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On the Drinfeld coproduct
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Al mio maestro Corrado De Concini, con stima, gratitudine e affetto

Abstract: This paper provides a construction of the Drinfeld co-
product Δv on an affine quantum Kac-Moody algebra or on a quan-
tum affinization U through the exponentials of some locally nilpo-
tent derivations, thus proving that this “coproduct” with values in
a suitable completion of U ⊗ U is well defined.

For the affine quantum algebras, Δv is also obtained as “t-equi-
variant limit” of the Drinfeld-Jimbo coproduct Δ.

0. Introduction

In this paper U is either the quantum affinization of a generalized symmetriz-
able Cartan matrix A = (aij)i,j∈I (see [22, 29]) or an affine quantum algebra
(see [11, 21, 12]). The untwisted affine quantum algebras are the affinizations
relative to finite Cartan matrices; on the other hand twisted affine quantum
algebras are not affinizations, and affinizations relative to non-finite Cartan
matrices are not affine quantum algebras.

The Drinfeld realization of the affine quantum algebras (see [10]) makes
evident the “translation” automorphisms ti (i ∈ I), through which the weight
lattice P ∼= ZI acts on U : indeed the set of the relations among the generators
X±

i,r is invariant with respect to suitable “translations” (i, r) �→ (i, r ± d̃i).
The definition of the quantum affinizations generalizes the passage from

the finite quantum algebras to (the Drinfeld realization of) the untwisted
affine quantum algebras, including the action of ZI .

The quantum algebras (and in particular the affine quantum algebras) are
endowed with a coproduct Δ (the Drinfeld-Jimbo coproduct): it is defined in
terms of the Drinfeld-Jimbo generators, and its expression in terms of the
Drinfeld generators (the generators of the Drinfeld realization of the affine
quantum algebras) is not trivial at all; in particular the expression of Δ(X±

i,r)
is not obtained translating the indices in the formula for Δ(X±

i,0), which shows
that Δ is not ZI -equivariant.

Received November 18, 2022.

171

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php


172 Ilaria Damiani

The literature (see [8, 9, 19]) mentions an unpublished note where Drin-
feld defined a ZI -equivariant “coproduct” Δv on the quantum affinizations
and on the affine quantum algebras, giving its expression on the genera-
tors. The study of Δv and of its properties plays a non-trivial role in the
representation theory of different environments, and in the study of the ten-
sor properties of suitable categories of representations: not just for the affine
quantum algebras, the quantum affinizations and the toroidal algebras arising
from the generalized symmetrizable Cartan matrices (which are the proper
object of this study), but also for other versions of the toroidal algebras, cur-
rent algebras, vertex algebras, Yangians, quantum shuffles (see for example
[13, 14, 17, 19, 22, 15]).

In this paper we prove that Δv is (defines) a well defined algebra homo-
morphism.

It is worth recalling that Δv is not properly a coproduct, because it takes
values in U ⊗ U((v)) rather than in U ⊗ U itself: in this paper a particular
care is reserved to the definition of a smaller algebra U ⊗̂U ⊆ U ⊗ U((v))
consisting of the limits of some “convergent” sequences defined in U ⊗U , and
of its subspaces and subalgebras where all the constructions that we use make
sense.

In this setting of (convenient) completions of the tensor powers of U , Δv

satisfies some properties of the coproducts (coassociativity and existence of
the counit).

As for the proof that Δv is a well defined algebra homomorphism, the
difficulty arises from the Serre relations: that these relations are preserved by
Δv has been proven in [9] for the simply laced case and in [13] (Section 4)
and in [17] for the untwisted affine quantum algebras; but for the general
(generalized) symmetrizable Cartan matrix, the expression of the Drinfeld
coproduct applied to the Serre relations is very complicated, and hard to
approach by direct computations.

In this work a different strategy is presented: the bracket by the Drinfeld
generators is deformed so as to get a locally nilpotent derivation D on a
suitable subalgebra V of U ⊗̂U ; the comparison of Δv with exp(D), which is
an algebra automorphism of V , provides a proof that the Drinfeld coproduct
is well defined.

The construction of the locally nilpotent derivation D, which is at the base
of our strategy for avoiding to check that Δv preserves the Serre relations,
rely on a new structure of Q0-graded vector space (not Q0-graded algebra!)
on U and on a projection π of U on its positive part: both this Q0-grading
and the projection π depend on the triangular decomposition of U . So it is
in the triangular decomposition (result that is highly non-trivial) that the
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difficulties are hidden, and it is thanks to this result (already proven in [19]
and [5]) that we can now skip the obstacle.

This proof has been presented in two talks that I gave at the Departments
of Mathematics of the Université Paris VII - Denis Diderot (May 30th, 2014)
and of the Università degli Studi di Roma “Tor Vergata” (January 12th, 2018),
but it was never written or published.

In the last two sections of the paper we restrict to the case when U
is an affine quantum algebra. As recalled above, in this case U is a Hopf
algebra, with coproduct Δ : U → U ⊗ U (see [11, 21, 12]): we are interested
in understanding whether Δv is somehow related to Δ.

Comparing the expressions of Δ and Δv on {X±
i,0|i ∈ I} (set of genera-

tors of the finite subalgebra of U) one notices that Δv(X±
i,0) can be seen as

Δ(X±
i,0) plus some “v-queues”, which in this case can be described, roughly

speaking, as terms that vanish at v = 0: this suggests that there could be
a connection between Δ and Δv; on the other hand, as already remarked,
Δv is P -equivariant while Δ is not; moreover the construction of U ⊗̂U as
“component-wise filtered” completion of U ⊗ U with respect to a suitable
topology provides a notion of convergence.

Thanks to these three observations, the question about the connection
between Δ and Δv can be formulated more precisely: can Δv be seen as a
P -equivariant deformation (limit) of Δ?

To answer this question we recall the approach to the P -action from the
point of view of the Drinfeld-Jimbo presentation of the affine quantum alge-
bras. U is endowed with a braid group action (see [27, 26]), whose restriction
to P provides a P -action (which, up to signs, is the “evident” P -action on
the affinization, see [2, 1, 4, 5]). Δ is not equivariant with respect to the
braid group action, but the conjugation of Δ by the braid group, though
non-trivial, can be described through the R-matrix of U and is studied in de-
tails in [24, 25, 2, 6, 7]. This fact allows us to recognize that Δ and Δv applied
to the Drinfeld generators (that are related among themselves through the
P -action) differ by some terms that we can manage to control, finally ending
up with a description of Δv as what we called “t-equivariant limit” of Δ.

Also this proof has been presented (but not written or published) in a
talk that I gave at the Department of Mathematics of the Università degli
Studi di Roma “Tor Vergata” (April 14th, 2023).

It is interesting that the connection between Δ, the braid group action
and the R-matrix has already produced the description of a relation between
Δ and Δv, in terms of conjugation by an invertible element related to the
universal R-matrix (see [30]): we conclude the paper sketching some very
fast observations about the comparison between the P -equivariant limit (our
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result) and the R-conjugation (see [30]), which would however require a deeper
insight.

1. Preliminaries

In this section we recall the preliminary notions and fix the main notations
used in the paper (see [3, 23]).

Notation 1.1. A = (aij)i,j∈I denotes a generalized indecomposable sym-
metrizable Cartan matrix.

The set of indices I is {1, . . . , n}.
D = diag(di|i ∈ I) is the diagonal matrix with relatively prime positive

integral diagonal entries di such that DA is symmetric; d = max{di|i ∈ I}.
g = g(A) is the Kac-Moody algebra associated to A.
A and g are said to be finite if DA is positive definite.
A and g are said to be affine if DA is positive semidefinite of rank n− 1.

It is well known that for every affine Kac-Moody algebra g there exist a
finite Kac-Moody algebra g0 and a finite order automorphism χ of g0 such
that g is the universal central extension of (g0 ⊗ C[t±])χ (χ acts on t by
multiplication by a primitive o(χ)th root of 1); since also g

χ
0 is a finite Kac-

Moody algebra, this description of the affine Kac-Moody algebras provides
a map A �→ Af from the set of the affine Cartan matrices to the set of the
finite Cartan matrices such that g(Af ) = g

χ
0 ⊆ g(A).

The (finite) order of χ is denoted by k; k can be 1, 2, or 3.
The Cartan matrix A is said to be untwisted if χ = id (that is k = 1),

twisted if χ �= id (that is k = 2 or 3).
Let us recall the well known classification of the finite and affine Cartan

matrices:
A is finite ⇔ A = An≥1, Bn≥2, Cn≥3, Dn≥4, E6, E7, E8, F4, G2.
(C2 and D3 are also defined, and we have C2 = B2, D3 = A3).
A is affine ⇔ A = X

(k)
ñ with Xñ finite (g0 = g(Xñ)) and k = o(χ).

More precisely:
A is untwisted ⇔ A = X

(1)
n with Xn finite (thus in this case ñ = n,

g0 = g
χ
0 ).

A is twisted ⇔ A = A
(2)
2n (n ≥ 1), A(2)

2n−1 (n ≥ 3), D(2)
n+1 (n ≥ 2), D(3)

4 , E
(2)
6 .

The map A �→ Af is the following:
X

(1)
n �→ Xn,

A
(2)
2n �→

{
A1 if n = 1
Bn if n > 1,

A
(2)
2n−1 �→ Cn, D(2)

n+1 �→ Bn, D(3)
4 �→ G2, E(2)

6 �→ F4.



On the Drinfeld coproduct 175

Remark 1.2. Of course the correspondence A �→ (Af , k) = (Af , 1) where A

is untwisted affine classifies the untwisted affine Cartan matrices; but remark
that the map A �→ (Af , k) where A is affine (not necessarily untwisted) does
not classify the affine Cartan matrices, because (A(2)

2n )f = (D(2)
n+1)f = Bn if

n ≥ 2.
Hence, in order to distinguish A

(2)
2n from D

(2)
n+1 and obtain a classification,

we shall replace the pairs (Af , k) by the triples (Af , k, d̃) where the parameter
d̃ can assume two values if (Af , k) = (Bn, 2) and is uniquely determined by
(Af , k) in the other cases.

The direct dependence of the definition of the affine quantum algebra
associated to A on (Af , k, d̃) is described in Definition 2.2, and the parameter
d̃ is chosen to this aim.

Remark 1.3. As we shall recall in Section 2 and in particular in Remark 2.13,
for each generalized symmetrizable Cartan matrix we consider a (unique)
quantum affinization, whose construction generalizes the passage from a finite
quantum algebra to the Drinfeld realization of its untwisted affine quantum
algebra.

In order to deal at the same time with the affine quantum algebras and the
quantum affinizations, we are going to introduce, following Remarks 1.2 and
1.3, a set D classifying the algebras which are either affine quantum algebras
or quantum affinizations.

Definition 1.4. We denote by D the set D = {(A, k, d̃)} where:

• A is a generalized symmetrizable Cartan matrix

• k =

⎧⎪⎪⎨
⎪⎪⎩

1 if A is not finite
1 or 2 if A = A1

1 or d otherwise

• d̃ =

⎧⎪⎪⎨
⎪⎪⎩

1 if A is not finite or A = A1

a positive divisor of k if A = Bn

k otherwise

Remark 1.5. 1. Let A, k be as in Definition 1.4. Remark that if (A, k) �=
(Bn, 2) then there exists a unique d̃ such that (A, k, d̃) ∈ D; if (A, k) = (Bn, 2)
then d̃ = 1 or 2; if A is not finite then k = d̃ = 1.

2. As discussed in Remark 1.2, {(A, k, d̃) ∈ D|A is finite} is in 1-1 corre-
spondence with {A|A is affine}: more precisely the map A �→ (Af , k) (defined
on the set of the affine Cartan matrices) can be refined to a D-valued injection
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A �→ (Af , k, d̃) by setting A
(2)
2n �→ (Bn, 2, 1), D(2)

n+1 �→ (Bn, 2, 2); the image of
this injection is {(A, k, d̃) ∈ D|A is finite}.

3. It follows from Remarks 1.2 and 1.3 and from points 1. and 2. that D
is the classifying set that we need (see Definition 2.2).

4. If A is finite, consider the 1-1 correspondence of point 2.: then the
condition k = 1 (hence k = d̃ = 1) identifies the untwisted affine matrices;
the condition k �= d̃ (or equivalently k = 2, d̃ = 1) identifies the affine matrices
of type A

(2)
2n ; the condition k = d̃ �= 1 identifies the twisted affine matrices of

type different from A
(2)
2n .

5. The set {(A, k, d̃) ∈ D|k = 1} is in 1-1 correspondence with the quan-
tum affinizations.

Notation 1.6. Let (A, k, d̃) ∈ D, D = diag(di|i ∈ I) and I as in Notation 1.1
and Definition 1.4. We denote by d̃i and d̃ij (i, j ∈ I) the following positive
integers:

d̃i =
{

1 if d̃ = 1
di otherwise,

d̃ij = max{d̃i, d̃j}

Before introducing the algebra U object of this study, let’s quickly review
and adapt the definition of the root lattice, the “finite” root lattice and the
“weight” lattice.

Definition 1.7. The root lattice Q is the free abelian group on {αi|i ∈
I} ∪ {δ}, that is

Q = (⊕i∈IZαi) ⊕ Zδ;

the αi’s are called simple roots, δ is called the “imaginary” root.
The “finite” root lattice Q0 is the subgroup of Q generated by the simple

roots, that is
Q0 = ⊕i∈IZαi.

The “weight” lattice P is the abelian group

P = ⊕i∈IZωi ⊆ Hom(Q0,Z)

where the ωi’s are defined by <ωi, αj> = δij d̃i for all i, j ∈ I and are called
fundamental weights.

A weight ω =
∑

i∈I miωi is said to be dominant if mi ≥ 0 for all i ∈ I;
the set of the dominant weights is denoted by P+.

P embeds into Hom(Q,Z) by <ω, δ> = 0 ∀ω ∈ P and acts on Q by
ω(β) = β −<ω, β>δ ∀ω ∈ P , β ∈ Q.
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2. The algebra U and its main structures

We shall attach a C(q)-associative algebra U = U(Y ) to each Y ∈ D (see
[10, 2, 22, 29, 19, 4]); to this aim we fix the following (more or less usual)
notation.

Notation 2.1. For all i ∈ I denote by qi the element qi = qdi ∈ Z[q] ⊆ C(q).

Definition 2.2. Let Y = (A, k, d̃) ∈ D; U = U(Y ) is the C(q)-algebra defined
by generators and relations in the following way:
generators:

C±1, k±1
i (i ∈ I), Hi,r ((i, r) ∈ I × (Z \ {0})), X±

i,r ((i, r) ∈ I × Z);

relations:

CC−1 = 1 and C is central(C)
kik

−1
i = 1 = k−1

i ki, kikj = kjki(K)
X±

i,r = 0 if d̃i � |r(X)
kiX

±
j,r = q

±aij
i X±

j,rki(KX)

[Hi,r, X
±
j,s] = ±bijrC

r∓|r|
2 X±

j,r+s(HX)

[X+
i,r, X

−
j,s] =

⎧⎨
⎩δij

kiC−sH̃+
i,r+s−k−1

i C−rH̃−
i,r+s

qi−q−1
i

if d̃j |s
0 otherwise

(X±)

⎧⎨
⎩
∑

σ∈S2 σ.([X
±
i,r1±2, X

±
i,r2

]q2 − q4[X±
i,r1±1, X

±
i,r2±1]q−6) = 0 if k �= d̃ = di = dj

[X±
i,r±d̃ij

, X±
j,s]qaiji

+ [X±
j,s±d̃ij

, X±
i,r]qajij

= 0 otherwise

(XX)

∑
σ∈S3

σ.[[X±
i,r1±1, X

±
i,r2 ]q2 , X±

i,r3 ]q4 = 0 if k �= d̃ = di = dj(XXX)

∑
σ∈S1−aij

σ.

1−aij∑
m=0

(−1)m
[
1 − aij

m

]
qi

X±
i,r1 · . . . ·X

±
i,rmX

±
j,sX

±
i,rm+1

· . . . ·X±
i,r1−aij

= 0.

(S)

where

bijr =

⎧⎪⎪⎨
⎪⎪⎩

0 if d̃ij � |r
[2r]q(q2r+(−1)r−1+q−2r)

r if k �= d̃ = di = dj
[r̃aij ]qi

r̃ otherwise, with r̃ = r
d̃ij
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∑
r∈Z

H̃±
i,ru

−r = exp
(
±(qi − q−1

i )
∑
r>0

Hi,±ru
∓r

)

and Sa acts on Za, that is σ.f(r1, . . . , ra) = f(rσ(1), . . . , rσ(a)); for example if
σ ∈ S3 then

σ.[[X+
i,r1+1, X

+
i,r2 ]q2 , X+

i,r3 ]q4 = [[X+
i,rσ−1(1)+1, X

+
i,rσ−1(2)

]q2 , X+
i,rσ−1(3)

]q4 .

For each β = rδ +
∑

i∈I riαi ∈ Q we set kβ = Cr∏
i∈I k

ri
i .

Remark 2.3. Other useful relations can be deduced from the defining rela-
tions of U (see Remark 2.11 and, for further details, [4]).

Notice that for all i ∈ I the sets {Hi,r|r > 0} and {Hi,r|r < 0} generate
the same subalgebras of U respectively as {H̃+

i,r|r ∈ Z} and {H̃−
i,r|r ∈ Z}.

Recall that H̃±
i,0 = 1 and H̃±

i,r = 0 if ±r < 0.
The relations involving the Hi,r’s can be given an equivalent formulation

in terms of the H̃±
i,r’s.

It is useful to express both the generators and the relations defining U in a
more compact way, by generating series of families of elements and relations.

To this aim let us introduce some notations.

Notation 2.4. Let A be an algebra and let

ai(u1, . . . , um) =
∑

r1,...,rm∈Z
ai,r1,...,rmu

−r1
1 · . . . · u−rm

m ∈ A[[u±1
1 , . . . , u±1

m ]]

be the generating series of the elements ai,r1,...,rm ∈ A.
The subalgebra/ideal of A generated by {ai,r1,...,rm |i ∈ I; r1, . . . , rm ∈ Z}

is also said to be the subalgebra/ideal of A generated by the ai(u)’s.
Given a(u1, . . . , um) ∈ A[[u±1

1 , . . . , u±1
m ]], h ∈ {1, . . . ,m}, s ∈ Z we denote

by
a(u1, . . . , um)�us

h
∈ A[[u±1

1 , . . . , u±1
h−1, u

±1
h+1, . . . , u

±1
m ]]

the coefficient of ush in a(u1, . . . , um).

Notation 2.5. We denote by δ(u) ∈ Z[[u±1]] the formal power series

δ(u) =
∑
r∈Z

u−r.

Remark 2.6. δ(u) has the following properties:
δ(u) = δ(u−1);
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uδ(u) = δ(u);
For every abelian group M and for all P ∈ M [u±1], the identity P (u)δ(u)=

P (1)δ(u) holds in M [[u±1]].

Remark 2.7. Let A be a Q-algebra and denote by y ↔ ỹ the 1-1 correspon-
dence

uA[[u]] ↔ 1 + uA[[u]]
defined by ỹ = exp(y) or equivalently y = ln(ỹ); denote by c a central element
of A[[u]] and by x an element of A[[u]].

i) If [h1, h2] = c, then [h1, h̃2] = ch̃2, and vice versa.
ii) If [h, x] = cx, then h̃x = c̃xh̃, and vice versa.

Definition 2.8. For i, j ∈ I define Pij(x, y) ∈ Z[x±1, y] and Bij(x, y) ∈
Q(x, y) ∩ Z[x±1][[y]] as follows:

Pij(x, y) =
{

(1 − x4y)(1 + x−2y) if k �= d̃ = di = dj

1 − xdiaijyd̃ij otherwise

and

Bij(x, y) = Pij(x−1, y)
Pij(x, y)

.

Remark 2.9. For all i, j ∈ I we have that:

i) Bij(q, u) = Bji(q, u);
ii) Bij(q−1, u) = Bij(q, u)−1;
iii) lnBij(q, u) = (qi − q−1

i )
∑

r>0 bijru
r.

In particular

[h, x] = ±(qi − q−1
i )
∑
r>0

bijru
rx ⇔ exp(h)x = Bij(q, u)±1x exp(h).

We can now re-write Definition 2.2 in the following, equivalent way.

Definition 2.10. Let Y = (A, k, d̃) ∈ D and let ζ be a primitive kth root of
1; U = U(Y ) is the C(q)-algebra generated by

C±1, k±1
i , H̃±

i (u) =
∑
r∈Z

H̃±
i,ru

−r, X±
i (u) =

∑
r∈Z

X±
i,ru

−r (i ∈ I)

with relations:

CC−1 = 1 and C is central(C)
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kik
−1
i = 1 = k−1

i ki, kikj = kjki(K)
H̃±

i (u) ∈ 1 + u∓1U [[u∓1]](H̃)

X±
i (ζ

k
d̃i u) = X±

i (u)(X)
kiX

±
j (u) = q

±aij
i X±

j (u)ki(KX)
H̃±

i (u1)X±
j (u2) = X±

j (u2)H̃±
i (u1)Bij(q;u∓1

1 u±1
2 )(HX+)

H̃±
i (u1)X∓

j (u2) = X∓
j (u2)H̃±

i (u1)Bij(q;C±1u∓1
1 u±1

2 )−1(HX−)

[X+
i (u1), X−

j (u2)] = δij
kiH̃

+
i (u1)δ(Cu−1

1 u2) − k−1
i H̃−

i (u2)δ(Cu1u
−1
2 )

qi − q−1
i

(X±)

Pij(q, u∓1
1 u±1

2 )X±
i (u1)X±

j (u2) = q
aij
i Pij(q−1, u∓1

1 u±1
2 )X±

j (u2)X±
i (u1)(XX) ∑

σ∈S3

σ.(u±1
1 − (q2 + q4)u±1

2 + q6u±1
3 )X±

i (u1)X±
i (u2)X±

i (u3) = 0(XXX)

and the Serre relations (S)
∑

σ∈S1−aij

σ.[. . . [[X±
j (u), X±

i (u1)]q−aij
i

, X±
i (u2)]q−aij−2

i

, . . . , X±
i (u1−aij )]qaiji

= 0

Remark 2.11. The following relations also hold in U :

H̃±
i (ζ

k
d̃i u) = H̃±

i (u)(H)
kiH̃

±
j (u) = H̃±

j (u)ki(KH)
H̃±

i (u1)H̃±
j (u2) = H̃±

j (u2)H̃±
i (u1)(HH+)

H̃+
i (u1)H̃−

j (u2) = H̃−
j (u2)H̃+

i (u1)
Bij(q;C−1u−1

1 u2)
Bij(q;Cu−1

1 u2)
.(HH−)

Moreover the H±
i (u)’s are defined by the following relation:

H̃±
i (u) = exp(±(qi − q−1

i )H±
i (u)).(HH̃)

On the other hand the relations (XX) and (XXX) are redundant except for
the rank 1 case (that is in the affine cases A

(1)
1 and A

(2)
2 , see [4]); conversely

they are necessary in the description of the positive and negative part of U .
Define also K̃±

i,r = k±1
i H̃±

ir for all i ∈ I, r ∈ Z (in particular K̃±
i,0 = k±1

i )
or equivalently

K̃±
i (u) = k±1

i H̃±
i (u),(K̃)
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which is both a definition and a relation between the elements involved.

Remark 2.12. {C±1, K̃±
i (u), X±

i (u)|i ∈ I} is a set of generators of U .

Remark 2.13. If k = 1, then U((A, k, d̃)) is the quantum affinization
Ûq(g(A)).

If A is finite, then U((A, k, d̃)) is the Drinfeld realization UDr
q (g(Â)), where

Â is the affine Cartan matrix corresponding to (A, k, d̃).
If A is finite and k = 1, then Ûq(g(A)) = UDr

q (g(Â)) (untwisted affine
quantum algebras are quantum affinizations).

If A is finite and k �= 1, then U((A, k, d̃)) = UDr
q (g(Â)) is not a quantum

affinization.
If A is affine, then U((A, k, d̃)) is called quantum toroidal algebra (see

[16, 29] and the review paper [18]): remark that there are various versions of
the quantum toroidal algebras (for example attached to gl1 or gln, see [14]):
in principle we can expect that the argument of this paper, which relies on
the triangular decomposition, should work also in these cases; but the details
should be verified, and eventually adapted with care.

Definition 2.14. The algebra U is a Q-graded algebra: U = ⊕β∈QUβ , where

C±1, k±1
i ∈ U0, Hi,r ∈ Urδ, X

±
i,r ∈ Urδ±αi .

The Q-gradation induces a Q0-gradation by Z-graded vector spaces:

U =
⊕
γ∈Q0

U[γ], with U[γ] =
⊕
r∈Z

Uγ+rδ.

For all m ≥ 1, U⊗m inherits from the Q⊕m-gradation induced by the Q-
gradation of U :

i) a Q-gradation: U⊗m = ⊕β∈Q(U⊗m)β where

(U⊗m)β =
⊕

(β1,...,βm)∈Q⊕m

β1+···+βm=β

Uβ1 ⊗ · · · ⊗ Uβm ;

ii) a Q⊕m
0 -gradation with Zm-graded homogeneous components:

U⊗m =
⊕

(γ1,...,γm)∈Q⊕m
0

(U⊗m)[γ1,...,γm]

where

(U⊗m)[γ1,...,γm] = U[γ1]⊗· · ·⊗U[γm] =
⊕

(r1,...,rm)∈Zm

Uγ1+r1δ⊗· · ·⊗Uγm+rmδ.
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Notation 2.15. U+, U− and U0 denote the C(q)-subalgebras of U generated
respectively by {X+

i (u)|i ∈ I}, {X−
i (u)|i ∈ I} and {C±1, H̃+

i (u), H̃−
i (u)|i ∈

I}.
U0,+, U0,− and U0,0 denote the C(q)-subalgebras of U generated respec-

tively by {H̃+
i (u)|i ∈ I}, {H̃−

i (u)|i ∈ I} and {C±1}.
UK denotes the C(q)-subalgebra of U generated by {k±1

i |i ∈ I} and finally
U0,K denotes the C(q)-subalgebra of U generated by U0 and UK , that is the
subalgebra generated by {C±1, K̃±

i (u)|i ∈ I}.

Remark 2.16. Of course U±, U0, U0,± are Q-graded subalgebras of U ;
U0,0, UK ⊆ U0.

Remark 2.17. It is well known that the multiplication of U , which is a Q-
homogeneous map, induces the following isomorphisms of Q-graded vector
spaces (refinement of the so called “triangular decomposition”):

U ∼= U+ ⊗ U0,K ⊗ U−,

U0,K ∼= U0 ⊗ UK (isomorphism of algebras),
U0 ∼= U0,+ ⊗ U0,0 ⊗ U0,−.

See [19] for the quantum affinizations and [5] for the affine quantum algebras.

As already underlined in the Introduction, the triangular decomposition
is crucial for the argument of this paper. It shall be given a slightly different
formulation in Remark 6.2 using the following description (Remark 2.18) of
the subalgebras of U introduced in Notation 2.15, which is an immediate and
well known consequence of Remark 2.17.

Remark 2.18. 1) U0,±, U0,0 and UK are algebras of polynomials:

U0,+ ∼= C(q)[H̃+
i,r|i ∈ I, d̃i|r, r > 0] = C(q)[Hi,r|i ∈ I, d̃i|r, r > 0],

U0,− ∼= C(q)[H̃−
i,r|i ∈ I, d̃i|r, r < 0] = C(q)[Hi,r|i ∈ I, d̃i|r, r < 0],

U0,0 ∼= C(q)[C±1],
UK ∼= C(q)[k±1

i |i ∈ I];

2) U0 is the C(q)-algebra generated by

{C±1, H̃+
i (u), H̃−

i (u)|i ∈ I}

with relations (C), (H̃), (H), (HH+) and (HH−).
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Definition 2.19. 1. Ω : U → U is the C-antilinear anti-involution defined on
the generators by:

Ω(q) = q−1, Ω(C) = C−1, Ω(ki) = k−1
i ,

Ω(H̃±
i (u)) = H̃∓

i (u−1), Ω(X±
i (u)) = X∓

i (u−1);

(remark that Ω(H±
i (u)) = H∓

i (u−1)).
2. For all ω ∈ P , tω : U → U is the C(q)-algebra automorphism defined

on the generators by:

tω(kβ) = kβ−<ω,β>δ, tω(H̃±
i (u)) = H̃±

i (u), tω(X±
i (u)) = u∓<ω,αi>X±

i (u).

For all i ∈ I, ti denotes the automorphism tωi .

3. Completion of graded vector spaces

In order to define on U the Drinfeld coproduct Δv with values in a com-
pletion of U ⊗ U , we have to choose this completion. In the literature it is
usually remarked that Δv takes values in U⊗U((v)); but this choice has some
drawbacks that we want to avoid.

On one hand remark that the elements of U⊗U((v)) are limits of sequences
in U ⊗ U [v±1], not in U ⊗ U :

(3.1) a(v) =
∑
r≥R

arv
r = lim

N→∞

(
N∑

r=R

arv
r( = a(v)N

))
(ar ∈ U ⊗ U ∀r).

The idea is to identify a(v)N with
∑N

r=R ar ∈ U ⊗U by choosing a convenient
subalgebra of U⊗U((v)) so that its intersection with U⊗U [v±1] is isomorphic
to U ⊗ U via the evaluation of v at 1. This is done by providing U ⊗ U with
a structure of Z-graded algebra U ⊗ U = ⊕d∈Z(U ⊗ U)(d) so that

U ⊗ U ∼= ⊕d∈Z(U ⊗ U)(−d)vd ⊆
⋃
R∈Z

∏
d≥R

(U ⊗ U)(−d)vd ⊆ (U ⊗ U)((v)).

Thus v has just the role of underlining the Z-grading of the elements ar in
(3.1) and to control that the infinite sums involved in our definitions and
arguments make sense in our completion.

This construction is to be extended to a Z2-graded algebra structure on
U⊗3 (and more generally to a Zm-graded algebra structure on U⊗(m+1)) in
order to deal with the coassociativity of Δv.
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On the other hand U ⊗U((v)) has no gradation, while U ⊗U is (Q⊕Q)-
graded: in particular we are interested in preserving the Q-gradation arising
from the projection Q ⊕ Q � (β, β′) �→ β + β′ ∈ Q (see Definition 2.14,
i)), because we want Δv to be a Q-homogeneous homomorphism. This could
be solved by restricting to a Q-graded version of our construction: we can
first define the completion of each homogeneous component (U ⊗ U)β of
U ⊗ U for β ∈ Q (more precisely we shall define a Z-graded completion
of ⊕r1,r2∈Z(Uγ1+r1δ ⊗ Uγ2+r2δ) for all (γ1, γ2) ∈ Q0 ⊕Q0) and then define the
whole completion U ⊗̂U as direct sum of these partial completions.

Finally, we need to make sure that with this smaller completion (smaller
than U ⊗ U((v))) the morphisms that we want to induce from U⊗2 (mainly
ti⊗ti for the P -equivariance of Δv, Δv⊗id and id⊗Δv for its coassociativity,
σ ◦ Ω⊗2 for the symmetry between positive and negative parts preserved
by Δv and useful in avoiding repetitive computations) are well defined (see
Definition 2.19 and Remark 3.21): it is with this need in mind that the Zm-
gradation of U⊗(m+1) mentioned above will be chosen.

1. The filtered completion of a Zm-graded vector space.
Let V = ⊕r=(r1,...,rm)∈ZmV (r) be a Zm-graded vector space; then, if the

base field is endowed with the discrete topology, V is a topological vector
space with the topology induced by

{ ⊕
r1+···+rm≤N

V (r)|N ∈ Z
}

as a fundamental system of neighborhoods of 0.
The Zm-gradation induces a filtration of V : for all R = (R1, . . . , Rm) ∈

Zm let RV = ⊕r≤RV (r) ⊆ V , where r ≤ R ⇔ rh ≤ Rh ∀h = 1, . . . ,m.
Then RV ⊆ R′V for all R ≤ R′, V =

∑
R∈Zm RV =

⋃
R∈Zm RV , and

each RV is a topological vector space with the topology induced by V .
The completion of the topological vector space RV is

∏
r≤R V (r) and for

all R ≤ R′ the embedding RV ⊆ R′V induces an embedding
∏

r≤R V (r) ⊆∏
r≤R′ V (r).

Definition 3.2. Let V = ⊕r∈ZmV (r) be a Zm-graded vector space. The fil-
tered Zm-graded completion V̄ of V is

V̄ = lim−→
R

∏
r≤R

V (r) =
⋃

R∈Zm

∏
r≤R

V (r)
(
⊆
∏

r∈Zm

V (r)
)
.

V̄ can also be described as follows.
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Notation 3.3. Given a vector space V and a positive integer m, let us denote
by V [v±1] ⊆ V ((v)) ⊆ V [[v±1]] the following vector spaces:

V [v±1] = V [v±1
1 , . . . , v±1

m ], V [[v±1]] = V [[v±1
1 , . . . , v±1

m ]],

V ((v)) = V ((v1, . . . , vm)) =
{ ∑

r≤R
xrv

−r ∈ V [[v±1]]
∣∣∣R ∈ Zm

}

where for all r = (r1, . . . , rm) ∈ Zm we set vr = vr11 · . . . · vrmm .
Remark that if V is a Zm-graded vector space then V [v±1] is Zm-graded

by V [v±1](r) = ⊕r1+r2=rV
(r1)vr2 , and V ∼= V [v±1](0).

V [[v±1]] and V ((v)) are not Zm-graded.
If V = ⊕r∈ZmV (r) is Zm-graded, denote by V [[v±1]](0) and V ((v))(0) the

following vector spaces:

V [[v±1]](0) =
{ ∑

r∈Zm

xrv
−r ∈ V [[v±1]]

∣∣∣xr ∈ V (r) ∀r
}
,

V ((v))(0) = V [[v±1]](0) ∩ V ((v)).

Of course V [v±1](0) = V [[v±1]](0) ∩ V [v±1] ⊆ V ((v))(0) ⊆ V [[v±1]](0).

Remark 3.4. Let V = ⊕r∈ZmV (r) be a Zm-graded vector space. Then

V̄ ∼= V ((v))(0),

the isomorphism from V ((v))(0) to V̄ being the evaluation of v1, . . . , vm at 1.
Remark that if m = 0 then V̄ = V .

Remark 3.5. Let V = ⊕r∈ZmV (r),W = ⊕r∈ZmW (r) be Zm-graded vector
spaces; then V ⊗W is Zm-graded by

(V ⊗W )(r) = ⊕r1+r2=rV
(r1) ⊗W (r2)

and V̄ ⊗ W̄ naturally embeds into V ⊗W :
∑

r1∈Zm

xr1v−r1 ⊗
∑

r2∈Zm

yr2v−r2 �→
∑

r∈Zm

∑
r1+r2=r

xr1 ⊗ yr2v−r.

Remark 3.6. Let V = ⊕r∈ZmV (r),W = ⊕r∈ZmW (r) be Zm-graded vector
spaces and f : V → W be a continuous linear map. If for all R ∈ Zm

there exists S ∈ Zm such that f(RV ) ⊆ SW (this condition is fulfilled if
there exists an ordering preserving injective map ϕ : Zm → Zm such that
f(V (r)) ⊆ W (ϕ(r)) for all r ∈ Zm) then f induces f̄ : V̄ → W̄ .
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In particular if f is homogeneous of degree d(∈ Zm) (f(V (r)) ⊆ W (r+d)

∀r ∈ Zm) or if it permutes the degrees (f(V (r)) ⊆ W (σ.r) for some σ ∈ Sm)
then it satisfies the above conditions, hence it induces f̄ : V̄ → W̄ .

On the other hand, if f “reverses” the grading (for instance if f(V (r)) ⊆
W (−σ.r) for all r ∈ Zm and a fixed σ ∈ Sm) then f is not continuous and does
not induce any f̄ from V̄ to W̄ .

We need a completion that, despite the loss of some good properties as
the one just described with respect to the permutations of the degrees, allows
us to extend f when f(V (r1,...,rm)) ⊆ W (−rm,...,−r1).

This goal will be achieved by modifying the grading, or better by chang-
ing a Zm-graded vector space into a Z-graded vector space with Zm−1-graded
components, through a construction which has the further advantage to pro-
duce a Z-graded completion.

2. The Z-graded completion of a Zm-graded vector space (m ≥ 1).

Definition 3.7. Let V = ⊕(r1,...,rm)∈ZmV (r1,...,rm) be a Zm-graded vector space
with m ≥ 1. Then V is a Z-graded vector space with Zm−1-graded homoge-
neous components:

V =
⊕
r∈Z

Vr where Vr =
⊕

r1+···+rm=r

V (r1,...,rm)

and
Vr =

⊕
(s2,...,sm)∈Zm−1

(Vr)(s2,...,sm)

with
(Vr)(s2,...,sm) = V (r−s2,s2−s3,...,sk−sk+1,...,sm−1−sm,sm);

equivalently V (r1,...,rm) = V
(r2+···+rm,r3+···+rm,...,rm−1+rm,rm)
r1+···+rm .

Then the Z-graded completion of V is defined to be the Z-graded vector
space V̂ whose homogeneous components are the filtered Zm−1-completions
Vr of the Vr’s.

Remark 3.8. Let f : V → W be a homogeneous linear map of Zm-graded
vector spaces of degree (d1, . . . , dm); then f induces a linear map f̂ : V̂ → Ŵ
homogeneous of degree d1 + · · · + dm: more precisely

f(V (s2,...,sm)
r ) ⊆ W

(s2+d2+···+dm,...,sm−1+dm−1+dm,sm+dm)
r+d1+···+dm

,

that is f
∣∣
Vr

: Vr → Wr+d1+···+dm is homogeneous of degree (d2 + · · · +
dm, . . . , dm), hence it induces f

∣∣
Vr

: Vr → Wr+d1+···+dm and, by direct sum,
f̂ : V̂ → Ŵ .
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On the other hand if f maps V (r1,...,rm) to W (−rm,...,−r1) then f(Vr) ⊆
W−r and f(V (s2,...,sm)

r ) ⊆ W
(sm−r,...,s2−r)
−r , inducing f

∣∣
Vr

: Vr → W−r (see
Remark 3.6) and, by direct sum, f̂ : V̂ → Ŵ .

Notation 3.9. Let V1, . . . , Vm be Z-graded vector spaces. Then V1⊗· · ·⊗Vm

is a Zm-graded vector space: if Vi = ⊕r∈ZV
(r)
i ,

V1 ⊗ · · · ⊗ Vm =
⊕

(r1,...,rm)∈Zm

V
(r1)
1 ⊗ · · · ⊗ V (rm)

m .

Its Z-graded completion is denoted by V1 ⊗̂ · · · ⊗̂Vm.

Remark 3.10. Let V1, V2, V3 be Z-graded vector spaces. Remark that in
general V1 ⊗̂V2 ⊗̂V3, (V1 ⊗̂V2) ⊗̂V3 and V1 ⊗̂(V2 ⊗̂V3) are different. More pre-
cisely there are natural embeddings

V1 ⊗̂V2 ⊗̂V3 ↪→ (V1 ⊗̂V2) ⊗̂V3 and V1 ⊗̂V2 ⊗̂V3 ↪→ V1 ⊗̂(V2 ⊗̂V3)

and we have

V1 ⊗̂V2 ⊗̂V3 = (V1 ⊗̂V2) ⊗̂V3 ∩ V1 ⊗̂(V2 ⊗̂V3).

Indeed these three Z-graded vector spaces are generated by elements (homo-
geneous of degree r, as r varies in Z) of the form

∑
(r1,r2,r3)

r1+r2+r3=r

x1 ⊗ x2 ⊗ x2 with xi ∈ V
(ri)
i

where (r1, r2, r3) = (r−r2−r3, r2, r3) are subject respectively to the following
conditions:

i) ∃R,R′ such that r3 ≤ R, r2 + r3 ≤ R′;
ii) ∃R,R′

s (∀s ∈ Z) such that r3 ≤ R, r2 ≤ R′
r3 ;

iii) ∃R′, Rs (∀s ∈ Z) such that r3 ≤ Rr2+r3 , r2 + r3 ≤ R′.

Of course: i) ⇒ ii); i) ⇒ iii); ii) and iii) ⇒ i).
The same argument shows that for all m ≥ 2

V1 ⊗̂ · · · ⊗̂Vm =
m−1⋂
k=1

(V1 ⊗̂ · · · ⊗̂Vk) ⊗̂(Vk+1 ⊗̂ · · · ⊗̂Vm).

Then ⊗̂ is not associative, but V1 ⊗̂ · · · ⊗̂Vm is contained in all the ⊗̂-products
of V1, . . . , Vm (in this order) however associated.
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Notation 3.11. Let m > 0: we denote by σm ∈ Sm the permutation reversing
the ordering, that is the permutation defined by σm(i) = m+1−i; given vector
spaces V1, . . . , Vm, we denote again by σm the homomorphism (involution)

σm : V1 ⊗ · · · ⊗ Vm → Vm ⊗ · · · ⊗ V1

defined by the “action” of σm: σm(x1 ⊗ · · · ⊗ xm) = xm ⊗ · · · ⊗ x1.
Remark that if the Vi’s are Z-graded then σm maps (V1 ⊗ · · · ⊗ Vm)(r) to

(Vm ⊗ · · · ⊗ V1)(σm.r).

Lemma 3.12. Let V1, . . . , Vm, W1, . . . ,Wm be Z-graded vector spaces, fi :
Vi → Wi linear maps such that fi(V (r)

i ) ⊆ W
(−r)
i for all r ∈ Z and m1, . . . ,mh

positive integers such that m1 + · · · + mh = m. Then:

i) the fi’s induce f̂ (m) = ̂σm ◦ (⊗fi) : V1 ⊗̂ · · · ⊗̂Vm → Wm ⊗̂ · · · ⊗̂W1,
which again maps elements of degree r in elements of degree −r;

ii) if for all j = 1, . . . , h we denote by Vj and Wj the vector spaces

Vj = Vm1+···+mj−1+1 ⊗̂ · · · ⊗̂Vm1+···+mj−1+mj ,

Wj = Wm1+···+mj−1+mj ⊗̂ · · · ⊗̂Wm1+···+mj−1+1

and by Fj the map induced, as in point i), by fm1+···+mj−1+1, . . . ,
fm1+···+mj , then

F̂ (h) : V1 ⊗̂ · · · ⊗̂Vh → Wh ⊗̂ · · · ⊗̂W1

is such that F̂ (h)∣∣
V1 ⊗̂··· ⊗̂Vm

= f̂ (m).

Proof. i) depends on the fact that for r1, . . . , rm ∈ Z the conditions

r1 + · · ·+ rm = r, rl + · · ·+ rm ≤ Rl ∀l = 2, . . . ,m (r, R2, . . . , Rl ∈ Z fixed)

are equivalent to (imply) the conditions

−rm − · · · − r1 = −r, −rl − · · · − r1 ≤ −r + Rl+1 ∀l = 1, . . . ,m− 1.

ii) is obvious.

Notation 3.13. With the notations of Lemma 3.12, by extension we shall
denote by f̂ (m) all the maps induced by f1, . . . , fm on the ⊗̂-products of
V1, . . . , Vm however associated (in this order). For example also F̂ (h) is denoted
by f̂ (m).
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Remark 3.14. Let U, V be Z-graded vector spaces. Remark that in general
U ⊗̂V �∼= V ⊗̂U .

But suppose that U has just a finite number of non-zero homogeneous
components. Then it is immediate to see that U ⊗̂V ∼= U ⊗ V ∼= V ⊗̂U .

In particular the 1-dimensional vector space of degree zero is the unit
for ⊗̂.

Remark 3.15. Let Vi, Ui (i = 1, . . . ,m) be Z-graded vector spaces and fi :
Vi → Ui homogeneous linear maps of degree respectively di. Then Remark 3.8
implies that the fi’s induce f̂ : V1 ⊗̂ · · · ⊗̂Vm → U1 ⊗̂ · · · ⊗̂Um of degree
d1 + · · · + dm.

In particular, if there is h ∈ {1, . . . ,m} such that Vh = V ′
h ⊗̂V ′′

h , then

f̂ : V1 ⊗̂ · · · ⊗̂Vh−1 ⊗̂(V ′
h ⊗̂V ′′

h ) ⊗̂Vh+1 ⊗̂ · · · ⊗̂Vm → U1 ⊗̂ · · · ⊗̂Um

restricts to a map

V1 ⊗̂ · · · ⊗̂Vh−1 ⊗̂V ′
h ⊗̂V ′′

h ⊗̂Vh+1 ⊗̂ · · · ⊗̂Vm → U1 ⊗̂ · · · ⊗̂Um

But conversely, if there is h ∈ {1, . . . ,m} such that Uh = U ′
h ⊗̂U ′′

h , it is not
necessarily true that

f̂ : V1 ⊗̂ · · · ⊗̂Vm → U1 ⊗̂ · · · ⊗̂Uh−1 ⊗̂(U ′
h ⊗̂U ′′

h ) ⊗̂Uh+1 ⊗̂ · · · ⊗̂Um

takes values in U1 ⊗̂ · · · ⊗̂Uh−1 ⊗̂U ′
h ⊗̂U ′′

h ⊗̂Uh+1 ⊗̂ · · · ⊗̂Um (consider the ex-
ample V1 = U1 = U ′

1 ⊗̂U ′′
1 , V2 = U2, fi = idVi).

This obvious remark (that the identity maps idU ′
1 ⊗̂U ′′

1
and idU2 do not

induce a map (U ′
1 ⊗̂U ′′

1 ) ⊗̂U2 → U ′
1 ⊗̂U ′′

1 ⊗̂U2, see Remark 3.10) suggests
the problem of understanding under which conditions a homogeneous map
f : V → V ′ ⊗̂V ′′ and the identities idVi induce a map

V1 ⊗̂ · · · ⊗̂Vh ⊗̂V ⊗̂Vh+1 ⊗̂ · · · ⊗ VN

→ V1 ⊗̂ · · · ⊗̂Vh ⊗̂V ′ ⊗̂V ′′ ⊗̂Vh+1 ⊗̂ · · · ⊗̂VN .

The problem comes from the fact that if f has degree d and x ∈ V has degree
r then

f(x) =
∑
s≤S

xr+d−s,sv
−s with xr1,r2 ∈ (V ′)(r1) ⊗ (V ′′)(r2)

and in general there is no relation between S and r.
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In order to explain the control that we shall require on S, let us consider
a notation encoding also the total degree, or equivalently the degrees in both
factors:

f(x) =
∑
s≤S

xr+d−s,sṽ
−r−dv−s =

∑
s≤S

xr+d−s,sṽ
−(r+d−s)(ṽv)−s

where (ṽ, v) encodes the total degree (in this case r + d) and the degree s
in the (r + d)-component, (ṽ, ṽv) encodes the degrees in the first and second
factors of U ⊗U and (vṽ, v−1) encodes the total degree (again r + d) and the
degree (r + d− s) of the first component; remark that

f(x) ∈ (V ′ ⊗ V ′′)((v))[ṽ±1] = (V ′ ⊗ V ′′)((v))[(vṽ)±1].

We can require a “right control”:

f(x) ∈ (V ′ ⊗ V ′′)[[v]][ṽ±1], which corresponds to S = 0;

or a “left control”:

f(x) ∈ (V ′ ⊗ V ′′)[[v]][(vṽ)±1], which corresponds to S = r + d.

Definition 3.16. Let V , V ′, V ′′ be Z-graded vector spaces and f : V →
V ′ ⊗̂V ′′ be a degree d homogeneous map; an element x ∈ V is said to be
f -bounded if its homogeneous components xr are such that

f(xr) =
∑

s≤max{0,r+d}
yr+d−s,s =

∑
s≤max{0,r+d}

yr+d−s,sv
−s.

Of course the set V [f b] of the f -bounded elements of V is a Z-graded vector
subspace of V . A subset of V is said to be f -bounded if all of its elements are
f -bounded, that is if it is contained in V [f b].

Lemma 3.17. Let V1, . . . , Vm, V
′, V ′′ be Z-graded vector spaces, 1 ≤ h ≤ m

(h fixed), f : Vh → V ′ ⊗̂V ′′ a homogeneous map of degree d,

F = id⊗̂(h−1) ⊗̂ f ⊗̂ id⊗̂(m−h) : V1 ⊗̂ · · · ⊗̂Vm

→ V1 ⊗̂ · · · ⊗̂Vh−1 ⊗̂(V ′ ⊗̂V ′′) ⊗̂ · · · ⊗̂Vm.

If
x ∈ V1 ⊗̂ · · · ⊗̂Vh−1 ⊗̂Vh[f b] ⊗̂Vh+1 ⊗̂ · · · ⊗̂Vm,

then
F (x) ∈ V1 ⊗̂ · · · ⊗̂Vh−1 ⊗̂V ′ ⊗̂V ′′ ⊗̂Vh+1 ⊗̂ · · · ⊗̂Vm.
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Proof. Let x =
∑

xr1,...,rm (xr1,...,rm ∈ V
(r1)
1 ⊗ · · · ⊗ V

(rm)
m ): with no loss

of generality we can suppose that x is homogeneous of degree r; thus the
conditions for xr1,...,rm to be different from zero is that

rl + · · · + rm ≤ Rl for all l > 1.

On the other hand the hypothesis on x implies that

id⊗(h−1) ⊗ f ⊗ id⊗(m−h)(xr1,...,rm) =
∑

s≤max{0,rh+d}
yr1,...,rh−1,rh+d−s,s,rh+1,...,rm

so that
F (x) =

∑
yr1,...,rh−1,r′,r′′,rh+1,...,rm

with the conditions (see Definition 3.16)
rl + · · · + rm ≤ Rl for all l > h,
r′′ + rh+1 + · · · + rm ≤ Rh+1 + max{0, rh + d} ≤ max{Rh+1, Rh + d},
rl + · · · + rh−1 + r′ + r′′ + rh+1 + · · · + rm ≤ Rl + d for all l = 2, . . . , h,

which imply that F (x) ∈ V1 ⊗̂ · · · ⊗̂Vh−1 ⊗̂V ′ ⊗̂V ′′ ⊗̂Vh+1 ⊗̂ · · · ⊗̂Vm.

3. U and its tensor powers.
We are now ready to introduce the completion of U⊗m that we are in-

terested in. This completion preserves both the Q-gradation and the Q⊕m
0 -

gradation that U⊗m inherits from the Q⊕m-gradation, but not the Q⊕m-
gradation itself.

Definition 3.18. The completion U ⊗̂m of U⊗m is the Q⊕m
0 -graded vector

space whose homogeneous component of degree (γ1, . . . , γm) ∈ Q⊕m
0 is the

Z-graded completion of the Zm-graded vector space (U⊗m)[γ1,...,γm]:
Denoting by (U⊗m)[γ1,...,γm;r] the r-component of (U⊗m)[γ1,...,γm], we have

(U ⊗̂m)[γ1,...,γm] = U[γ1] ⊗̂ · · · ⊗̂ U[γm], U ⊗̂m =
⊕

(γ1,...,γm)∈Q⊕m
0

(U ⊗̂m)[γ1,...,γm],

that is
U ⊗̂m =

⊕
(γ1,...,γm)∈Q⊕m

0
r∈Z

(U⊗m)[γ1,...,γm;r].

Remark that the Z-graded completion of U⊗m (considering its Zm-gradation
regardless of its Q⊕m

0 -gradation) is bigger than the U ⊗̂m just defined (and is
not Q⊕m

0 -graded), thus it is by a small abuse of notation that we denote by
U ⊗̂m our component-wise Z-graded completion of U⊗m.
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Remark 3.19. The combination of the Z-gradation of U ⊗̂m resulting from
the Z-graded completion, with its Q0-gradation induced by the Q⊕m

0 -grada-
tion, provides U ⊗̂m with a Q-gradation: given β = γ + rδ ∈ Q (with γ ∈ Q0
and r ∈ Z)

(U ⊗̂m)β =
⊕

(γ1,...,γm)∈Q⊕m
0∑m

i=1
γi=γ

(U⊗m)[γ1,...,γm;r].

Since (U⊗m)[γ1,...,γm;r] ⊇
⊕

(r1,...,rm)∈Zm∑m

i=1
ri=r

Uγ1+r1δ ⊗ · · · ⊗ Uγm+rmδ, it follows that

(U ⊗̂m)β ⊇
⊕

(β1,...,βm)∈Q⊕m

β1+···+βm=β

Uβ1⊗···⊗Uβm
= (U⊗m)β,

which means that the Q-gradations of U⊗m and U ⊗̂m are compatible, or that
the Z-graded completion preserves the Q-gradation.

Remark 3.20. Let m = 2. Then the discussion of the present section implies
that

U ⊗̂U = ⊕β∈Q(U ⊗̂U)β =
⊕

(γ1,γ2)∈Q0⊕Q0
r∈Z

(U ⊗ U)[γ1,γ2;r]

can be described as a subspace of (U ⊗ U)((v)).
Indeed

(U ⊗ U)[γ1,γ2;r] = (U ⊗ U)[γ1,γ2;r]((v))(0) =

=

⎧⎨
⎩
∑

r2≤R2

xr2v
−r2
∣∣∣R2 ∈ Z, xr2 ∈ Uγ1+(r−r2)δ ⊗ Uγ2+r2δ

⎫⎬
⎭ ⊆ (U ⊗ U)((v)).

U ⊗̂U is the subspace of (U ⊗ U)((v)) generated by the (U ⊗ U)[γ1,γ2;r]’s.

Remark 3.21. Remark that:

-) U ⊗̂m is a Q-graded algebra: indeed the multiplication of U induces

(U⊗m)[γ1,...,γm;r] ⊗ (U⊗m)[γ′
1,...,γ

′
m;r′] → (U⊗m)[γ1+γ′

1,...,γm+γ′
m;r+r′]

(degree zero homogeneous map of Zm−1-graded vector spaces), thus the
claim follows from Remarks 3.5 and 3.19.
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-) for all i ∈ I and for all h = 1, . . . ,m the automorphism ti,h = id⊗(h−1)⊗
ti ⊗ id⊗(m−h) of U⊗m induces an automorphism

t̂i,h : U ⊗̂m → U ⊗̂m

mapping

(U ⊗̂m)[γ1,...,γm;r] to (U ⊗̂m)[γ1,...,γm;r−<ωi,γh>] :

indeed ti maps U[γ;r] = Uγ+rδ to Uγ+(r−<ωi,γ>)δ = U[γ;r−<ωi,γ>], hence
the claim follows from Remark 3.15.
In particular for all ω ∈ P , the automorphism t⊗m

ω of U⊗m induces an al-
gebra automorphism t⊗̂m

ω of U ⊗̂m such that for all β∈Q (t⊗̂m
ω )((U ⊗̂m)β)

= (U ⊗̂m)β−<ω,β>δ.
-) Ω⊗m does not define an (anti)automorphism of U ⊗̂m; but if we define

σm by

σm : U⊗m � x1 ⊗ · · · ⊗ xm �→ xm ⊗ · · · ⊗ x1 ∈ U⊗m

then σm ◦Ω⊗m
∣∣
(U⊗m)[γ1,...,γm;r]

maps

(U⊗m)(s2,...,sm)
[γ1,...,γm;r] to (U⊗m)(sm−r,...,s2−r)

[−γm,...,−γ1;−r],

hence it satisfies the conditions of Remark 3.6 and induces a C(q)-
antilinear (R-linear) antiinvolution

Ω̂(m) : U ⊗̂m → U ⊗̂m

such that Ω̂(m)((U ⊗̂m)β) = (U ⊗̂m)−β for all β ∈ Q.

4. The Drinfeld “coproduct”

We shall now introduce the Drinfeld “coproduct” Δv of U : it is a function
with values in the completion U ⊗̂U ⊆ (U ⊗U)((v)) of U ⊗U , which explains
the v-notation for this map. Since it doesn’t take values in U ⊗U , this map is
not properly a coproduct; but it satisfies properties similar to those defining
the coproducts (it is “coassociative” and admits a “counit”, see Section 7),
which explains the term “coproduct” and the Δ-notation.

Hence Δv will define a tensor structure on a convenient category of rep-
resentations of U : x.(y1 ⊗ y2) = Δv(x)(y1 ⊗ y2), where x ∈ U and the yi’s are
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elements of U -modules Vi; of course, since Δv(x) ∈ U ⊗̂U will involve infinite
sums, we have to make sure that Δv(x)(y1 ⊗ y2) makes sense by restricting
to the representations with suitable properties.

In particular consider representations V of U provided with some Z-grada-
tion V = ⊕r∈ZV

(r) such that Uγ+rδ(V (s)) ⊆ V (s+r) if γ ∈ Q0. If we require
some condition assuring that for all y ∈ V (s) there exists N ∈ Z such that

(4.1) Uγ+rδ(y) = 0 for all r > N,

then U ⊗̂U acts on Ṽ ⊗ V , which will become via Δv a U -module satisfying
(4.1): this will provide the category of such modules with a tensor product.
The same is true in the symmetric condition that Uγ+rδ(y) = 0 for all r < N .

We will be able to construct also another “tensor” structure on some
category of U -modules, thanks to ⊗̂. Indeed if we choose a category of U -
modules preserving the Q-gradation: Uβ(Vλ) ⊆ Vλ+β ; we can apply the ⊗̂ to
define this “tensor” structure: such modules V1 and V2 are direct sums of Z-
graded subspaces of the form ⊕r∈Z(Vi)λ+rδ, and V1 ⊗̂V2 is defined similarly to
the way in which we defined U ⊗̂U (by component-wise Z-graded completion,
see Definition 3.18). Then V1 ⊗̂V2 is a U ⊗̂U -module, and will inherit a U -
module structure via Δv.

We can also put together these two constructions, considering the U -
modules V such that, for convenient λ’s:

V =
⊕
r∈Z,λ

Vλ+rδ,

Uγ+rδ(Vλ+sδ) ⊆ Vλ+γ+(r+s)δ,

Uγ+rδ(Vλ+sδ) = 0 for all r > NV + s.

The coproduct Δv will endow the category of these modules with both ⊗
and ⊗̂.

The claim that Δv is a C(q)-algebra homomorphism from U to U ⊗̂U is
the main concern of this paper: Δv is defined on the generators of U and
the aim of this paper is to prove that the relations defining U are preserved
by Δv. Some of the relations are not difficult to verify, but it becomes very
hard to deal with the Serre relations when aij < −1. In this paper we propose
a strategy to overcome this problem.

Recall 4.2. Let us recall the identification of U ⊗ U with (U ⊗ U)[v±1](0)
(here v = v):

U ⊗ U = ⊕γ∈Q0,r∈ZU ⊗ Uγ+rδ
∼=

⊕
γ∈Q0,r∈Z

U ⊗ Uγ+rδv
−r.



On the Drinfeld coproduct 195

More precisely we described the (Q⊕Q)-gradation of U⊗U as a (Q0⊕Q0⊕Z)-
gradation by Z-graded vector spaces:

U ⊗ U =
⊕

γ1,γ2∈Q0,r∈Z
(U ⊗ U)[γ1,γ2;r]

where

(U ⊗ U)[γ1,γ2;r] =
⊕
s∈Z

Uγ1+(r−s)δ ⊗ Uγ2+sδ
∼=
⊕
s∈Z

Uγ1+(r−s)δ ⊗ Uγ2+sδv
−s

and its completion is

(U ⊗ U)[γ1,γ2;r] =
{∑

s≤S

xsv
−s|S ∈ Z, xs ∈ Uγ1+(r−s)δ ⊗ Uγ2+sδ

}

(see Remark 3.20).
In order to show that this construction is symmetric in the two “factors”

of U ⊗̂U , remark also that for all γ1, γ2 ∈ Q0 the elements of the Z-graded
vector space

⊕
r∈Z (U ⊗ U)[γ1,γ2;r] have the form

M∑
r=m

∑
s≤Sr

xr,s (xr,s ∈ Uγ1+(r−s)δ ⊗ Uγ2+sδ)

(where Sr can be replaced by max{Sr|m ≤ r ≤ M}) or equivalently, with a
notation that reflects the Z-grading of each factor of U ⊗ U (and reveals the
symmetry of this construction in the two factors),

∑
m≤r1+r2≤M

r2≤R2

yr1,r2 =
∑

m≤r1+r2≤M
r1≥R1

yr1,r2

where yr1,r2 ∈ Uγ1+r1δ ⊗ Uγ2+r2δ. Going back to our v-notation (that we need
only to control the infinite sums), we underline that this element is denoted
by ∑

m≤r1+r2≤M
r2≤R2

yr1,r2v
−r2 ∈ U ⊗ U((v)).

The elements of U ⊗̂U are finite sums for (γ1, γ2) ∈ Q0 ⊕ Q0 of elements of
this form.
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Notation 4.3. Let Y (u) =
∑

r∈Z Yru
−r ∈ U [[u±1]]. Then for all central

invertible element z ∈ U of degree zero we use the notations

Y (u⊗ z) =
∑
r∈Z

Yr ⊗ z−ru−r ∈ (U ⊗ U)[[u±1]]

for the family of elements Yr ⊗ z−r ∈ U ⊗ U , and

Y (z ⊗ uv) =
∑
r∈Z

z−r ⊗ Yrv
−ru−r ∈ (U ⊗ U)[[(uv)±1]] ⊆ (U ⊗ U)[v±1][[u±1]],

for the family of elements z−r ⊗ Yrv
−r ∈ U ⊗ U [v±1].

Remark 4.4. Consider the identification of U ⊗ U with (U ⊗ U)[v±1](0) and
more generally of U ⊗̂U with a subalgebra of (U ⊗U)((v))(0) ⊆ (U ⊗U)((v))
(see Recall 4.2).

1. Y (u⊗ z) ∈ U ⊗̂U [[u±1]] because z has degree zero; if we have no other
conditions on the Yr’s, in general Y (z ⊗ uv) �∈ U ⊗̂ U [[u±1]].

2. If there exists γ ∈ Q0 such that Yr ∈ Uγ+rδ for all r ∈ Z, then

Y (z ⊗ uv) ∈ (U ⊗ U)[v±1](0)[[u±1]],

that is it represents an element of (U ⊗ U)[[u±1]] ↪→ (U ⊗̂U)[[u±1]].
3. Given Y (u), Y ′(u) ∈ U [[u±1]] and z, z′ central invertible elements of U

of degree zero, we have that Y (u⊗ z)Y ′(z′⊗uv) = Y ′(z′⊗uv)Y (u⊗ z)
is a well defined element∑
r,s∈Z

Yr(z′)−s ⊗ Y ′
sz

−rv−su−r−s =
∑

m,s∈Z
Ym−s(z′)−s ⊗ Y ′

sz
s−mv−su−m

of
(U ⊗ U)[[u±1, (uv)±1]] = (U ⊗ U)[[v±1]][[u±1]].

4. If Y (u) ∈ U((u−1)) or Y ′(u) ∈ U((u)) then

Y (u⊗ z)Y ′(z′ ⊗ uv) ∈ (U ⊗ U)((v))[[u±1]]

because for all m ∈ Z the coefficient Ym−s(z′)−s⊗Y ′
sz

s−m of v−su−m is
zero if m− s << 0 or s >> 0, that is if s >> 0.
If moreover there exist γ, γ′ ∈ Q0 such that Yr ∈ Uγ+rδ and Y ′

r ∈ Uγ′+rδ

for all r ∈ Z, then

Y (u⊗ z)Y ′(z′ ⊗ uv) ∈
∑
m∈Z

(U ⊗ U)[γ,γ′;m]u
−m ⊆ (U ⊗̂U)[[u±1]].
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5. If Y (u) and Y ′(u) are both in U((u−1)) or both in U((u)) then

Y (u⊗ z)Y ′(z′ ⊗ uv) ∈ (U ⊗ U)[v±1][[u±1]].

If moreover there exist γ, γ′ ∈ Q0 such that Yr ∈ Uγ+rδ and Y ′
r ∈ Uγ′+rδ

for all r ∈ Z, then

Y (u⊗ z)Y ′(z′ ⊗ uv) ∈ (U ⊗ U)[v±1](0)[[u±1]]

that is it represents a family of elements of (U ⊗ U) ↪→ U ⊗̂U .

Definition 4.5. Let us denote by X the following subset (set of generators)
of U :

X = {kβ , Hi,r0 , H̃±
i,±r, CsK̃±

i,±r, X±
i,r

∣∣β ∈ Q, i ∈ I, r0 �= 0, r, s ∈ Z} =
= {kβ , H±

i (u), H̃±
i (u), CsK̃±

i (u), X±
i (u)

∣∣β ∈ Q, i ∈ I, s ∈ Z}

and let us define the function Δv : X → U ⊗̂U as follows:

Δv(kβ) = kβ ⊗ kβ,

Δv(Hi,r) =
{
Hi,r ⊗ 1 + Cr ⊗Hi,rv

−r if r > 0
Hi,r ⊗ Cr + 1 ⊗Hi,rv

−r if r < 0

Δv(H̃+
i,r) =

∑
r1+r2=r

Cr2H̃+
i,r1 ⊗ H̃+

i,r2v
−r2

Δv(H̃−
i,r) =

∑
r1+r2=r

H̃−
i,r1 ⊗ Cr1H̃−

i,r2v
−r2

Δv(CsK̃+
i,r) =

∑
r1+r2=r

Cs+r2K̃+
i,r1

⊗ CsK̃+
i,r2

v−r2

Δv(CsK̃−
i,r) =

∑
r1+r2=r

CsK̃−
i,r1

⊗ Cs+r1K̃−
i,r2

v−r2

Δv(X+
i,r) = X+

i,r ⊗ 1 +
∑

r1+r2=r

kiC
r2H̃+

i,r1
⊗X+

i,r2
v−r2

Δv(X−
i,r) = 1 ⊗X−

i,rv
−r +

∑
r1+r2=r

X−
i,r1

⊗ k−1
i Cr1H̃−

i,r2
v−r2 ,

which can be written more compactly as:

Δv(kβ) = kβ ⊗ kβ,

Δv(H+
i (u)) = H+

i (u⊗ 1) + H+
i (C−1 ⊗ uv),
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Δv(H−
i (u)) = H−

i (u⊗ C−1) + H−
i (1 ⊗ uv),

Δv(H̃+
i (u)) = H̃+

i (u⊗ 1)H̃+
i (C−1 ⊗ uv),

Δv(CsK̃−
i (u)) = (Cs ⊗ Cs)K̃−

i (u⊗ C−1)K̃−
i (1 ⊗ uv),

Δv(CsK̃+
i (u)) = (Cs ⊗ Cs)K̃+

i (u⊗ 1)K̃+
i (C−1 ⊗ uv),

Δv(H̃−
i (u)) = H̃−

i (u⊗ C−1)H̃−
i (1 ⊗ uv),

Δv(X+
i (u)) = X+

i (u⊗ 1) + K̃+
i (u⊗ 1)X+

i (C−1 ⊗ uv)
Δv(X−

i (u)) = X−
i (1 ⊗ uv) + X−

i (u⊗ C−1)K̃−
i (1 ⊗ uv).

Remark that kβ , Hi,r, H̃±
i,r are mapped in U ⊗ U by Δv. On the other hand

the elements Δv(X±
i,r) belong to U ⊗̂U but not to U ⊗ U .

Remark 4.6. Remark that X is Ω-stable and that Δv ◦ Ω = Ω̂(2) ◦ Δv.
Moreover X is tω-stable and Δv ◦ tω = t⊗̂ 2

ω ◦ Δv (for all ω ∈ P ).

Proposition 4.7. The relations

(C), (K), (H̃), (X), (KX), (H), (HH̃), (HX+), (HX−), (X±), (K̃)

are preserved by Δv (see also [19]).

Proof. The proof that the relations (C), (K), (H̃), (X), (KX), (H), (HH̃)
and (K̃) are preserved by Δv is immediate, and left to the reader.

(HX+): Δv(H̃+
i (u1))Δv(X+

j (u2)) =

= H̃+
i (u1 ⊗ 1)H̃+

i (C−1 ⊗ u1v)X+
j (u2 ⊗ 1) +

+ H̃+
i (u1 ⊗ 1)H̃+

i (C−1 ⊗ u1v)K̃+
j (u2 ⊗ 1)X+

j (C−1 ⊗ u2v) =
= H̃+

i (u1 ⊗ 1)X+
j (u2 ⊗ 1)H̃+

i (C−1 ⊗ u1v) +
+ H̃+

i (u1 ⊗ 1)K̃+
j (u2 ⊗ 1)H̃+

i (C−1 ⊗ u1v)X+
j (C−1 ⊗ u2v) =

= X+
j (u2 ⊗ 1)H̃+

i (u1 ⊗ 1)Bij(q;u−1
1 u2 ⊗ 1)H̃+

i (C−1 ⊗ u1v) +
+ K̃+

j (u2 ⊗ 1)H̃+
i (u1 ⊗ 1)X+

j (C−1 ⊗ u2v)H̃+
i (C−1 ⊗ u1v)Bij(q; 1 ⊗ u−1

1 u2) =
= Δv(X+

j (u2))Δv(H̃+
i (u1))Bij(q, u−1

1 u2);

together with the Ω-equivariance of Δv, this proves that (HX+) is preserved.
(HX−): Δv(H̃−

i (u1))Δv(X+
j (u2)) =

= H̃−
i (u1 ⊗ C−1)H̃−

i (1 ⊗ u1v)X+
j (u2 ⊗ 1) +

+ H̃−
i (u1 ⊗ C−1)H̃−

i (1 ⊗ u1v)K̃+
j (u2 ⊗ 1)X+

j (C−1 ⊗ u2v) =
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= H̃−
i (u1 ⊗ C−1)X+

j (u2 ⊗ 1)H̃−
i (1 ⊗ u1v) +

+ H̃−
i (u1 ⊗ C−1)K̃+

j (u2 ⊗ 1)H̃−
i (1 ⊗ u1v)X+

j (C−1 ⊗ u2v) =
= X+

j (u2 ⊗ 1)H̃−
i (u1 ⊗ C−1)Bij(q, C−1u1u

−1
2 ⊗ C−1)−1H̃−

i (1 ⊗ u1v) +

+ K̃+
j (u2 ⊗ 1)H̃−

i (u1 ⊗ C−1) Bij(q;Cu1u
−1
2 ⊗ C−1)

Bij(q;C−1u1u
−1
2 ⊗ C−1)

·

·X+
j (C−1 ⊗ u2v)H̃−

i (1 ⊗ u1v)Bij(q, C ⊗ C−1u1u
−1
2 )−1 =

= Δv(X+
j (u2))Δv(H̃−

i (u1))Δv(Bij(q, C−1u1u
−1
2 )−1);

together with the Ω-equivariance of Δv, this proves that (HX−) is preserved.
(X±): [Δv(X+

i (u1)),Δv(X−
j (u2))] =

= [X+
i (u1 ⊗ 1) + K̃+

i (u1 ⊗ 1)X+
i (C−1 ⊗ u1v),

, X−
j (1 ⊗ u2v) + X−

j (u2 ⊗ C−1)K̃−
j (1 ⊗ u2v)] =

= [X+
i (u1 ⊗ 1), X−

j (u2 ⊗ C−1)]K̃−
j (1 ⊗ u2v) +

+ K̃+
i (u1 ⊗ 1)[X+

i (C−1 ⊗ u1v), X−
j (1 ⊗ u2v)] +

+ K̃+
i (u1 ⊗ 1)X−

j (u2 ⊗ C−1)X+
i (C−1 ⊗ u1v)K̃−

j (1 ⊗ u2v) +
−X−

j (u2 ⊗ C−1)K̃+
i (u1 ⊗ 1)K̃−

j (1 ⊗ u2v)X+
i (C−1 ⊗ u1v) =

= δij

qi − q−1
I

(
K̃+

i (u1 ⊗ 1)δ(Cu−1
1 u2 ⊗ C−1)K̃−

j (1 ⊗ u2v) +

− K̃−
i (u2 ⊗ C−1)δ(Cu1u

−1
2 ⊗ C)K̃−

j (1 ⊗ u2v) +
+ K̃+

i (u1 ⊗ 1)K̃+
i (C−1 ⊗ u1v)δ(C ⊗ Cu−1

1 u2) +

− K̃+
i (u1 ⊗ 1)K̃−

i (1 ⊗ u2v)δ(C−1 ⊗ Cu1u
−1
2 )
)

+

+ q
−aij
i X−

j (u2 ⊗ C−1)K̃+
i (u1 ⊗ 1)Bij(q, Cu−1

1 u2 ⊗ C−1)−1 ·
·X+

i (C−1 ⊗ u1v)K̃−
j (1 ⊗ u2v) +

− q
−aij
i X−

j (u2 ⊗ C−1)K̃+
i (u1 ⊗ 1) ·

·X+
i (C−1 ⊗ u1v)K̃−

j (1 ⊗ u2v)Bji(q, C ⊗ C−1u−1
1 u2)−1 =

= δij

qi − q−1
I

(
(ki ⊗ k−1

i )H̃+
i (u1 ⊗ 1)H̃−

i (1 ⊗ u2v) ·

·
(
δ((C ⊗ C−1)u−1

1 u2) − δ((C−1 ⊗ C)u1u
−1
2 )
)
+

− (k−1
i ⊗ k−1

i )H̃−
i (u2 ⊗ C−1)H̃−

i (1 ⊗ u2v)δ((C ⊗ C)u1u
−1
2 ) +

+ (ki ⊗ ki)H̃+
i (u1 ⊗ 1)H̃+

i (C−1 ⊗ u1v)δ((C ⊗ C)u−1
1 u2)

)
=
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= δij

qi − q−1
I

(
Δv(ki)Δv(H̃+

i (u1))Δv(δ(Cu−1
1 u2)) +

− Δv(ki)−1Δv(H̃−
i (u2))Δv(δ(Cu1u

−1
2 ))

)
;

this proves that (X±) is preserved.

In order to prove that Δv defines a C(q)-algebra homomorphism, we are
left to show that the relations (XX), (XXX) and (S) are preserved. (XX)
is easily checked (see [19]) and (S) has been proven when aijaji ≤ 3 (see [9]
and [13]), but in general the expression for the coproduct applied to the Serre
relations is extremely complicated.

In the following we propose a strategy to bypass this problem, which
provides a proof that Δv is well defined on U+ so that in particular it preserves
all the relations holding in U+ (and in U−).

5. Strategy

Let A be an associative algebra with 1 over a field of characteristic zero and
let D : A → A be a locally nilpotent derivation. It is well known that exp(D) :
A → A =

∑
n≥0

Dn

n! is a well defined algebra automorphism of A. It is also
well known that if D, D′ are two commuting locally nilpotent derivations then
D + D′ is a locally nilpotent derivation and exp(D + D′) = exp(D) exp(D′).

Recall that we want to prove that Δv defines an algebra homomorphism
U → U ⊗̂U , and that to this aim thanks to Proposition 4.7 it is enough to
prove that Δv defines an algebra homomorphism U+ → U ⊗̂U .

This goal will be achieved by constructing a C(q)-subalgebra V of U ⊗̂U
containing U+⊗C(q), and a locally nilpotent derivation D : V → V such that

exp(D)(X+
i (u) ⊗ 1) = Δv(X+

i (u));

since the composition

U+ ∼= U+ ⊗ C(q) ⊆ V exp(D)−→ V ⊆ U ⊗̂U

is a well defined algebra homomorphism, this implies at once that Δv preserves
all the relations involving only the X+

i,r’s.
Of course if a ∈ A is such that D2(a) = 0 then exp(D)(a) = a + D(a).

Hence, regarding the expression

Δv(X+
i (u)) = X+

i (u⊗ 1) + K̃+
i (u⊗ 1)X+

i (C−1 ⊗ uv)
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it turns out that if the locally nilpotent derivation D is such that

D(X+
i (u⊗ 1)) = K̃+

i (u⊗ 1)X+
i (C−1 ⊗ uv) ∀i ∈ I

(so that in particular K̃+
i (u⊗ 1)X+

i (C−1 ⊗ uv) ∈ V[[u±1]]) and

D(K̃+
i (u⊗ 1)X+

i (C−1 ⊗ uv)) = 0,

then
exp(D)(X+

i (u⊗ 1)) = Δv(X+
i (u)).

We make the idea of the proof more precise by requiring the derivation D to
be the sum of n pairwise commuting locally nilpotent derivations Dj (j ∈ I)
such that for all i ∈ I

Dj(X+
i (u⊗ 1)) = δijK̃

+
i (u⊗ 1)X+

i (C−1 ⊗ uv),(5.1)
Dj(K̃+

i (u⊗ 1)X+
i (C−1 ⊗ uv)) = 0.(5.2)

Remark 5.3. Let Ṽ ⊆ U ⊗̂U be a subalgebra containing U+ ⊗ C(q), let
Dj : Ṽ → Ṽ (j ∈ I) be derivations such that (5.1) and (5.2) hold, and let V
be the C(q)-subalgebra of U ⊗̂U generated by

{X+
i (u⊗ 1), K̃+

i (u⊗ 1)X+
i (C−1 ⊗ uv)|i ∈ I}.

Then it is trivial to see that:

i) U+ ⊗ C(q) ⊆ V ⊆ Ṽ ;
ii) V is Dj-stable for all j ∈ I;
iii) Dj

∣∣
V : V → V is a locally nilpotent derivation for all j ∈ I (since it is

locally nilpotent on the generators of V);
iv) the Dj

∣∣
V ’s are mutually commuting derivations, as can be seen imme-

diately by evaluating [Dj , Dj′ ] on the generators of V .

Hence the first step of our strategy (finding a suitable V) is done:

Definition 5.4. V is the C(q)-subalgebra of U ⊗̂U generated by

{X+
i (u⊗ 1), K̃+

i (u⊗ 1)X+
i (C−1 ⊗ uv)|i ∈ I}.

Remark 5.5. Notice that V is a Q-graded subalgebra of U ⊗̂U because

X+
i,r ⊗ 1, K̃+

i (u⊗ 1)X+
i (C−1 ⊗ uv)�u−r ∈ (U ⊗̂U)αi+rδ
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and a Q0-graded algebra with

X+
i (u⊗ 1), K̃+

i (u⊗ 1)X+
i (C−1 ⊗ uv) ∈ (U ⊗̂U)[αi][[u±1]].

The second step of our strategy is to provide for all j ∈ I the derivation
Dj : V → V satisfying (5.1) and (5.2); the goal will be achieved constructing
Dj as a deformation of a bracket.

Remark 5.6. Let us compare the term δijK̃
+
i (u⊗ 1) appearing in the equa-

tion (5.1) with the commutator by X−
j,−r:

(5.7) [X−
j,−r, X

+
i (u)] = − δij

q1 − q−1
1

(
Cru−rK̃+

i (u) − C−ru−rK̃−
i (Cu)

)
,

so that (5.1) can be written as

Dj(X+
i (u⊗ 1)) = δij

∑
r∈Z

Cru−rK̃+
i (u⊗ 1)(1 ⊗X+

i,rv
−r) =

=
∑
r∈Z

(
−(qi − q−1

i )[X−
j,−r, X

+
i (u)] + δijC

−ru−rK̃−
i (Cu)

)
⊗X+

j,rv
−r =

= −(qi − q−1
i )
∑
r∈Z

[X−
j,−r ⊗X+

j,rv
−r, X+

i (u⊗ 1)]+δijK̃−
i (Cu ⊗ 1)X+

i (C ⊗ uv).

Remark that for all r ∈ Z the commutator [X−
j,−r ⊗X+

j,r, ·] (which, using the
v-notation for U ⊗ U ⊆ U ⊗̂U ⊆ U ⊗ U((v)), is equal to [X−

j,−r ⊗X+
j,rv

−r, ·])
is obviously a derivation of U ⊗ U and of U ⊗̂U .

On the other hand remark that
∑

r∈Z[X−
j,r ⊗X+

j,−rv
r, ·] maps U ⊗U (and

even U+ ⊗ C(q)) to U ⊗ U [[v±1]] and not to U ⊗ U((v)).

Remark 5.8. The element
∑

r∈ZX
−
j,r ⊗X+

j,−rv
r ∈ U ⊗ U [[v±1]] is the coeffi-

cient of w0 in X−
j (w) ⊗X+

j (wv) ∈ U ⊗ U [[v±1, w±1]].
Remark that [X−

j (w)⊗X+
j (wv), ·] : U ⊗U → U ⊗U [[v±1, w±1]]. It is not

defined on U ⊗̂U ⊆ U ⊗ U((v)). We shall avoid this problem by considering
the element X−

j (w)⊗X+
j (wxv) instead of X−

j (w)⊗X+
j (wv); in this way we

get a well defined map

[X−
j (w) ⊗X+

j (wxv), ·] : U ⊗ U [[v±1]] → U ⊗ U [[x±1, v±1, w±1]].

Remark also that U ⊗ U [[v±1]] and U ⊗ U [[x±1, v±1, w±1]] are left and right
U ⊗ U -modules but do not have a structure of U ⊗ U((v))-modules (and
U ⊗U [[v±1]] is not a C(q)-algebra), while U ⊗U [x±1]((v))[[w±1]] is a left and
right U ⊗ U((v))-module (in particular it is a V-module).
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The idea is to deform the bracket [X−
j (w)⊗X+

j (wxv), ·] to a map Dj(w, x)
whose restriction to V takes values in U ⊗ U [x±1]((v))[[w±1]] and can thus
be composed with the evaluation of x at 1, providing a map with values in
U ⊗ U((v))[[w±1]].

Then we shall prove that the map Dj = evx=1 ◦
(
Dj(w, x)

∣∣
V
)
�w0 (see

Notation 2.4) is a derivation satisfying (5.1) and (5.2).

6. The deformation Dj(w, x) of [X−
j (w) ⊗ X+

j (wxv), ·]

As suggested in Remark 5.6, we want to get rid of the terms K̃−
i,r arising from

the commutation of X−
j (w) with X+

i (u).
In this section we construct some projections of U in itself that allow us

to ignore these terms.
It is worth repeating that these structures and projections, fundamental

for our argument, rely on the triangular decomposition of U (see Section 0
and Remarks 2.17 and 2.18).

Definition 6.1. Let us define the following subspaces of U :
U> is the C(q)-subalgebra generated by U+ and U0;
U>,K is the C(q)-subalgebra generated by U> and UK ;
U< = Ω(U>) and U<,K = Ω(U>,K);
M− =

∑
i∈I,r∈Z UX−

i,r is the U -submodule (left ideal) generated by
{X−

i,r|i ∈ I, r ∈ Z}.

Remark 6.2. U>, U>,K , U<, U<,K and M− are Q-graded subspaces of U .
Moreover the relations defining U and its triangular decomposition imply

that

U> ∼= U+ ⊗ U0;
U>,K ∼= U+ ⊗ U0 ⊗ UK ;

U ∼= U> ⊗ C(q)[k±1
i |i ∈ I] ⊗ U− ∼= U+ ⊗ C(q)[k±1

i |i ∈ I] ⊗ U<;
U ∼= U>,K ⊕M−.

Definition 6.3. For all γ ∈ Q0 define U<γ> to be the following subspace
of U :

U<γ> = U>kγU− = U+kγU<.

This defines a structure of Q0-graded vector space on U (that we shall refer
to as “the new Q0-gradation” of U):

U =
⊕
γ∈Q0

U<γ>.
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Define pγ : U → U<γ> ⊆ U to be the projection on the γ-component of U .
Moreover define π : U → U to be the composition of morphisms of left

U>,K-modules U → U/M− ∼= U>,K ⊆ U .

Remark 6.4. The new Q0-gradation of U has the properties that, for all
γ, γ′ ∈ Q0:

i) kγ′U<γ> = U<γ + γ′> = U<γ>kγ′ .
ii) U<γ> is a left U>-submodule and a right U<-submodule of U .

Equivalently, ∀γ, γ′, γ′′ ∈ Q0 we have that:

iii) pγ(kγ′akγ′′) = kγ′pγ−γ′−γ′′(a)kγ′′ .
iv) pγ is a morphism of left U>-modules and a morphism of right U<-

modules.

Moreover:

v) U>,K and M− are Q0-graded subspaces of U .

Equivalently:

vi) π commutes with all the pγ ’s.

Finally:

vii) for all β ∈ Q, Uβ is Q0-graded with respect to the new Q0-gradation:

Uβ = ⊕γ∈Q0(Uβ ∩ U<γ>),

that is the Q-gradation and the new Q0-gradation of U are compatible
and define a (Q×Q0)-gradation of U .

Remark 6.5. 1) With the new Q0-gradation just defined, U is not a Q0-
graded algebra: for example

X±
i (u) ∈ U<0>

but
0 �= [X+

i (u1), X−
i (u2)] ∈ U<αi>⊕ U<−αi>.

2) Viceversa U>,K is a Q0-graded algebras (and so is U<,K). In particular

∀γ, γ′, γ′′ ∈ Q0, ∀a, a′, a′′ ∈ U>,K with a′ ∈ U<γ′>, a′′ ∈ U<γ′′>,

we have
pγ(a′aa′′) = a′pγ−γ′−γ′′(a)a′′.
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3) Since V ⊆ (U>,K ⊗ U+)((v)) ∩ U ⊗̂U , the new Q0-gradation induces on V
a new structure of Q0-graded algebra:

V<γ> = V ∩ (U<γ>⊗ U+)((v)).

Notice that V<γ> ⊆ U<γ>⊗ U+
[γ]((v)).

Definition 6.6. For all j ∈ I let D0
j (w, x) : U ⊗ U → U ⊗ U [[(xv)±1, w±1]]

be the map defined by

D0
j (w, x)

∣∣∣
U<γ>⊗U

= −(qj − q−1
j )((π ◦ pγ+αj ) ⊗ idU ) ◦ [X−

j (w) ⊗X+
j (wxv), ·];

Dj(w, x) : U ⊗ U [[v±1]] → U ⊗ U [[(xv)±1, w±1, v±1]] = U ⊗ U [[x±1, v±1, w±1]]

is the map defined by

Dj(w, x)
(∑

r∈Z
arv

−r

)
=
∑
r∈Z

D0
j (w, x)(ar)v−r.

Remark 6.7. Since π(U) ⊆ U>,K , π(M−) = 0 and M−U0,K ⊆ M−, we
have that

π(X−
j (w)(M− + U0,K)) = 0,

hence

Dj(w, x)(U ⊗ U [[v±1]]) ⊆ U>,K ⊗ U [[x±1, v±1, w±1]],
Dj(w, x)((M− + U0,K) ⊗ U [[v±1]]) = 0

and for all a⊗ a′ ∈ U<γ>⊗ U ,

D0
j (w, x)(a⊗ a′) = −(qj − q−1

j )(π ◦ pγ+αj )(X−
j (w)a) ⊗X+

j (wxv)a′.

Lemma 6.8. Let γ ∈ Q0, a ∈ U<γ>. There exists R ∈ Z such that

πpγ+αj (X−
j,ra) = 0 ∀r < R.

Proof. If a ∈ M− + U0,K the claim is obvious (see Remark 6.7), so let a =
a+a0 with a+ ∈ U+ ⊆ U<0>, a0 ∈ U0,K<γ>.

Since by Remark 6.5, 2)

πpγ+αj (X−
j,ra

+a0) = πpγ+αj ([X−
j,r, a

+]a0 + a+[X−
j,r, a

0]) =
= πpγ+αj ([X−

j,r, a
+]a0) + a+πpγ+αj ([X−

j,r, a
0]) = πpαj ([X−

j,r, a
+])a0,
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it is enough to prove the claim for a ∈ U+.
Now let a = X+

i1,r1 · . . . ·X
+
iN ,rN

and R = −max{rh|ih = j}. Then for all
r < R and h = 1, . . . , N we have either

ih �= j and [X−
j,r, X

+
ih,rh

] = 0

or
r + rh < 0 and pαj ([X−

j,r, X
+
ih,rh

]) = 0.
The claim follows.

Corollary 6.9. D0
j (w, x)(U⊗U)⊆U⊗U((xv))[[w±1]]⊆U⊗U [x±1]((v))[[w±1]].

Dj(w, x)(U ⊗ U [v±1](0)) ⊆ U ⊗ U [x±1]((v))[[w±1]].

Proof. It is enough to prove that

D0
j (w, x)(a′ ⊗ a′′) ∈ U ⊗ U((xv))[[w±1]] ∀a′ ∈ U<γ>, a′′ ∈ U

and to recall that U ⊗ U [x±1]((v))[[w±1]] is a C(q)[v±1]-module.
Let R ∈ Z be such that πpγ+αj (X−

j,ra
′) = 0 for all r < R. Then

− 1
qj − q−1

j

D0
j (w, x)(a′ ⊗ a′′) =

=
∑
r,s∈Z

πpγ+αj (X−
j,ra

′) ⊗X+
j,sa

′′x−sv−sw−r−s =

=
∑

r≥R,s∈Z
πpγ+αj (X−

j,ra
′) ⊗X+

j,sa
′′x−sv−sw−r−s =

=
∑

r≥R,s∈Z
πpγ+αj (X−

j,ra
′) ⊗X+

j,s−ra
′′x−s+rv−s+rw−s

which belongs to U ⊗ U((xv))[[w±1]].

Remark 6.10. Notice that

Dj(w, x)(U ⊗̂U) �⊆ U ⊗ U [x±1]((v))[[w±1]].

For example ∑
r≥0

X+
i,2rH̃

−
i,−r ⊗ H̃−

i,−rv
r

is an element of (U ⊗̂U)[αi,0;0] but

Di(w, x)
∣∣
w0

⎛
⎝∑

r≥0
X+

i,2rH̃
−
i,−r ⊗ H̃−

i,−rv
r

⎞
⎠ =
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= Di(w, x)
(
X+

i (u1u2)H̃−
i (u1u

2
2) ⊗ H̃−

i (u1v)
)∣∣

w0,u0
1,u

0
2

=

=
∑
r,s∈Z:

s≥max(r,2r)

kiH̃
+
i,s−2rC

sH̃−
i,r−s ⊗X+

i,sH̃
−
i,r−sx

−sv−r

which does not even belong to U ⊗ U [x±1][[v±1]] (it cannot be evaluated at
x = 1).

Remark 6.11. Let a, b ∈ U ⊗ U((v)) (or even a, b ∈ U ⊗ U) be such that

Dj(w, x)(a), Dj(w, x)(b) ∈ U ⊗ U [x±1]((v))[[w±1]].

In general it is not true that Dj(w, x)(ab) = Dj(w, x)(a)b + aDj(w, x)(b).
For example let a = X−

j (u⊗ 1), b = X+
j (ũ⊗ 1). Then

Dj(w, x)(a) = Dj(w, x)(ab) = 0 but aDj(w, x)(b) �= 0.

Lemma 6.12. Let a ∈ U>,K<γ′>⊗ U((v)) and b ∈ U>,K<γ′′>⊗ U((v)) be
such that

Dj(w, x)(a), Dj(w, x)(b) ∈ U ⊗ U [x±1]((v))[[w±1]].

Then
Dj(w, x)(ab) = Dj(w, x)(a)b + aDj(w, x)(b).

In particular the subspace V̄ = ⊕γ∈Q0V̄<γ> of U ⊗ U((v)) defined by

V̄<γ> =
{
a ∈ U<,K<γ>⊗ U((v))|Dj(w, x)(a) ∈ U ⊗ U [x±1]((v))[[w±1]]

}
is a subalgebra of U⊗U((v)) and Dj(w, x)

∣∣
V̄ : V̄ → U⊗U((v)) is a derivation.

Proof. Since U ⊗U((v)) is a C(q)-algebra, ab, Dj(w, x)(a)b and aDj(w, x)(b)
are well defined. Remark 6.5, 2) implies that

− 1
qj − q−1

j

Dj(w, x)(ab) = πpγ′+γ′′+αj ([X−
j (w) ⊗X+

j (wxv), ab]) =

= πpγ′+γ′′+αj ([X−
j (w) ⊗X+

j (wxv), a]b + a[X−
j (w) ⊗X+

j (wxv), b]) =
= πpγ′+αj ([X−

j (w) ⊗X+
j (wxv), a])b + aπpγ′′+αj ([X−

j (w) ⊗X+
j (wxv), b]) =

= − 1
qj − q−1

j

(Dj(w, x)(a)b + aDj(w, x)(b)).
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Proposition 6.13. Let i, j ∈ I. Then

i) Dj(w, x)(K̃i(u⊗ 1)X+
i (C−1 ⊗ uv)) = 0.

ii) Dj(w, x)(X+
i (u⊗ 1)) = δijK̃i(u⊗ 1)X+

i (C−1 ⊗ uvx)δ(Cu−1w ⊗ 1).
iii) Dj(w, x)

∣∣
V is a derivation from V to the V-module U⊗U [x±1]((v))[[w±1]].

Proof. i) follows from Remark 6.7. ii) is an immediate computation:

Dj(w, x)(X+
i (u⊗ 1)) =

= −(qj − q−1
j )πpαj ([X−

j (w ⊗ 1), X+
i (u⊗ 1)]X+

j (1 ⊗ wxv)) =
= δijK̃i(u⊗ 1)δ(Cu−1w ⊗ 1)X+

i (1 ⊗ wxv)
= δijK̃i(u⊗ 1)X+

i (C−1 ⊗ uvx)δ(Cu−1w ⊗ 1)

Remark that

K̃i(u⊗ 1)X+
i (C−1 ⊗ uvx)δ(Cu−1w ⊗ 1) =

=
∑
r,s,t:
r≤s+t

kiH̃
+
i,s−r+tC

r−t ⊗X+
i,rx

−rv−rw−tu−s

is an element of U ⊗ U [x±1]((v))[[w±1, u±1]].
iii) follows from i), ii) and Lemma 6.12.

Notation 6.14. For all j ∈ I we set Dj = evx=1 ◦ Dj(w, x)�w0 : V →
U ⊗ U((v)).

We can now conclude our argument.

Theorem 6.15. Let i, j ∈ I. Then:

Dj(X+
i (u⊗ 1)) = δijK̃

+
i (u⊗ 1)X+

i (C−1 ⊗ uv);
Dj(K̃+

i (u⊗ 1)X+
i (C−1 ⊗ uv)) = 0.

Hence:
Dj(V) ⊆ V.
Dj is a locally nilpotent derivation of V satisfying conditions (5.1) and

(5.2).
DjDi = DiDj.

Proof. Thanks to Remark 5.3 and Proposition 6.13, we only need to prove
that

Dj(X+
i (u⊗ 1)) = δijK̃

+
i (u⊗ 1)X+

i (C−1 ⊗ uv)
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(which belongs to V):

Dj(X+
i (u⊗ 1)) = evx=1 ◦Dj(w, x)(X+

i (u⊗ 1))�w0 =
= evx=1(δijK̃i(u⊗ 1)X+

i (C−1 ⊗ uvx)δ(Cu−1w ⊗ 1))�w0 =
= δijK̃i(u⊗ 1)X+

i (C−1 ⊗ uv).

Theorem 6.16. The map Δv extends (uniquely) to a homomorphism of C(q)-
algebras

Δv : U → U ⊗̂U .

That is: the Drinfeld “coproduct” is well defined.

Proof. The claim is an immediate consequence of Proposition 4.7 and The-
orem 6.16. Indeed the exponential exp(

∑
j∈I Dj) is a well defined algebra

automorphism of V and the composition

U+ ∼= U+ ⊗ C(q) ↪→ V
exp(
∑

j∈I
Dj)

−−−−−−−−→ V ↪→ U ⊗̂U

is an algebra homomorphism mapping X+
i (u) to Δv(X+

i (u)).
In particular Δv preserves the relations (X)+, (XX)+, (XXX)+ and

(S)+ and, thanks to Remark 4.6, also the relations (X)−, (XX)−, (XXX)−
and (S)−. Together with Proposition 4.7, this implies the claim.

Corollary 6.17. Δv : U → U ⊗̂ 2 is homomorphism of Q-graded algebras.
Δv commutes with Ω: Δv ◦ Ω = Ω̂(2) ◦ Δv.
Δv preserves the action of the weight lattice P : Δv ◦ tω = t⊗̂ 2

ω ◦Δv for all
ω ∈ P .

7. Δv is a “coproduct”

Here we shall shortly show that Δv is “coassociative” and admits a “counit”.
Since the study of the coassociativity involves U⊗3 and its Z-graded com-

pletions, as we did in Recall 4.2 we start by recalling an explicit description of
U ⊗̂ 3 (here v = (v1, v2)) and proving that this subalgebra of U ⊗̂ 2 ⊗̂ U and of
U ⊗̂U ⊗̂ 2 (and more generally U ⊗̂m) is the correct setting where to investigate
the coassociativity.

Recall 7.1. The identification of U ⊗ U ⊗ U with

U ⊗ U ⊗ U [v±1
1 , v±1

2 ](0) ⊆ U ⊗ U ⊗ U [v±1
1 , v±1

2 ]
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can be described as follows:

U ⊗ U ⊗ U =
⊕

γ2,γ3∈Q0
s1,s2∈Z

U ⊗ Uγ2+(s1−s2)δ ⊗ Uγ3+s2δ
∼=

∼=
⊕

γ2,γ3∈Q0
s1,s2∈Z

U ⊗ Uγ2+(s1−s2)δ ⊗ Uγ3+s2δv
−s1
1 v−s2

2

More precisely we described the (Q⊕3)-gradation of U⊗3 as a (Q⊕3
0 ⊕ Z)-

gradation by Z2-graded vector spaces:

U⊗3 =
⊕

γ1,γ2,γ3∈Q0,r∈Z
(U⊗3)[γ1,γ2,γ3;r]

where

(U⊗3)[γ1,γ2,γ3;r] =
⊕

(s1,s2)∈Z2

Uγ1+(r−s1)δ ⊗ Uγ2+(s1−s2)δ ⊗ Uγ3+s2δ
∼=

∼=
⊕

(s1,s2)∈Z2

Uγ1+(r−s1)δ ⊗ Uγ2+(s1−s2)δ ⊗ Uγ3+s2δv
−s1
1 v−s2

2 =

=
⊕

r1+r2+r3=r

Uγ1+r1δ ⊗ Uγ2+r2δ ⊗ Uγ3+r3δv
−r2−r3
1 v−r3

2 ,

whose completion is

(U⊗3)[γ1,γ2,γ3;r] =
{ ∑

r1+r2+r3=r
r3≤R,r2+r3≤S

xr1,r2,r3

∣∣∣R, S ∈ Z

}
=

=
{ ∑

r1+r2+r3=r
r1≥R,r1+r2≥S

xr1,r2,r3

∣∣∣R, S ∈ Z

}
=

=
{ ∑

r1+r2+r3=r

xr1,r2,r3v
−r2
1 (v1v2)−r3 ∈ U ⊗ U ⊗ U((v1, v2))

}

where the xr1,r2,r3 ’s are elements of Uγ1+r1δ ⊗ Uγ2+r2δ ⊗ Uγ3+r3δ.
The elements of U ⊗̂ 3 are finite sums of elements of this form.

Lemma 7.2. Let U [Δb
v] be the subspace of the Δv-bounded elements of U

(see Definition 3.16) and X̄ the (obviously Z-graded) vector subspace of U
generated by X . Then:

i) X̄ ⊆ U [Δb
v];
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ii) Δv(X ) ⊆ X̄ ⊗̂ X̄ ⊆ U ⊗̂U ;
iii) for all m ≥ h ≥ 1 the homomorphism id⊗̂(h−1) ⊗̂Δv ⊗̂ id⊗̂(m−h) maps

X̄ ⊗̂m in X̄ ⊗̂(m+1)(⊆ U ⊗̂(m+1)).

Proof. It is a straightforward verification that the elements of X are Δv-
bounded (which implies i)) and that ii) holds. iii) then follows at once from
Lemma 3.17.

Definition 7.3. Let m ∈ N and h1, h2, . . . , hm > 0 be such that hi ≤ i for
all i = 1, . . . ,m.

Define Δ(m)
v;h1,...,hm

as follows:

Δ(0)
v = id; Δ(m)

v;h1,...,hm
= (id⊗̂(hm−1) ⊗̂Δv ⊗̂ id⊗̂(m−hm) ◦Δ(m−1)

v;h1,...,hm−1
if m > 0.

Lemma 7.4. With the notations of Definition 7.3 we have that Δ(m)
v;h1,...,hm

maps U in U ⊗̂(m+1).

Proof. We prove the claim by induction on m, remarking that the claim
is obvious for m = 0 and m = 1 and that Lemma 7.2, iii) implies that
Δ(m)

v;h1,...,hm
(X̄ ) ⊆ X̄ ⊗̂(m+1) ⊆ U ⊗̂(m+1).

The inductive hypothesis implies that Δ(m−1)
v;h1,...,hm−1

(U) ⊆ U ⊗̂m, so that

Δ(m)
v;h1,...,hm

(U) ⊆ U ⊗̂(hm−1) ⊗̂(U ⊗̂U) ⊗̂ U ⊗̂(m−hm).

The claim now follows recalling that:
X (⊆ X̄ ) is a set of algebra generators of U ;
id⊗̂(hm−1) ⊗̂Δv ⊗̂ id⊗̂(m−hm) is an algebra homomorphism;
U ⊗̂(m+1) is an algebra (a subalgebra of U ⊗̂(hm−1) ⊗̂(U ⊗̂U) ⊗̂ U ⊗̂(m−hm)).

Lemma 7.5. We have that

(Δv ⊗̂ id) ◦ Δv ◦ Ω = Ω̂(3) ◦ (id ⊗̂Δv) ◦ Δv

and
(id ⊗̂Δv) ◦ Δv ◦ Ω = Ω̂(3) ◦ (Δv ⊗̂ id) ◦ Δv.

Proof. Consider the natural actions of the symmetric groups S2 and S3 respec-
tively on U⊗2 and U⊗3 (so that σ2 = (1, 2) and σ3 = (1, 3), see Notation 3.11,
Lemma 3.12 and Remark 3.21) and notice that for all f : U → U⊗2 we have

(f ⊗ id) ◦ σ2 = (3, 2, 1) ◦ (id⊗ f), (id⊗ f) ◦ σ2 = (1, 2, 3) ◦ (f ⊗ id),
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hence, recalling that Ω̂(2) = ̂σ2 ◦ Ω⊗2, id ⊗ σ2 = (2, 3), σ2 ⊗ id = (1, 2) and
(3, 2, 1)(2, 3) = (1, 2, 3)(1, 2) = (1, 3), we get

(Δv ⊗̂ id) ◦ Δv ◦ Ω = (Δv ⊗̂ id) ◦ Ω̂(2) ◦ Δv =

= ̂σ3 ◦ Ω⊗3 ◦ (id ⊗̂Δv) ◦ Δv = Ω̂(3) ◦ (id ⊗̂Δv) ◦ Δv

and

(id ⊗̂Δv) ◦ Δv ◦ Ω = (id ⊗̂Δv) ◦ Ω̂(2) ◦ Δv =

= ̂σ3 ◦ Ω⊗3 ◦ (Δv ⊗̂ id) ◦ Δv = Ω̂(3) ◦ (Δv ⊗̂ id) ◦ Δv.

Proposition 7.6. Δv is “coassociative”:

(Δv ⊗̂ id) ◦ Δv = (id ⊗̂Δv) ◦ Δv : U → U ⊗̂ 3.

Equivalently Δ(m)
v;h1,...,hm

is independent of h1, . . . , hm. Denote it simply as
Δ(m)

v . Then Δ(0)
v = id, Δ(1)

v = Δv and

Δ(m)
v = (id⊗̂(h−1) ⊗̂Δv ⊗̂ id⊗̂(m−h)) ◦ Δ(m−1)

v ∀m ≥ h ≥ 1.

Proof. It is enough to compute (Δv ⊗̂ id) ◦ Δv and (id ⊗̂Δv) ◦ Δv on a set
of generators of U and even, thanks to Lemma 7.5, just on C±1 (which is
trivial), K̃+

i (u) and X+
i (u). These easy computations (left to the reader) are

based on the following observations:

(Δv ⊗̂ id)(K̃+
i (u⊗ 1)) = K̃+

i (u⊗ 1 ⊗ 1)K̃+
i (C−1 ⊗ uv1 ⊗ 1),

(Δv ⊗̂ id)(K̃+
i (C−1 ⊗ uv)) = K̃+

i (C−1 ⊗ C−1 ⊗ uv1v2),
(id ⊗̂Δv)(K̃+

i (u⊗ 1)) = K̃+
i (u⊗ 1 ⊗ 1),

(id ⊗̂Δv)(K̃+
i (C−1 ⊗ uv)) = K̃+

i (C−1 ⊗ uv1 ⊗ 1)K̃+
i (C−1 ⊗ C−1 ⊗ uv1v2),

(Δv ⊗̂ id)(X+
i (u⊗ 1)) = X+

i (u⊗ 1 ⊗ 1) + K̃+
i (u⊗ 1 ⊗ 1)X+

i (C−1 ⊗ uv1 ⊗ 1),
(Δv ⊗̂ id)(X+

i (C−1 ⊗ uv)) = X+
i (C−1 ⊗ C−1 ⊗ uv1v2),

(id ⊗̂Δv)(X+
i (u⊗ 1)) = X+

i (u⊗ 1 ⊗ 1),
(id ⊗̂Δv)(X+

i (C−1 ⊗ uv)) =
= X+

i (C−1 ⊗ uv1 ⊗ 1) + K̃+
i (C−1 ⊗ uv1 ⊗ 1)X+

i (C−1 ⊗ C−1 ⊗ uv1v2).

Remark 7.7. In [19] Δv is proven to be not coassociative, the coassociativity
holding just for the “limit” at v = 1. The apparent difference of this claim
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from Proposition 7.6 depends on the different completion used in the two
papers: indeed our completion U ⊗̂U is (can be seen as) the evaluation (the
limit) at v = 1 of a subalgebra of the completion U ′

q ⊗̂ U ′
q used in [19].

More precisely: as already pointed out, “our” v or v1 and v2 are not
parameters, but just symbols to underline the grading and to control it. This
means that we could also choose another notation for the same algebra U ⊗̂U
without writing the vi’s (keeping otherwise the control of the range allowed
for the infinite sums): this can be described as interpreting these symbols as
parameters and evaluating them at 1, or passing to their limit for v → 1.

But which is the setting where the evaluation and the limit make sense?
The construction of U ⊗̂U is a choice for such a setting.

This observation about the status of the vi’s has two consequences: on one
hand, as we shall see in Section 9, it provides the setting for the description
of Δv as limit of Δ in the case of the affine quantum algebras; on the other
hand it turns out to be important when working in U ⊗̂m with m > 2, and in
particular when dealing with the coassociativity, as we are doing now.

On the other hand the algebra U ′
q ⊗̂ U ′

q = U ⊗ U((v)) considered in [19]
is defined as the topological completion not of U ⊗ U but of the bigger
U ′
q ⊗C(q)((v))U ′

q = C(q)((v)) ⊗ U ⊗ U (actually in [19] q is to be intended as
a complex parameter, but this is a minor difference, involving no problem)
and contains many copies of U ⊗ U , mapped isomorphically onto U ⊗ U via
the “evaluation” of v at 1 and different from each other.

Moreover, coherently with the choice where v is an element of the ground
field C(q)((v)), U ′

q ⊗̂ U ′
q ⊗̂ U ′

q = U ⊗ U ⊗ U((v)) and v behaves as a scalar.
As a final remark let us observe that, as the author underlines, the limit

at v = 1 is not defined; so it is just mentioned to underline that there is some
trace of coassociativity of Δv, despite to the lack of the coassociativity in the
strict sense.

Let us consider a simple example: if r > 0

Δv(Hi,r) = Hi,r ⊗ 1 + Cr ⊗Hi,rv
−r

means that Δv(Hi,r) = Hi,r ⊗ 1 +Cr ⊗Hi,r (element of degree r), where the
right hand factors 1 and Hi,r have degrees respectively 0 and r, encoded in
the exponent of v. Then

(Δv ⊗ id) ◦ Δv(Hi,r) = (id⊗ Δv) ◦ Δv(Hi,r) =
= Hi,r ⊗ 1 ⊗ 1 + Cr ⊗Hi,r ⊗ 1 + Cr ⊗ Cr ⊗Hi,r,
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which is written as

Hi,r ⊗ 1 ⊗ 1 + (Cr ⊗Hi,r ⊗ 1)v−r
1 + Cr ⊗ Cr ⊗Hi,r(v1v2)−r.

On the other hand in the setting of [19] we have

Δv(Hi,r) = Hi,r ⊗ 1 + Cr ⊗Hi,rv
−r �= Δv(Hi,r) = Hi,r ⊗ 1 + Cr ⊗Hi,r,

so that

(Δv ⊗ id) ◦Δv(Hi,r) = Hi,r ⊗ 1⊗ 1 + (Cr ⊗Hi,r ⊗ 1)v−r +Cr ⊗Cr ⊗Hi,rv
−r,

while

(id⊗Δv) ◦Δv(Hi,r) = Hi,r ⊗ 1⊗ 1+ (Cr⊗Hi,r ⊗ 1)v−r +Cr ⊗Cr ⊗Hi,rv
−2r.

In this simple example we can evaluate v at 1, since these elements belong
to U ⊗ U ⊗ U [v−1], or because, with the notations of the present paper,
Δv(Hi,r) ∈ U ⊗ U ⊆ U ⊗̂U .

The same computation applied to X+
i,r confirms this picture, enlightening

the problem with the evaluation of v at 1.

Definition 7.8. ε : U → C(q) is the C(q)-algebra homomorphism defined by

ε(C±1) = ε(K̃±
i (u)) = 1, ε(X±

i (u)) = 0.

Proposition 7.9. ε is a “counit” for Δv: (ε ⊗̂ id) ◦Δv = (id ⊗̂ ε) ◦Δv = id.

Proof. Notice that (see Remark 3.14)

(ε ⊗̂ id) : U ⊗̂ 2 → C(q) ⊗̂ U ∼= U , (id ⊗̂ ε) : U ⊗̂ 2 → U ⊗̂C(q) ∼= U ,
ε ◦ Ω = ε, (ε ⊗̂ id) ◦ Ω̂(2) = Ω ◦ (id ⊗̂ ε), (id ⊗̂ ε) ◦ Ω̂(2) = Ω ◦ (ε ⊗̂ id)

and

(ε ⊗̂ id)(K̃+
i (u⊗ 1)) = (id ⊗̂ ε)(K̃+

i (C−1 ⊗ uv)) = 1,
(ε ⊗̂ id)(K̃+

i (C−1 ⊗ uv)) = (id ⊗̂ ε)(K̃+
i (u⊗ 1)) = K̃+

i (u),
(ε ⊗̂ id)(X+

i (u⊗ 1)) = (id ⊗̂ ε)(X+
i (C−1 ⊗ uv)) = 0,

(ε ⊗̂ id)(X+
i (C−1 ⊗ uv)) = (id ⊗̂ ε)(X+

i (u⊗ 1)) = X+
i (u).

The claim follows.
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Corollary 7.10. Δv : U → U ⊗̂U is injective.

Proposition 7.11. Let S : U0,K → U0,K be defined by

S(kβ) = k−β, S(H̃+
i (u)) = H̃+

i (Cu)−1, S(H̃−
i (u)) = H̃−

i (Cu)−1.

Then S is a well defined C(q)-antiautomorphism of U0,K commuting with Ω
and it is the antipode for Δv|U0,K .

Proof. That the relations defining U0,K are preserved by S is an easy ver-
ification, and so is the commutation with Ω. The condition for S to be an
antipode for Δv (that is m◦(S⊗id)◦Δv = ε = m◦(id⊗S)◦Δv) is equivalent
to

S(kβ)kβ = 1 = kβS(kβ),
S(H̃+

i (u))H̃+
i (Cu) = 1,

S(H̃−
i (u))H̃−

i (Cu) = 1,

which is the definition of S.

Remark 7.12. There does not exist an “antipode” S : U → U for Δv.

Proof. If such an S existed its restriction to U0,K would be as in Proposi-
tion 7.11, hence the condition of being an “antipode” would imply

S(X+
i (u)) + K̃+

i (Cu)−1X+
i (Cuv) = 0

or equivalently
S(X+

i (u)) = −K̃+
i (Cu)−1X+

i (Cuv),

which does not define an element of U [[u±1]].

Remark 7.13. In [17] Δv is proven to admit an antipode. Here too, as in
Remark 7.7, the apparent different results depend on the chosen completions:
indeed S is well defined if one admits it to take values in a suitable completion
of U . See [17] for a detailed discussion of the conditions to obtain a Hopf
algebra structure.

8. Affine quantum algebras: some more definitions and
notations

In this and in the next sections we consider the particular case when U is an
affine quantum algebra (that is U = U(A, k, d̃) ∼= Uq(Â) with Â affine Cartan
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matrix and A = Âf finite Cartan matrix). Then it is well known that U is
endowed with a Hopf algebra structure

(U ,Δ : U → U ⊗ U , ε : U → C(q), S : U → U).

We want to describe the connection between Δ and Δv; this also provides
another proof that Δv is well defined, in the particular case when, precisely,
U is an affine quantum algebra.

This section is devoted to recall some preliminary definitions and results
about affine quantum algebras that we shall need (see [3, 11, 21, 12, 27, 26,
24, 6, 7]).

In Section 9 we introduce the notion of t-equivariant limit and prove that
Δv is the t-equivariant limit of Δ.

Definition 8.1. Let Â = (aij)i,j∈Î and A = (aij)i,j∈I be respectively an affine
and a finite Cartan matrix with A = Âf , Â � (A, k, d̃) (see Remark 1.5). Then
Î = I∪{0} and Uq = Uq(Â) is the C(q)-algebra generated by {Ei, Fi, K

±1
i |i ∈

Î} with relations

KiK
−1
i = 1 = K−1

i Ki, KiKj = KjKi ∀i, j ∈ Î;
KiEj = q

aij
i EjKi, KiFj = q

−aij
i FjKi ∀i, j ∈ Î;

[Ei, Fj ] = δij
Ki −K−1

i

qi − q−1
i

∀i, j ∈ Î;

1−aij∑
m=0

(−1)m
[
1 − aij

m

]
qi

Em
i EjE

1−aij−m
i = 0 ∀i �= j ∈ Î .

1−aij∑
m=0

(−1)m
[
1 − aij

m

]
qi

Fm
i FjF

1−aij−m
i = 0 ∀i �= j ∈ Î .

Remark 8.2. Setting Ω(q) = q−1, Ω(Ki) = K−1
i , Ω(Ei) = Fi, Ω(Fi) = Ei

for all i ∈ Î defines a C-antilinear antiinvolution of Uq.

Remark 8.3. The sets {αi|i ∈ Î} and {αi|i ∈ I} ∪ {δ} are different Z-bases
of the same root lattice Q.

Uq is Q-graded: for all i ∈ Î, Ki, Ei, Fi have degrees respectively 0, αi

and −αi.

Definition 8.4. The coproduct Δ : Uq → Uq ⊗Uq is the C(q)-algebra homo-
morphism defined on the generators by

Δ(Ki) = Ki⊗Ki, Δ(Ei) = Ei⊗1+Ki⊗Ei, Δ(Fi) = 1⊗Fi+Fi⊗K−1
i ∀i ∈ Î .
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Remark 8.5. Δ preserves the Q-gradation and Δ ◦ Ω = σ2 ◦ Ω⊗2 ◦ Δ (we
say that Δ is Ω-equivariant).

Definition 8.6. The Weyl group W is the subgroup of Aut(Q) generated by
the reflections si : Q → Q (i ∈ Î) (which are defined by si(αj) = αj − aijαi

for all j ∈ Î).
W0 is the subgroup of W generated by {si|i ∈ I}.
Recalling that the weight lattice P can be identified to a subgroup of

Aut(Q) acting on Q by “translations” (P � ω : β �→ β − <ω, β>δ, see
Definition 1.7) we can define the extended Weyl group Ŵ = P �W0 and the
subgroup T of {

τ : Î → Î
∣∣∣aτ(i)τ(j) = aij ∀i, j ∈ Î

}
such that Ŵ = W � T (see [28, 20]).

Remark that the condition aτ(i)τ(j) = aij for all i, j ∈ Î implies the
injectivity, hence the bijectivity, of τ .

To the Weyl group(s) there are associated the braid group(s) and the
corresponding projection(s): B is generated by {Ti|i ∈ Î} with the braid
relations (see [3]); B̂ = B � T ; B̂ � T �→ w ∈ Ŵ is the group homomorphism
defined by Ti �→ si, τ �→ τ (for all i ∈ Î, τ ∈ T ).

B̂ acts on Uq by the following formulas (see [27] and [26]):

T (Kβ) = Kw(β) if T �→ w, where Kβ̃ =
∏
i∈Î

Kmi
i if β̃ =

∑
i∈Î

miαi,

τ(Ei) = Eτ(i), Ti(Ei) = −FiKi,

Ti(Ej) =
−aij∑
s=0

(−1)s−aijq−s
i

[
−aij
s

]
qi

E
−aij−s
i EjE

s
i if i �= j,

T (Fi) = ΩT (Ei) ∀T ∈ B̂, i ∈ Î .

Remark 8.7. Ŵ fixes the imaginary root δ.
The length function l : W → N extends to Ŵ by l(wτ) = l(w) for all

w ∈ W, τ ∈ T .
The restriction of l to the set of the dominant weights P+ (see Defini-

tion 1.7) is additive.
The map si �→ Ti, τ �→ τ (i ∈ Î, τ ∈ T ) extends to a section T : Ŵ �

w �→ Tw ∈ B̂ such that Tww′ = TwTw′ if l(ww′) = l(w) + l(w′).
In particular T

∣∣
P+

extends uniquely to a group homomorphism P ↪→ B̂,
hence it defines an action of P on Uq.
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The action of B̂ on Uq has the property that if B̂ � T �→ w ∈ Ŵ , then T
maps elements of any degree β ∈ Q to elements of degree w(β).

Definition 8.8. The set Φre of the real roots is

Φre = {α ∈ Q|∃i ∈ Î , w ∈ Ŵ such that α = w(αi)}.

The set Φre
+ of the positive real roots is

Φre
+ =

{
α =

∑
i∈Î

miαi ∈ Φre|mi ≥ 0 ∀i ∈ Î

}
.

The sets Φ0 of the finite roots and Φ0
+ of the positive finite roots are

Φ0 = Φre ∩Q0 = {α ∈ Q|∃i ∈ I, w ∈ W0 such that α = w(αi)},
Φ0

+ = Φ0 ∩ Φre
+ .

Recall 8.9. For all α ∈ Φre
+ root vectors Eα and Fα = Ω(Eα) of degrees

respectively α and −α can be defined through the action of the braid group,
depending on a sequence ι : Z → Î with suitable properties. Here we recall
the main facts on which the construction of the Eα’s (and symmetrically of
the Fα’s) is based:

i) if i �= j ∈ I then Tωi(Ej) = Ej and TωiTωj = TωjTωi ;
ii) if w = si1 · . . . · sil ∈ W (ir ∈ Î for all r) has length l, then

{si1 · . . . · sih−1(αih)|h = 1, . . . , l} = {α ∈ Φre
+ |w−1(α) ∈ −Φre

+ }

and this set has l elements;
iii) for all α = γ + mδ ∈ Φre

+ (γ ∈ Q0) we have that:
-) if γ > 0, then ω−1(α) ∈ Φre

+ for all dominant weights ω ∈ P+ and
there exists a dominant weight ω ∈ P+ such that ω(α) ∈ −Φre

+ ;
-) if γ < 0, then ω(α) ∈ Φre

+ for all dominant weights ω ∈ P+ and
there exists a dominant weight ω ∈ P+ such that ω−1(α) ∈ −Φre

+ ;
iv) to any surjective map i : {1, . . . ,M} → I such that

∑M
h=1 ωih ∈ P ∩W

we can attach a sequence ι : Z → Î as follows:
-) if Nh is the length of ωi1 + · · · + ωih ∈ P ⊆ Ŵ then

sι(1) · . . . · sι(Nh)τh = ωi1 + · · · + ωih

for some Dynkin diagram automorphism τh (of course τM = id);
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-) ι is periodic of period NM : ι(r) = ι(r + NM ) for all r ∈ Z;
v) given ι as in iv), the map Z � r �→ βr ∈ Φre defined by

βr =
{
sι(1)sι(2) · . . . · sι(r−1)(αι(r)) if r ≥ 1
sι(0)sι(−1) · . . . · sι(r+1)(αι(r)) if r ≤ 0

establishes a bijection between Z and Φre
+ .

For the details see [3, 2, 6, 7, 1].

We are now ready to introduce the root vectors.

Definition 8.10. Let ι : Z → Î be as in Recall 8.9, iv). For all r ∈ Z the
real root vectors Eβr and Fβr are defined as follows:

Eβr =
{
Tι(1)Tι(2) · . . . · Tι(r−1)(Eι(r)) if r ≥ 1
T−1
ι(0)T

−1
ι(−1) · . . . · T

−1
ι(r+1)(Eι(r)) if r ≤ 0,

Fβr = Ω(Eβr).

Remark that in general these root vectors depend on ι, but Recall 8.9 implies
that Erd̃iδ±αi

is independent of the choice of ι:

Erd̃iδ+αi
= T−r

ωi
(Ei), Erd̃iδ−αi

= −T r
ωi

(K−1
i Fi) = −Krd̃iδ−αi

T r
ωi

(Fi).

Finally, for all r > 0, i ∈ I the root vectors E(rδ,i) and F(rδ,i) of degrees
respectively rδ and −rδ are defined by

exp
(∑

r>0
E(rδ,i)u

−r

)
= 1 + (qi − q−1

i )
∑
r>0

(Erd̃iδ−αi
Ei − q−2

i EiErd̃iδ−αi
)u−rd̃i ,

F(rδ,i) = Ω(E(rδ,i)).

Remark 8.11. For all ε : Î → {±1}, ε induces a groups homomorphism
εQ : Q → {±1} (εQ(αi) = ε(i) for all i ∈ Î) and a C(q)-algebra automorphism
εU : Uq → Uq setting

εU(Ki) = Ki, εU(Ei) = ε(i)Ei, εU (Fi) = ε(i)Fi;

εU is an involution of Uq acting as εQ(β) on the elements of degree β.
Remark that any ε : I → {±1} can be (uniquely) extended to ε̂ : Î →

{±1} so that ε̂Q(δ) = 1.
The automorphisms of Uq that are determined by the maps ε : Î → {±1}

such that εQ(δ) = 1 commute among themselves and with the Tωi ’s.
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Definition 8.12. Let o : I → {±1} be such that

i) o(i)o(j) = −1 for all i, j ∈ I such that aij < 0; and
ii) in the case X(k)

ñ �= A
(2)
2n , o(i) = 1 if there exists j ∈ I such that aij = −2.

For all i ∈ I consider the map εi : I → {±1} defined by

εi(j) =
{
o(i) if j = i

1 otherwise,

extend it to ε̂i : Î → {±1} in such a way that ε̂i(δ) = 1 and denote by (ε̂i)U
the corresponding automorphism of Uq (see Remark 8.11).

We define T ′
ωi

= (ε̂i)UTωi and T ′
ω =

∏
i∈I(T ′

ωi
)mi for all ω =

∑
i∈I miωi∈P .

We can now recall the results concerning the isomorphism between
U(A, k, d̃) and Uq(Â).

Recall 8.13. It is well known that U(A, k, d̃) ∼= Uq(Â) (see [4] and [5]). More
precisely if o : I → {±1} is as in Definition 8.12, there exists an isomorphism
ψ : U(A, k, d̃) → Uq(Â) characterized by the identification

Ei ↔ X+
i,0, Fi ↔ X−

i,0, Ki ↔ ki

and by the condition ψ ◦ ti = T ′
ωi
◦ ψ (for all i ∈ I).

In particular ψ ◦ Ω = Ω ◦ ψ and E(rd̃iδ,i) ↔ o(i)rHi,rd̃i
for all r > 0, i ∈ I.

From now on we consider the identification U(A, k, d̃) = Uq(Â) = U .

Definition 8.14. 1. We shall denote by Q++ ⊆ Q+ ⊆ Q the sets

Q+ =
{
β = rδ +

∑
i∈I

miαi ∈ Q
∣∣mi ≥ 0 ∀i ∈ I

}
,

Q++ =
{
β = rδ +

∑
i∈I

miαi ∈ Q+
∣∣∃i ∈ I such that mi > 0

}
= Q+ \ Zδ.

2. Given β1, β2 ∈ Q we say that

β1 ≥ β2 if β1 − β2 ∈ Q+ and β1 > β2 if β1 − β2 ∈ Q++.

Remark 8.15. Remark that ≥ is not an ordering (but its restriction to Q0
is).

Remark 8.16. In U we have that, independently of the sequence ι:
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i) U0,+ is the C(q)-subalgebra generated by {E(rδ,i)|r > 0, i ∈ I};
ii) U+ is the C(q)-subalgebra generated by

{Eα, Kα′Fα′ |α, α′ ∈ Φre
+ , α′ < 0 < α}.

iii) U− is the C(q)-subalgebra generated by

{Fα, K−α′Eα′ |α, α′ ∈ Φre
+ , α′ < 0 < α}.

iv) The C(q)-subalgebra generated by {Eα|0 < α ∈ Φre} is the intersection
between U+ and the C(q)-subalgebra generated by {Ei|i ∈ Î}.

v) The C(q)-subalgebra generated by {Eα|0 > α ∈ Φre} is the intersection
between ⊕β≤0kβU−

β and the C(q)-subalgebra generated by {Ei|i ∈ Î}.
vi) Finally, for all r > 0, i ∈ I the sequence ι (see Recall 8.9 and Defini-

tion 8.10) can be chosen so that if l = l(ωi) then

rd̃iδ + αi = sι(0)sι(−1) · . . . · sι(−rl+1)(αι(−rl))

and

{sι(0)sι(−1) · . . . · sι(h+1)(αι(h))| − rl < h ≤ 0} =
= {α ∈ Φre

+ |ωr
i (α) ∈ −Φre

+ } ⊆ {α ∈ Φre
+ |α ≥ αi}

(see [6, 7]).

Remark 8.17. We are now ready to describe, not completely but with some
accuracy that will turn out to be sufficient for our aim, the (Drinfeld-Jimbo)
coproduct Δ on the (Drinfeld) generators Hi,r and X+

i,r with positive r. No-
tation 8.18 is introduced to help this description.

It is interesting to recall that the following results depend on a strong
relation between Δ and the braid group action, which, avoiding too many
details, can be summarized as follows (see [24, 6, 7]): for every dominant
weight ω ∈ P+ there exists a “partial R-matrix” R̃ω such that

((Tω ⊗ Tω) ◦ Δ ◦ T−1
ω )(x) = R̃ω · Δ(x) · R̃−1

ω ∀x ∈ U .

This property, that we shall use in Section 9 to describe Δv as P -equivariant
limit of Δ, was already useful to find a relation of conjugation between Δ
and Δv: for example in [30] the author proved that Δ and Δv are conju-
gate through an invertible element R< arising from a decomposition of the
universal R-matrix; see also Remark 9.16.



222 Ilaria Damiani

Notation 8.18. Given i ∈ I we denote by U+
i the left and right U+-

submodule of U (two-sided ideal of U+) generated by {X+
i,r|r ∈ Z}; if moreover

r ≥ 0 define U+
i,r and U++

i,r by

U+
i,r =

⊕
0≤s<r,
γ∈Q0

(U+
i )γ+sδ, U++

i,r =
⊕
γ∈Q0:
γ>αi

(U+
i,r)[γ].

Recall 8.19. Δ has the following properties: for all i ∈ I

i) Δ(Hi,r)− (Hi,r ⊗ 1+Cr ⊗Hi,r) ∈
⊕

0≤s<r,
γ∈Q0

CrU−
(r−s)δ−γ ⊗U+

sδ+γ ∀r > 0.
ii) The homogeneous component of Δ(Hi,d̃i

) in U[−αi] ⊗ U[αi] is

−(qi − q−1
i )biid̃iC

d̃iX−
i,d̃i

⊗X+
i,0.

iii) Δ(X+
i,r) − (X+

i,r ⊗ 1 + kiC
r ⊗X+

i,r) ∈ U ⊗ ((U+
i,r)[αi] ⊕ U++

i,r ) ∀r ≥ 0.

See [6] for the untwisted case and [7] for the general affine case (and
Remark 8.16, vi)).

The next Lemma, which is a refinement of Recall 8.19, iii), is the main
result used in Section 9 to compare Δ and Δv.

Lemma 8.20. For all i ∈ I, r ≥ 0

Δ(X+
i,r) = X+

i,r ⊗ 1 +
r∑

s=0
kiC

r−sH̃i,s ⊗X+
i,r−s + Yr

with Yr ∈ U ⊗ U++
i,r .

Proof. Thanks to Recall 8.19, iii) we already know that

Δ(X+
i,r) = X+

i,r ⊗ 1 + Y ′
r + Yr

with Y ′
r −kiC

r⊗X+
i,r ∈ U ⊗ (U+

i,r)[αi], Yr ∈ U ⊗U++
i,r , so we just need to prove

that

Y ′
r =

r∑
s=0

kiC
r−sH̃i,s ⊗X+

i,r−s.

We proceed by induction on r, the cases r < d̃i being trivial (Y0 = 0, X+
i,r = 0

if 0 < r < d̃i).
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Let r ≥ d̃i. Since [Hi,d̃i
, X+

i,s] = biid̃iX
+
i,s+d̃i

(biid̃i �= 0) for all s, Recall 8.19
implies that there exists Y ∈ ⊕ 0≤s<d̃i

γ 
=αi

C d̃iU−
(d̃i−s)δ−γ

⊗ U+
γ+sδ such that

biid̃iΔ(X+
i,r) =

=
[
Hi,d̃i

⊗ 1 + C d̃i ⊗Hi,d̃i
− (qi − q−1

i )biid̃iC
d̃iX−

i,d̃i
⊗X+

i,0,

X+
i,r−d̃i

⊗ 1 +
r−d̃i∑
s=0

kiC
r−d̃i−sH̃i,s ⊗X+

i,r−d̃i−s

]
+

+ [Δ(Hi,d̃i
), Yr−d̃i

] +
[
Y,X+

i,r−d̃i
⊗ 1 +

r−d̃i∑
s=0

kiC
r−d̃i−sH̃i,s ⊗X+

i,r−d̃i−s

]
,

so that

Δ(X+
i,r) =

= X+
i,r ⊗ 1 +

r−d̃i∑
s=0

kiC
r−sH̃i,s ⊗X+

i,r−s + kiH̃i,r ⊗X+
i,0 + Yr

(which is the claim) because

[Δ(Hi,d̃i
), Yr−d̃i

] +
[
Y,

r−d̃i∑
s=0

kiC
r−d̃i−sH̃i,s ⊗X+

i,r−d̃i−s

]

obviously belongs to U ⊗ U++
i,r and

[Y,X+
i,r−d̃i

⊗ 1]

also belongs to U ⊗U++
i,r because it belongs to U ⊗U+

i (see Remark 8.16, vi),
which implies that the root vectors Eα involved in the right hand factors of Y
are of the form α = γ+mδ with Q0 � γ ≥ αi) and its component in U ⊗U[αi]
is zero (because of the condition γ �= αi in the definition of Y ).

One can also prove by direct computation that [Y,X+
i,r−d̃i

⊗1] ∈ U ⊗U++
i,r

remarking that X−
j,s commutes with X+

i,rd̃i
for all j �= i, s ∈ Z: indeed Y =

Ȳ + ¯̄Y with Ȳ ∈ U⊗U++
i,r (so that [Ȳ , X+

i,rd̃i
⊗1] ∈ U⊗U++

i,r ) and ¯̄Y =
∑ ¯̄Y ′

h⊗ ¯̄Y ′′
h

where the ¯̄Y ′
h’s belong to the subalgebra of U generated by {X−

j,s|j �= i, s ∈ Z}
(so that [ ¯̄Y,X+

i,rd̃i
⊗ 1] = 0).
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9. Affine quantum algebras: Δv as t-equivariant limit of Δ

We are now ready to concentrate on the connection between Δ and the action
of the weight lattice P .

We shall prove that Δv is the “t-equivariant limit” of Δ (see Notation 9.7
and Definition 9.8): the first concern of this section is to discuss the notion
of limit and convergence in U ⊗̂U .

Recall that U ⊗̂U is a Q0⊕Q0⊕Z-graded vector space whose components
are the completions of Z-graded vector spaces.

The notion of convergence and limit in the completion V̄ of a Z-graded
vector space V = ⊕r∈ZV

(r) is easy to describe: a sequence {xm}m∈N ⊆ V is
convergent if

∀N ∈ Z ∃M ≥ 0 such that ∀m ≥ M : xm − xM ∈ ⊕s≤NV
(s);

its limit is the element x̄ ∈ V̄ whose nth component for n > N is the nth-
component of xm for m ≥ M (which is independent of m thanks to the choice
of M).

Now if we have the direct sum V = ⊕aVa of a family of Z-graded vector
spaces and the direct sum V̂ = ⊕V̄a of their completions, every element
of V (respectively V̂ ) is the (finite) sum of its own a-components (that is
projections on the Va’s, respectively V̄a); and to each sequence σ with values
in V there corresponds for all a a sequence aσ with values in Va (the projection
of σ).

Which are the conditions for σ to have limit in V̂ ? The first condition is
that every aσ has limit in V̄a. Then the limit of σ should be the sum of the
limits of the aσ’s: so the second condition is that just a finite number of aσ’s
have limit different from zero.

Notation 9.1. For all γ1, γ2 ∈ Q0, r ∈ Z let p[γ1,γ2;r] be the projection

p[γ1,γ2;r] : U ⊗̂U → (U ⊗̂U)[γ1,γ2;r].

Of course p[γ1,γ2;r] maps U ⊗ U onto (U ⊗ U)[γ1,γ2;r].

Definition 9.2. Let us consider a sequence {xm}m∈N ⊆ U ⊗ U . We say
that {xm}m∈N is convergent, and converges to x̄ ∈ U ⊗̂U , if the following
conditions are satisfied:

i) for all γ1, γ2 ∈ Q0, r ∈ Z there exists

lim
m→∞

p[γ1,γ2;r](xm) ∈ (U ⊗̂U)[γ1,γ2;r];
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equivalently: for all N ∈ Z there exists M ≥ 0 such that for all m ≥ M

p[γ1,γ2;r](xm − xM ) ∈
⊕
s≤N

Uγ1+(r−s)δ ⊗ Uγ2+sδ;

ii) #{(γ1, γ2, r) ∈ Q0 ×Q0 × Z| limm→∞ p[γ1,γ2;r](xm) �= 0} < ∞;
iii) x̄ =

∑
(γ1,γ2,r)∈Q0×Q0×Z limm→∞ p[γ1,γ2;r](xm).

If {xm}m∈N converges to x̄ ∈ U ⊗̂U we write x̄ = limm→∞ xm.

Remark 9.3. The sequence {xm}m∈N ⊆ U ⊗ U converges to x̄ ∈ U ⊗̂U if
and only if for all γ1, γ2 ∈ Q0, r,N ∈ Z there exists M ≥ 0 such that for all
m ≥ M

p[γ1,γ2;r](x̄− xm) ∈
∑
s≤N

Uγ1+(r−s)δ ⊗ Uγ2+sδ ⊆ (U ⊗̂U)[γ1,γ2;r].

From this remark it is clear that in the general definition of convergence
M depends on γ1, γ2, r, N but we have no control on this dependence. The
problem is that for our needs this notion of convergence is too weak, and it is
useful to introduce a stronger notion of convergence requiring some condition
on the dependence of M on γ1, γ2, r, N (we shall require that M be actually
independent of γ1, γ2, r and depend “almost linearly” on N).

Definition 9.4. A sequence {xm}m∈N ⊆ U⊗U is said to strongly converge to
x̄ ∈ U ⊗̂U if there exist Rx ∈ Z, Mx ∈ N such that for all γ1, γ2 ∈ Q0, r, N ∈ Z
and for all m ≥ max{Mx, Rx −N} we have

p[γ1,γ2;r](x̄− xm) ∈
∑
s≤N

Uγ1+(r−s)δ ⊗ Uγ2+sδ ⊆ (U ⊗̂U)[γ1,γ2;r].

A sequence {xm}m∈N ⊆ U ⊗U is said to be strongly convergent if there exists
x̄ ∈ U ⊗̂U such that {xm}m∈N strongly converges to x̄.

A sequence that strongly converges to x̄ is convergent and converges to x̄.

Remark 9.5. A sequence {xm}m∈N ⊆ U⊗U strongly converges to x̄ ∈ U ⊗̂U
if and only if there exist Rx ∈ Z, Mx ∈ N such that for all N ∈ Z and for all
m ≥ max{Mx, Rx −N} we have

x̄− xm ∈
∑

β∈Q,γ∈Q0,s≤N

Uβ ⊗ Uγ+sδ ⊆ v−NU ⊗ U [[v]].
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Equivalently {xm}m∈N ⊆ U ⊗ U strongly converges to x̄ ∈ U ⊗̂U if and only
if there exist Rx ∈ Z, Mx ∈ N such that for all m ≥ Mx we have

x̄− xm ∈ vm−RxU ⊗ U [[v]].

Remark 9.6. If {xm}m∈N and {ym}m∈N ⊆ U ⊗ U strongly converge respec-
tively to x̄ ∈ v−dxU ⊗U [[v]] and ȳ ∈ v−dyU ⊗U [[v]], then {xm + ym}m∈N and
{xmym}m∈N strongly converge respectively to x̄ + ȳ and x̄ȳ.

Let us now turn to the equivariant side of the problem.

Notation 9.7. From now on we denote by t the automorphism of U defined
by

t =
∏
i∈I

tωi.

Equivalently t = tω = T ′
ω where ω =

∑
i∈I ωi.

Definition 9.8. Let x be an element of U . The t-equivariant limit Δ̄(x) of
Δ(x) in U ⊗̂ 2 is, if it exists,

Δ̄(x) = lim
m→∞

(t⊗ t)mΔt−m(x).

Proposition 9.9. The set

Ū = {x ∈ U|{(t⊗ t)mΔt−m(x)}m∈N is strongly convergent}

is an Ω-stable C(q)-subalgebra of U and Δ̄ : Ū → U ⊗̂U is an Ω-equivariant
C(q)-algebra homomorphism, that is Δ̄ is a C(q)-algebra homomorphism such
that Δ̄Ω = Ω̂(2)Δ̄.

Proof. Since Δ, t and t⊗t are algebra homomorphisms, that Ū is a subalgebra
of U and Δ̄ a C(q)-algebra homomorphism follows from Remark 9.6.

The Ω-equivariance of Δ̄ follows from the fact that

(t⊗ t)mΔt−m(Ω(x)) = σ2 ◦ Ω⊗2(t⊗ t)mΔt−m(x)

and from the fact that if x ∈ Uβ with β = γ + rδ (γ ∈ Q0, r ∈ Z) then

(t⊗ t)mΔt−m(x) ∈
⊕

γ1,γ2∈Q0
r1+r2=r

Uγ1+r1δ ⊗ Uγ2+r2δ
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and
σ2 ◦ Ω⊗2(t⊗ t)mΔt−m(x) ∈

⊕
γ1,γ2∈Q0
r1+r2=r

U−γ2−r2δ ⊗ U−γ1+(r2−r)δ,

so that if x ∈ Ū ⊆ ⊕β∈QUβ there exists r ∈ Z such that RΩ(x) = Rx − r
satisfies the condition for the strong convergence of {(t⊗t)mΔt−m(Ω(x))}m∈N
to Ω̂(2)Δ̄(x).

Remark 9.10. For all β ∈ Q (t ⊗ t)mΔt−m(kβ) = kβ ⊗ kβ is a constant
sequence, hence

Δ̄(kβ) = Δ(kβ) = kβ ⊗ kβ .

Lemma 9.11. 1. Let x ∈ Uβ1 ⊗ Uβ2 with β1, β2 ∈ Q such that <ω, β2> > 0.
Then {(t⊗ t)m(x)}m∈N strongly converges to zero.
2. Let r ∈ Z and {xm}m∈N ∈ U ⊗ U be such that xm ∈ U ⊗ U++

i,r+md̃i
for

all m >> 0.
Then {(t⊗ t)m(xm)}m∈N strongly converges to zero.

Proof. 1. Let β2 = γ2 + r2δ with γ2 ∈ Q0, r2 ∈ Z. Then

(t⊗ t)m(x) ∈ Uβ1−m<ω,β1>δ ⊗ Uγ2+(r2−m<ω,γ2>)δ,

which implies the claim because r2 −m<ω, γ2> ≤ r2 −m.
2. xm is a (finite) sum of elements in U ⊗ (U++

i,r+md̃i
)γ+sδ with 0 ≤ s <

r + md̃i and αi < γ ∈ Q0. Since

(t⊗ t)m(U ⊗ Uγ+sδ) ⊆ U ⊗ Uγ+(s−m<ω,γ>)δ

the claim follows because

<ω, γ> > <ω, αi> = d̃i, s < r + md̃i ⇒
⇒ s−m<ω, γ> < r + m(d̃i −<ω, γ>) ≤ r −m,

that is s−m<ω, γ> < r −m.

Proposition 9.12. Let i ∈ I, r �= 0. Then (t ⊗ t)mΔt−m(Hi,r) is strongly
convergent and

Δ̄(Hi,r) =
{
Hi,r ⊗ 1 + Cr ⊗Hi,r if r > 0,
1 ⊗Hi,r + Hi,r ⊗ Cr if r < 0.

In particular U0 ⊆ Ū and Δ̄ : U0 → U0 ⊗ U0.
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Proof. Since Hi,−r = Ω(Hi,r) it is enough to prove the claim for r > 0,
observing that 1 ⊗Hi,−r + Hi,−r ⊗ C−r = σ2Ω⊗2(Hi,r ⊗ 1 + Cr ⊗Hi,r).

Remark that t−m(Hi,r) = Hi,r, so that we want to study the sequence
(t⊗ t)mΔ(Hi,r).

By Recall 8.19, i) we have that if r > 0 then

Δ(Hi,r) − (Hi,r ⊗ 1 + Cr ⊗Hi,r) ∈ (CrU− ⊗ U+)rδ,

which implies that it is a (finite) sum of elements satisfying the condition of
Lemma 9.11, hence strongly converges to zero; since Hi,r ⊗ 1 + Cr ⊗ Hi,r is
t⊗ t-stable, this implies that (t⊗ t)mΔ(Hi,r) strongly converges to Hi,r ⊗ 1+
Cr ⊗Hi,r, which is the claim.

Corollary 9.13. Remark 9.10 and Proposition 9.12 imply that also H̃±
i,r and

K̃±
i,r = k±1

i H̃±
i,r belong to Ū and that on these elements Δ̄ coincides with Δv.

Proposition 9.14. Let i ∈ I, r ∈ Z. Then (t ⊗ t)mΔt−m(X±
i,r) is strongly

convergent and

Δ̄(X+
i,r) = X+

i,r ⊗ 1 +
∑

r1+r2=r

kiC
r2H̃+

i,r1 ⊗X+
i,r2v

−r2 ,

Δ̄(X−
i,r) = 1 ⊗X−

i,rv
−r +

∑
r1+r2=r

X−
i,r1 ⊗ k−1

i Cr1H̃−
i,r2v

−r2 .

Proof. As in Proposition 9.12 it is enough to prove the claim for X+
i,r, since

X−
i,r = Ω(X+

i,−r) and, as already remarked,

1 ⊗X−
i,rv

−r +
∑

r1+r2=r

X−
i,r1

⊗ k−1
i Cr1H̃−

i,r2
v−r2 =

= Ω̂(2)
(
X+

i,−r ⊗ 1 +
∑

r1+r2=−r

kiC
r2H̃+

i,r1
⊗X+

i,r2
v−r2

)
.

Let us fix r ∈ Z. Then with the notations of Lemma 8.20 we have that for all
m >> 0 (more precisely if m ≥ 0 is such that r + md̃i ≥ 0)

Δt−m(X+
i,r) = X+

i,r+md̃i
⊗ 1 +

r+md̃i∑
s=0

kiC
r+md̃i−sH̃i,s ⊗X+

i,r+md̃i−s
+ Yr+md̃i

,

hence

(t⊗ t)mΔt−m(X+
i,r) = X+

i,r ⊗ 1+
r+md̃i∑
s=0

kiC
r−sH̃i,s⊗X+

i,r−s +(t⊗ t)m(Yr+md̃i
).
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Lemma 9.11,2. implies that {(t⊗t)m(Yr+md̃i
)}m∈N strongly converges to zero.

On the other hand
{

r+md̃i∑
s=0

kiC
r−sH̃i,s ⊗X+

i,r−s

}
m∈N

obviously strongly converges to∑
s≥0

kiC
r−sH̃i,s ⊗X+

i,r−s,

which proves the claim.

Theorem 9.15. The subalgebra Ū of U (see Proposition 9.9) is U , that is
for all x ∈ U the sequence {(t⊗ t)mΔt−m(x)}m∈N is strongly convergent.

The t-equivariant limit Δ̄ : U → U ⊗̂U of Δ is an Ω-equivariant C(q)-
algebra homomorphism.

The map Δ̄
∣∣
X is equal to Δv: in particular the map Δv defined in Defi-

nition 4.5 extends to a well defined C(q)-algebra homomorphism, that is the
Drinfeld “coproduct” is well defined and it is the t-equivariant limit of Δ.

Proof. Remark 9.10, Propositions 9.12 and 9.14 and Corollary 9.13 imply that
Ū contains the set X , on which Δv is defined, and that Δ̄ and Δv coincide
on this set of generators of U . Then Proposition 9.9 implies the claim.

Remark 9.16. We have thus proven that for all x ∈ U

Δv(x) = lim
m→∞

(t⊗t)mΔt−m(x) = lim
m→∞

(T ′
ω ⊗ T ′

ω)mΔT ′ −m
ω (x)

where ω =
∑

∈I ωi.
Remark that (T ′

ω ⊗T ′
ω)mΔT ′ −m

ω = (Tω ⊗Tω)mΔT−m
ω (see Definition 8.12

for the action of T ′
ω on Uβ), so that

Δv(x) = lim
m→∞

(Tω ⊗ Tω)mΔT−m
ω (x).

But as we have already remarked (see Remark 8.17) there exist “partial R-
matrices” R̄m = R̃mω such that

(Tω ⊗ Tω)mΔT−m
ω (x) = R̄mΔ(x)R̄−1

m .

On the other hand (see [30])

Δv(x) = R<Δ(x)R−1
< ,
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so that
R<Δ(x)R−1

< = lim
m→∞

R̄mΔ(x)R̄−1
m .

Of course this observation suggests the problem, that it is not possible to
study here, of understanding if the R< considered in [30] is defined in our
setting (that is if it belongs to U ⊗̂U), if the R̄m’s (which are element of
U ⊗ U) have limit in U ⊗̂U , and if R< can be described also as limit of the
R̄m’s, or which is its relation with them, if there is any.
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