Zsign (Wlth the W-action on []Z given by (2)). The canonical
basis elements C and C,, are d ® 1 and —a; ® 1. Using the equation (18),
this allows us to compute the numbers my,,; explicitly.

3. Categories O for g and characters of irreducible modules
via Kazhdan-Lusztig polymomials

3.1. Category O, for g and its decomposition into blocks

Consider a module L(A) of integer level k(A) > —hY, A € b*. The module
L(A) is an object of the (affine) category O, denoted by O, and defined as
follows (see, for example, [18, Section 3]). Set Q4 = >, Zx00;.

Definition 3.1. The category O is the full subcategory of the category of
g-modules of level k, consisting of g-modules N such that

(a) N = ®u B N,,, where N, is a generalized p-weight space for E,

(b) dim N, < oo,

(c) for any p € bh* there exists only finitely many 8 € p + Q* such that
Ng # 0.

Let us recall the block decomposition of the category O,. Irreducible
objects of this category are precisely L(A) such that x = x(A). The category
O,; can be decomposed into blocks O ¢ as follows. Let f) /o W be the set
of equivalence classes with respect to the shifted W-action. For A € f)* let
Ae E*/OW be the class of A.
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Definition 3.2. For £ € 6*/OW let Oy ¢ C Oy be the full subcategory of O,
consisting of modules, all of whose composition factors are L(A) with A = &.

Proposition 3.3. The category O, decomposes as a direct sum as follows:

O, = @ Oz

geb* /oW
Proof. Follows from [13, Theorem 5.7]. O

The subcategory OK,K’ corresponding to an integral A, is called an integral
block. Let Oy ¢ be an integral block; then there exists the unique A € £ such
that A + p is dominant integral (since x(A) > —hY).

Recall that Wy C W is the stabilizer of A (w.r.t. the o action). Fixing an
integral A € h*, such that A\ + p is dominant, we obtain the identification

WA\W = Trr(Op), W — L(w ™" o \).

For w € 171\/,\\[7[\/ let Ly and My € Og¢ be simple and Verma modules,
corresponding to the coset w i.e.:

Ly = Lw o \), Mg := M(w™" o).

Definition 3.4. For an integral A € b* such that A 4+ p is dominant let ’\W
be the subset of W consisting of mazimal length representatives of left W-
cosets W,\\W

We have the bijection AWV =2 W,\\W that sends w to W,\w. For w € "W
let L., M, € O, ¢ be simple and Verma modules, corresponding to the coset

Wiw:
Lw = Lm7 Mw = Mw

3.2. Classes of irreducible objects of a regular integral block O,

Let O¢ be a regular integral block. Consider the Grothendieck K-group
Ko(Oy¢) of the category O, ¢. For an object N € O, ¢ we denote by [N] €

Ko(Oy,¢) the corresponding class. For v € W and w € W let mY’ be deter-
mined by:

(19) [L,] = 2 e(wo™hYm¥ [ M,).
weWw

Remark 3.5. The numbers m{’ are given by the affine inverse Kazhdan-Lusztig
polynomials m¥(q) evaluated at ¢ = 1 (see Theorem A.4 or [19, Section 0.3]).
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3.3. Classes of irreducible objects of integral blocks O, ¢

Let O ¢ be an integral block of level Kk > —h" (we are not assuming that &
is regular).

Proposition 3.6. Pick v € AW. We have

(L) = > elwo™my Mg = > s(wo ) (D s(w)mi)[M,].

weW wWEAW uGI;I\/A

Proof. The claim can be deduced from [18, Theorem 1.1]. It also follows from
the equality (19) by using translation functors (see [13, Theorem 5.13] or [18,
Section 3]). O

3.4. Subcategory R, C O, and irreducible objects in integral
blocks R, ¢

We will be interested in integral quasi-dominant A (see Definition 2.4). The
last condition corresponds to the fact that L(A) lies in the subcategory R, C
O,., defined as follows.

Definition 3.7. The category R, is the full subcategory of Oy, consisting of
modules N € Oy such that the action of g[t] on NV is locally finite. For a block
Og¢ we denote by Ry ¢ C Ok the full subcategory of Oy ¢ by objects in R.

Let us now describe irreducible objects of the category R, . We start
from the case when £ € h*/, W is regular (see Definition 2.4).

Definition 3.8. Let W7 be the set of minimal length representatives of right
W-cosets in W. We have W/ 5 W /W ~ @V and let v — w, be the inverse
bijection.

Lemma 3.9. For integral reqular & the category R ¢ is the Serre subcategory
of Oy ¢ whose irreducible objects are L,, v € Wi,

Proof. 1t is clear that Ry.¢ C Og¢ is the Serre subcategory. It remains to
show that L, € R ¢ iff v € W/, Indeed, let us first of all note that v € W/ iff
v1(\ + p) is quasi-dominant (indeed, if v € W7 and v (A + ) is not quasi-
dominant then there exists i € {1,...,r} such that (v=1(A + p),a)) < 0,
so (A + p,v(e))) < 0 ie. v(a) is negative, hence, ¢(vs;) = ¢(v) — 1 that
contradicts to v € W/, similarly if v=1(\ + p) is quasi-dominant but v ¢ W/
then there exists ¢ € {1,...,r} such that v(a)) is negative that contradicts

to (v TN+ p),a)) > 0).
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It remains to show that L(A) € R, iff A is quasi-dominant. Assume
that L(A) € R, and consider the g-submodule of L(A) generated by the
highest weight vector of L(A). This is a finite dimensional module with highest
weight Aly. It follows that Aly is dominant i.e. A is quasi-dominant.

Assume now that A is quasi-dominant. Let V' (A) be the irreducible (finite
dimensional) representation of g with highest weight Aly. Consider V(A) as
a module over g, := g[t] @ CK @ Cd, letting tg[t] act via zero, K act via the
multiplication by A(K), and d act via the multiplication by A(d). Consider

the induced module Ind§+ V(A) :==U(9) ®pg,) V(A). It is easy to see that

~

Ind%+ V(A) € Ry. Since L(A) is a quotient of Ind%+ V(A), we conclude that
L(A) € R.. O

In general (for singular &) irreducible objects of R, ¢ C Oy ¢ can be de-
scribed as follows. Recall that irreducible objects of O, ¢ are in bijection
with AW
Definition 3.10. Let AWY be the intersection *W N W/ ¢ W. Using the
identification W/ = QV, we can identify W N W/ with the subset of Q" to
be denoted *QV.

Lemma 3.11. For integral § the category R, is the Serre subcategory of

Oy ¢ whose irreducible objects are L,, v € )‘Wf, where A € & is such that
A+ p is dominant integral.

Proof. Clearly Ry ¢ is a Serre subcategory of Oy ¢. It follows from the proof
of Lemma 3.9 that an irreducible object L, € O, ¢ (v € AW) lies in R, ¢ iff
the element v~! o \ is quasi-dominant.

It remains to show that v € AW/ iff v=1o A is quasi-dominant. Indeed,
assume that v € *W is such that A := v=1o X is quasi-dominant. It follows
that A+p = v~ (A\+p) pairs with all ), i = 1,2,..., 7, by positive numbers.
If v ¢ W/, then there exists i € {1,2,...,7} such that ¢(vs;) = £(v) — 1. This
is equivalent to v(a;) € A_. On the other hand we have

(20) A +p,0(a)) = (WA + D), af) = (A+5,af) > 0.

Recall now that A + p is quasi-dominant, so the pairing (A + p, v(«;")) must
be nonpositive, contradicting to (20).

Assume now that v € *W7. Then v € W/ , and since A+ p is dominant, it
is clear that A 4+ p = v~1(\ + p) is quasi-dominant (same argument as in the
proof of Lemma 3.9). It remains to show that there is no ¢ € {1,...,7} such
that (A + p, ) = 0. Assume that such ¢ exists. Then s;(A +p) = A+ p, i.e.
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(/zisi)_l ol =v"to, hence, vs; € W,\v. Recall that v is the longest element of
Wi, so l(vs;) = ¢(v) — 1, and that contradicts the fact that v is the shortest
element of v (since vs; € vWW and ws; is shorter than v). O

3.5. Classes of irreducibles of regular integral block R ¢
Assume that & € 6* / SV is regular integral and consider the corresponding
category Rye.

Proposition 3.12. Suppose that v € WY, Then we have

(21) [L,] = Z e(wvfl) Z e(u)my [Myu].

wew ueWw

Proof. This follows from W-invariance of ch L. O

Recall now that we have the bijection Wi Q" and the inverse bijection
sends v to w,. Then the equality (21) can be rewritten as follows: for v = w,
we have

(L] = Z 5(“’7”_1) Z 5(u)m$7[Mw7u]-

YEQY ueWw

3.6. Classes of irreducibles of integral block R, ¢

Assume now that R ¢ is an arbitrary (possibly singular) integral block.
Theorem 3.13. For v € "W/ we have

(22) [Lo] = D elwo™) Y e(u)ymy [ Mg

weﬁ}f ueW

= > el ) Y e Y e(o)m”) [ M.

weEAWF ueW cEWy
Proof. Follows from Proposition 3.6 and the W-invariance of ch L,,. O

Equivalently the equality (22) can be rewritten as follows. Pick v € AW ,
then

(23) [Lo] = D elwy™) Y e(wymy [My,]

YEQY ueW
= Z e(wyv™) Z €(u)( Z a(a)mg“”)[vau].
~yeEAQV ueW O’EWA

Remark 3.14. Note that if w € *W/ and o € 17[\/,\7 then ow € W/,
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3.7. Characters of L(A) € Ry ¢

Recall that we are assuming that A is integral and quasi-dominant. This
corresponds to the fact that L(A) € R, ¢, where £ = WoA. Let A € & be the
(unique) element such that A + p is dominant. Let v € AW/ be the element
such that A =vo A.

The equality (23) can be obviously rewritten in the following way:

(L)) = D e(wyw™) D e(wmy [M((u™ wy") o A,

vEQY ueW

Hence the formula for the character of L(A) is

fichL(A) = Z 5(w,yv_1) Z €<u)mg}«,€uw§1()\+@'

yeQY ueW

Let v € QV be such that v = w,. We conclude that

(24) RehL(A) = 3 3 e(uw,w, )miyetw )t 040)
yeQV uew
Z Z e(uw, )my e“t*”(’wg).
YEQY ueW

So all the information about the character of L(A) is contained in the numbers
my,! for v € QV.

3.8. Description of m3~ via anti-spherical module M

In this section we recall some results of Appendix A. Consider the group
algebra ZW. Then ZW admits two bases H, and Cy, indexed by W and
called, respectively, the standard and the canonical basis (whose definition
involves deformation of ZW to the Hecke algebra of W, see Appendix A
for details). Recall the anti-spherical module M = ZW ®zw Zsign. Module M
admits the standard basis H,, and canonical basis C;, indexed by w € | W/ and
defined as the image of H,, and C, under the natural surjection ZW — M.
By Theorem A.4 we have

(25) H, =Y e(wyw, )myC,, .

vervy

We set
Ty = e(wy)H,, , C) = e(w,)Cy,
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For v,y € QV we see that

(26) =Y miC,.

re@Vv

Remark 3.15. Note that my» = 1.
4. Geometry of Springer resolution and realization of M

We will analyze m,, based on the “coherent” realization of M (as the equiv-
ariant K-theory of the Springer resolution for the Langlands dual group GV).
Let us first of all recall basic things about the Springer resolution.

4.1. Springer resolution

Recall that GV is the adjoint group with Lie algebra gV, B is the flag variety of
gV and NV C gV is the variety of nilpotent elements. Recall also that N = T*B
and 7: N — A is the projection (Springer) map.

The lattice QY is the root lattice of GV that identifies with the weight
lattice Hom(7',C*) of characters of a maximal torus 7' C G (here we use
that GV is adjoint). For v € QY we denote by Op(y) := G xB C_, the
corresponding GV-equivariant line bundle on B, and O (7) is the pull back
of O(7) to N.

The variety N contains an open GY-orbit 08 (we identify O™ C N
with its preimage in N ). The complement N \ O*# is the divisor in N.
It is a standard fact that the irreducible components of this divisor are
parametrized by simple coroots o = o, i = 1,...,r, as follows. Let B € B
be a Borel subgroup and let P,v D B be the minimal parabolic, corre-
sponding to aV. Let mov: B = GY/B — G/Pav be the projection. Set
Ny = T*(GY | Py) Xgv VP B. The differential of m,v provides the closed
embedding i, : Nav C N Subvarieties N, C N are precisely the irreducible
components of N\ Qs

The following exact sequence is standard (see, for example, [5, Equa-
tion (13)] or [1, Lemma 5.3]).

Lemma 4.1. There is a canonical (in particular, GV -equivariant) exact se-
quence of (coherent) sheaves on N :

(27) 0= Op(a’) = Of = iqvsO

./\7&\/ — 0.
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4.2. Realization of M via the equivariant K-theory of N and
canonical basis

For a group H, acting on an algebraic variety X, we let K (X) denote the
Grothendieck group of H-equivariant coherent sheaves on X.

Theorem 4.2 (See e.g. [11]). We have a canonical isomorphism M =~
K (N), such that the element T, is sent to [Ox(V)]; the action of v €

Qv C W corresponds to the automorphism induced by the functor F
F ®o~ Ox()-

We will need some information about the image of C,, in K" (ﬁ ). Recall
the notion of a two-sided cell in W (see [30]). These are certain subsets in W,
the set of two-sided cells comes equipped with a partial order. There exists
a canonical bijection between the set of two-sided cells and G"Y-orbits on N
(see [31]). The order on two-sided sets corresponds to the adjunction order
on nilpotent orbits (see [6, Theorem 4(b)]).

We will write Q. for the orbit, corresponding to the two sided cell of c,
and O, for its closure. Let @57 (O)<C be the (reduced) preimages of O, O,
in NV,

Let K gz (ﬁ ) ¢ K¢ (./V ) denote the subgroup generated by classes of

sheaves supported on Q.. Let K€ (N) € K% (N) denote the subgroup
generated by classes of sheaves supported on O¢, \ O..

Theorem 4.3 ([7, §11.3]). The Z-module K¢ (N) is spanned by the elements

of the canonical basis C,, such that w, € <c. The quotient ng (ﬁ)/Kfcv (N)
has a Z-basis, consisting of classes of C,, w, € c.

Corollary 4.4. For every open GY -invariant locally closed subvariety U C N
and U = n=Y(U), the kernel of the surjection K& (N') = K& (U) is spanned
over Z by {C, | Oy, ¢ U}.

Proof. Follows from Theorem 4.3. O

In fact, [3, 7] provide more information on the images of C,, in K¢ (N):
these are exactly the classes of irreducible objects in the heart of a certain
t-structure on D?(Coh®” (A)), the so called exotic t-structure, introduced in
[5] (and called “perversely exotic” in [8]). Recall their explicit description.

Theorem 4.5. There exist a GV -equivariant vector bundle €& on N with the
following properties.
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0) The structure sheaf O is a direct summand in E. Also, E* is globally
generated.

1) Let A = End(&)°?. Then the functor F — RHom(E, F) provides equiv-
alences

DP(Coh(N)) 2 D*(A — mod),
D¥(Coh®' (N)) = DP(A — mod®"),

where A — mod is the category of finitely generated A-modules.

2) Irreducible objects in the heart of the exotic t-structure are in bijection
with pairs (Q, M) where Q is a GV-orbit in N and M is an irreducible
equivariant module for Algp.

More precisely, given (O, M) as above there exists an object Lo €
Db(A—mode) uniquely characterized by the following properties: Lo ar
is supported on the closure of Q, its restriction to the open subset Q of
its support is isomorphic to M[ — %;n@)}; for every orbit Q' # O
the object i, (Lo,ar) is concentrated in cohomological degrees less than

%@) and the object ity (Lo.ar) is concentrated in cohomological de-

grees greater than %mm/). The object Lo, ar is irreducible in the heart of
the exotic t-structure and every such irreducible is isomorphic to Lo ar
for some (O, M).

3) The classes of Loy form the canonical basis in M, where we identified

KS (N) ~ M using the map [O(7)] — T_,.

Proof. The vector bundle £ is introduced in [8, Theorem 1.5.1], which asserts
that & is a tilting generator, i.e. statement 1) holds. It contains O as a di-
rect summand by [8, Theorem 1.8.2 (a,1)]. Statements 2), 3) follow from [8,
Theorem 6.2.1].

It remains to show that £* is globally generated. Recall from [8, §1.8] a
collection of tilting vector bundles on N parametrized by alcoves, here & cor-
responds to the fundamental alcove and £* is the tilting bundle corresponding
to the anti-fundamental one. A vector bundle V is globally generated iff for
every morphism from f: V — k., where k; is a skyscraper sheaf, there exists
a morphism ¢: O — V such that fo¢ # 0. It is easy to see that when V is a
dilation equivariant vector bundle on N , it suffices to consider z in the zero
section G¥/BY C N. Moreover, it is enough to prove a similar statement over
a field k of a large positive characteristic. In that case, we can apply localiza-
tion functor corresponding to the point —2p in the anti-fundamental alcove
to translate this statement into one in the representation theory of the Lie
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algebra g over k. The localization equivalence relates the functor of global
sections to translation to the singular central character —p, a skyscraper sheaf
is identified with a module M where M is a baby Verma module with high-
est weight zero, while £* (pulled back to the formal neighborhood of the zero
section) is identified with a projective generator in the corresponding cate-
gory of gV-modules. Thus the statement reduces to showing that translation
functor T 9,,_, does not kill any nonzero submodule of M. This follows
from the standard fact that the adjunction arrow Mg — T, _9,T o, ,,M;
is injective. U

Remark 4.6. Notice that the isomorphisms between KS” (A) and the anti-
spherical module M in Theorem 4.2 and in Theorem 4.5 are different: one
sends [O(7)] to T, while the other sends it to 7",. Both are natural from some
perspective and both appear in the literature. A related issue is the choice
of the isomorphism between the weight lattice and the Picard group of the
flag variety: we use the one sending a dominant weight to a semi-ample line
bundle, thus the weights of the action of a Borel subgroup on the nilpotent
radical of its Lie algebra correspond to negative roots, while some authors
prefer the opposite convention (see [11, Section 6.1.11]). We will work with
the isomorphism of Theorem 4.2, see below.

For technical reasons we prefer to work with the globally generated tilting
bundle £* rather than with £. Thus we set A = End(£*)? = AP and consider
the equivalence D*(Coh(N)) = D*(A — mod), F — RHom(E*, F). In this
approach it is more natural to use the isomorphism between K¢ (N) and
the anti-spherical module M sending [O(v)] to T, see Theorem 4.2. With
this identification, elements of the canonical basis correspond to classes Lo
where Q is a GV-orbit in N' and M is an irreducible equivariant module for
Al characterized as in Theorem 4.5 (2).

For e € N let A, denote the corresponding specialization of A.

We recall an explicit description of (complexes of) coherent sheaves cor-
responding to some irreducible A-modules. Let A = A — mod, the category
of finitely generated A-modules. We identify A with the corresponding full
subcategory in D?(Coh(N)). For e € N let A, be the full subcategory in A,
consisting of objects set-theoretically supported on 7~ 1(e).

Recall that e is a subregular nilpotent.

Irreducible components of B, are parametrized by I; here I = I if the
Dynkin diagram of g is simply laced (see Sections 5.1 and 6.3 below) and Iis
the set of vertices of the unfolding of the Dynkin graph in general (see [37]).
Each irreducible component II;, i € I, is isomorphic to P*.
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Lemma 4.7 (cf. [9, Example 5.3.3]). Let e € N be a subreqular nilpotent.
The irreducible objects in A. are: O, (—1)[1], Or-1(e) where w7~ (e) is the
schematic fiber of the Springer map 7.

Proof. Property 1) in Theorem 4.5 shows that £ is tilting, i.e. E2t”%(£,&) =
0. Since O is a direct summand of &, it follows that H*(£) = H'(*) = 0.
Using that £ is globally generated we conclude that £|p, is a sum of copies
of O, and Opy, (1) (note that RT" has homological dimension 1 so H® is right
exact, thus H'(€) = 0 implies H!(E|n,) = 0).

It is then clear that O, (—1)[1] lies in the heart.

Since O is a direct summand in £ it follows that the objects F such that
RU(F) = 0 form a Serre subcategory A2 in A..

For an object F supported on 7~ !(e) with R['(F) = 0, each cohomology
sheaf of F is an extension of sheaves of the form O, (—1), see, for example,
[27, Theorem 2.3]. It follows that AY consists of objects of the form F[1] where
F is an extension of Opy,(—1) and that Op, (—1)[1] are irreducible.

We know that the classes of irreducible objects form a basis in the Grothen-
dieck group K (Coh(m~!(e)) which is isomorphic to homology of 7~1(e) and
has dimension |I|+1. Thus there exists a unique irreducible Lg not isomorphic
to O, (—1)[1]. It remains to show that Ly = O-1(.. In the usual -structure
there exists a filtration of Or-1(,) starting with k,, for some point p € B,
with the other terms being O, (—1). Since k,, clearly lies in the heart of our
t-structure, we see that Or-1(,) is also in the heart, and is a subobject of k.

It is clear that Hom(Opy, (—1)[1], O,-1(e)) vanishes. We check that Hom
vanishing in the other direction also holds. To this end, consider the Slodowy
variety S,, resolving the Slodowy slice S, to e € N (see [37]). We have an
exact sequence

(28) 0— Og(l)(—ﬂ'fl@)) — Og(n — Oﬁ—l(e) — 0.
Since S, is affine, O§(1>(—7r_1(e)) is globally generated, which yields
Hom((’)rl(e), OHi (—1)[1]) = 0

It follows that both socle and cosocle of Or-1(.) is the sum of copies of L. If
Or-1(e) # Lo, then we get a nonconstant endomorphism of Or-1() but again
using the exact sequence (28) we see that I'(Or-1()) is one dimensional. [

Remark 4.8. According to [8], base change of A to a slice to a nilpotent orbit
is derived equivalent to the resolution of the slice, this yields a ¢-structure on
the resolution of the slice. When e is subregular, the resolution of the slice
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coincides with the minimal resolution of a rational (Kleinian) singularity.
Comparing Lemma 4.7 with [27, Theorem 2.3] one sees that in this case the
above t-structure coincides with one arising from the MacKay equivalence
between the derived category of the resolution and the derived category of
the orbifold.

Assume now g is of type D or E. Then the centralizer Z¢v (e) is unipotent.
It is clear each of the above irreducibles carries a unique equivariant Zgv (e)
structure. For g = sl,, (n > 3) we have Z, ~ C* (recall that Z, C Zgv(e)
is the reductive part); for a C*-equivariant sheaf 7 and k € Z we denote by
F(k) the same sheaf but with the C*-equivariant structure twisted by the
character ¢ +— t* of C*. It is clear that each of the above irreducibles carries
unique (up to a shifting by k € Z) Zgv(e)-equivariant structure.

We will use the same notation for the resulting Zgv (e)-equivariant sheaves,
as well as for the corresponding G"Y-equivariant sheaves on the schematic
preimage of the orbit 771(Q,) - N.

Consider U = O, U O**8. We record a description of the canonical basis
in K¢ (U) stemming from Theorem 4.5 and Lemma 4.7.

Proposition 4.9. For g of type D, (n > 4) or Es, E7, Eg the canonical
basis of K¢ (U) consists of classes of

Oz, 1:Or10,)[—1], and 1,0, (—1), i=1,...,7.
For g = sl, (n > 3) the canonical basis of K& (U) consists of classes of
Oz, t:Or-1(0,)[=1){k), and 0.0, (=1)(k), i=1,....,n— 1,k € Z.

Proof. We use the description of the canonical basis provided by the Theo-
rem 4.5. It is easy to see that O satisfies the properties in Theorem 4.5 (2),
so it corresponds to an element of the canonical basis (this is just the image
of the unit element in the affine Hecke algebra).

Also, Theorem 4.5 together with Lemma 4.7 show the existence of ir-
reducible objects in the heart of the exotic {-structure whose restriction to
U coincides with the other objects listed in the Proposition (note that the
objects that appear in Lemma 4.7 should be shifted by |40 ] = [—1]).
Thus the statement follows from Theorem 4.5 (3). O

Remark 4.10. The canonical basis in the corresponding module over the affine
Hecke algebra was computed by other methods in [35] for type A and in [34]
for types D and E. It is not hard to check that the basis in Proposition 4.9
after applying Grothendieck-Serre duality to it (see [33, Sections 6.10, 6.11,
6.12]) agrees with those earlier results.



Subregular orbits and explicit character formulas 113

5. The subregular type D, E case

In this section We assume that g is of type D or E. Since g is simply-laced,
we have g = g". Recall that e € g is the subregular nilpotent element and
¢ C W is the corresponding two-sided cell. Recall the W-module K€" (U),
and that this module has a (canonical) basis C,, parametrized by v such that
the corresponding w, lies in ¢ U {1}. Let us describe such v, w, explicitly.

The following proposition follows from [29, Proposition 3.8], see also [40,
Proposition 3.6].

Proposition 5.1. The cell ¢, corresponding to the subregular nilpotent e,
consists of all nonidentity elements w € W that have unique reduced decom-
position.

Corollary 5.2. Let ¢ be as in Proposition 5.1. The elements v € QV such
that w, € ¢ can be described as follows. The set of possible v is parametrized
by I. Fori eI let us connect i with 0 € T by the segment:

0=Jo: Ji,---s Jim1, i = 1.

Then the element v; is equal to

(29) Vi = 885, , ...5j(0) :9—()4;/1 —~-—oz}/H —a)

and the corresponding w,, s
Wy, = W; = 5i5j1,1 . 5j150~

Proof. It easily follows from Proposition 5.1 that the elements of ¢ of the form
w, are precisely the elements w;, ¢ € I. Recall now that

W; = SiSj,_, -+ 55,8 = 8;Sj,_, ... 85, St g = tsz'sg-l,l---sh(e)sesﬁ 85, Sie

We conclude that v that corresponds to w; is equal to s;sj, , ...s; (6). It
remains to note that

SiSj_1 -+ -Sh (9) = SiSj_1 -+ S5 (5 — Oéo)
=0 SiSji "'Sjl(ao) =0 - (ao tag + o tag +ai)
:(9—ozj1—---—ajl_1—ozi. J
Remark 5.3. Note that vy = 6, wg = sg.

Our goal is to identify W-module K€" (U) ® Zsign With by = ZQ¥ LK &
Zd.
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5.1. Structure of K (B.)

Let us first of all describe the geometry of the variety B.. Recall that Be
is the fiber over e of the Springer resolution 7: N' — N. Directly from the
definitions we have

B.={bt' € B|e€ny},

where ny C b is the unipotent radical of the Borel subalgebra b’.
The following lemma is standard (see [37]).

Lemma 5.4. For every i = 1,...,r there exists the unique parabolic subal-
gebra p; such that

(1) pe;i is conjugate to the standard minimal parabolic subalgebra, corre-
sponding to o,
(2) the nilradical of p.; contains e.

We denote the corresponding parabolic subgroup by P.; C GV.

Fori € 1,...,r let P, = G¥/P.; be the variety of parabolic subalgebras
of g¥ of type pe;. The following proposition is standard (see [37]).

Proposition 5.5. The wvariety B. has r irreducible components Il;, i =
1,...,r. The component I1;, corresponding to i € I, is the fiber of the mor-
phism B — P; over the point pe; (in particular, Il; ~ P1). For i # j com-
ponents I1;, I1; intersect iff (o4, ;) = —1. If this is the case, then II;, 11,
intersect transversally at one point.

We pick any point p € B, and denote by [C,] the class in K (B,) of the
skyscraper sheaf C,.

Remark 5.6. Note that [C,] does not depend on the point p. Indeed, it is
enough to check this for P! where every skyscraper sheaf is equal to [Op1] —
[Op: (—1)].
For m € Z we denote by O} the class of Oy, (m) in K(II;). We denote
by o € K(B;) the direct image of O" under the closed embedding II; C B;.
The following lemma holds by [34, Section 3.4].

Lemma 5.7. The Z-module K(B.) is spanned by o, i = 1,...,r, m € Z,
subject to relations
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Remark 5.8. The relations follow from the standard exact sequences on P!
(and their twistings by Op:1(m)):

0—= Opi(—1) = Opr - C, =0,

30
(30) 0— Opi(—1) = OF = Opi (1) — 0.

Corollary 5.9 ([34, Section 3.4]). The Z-module K(B.) has a basis o; ',
i=1,...,r, [Cyl.

Proof. RKasily follows from Lemma 5.7. O
Remark 5.10. Note that for every i € I we have [C,] = o) — o; ' and, more
generally, o — o"~' = [C,] for every m € 7Z.

The following lemma holds by [34, Lemma 3.6].

Lemma 5.11. For v € QV we have

(@) t,([C)]) =[Gy,

(b) 1 (o) = o7,

The following lemma holds by [34, Lemmas 3.7, 3.8].

Lemma 5.12. Fori € I we have
(a) 5i([Cp) = =[Gy,
(b) si(0; ") =07 "
The following lemma holds by [34, Lemma 3.12].

Lemma 5.13. Ifi,j € I are such that (a;,a;) =0, then si(ojfl) = —0;1.

The following lemma holds by [34, Lemma 3.11].

Lemma 5.14. If i,j € [ are such that (o, a;) = —1, then si(oj_l) =
-1 -1

-0, — o

Recall that Zgg, is the one dimensional sign representation of W. We
finally obtain the following proposition.

Proposition 5.15. There is an isomorphism of W -modules
K(B.) ~ (hz @ ZK) ® Zsign,

given by
K@l [Cl,af @1+ —o; Y i=1,...,7
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Proof. The only nontrivial part is to compare the action of ta]v on o; ! with
the action of tay on o). If (a;, ) = 0, then we have

-1
i

)=o;!

[ (0 i

J

as desired. If (a;, o) = —1, then we have

tav(0;) = 0,2 =01 —[C,)].

j 3 K3 K3

Finally, if ¢ = j then we have

taiv(oi_l) =o0; = 0) +C, = 0; " +2[C,]. O

5.2. Structure of KG' (U)

Let us describe the W-module K€" (U7) (recall that g is of type D, E). Recall
that we have the closed embedding ¢: O, C U (where O, is the schematic
preimage of @, C U). It induces the homomorphism ¢, : K¢ (Q,) — K (U)
of W-modules. Note also that we have the natural identification K" (@e) =
K(B.).

_Recall that by Theorem 4.3 and Corollary 4.4 we have an exact sequence
of W-modules

0— K(B.) 2 K€ (U) — K9 (0™8) — 0.
Proposition 5.16. There is an isomorphism of W -modules
KGv(ﬁ) = (bZ D LK D Zd) ® Zsign = EZ @ Zsign»

giwen by (i € {1,2,...,r})

K — 1[Gy, af = t:[On-1(¢)], @ = —107"

)

The images of the elements of the canonical basis under this isomorphism
are as follows:

COZTO'_)CZ, éyiH—a;/7i:0,1,...,T,

where the v; are defined by (29).
Proof. Recall that K€" (U) has a basis

1[Cpl ts0r Yy 0, L O]
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Moreover, ¢, [Cp], tx07 %, . . ., 1,0, form the submodule isomorphic to K (B.) ~
(hz & CK) ® Zgign (see Proposition 5.15).

It remains to compute the action of W on [O5]. The module K ¢Y(U) is
the quotient of K¢ (N), where the surjection KC” (N) — K" (U) is induced

—~ ~ I~

by the restriction N' O U. Moreover, we have the identification of W-modules
K (N) ~ ZW @z Zsign, [0(7)] = T

In particular, [Oﬁ] e K& (N) identifies with 1 € ZW Qzw Lsign, 50 W acts
on [O /\7] via the sign representation. It remains to compute the action of QV
on [Of]. In other words we need to compute the action of the elements ¢y,
i=1,...,7 on [Of]. By the definitions and Lemma 4.1 we have

tay - [O5] = [05(e7)] = [0

i U] - L*O(i) - [O~] - L*O‘il = lx [CP}

U 1

It remains to recall that the action of toy on d is given by
ta;/(d) =d+ Oéiv - K.

The isomorphism of W-modules K€" ((7' ) ~ EZ ® Zsign follows.

The claim about the canonical basis follows from Proposition 4.9. The
fact that the element C,, is equal to —ay’ but not —a; for some other j can
be easily seen from the equality (use (29)):

th(d)=d+vi—K=d—aj —aj —- —a

together with Remark 3.15. O

Remark 5.17. One can avoid the use of Proposition 4.9 in the proof of Propo-
sition 5.16 and instead use results of [34] on the canonical basis in K (B.)
together with [8, Theorem 5.3.5]. Recall that the canonical basis from [34] dif-
fers from the one in Proposition 4.9 by applying Grothendieck-Serre duality
to it.

5.3. Computation of m7> and the proof of Theorem 2.9

Recall now that by Equation (17) we have

T, = Zmﬁzcl,.



118 Roman Bezrukavnikov et al.

Taking the image of this equality in K& (U ) ~ f)Z ® Zsign and using Propo-
sition 5.16, we see that

ty(d) =d— Z m; ;.

i=0,1,...,r

So we can compute my,, . Indeed, this is the coefficient in front of —a;’ in
L o9
ty(d) —d =7 =51k

We conclude that

1 P
(31) m532<—Ai,’Y—2|V|2K>=<A 7+2K>~

We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9. Let i, A, A be as in Theorem 2.9. Combining (24) and
(31), we conclude that

EchL Z Z £(uw;)m w‘”e“tV()‘J@

YEQV ueW
2
Z Z £(uw; < i» Y+ MK>€UHW(A+@7
YEQV ueW 2
which is precisely the statement of Theorem 2.9. O

6. The subregular type A case

In this section we assume that g = sl,, for some n € Z>3. Recall that our goal
is to describe the W-module KPG(U) and the canonical basis in it.

6.1. Structure of W, its extended version Wext

Recall that QV is the cocharacter lattice of SL,, that is equal to the character
lattice of PGL,,. We can identify Q" with the following sublattice of Z™:

QY ={(ar,...,an) €Z" | a1 + -+ + a, = 0}.

Recall that €, .. ., €, is the standard basis of Z". Simple coroots af € QY are
a) =€ —€41,i=1,...,n— 1, and the Weyl group of sl,, is S,,. The action
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of S, on QV is the standard action via permutations. Recall that
W =Q" xS,

The group W can be described as follows. It is the group of all permu-
tations o: Z — Z such that o(i +n) = o(i) + n and Y1 4 (o(i) — i) = 0.
The group of all permutations o: Z — Z such that o(i + n) = o(i) + n is
isomorphic to S, x Z™".

Let us recall the description of the elements sg, s1,...,5,—1, ty in these
terms. Element s; is given by

j+1 forj=i (mod n),

(32) 5i(j)=<9j7—1 forj=i+1 (mod n),
7 otherwise.
For a lattice element v = (ag, ..., a,-1) € Z" the corresponding element

t, of Z" x S, is given by
ty(k?) =k+ a[k]n,
where [k] € Z/nZ ~ {0,1,...,n — 1} is the class of k modulo n. So the

element ¢, is given by

‘ j+n for j =k (mod n),
tek(]) = {

j otherwise.

Let PV be the cocharacter lattice of PGL,,. We can identify P¥ with the
following quotient of Z™:

PY =Z%"Z(eg + - + €).

We have a natural embedding Q¥ C PV. It will be useful to consider the the
extended affine Weyl group

Wet .= pY x Sh.

For v € Z" we denote by t, € West the corresponding element of Wext. The
group W is generated by te,, ... te,, 1.+, Sn_1.
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6.2. Parametrization of the canonical basis of K¥GIn» (ﬁ)

Recall that e € sl, is the subregular nilpotent element and ¢ C W is the
corresponding two-sided cell. Recall that the module K¥%Ln (U) has a canon-
ical basis C, parametrized by v such that w, € cU {1}. It follows from
Proposition 5.1 that the set of w, as above is given by

Lemma 6.1. The elements w, € ¢ can be described as follows. The set of
possible v is parametrized by Z. For i € 7, the corresponding element w; is
equal to

S[]8[i—1] - - - 5150 fori>0
w; = 4 S fori=0,

S[i]S[i+1] - - - S[-1]50 fOT"i <0
and v; is the image of w; in QV ~ W/Sn
6.3. Description of B, and C*-equivariant line bundles on it

Let us now recall the explicit description of B,.

The element e can be described as follows. Let V' = C" be the standard
representation of sl,, and let vy, ..., v, be the standard basis of C". Then the
element e is:

e(vp—1) =e(vy) =0, e(vy) =vig1,i=1,...,n— 2.
For every (ordered) basis by, ..., b, of V' let F(b1,...,b,) be the flag
{0} C Spang(by) C Spang(by,be) C --- C Spang(by,...,bp—1) C V.
To every (k,a) € ({1,...,n—1} x C) U{(0,0)} we associate the flag
Fra = F(Un—1,Un—2, .., Un—kt1, Un—k + QUn, Un, Un—k—1, Un—k—2, - - - , U1).
The irreducible components of B, are parametrized by k € {1,2,...,n —1}:
Oy = {Frala€CU{Firt10}
For k=1,2,...,n we set
Pk—1k = Fr-1,0 = F(Un—1s -, Un—kt1s Uns Un—ks Un—k—1, - - - , U1)-

For k=2,...,n—1 we have py_1 = Fn—ro = I N 1I5_;.
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Our first goal is to describe the action of W on K EGL” (0,). It will be
more convenient to describe the action of W on K5t (Q,) first. Recall that

KPGLn (@e) _ KZe,pGLn (Be), KSLn (@e) _ KZe,SLn (Be)>

where Z, pgr., C PGL,,, Zcs1,, C SL,, are reductive parts of the centralizers
of e.

We have the identifications (compare the second identification with [35,
Section 5.1])

Cc* == ZepaL, C PGL,, t — diag(1,1,..., 1,t),
C* = Z.s1, C SLy, t+ diag(t™ ¢4, . ¢ h ).

We obtain two actions of C* on B.. The first action sends a flag Fj, 4 to
the flag Fj 1, and the second action sends F , to the flag Fj inq.
Fix 1 < k < n — 1 and consider the following action of C* on P*.

(33) t-lz:y]=[t"z:yl.

The following lemma is straightforward (compare with [35, Section 5.4], [15,
Section 3.6]).

Lemma 6.2. Let C* act on P! via (33). For every collection of integers i, j,
satisfying i — j = nm for some m € 7, there exists the unique C*-equivariant
line bundle on P! such thatt € C* acts via t/ at the fiber over [1 : 0] and acts
via t* at the fiber over [0 : 1]. Every C*-equivariant line bundle on P! can be
obtained in this way. We denote the line bundle above by O,

Remark 6.3. The Euler characteristic of 0% is equal to m + 1, so 0% is
isomorphic to Op:(m) as a line bundle.

Recall again that we have the action of C* ~ Z, g1, on B, which acts on
every Il via (33). We identify KZestn (pt) = Z[¢F]], KZerotn = Z[¢*7]. For
ke{l,...,n—1} and a,b € Z such that a — b € nZ we denote by OZ’“ the
line bundle on II; whose fiber over py_1 is ¢ and the fiber over Dk kt1 1s £

Lemma 6.4. For every a, b € Z such that a — b € nZ we have
Oy +0p® = (6 + EM0Y°.

Proof. Use the Euler sequence for IIj, ~ P! (see (30)). O
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Fork=1,...,n—1 we set
0, == [0y,

Remark 6.5. Note that the line bundle Og’_" has degree m = —1, i.e. is
isomorphic to O, (—1).

Let Cp,, be the skyscraper sheaf of the point pg; € Be.
Lemma 6.6. We have

n—1

[05.] = [Cpoy] + D €" O
k=1

Proof. Recall that 02’_n is a line bundle whose fiber over py_1 4 is 1 and the
fiber over py 41 is £7". Clearly we have an exact sequence

n O,—’I’l

The claim follows by induction. O

We set
n—1
O = _[OBE] = _[(Cpm] - Zgnok
k=1

We finally extend Oy to every k € Z in such a way that Oy = £"Opqpy
for every k € Z. The set {Oy | k € Z} forms a basis of the Z-module
KZe,PGLn (Be).

6.4. Modules h,7, Hoo,Z over S,, X Z", W

6.4.1. Module b,z Using the identification of Z" x S,, with the permu-
tations Z — Z, we obtain the action of Z™ x S,, ~ Z®Z that sends ¢; to € (i)-
Consider now the action of Z[¢*"] on Z%Z given by " - ¢; = ¢;_,.

Remark 6.7. Note that Z" x S,-action on Z®% commutes with the Z[¢*"]-
action.

Let hooz C Z%% be the submodule, consisting of elements (a;);cz such
that > ;c7a; = 0. We obtain the action W ~ by z. Module by 7z has a
Z-basis {a), i € Z}, where o = €; — €;41.

Remark 6.8. Recall that ho 7z is a W-module over VAIS i”]. We can consider the
quotient hoo 7/(£" —1)hoo,z. It is easy to see that W-module hoo 7/(" —1)000 2
is isomorphic to bz ® ZK via [o] — o), i=0,1,...,n— 1.
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Remark 6.9. Let us define the symmetric bilinear form (, ) on b z. Consider
the symmetric bilinear form (, ) on Z®% given by (e;, €;) = dp;,(j. We denote
by (, ) its restriction to heoz. It is clear that (, ) is Z™ x Sp-invariant. It is
also clear that

2 iffi] = [7],

(af ,af) = ¢ =1 if [i], [j] € Z/nZ are adjacent,

0 otherwise.

6.4.2. Module Goo,Z Recall the W-module Doo,z- Set
Doz = ooz ® Zd
and define the IW-module structure on it by (i=1,...,n—1)
tay (d)=d+ ¢ — €41-n, w(d) =d, w € S,.
Clearly, we have an exact sequence of W-modules
0= booz — Hoo,z — Liriv — 0.

Remark 6.10. Recall the bilinear form (, ) on b 7. It can be extended to the
bilinear from on b 7z by (d, ;) = 0 for i ¢ nZ and (d,a;) = 1 for i € nZ,
(d,d) = 0. It is easy to see that this form is W-invariant.

We can extend the action of W on Eoo,z to the action of Z"™ % S,, on
78" @ 7.d via

tei (d) =d + €;.

For v € Z" let us describe explicitly the element t.(d). For k € Z we set

Ay = Zef € bl

<k

Clearly
<K;)Oval\c/> = Oik-

For a € Z~y we have

tae, (d) = d+ € + - - + €xp(a—1)n;
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SO
(A tae, (d)) = |Zgi N [k, k + (@ — )n] N (k4 nZ)|.
For a < 0 we have
taek (d) =d— €k—n — **° — €k+an,
SO

o0

(A;  tae,(d)) = —|Zg; N [k + an, k — n] N (k + nZ)|.

ForieZ,k=1,...,n,and a € Z we set

|Z<i N[k, k+ (a—1)n] N (k+nZ)| for a € Zxy,

(34) zi(aeg) ==
—|Z<i N[k +an,k —n] N (k+nZ)| for a € Zgo.

We conclude that for v = aje; + agea + -+ + ane, € QY we have

n

t(d) = d+ > (Y zilarer) oy

i€Z k=1
6.5. Structure of modules KZestn (B,), KZePcin (B3,)

The main reference for this section is [35]. The goal of this section is to
construct an isomorphism of W-modules b 7 ~ K Zepcin (B,). We describe
the action of W on KZestn (B,) first.

77777

K%11(9)(B,). The following lemma holds by [35, Section 5.11].
Lemma 6.11. We have (k=1,2,...,n—1)

51(0-1) = =0;_1 — Oy forl=2,...,n—1,
51-1(0)) = =0; = Oy forl=2,...,n—1,
sk(Ox) = Oy,
51(0g) = =Oy forl #k— 1,k k+ 1,
$1([Cpor]) = =[Cpy,] forl=2,...,n -1,
$1([Cpo.]) = =[Cpo ] + (1 = €")On.
Let Lg_1 1 be the line bundle on B, whose fiber over ({0} C D; C --- C

D,,—1 C V) is Dy/Dy_1 (see [35, Section 5.1]). By definition, the action of t_,
on K%(9)(B,) is given by the tensor product with the line bundle L1 k.
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The fiber of Lj_q 1 over p;—1, is equal to Elifk#land " Lif k=1 We

conclude that

(35) t_e ([0P]) = [0y = ¢ OP" if 1 # k —
(36) t_e ([Op]) = [Op—y" "7,
(37) t_e ([0p°]) = [OpT" 1),

Lemma 6.12. We have

[Cpk—l,k] = [01270] - [OZ,OL [Cpk,k-H] = [O%O} - [Og’_n];

[Cpk—l,k} = [Cpk.k+1] + (1 - gn)oky
k—1

[CPOI] = [(Cpk—l,k} + Z(l - gn)o

Proof. All of these equalities directly follow from the standard exact sequences

on PL.

Corollary 6.13. We have

k-1 n—1
[OOO] [Cp01]+0k+z l:_zol_fn Z O;.

=1 =0 I=k+1

Proof. By Lemma 6.12

[0%"] = [Cpriaa] +[0F "] = [Cpppa] + Ok

k k—1 n—1
= [(Cp(n] + Ok + Z(&n - 1)01 == Zol =" Z O;.

=1 =0 I=k+1

Lemma 6.14. We have

tfﬁk([cpo,l]) = 5_1[(3170 1] k= 27 s, — 17

tfﬁl([ 1001]) gn 1[ P01}7
t_ek(Ol):f 1Ol ifl#k—1k,

t—gk(ok—l) :E_l([(cpk lk] +Ok 1 (ZO +£nzol)

t_ek(ok) = 5_1( [(Cpk lk] +Op) = (Zol +& Z Ol)

O
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Proof. The first three equalities follow from the fact that the fiber of Ly
over pj_1is &V ifk# L and &7V if k=1
Since [0, 7] = ¢71[0}",] and using Corollary 6.13, we conclude that

n—1
O =R = —¢ Zo &1y o
1=k
We see that
b (007 = (0571 = (zolwzol)

By Lemma 6.4 [0 "] + [0, = (1 + &£ ™)[0)°], so
Oy " = =10, T+ (L +€M[0°].
Using (37) we see that

t-e, ([0 ")) = b, (<[0T + (1 +€7)[0,7])
= =10+ L+ €07

= (0 + €05 — [0) (Zol+§"20,)
O

Combining all the relations, we get the We"t—representation Ig\Zﬂ’SLn (Be)
with Z[¢*!]-basis Oy, ..., On_1,[Cy, ] and the following action of W (here
Ee{l,....,n—1}):

5k(Ok-1) = —Op_1 — Oy,
$k-10k = —=O0f — Og—1,
5k(Or) = Og,
51(0g) = =Op for l # k — 1,k k+1,
5k([Cpo]) = =[Cponl, E=2,...,n — 1,
$1([Cpo1]) = =[Cpq,] + (1 = €M) O,
t-er([Cpoa]) =€ Cpouls k=2,...,n = 1,
te; ([Cpoa]) = €M Chyy ),
t . (0) =¢10if 1 # Kk —1,k,
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k—2
t— e, (Op_1) (Zowgﬂzol) =1 Y o,

l=k—n

t_ e (Og) = (ZQ%”ZQ) = f: ;.

I=k—n
Proposition 6.15. There is an isomorphism of W -modules over Z[EF:
ooz @ Lign == KZercin (B,),
given by
af @1 =04, k€Z, [Cp, | =y, +- - +aly+oy =€1p — €1

Proof. Directly follows from the formulas for the action of Wext on K Zestn (B.)
above together with the fact that oy =t 0t O

6.6. Structure of KPGLx ()
Recall that by Theorem 4.3 we have an exact sequence of W-modules
0 — KZerctn(B,) — KPCL(U) = Zggn — 0.

We have already described ﬁ\/—moduflve KZercin (B,) explicitly. So in order to
describe the action of W on K PGLw (1) we just need to » compute the action of
W on [OF]. Since KPGLa(U) is the quotient of KT (N), we have w([OF]) =
£(w)[Og] for w € S,. It remains to determine the action of tov, k=1,...,n—

1, on [OfF].

Lemma 6.16. We have
k—1
tay((05]) = 1051+ . O
I=k+1-—n

Proof. Indeed, using Lemma 4.1 and Corollary 6.13 we obtain

tay ((05]) = [Og ()] = [0

o) — [0

0]~ [Cp] ~ 04 + (1 - M0 = [0:]+ S O,

=1 l=k+1—-n
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Proposition 6.17. We have an isomorphism of W -modules KPGL“(LNT) o~
Doo,z @ Lsign. This isomorphism is given by

Cord®1,C, — —a), i€

Proof. Follows from Proposition 6.15, Lemma 6.16 and Proposition 4.9. [

Remark 6.18. One can avoid the use of Proposition 4.9 in the proof of Propo-
sition 6.17 and instead use results of [35] on the canonical basis in K¢ (1,)
together with [8, Theorem 5.3.5], see also [15].

6.7. Computation of m3> and the proof of Theorem 2.16

Recall now that
t,-1=T, = Zmlesz.

Taking the image of this equality in KPGL"(ﬁ) ~ 60072 ® Zsign and using
Proposition 6.17, we see that

d)=d—> mia).
1€EZ

So we can compute my, . Indeed, this is just the coefficient in front of
—ay in
n

—d =Y (D zllen Mer) )oY

i€Z k=1
We conclude that

(38) w” = zn: Ek,

We are now ready to prove Theorem 2.16.

Proof of Theorem 2.16. Let i, A, A be as in Theorem 2.9. Combining (24)
and (38), we conclude that

Rch L(A) = Z Z 5(uwi)m5i—weutw()\+ﬁ)

YEQY ueWw
== 2 2 cluw) (izi<—<ek,v>ek>)eutwwm+z>
YEQY ueEW k=1

that is precisely the statement of Theorem 2.16. O
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7. Possible generalizations
7.1. Non-simply laced case

Recall that in this paper we restrict ourselves to the simply laced case. One
can consider arbitrary simple Lie algebra g. Using an approach similar to
the one in this paper it should be possible to obtain explicit formulas for
characters of certain g-modules L(A) (“corresponding” to the subregular cell
in W) We plan to return to this in the future.! The relevant question here is
the explicit description of the W-module KZ¢(B,) (e is a subregular nilpotent
of g¥). Let us describe the conjectural answer.

Remark 7.1. Note that the W-module K (B,) is described in [35, Section 6].

Consider the affine Lie algebra g and the corresponding (affine) Weyl
group W (see Section 2.1.4 or [21], [32, Section 1.6]). Our goal is to describe
the W-module structure on K%(B,). The Dynkin diagram of (g)" can be ob-
tained from a simply laced affine Dynkin diagram by folding (see for example
[36, Section 14.1.5]). We denote the simply laced affine Lie algebra above by
t and denote by W () its Weyl group.

Remark 7.2. Note that (g)Y is a twisted affine Lie algebra (see Example 7.4).

Assume for simplicity that g is B, or Fy. By [29, Corollary 3.3] there is
an embedding W c W () that sends a simple reflection of W to the product
of simple reflections over the corresponding orbit of folding. Let t; C € be the
(integral form of the) “reflection” representation of W (€) and tz = t ® Zd be
the “Cartan” representation. Using the embedding Wc W () we obtain the
action of W on tz, tz. The following conjecture will be proven (and generalized
to other types) in [28].

Conjecture 7.3. Assume that g is B, (n > 3), Fy. We have isomorphisms
of W-modules

Kze (Be) = IZ X Zsigna KGv(ij) = /{Z X Zsign~

Ezample 7.4. Assume for example that g = B,,. Then § = By, hence, (§)¥ =
A%)H. We conclude that € = Do,. For g = Fy we have (g)" = Eéz) sot = Er.
Remark 7.5. For g = By, Fy it is easy to see that the rank of K7*(B.) (over Z)
is equal to the rank of t;. Indeed, recall that by [37, Section 6.2] variety B,

can be identified with the fiber of the Springer resolution over a subregular
nilpotent element of the unfolding of g. It follows that K(B.) has a basis,

IThis will be done in the joint paper [28] of the third author and Kenta Suzuki.
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consisting of [Ory, (—1)], [Op,], where i runs through the set of simple roots of
the unfolding of g (recall that to every long simple root «; of g corresponds the
unique simple root of the unfolding of g and to every short root a; correspond
two simple roots a;+ of the unfolding of g). Recall also that Z, ~ Ss. Using
the same argument as in [34, Section 1.25], one can show that the basis of
K?Z(B.) can be described as follows: for every long simple root a; of g we
consider [Or,(—1)"], [Om,(—1)"], where £ correspond to two different Z,-
equivariant structures on Or,(—1), we also have [Oi] and finally for every
short simple root «; (of g) we have [On, (—1) U Op,_ (—1)] (this is the class
supported on II;+ UTL;-). So we see that to every long root of g (in particular,
to the affine root) we associate two basis elements of K%¢(B,) and every short
root corresponds to the unique basis element of K% (B,). It follows that the
rank of K% (B.) is equal to the number of vertices of the unfolding of the
Dynkin diagram of (g)" i.e. the number of simple roots of € (the rank of tz).

7.2. Case of arbitrary nilpotent e

One can try to use a similar approach to the one in this paper to compute
characters of more general g-modules L(A) such that the level of A is greater
than —h"Y and A + p is integral quasi-dominant. Let w € W be the longest
element such that w(X + p) is dominant. Let ¢ C W be the two-sided cell
that contains w. Let e € g¥ be the corresponding nilpotent element (not
necessarily subregular). For ¢/ € N we say that ¢’ is over e if e is contained
in the closure of the orbit O = GV - ¢/. Let U C N be the union of the O,
such that ¢’ is over e; this is an open subset of N. Set U := 7~ 1(U).

It follows from the above that the character of L(A) can be extracted
from the W-module K€" (U) and the canonical basis in it. Recall that U was
constructed starting from a nilpotent element e € gV.

Recall that an element e € N is called distinguished if it is not contained in
a proper Levi subalgebra. Apparently the simplest case to consider is the case
when e is very distinguished i.e. if every element ¢/ € N over e is distinguished.
If this is the case then the module K¢ (U) is clearly finite dimensional. It
follows that the function vy — my, is a quasi-polynomial in this case. Degrees
and periods of these quasi-polynomials will be estimated in the Appendix in
[28] (written by first and third authors joint with Kenta Suzuki), the main
technical tool is the localization theorem in equivariant algebraic K-theory.

FExample 7.6. A regular element is always very distinguished. A subregular
element is very distinguished except in types A, and B,, when it is not
distinguished. There are also other examples: one in Fy, two in E7, three in
Eg, etc., see e.g. [2].
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Remark 7.7. Recall (see Proposition 5.1) that the cell ¢ such that Q. is sub-
regular consists of elements w # 1 with a unique minimal decomposition (see
Proposition 5.1 below). A similar (but more complicated) description of the
next case, which includes most very distinguished examples, should follow
from [14].

Another interesting case to consider is the case of g = sl,, and e being
the two-block nilpotent, see [4] for the parametrization and description of the
irreducible objects in the heart of the exotic t-structure in this case.

Appendix A. Basic facts about Kazhdan-Lusztig
polynomials

A.1. Canonical and standard bases in Hecke algebra ?—Lq(ﬁ\/)

The Hecke algebra H, = Hq(W) over Z[qF!] is an Z[g*!]-algebra with free
Zlg*="]-basis {Hy},, i Whose multiplication is determined by the following:
HyHy, = Hyy if L(wv) = £(w) + £(v),

(Hs +1)(Hs — q) =0 for s € {sq,51,...,5}

We can define the Hecke algebra #H,(1V) similarly.
We define an involutive ring endomorphism H,(W) 3 h +— h € H (W)

by
> awHy =Y awH,l,
weWw weW
where § = ¢~ !. Let < be the Bruhat order on w.
Proposition A.1 ([24]). For anyv € W there exists a unique C, € Hq(l//l\/),

satisfying the following conditions:

C’U = Z Pw,v(Q)Hw

wv
with P, ,(q) =1 and P, ,(q) € Z[q] of degree < ({(v) —Ll(w)—1)/2 forw < v,
C, = q_z(”)C’v.

The polynomials P, ,(g) are called Kazhdan-Lusztig polynomials. Let
us now introduce inverse Kazhdan-Lusztig polynomials m¥(q) (see [25, Sec-
tion 2| where they are denoted by @ ,(¢)). These polynomials are determined
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by:
H, = Z e(wv™Hm(¢q)C,.

vXw

Remark A.2. Note that in [25] the polynomials m!’(¢) are denoted by Q. (q)-
We change this notation since we have already reserved “Q” for the coroot
lattice QV.

Lemma A.3. Forv,w € W we have mY(q) = mg’:ll ().

Proof. Consider the anti-automorphism i of H,(W) given by i(H,) = Hy-1,
i(q) = q. Map i commutes with the involution ®. The claim follows. O

The following Theorem holds by [19, Section 0.3] together with Lem-
ma A.3:

Theorem A.4. For a dominant integral weight \ € 6* we have
chL(v™oA)= > e(wv ™ )my (1) ch M(w™" o \).
weWw
A.2. Canonical and standard bases in the anti-spherical module

Define the algebra homomorphism x: He(W) — Z[q] by x(Hy) = e(w). We
define the induced module M (anti-spherical module over #H,(WW)) by

—

M = H (W) @u,w) Z[q]

and define p: Hy - M by p(h) =h® 1.
It is easily checked that M 3 m +— m € M is well defined by

©(m) = p(m).

For v € Q¥ set H,, = p(H,,). It is easily seen that M is a free Z[q*Y-
module with basis {H;, },eqv.

Proposition A.5 ([12]). For any v € Q" there exists a unique C), € M,
satisfying the following conditions.

C’l’l},, = Z ﬁw'y,wu (q)H’l/Ufy
"/er7w’Y$wV
with pwyywy(q) =1 and wawu (q) € Z[q] of degree < (L(wy) — L(wy) —1)/2
for wy, < w,.
C,, =q "™y,
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It easily follows from Proposition A.5 and Theorem A.1 that
(39) Cy,, = ¢(Cy,) and (Cy) = 0 if w # w, for any v € Q"

M =He/{Cou | w ¢ {w, v €Q}).

Polynomials waw” (q) are called parabolic Kazhdan-Lusztig polynomials. Let
us now define the parabolic inverse Kazhdan-Lusztig polynomials my, (¢).
Following [19, Equation (2.40)], we define them by

H, = >  clwuw, )my (g,

veQY, wy,Swy

The following proposition holds by [38] (see also [19, Proposition 2.7]).
Proposition A.6. For v,y € QV we have my, (q) = My, (q).

Proof. Easily follows from the fact that ¢(Hy.,u) = e(u)H,, , u € W together
with (39). O

So we conclude that

H, = e(wywy)my(q)Cl,,.

veRY

Let us now modify bases Hy, , C,, as follows:
T, = e(wy)H,, , C, = e(w,)Cy, .

We have

rveRvy

Remark A.7. The numbers my, (1) = my,) (1) = my,] are matrix coefficients

of the transition matrix from classes of standard sheaves on the affine Grass-
mannian of G to classes of irreducible objects (/C sheaves) (see [19, Corol-
lary 5.5] for details). Set M = M/(q¢ — 1) = ZW ®zw ZLsign. After the iden-

tification K (N) ~ M elements T, become [O(v)] and C, are classes of

irreducible objects in the heart of the “exotic” t-structure on D?(Coh®" (N))
(see [3, b, 7] for details).
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