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Seshadri stratifications and Schubert varieties:
a geometric construction of a standard monomial theory
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A Corrado, amico e maestro

Abstract: A standard monomial theory for Schubert varieties is
constructed exploiting (1) the geometry of the Seshadri stratifi-
cations of Schubert varieties by their Schubert subvarieties and
(2) the combinatorial LS-path character formula for Demazure
modules. The general theory of Seshadri stratifications is improved
by using arbitrary linearization of the partial order and by weak-
ening the definition of balanced stratification.
Keywords: Seshadri stratification, Schubert variety, standard
monomial theory, LS-path.

1. Introduction

1.1. Standard monomial theory

There is no formal definition of what a standard monomial theory is. If K
is a field and A a K-algebra, one tries to locate ring generators for A and
a class of monomials in these generators, called standard monomials, which
forms a basis of A as a K-vector space. The relations expressing the non-
standard monomials as linear combinations of standard ones are called the
straightening relations of the theory. Usually the indexing set of the generators
is combinatorial in nature, typically in terms of a partially ordered set. Also
the rules to decide whether a monomial is standard or not is combinatorial
in terms of the same partially ordered set.

One of the first examples of a standard monomial theory is the study
of Hodge of the Grassmann varieties and their Schubert varieties (see [18,
19]). In modern terms, the Plücker coordinates and the Plücker relations
define a structure of a Hodge algebra on the coordinate ring of the cone over
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the Plücker embedding of a Grassmann variety. This structure, algebraically
defined in [15] by De Concini, Eisenbud and Procesi, has some geometric
consequences: the projective normality and the Cohen-Macaulay property
for the Schubert varieties in the Grassmann varieties and for determinantal
varieties (see [20, 34]).

However, the notion of a Hodge algebra was too rigid to treat, at least in
a natural way, the case of an arbitrary Schubert variety in a flag variety G/P
with G a semisimple, simply connected algebraic group and P a parabolic
subgroup. One possible generalization was enabled by: (a) the introduction
in [30] (see also [31]) of the combinatorial tool of Lakshmibai-Seshadri paths,
LS-paths for short, for a G-module V (λ), with λ a dominant weight of G with
stabilizer P and (b) the construction of a suitable basis {xπ |π ∈ LS+

1 (λ)} of
V (λ)∗ in [29] (see also [23]) parametrized by the set LS+

1 (λ) of LS-paths of
shape λ.

This generalization of Hodge algebras, termed LS-algebra (see [5]), has
generators indexed by LS-paths over a partially ordered set, a notion of stan-
dardness for monomials in these generators and straightening relations as a
Hodge algebra. The general theory of LS-algebras gives a degeneration result
and allows a new proof, in the spirit of the standard monomial theory, of
the projectively normality and of the Cohen-Macaulay property for Schubert
varieties in G/P . The basis xπ, π ∈ LS+

1 (λ), has been fruitfully used to con-
struct standard monomial theories for other class of varieties with slightly
modified version of LS-algebras (see [1, 6, 8, 14, 9]).

Of course, on the way from from Hodge algebras to LS-algebras there is
the fundamental work of Lakshmibai, Musili and Seshadri on standard mono-
mial theory, leading to Lakshmibai’s conjecture [28] on what is now termed the
LS-path character formula. A very good account on the case of Grassmann va-
rieties, generalizations to other semisimple algebraic groups and applications
can be found in the book [37] by Seshadri. Historical accounts and overviews
are given in [28, 38, 39]. One of the aims of our approach towards a stan-
dard monomial theory for Schubert varieties is to give a construction which
is uniform for all types, purely geometric (up to a character formula), but
where the standard monomials have the same desirable properties as in the
approach by Lakshmibai, Musili and Seshadri for P ⊂ G a maximal parabolic
subgroup. For example, the standard monomials and the straightening rela-
tions should be compatible with all Schubert varieties. More precisely, one
can introduce in a natural way the notion of a standard monomial which is in
addition standard on a Schubert variety (see [37]). Those standard monomi-
als, which are not standard on a Schubert variety, form a vector space basis
of the vanishing ideal of the Schubert variety in the homogeneous coordinate
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ring of G/P . And the restrictions of the standard monomials, standard on
the Schubert variety, form a basis of the homogenous coordinate ring of the
Schubert variety. Similar statements hold for straightening relations.

1.2. The search of a geometric interpretation: the case of
Grassmann varieties

Though the notion of an LS-path is purely combinatorial in nature, it has a
geometric background (see [24, 25, 26, 27]). And the definition of the basis
formed by the functions xπ, π ∈ LS+

1 (λ), uses in an essential way the theory
of quantum groups at a root of unity. It seems quite natural to search for a
geometric meaning and construction of both: the LS-paths and the path vec-
tors. As we will see below, a possible route to such a geometric interpretation
is a suitable generalization of the theory of Newton-Okounkov bodies: instead
of a flag we consider a net of subvarieties. The background for this paradigm
is the fundamental concept that all the constructions around standard mono-
mial theory should be compatible with all Schubert varieties simultaneously.
In terms of toric degenerations this leads to the natural question: does there
exist one toric degeneration of G/P which restricts to a toric degeneration of
the Schubert varieties Xw for any w in the Weyl group? It was already ob-
served by O. Mathieu that this is not possible (see [3]) because intersections
of irreducible toric varieties are irreducible toric varieties, but the intersec-
tion of Schubert varieties can be a union of several Schubert varieties. So one
necessarily has to replace in the question toric degenerations by semi-toric
degenerations. This has lead in [17] the second and third author to the idea
to replace in the Newton-Okounkov approach the flag of subvarieties by a
net of subvarieties. The price one has to pay is that instead of a valuation on
the homogeneous coordinate ring one will get just a quasi-valuation. Already
the case of the Grassmann varieties, studied in [17] by the second and third
author, is non-trivial and gave a very interesting starting point; let us briefly
recall it.

Let R be the coordinate ring of the cone over the Grassmann variety Gd,n

of d-dimensional vector spaces in Cn embedded in a projective space by the
Plücker coordinates.

The Schubert varieties in Gd,n form a net of subvarieties. As a first step
one associates to every maximal chain C of Schubert varieties Xτ0 � Xτ1 �

· · · � Xτr in Gd,n a valuation VC on R with values in ZC. This is so far just the
usual procedure used in Newton Okounkov theory. One shows that all these
valuations have one-dimensional leaves and the Newton-Okounkov body of R
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is for all the valuations unimodular equivalent to the Gelfand-Tsetlin polytope
([17, Proposition 7.6]).

To get an object which is independent of the choice of a particular chain,
consider the set I(d, n) of strictly increasing sequences of length d. This set
is an indexing system for the Schubert varieties in Gd,n. We fix a total or-
der I(d, n) refining the usual partial order, and we endow ZI(d,n) with the
associated lexicographic order. We view for each maximal chain ZC as being
embedded in ZI(d,n), so it makes sense to define V(g) := minC{VC(g)}, where
C runs over all maximal chains in the poset I(d, n). In general, V is not any-
more a valuation, it is just a quasi-valuation. It has the following properties
([17, Proposition 7.4, Theorem 6.4, Corollary 6.5]): (i) it has leaves that are
at most one-dimensional; (ii) the Plücker coordinates, i.e. the generators R
as a Hodge algebra, are representatives for the non-zero leaves of degree 1;
(iii) the quasi-valuation is additive on a monomial if and only if the mono-
mial is standard; (iv) the straightening relations of R are just expressions of
non-standard monomials as sums of “greater” leaves. In particular the Hodge
algebra structure on R is defined in terms of certain valuations and a quasi-
valuation.

The quasi-valuation V defines a filtration on R, let gr VR be the associated
graded algebra. Now V depends of course on the choice of the total order, but
the degenerate algebra gr VR not ([17, Corollary 7.5]).

1.3. LS-algebras and valuations

The second step of our project (see [11]) showed that an LS-algebra may be
defined in terms of valuations and a quasi-valuation as well. Also in this case
one recovers the generators of the algebra via quasi-valuations having at most
one-dimensional leaves, the quasi-valuation is additive on standard monomials
and the straightening relations have a clear interpretation in terms of the
quasi-valuation. However this approach is suitable only for a variety whose
homogeneous coordinate ring admits an LS-algebra structure; moreover, in
the case of Schubert varieties it uses a priori the combinatorial LS-paths and
the basis constructed via quantum groups ([29]).

1.4. Seshadri stratifications

The next step was the introduction of the notion of a Seshadri stratification
in [10]. The concept of the approach in the general case is the same as in
the case of Grassmann varieties. One has a net of subvarieties, the maximal
chains in the net provide valuations. To get an object which is independent
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of the choice of an individual maximal chain one defines a quasi-valuation
as the minimum over the valuations associated to the maximal chains. More
precisely, a Seshadri stratification for the embedded projective variety X ⊆
P(V ) is the data of a collection of subvarieties Xp and regular functions fp ∈
K[V ], with p in a finite partially ordered set A having a unique maximal
element pmax with Xpmax = X. These subvarieties and functions must satisfy:
(1) each subvariety Xp is smooth in codimension 1 and for p > q a covering
relations in A, the variety Xq is of codimension 1 in Xp; (2) for any q �≤ p
the function fq vanishes on Xp; (3) fp vanishes in Xp exactly on the (set
theoretic) union of all divisors Xq, q ∈ A.

This general setting has a distinctive character which did not show up in
the Grassmann case nor in the theory of Newton-Okounkov body. A function
fp is not necessary a uniformizer in the local ring OX̂p,X̂q

, with p > q a covering
in A; indeed taking fp as a uniformizer is not always possible in our context
since, in general, p may cover many elements in A. So we have the notion of
the bond bp,q, a natural number giving the order of vanishing of fp|Xp along its
divisor Xq. Taking into account such multiplicities, we construct a valuation
VC on R having values in QC ⊆ QA (no longer in ZC) with a procedure similar
to that of the Newton-Okounkov theory and influenced by the idea of Allen
Knutson [22] to use Rees valuations.

As above, one can use this valuation to construct a quasi-valuation V on
R with values in QA by taking the minimum with respect the lexicographic
order on QA induced by a fixed linearization ≤t of the partial order of A.
This quasi-valuation has the following properties (see [10]): (a) the leaves are
at most one-dimensional; (b) it takes non-negative values, i.e. its image Γ is
contained in QA

≥0; (c) for a maximal chain C let ΓC ⊆ Γ be the subset of
elements having support in C, then ΓC is a finitely generated monoid; (d) Γ
is a fan of monoids, i.e. Γ =

⋃
C ΓC, where the union is running over all

maximal chains C ⊆ A, and if C ⊂ A is a (not necessarily maximal) chain
and ΓC ⊆ Γ is the subset of elements having support in QC ⊆ QA, then for
any pair C1, C2 ⊆ A of chains and their intersection C3 = C1 ∩ C2 we have:
ΓC1 ∩ ΓC2 = ΓC3 .

One can define a Newton-Okounkov simplicial complex and an integral
structure associated to V having properties similar to those of the usual
Newton-Okounkov body of a valuation. Further V induces a flat degenera-
tion of X to a reduced union X0 of projective (not necessarily normal) toric
varieties. Moreover, X0 is equidimensional, and its irreducible components
are in bijection with the maximal chains in A.

One can use the quasi-valuation V to set up a standard monomial theory
for the homogeneous coordinate ring R of X. Such a theory is very similar
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to the one of an LS-algebra in case the stratification is normal and balanced.
When all the monoids ΓC are saturated, i.e. ZΓC ∩ QC

≥0 = ΓC, we say that
the Seshadri stratification is normal (see Subsection 2.8). If Γ is independent
of the linearization ≤t, where ≤t runs in the class of all linearizations, then
the stratification is called balanced (see Subsection 2.9).

The conditions on the stratification to be balanced and normal guarantee
the desired compatibility condition mentioned at the end of Section 1.1. More
precisely: given p ∈ A, the collection of subvarieties Xq, q ≤ p and functions
fq, q ≤ p, defines a Seshadri stratification of Xp ⊆ P(V ), and we get a quasi-
valuation Vp on the homogeneous coordinate ring Rp of Xp. This construction
works always, and it is natural to ask whether the two quasi-valuations V
and Vp are related. If the stratification is balanced and normal, then the
two quasi-valuations are compatible [10]: if f ∈ R is such that f |Xp is not
identically zero, then V(f) = Vp(f |Xp). In particular, the degeneration of Xp

given by the filtration induced by Vp is compatible with the degeneration of
X using V , and one can naturally view Xp,0 = Proj (gr Vp

Rp) as a subvariety
of X0 = Proj (gr VR).

If the stratification is normal, then each irreducible component of the
semi-toric variety X0 is a normal toric variety. In our paper [13] we study
some properties of normal Seshadri stratifications. In particular, we show that
a Gröbner basis of the defining ideal of X0 can be lifted to define the embedded
projective variety and we discuss the Koszul and Gorenstein properties for R.

1.5. Seshadri stratifications for Schubert varieties

Let us turn back to the context of Schubert varieties in G/P . Let W be the
Weyl group of G, let WP be the Weyl group of the Levi subgroup associated to
P and fix also a dominant weight λ with stabilizer P . The Schubert varieties in
G/P are indexed by W/WP ; this set is partially ordered by the Bruhat order.
Now fix a Schubert variety X(τ), τ ∈ W/WP , and consider its embedding in
P(V (λ)τ ) where V (λ)τ ⊆ V (λ) is the Demazure module of τ . In [12] we have
proved that the collection of Schubert subvarieties contained in X(τ) and of
the functions of extremal weight in V (λ)∗τ defines a Seshadri stratification for
X(τ). Moreover, the main point in [12] is to show that the standard monomial
theory defined in [29] fits into the concept of our theory. More precisely, let
V be the quasi-valuation arising from this Seshadri stratification. We show
that the set of LS-paths LS+(λ) coincides with the fan of monoids Γ of V
and thus give an algebro-geometric interpretation of the LS-path model of a
representation. In addition we show that the standard monomials defined in
[29] are indeed representatives of the non-zero leaves of the quasi-valuation
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V for this Seshadri stratification, and the notion of the standardness of a
product in [12] and in [29] coincide. Also, the stratification is normal and
balanced in this case.

The construction in [29] uses heavily representation theoretic tools like
the Frobenius splitting for quantum groups at a root of unity. One of the
aims of the theory of Seshadri stratification is to provide a purely geometric
construction of a standard monomial theory for Schubert varieties, which is
also the main point of this article.

1.6. New geometric approach

We finally come to the content of the present paper. Our principal aim is the
construction of a standard monomial theory for X(τ) just using the Seshadri
stratification by its Schubert subvarieties as recalled above, and some alge-
braic combinatorics. The goal is to avoid the usage of the quantum Frobenius
splitting and hence to give a plain geometric construction, which can be used
as a blueprint for the construction of a standard monomial theory for other
varieties with a Seshadri stratification.

We show that the set LS+
d (λ) of LS-paths of degree d of shape λ is con-

tained in the subset Γd of values of V of degree d. This follows by a general
criterion proved in [10] linking our theory to the classical Newton-Okounkov
theory. But by the combinatorial character formula for the Demazure module
V (λ)τ proved by the third author in [30], the cardinality of LS+

d (λ) is equal
to the dimension of V (dλ)∗ which is nothing else but the cardinality of Γd.
So we have the equality LS+(λ) = Γ, also degree by degree. In particular the
stratification is normal as follows at once by the definition of LS+(λ).

In order to deduce that the homogeneous coordinate ring R of X(τ) has a
standard monomial theory, i.e. that it is an LS-algebra, we need two improve-
ments of the theory of Seshadri stratifications developed in the main paper
[10].

In [10] the quasi-valuation V is constructed only for linearizations ≤t of
the partial order on the poset A that are length preserving: if �(p) < �(q)
then p ≤t q. Here we show that all the constructions in that paper can be
carried over for an arbitrary ≤t (see Lemma 2.10). The definition of a balanced
stratification in [10] requires: (1) the fan of monoids Γ is independent of
the linearization ≤t and (2) there exists a basis of R consisting of common
representatives of non-zero leaves for all the quasi-valuations V≤t defined in
terms of the linearizations ≤t. In Section 2.9 we prove that the condition (2)
is a consequence of (1), so the definition of balanced stratification can be
weakened.
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Once the equality Γ = LS+(λ) has been established, we deduce that Γ is
independent of the linearization of the Bruhat order used to define V since
LS+(λ) has clearly this property. Hence the Seshadri stratification is bal-
anced and there exists a vector space basis xπ, π ∈ LS+(λ), that represents
the non-zero leaves for the quasi-valuation V defined with respect to an arbi-
trary linearization of the Bruhat order. We conclude that the algebra R has
as set of generators the functions xπ, π ∈ LS+

1 (λ) and that in the straighten-
ing relations for non-standard monomials only standard monomials that are
“greater” with respect to any linearization ≤t may appear. In other word R is
an LS-algebra and we have constructed a standard monomial theory for the
Schubert varieties.

2. Seshadri stratifications

In this Section we shortly present Seshadri stratifications for embedded pro-
jective varieties; see [10] for details. Besides the recollection, there are two
new results proved in this section: (a) the length-preserving condition posed
on the linearization used in the definition of the quasi-valuation is removed,
see Lemma 2.10 and the discussion afterwards; (b) the definition of a balanced
stratification is simplified by deducing one requirement from the other, see
Section 2.9.

2.1. Partially ordered set

In the whole paper (A,≤) denotes a partially ordered finite set, poset for
short. For p ∈ A, we denote by Ap the subset {q ∈ A | q ≤ p}, it is again a
poset.

In the sequel we will consider the Q-vector space QA of functions with
rational values on A. If p ∈ A then we denote by ep ∈ QA the function with
value 1 on p and 0 on every other q ∈ A \ {p}; it is clear that the set of
functions {ep | p ∈ A}, is a vector space basis of QA.

The support of an element a ∈ QA is defined as the set supp a := {p ∈
A | a(p) �= 0}.

Given a subset B of A we will naturally consider QB as a vector sub-space
of QA.

A total order ≤t on A refining the given partial order ≤ of A is called a
linearization of ≤. Given a linearization, we also denote by ≤t the following
lexicographic ordering on QA: a ≤t b if either a = b or, denoting by p the
maximal element with respect to ≤t such that a(p) �= b(p), we have a(p) <
b(p). This is a total order on QA compatible with the vector addition.
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2.2. Seshadri stratifications

We start with a brief recollection on Seshadri stratifications, as introduced in
[10].

Throughout the paper we fix K to be an algebraically closed field. Let
V be a finite dimensional vector space over K. The hypersurface defined as
the vanishing set of a homogeneous polynomial function f ∈ Sym(V ∗) will
be denoted by Hf := {[v] ∈ P(V ) | f(v) = 0}.

Let X ⊆ P(V ) be an embedded projective variety with graded homoge-
neous coordinate ring R := K[X̂], where X̂ ⊂ V is the cone over X. Let Xp,
p ∈ A, be a collection of projective subvarieties Xp in X, indexed by a finite
set A. The set A inherits naturally a partial order ≤ defined by: for p, q ∈ A,
p ≤ q if and only if Xp ⊆ Xq. We assume that there exists a unique maximal
element pmax in A and that Xpmax = X.

For each p ∈ A, we fix a homogeneous function fp ∈ Sym(V ∗) of degree
larger or equal to one.

Definition 2.1 ([10, Definition 2.1]). The collection of subvarieties Xp and
homogeneous functions fp for p ∈ A is termed a Seshadri stratification, if the
following conditions are satisfied:

(S1) the projective varieties Xp, p ∈ A, are smooth in codimension one; if
q < p is a covering relation in A, then Xq ⊆ Xp is a codimension one
subvariety;

(S2) for any p ∈ A and any q �≤ p, the function fq vanishes on Xp;
(S3) for p ∈ A, the set-theoretical intersection satisfies

Hfp ∩Xp =
⋃

q covered by p

Xq.

In a Seshadri stratification, the functions fp are called extremal functions.

Throughout the paper, the following lemma will be used often without
mention.

Lemma 2.2 ([10, Lemma 2.2]). If the collection of subvarieties Xp of X and
homogeneous functions fp for p ∈ A defines a Seshadri stratification, then

(i) the function fp does not identically vanish on Xp,
(ii) all maximal chains in A have the same length, which coincides with

dimX. In particular, the poset A is graded.

Definition 2.3. Let p ∈ A. The length �(p) of p is the length of a (hence
any) maximal chain joining p with a minimal element in A.
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According to the above lemma, the length is well-defined and satisfies
�(p) = dimXp.

Remark 2.4. For a fixed p ∈ A, the collection of varieties Xq and the
extremal functions fq for q ∈ Ap satisfies the conditions (S1)–(S3), and hence
defines a Seshadri stratification for Xp ↪→ P(V ).

Remark 2.5. We will consider the affine cones of the subvarieties in a Se-
shadri stratification. It is useful to extend the notation one step further. For
a minimal element p ∈ A, the affine cone X̂p

∼= A1. We set Â := A ∪ {p−1}
with X̂p−1 := {0} ∈ V . Since the variety X̂p−1 is contained in the affine cone
X̂p for any minimal element p ∈ A, the set Â inherits a poset structure by
requiring p−1 to be the unique minimal element.

2.3. A Hasse diagram with bonds

We associate an edge-coloured directed graph to a Seshadri stratification of a
projective variety X consisting of subvarieties Xp and extremal functions fp
for p ∈ A.

The Hasse diagram GA of the poset A is a directed graph on A whose
edges are covering relations, pointing to the larger element.

For a covering relation p > q in A, X̂q is a prime divisor in X̂p. Ac-
cording to (S1), the local ring OX̂p,X̂q

is a discrete valuation ring. Let νp,q :
OX̂p,X̂q

\ {0} → Z be the associated valuation. Let Rp := K[X̂p] denote the
homogeneous coordinate ring of Xp. For f ∈ Rp \ {0}, the value νp,q(f) is the
vanishing multiplicity of f in the divisor X̂q. The integer bp,q := νp,q(fp) will
be called the bond between p and q. By (S3), we have bp,q ≥ 1.

The Hasse diagram with bonds is the diagram with edges coloured with
the corresponding bonds: q bp,q−→ p.

Remark 2.6. We extend the construction to the poset Â (Remark 2.5) and
the associated extended Hasse diagram GÂ. For a minimal element p ∈ A, the
bond bp,p−1 is defined to be the vanishing multiplicity of fp at X̂p−1 = {0},
which coincides with the degree of fp.

2.4. A family of higher rank valuations

From now on we fix a Seshadri stratification on X ⊆ P(V ). Let Rp := K[X̂p]
denote the homogeneous coordinate ring of Xp and K(X̂p) the field of rational
functions on X̂p.
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Let N be the least common multiple of all bonds appearing in GÂ.
To a fixed maximal chain C : pmax = pr > pr−1 > . . . > p1 > p0 in A, we

associate a higher rank valuation VC : K[X̂] \ {0} → QC as follows.
First choose a non-zero rational function gr := g ∈ K(X̂) and denote by

ar its vanishing order in the divisor X̂pr−1 ⊂ X̂pr . We consider the following
rational function

h := gNr

f
N ar

br
pr

∈ K(X̂pr),

where br := bpr ,pr−1 is the bond between pr and pr−1. By [10, Lemma 4.1],
the restriction of h to X̂pr−1 is a well-defined non-zero rational function on
X̂pr−1 . Let gr−1 denote this rational function. This procedure can be iterated
by restarting with the non-zero rational function gr−1 on X̂pr−1 . The output
is a sequence of rational functions

gC := (gr, gr−1, . . . , g1, g0)

with gk ∈ K(X̂pk) \ {0}.
Collecting the vanishing orders together, we define a map

VC : K[X̂] \ {0} → QC ⊆ QA,

g �→ νr(gr)
br

epr + 1
N

νr−1(gr−1)
br−1

epr−1 + · · · + 1
N r

ν0(g0)
b0

ep0 ,

where νk := νpk,pk−1 is the discrete valuation on the local ring OX̂pk
,X̂pk−1

,
extended to the fraction field.

Theorem 2.7 ([10, Proposition 6.10, Theorem 6.16]). VC is a QC-valued
valuation on K[X̂] having at most one-dimensional leaves.

2.5. The lattice generated by the image of the valuation

Let LC
V ⊆ QA be the sublattice generated by VC(K[X̂] \ {0}).

Proposition 2.8 ([10, Proposition 6.12 and 6.13]). There exist r+1 rational
functions Fr, . . . , F0 ∈ K(X̂) \ {0} such that

VC(Fj) = (0, . . . , 0︸ ︷︷ ︸
r−j

, 1/bj , ∗, . . . , ∗).

Moreover, for any (r + 1)-tuple of such functions Fr, . . . , F0, we have

LC
V = 〈VC(Fr), . . . ,VC(F0)〉Z.
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The rational functions Fr, . . . , F0 ∈ K(X̂) used above are far from being
unique. But all possible choices have one common feature. Let BC be the
inverse of the rational (r+1)×(r+1) matrix having as columns the valuations
VC(Fr), . . .VC(F0), this is a lower triangular matrix. It is of the following form:

BC =

⎛
⎜⎜⎜⎜⎝
br
∗ br−1
... . . . . . .
∗ · · · ∗ b0

⎞
⎟⎟⎟⎟⎠ .

Proposition 2.9 ([10, Proposition 6.14]). Let v ∈ QC. Then v ∈ LC
V if and

only if BC · v ∈ Zr+1. Moreover, the entries of BC are integers.

2.6. A higher rank quasi-valuation

In order to have a global object, independent of the maximal chain, we in-
troduce a quasi-valuation by taking the minimum of the valuations VC, with
C a maximal chain in A. We refer to [10, Section 3.1] for the definition and
basic properties of quasi-valuations.

Fix a linearization ≤t of the given order ≤ on A and let ≤t be the asso-
ciated lexicographic order on QA (see Section 2.1). We define a map

V : K[X̂] \ {0} −→ QA

g �−→ minC VC(g),

where C runs over all maximal chains in A and the minimum is taken with
respect to ≤t on QA. Being the minimum of a family of valuations, V is a
quasi-valuation (see [10, Lemma 3.4]).

Of course the quasi-valuation V does depend on the chosen linearization
≤t; when we need to stress such dependence we will write V≤t . However there
is one case where the value of V is independent of the linearization; this case
is key for the whole construction.

Lemma 2.10. For each extremal function fq, q ∈ A, we have V(fq) = eq.

Proof. By [10, Example 6.8] we know that VC(fq) = eq as long as q ∈ C : pr >
· · · > p0. If q �∈ C, then let pk ∈ C be minimal such that pk > q (this clearly
exists since pr = pmax > q). Since pk−1 and q are not comparable with respect
to the partial order on A, fq vanishes on Xpk−1 by (S2) in the definition of a
Seshadri stratification.
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On the other hand, fq does not vanish on Xq by (S3), hence it does not
vanish on Xpk since Xq ⊂ Xpk . Using (compare with [10, Example 5.4]):

(fq)C = (fq, fN
q , fN2

q , . . . , fNr−k

q , . . .)

it follows that

VC(fq) =
νpk,pk−1(fNr−k

q )
N r−kbpk,pk−1

epk +
∑
i<k

aiepi

for rational numbers ai ∈ Q, 0 ≤ i ≤ k− 1. Since νpk,pk−1(fq) > 0 and pk > q,
this implies VC(fq) >t eq as elements of QA. This finishes the proof that
V(fq) = eq.

Note that the previous Lemma is proved in [10] (see [10, Lemma 8.3])
only for linearizations ≤t preserving length, i.e. such that p <t q whenever
�(p) < �(q). However, all the other results of the that paper regarding the
quasi-valuation V hold true for an arbitrary linearization ≤t with the same
proofs once the previous Lemma has been established.

Let Γ := {V(g) | g ∈ K[X̂] \ {0}} ⊆ QA be the image of the quasi-
valuation. We call Γ the fan of monoids of V ; this name is justified by (v) in
the following theorem. For a fixed maximal chain C in A, we define the subset
ΓC := {a ∈ Γ | supp a ⊆ C} of Γ.

Theorem 2.11 ([10, Proposition 8.6, Corollary 9.1, Lemma 9.6, Lemma10.2]).
The following hold:

(i) V has at most one-dimensional leaves.
(ii) The fan of monoids Γ is contained in QA

≥0.
(iii) For g ∈ K[X̂] \ {0}, V(g) = VC(g) if and only if suppV(g) ⊆ C.
(iv) The quasi-valuation is additive if and only if the supports of both func-

tions are contained in the same maximal chain: for g, h ∈ K[X̂] \ {0},
V(gh) = V(g)+V(h) if and only if there exists a maximal chain C such
that suppV(g), suppV(h) ⊆ C.

(v) Γ is the union of the finitely generated monoids ΓC, where C runs over
all maximal chains.

2.7. Torus action

The same proof as [10, Lemma 6.15] shows that

Proposition 2.12. Let T be a torus acting on X̂ such that for each p ∈ A
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(i) T stabilizes the cone X̂p,
(ii) the extremal function fp is T -homogeneous.

Then for each a ∈ Γ there exists a T -homogeneous function fa such that
V(fa) = a. Moreover, denoting by wt(fp) the T -weight of fp, the T -weight
wt(fa) of fa is given by

wt(fa) =
∑
p∈A

a(p) wt(fp).

Remark 2.13. The previous proposition applies to the action of K∗ by mul-
tiplication in V since the cones are clearly stabilized by this multiplication
and the extremal functions are homogeneous by the definition of a Seshadri
stratification; this is indeed the context of [10, Lemma 6.15]. In particular,
the degree of a homogeneous function fa satisfying V(fa) = a is

deg(fa) =
∑
p∈A

a(p) deg(fp).

2.8. Normal stratification

An element a ∈ Γ is decomposable if either it is zero or there exist non-zero
a1, a2 ∈ Γ such that a = a1 + a2 with min supp a1 ≥ max supp a2. If a is not
decomposable, then it is said to be indecomposable.

Proposition 2.14 ([10, Proposition 15.3]). Each a ∈ ΓC has a decomposition
a = a1 + a2 + · · · + an with a1, a2, . . . , an ∈ ΓC indecomposable such that
min supp aj ≥ max supp aj+1 for each j = 1, 2, . . . , n− 1.

For a maximal chain C in A, the monoid ΓC is called saturated if ZΓC ∩
QC

≥0 = ΓC. If, for each maximal chain C, the monoid ΓC is saturated then we
say that the stratification is normal.

Proposition 2.15 ([10, Proposition 15.4]). If the stratification is normal,
then each element of Γ has a unique decomposition into indecomposables.

2.9. Balanced stratification

The quasi-valuation V depends on the choice of a linearization ≤t of the
partial order ≤ of A. In particular the fan of monoids Γ depends on ≤t;
to emphasize this dependence we write Γ≤t . Now denote by F a family of
linearizations of ≤. We say that a Seshadri stratification is F -balanced if
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Γ≤t
1

= Γ≤t
2

for each pair of linearizations ≤t
1,≤t

2∈ F ; we will call this common
fan of monoids the fan of monoids with respect to F . We will simply say that
the stratification is balanced when it is F -balanced with respect to the family
F of all linearizations.

We stress that in [10] the notion of a balanced stratification is introduced
with respect to the family of all length preserving linearizations (see the dis-
cussion after Lemma 2.10). Moreover the definition in [10] (see [10, Definition
15.7]) seems stronger since it requires the existence of a common leaf basis
for each quasi-valuation defined in terms of a length preserving linearization.
Note however that such a basis exists always, see Theorem 2.17 below.

Lemma 2.16. Let ≤t
1 and ≤t

2 be linearizations of the partial order ≤ on A.
If f ∈ K[X̂] \ {0}, then V≤t

1
(f) ≤t

1 V≤t
2
(f). In particular if V≤t

1
(f) �= V≤t

2
(f)

then V≤t
1
(f) <t

1 V≤t
2
(f).

Proof. By the definition of V≤t
2
(f), there exists a maximal chain C such that

V≤t
2
(f) = VC(f).
Now V≤t

1
(f) is the minimum with respect to ≤t

1 of the values VD(f) with
D running over the set of all maximal chains. In particular, V≤t

1
(f) is less

than or equal to VC(f) = V≤t
2
(f).

Theorem 2.17. Suppose that the Seshadri stratification is F-balanced and
let Γ be the fan of monoids with respect to F , then for each a ∈ Γ there exists
a function fa such that V≤t(fa) = a for each ≤t∈ F .

Proof. Fix a degree d and denote by Γd the set of elements of Γ of degree d.
The proof will use several induction procedures.

The first induction procedure is by increasing induction on the number M
of length preserving linearizations ≤t

1, . . . ,≤t
M of ≤ in F . Since the number

of linearizations of ≤ is finite, the inductive procedure will prove the theorem.
If M = 1, then obviously for every a ∈ Γ there exists a homogeneous

function fa ∈ K[X̂] \ {0} such that V≤t
1
(fa) = a. So in the following we

assume M > 1, and we assume that for the linearizations ≤t
1, . . . ,≤t

M−1 of ≤
and every a ∈ Γ there exists a homogeneous function fa ∈ K[X̂] \ {0} such
that V≤t

j
(fa) = a for j = 1, . . . ,M − 1.

A second inductive procedure is by reverse induction on a ∈ Γd with
respect to ≤t

1.
For the base step of this second inductive procedure let a ∈ Γd be maximal

with respect to ≤t
1 and let fa ∈ K[X̂] be such that V≤t

1
(fa) = a. Fix 2 ≤ j ≤

M , we have a = V≤t
1
(fa) ≤t

1 a′ := V≤t
j
(fa) by Lemma 2.16. But, being a′ ∈ Γd

and a maximal with respect to ≤t
1, we get a′ = a. This finishes the proof of

the base step.
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So, by induction, given a ∈ Γd, we can assume that for all a′ ∈ Γd, a <t
1 a′,

there exists a homogeneous function of degree d: fa′ ∈ K[X̂] \ {0} such that
V≤t

j
(fa′) = a′ for j = 1, . . . ,M .
Now by induction on M we know that there exists a function fa, homoge-

neous of degree d, such that V≤t
j
(fa) = a for j = 1, . . . ,M − 1. If in addition

V≤t
M

(fa) = a, then we are done.
Otherwise we have V≤t

M
(fa) = a′ �= a. We start a third inductive proce-

dure, this time by increasing induction with respect to <t
M . We construct

a new homogeneous function f̃a with the property V≤t
j
(f̃a) = a for j =

1, . . . ,M − 1 and a′ <t
M V≤t

M
(f̃a) ≤t

M a.
Since the number of elements in Γd is finite, after repeating the procedure

a finite number of times we find a homogeneous function f̃a of degree d with
the desired property: V≤t

j
(f̃a) = a for j = 1, . . . ,M , which finishes the proof

of the theorem.
It remains to describe the construction of the new function. The assump-

tion V≤t
M

(fa) = a′ �= a implies by Lemma 2.16:

V≤t
1
(fa) = a <t

1 a′ = V≤t
M

(fa) and V≤t
M

(fa) = a′ <t
M a = V≤t

1
(fa).

By the reverse induction on ≤t
1 we know there exists a function ga′ such that

V≤t
j
(ga′) = a′ for j = 1, . . . ,M . Note that fa and ga′ are linearly independent

because V≤t
1
(fa) = a <t

1 a′. It follows for all λ ∈ K∗: fa − λga′ �= 0.
We know a <t

1 a′, but the fact V≤t
i
(fa) = a for i = 1, . . . ,M − 1 and

V≤t
M

(fa) = a′ implies by Lemma 2.16: a <t
i a

′ for i = 1, . . . ,M − 1. So by the
minimum rule for quasi-valuations we have for all λ ∈ K∗:

V≤t
j
(fa − λga′) = a.

It remains to check V≤t
M

(fa−λga′). Since the leaves are only one-dimensional,
one can find λ0 ∈ K∗ such that V≤t

M
(fa − λ0ga′) = ã >t

M a′.
Set f̃a = fa − λ0ga′ , then by the above we have:

(i) V≤t
j
(f̃a) = a for i = 1, . . . ,M − 1;

(ii) V≤t
M

(f̃a) = ã, where ã >t
M a′.

Lemma 2.16 implies in addition: V≤t
M

(f̃a) = ã ≤t
M a = V≤t

1
(f̃a), so we get in

addition:

(iii) a′ <t
M ã ≤t

M a.

So the new function f̃a satisfies all the conditions for the inductive procedure,
which finishes the proof.
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2.10. Standard monomial theory

In this subsection we assume that the Seshadri stratification is normal and
F -balanced and we denote by Γ the fan of monoids with respect to F .

In what follows we will compare elements of Γ with respect to all lin-
earizations in F ; so we define a symbol for this relation:

Definition 2.18. Let a, b ∈ QA. We write a �F b if a ≤t b for each total
order ≤t∈ F .

Let G ⊆ Γ be the (possibly infinite) set of indecomposable elements in Γ.
By Proposition 2.14, G is a generating set of Γ. For each a ∈ G, we fix a
regular function xa ∈ K[X̂] satisfying V≤t(xa) = a for each ≤t∈ F ; these
functions exist by Theorem 2.17. Let GR := {xa | a ∈ G}.

Definition 2.19. A monomial xa1
· · · xan with a1, . . . , an ∈ G is called stan-

dard if (up to a suitable reordering of the factors) min supp aj ≥ max supp aj+1
for each j.

When writing down a standard monomial xa1
· · ·xan , it is understood that

for each j, min supp aj ≥ max supp aj+1 holds.
By Proposition 2.15, any element a ∈ Γ has a unique decomposition

a = a1 + · · · + an into indecomposable elements and by Theorem 2.11 each
quasi-valuation is additive on standard monomials.

Summarizing we have:

Proposition 2.20. (i) The set GR is a generating set for R.
(ii) The set of standard monomials in GR is a vector space basis for R.
(iii) If a = a1 + a2 + · · · + an is the decomposition of a ∈ Γ into inde-

composables, then the standard monomial xa := xa1
· · ·xan is such that

V≤t(xa) = a for each ≤t∈ F .
(iv) If a monomial xa1

· · ·xan is not standard, then there exists a straighten-
ing relation expressing it as a linear combination of standard monomials

xa1
· · · xan =

∑
h

uhxah,1 · · ·xah,nh
,

where uh �= 0 only if a1 + · · · + an �F ah,1 + · · · + ah,nh
.

(v) If in (iv) there exists a chain C such that supp ai ⊆ C for all i = 1, . . . , n,
and a′1 + · · · + a′m is the decomposition of a1 + · · · + an ∈ Γ then the
standard monomial xa′1 · · ·xa′m appears in the right side of the equation
in (iv) with a non-zero coefficient.
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3. A Seshadri stratification for Schubert varieties

In this Section we introduce a Seshadri stratification of a Schubert variety by
Schubert sub-varieties. For simplicity, we consider only the case of Schubert
varieties for a semisimple simply connected algebraic group. The same con-
struction, slightly modified, holds for any symmetrizable Kac-Moody group.
For the general case, all proofs and further details can be found in [12].

3.1. Schubert varieties

Let G be a semisimple simply connected algebraic group defined over K.
Fix a maximal torus T ⊆ G and let B be a Borel subgroup containing T .
Let N(T ) be the normalizer of T in G and let W := N(T )/T be the Weyl
group. If Q ⊇ B is a parabolic subgroup, then B acts on G/Q and the
closure of an orbit is called a Schubert variety. These orbits are in bijection
with the elements of W/WQ, where WQ is the Weyl group of Q; for τ ∈
W/WQ let nτ ∈ N(T ) be any representative for τ , we define C(τ) := B nτ Q
and X(τ) := B nτ Q, these are the Schubert cell and the Schubert variety
in G/Q, respectively, corresponding to τ . Since B has only finitely many
orbits in G/Q, any B-invariant irreducible closed subvariety is a Schubert
variety.

Let α1, . . . , αn be the simple roots according to the choice of B and denote
by s1, . . . , sn ∈ W the corresponding simple reflections in the Weyl group. Let
� be the length function on the Weyl group W ; the value �(w) is the length
of any reduced decomposition of w as a product of simple reflections.

We often identify W/WQ with the subset WQ ⊆ W of representatives
in W/WQ of minimal length. The Weyl group is naturally endowed with a
partial order by viewing the pair consisting of W and the simple reflections
as a Coxeter system. This partial order is called the Bruhat order on W . We
get an induced Bruhat order on W/WQ via the identification with the subset
WQ ⊆ W . This poset has id as its unique minimal element. We view the
length function �(·) as a function on W/WQ as follows: we define �(τ) for
τ ∈ W/WQ to be �(τ̂), where τ̂ ∈ WQ is the unique minimal representative
of τ . This is the same as the length in the graded poset W/WQ.

The partial order and the length function have the following geometric
interpretation: for τ ∈ W/WQ, the length �(τ) is the dimension dimX(τ) of
the corresponding Schubert variety, and if κ ∈ W/WQ is a second element,
then X(κ) ⊆ X(τ) if and only if κ ≤ τ in the Bruhat order.

Denote by Λ = Λ(T ) the weight lattice and, according to the choice of B,
let Λ+ be the monoid of dominant weights. We associate to a dominant weight
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λ ∈ Λ+ a module V (λ) as follows: we start with the irreducible highest weight
representation VC(λ) for the complex version GC of G. Let gC := LieGC be
its Lie algebra. After fixing a highest weight vector vλ ∈ VC(λ), we get an
admissible lattice VZ(λ) ⊆ VC(λ) by applying the Kostant integral Z-form
U(gC)Z of the enveloping algebra of gC to the fixed highest weight vector
vλ ∈ VC(λ). The tensor product VZ(λ)⊗ZK with the field K gives the desired
G-module V (λ) of highest weight λ.

Let Q ⊆ G be the standard parabolic subgroup of G normalizing the line
Kvλ through the fixed highest weight vector, i.e. Q is generated by B and the
root subgroups U−α for all simple roots α such that 〈λ, α∨〉 = 0. The action
of G on V (λ) induces an embedding G/Q ↪→ P(V (λ)).

Fix Xi (resp. X−i), 1 ≤ i ≤ n, to be the Chevalley generator of weight αi

(resp. −αi). For k ≥ 0, the divided power of X±i will be denoted by X
(k)
±i . For

τ ∈ W/WQ let τ = si1 · · · sit be a reduced decomposition. We associate to such
a decomposition the extremal weight vector vτ = X

(m1)
−i1 · · ·X(mt)

−it vλ ∈ VZ(λ)
of weight τ(λ), where mj = 〈sij+1 · · · sit(λ), α∨

ij 〉 for 1 ≤ j ≤ t. By the Verma
identities, vτ does not depend on the choice of the reduced decomposition of τ .

We denote by V (λ)τ ⊆ V (λ) the B-submodule generated by the orbit
B · vτ ; this B-submodule is called a Demazure submodule. The embedding
G/Q ↪→ P(V (λ)) gives us an embedding of the Schubert variety X(τ) ↪→
P(V (λ)τ ), identifying the orbit B · [vτ ] ⊆ P(V (λ)) with the open and dense
Schubert cell C(τ) ⊆ X(τ). In particular, the image of X(τ) in P(V (λ)) is
the closure B · [vτ ] of the orbit.

We will use later, usually without mention, the following representa-
tion theoretic interpretation of the homogeneous coordinate ring K[X̂(τ)] of
X(τ) ⊆ P(V (λ)τ ).

Lemma 3.1 ([12, Lemma 3.1]). The degree d part K[X̂(τ)]d of the homoge-
neous coordinate ring K[X̂(τ)] is isomorphic to V (dλ)∗τ as a B-module.

We will also need the following result about the multiplicities of certain
weights in a Demazure module.

Lemma 3.2 ([12, Corollary 3.4]). Let σ ∈ WQ be covered by τ with respect
to the Bruhat order and let β be a positive root such that τ = sβσ. Then the
dimension of the T -weight spaces in V (λ)τ of weight σ(λ) + jβ is 1 for all
j = 0, 1, . . . , 〈σ(λ), β∨〉.

3.2. The stratification

As before, fix a dominant weight λ, let Q ⊇ B be the standard parabolic
subgroup of G associated to λ, fix τ ∈ W/WQ and consider the Schubert
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variety X(τ) ↪→ P(V (λ)τ ) embedded in the projective space on the Demazure
module V (λ)τ .

The set Aτ := {σ ∈ W/WQ | σ ≤ τ}, endowed with the Bruhat order, is
a poset. It has id as its unique minimal element and τ as its unique maximal
element. We associate the Schubert variety X(σ), which is a closed subvariety
of X(τ), to the element σ ∈ Aτ . So we have a collection of subvarieties X(σ)
of X(τ), indexed by the partially ordered set Aτ such that κ ≤ σ if an only
if X(κ) ⊆ X(σ). In addition, all the subvarieties are smooth in codimension
one by [12, Corollary 3.3]. The covering relations correspond to codimension
one subvarieties since the length function gives the dimension of a Schubert
variety and this function coincides with the length in Definition 2.3.

To get a Seshadri stratification, we need in addition a collection of ho-
mogeneous functions fσ ∈ K[V (λ)τ ]. We have fixed for all σ ∈ Aτ a T -
eigenvector vσ ∈ V (λ)τ of weight σ(λ). The corresponding weight space is
one dimensional, so the vector is unique up to a scalar multiple. Denote by
fσ ∈ (V (λ)τ )∗ the corresponding dual vector, i.e. fσ is a T -eigenvector of
weight −σ(λ), and fσ(vσ) = 1.

Proposition 3.3 ([12, Proposition 3.5]). The collection of subvarieties X(σ)
and linear functions fσ, σ ∈ Aτ , defines a Seshadri stratification for X(τ).

4. Quasi-valuation and LS-paths

In this section we present a new approach to the construction of a standard
monomial theory for Schubert varieties.

We fix a dominant weight λ and a Schubert variety X(τ) embedded in
P(V (λ)τ ) as in the previous section and continue to consider the stratification
of X(τ) by Schubert subvarieties X(σ) in X(τ) indexed by the poset Aτ ,
with extremal functions fσ, σ ∈ Aτ . Recall that by fixing a linearization ≤t

of the Bruhat order on Aτ , the Seshadri stratification on X(τ) gives a quasi-
valuation V≤t defined as the minimum with respect to ≤t of the valuations
VC along the chains C of Aτ .

In order to simplify the notation we avoid adding λ and τ to certain sets
and functions we are going to define (as long as there is no possible confusion).

We start by defining the weight and the degree of an arbitrary element
of QAτ .

Definition 4.1. We define the degree of a ∈ QAτ as

deg(a) :=
∑
σ∈Aτ

a(σ) ∈ Q,
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and its weight as

wt(a) :=
∑
σ∈Aτ

a(σ)σ(λ) ∈ Λ ⊗Q .

Remark 4.2. The torus T of G acts on the cones X̂(σ) for each σ ∈ Aτ and
the functions fσ are T -eigenfunctions of degree 1. So, fixing a linearization
≤t, by Proposition 2.12 and Remark 2.13, for each a in the fan of monoids
Γτ,≤t there exists a homogeneous T -eigenfunction fa ∈ K[X̂(τ)] such that
V≤t(fa) = a whose T -weight is −wt(a) and whose degree is deg(a). We will
use this observation also without explicit mention in the rest of the paper.

As a first step in understanding the fan of monoids Γτ,≤t associated to the
Seshadri stratification in Section 3, we compute the bonds of the stratification.

Proposition 4.3. Let σ > η in Aτ be a covering and β be a positive root
such that sβη = σ then bσ,η = 〈η(λ), β∨〉.
Proof. This follows by [12, Lemma 3.2].

Definition 4.4. Given a maximal chain C : τ = τr > . . . > τ0 = id in Aτ ,
we define the Lakshmibai-Seshadri lattice, LS-lattice for short, associated to
C as follows

(1) LSC :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩a =

r∑
h=0

aheτh ∈ QC

∣∣∣∣∣∣∣∣∣

bτr,τr−1ar ∈ Z

bτr−1,τr−2 (ar + ar−1) ∈ Z

...
bτ1,τ0 (ar + ar−1 + · · · + a1) ∈ Z

a0 + a1 + · · · + ar ∈ Z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ⊆ QC.

Further we define the LS-monoid associated to C as LS+
C := LSC ∩QC

≥0.
Recall that we view the vector spaces QC as sub-spaces of QAτ ; so, the fan of
LS-monoids is defined as

LS+ :=
⋃
C

LS+
C ⊆ QAτ ,

where the union runs over all maximal chains C of Aτ . The elements of LS+

are called LS-paths.

As proved in [5] and in [12], the fan of LS-monoids is just a different
presentation of the LS-paths in the path model; this justifies the name we
have given to the elements of LS+. Given μ ∈ Λ ⊗ Q let πμ : [0, 1]Q � t �−→
tμ ∈ Λ ⊗ Q be the straight path from 0 to μ in Λ ⊗ Q. Denote by ∗ the
concatenation of paths.
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Proposition 4.5 ([5, Section 8], [12, Appendix I]). The map

a =
r∑

h=0
aheτh �−→ πarτr(λ) ∗ πar−1τr−1(λ) ∗ · · · ∗ πa0τ0(λ)

is a bijection from the set LS+
d of elements of LS+ of degree d to the set Bτ (dλ)

of LS-paths of shape dλ with support in Aτ .

We are finally ready to state and prove the main theorem of the paper.

Theorem 4.6. Let ≤t be a linearization of the Bruhat order ≤ on Aτ , let V≤t

be the quasi-valuation associated to the Seshadri stratification of X(τ) defined
in terms of ≤t. Then the fan of monoids Γτ,≤t of V≤t coincides with the fan
of LS-monoids LS+. In particular the stratification is normal and balanced
with respect to the family of all linearizations.

Proof. Let us fix a maximal chain C : τ = τr > τr−1 > · · · > τ0 = id and
set bj = bτj ,τj−1 for j = 0, . . . , r for short. Our first claim is that there exist
rational functions ηr, ηr−1, . . . , η0 such that

VC(ηj) = 1
bj
eτj −

1
bj
eτj−1

for j = 0, 1, 2, . . . , r (where for j = 0 we set eτ−1 = 0).
We start by proving the claim for the top element in the chain C, i.e. for

j = r. So let σ = τr−1 and b = br for short and let β be the positive root such
that τ = sβσ. By Lemma 3.2 the weight μ := σ(λ)− β = τ(λ) + (b− 1)β has
multiplicity 1 in the Demazure module V (λ)τ . Hence there exists a function
g ∈ K[X̂(τ)] of degree 1 such that

wt(g) = −μ = −
(1
b
τ(λ) +

(
1 − 1

b

)
σ(λ)

)
.

Note that gb has T -weight

−bμ = −(τ(λ) + (b− 1)σ(λ)) = −(σ(bλ) − bβ)

and, again by Lemma 3.2 applied to the weight bλ, the T -weight space of
weight bμ in V (bλ)τ has dimension 1. So, by Lemma 3.1, there exists a unique
function of degree b in K[X̂(τ)] of T -weight −bμ up to multiplication by a
non-zero scalar. Since fτf b−1

σ has degree b and weight −bμ, there exists u ∈ K∗

such that
gb = u · fτf b−1

σ .
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If we set ηr := g/fσ we have

VC(ηr) = 1
b
VC(gb) − VC(fσ) = 1

b
eτ +

(
1 − 1

b

)
eσ − eσ = 1

b
eτ −

1
b
eσ

and our claim is proved for the top element in C.
Now let 0 ≤ j < r. By Remark 2.4, the collection of Schubert varieties

X(σ) and extremal functions fσ|X̂(τj) with σ ∈ Aτj gives a Seshadri stratifica-
tion for X(τj). So we consider the maximal chain Cj : τj > τj−1 > · · · > τ0 =
id in Aτj and we apply what already proved for the top element in a chain to
Cj ; we get a rational function η̃ on X̂(τj) such that VCj (η̃) = (eτj − eτj−1)/bj .

Let ηj be any rational function on X̂(τ) such that ηj|X̂(τj) = η̃. Note that
ηj does not vanish identically on X̂(τj) and is defined on a dense subset of
any X̂(τh) for h = j + 1, . . . , r since the same two properties are true on
X̂(τj) ⊂ X̂(τh). This implies that the first r − j entries of VC(ηj) are 0 and
we conclude that VC(ηj) = (eτj − eτj−1)/bj as desired. This finishes the proof
of our initial claim.

The functions ηr, ηr−1, . . . , η0 we have constructed can be used in Propo-
sition 2.9 and the related matrix BC is

BC =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/br
−1/br 1/br−1

−1/br−1 1/br−2
...

−1/b1 1/b0

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

br
br−1 br−1
br−2 br−2 br−2

...
b0 b0 · · · b0 b0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

So, by Proposition 2.8, we get that the image of the valuation VC on the field
of rational functions on X̂(τ) is the LS-lattice LSC associated to the chain C

(note that b0 = 1).
Now let ≤t be a linearization of the Bruhat order ≤ on Aτ and let V≤t

be the associated quasi-valuation on K[X̂(τ)]. The monoid ΓC of values of
V≤t with support in C is contained in QAτ

≥0; hence ΓC ⊆ LS+
C . So we see that

Γ ⊆ LS+.
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If we fix a degree d ≥ 0 we have that Γd is a subset of LS+
d . The cardinality

of Γd is the dimension of the Demazure module V (dλ)τ by Lemma 3.1, but
the same dimension is also the cardinality of LS+

d by Proposition 4.5 and the
LS-path character formula (Theorem in Section 5.2 in [30]). We conclude that
Γd = LS+

d for any d and the first statement of the theorem is proved.
In particular the stratification is balanced with respect to the family of

all linearizations since Γ is independent of the chosen linearization ≤t.
Moreover Γ = LS+ = (

⋃
C LSC)∩QAτ

≥0, it is hence clear that Γ is saturated
and the Seshadri stratification is normal.

Corollary 4.7. For any LS-path a ∈ LS+ there exists a homogeneous T -
eigenfunction xa of degree deg(a) and weight −wt(a) such that

V≤t(xa) = a

for any linearization ≤t of the Bruhat order ≤ on Aτ .
Hence the combinatorially defined LS-paths are the values of a quasi-

valuation, so they encode the vanishing data of regular functions of X̂(τ)
on the net of cones over the Schubert sub-varieties in X(τ).

We see a first combinatorial consequence of Theorem 4.6. This has already
been proved in [16].

Corollary 4.8. Let σ = σd > σd−1 > · · · > σ1 = η be a maximal chain
between σ and η in Aτ . Then

gcd(bσd,σd−1 , . . . , bσ2,σ1)

is independent of the chain and depends only on σ and η.

Proof. Let C be any maximal chain in Aτ containing the given chain. Given
a positive integer n, by the definition of the LS-lattice, the element

a = 1
n
eσ +

(
1 − 1

n

)
eη

is in ΓC if and only if n divides gcd(bσd,σd−1 , . . . , bσ2,σ1). If this is the case,
then there exists a function g ∈ K[X̂(τ)] such that V(g) = VC(g) = a. But we
have VD(g) = a as well for any maximal chain D in Aτ containing σ and η by
(iii) of Theorem 2.11. Hence the greatest common divisor does not depend of
the chain from σ to η.
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5. Standard monomial theory

In the previous section we have determined the fan of monoids Γτ for the
quasi-valuations of the Seshadri stratification of the Schubert variety X(τ) ⊆
P(V (λ)τ ) via Schubert sub-varieties. In particular we have obtained a geo-
metric interpretation of the LS-paths as vanishing data of regular functions
on the net of Schubert sub-varieties. Moreover we have proved that the Se-
shadri stratification is normal and balanced with respect to the family F of
all linearizations of the Bruhat order.

We can apply the constructions of the standard monomial theory reviewed
in Section 2.10. First of all, the indecomposable elements are the LS-paths of
degree 1; this is proved in [5], see also [13]. So, as generating set of the ring
K[X̂(τ)] we can take the set of functions xa, with a an LS-path of degree 1,
whose existence is stated in Corollary 4.7. Recall that a monomial xa1

· · · xan
(of degree n), with a1, . . . , an ∈ LS+

1 , is standard if (up to a suitable reordering
of the factors) min supp aj ≥ max supp aj+1 for each j.

Theorem 5.1.

(i) The set of standard monomials are in bijection with the set LS+ of
LS-paths.

(ii) The set of standard monomials is a basis of K[X̂(τ)] as a K-vector
space.

(iii) If the monomial xa1
xa2

is not standard, then there exists a straightening
relation (of degree 2)

xa1
xa2

=
∑
h

uhxah,1xah,2

where uh �= 0 only if a1 +a2 �F ah,1 +ah,2 and wt(a1 +a2) = wt(ah,1 +
ah,2).

(iv) If in (iii) there exists a chain C such that supp a1, supp a2 ⊆ C and
a′1+a′2 is the decomposition of a1+a2 ∈ Γ into indecomposables then the
standard monomial xa′1xa′2 appears on the right side of the straightening
relation in (iii) with a non-zero coefficient.

Proof. This is just a reformulation of Proposition 2.20. In (ii) and (iii) we
are only considering non-standard monomials of degree 2, we are using that
each xa, with a ∈ LS+

1 , has degree 1 and, moreover, that any equation is
T -homogeneous.

Comparing the content of the previous Theorem with the definition of
LS-algebra in [5] and using the Corollary 4.8, we get
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Corollary 5.2. The homogeneous coordinate ring K[X̂(τ)] of the Schubert
variety X(τ) embedded in the projective space P(V (λ)τ ) is an LS-algebra.

Corollary 5.3. Let K[ya | a ∈ LS+
1 ] be the polynomial algebra with indeter-

minates indexed by the LS-paths of degree 1. The kernel of the map induced
by ya �−→ xa is generated by the straightening relations

ya1
ya2

−
∑
h

uhyah,1yah,2

where a1, a2 are such that xa1
xa2

is not standard.

Proof. This is proved in [5] for LS-algebras, see also [13].

One of the main outcomes of having an LS-algebra is the existence of
a flat degeneration of K[X̂(τ)] to a discrete LS-algebra. Note that we have
not proved that the LS-algebra in Corollary 5.2 is special (see [5]) but this
is irrelevant since the same proof of Theorem 11.1 in [10] shows that any
discrete LS-algebra in the Schubert case is isomorphic to the special discrete
LS-algebra (see conjecture stated in [5, Remark 1]).

From the previous corollaries we can derive various geometric conse-
quences; for completeness we summarize here the most important ones. For
part of the results (normality, projective normality, Cohen-Macaulay property
etc.) there exist various other proofs, see [40], or the proofs using Frobenius
splitting, see [33, 35] and [36], or the one using standard monomial theory
[29, 23]. See also Conclusion 5.5 for connections with the present formulation.
For the details with respect to the following formulation see [5, 7] and [11].

Corollary 5.4. The embedding of the Schubert variety X(τ) in P(V (λ)τ ) is
projectively normal and Cohen-Macaulay. It is the intersection of quadrics
and degenerates to the reduced union of normal toric varieties, one for each
maximal chain in Aτ . This degeneration is compatible with each Schubert
sub-variety X(σ) ⊆ X(τ). The degree of the embedding X(τ) ⊆ P(V (λ)τ ) is

∑
C

r∏
j=1

bj,C,

where C runs over all maximal chains in Aτ and bj,C, j = 1, . . . , r, are the
bonds in Aτ along the chain C.

Other results are discussed in [10] and [12]; for example: (1). the compat-
ibility of the standard monomial theory to Schubert sub-varieties of X(τ);
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(2). the surjectivity of the restriction maps for line bundles to these sub-
varieties; (3). surjectivity of the multiplication maps for line bundles; (4). the
defining ideal of the sub-varieties in terms of standard monomials.

Conclusion 5.5. To conclude, we would like to comment on the possible
choices for generators xa, a an LS-path of degree one, on connections with
the results on standard monomial theory and applications in [23] and [29],
and on the connection to Frobenius splitting and the Demazure character
formula.

The generators xa, a an LS-path of degree one, chosen at the beginning of
Section 5, are far from being unique. Though the leaves are one-dimensional,
there are many possible choices for a representative of a leaf because we have
only a filtration.

Sometimes additional arguments can be used to make a preferred choice.
An example is the case of the Plücker embedding of a Grassmann variety
Gd,n in P(ΛdKn). In this case all weight spaces are one dimensional, so, up
to scalar multiples, there is a canonical choice for the generators: the Plücker
coordinates, and we are back in the classical situation studied by Hodge,
Seshadri and Musili.

The main point in [12] is to show that path vectors pa constructed in
[29] are representatives of the corresponding leaves. So looking back, one can
say that the method in [29] provides a tool to pick a representative for a leaf
indexed by an LS-path.

As a consequence, the similarity of the formulas (for example the straight-
ening laws in [29] and [23] and the ones in Theorem 5.1) is explained by the
fact that the results in [29] and [23] are just a special case of Theorem 5.1.
Indeed, the proofs in [23] and [29] hold only for this special choice of the
path vectors pa as representatives of the corresponding leaves, whereas Theo-
rem 5.1 and the corresponding corollaries are much more general statements:
the formulas hold for any choice of representatives of the leaves!

In this context: it would be interesting to know whether other known
bases of V (λ)∗τ are compatible with the filtration and can be used as repre-
sentatives xa for the leaves associated to an LS-path of degree 1, and hence
serve as starting point for a standard monomial theory in the sense of The-
orem 5.1. It has been shown in the finite type case in [4] that the elements
of the path basis satisfying certain compatibility conditions with respect to a
reduced decomposition of the longest element in the Weyl group belong to (up
to multiplication by non-zero scalars) the dual canonical basis, so the dual
canonical basis of V (λ)∗τ is a good candidate. The properties of the Mirković-
Vilonen (MV) basis and its dual basis proved in [2], Section 5.7, suggest that
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the elements of the dual basis could be compatible with the filtration, and
hence serve as representatives for the leaves as well.

In the present paper we show that all leaves of the quasi-valuation are LS-
paths, and combinatorial LS-path character formula implies equality. There
are two reasons why it would be interesting to have a proof for the equality
without using the character formula: first of all, this would give an algebraic
geometric proof of the combinatorial path character formula in [29], and thus
provide a geometric proof of a refined character formula as conjectured in [32]
and proved by Kashiwara in terms of quantum groups and crystals in [21].
Secondly, one could start a standard monomial theory as originally suggested
in [27]. In the present approach, the Frobenius splitting of Schubert varieties
is incorporated in the construction. The approach in [27] has the advantage
that it avoids the question of the normality and Frobenius splitting property,
and thus serves better as a possible guiding example for other varieties.
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