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A 1-dimensional formal group over the prismatization of
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Abstract: Let Σ denote the prismatization of Spf Zp. The multi-
plicative group over Σ maps to the prismatization of Gm ×Spf Zp.
We prove that the kernel of this map is the Cartier dual of some
1-dimensional formal group over Σ. We obtain some results about
this formal group (e.g., we describe its Lie algebra). We give a
very explicit description of the pullback of the formal group to the
quotient stack Q/Z×

p , where Q is the q-de Rham prism.
Keywords: Prismatic cohomology, prismatization, q-de Rham
prism, formal group, Breuil-Kisin twist.

1. Introduction

Let p be a prime.

1.1. Subject of this article

In their remarkable work [BS] B. Bhatt and P. Scholze introduced the theory
of prismatic cohomology of p-adic formal schemes. B. Bhatt and J. Lurie
realized that the theory of [BS] has a stacky reformulation; it is based on
a certain prismatization functor, which we denote1 by X �→ XΔ. This is a
functor from the category of bounded p-adic formal schemes to that of stacks.2

Following [D3], we write Σ := (Spf Zp)Δ. The stack Σ plays a fundamental
role in the theory of prismatic cohomology.

Received February 2, 2022.
2010 Mathematics Subject Classification: 14F30.
1Bhatt and Lurie [BL, BL2] write WCartX instead of XΔ and WCart instead of

Σ := (Spf Zp)Δ.
2Bhatt and Lurie also define a derived version of the prismatization functor.

The difference between derived and non-derived prismatization is irrelevant for our
article.
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In general, there is no canonical map X × Σ → XΔ. However, such a
map exists if X = Gm × Spf Zp. Moreover, this map is a faithfully flat group
homomorphism (more precisely, a homomorphism from a commutative group
scheme over Σ to a Picard stack over Σ). Let GΣ be its kernel; it is a flat
affine commutative group scheme over Σ.

Our first main result (Theorem 2.7.5) says that GΣ is the Cartier dual
of some 1-dimensional formal group over Σ, which we denote by HΣ. Then
Lie(HΣ) = Hom(GΣ, (Ga)Σ) is a line bundle on Σ. It turns out to be inverse to
the Breuil-Kisin-Tate module OΣ{1} (see Theorem 2.7.10). The correspond-
ing homomorphism GΣ → OΣ{1} is explicitly constructed in [BL, BL2] and
called the prismatic logarithm; it is used in [BL] to define the prismatic first
Chern class.

We obtain some results about the formal group HΣ (see §2.9), but we are
unable to describe it explicitly. However, in §2.10–2.11 we give a very explicit
description of the pullback of HΣ to the quotient stack Q/Z×

p , where Q is the
q-de Rham prism.

The author’s study of GΣ and HΣ was motivated by the desire to un-
derstand certain aspects of [BS] and [BL, BL2] (see Remark 2.7.4 and Ap-
pendix A for more details). On the other hand, HΣ could be interesting from
the topologist’s point of view.

Let us note that the group scheme GΣ is also introduced in [BL2] (under
the name of GWCart).

1.2. Organization

The main results are formulated in §2. We also formulate there a question
about GΣ and a conjecture about HΣ (see §2.8 and Conjecture 2.12.4).

In §3 we discuss some general results and constructions related to formal
groups. In §4 we prove the results formulated in §2.

In §5 we describe and compare several “realizations” of the group scheme
GQ := GΣ ×Σ Q; the first one immediately follows from the definition of GQ,
and the others come from the description of its Cartier dual. A key role is
played by the expressions (1 + (q − 1)z)

t
q−1 and q

pt
q−1 ; the second expression

is closely related to the q-logarithm in the sense of [ALB, §4].
In Appendix A we explain how to compute the prismatic cohomology of

the punctured affine line over Spf Zp using some results formulated in §2.
In Appendix B we discuss the Cartier dual of the divided powers version

of Gm. As explained in §4.6.1, the end of Appendix B is related to §4. Ap-
pendix B is closely related to the material from [BL] about the “Sen operator”.
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In Appendices C and D we describe the Cartier dual of Ĝm and of its
“rescaled” version. This material is used in §5. As noted by the reviewer, a
substantial part of Appendices C and D is contained in [MRT].

2. Formulations of the main results

We fix a prime p. Let W denote the scheme of p-typical Witt vectors; this is
a ring scheme over Z.

2.1. Some conventions

A ring in which p is nilpotent is said to be p-nilpotent. A scheme S is said to
be p-nilpotent if p ∈ H0(S,OS) is locally nilpotent.

Unless specified otherwise, the word “stack” will mean a stack of groupoids
on the category of schemes equipped with the fpqc topology.

Schemes and formal schemes are particular classes of stacks. E.g., Spf Zp

is the functor that associates to a scheme S the set with one element if S is
p-nilpotent and the empty set otherwise.

For us, A1 := SpecZ[x]. Given a stack X , we write A1
X := A1×X . E.g.,

A1
Spf Zp

is the Spf of the p-adic completion of Zp[x].
Similarly, Ga, Gm, W are group schemes over Z, from which (Ga)X ,

(Gm)X , WX are obtained by base change to X .

2.2. δ-schemes and δ-stacks

2.2.1. Definitions A Frobenius lift for a stack X is a morphism F : X →
X equipped with a 2-isomorphism between the endomorphism of X ⊗ Fp

induced by F and the Frobenius endomorphism of X ⊗ Fp. A δ-stack is a
stack X equipped with a Frobenius lift.

We say “δ-structure” instead of “δ-stack structure”. We say “δ-morphism”
instead of “morphism of δ-stacks”.

A δ-stack which is a scheme (resp. formal scheme) is called a δ-scheme
(resp. formal δ-scheme).

2.2.2. Comparison with δ-rings According to [BS, Def. 2.1], a δ-ring is
a ring A equipped with a map δ : A → A satisfying certain identities. These
identities ensure that the map φ : A → A given by φ(a) = ap +pδ(a) is a ring
homomorphism (and therefore a Frobenius lift). If A is p-torsion-free then a
δ-ring structure on A is the same as a Frobenius lift for A or equivalently, a
δ-structure on SpecA in the sense of §2.2.1. If A is not p-torsion-free then the
two notions are different, so the definitions of §2.2.1 are not so good. However,
they are convenient enough for this article (because the rings that appear in
it are p-torsion-free).
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2.2.3. Group δ-schemes and ring δ-schemes By a group δ-scheme over
a δ-stack X we mean a group object in the category of δ-stacks equipped with
a schematic3 δ-morphism to X . The definition of ring δ-scheme is similar.

2.2.4. Examples (i) The endomorphism F : Gm → Gm defined by F (x) =
xp makes Gm into a group δ-scheme over Z.

(ii) The Witt vector Frobenius F : W → W makes W into a ring δ-scheme
over Z.

2.3. The formal δ-scheme Wprim

Let us recall the material from [D3, §4.1]. The same material is contained
in [BL], but the notation in [BL] is different: our Wprim is denoted there
by WCart0.

2.3.1. A locally closed subscheme of W Let A ⊂ W ⊗ Fp be the
locally closed subscheme obtained by removing Ker(W � W2) ⊗ Fp from
Ker(W � W1) ⊗ Fp. In terms of the usual coordinates x0, x1, . . . on the
scheme W , the subscheme A ⊂ W is defined by the equations p = x0 = 0
and the inequality x1 �= 0.

2.3.2. Definition of Wprim Define Wprim to be the formal completion of
W along the locally closed subscheme A from §2.3.1. In other words, for any
scheme S, an S-point of Wprim is a morphism S → W which maps Sred to
A. If S is p-nilpotent and if we think of a morphism S → W as a sequence
of functions xn ∈ H0(S,OS) then the condition is that x0 is locally nilpotent
and x1 is invertible. If S is not p-nilpotent then Wprim(S) = ∅.

Wprim is a formal affine δ-scheme (the δ-structure is induced by the one
on W , see §2.2.4). In terms of the usual coordinates x0, x1, . . . on W , the
coordinate ring of Wprim is the completion of Zp[x0, x1, . . .][x−1

1 ] with re-
spect to the ideal (p, x0) or equivalently, the p-adic completion of the ring
Zp[x1, x

−1
1 , x2, x3, . . .][[x0]].

2.4. The δ-stack Σ

Let us recall the material from [D3, §4.2]. The same material is contained in
[BL], but the notation in [BL] is different: our Σ is denoted there by WCart
and called the Cartier-Witt stack.

3A morphism of stacks Y → X is said to be schematic if Y ×X S is a scheme
for any scheme S equipped with a morphism to s → X .
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2.4.1. Action of W× on Wprim The morphism

(2.1) W× ×Wprim → Wprim, (u, ξ) �→ u−1ξ

defines an action of W× on Wprim (“action by division”). The reason why
we prefer it to the action by multiplication is explained in [D3, §4.2.6]. The
difference between the two actions is irrelevant for most purposes. Note that
W× is a δ-scheme, Wprim is a formal δ-scheme, and (2.1) is a δ-morphism.

2.4.2. Σ as a quotient stack The δ-stack Σ is defined as follows:

(2.2) Σ := Wprim/W
×.

In other words, Σ is the fpqc-sheafification of the presheaf of groupoids

R �→ Wprim(R)/W (R)×.

It is also the Zariski sheafification of this presheaf (see [BL] or [D3, §4.2.2]).

2.4.3. The S-points of Σ Instead of using the definition from §2.4.2, one
can use a direct description of the groupoid of S-points of Σ, where S is any
scheme (see [BL] or [D3, §4.2.2]).

2.5. The group δ-scheme G′
Σ over Σ

2.5.1. The group scheme G′
Wprim

We are going to define a flat affine
commutative group δ-scheme G′

Wprim
over Wprim equipped with a homomor-

phism

(2.3) G′
Wprim → W×

Wprim
:= Wprim ×W×

of group δ-schemes over Wprim.
As a formal δ-scheme, G′

Wprim
:= Wprim ×W . The map

G′
Wprim ×Wprim G′

Wprim → G′
Wprim , (ξ, x1, x2) �→ (ξ, x1 + x2 + ξx1x2)

is a group operation (to check this, use that ξ is topologically nilpotent).
The homomorphism (2.3) is given by

(ξ, x) �→ (ξ, 1 + ξx).
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2.5.2. The group scheme G′
Σ over Σ Recall that Σ = Wprim/W

×. The
δ-morphism

W× × (Wprim ×W ) → Wprim ×W ; (u, ξ, x) �→ (u−1ξ, ux)

defines an action of W× on G′
Wprim

:= Wprim ×W , which lifts the action (2.1)
on Wprim and preserves the group structure on G′

Wprim
and the map (2.3).

So G′
Wprim

descends to a commutative group δ-scheme G′
Σ over Σ equipped

with a δ-homomorphism

(2.4) G′
Σ → W×

Σ := W× × Σ.

G′
Σ is affine and flat over Σ because G′

Wprim
is affine and flat over Wprim.

2.5.3. Relation to the prismatization of Gm The Bhatt-Lurie ap-
proach to prismatic cohomology is based on the prismatization functor X �→
XΔ from the category of p-adic formal schemes4 to that of δ-stacks algebraic
over Σ, see [D3, §1.4]. If X is a scheme over Z we set XΔ := (X⊗̂Zp)Δ, where
X⊗̂Zp is the p-adic completion of X.

In particular, one can apply the prismatization functor to Gm = A1 \{0}.
It is easy to check that GΔ

m has a natural structure of strictly commutative
Picard stack over Σ, and one has a canonical isomorphism of of strictly com-
mutative Picard stacks

(2.5) GΔ
m

∼−→ Cone(G′
Σ → W×

Σ ),

where the meaning of “Cone” is explained in [D3, §1.3.1–1.3.2]; moreover, the
isomorphism (2.5) is compatible with the δ-structures. We skip the details
because the isomorphism (2.5) will be used only to motivate the study of G′

Σ
and its subgroup GΣ introduced below.

2.6. The group δ-scheme GΣ over Σ

2.6.1. Teichmüller embedding We have the Teichmüller embedding

Gm ↪→ W×

and the retraction W× � Gm (to a Witt vector one assigns its 0-th com-
ponent). Both Gm and W× are group δ-schemes over Z (see §2.2.4). The
Teichmüller embedding is a δ-homomorphism. The retraction W× → Gm is
a homomorphism but not a δ-homomorphism.

4A p-adic formal scheme is a stack X equipped with a schematic morphism
X → Spf Zp.
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2.6.2. Definition GΣ is the preimage of the subgroup (Gm)Σ ⊂ W×
Σ under

the homomorphism (2.4). Equivalently, GΣ is the kernel of the homomorphism

(2.6) G′
Σ → (W×/Gm)Σ

that comes from (2.4).

2.6.3. Pieces of structure on GΣ Clearly, GΣ is a commutative affine
group δ-scheme over Σ equipped with a δ-homomorphism

(2.7) GΣ → (Gm)Σ.

2.6.4. Notation For a stack X over Σ, we write GX (resp. G′
X ) for the

pullback of GΣ (resp. G′
Σ) to X .

2.7. Results about GΣ

Proposition 2.7.1. The homomorphism (2.6) is faithfully flat.

The proof is given in §4.2.

Corollary 2.7.2. GΣ is flat over Σ.

Proof. Follows from Proposition 2.7.1 because GΣ is the kernel of (2.6).

Combining Proposition 2.7.1 with (2.5), one gets the following

Corollary 2.7.3. One has a canonical isomorphism of strictly commutative
Picard stacks

(2.8) GΔ
m

∼−→ Cone(GΣ → (Gm)Σ),

compatible with the δ-structures.

Remark 2.7.4. Combining Corollary 2.7.3 with our results on GΣ and its
Cartier dual HΣ, one can compute the derived direct images of the structure
sheaf under the morphism

(A1 \ {0})Δ = GΔ
m → (Spf Zp)Δ = Σ,

see Appendix A. This is not really a new result but rather a new point of
view5 on a key result of [BS].

5The prismatization functor and the groups GΣ, HΣ do not appear in [BS].
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Corollary 2.7.2 can be strengthened as follows.

Theorem 2.7.5. GΣ is the Cartier dual of some 1-dimensional commutative
formal group HΣ over Σ.

The proof is given in §4.3.4. The precise definition of a formal group over
a scheme X is given in §3.2; in the case that X is a stack see §3.3.3(ii).
(According to these definitions, a formal group is locally on X defined by a
formal group law.)

Corollary 2.7.6. Hom(GΣ, (Ga)Σ) is a line bundle over Σ.

Proof. By Theorem 2.7.5, Hom(GΣ, (Ga)Σ) = Lie(HΣ).

Our next goal is to formulate Theorem 2.7.10, which says that the line
bundle Hom(GΣ, (Ga)Σ) is canonically isomorphic to OΣ{−1}, i.e., the inverse
of the Breuil-Kisin-Tate module6 OΣ{1}. To explain the word “canonically”,
we have to discuss ρ∗dRGΣ, where ρdR : Spf Zp → Σ is the “de Rham point”
of Σ.

2.7.7. The “de Rham pullback” of GΣ The element p ∈ W (Zp) defines
a morphism

Spf Zp → Wprim.

The corresponding morphism Spf Zp → Σ is called the de Rham point of Σ
and denoted by ρdR : Spf Zp → Σ.

Let GdR := ρ∗dRGΣ. By the definition of GΣ, for any p-nilpotent ring A
we have

(2.9) GdR(A) := {x ∈ W (A) | 1 + px ∈ A× ⊂ W (A)×},

where A× ⊂ W (A)× is the image of the Teichmüller embedding, and the
group operation on GdR(A) is given by (x1, x2) �→ x1 + x2 + px1x2.

We have a canonical homomorphism

(2.10) GdR → (Ga)Spf Zp , x �→ p−1 log(1 + px0) :=
∞∑
n=1

(−p)n−1

n
xn0 ,

where x0 is the 0-th component of the Witt vector x (the formula makes sense
because the numbers (−p)n−1

n are in Zp and converge to 0).
6For the definition of OΣ{1}, see [D3, §4.9] or [BL]; one of the equivalent defini-

tions is essentially recalled in §2.9.6. Let us note that in [BL] our OΣ{1} is called
the Breuil-Kisin line bundle and denoted by OWCart{1}.
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Proposition 2.7.8. The homomorphism (2.10) induces an isomorphism

GdR
∼−→ (G�

a)Spf Zp ,

where G�
a is the divided powers version of Ga.

The proposition is proved in §4.4.

Corollary 2.7.9. The homomorphism (2.10) induces an isomorphism

(2.11) (Ga)Spf Zp

∼−→ Hom(GdR, (Ga)Spf Zp).

Theorem 2.7.10. There is a unique isomorphism

(2.12) OΣ{−1} ∼−→ Hom(GΣ, (Ga)Σ)

whose ρdR-pullback is the isomorphism (2.11).

In the theorem and the next corollary we tacitly use that ρ∗dROΣ{1} is
canonically trivial, see [D3, §4.9]. The existence of (2.12) is proved in §2.9.6;
uniqueness follows from the equality

(2.13) H0(Σ,OΣ) = Zp,

which is proved in [D3, Cor. 4.7.2]. Combining Theorem 2.7.10 with (2.13),
we get

Corollary 2.7.11. There is a unique homomorphism GΣ → OΣ{1}, whose
ρdR-pullback is the homomorphism (2.10).

A homomorphism GΣ → OΣ{1} with this property is explicitly con-
structed in [BL] (see also [BL2, §4]); it is denoted there by logΔ and called
the prismatic logarithm. The prismatic logarithm is used in [BL] to define the
prismatic first Chern class.

2.7.12. Pullback of GΣ to the Hodge-Tate divisor We have a homo-
morphism W → W1 = A1 (to a Witt vector it associates its 0-th coordinate).
It induces a morphism

Σ = Wprim/W
× → A1/Gm.

Let Δ0 ⊂ Σ be the preimage of {0}/Gm ⊂ A1/Gm. Then Δ0 is an effective
Cartier divisor on Σ (in the sense of [D3, §2.10–2.11]). It is called the Hodge-
Tate divisor. Let us note that in [BL] this divisor is denoted by WCartHT.
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Let GΔ0 be the pullback of GΣ to Δ0. Let M be the conormal line bundle
of Δ0 ⊂ Σ. Let M � be the divided powers version of M (so M � and M are
obtained from G�

a and Ga by twisting them with the same Gm-torsor on Δ0).

Proposition 2.7.13. GΔ0 is isomorphic to M �. Accordingly, the Cartier
dual of GΔ0 is isomorphic to the formal completion of the line bundle M ∗

along its zero section.

The proposition will be proved in §4.3.5.
Let us note that Proposition 2.7.13 agrees with Theorem 2.7.10 because

the pullback of OΣ{1} to Δ0 is known to be canonically isomorphic to M
(e.g., see [D3, Lemma 4.9.7(ii)] and [D3, §4.9.1]).

2.7.14. Warning Let ρ̄dR : SpecFp → Σ be the restriction of

ρdR : Spf Zp → Σ.

Then ρ̄dR lands into Δ0 ⊂ Σ. So one can compute ρ∗dRGΣ using either Theo-
rem 2.7.10 or Proposition 2.7.13. Thus we get two isomorphisms

ρ∗dRGΣ
∼−→ (G�

a)Fp .

In §4.4.6 we will see that they differ by a non-linear automorphism of (G�
a)Fp

(there are plenty of such automorphisms because the Cartier dual of (G�
a)Fp

is (Ĝa)Fp).

2.8. A question about GΣ

2.8.1. By §3.5, any formal group has a canonical “degeneration” into its
Lie algebra. In particular, we have a canonical formal group over Σ×A1 whose
restriction to Σ× {1} is HΣ and whose restriction to Σ× {0} is Lie(HΣ). By
Theorem 2.7.10, Lie(HΣ) = OΣ{−1}.

2.8.2. Passing to the Cartier dual, we get a canonical affine group scheme
over Σ×A1 whose restriction to Σ×{1} is GΣ and whose restriction to Σ×{0}
is (OΣ{1})� (i.e., the divided powers version of the line bundle OΣ{1}).

Question 2.8.3. How to give a direct construction of the group scheme from
§2.8.2?
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2.9. Results about HΣ

2.9.1. Pieces of structure on HΣ The δ-structure on GΣ is a group
homomorphism

GΣ → F ∗GΣ

whose restriction to Σ⊗Fp is the geometric Frobenius. Dualizing this, we get
a group homomorphism

(2.14) ϕ : F ∗HΣ → HΣ

whose restriction to Σ ⊗ Fp is the Verschiebung.
The homomorphism (2.7) yields a section

(2.15) s : Σ → HΣ.

Since (2.7) is a δ-homomorphism, we have

(2.16) ϕ(F ∗s) = ps

(when writing ps we are using the additive notation for the group operation
in HΣ).

Theorem 2.9.2. Let s : Σ → HΣ and ϕ : F ∗HΣ → HΣ be as in §2.9.1. Then
(i) s−1(0Σ) = Δ0, where 0Σ ⊂ HΣ is the zero section and Δ0 ⊂ Σ is the

Hodge-Tate divisor (see §2.7.12);
(ii) ϕ : F ∗HΣ → HΣ factors as F ∗HΣ

∼−→ HΣ(−Δ0) → HΣ.

Here HΣ(−Δ0) is the formal group obtained from HΣ by rescaling via
the invertible subsheaf OΣ(−Δ0) ⊂ OΣ, see §3.4. If you wish, HΣ(−Δ0) is a
formal group equipped with a homomorphism HΣ(−Δ0) → HΣ vanishing at
Δ0 and universal with this property (see Lemma 3.4.9 and Proposition 3.6.3).

A proof of Theorem 2.9.2 is given in §4.8.

Corollary 2.9.3. The substack of zeros of the section pns equals Δ0+· · ·+Δn,
where Δi := (F i)−1(Δ0).

Proof. Combine Theorem 2.9.2 with (2.16).

2.9.4. The “de Rham pullback” of HΣ Let HdR := ρ∗dRHΣ, where
ρdR : Spf Zp → Σ is as in §2.7.7. Then HdR is a formal group over Spf Zp

equipped with the following pieces of structure. First, (2.15) induces sdR :
Spf Zp → HdR. Second, (2.14) induces a homomorphism ϕdR : HdR → HdR
(here we use that F ◦ ρdR = ρdR).
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Proposition 2.9.5. (i) There exists a unique isomorphism

(HdR, sdR) ∼−→ ((Ĝa)Spf Zp , p : Spf Zp → (Ĝa)Spf Zp),

where (Ĝa)Spf Zp is the formal additive group over Spf Zp.
(ii) ϕdR equals p ∈ EndHdR.

Proof. Uniqueness in (i) is obvious. Existence in (i) follows from Proposi-
tion 2.7.8 because Ĝa is Cartier dual to G�

a via the pairing

Ĝa ×G�
a → Gm, (u, v) �→ exp(uv).

Statement (ii) follows from (i) because ϕ(sdR) = psdR by (2.16).

2.9.6. Proof of Theorem 2.7.10 Hom(GΣ, (Ga)Σ) = Lie(HΣ) because
HΣ is dual to GΣ. By Theorem 2.9.2(ii) and Proposition 2.9.5(i), Lie(HΣ) is
a line bundle on Σ equipped with an isomorphism

F ∗ Lie(HΣ) ∼−→ Lie(HΣ)(−Δ0)

and a trivialization of ρ∗dR Lie(HΣ). So one has a canonical isomorphism
Lie(HΣ) ∼−→ OΣ{−1}, see [D3, §4.9]. The corresponding isomorphism

Hom(GΣ, (Ga)Σ) ∼−→ OΣ{−1}

has the desired property.

2.10. The pullback of HΣ to the q-de Rham prism Q

2.10.1. Recollections on Q Let Q := Spf Zp[[q − 1]], where Zp[[q − 1]]
is equipped with the (p, q − 1)-adic topology. Define F : Q → Q by q �→
qp. Then (Q,F ) is a formal δ-scheme. More abstractly, Q is the formal δ-
scheme underlying the formal group δ-scheme (Ĝm)Spf Zp over Spf Zp, and the
δ-structure on Q comes from the δ-structure on Gm introduced in §2.2.4.

Let Φp denote the cyclotomic polynomial. The element

Φp([q]) = 1 + [q] + · · · [qp−1] ∈ W (Zp[[q − 1]])

defines a morphism Q → W and, in fact, a morphism Q → Wprim. This is
a δ-morphism because F (Φp([q]) = Φp(qp). Let π : Q → Σ be the composite
morphism Q → Wprim → Σ. It is known that π is faithfully flat. For us, the
q-de Rham prism is the pair (Q, π).
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Set (Δ0)Q := Δ0 ×Σ Q ⊂ Q; by the definition of π, we have

(2.17) (Δ0)Q = Spf Zp[[q − 1]]/(Φp(q)) ⊂ Spf Zp[[q − 1]] = Q.

More details about (Q, π) can be found in [BL] and [D3, Appendix B].

2.10.2. Pieces of structure on HQ Let GQ := π∗GΣ, HQ := π∗HΣ. By
definition, a section Q → GQ is the same as an element x ∈ W (Zp[[q − 1]])
such that 1 + xΦp([q]) is Teichmüller. We will use the section σ : Q → GQ

corresponding to x = [q] − 1 (then 1 + xΦp([q]) = [qp]). It is easy to see that
σ : Q → GQ is a δ-morphism. The section σ is a key advantage of Q over Σ.

Since GQ is dual to HQ, the section σ : Q → GQ defines a homomorphism

(2.18) σ∗ : HQ → (Ĝm)Q.

On the other hand, base-changing the pieces of structure on HΣ described
in §2.9.1, we get similar pieces of structure on HQ. Namely, we get a group
homomorphism

(2.19) ϕQ : F ∗HQ → HQ

whose restriction to Q⊗ Fp is the Verschiebung and a section

(2.20) sQ : Q → HQ.

such that

(2.21) ϕQ(F ∗sQ) = psQ

(when writing psQ we are using the additive notation for the group operation
in HQ).

(2.18) interacts with (2.19)–(2.20) as follows.

Lemma 2.10.3. (i) The following diagram commutes:

F ∗HQ
ϕQ

F ∗(σ∗
Q)

HQ

σ∗
Q

(Ĝm)Q id (Ĝm)Q

(ii) σ∗ ◦ sQ = qp ∈ Ĝm(Q).
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Proof. Statement (i) follows from σ being a δ-morphism.
Composing σQ : Q → GQ with the homomorphism GQ → (Gm)Q that

comes from (2.7), we get 1 + (q − 1) · Φp(q) = qp ∈ Gm(Q). Statement (ii)
follows.

Theorem 2.10.4. The homomorphism σ∗ : HQ → (Ĝm)Q induces an iso-
morphism

HQ
∼−→ (Ĝm)Q(−D),

where D ⊂ Q is the divisor q = 1.

The proof is given in §4.7.3.

2.10.5. HQ as a formal scheme By Theorem 2.10.4, HQ identifies with
(Ĝm)Q(−D). So the formal scheme HQ can be obtained as follows: first, blow
up the formal scheme

(Ĝm)Q = Q× Ĝm = Spf Zp[[q − 1, q′ − 1]]

along the subscheme q = q′ = 1, then HQ is the formal completion of the
blow-up along the strict preimage of the unit section of (Ĝm)Q. In other
words,

(2.22) HQ = Spf Zp[[q − 1, z]], where z = q′ − 1
q − 1 .

2.10.6. The formal group HQ in explicit terms In terms of the coor-
dinate z from (2.22), HQ corresponds to the following formal group law over
Zp[[q − 1]]:

(2.23) z1 ∗ z2 = (1 + (q − 1)z1)(1 + (q − 1)z2) − 1
q − 1 = z1 + z2 + (q − 1)z1z2.

Let us describe in these terms the pieces of structure on HQ defined in
§2.10.2. The homomorphism σ∗ : HQ → (Ĝm)Q is just the map (q, z) �→
(q, 1 + (q − 1)z). By Lemma 2.10.3(ii), the section sQ : Q → HQ is given by
z = qp−1

q−1 = Φp(q). It remains to describe the homomorphism ϕQ : F ∗HQ →
HQ. The formal group F ∗HQ corresponds to the group law

(2.24) y1 ∗ y2 = y1 + y2 + (qp − 1)y1y2,

which is the F -pullback of (2.23). By Lemma 2.10.3(i), the homomorphism
ϕQ is the homomorphism from (2.24) to (2.23) given by z = Φp(q) · y.
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2.10.7. The group scheme Halg
Q Let Halg

Q := Spf A, where A is the com-
pletion of Zp[q, z] for the (p, q − 1)-adic topology. The morphism Halg

Q →
Spf Zp[[q − 1]] = Q is affine (in particular, schematic). The r.h.s. of (2.23) is
a polynomial, so it gives a morphism

Halg
Q ×Q Halg

Q → Halg
Q .

This morphism makes Halg
Q into a smooth affine group scheme over Q. The

formal completion of Halg
Q along its unit identifies with HQ (if you wish, Halg

Q

is an algebraization of the formal group HQ in the sense of §2.12.1). The
homomorphism ϕQ : F ∗HQ → HQ comes from a homomorphism F ∗Halg

Q →
Halg

Q . The group Halg
Q has a remarkable section s̃Q : Q → Halg

Q given by z = 1;
one has a commutative diagram

Q
s̃Q

sQ

Halg
Q

p

HQ Halg
Q

(sQ was defined in §2.20 and described in §2.10.6).

2.10.8. Restriction of Halg
Q to (Δ0)Q To get a feel of Halg

Q let us discuss
its restriction to (Δ0)Q.

Recall that (Δ0)Q := Δ0 ×Σ Q, where Δ0 ⊂ Σ is the Hodge-Tate divisor;
explicitly, (Δ0)Q = Spf Zp[[q − 1]]/(Φp(q)) ⊂ Spf Zp[[q − 1]] = Q. Let ζ ∈
Zp[[q − 1]]/(Φp(q)) be the image of q; then ζ is a primitive p-th root of 1.

Let Halg
(Δ0)Q be the restriction of Halg

Q to (Δ0)Q. It is easy to check that
one has an exact sequence

(2.25) 0 → (Z/pZ)(Δ0)Q
i−→ Halg

(Δ0)Q
λ−→ (Ga)(Δ0)Q → 0;

here i takes 1 ∈ Z/pZ to the section s̃(Δ0)Q : (Δ0)Q → H(Δ0)Q given by
z = 1 (then 1 + (ζ − 1)z = ζ is a p-th root of unity), and λ is given by
(ζ − 1)−1 · log(1 + (ζ − 1)z) (which is a power series in z whose coefficients
are in Zp[ζ] = Zp[[q − 1]]/(Φp(q)) and converge to 0).

The exact sequence (2.25) shows that H(Δ0)Q is isomorphic to (Ĝa)(Δ0)Q .
But Halg

(Δ0)Q is not isomorphic to (Ga)(Δ0)Q because

Hom((Z/pZ)(Δ0)Q , (Ga)(Δ0)Q) = 0.
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2.11. The action of Z×
p on HQ

We keep the notation of §2.10.

2.11.1. The action of Z×
p on Q The pro-finite (and therefore pro-algeb-

raic) group Z×
p acts on the formal δ-scheme Q = Spf Zp[[q−1]]: the automor-

phism of Q corresponding to n ∈ Z×
p is

q �→ qn =
∞∑
i=0

n(n− 1) . . . (n− i + 1)
i! (q − 1)i.

In terms of the identification Q = (Ĝm)Spf Zp , this action comes from the
isomorphism

Zp
∼−→ End((Ĝm)Spf Zp).

2.11.2. The action of Z×
p on HQ It is easy to show that the morphism

π : Q → Σ from §2.10.1 factors through the quotient stack Q/Z×
p (see [BL] or

[D3, Appendix B]). Therefore the formal group scheme HQ is Z×
p -equivariant.

The morphisms ϕQ : F ∗HQ → HQ and sQ : Q → HQ are Z×
p -equivariant

because they are π-pullbacks of ϕ : F ∗HΣ → HΣ and s : Σ → HΣ.

Proposition 2.11.3. The morphism σ∗ : HQ → (Ĝm)Q := (Ĝm)Spf Zp ×Q is
Z×
p -equivariant assuming that (Ĝm)Spf Zp is equipped with the following Z×

p -
action:7 n ∈ Z×

p acts as raising to the power of n.

The proof is given in §4.9. Proposition 2.11.3 means that if we think of
HQ as an affine blow-up of (Ĝm)Spf Zp ×Q (see §2.10.5) then the action of Z×

p

on HQ is the most natural one.

Corollary 2.11.4. In terms of §2.10.6, the action of n ∈ Z×
p on HQ is given

by

(q, z) �→
(
qn,

hn(z, q)
hn(1, q)

)
,

where

hn(z, q) = (1 + (q − 1)z)n − 1
q − 1 =

∞∑
i=1

n(n− 1) . . . (n− i + 1)
i! zi(q − 1)i−1

(so hn(1, q) = qn−1
q−1 ).

7This Z×
p -action is the same as the one from §2.11.1 (recall that Q is just the

formal scheme underlying the formal group (Ĝm)Spf Zp).
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Remark 2.11.5. Corollary 2.11.4 combined with §2.10.6 gives a complete de-
scription of the image of the formal group HΣ under the pullback functor

(2.26) {Formal groups over Σ} → {Z×
p -equivariant formal groups over Q}.

If p > 2 this functor is fully faithful by [BL, Thm. 3.8.3], so our description
of the image of HΣ under (2.26) could be considered as a (not very good)
description of HΣ itself.
Remark 2.11.6. Let Halg

Q be as in §2.10.7. The action of Z×
p on HQ comes

from an action of Z×
p on Halg

Q ; the latter is given by the formula from Corol-
lary 2.11.4 (this formula makes sense in the context of Halg

Q because the
reduction of hn(z, q) modulo any power of q − 1 is a polynomial in z).

2.12. A conjectural algebraization of HΣ

2.12.1. Algebraizations of formal groups Let H be a formal group over
a stack X . By an algebraization of H we mean an isomorphism class of pairs
consisting of a smooth affine group scheme G over X with connected fibers
and an isomorphism H

∼−→ Ĝ, where Ĝ is the formal completion of G along
its unit. Let Alg(H) denote the set of algebraizations of H.

2.12.2. The sheaf property of Alg Suppose that in addition to X and
H, we are given a morphism of stacks X ′ → X such that the corresponding
morphism of fpqc-sheaves of sets is surjective (in other words, for every scheme
S and every morphism S → X , the morphism X ′ ×X S → S has a section
fpqc-locally on S). Then we have an exact sequence of sets

Alg(H) → Alg(H ′) ⇒ Alg(H ′′),

where H ′ and H ′′ are the pullbacks of H to X ′ and X ′×X X ′, respectively.
In particular, the map Alg(H) → Alg(H ′) is injective.

2.12.3. Good news (i) By Theorem 2.9.2(ii), F ∗HΣ = HΣ(−Δ0). On the
other hand, HΣ(−Δ0) has a canonical algebraization constructed in §3.6.4
“by pure thought”. Thus we get a canonical element α ∈ Alg(F ∗HΣ).

(ii) The morphism F : Σ → Σ satisfies the condition of §2.12.2 (because
F : W → W is faithfully flat). So the canonical map Alg(HΣ) → Alg(F ∗HΣ)
is injective. Thus α comes from at most one algebraization of HΣ.

Conjecture 2.12.4. Such an algebraization of HΣ exists.

The conjectural algebraization of HΣ will be denoted by Halg
Σ .
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2.12.5. Evidence in favor of Conjecture 2.12.4 Even though Halg
Σ is

conjectural, the corresponding algebraizations of HQ and HΔ0 are uncondi-
tional, as explained below.

(i) Let α be as in §2.12.3(i). Then the image of α in Alg(F ∗HQ) comes
from a (unique) element β ∈ Alg(HQ), namely the one described in §2.10.7.

(ii) Let β0 ∈ Alg(H(Δ0)Q) be the image of β. Using the explicit description
of β0 from §2.10.8, one can check that β0 comes from a (unique) algebraization
Halg

Δ0
of HΔ0 . Namely, while HΔ0 is the formal completion of a certain line

bundle M ∗ over Δ0 (see Proposition 2.7.13), Halg
Δ0

is a (Z/pZ)-covering of M ∗.

3. Generalities on formal groups and their Cartier duals

3.1. The notion of based formal S-polydisk

3.1.1. Notation If S is a scheme then the formal completion of An
S :=

An × S along its zero section will be denoted by Ân
S .

3.1.2. Definition Let S be a scheme. Let X be a formal S-scheme and
σ : S → X a section. We say that (X, σ) is a based formal S-polydisk if
Zariski-locally on S there exists an S-isomorphism (X, σ) ∼−→ (Ân

S , 0) for
some n ∈ Z+; here 0 : S → Ân

S is the zero section.

3.1.3. Notation The category of based formal S-polydisks will be denoted
by Polyd(S). For fixed n ∈ Z+, let Polydn(S) ⊂ Polyd(S) be the full subcat-
egory of based formal S-polydisks of dimension n (i.e., locally isomorphic to
(Ân

S , 0)).

3.1.4. Automorphisms of (Ân
S, 0) The functor that to a scheme S asso-

ciates the group of S-automorphisms of (Ân
S , 0) is representable by an affine

group scheme Dn over Z.

Lemma 3.1.5. The underlying groupoid of Polydn(S) is canonically equiva-
lent to that of Dn-torsors on S.

Proof. It suffices to show that any Dn-torsor on S is Zariski-locally trivial.
Indeed, Dn can be represented as a projective limit of a diagram of group
schemes

. . . → G2 → G1 → G0 = GL(n)
in which all morphisms are faithfully flat and for each n the group scheme
Ker(Gn+1 → Gn) is isomorphic to a power of Ga.

Corollary 3.1.6. The assignment S �→ Polyd(S) is a stack for the fpqc
topology (not merely the Zariski topology).
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3.2. Formal groups

Let F(S) (resp. Fn(S)) be the category of group objects in Polyd(S) (resp. in
Polydn(S)). Objects of F(S) will be called formal groups over S; in other
words, by a formal group over S we mean a group object H in the category
of formal S-schemes such that the pair (H, e : S → H) is a based formal
S-polydisk. Objects of Fn(S) are called n-dimensional formal groups.

3.3. Cartier duals of commutative formal groups

Lemma 3.3.1. Let S be a scheme and H ∈ Fcom(S). Then the Cartier dual
H∗ exists as a flat affine group scheme over S. Moreover, H∗ = SpecA, where
the quasi-coherent OS-algebra A is locally free as an OS-module.

Proof. We can assume that S is affine and that the based formal polydisk
(H, e : S → H) is isomorphic to (Ân

S , 0). Let A := H0(S,OS). Then the
coordinate ring of H (viewed as a topological A-module) is the dual of a free
A-module. The lemma follows.

3.3.2. Notation Let F∗(S) be the full subcategory of the category of group
S-schemes formed by Cartier duals of commutative formal groups over S.

3.3.3. Remarks (i) The assignments S �→ F(S) and S �→ F∗(S) are stacks
for the fpqc topology (not merely the Zariski topology). This follows from
Corollary 3.1.6.

(ii) By Corollary 3.1.6 and the previous remark, if S is a fpqc-stack rather
than a scheme one can still talk about Polyd(S), F(S), and F∗(S).

Proposition 3.3.4. Let S be a scheme and S0 ⊂ S a closed subscheme whose
ideal is nilpotent. Let G be a flat commutative group scheme over S such that
G×S S0 ∈ F∗(S0). Then G ∈ F∗(S).

As pointed out by the reviewer, the above proposition appears as Lemma
1.1.21 in J. Lurie’s work [Lu]. Moreover, the Cartier duals of commutative
formal groups play an important role in [Lu]

Proof. We can assume that S = SpecA and S0 = SpecA0, where A0 = A/I
and I2 = 0. We can also assume the existence of an isomorphism of based
formal S0-polydisks

(G∗
0, e)

∼−→ (Ân
S , 0),

where G∗
0 is the Cartier dual of G0. To simplify notation, we will assume that

n = 1.
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G0 is affine because G0 ∈ F∗(S0). So G is affine. Let B be the coordinate
ring of G and B0 := B ⊗A A0. Then G = SpecB and G0 = SpecB0.

Let B∗ := HomA(B,A) and B∗
0 := HomA0(B0, A0) be the dual modules.

We equip them with the weak topology. The coproduct in B and B0 yields a
topological algebra structure on B∗ and B∗

0 .
By assumption, we have an isomorphism of based formal S0-disks

(G∗
0, e)

∼−→ (Â1
S , 0).

It induces an isomorphism of topological algebras f0 : A0[[x]] ∼−→ B∗
0 such

that l0(1) = 0, where l0 := f0(x) ∈ B∗
0 and 1 ∈ B0 is the unit. We will lift it

to an isomorphism f : A[[x]] ∼−→ B such that l(1) = 0, where l = f(x) ∈ B∗.
This will show that Spf B∗ is a formal group over S = SpecA, whose Cartier
dual is G.

The A0-module B0 is free because f∗
0 identifies B0 with the topological

dual (A0[[x]])∗, which is a free A0-module. By assumption, B is flat over
SpecA. So B is a free A-module. Therefore we can lift l0 to an element
l ∈ B∗. Moreover, adding to l a multiple of the counit of B, we can achieve
the equality l(1) = 0.

Let us prove that ln → 0. The problem is to show that for every b ∈ B
we have ln(b) = 0 for big enough n. Let F ⊂ B be a finitely generated A-
submodule such that the coproduct Δ : B → B ⊗A B takes b to Im(F ⊗A

F → B ⊗A B). Since ln0 → 0, there exists m ∈ N such that for n ≥ m
one has ln(F ) ⊂ I := Ker(B → B0). Then for n ≥ 2m one has ln(b) =
(lm ⊗ ln−m)(Δ(b)) ∈ I2 = 0.

Since ln → 0, there is a homomorphism of topological A-algebras f :
A[[x]] → B such that f(x) = l. The dual map f∗ : B∗ → (A[[x]])∗ is a homo-
morphism of free A-modules inducing an isomorphism modulo I. Therefore
f∗ is an isomorphism, and so is f .

3.4. Rescaling formal groups

3.4.1. The monoidal category M (S) Given a scheme S, let M (S) be
the category of pairs (L , α : L → OS), where L is an invertible OS-module;
this is a monoidal category with respect to tensor product.

Let Minj(S) ⊂ M (S) be the full monoidal subcategory of pairs (L , α)
such that Kerα = 0. In fact, the category Minj(S) is an ordered set, which
identifies with the set Div+(S) of effective Cartier divisors on S equipped
with the ordering opposite to the usual one: the invertible subsheaf of L ⊂
OS corresponding to Div+(S) is OS(−D). Moreover, the tensor product in
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Minj(S) corresponds to addition in Div+(S). For this reason, objects of M (S)
are called generalized Cartier divisors in [BL].

Let Mnilp(S) ⊂ M (S) be the full subcategory of pairs (L , α) such that
α vanishes on Sred. One has Mnilp(S) ∩ Minj(S) = ∅.

The assignment S �→ M (S) is an fpqc-stack of monoidal categories.8
For any f : S′ → S one has f∗(Mnilp(S)) ⊂ Mnilp(S′); if f is flat then
f∗(Minj(S)) ⊂ Minj(S′).

3.4.2. Remark The unit object of M (S) is a final object.

3.4.3. Goal We have the stack of monoidal categories M from §3.4.1. In
§3.4.6 we will define an action of M on Polyd and on F, where Polyd is the
stack of based formal polydisks (see §3.1) and F is the stack of formal groups
(see §3.2).

3.4.4. The prestacks Polydpre and Mpre Let Polydpre(S) ⊂ Polyd(S)
be the full subcategory formed by formal schemes Ân

S . Then Polydpre is a
prestack of categories such that the associated fpqc-stack is Polyd.

Let Mpre(S) ⊂ M (S) be the full subcategory of pairs (L , α) with L =
OS . Then Mpre is a prestack of monoidal categories such that the associated
fpqc-stack is M . Explicitly, ObMpre(S) = H0(S,OS), a morphism from α ∈
H0(S,OS) to α′ ∈ H0(S,OS) is a presentation of α as α′α′′, one has α1⊗α2 =
α1α2, and so on. In other words, Mpre(S) is obtained as follows: start with
the multiplicative monoid H0(S,OS) viewed as a discrete monoidal category,
then add morphisms ψα : α → 1, subject to the relations ψα1α2 = ψα1 ⊗ ψα2 .

3.4.5. Action of Mpre on Polydpre (i) First, let us define a strict action
of the multiplicative monoid H0(S,OS) on the category Polydpre(S), which is
trivial at the level of objects of Polydpre(S). To this end, note that a morphism
Âm

S → Ân
S is just a collection

(f1, . . . , fn), fi ∈ H0(S,OS)[[x1, . . . xm]], fi(0) = 0.

Definition: α ∈ H0(S,OS) takes (f1, . . . , fn) to (f̃1, . . . , f̃n), where

(3.1) f̃i(x1, . . . xm) := α−1fi(αx1, . . . αxm).

The r.h.s. of (3.1) makes sense (even though α−1 is not assumed to exist)
because fi(0) = 0.

8The same stack is introduced in [D3], where it is denoted by (A1/Gm)−.
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(ii) Let Φα : Polydpre(S) → Polydpre(S) be the functor corresponding
to α ∈ H0(S,OS). The explicit description of Mpre(S) (see §3.4.4) shows
that extending the above action of H0(S,OS) on Polydpre(S) to an action of
Mpre(S) amounts to specifying natural transformations ψα : Φα → Id so that
ψα1α2 = ψα1 ◦Φα1(ψα2). We define the morphism Ân

S = Φα(Ân
S) ψα−→ Ân

S to be
multiplication by α.

3.4.6. Action of M on Polyd and F (i) In §3.4.5 we defined an action
of Mpre on Polydpre. It induces an action of M on Polyd.

(ii) The endofunctor of Polyd(S) corresponding to each object of M (S)
preserves finite products. So Polyd(S) acts on the category of group objects
in Polyd(S), i.e., on F(S).

Lemma 3.4.7. Let Mnilp(S) be as in §3.4.1 and (L , α) ∈ Mnilp(S). Then
the rescaling functor ΦL ,α : F(S) → F(S) canonically factors as

(3.2) F(S) → Aff(S) → F(S),

where Aff(S) is the category of smooth affine group S-schemes with connected
fibers and the second arrow in (3.2) is the functor of formal completion along
the unit. Moreover, if G is in the essential image of the functor F(S) → Aff(S)
then Zariski-locally on S, the pointed S-scheme (G, 0) is isomorphic to (Am

S , 0)
for some m.

Proof. If in the situation of §3.4.5 the function α ∈ H0(S,OS) is nilpotent
then the formal series (3.1) is a polynomial.

3.4.8. Notation Recall that M (S) ⊃ Minj(S) = Div+(S) (see §3.4.1). If
D ∈ Div+(S) then the action of D on Polyd(S) or F(S) will be denoted by
X �→ X (−D). By §3.4.2, we have a canonical morphism X (−D) → X .

Lemma 3.4.9. Let S be a scheme and D
i
↪→ S an effective Cartier divisor.

(i) For any X ,X ′ ∈ Polyd(S), the map

Mor(X ′,X (−D)) → Mor(X ′,X )

is injective. Its image is equal to the preimage of the distinguished element9
of Mor(i∗X ′, i∗X ).

(ii) The same is true if X ,X ′ are formal groups over S.
9This element is due to the fact that we are dealing with based formal S-

polydisks.
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3.4.10. Remark Lemma 3.4.9(i) can be generalized as follows. Assume
that (L , α) ∈ M (S). Let D

i
↪→ S be the closed subscheme corresponding to

the ideal Imα ⊂ OS ; let S′ ν
↪→ S be the closed subscheme corresponding to

the ideal Ker(α∗ : OS → L ∗). Let X ,X ′ ∈ Polyd(S), and let X̃ ∈ M (S) be
obtained by acting on X by (L , α). By §3.4.2, we have a canonical morphism
X̃ → X and therefore a morphism f : Mor(X ′, X̃ ) → Mor(X ′,X ), where
Mor denotes the sheaf on S formed by morphisms. Then the sequence

Mor(X ′, X̃ ) f−→ Mor(X ′,X ) → i∗Mor(i∗X ′, i∗X )

is exact in the following sense: the sections of Im f are precisely those sections
of Mor(X ′,X ) which map to the distinguished section of i∗Mor(i∗X ′, i∗X ).
Moreover,

Im f = ν∗Mor(ν∗X ′, ν∗X̃ )

(the two sheaves are equal as quotients of Mor(X ′, X̃ )).

3.4.11. What if S is a stack? It is straightforward to generalize the
material of §3.4.1–3.4.10 to the situation where S is an algebraic stack10 of
groupoids in the sense of [D3, §2.4]. But algebraic stacks are not enough for
us: the stack Σ and the q-de Rham prism Q are formal stacks rather than
algebraic ones.

If S is any fpqc-stack we still have the monoidal category M (S) and
its action on Polyd(S) and F(S). For a reasonable class of stacks S (which
includes all formal stacks, e.g., Σ, Q, and Q×ΣQ) one also has a good notion
of effective Cartier divisor on S and an analog of Lemma 3.4.9, see §3.6 below.

3.5. Deformation of a formal group to the formal completion of its
Lie algebra

In this subsection we briefly discuss a formal version of a particular case of
the Fulton-MacPherson construction of deformation to the normal cone, see
[F, Ch. 5], [Ve, §2], and also §10 of the article [R] (where some generalizations
of the original construction are discussed).

10Let us note that the definition of algebraic stack from [D3, §2.4] involves no
finiteness conditions.



256 Vladimir Drinfeld

3.5.1. Let X ∈ Polyd(S), X = (X, σ : S → X). Let N be the σ-pullback
of the tangent bundle of X relative to S (or equivalently, the normal bundle
of σ(S) ⊂ X). Let π : A1

S → S be the projection and i0 : S → A1
S the zero

section. Let D := i0(S) ⊂ A1
S . Let

X̃ := (π∗X )(−D) ∈ Polyd(A1
S).

One checks that i∗0X̃ canonically identifies with the formal completion of the
vector bundle N along its zero section.

3.5.2. Now let X ∈ F (S). Just as in §3.5.1, let X̃ := (π∗X )(−D) ∈
F (A1

S). Then the formal group i∗0X̃ canonically identifies with the formal
completion of the vector bundle Lie(X ) along its zero section.

3.6. An analog of Lemma 3.4.9 if S is a stack

3.6.1. A class of stacks Let S be an fpqc-stack of groupoids which can
be represented as

(3.3) S = lim
−→

(S1 ↪→ S2 ↪→ . . .),

where each Si is an algebraic stack in the sense of [D3, §2.4] and the mor-
phisms Si → Si+1 are closed immersions. Such S is pre-algebraic in the sense
of [D3, §2.3].

3.6.2. The notion of effective Cartier divisor We will use the notion
of effective Cartier divisor on a pre-algebraic stack introduced in [D3, §2.10–
2.11]. If S admits a presentation (3.3) the definition from [D3] is equivalent
to the following one: an effective Cartier divisor on S is a closed substack
D ⊂ S such that

(i) the ideal In of the closed substack D ∩ Sn ⊂ Sn is an invertible sheaf
on some closed substack S′

n ⊂ Sn;
(ii) the inductive limit11 of the stacks S′

n equal S; equivalently, for every
quasi-compact scheme S̃ every morphism f : S̃ → S factors through some S′

n.
In this situation one can define the line bundle OS(−D): its pullback to

S′
n equals In. Therefore we have X (−D) for X ∈ Polyd(S) or for X ∈ F(S).

Proposition 3.6.3. Lemma 3.4.9 remains valid for any stack S which admits
a presentation (3.3).

11It is easy to check that S′
n ⊂ S′

n+1, so the stacks S′
n form an inductive system.
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Proof. It suffices to prove the analog of Lemma 3.4.9(i) for the stack S. To
this end, for each n apply the analog of §3.4.10 for algebraic stacks to the
pullback of OS(−D) to Sn.

The author expects that using §3.4.10 one can prove that Lemma 3.4.9
remains valid for any pre-algebraic stack in the sense of [D3, §2.3].

3.6.4. A corollary of Lemma 3.4.7 Let S be as in §3.6.1 and H ∈ F(S).
Let D ⊂ S be an effective Cartier divisor such that for every scheme T and
every morphism T → S one has T ×S D ⊃ Tred. Lemma 3.4.7 implies that in
this situation the formal group H(−D) can be canonically represented as a
formal completion of a smooth affine group S-scheme with connected fibers.
We denote this group scheme by H(−D)alg.

In particular, we have the group scheme HΣ(−Δ0)alg over Σ.

4. Proofs of the statements from §2

4.1. Recollections on the Hodge-Tate divisor Δ0 ⊂ Σ

By definition, Δ0 ⊂ Σ := Wprim/W
× is the preimage of {0}/Gm ⊂ A1/Gm

under the morphism Wprim/W
× → A1/Gm.

The element V (1) ∈ W (Zp) defines a morphism

(4.1) η : Spf Zp → Δ0.

η is faithfully flat, and it identifies Δ0 with the classifying stack

(Spf Zp)/(W×)(F ),

where (W×)(F ) := Ker(F : W× → W×); the proof of this fact is straightfor-
ward (see [BL] or Lemma 4.5.2 of [D3]).

4.2. Proof of Proposition 2.7.1

We have to show that the composite morphism

(4.2) G′
Σ → W×

Σ → (W×/Gm)Σ

is faithfully flat.
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4.2.1. Reductions Both G′
Σ and (W×/Gm)Σ are flat over Σ. For any mor-

phism from a quasi-compact scheme S to Σ, the ideal of the closed subscheme
S ×Σ Δ0 ⊂ S is nilpotent. So it suffices to check faithful flatness of (4.2) af-
ter base change to Δ0 and even after further pullback via the faithfully flat
morphism (4.1).

4.2.2. Pullback via η : Spf Zp → Σ Let G′
η be the pullback of G′

Σ
via η : Spf Zp → Δ0 ⊂ Σ. By §2.5.1, G′

η = WSpf Zp (disregarding the group
operation), and the η-pullback of (4.2) is the map

WSpf Zp → (W×/Gm)Spf Zp = Ker(W× � Gm)Spf Zp

given by

(4.3) x �→ 1 + V (1) · x = 1 + V (Fx).

This map is faithfully flat because F : W → W is a Frobenius lift.

4.3. The group schemes Gη, GΔ0 and the proof of Theorem 2.7.5

Let GΔ0 be the pullback of GΣ to Δ0. Let Gη be the pullback of GΣ via
η : Spf Zp → Δ0 ⊂ Σ; this is a group scheme over Spf Zp.

Proposition 4.3.1. (i) There is a canonical isomorphism of group schemes

(4.4) Gη
∼−→ (W (F ))Spf Zp ,

where W (F ) := Ker(F : W → W ).
(ii) The homomorphism Gη → (Gm)Spf Zp induced by (2.7) is trivial.
(iii) The η-pullback of the morphism GΣ → F ∗GΣ from §2.9.1 is trivial.

Proof. Let us prove (i). By §2.5.1, G′
η is WSpf Zp equipped with the group

operation
(x1, x2) �→ x1 + x2 + V (1) · x1x2.

By (4.3), the subgroup Gη ⊂ G′
η is defined by the equation V (1) · x = 0 or

equivalently, Fx = 0.
Statement (ii) is clear because the homomorphism Gη → (Gm)Spf Zp is

the restriction of the map G′
η = WSpf Zp → W×

Spf Zp
given by x �→ 1 +V (1) · x.

To prove (iii), note that the morphism in question is x �→ Fx, but we
already know that Gη ⊂ G′

η is defined by the equation Fx = 0.
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Lemma 4.3.2. The canonical homomorphism W � W1 = Ga induces an
isomorphism

W
(F )
SpecZ(p)

∼−→ (G�
a)SpecZ(p) ,

where G�
m is the divided powers additive group and Z(p) is the localization of

Z at p.

For a proof of the lemma, see [BL] or [D3, Lemma 3.2.6].

Corollary 4.3.3. Gη = (G�
a)Spf Zp , so Gη is Cartier dual to the formal

group (Ĝa)Spf Zp .

Proof. Follows from Proposition 4.3.1 and Lemma 4.3.2.

4.3.4. Proof of Theorem 2.7.5 Corollary 4.3.3 and Proposition 3.3.4 im-
ply (similarly to §4.2.1) that GΣ is the Cartier dual of some 1-dimensional
formal group over Σ (which is denoted by HΣ).

4.3.5. Proof of Proposition 2.7.13 We have to construct an isomor-
phism GΔ0

∼−→ M �, where M is the conormal bundle of Δ0 ⊂ Σ. Corol-
lary 4.3.3 provides an isomorphism f : Gη

∼−→ η∗M �. By §4.1, (W×)(F ) acts
on Gη and η∗M �, and the problem is to check that f is (W×)(F )-equivariant.
Indeed, u ∈ (W×)(F ) acts on Gη = W (F ) as multiplication by u, and it acts on
η∗M � = G�

a as multiplication by the 0-th component of the Witt vector u.
We can now prove the following weaker version of Theorem 2.9.2(i).

Corollary 4.3.6. The section s : Σ → HΣ vanishes on Δ0.

Proof. As already mentioned in §4.1, η : Spf Zp → Δ0 is faithfully flat. So
Proposition 4.3.1(ii) implies that the canonical homomorphism GΣ → (Gm)Σ
vanishes on Δ0. By the definition of s (see §2.10.2), this means that s : Σ →
HΣ vanishes on Δ0.

4.4. The “de Rham pullback” of GΣ and the proof of
Proposition 2.7.8

4.4.1. Recollections Recall that GdR := ρ∗dRGΣ, where ρdR : Spf Zp → Σ
comes from the element p ∈ W (Zp). For any p-nilpotent ring A we have

(4.5) GdR(A) := {x ∈ W (A) | 1 + px ∈ A× ⊂ W (A)×},

where A× ⊂ W (A)× is the image of the Teichmüller embedding, and the
group operation on GdR(A) is given by

(4.6) (x1, x2) �→ x1 + x2 + px1x2.
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4.4.2. The homomorphisms f : GdR → WSpf Zp and f0 : GdR →
(Ga)Spf Zp The coefficients of the formal series

(4.7) f(x) := p−1 log(1 + px) =
∞∑
n=1

(−p)n−1

n
xn.

belong to Zp and converge to 0. One has

f(x1 + x2 + px1x2) = f(x1) + f(x2).

So the series (4.7) defines a group homomorphism f : GdR → WSpf Zp .
Composing it with the canonical homomorphism WSpf Zp � (W1)Spf Zp =
(Ga)Spf Zp , we get a homomorphism

(4.8) f0 : GdR → (Ga)Spf Zp ;

equivalently, f0(x) = p−1 log(1 + px0), where x0 is the 0-th component of the
Witt vector x.

By Lemma 4.3.2, (G�
a)Spf Zp = W

(F )
Spf Zp

, where W (F ) := Ker(F : W → W ).
So Proposition 2.7.8 is equivalent to the following one.

Proposition 4.4.3. There exists an isomorphism GdR
∼−→ W

(F )
Spf Zp

whose
composition with the canonical homomorphism W

(F )
Spf Zp

→ (Ga)Spf Zp equals
(4.8).

Note that the isomorphism in question is unique (to see this, identify
W

(F )
Spf Zp

with (G�
a)Spf Zp). In §4.4.5 we will deduce Proposition 4.4.3 from the

following lemma, which will be proved in §4.5.

Lemma 4.4.4. The homomorphism f : GdR → WSpf Zp from §4.4.2 induces
an isomorphism

(4.9) GdR
∼−→ WF=p

Spf Zp
, where WF=p

Spf Zp
:= {y ∈ WSpf Zp |Fy = py}.

The inverse isomorphism is given by y �→ g(y), where g is the formal power
series

(4.10) g(y) := exp(py) − 1
p

=
∞∑
n=1

pn−1

n! yn.

Note that if A is a p-nilpotent ring and y ∈ W (A) satisfies Fy = py then
y is topologically nilpotent, so h(y) makes sense for any formal power series
h over Zp. In particular, this is true for the power series (4.10) (even though
in the case p = 2 its coefficients do not converge to 0).
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4.4.5. Deducing Proposition 4.4.3 from Lemma 4.4.4 The equation
Fy = py from (4.9) can be rewritten as F (y − V y) = 0. The operator id−V
is invertible because V is topologically nilpotent. So we get an isomorphism

(4.11) id−V : WF=p
Spf Zp

∼−→ W
(F )
Spf Zp

.

Composing it with (4.9), we get an isomorphism

(4.12) GdR
∼−→ W

(F )
Spf Zp

,

which has the required property.

4.4.6. Warning about the base change of (4.12) to Spec Fp In W (Fp)
we have p = V (1). So by Proposition 4.3.1(i), the base change of GdR

to SpecFp identifies with W
(F )
SpecFp

. The group scheme WF=p
SpecFp

:= {y ∈
WSpecFp |Fy = py} also equals W

(F )
SpecFp

: indeed, if A is an Fp-algebra and
y ∈ W (A) then

Fy = py ⇔ (id−V )Fy = 0 ⇔ Fy = 0.

We claim that the base change to SpecFp of the isomorphism (4.9) equals
the identity (so the base change to SpecFp of (4.12) is id−V �= id!!). This
follows from the next

Lemma 4.4.7. Let A be an Fp-algebra and x ∈ W (F )(A). Then px = xp = 0.

Proof. We have px = FV x = V Fx = 0. Write x = [x0] + V y, where x0 is
the 0-th coordinate of the Witt vector x. Then xp0 = 0 and Fy = 0 (because
in characteristic p the Witt vector Frobenius equals the usual one). So py =
V Fy = 0 and (V y)2 = V (py2) = 0. Therefore xp = 0.

4.5. Proof of Lemma 4.4.4

4.5.1. By Corollary 2.7.2, GdR is flat over Spf Zp. By (4.11) and Lem-
ma 4.3.2, WF=p

Spf Zp
is also flat over Spf Zp.

4.5.2. Let us prove that the homomorphism f : GdR → WSpf Zp from
Lemma 4.4.4 factors through WF=p

Spf Zp
. Since f ◦F = F ◦ f , it suffices to show

that for x ∈ GdR(A) one has

(4.13) Fx = h(x),
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where h : GdR → GdR is raising to the power of p in the sense of the opera-
tion (4.6); explicitly,

h(x) = (1 + px)p − 1
p

:=
p∑

i=1

(
p

i

)
pi−1xi.

Since 1 + px ∈ A× ⊂ W (A)× we have F (1 + px) = (1 + px)p, so

(4.14) p(Fx− h(x)) = 0.

But the coordinate ring B of GdR is flat over Zp (see §4.5.1), so W (B) is
also flat over Zp. The elements Fx− h(x) for all p-nilpotent rings A and all
x ∈ GdR(A) define an element u ∈ W (B), and by (4.14) we have pu = 0. So
u = 0, which proves (4.13).

4.5.3. The formal series (4.10) defines a homomorphism g : WF=p
Spf Zp

→
G′

dR := ρ∗dRG
′
Σ, where G′

Σ is as in §2.5. Let us prove that this homomorphism
factors through GdR ⊂ G′

dR. The problem is to show that for any p-nilpotent
ring A and any x ∈ WF=p

Spf Zp
(A) the Witt vector 1 + pg(x) is Teichmüller. It is

clear that
F (1 + pg(x)) = (1 + pg(x))p.

But the coordinate ring C of WF=p
Spf Zp

is flat over Zp (see §4.5.1), so an element
u ∈ W (C) such that Fu = up has to be Teichmüller.

4.5.4. By §4.5.1, GdR and WF=p
Spf Zp

are flat over Spf Zp. The morphism
f : GdR → WF=p

Spf Zp
becomes an isomorphism after base change to SpecFp, see

§4.4.6. So f itself is an isomorphism. Finally, it is easy to see that f ◦ g =
id.

4.5.5. Remark In §4.5.2–4.5.3 we used a flatness argument. Instead, one
could use the canonical δ-ring structure on W (A).

4.6. Remarks related to §4.4

Let (W×)(F ) := Ker(F : W× → W×). In §4.6.1 we identify the group scheme
GdR from §4.4 with ((W×)(F )/μp)Spf Zp . This allows us to think of (4.12) as
an isomorphism

(4.15) ((W×)(F )/μp)Spf Zp

∼−→ W
(F )
Spf Zp

.
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In §4.6.2 we show that the base change of (4.15) to SpecFp is somewhat
unexpected. Related to this is Lemma 4.6.6, which says that the restriction
of the formal group HQ to the subscheme Spf Zp[[q − 1]]/(qp − 1) ⊂ Q is
somewhat unusual.

4.6.1. If w ∈ (W×)(F )(A) and w0 ∈ A× is the 0-th component of the Witt
vector w then [w0]/w = 1+V x for a unique x ∈ W (A); moreover, x ∈ GdR(A)
because

1 + px = F ([w0]/w) = [wp
0].

It is easy to check that one thus gets an isomorphism

(4.16) ((W×)(F )/μp)Spf Zp

∼−→ GdR.

Composing (4.16) and (4.12), one gets an isomorphism (4.15).
On the other hand, one has canonical isomorphisms

(W×)(F )
Spf Zp

∼−→ (G�
m)Spf Zp , W

(F )
Spf Zp

∼−→ (G�
a)Spf Zp ,

where G�
m and G�

a are the divided powers versions of Gm and Ga (see [BL] or
Lemma 3.2.6 and §3.3.3 of [D3]). So one can think of (4.16) as an isomorphism
(G�

m/μp)Spf Zp

∼−→ GdR, and one can think of (4.15) as an isomorphism

(4.17) (G�
m/μp)Spf Zp

∼−→ (G�
a)Spf Zp .

It is easy to check that the isomorphism (4.17) is equal to the isomorphism

log : (G�
m/μp)Spf Zp

∼−→ (G�
a)Spf Zp

from Proposition B.5.6(i) of Appendix B.

4.6.2. Warning In WFp one has V F = FV . Using this, it is easy to check
that the map WFp → W×

Fp
defined by x �→ 1 + V x induces an isomorphism

fnaive : W (F )
Fp

∼−→ ((W×)(F )/μp)Fp .

On the other hand, let f : W (F )
Fp

∼−→ ((W×)(F )/μp)Fp be the base change of
the inverse of (4.15) to SpecFp. It turns out that f �= fnaive; more precisely,
using §4.4.6 one gets

(4.18) f(x) = fnaive(V x− x).

The remaining part of §4.6 is closely related to formula (4.18).
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4.6.3. Notation Let

T := Spf B, where B := {(x, y) ∈ Zp × Zp |x ≡ y mod p}.

The element (p, V (1)) ∈ W (Zp) × W (Zp) = W (Zp × Zp) belongs to W (B).
It defines a morphism T → Wprim and therefore a morphism T → Σ. Let GT

and HT be the pullbacks of GΣ and HΣ to T (so HT is a formal group over
T , and GT is the Cartier dual affine group scheme over T ).

Lemma 4.6.4. (i) The pullback of GT (resp. HT ) via each of the two closed
immersions i1, i2 : Spf Zp ↪→ T is isomorphic to W

(F )
Spf Zp

(resp. to (Ĝa)Spf Zp).
(ii) GT is not isomorphic to W

(F )
T , and HT is not isomorphic to (Ĝa)T .

Proof. We have the isomorphisms i∗1GT
∼−→ W

(F )
Spf Zp

and i∗2GT
∼−→ W

(F )
Spf Zp

given by (4.12) and (4.4). Their pullbacks to SpecFp = i1(Spf Zp)∩i2(Spf Zp)
are different: by §4.4.6, they differ by id−V ∈ AutW (F )

Fp
.

It remains to show that the automorphism id−V ∈ AutW (F )
Fp

is not in
the image of AutW (F )

Spf Zp
. The Cartier duals of W (F )

Fp
and id−V are (Ĝa)Fp

and id−Fr ∈ Aut(Ĝa)Fp . It is clear that id−Fr is not in the image of
Aut(Ĝa)Spf Zp = Z×

p .

4.6.5. A subscheme T ′ ⊂ Q Let us formulate a variant of Lemma 4.6.4.
As usual, let Q be the q-de Rham prism, i.e., Q := Spf Zp[[q − 1]]. Let T ′ ⊂
Q be defined by the equation qp = 1. Let T be as in §4.6.3. We have a
commutative diagram

T ′ Q

T Σ
in which the morphism Q → Σ is as in §2.10.1 and the morphism T ′ → T
comes from the ring homomorphism

B → Zp[q]/(qp − 1), (x, y) �→ y + x− y

p
· (1 + q + · · · + qp−1),

where B is as in §4.6.3.

Lemma 4.6.6. As before, let T ′ ⊂ Q be defined by the equation qp = 1.
Let T ′

1 ⊂ T ′ (resp. T ′
2 ⊂ T ′) be defined by the equation q = 1 (resp. by

1 + q + · · · qp−1 = 0). Let HT ′ , HT ′
1
, HT ′

2
be the pullbacks of HQ to T ′, T ′

1, T
′
2.

Then
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(i) HT ′
1
� (Ĝa)T ′

1
and HT ′

2
� (Ĝa)T ′

2
;

(ii) HT ′ is not isomorphic to (Ĝa)T ′.

Proof. Statement (i) follows from Lemma 4.6.4(i). Statement (ii) is proved
similarly to Lemma 4.6.4(ii).

4.6.7. Remark In connection with Lemma 4.6.6, let us note that HQ has
a very explicit description, see (2.23). This description was deduced from
Theorem 2.10.4, which will be proved in the next subsection.

4.7. Proof of Theorem 2.10.4

4.7.1. Recollections By (2.17), the effective divisor (Δ0)Q := Δ0 ×Σ Q ⊂
Q is defined by the equation Φp(q) = 0. Recall that D ⊂ Q denotes the divisor
q = 1. Since qp − 1 = (q − 1) · Φp(q), we get

(4.19) F−1(D) = D + (Δ0)Q.

We have a section sQ : Q → HQ and a homomorphism σ∗ : HQ → (Ĝm)Q.
By Lemma 2.10.3(ii), σ∗ ◦ sQ is given by qp ∈ Ĝm(Q), so s−1

Q (Kerσ∗) is the
divisor qp = 1. By (4.19), we get

(4.20) s−1
Q (Ker σ∗) = D + (Δ0)Q.

Lemma 4.7.2. (i) The closed subscheme Ker σ∗ ⊂ HQ is equal to the divisor
HD + 0Q, where HD ⊂ HQ is the preimage of D and 0Q ⊂ HQ is the zero
section.

(ii) s−1
Q (0Q) = (Δ0)Q.

Proof. By (4.20), Ker σ∗ �= HQ. Since Ker σ∗ = (σ∗)−1(0Q) and 0Q is a divisor
in HQ, we see that Ker σ∗ is a divisor in HQ.

From the definition of σ (see §2.10.2) it is clear that σ : Q → GQ vanishes
on D. So σ∗ : HQ → (Ĝm)Q vanishes over D. Therefore Ker σ∗ ≥ HD + 0Q.
In other words,

Ker σ∗ = HD + 0Q + D, where D ≥ 0.

Combining this with (4.20), we see that

s−1
Q (0Q) + s−1

Q (D) = (Δ0)Q.

But s−1
Q (0Q) ≥ (Δ0)Q by Corollary 4.3.6. So s−1

Q (D) = 0. Therefore D =
0.
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4.7.3. Proof of Theorem 2.10.4 We have to show that σ∗ : HQ →
(Ĝm)Q induces an isomorphism HQ

∼−→ (Ĝm)Q(−D). Choose an isomor-
phism HQ

∼−→ Spf Zp[[q − 1, x]] of formal schemes over Q. Then σ∗ is given
by a formal series f ∈ Zp[[q− 1, x]] such that f(x1 � x2) = f(x1)f(x2), where
� is the group operation in HQ. By Lemma 4.7.2(i), f = 1 + (q − 1)g, where

(4.21) g ∈ x · Zp[[q − 1, x]]×.

Then g(x1 � x2) = g(x1) + g(x2) + (q − 1)g(x1)g(x2) = g(x1) ∗ g(x2), where
∗ is the group operation in (Ĝm)Q(−D). Combining this with (4.21), we see
that g defines an isomorphism of formal groups HQ

∼−→ (Ĝm)Q(−D).

4.8. Proof of Theorem 2.9.2

As already mentioned in §2.10.1, the morphism π : Q → Σ is faithfully flat. So
to prove Theorem 2.9.2, it suffices to check analogous statements about HQ.
The analog of Theorem 2.9.2(i) has already been proved, see Lemma 4.7.2(ii).
It remains to show that the morphism ϕQ : F ∗HQ → HQ factors as F ∗HQ

∼−→
HQ((−Δ0)Q) → HΣ. This follows from Lemma 2.10.3(i), Theorem 2.10.4 and
formula (4.19).

4.8.1. Remark The interested reader can prove Theorem 2.9.2 without
using the q-de Rham prism. One can deduce it from Proposition 2.9.5 and the
description of Gη given in the proof of Proposition 4.3.1(i). (Proposition 2.9.5
was deduced in §2 from Proposition 2.7.8, and the latter was proved in §4.4.)

4.9. Proof of Proposition 2.11.3

4.9.1. Recall that Q = Spf Zp[[q − 1]], HQ = Spf Zp[[q − 1, z]], and the
group operation on HQ is given by z1 ∗ z2 = z1 + z2 + (q − 1)z1z2. We have
a canonical section sQ : Q → HQ; as explained in §2.10.6, it is given by
z = qp−1

q−1 .

Lemma 4.9.2. Let K ⊂ HQ be a closed group subscheme such that sQ : Q →
HQ factors through K. Then K = HQ.

Proof. Assume the contrary. Then there exists a nonzero regular function f
on HQ which vanishes on the image of each composite morphism

(4.22) Q
sQ−→ HQ

n−→ HQ, n ∈ Z.
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Without loss of generality, we can assume that f ∈ Zp[[q− 1, z]] has the form

f =
∞∑
i=0

ai(z)(q − 1)i, where ai ∈ Zp[[z]], a0 �= 0.

By §4.9.1, the morphism (4.22) is given by z = qpn−1
q−1 . The value of qpn−1

q−1
at q = 1 equals pn. So a0(pn) = 0 for all n ∈ Z, which contradicts the
assumption a0 �= 0.

4.9.3. Proof of Proposition 2.11.3 Recall that the formal groups HQ

and (Ĝm)Q are Z×
p -equivariant (the action of Z×

p on (Ĝm)Q is as in the for-
mulation of Proposition 2.11.3). So Z×

p acts on Hom(HQ, (Ĝm)Q). We have an
element σ∗ ∈ Hom(HQ, (Ĝm)Q), and the problem is to show that α(σ∗) = σ∗

for all α ∈ Z×
p . By Lemma 4.9.2, it suffices to check that for every α ∈ Z×

p

one has

(4.23) sQ(Q) ⊂ Kα, where Kα := Ker(α(σ∗) − σ∗) ⊂ HQ.

The section sQ : Q → HQ is Z×
p -equivariant because it comes from s :

Σ → HΣ. By Lemma 2.10.3(ii), σ∗ ◦ sQ : Q → (Ĝm)Q is also Z×
p -equivariant.

So (4.23) holds.

5. Several realizations of the group scheme GQ

By definition, GQ is the pullback of GΣ to the q-de Rham prism Q. This
immediately leads to the first realization of GQ and its coordinate ring, see
§5.1–5.2. In §5.3 we note that the coordinate ring of a certain extension of
GQ by (μp)Q appears in the theory of q-logarithm from [ALB, BL].

On the other hand, Theorem 2.10.4 identifies GQ with the Cartier dual of
a very explicit formal group (Ĝm)Q(−D). This Cartier dual is denoted by G!

Q.
We explicitly describe G!

Q (see §5.4–5.5) and the isomorphism G!
Q

∼−→ GQ

(see §5.6).
In §5.7 we define group schemes G!?

Q, G
!!
Q and isomorphisms between them

and G!
Q. Unlike G!

Q and similarly to GQ, both G!?
Q and GQ are defined in

terms of Witt vectors.
Let us note that in §5.5–5.6 a key role is played by the expressions (1+(q−

1)z)
t

q−1 and q
pt

q−1 . The closely related q-logarithm (in the sense of [ALB, BL])
appears in formula (5.16).
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5.1. Recollections

5.1.1. The formal δ-scheme Q Let Q := Spf Zp[[q−1]], where Zp[[q−1]]
is equipped with the (p, q − 1)-adic topology. Define F : Q → Q by q �→ qp.
Then (Q,F ) is a formal δ-scheme.

5.1.2. Pieces of structure on GQ Recall that according to the definition
from §2.10.2,

GQ := GΣ ×Σ Q,

where GΣ is as in §2.6. GQ is a formal scheme over Q. The morphism GQ → Q
is schematic and affine; by Corollary 2.7.2, it is flat.

Let us recall the pieces of structure on GQ. Most of them come from
similar pieces of structure on GΣ (the only exception is (iii).

(i′) GQ is a formal δ-scheme over the formal δ-scheme Q; in other words,
GQ is equipped with a Frobenius lift F : GQ → GQ, which is compatible with
F : Q → Q.

(i′′) GQ is a group scheme over Q. The group structure is compatible with
F : GQ → GQ, so GQ is a group δ-scheme over Q.

(ii) One has a canonical map GQ → (Gm)Q, which is a homomorphism
of group δ-schemes over Q. As usual, (Gm)Q := Gm × Q, and the δ-scheme
structure on Gm is given by raising to the power of p.

(iii) In §2.10.2 we defined a canonical section σ : Q → GQ, which is a
δ-morphism.

5.1.3. Who is who For any p-nilpotent ring A one has

Q(A) = {q ∈ A× | q − 1 is nilpotent},
GQ(A) = {(q, x) ∈ Q(A) ×W (A) | 1 + Φp([q])x ∈ Gm(A)},(5.1)

where Φp is the cyclotomic polynomial and Gm is identified with a subgroup
of W× via the Teichmüller embedding. The morphism F : GQ → GQ is given
by

F (q, x) = (qp, Fx).

The group operation on GQ and the homomorphism GQ → (Gm)Q are given
by the maps

GQ ×Q GQ → GQ, (q, x1, x2) �→ (q, x1 + x2 + Φp([q])x1x2),
GQ → Gm, (q, x) �→ 1 + Φp([q])x.
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The section σ : Q → GQ is given by

(5.2) σ(q) := (q, [q] − 1).

5.2. The coordinate ring of GQ

The coordinate ring H0(GQ,OGQ) is a (p, q−1)-adically complete Zp[[q−1]]-
algebra. Since GQ is flat over Q, for any open ideal I ⊂ Zp[[q − 1]] the
tensor product H0(GQ,OGQ)⊗Zp[[q−1]] (Zp[[q−1]]/I) is flat over Zp[[q−1]]/I.
In particular, H0(GQ,OGQ) is p-torsion-free, so F : GQ → GQ induces on
H0(GQ,OGQ) a δ-ring structure in the sense of [J85] and [BS, §2]. Let us
describe H0(GQ,OGQ) as a δ-algebra over Zp[[q − 1]], where Zp[[q − 1]] is
considered as a δ-ring with δ(q) = 0.

Proposition 5.2.1. Let R0 be the δ-algebra over Z[q] with a single generator
x0 and a single defining relation δ(1+Φp(q)x0) = 0. Let R be the (p, q−1)-adic
completion of R0. Then there is a unique isomorphism R0

∼−→ H0(GQ,OGQ)
of δ-algebras over Zp[[q−1]] such that x0 ∈ R goes to the following function on
GQ: the value of the function on a pair (q, x) as in (5.1) is the 0-th component
of the Witt vector x.

Proof. Let Y be the affine scheme over Z[q] such that for any Z[q]-algebra A
one has

Y (A) = {x ∈ W (A) | 1 + Φp([q])x ∈ τ(A)},
where τ : A → W (A) is the Teichmüller embedding. Then GQ is the (p, q−1)-
adic formal completion of Y .

Let us construct an isomorphism R0
∼−→ H0(Y,OY ). By definition, Y is

a closed subscheme of WZ[q] := W × SpecZ[q]. By §C.3.7 of Appendix C, the
coordinate ring of WZ[q] is a free δ-algebra over Z[q] on a single generator x0,
where x0 is the function that takes a Witt vector to its 0-th component. Since
the Teichmüller embedding A1 → W is a δ-morphism, we see that the ideal
of Y in WZ[q] is generated by δn(1+Φp(q)x0), n > 0. So H0(Y,OY ) = R0.

5.3. GQ and the q-logarithm in the sense of [ALB, BL]

This subsection is a commentary on the notion of q-logarithm12 from [ALB,
§4] and [BL, §2.6]; the main point is that the q-logarithm is the unique group
homomorphism GQ → (Ga)Q with a certain property (see the last sentence
of §5.3.2). This material will be used in formula (5.16) and nowhere else.

12As explained in [BL, Prop. 2.6.10], the q-logarithm is closely related to the
prismatic logarithm (i.e., to the homomorphism GΣ → OΣ{1} from our Corol-
lary 2.7.11). We do not discuss this relation here.
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5.3.1. An extension of GQ by (μp)Q The definition of q-logarithm given
in [BL, §2.6] following [ALB, §4] secretly uses the coordinate ring of a slight
modification of GQ. Namely, for any p-nilpotent ring A let

(5.3) G̃Q(A) := {(q, x, u) ∈ Q(A) ×W (A) × A× | 1 + Φp([q])x = [up]}

(so G̃Q is an extension of GQ by (μp)Q). The δ-ring constructed in [BL,
Prop. 2.6.5] is just the coordinate ring of G̃Q; this easily follows from Propo-
sition 5.2.1.

We have a section

(5.4) σ̃ : Q → G̃Q, σ̃(q) := (q, [q] − 1, q),

which lifts the section σ : Q → G̃Q defined by (5.2).

5.3.2. The q-logarithm On G̃Q we have an invertible regular function
u, see formula (5.3); note that up is a regular function on GQ (unlike u).
The authors of [ALB, BL] define another regular function on G̃Q denoted by
logq(u) and called the q-logarithm13 of u. As explained below, logq(u) is, in
fact, a regular function on GQ itself.

Very informally, logq(u) = q−1
log q · log u (so logq(u) is q − 1 times the

logarithm of u with base q). From this informal description we see that
logq(u1u2) = logq(u1) + logq(u2) and logq(q) = q − 1.

The precise definition of logq(u) from [ALB, BL] can be paraphrased
as follows: logq(u) is the unique group homomorphism G̃Q → (Ga)Q that
takes the section (5.4) to the section q − 1 : Q → (Ga)Q (the existence and
uniqueness of such a homomorphism is proved in [ALB, §4]; see also [BL,
Prop. 2.6.9]).

Note that the group Ker(G̃Q � GQ) = (μp)Q is killed by logq(u) because

Hom((μp)Q, (Ga)Q) = 0.

So logq(u) is a group homomorphism GQ → (Ga)Q; it is the unique ho-
momorphism that takes the section σ : Q → G̃Q from (5.2) to the section
q − 1 : Q → (Ga)Q.

13Warning: in the literature the word “q-logarithm” is used for many quite dif-
ferent functions, see the article [KVA], especially its last section.
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5.4. The group scheme G!
Q

5.4.1. Definition of H !
Q and G!

Q Let D ⊂ Q be the effective divisor
q = 1. Let

H !
Q := (Ĝm)Q(−D),

i.e., H !
Q is the formal group over Q obtained from (Ĝm)Q by rescaling via the

invertible subsheaf OQ(−D) ⊂ OQ, see §3.4.
Now define G!

Q to be the Cartier dual of H !
Q. Then G!

Q is a flat affine
group scheme over Q.

Theorem 2.10.4 yields canonical isomorphisms HQ
∼−→ H !

Q, G!
Q

∼−→ GQ.
But we will disregard these isomorphisms until §5.6.

5.4.2. H !
Q in explicit terms As a formal scheme, H !

Q = Spf Zp[[q−1, z]],
and the group operation is

(5.5) z1 ∗ z2 = (1 + (q − 1)z1)(1 + (q − 1)z2) − 1
q − 1 = z1 + z2 + (q − 1)z1z2.

Let H ! be the formal group over A1 = SpecZ[q] defined by the group
law (5.5); then H !

Q = H ! ×A1 Q.

5.4.3. Pieces of structure on H !
Q H !

Q is a formal group over Q equipped
with a homomorphism

(5.6) H !
Q → (Ĝm)Q.

In terms of the coordinate z from §5.4.2, it is given by the function 1+(q−1)z.
Since F−1(D) ⊃ D, there is a unique homomorphism ϕQ : F ∗H !

Q → H !
Q

such that the diagram

(5.7) F ∗H !
Q

ϕQ
H !

Q

F ∗(Ĝm)Q ∼ (Ĝm)Q

commutes; here the lower horizontal arrow comes from the fact that (Ĝm)Q :=
Gm ×Q. Over Q⊗ Fp the upper horizontal arrow of (5.7) becomes the Ver-
schiebung (because the lower horizontal arrow does).
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Moreover, the map Q → Ĝm, q �→ qp, defines a section Q → (Ĝm)Q,
which comes from a section

(5.8) sQ : Q → H !
Q.

In terms of §5.4.2, sQ is given by z = Φp(q).
The following diagram commutes:

F ∗H !
Q

ϕQ
H !

Q

Q

F ∗(sQ)

sQ
H !

Q

p

Note that (5.6) and ϕQ : F ∗H !
Q → H !

Q come from similar pieces of struc-
ture on the formal group H ! from §5.4.2; on the other hand, (5.8) does not
have an analog for H !.

5.4.4. Pieces of structure on G!
Q Dualizing §5.4.3, we get the following

pieces of structure on G!
Q, which are parallel to those from §5.1.2.

(i) The homomorphism ϕQ : F ∗H !
Q → H !

Q yields a map F : G!
Q → G!

Q,
which makes G!

Q into a group δ-scheme over Q.
(ii) The section (5.8) yields a canonical map G!

Q → (Gm)Q, which is a
homomorphism of group δ-schemes over Q.

(iii) The homomorphism (5.6) yields a canonical section σ! : Q → G!
Q,

which is a δ-morphism.
An explicit description of G!

Q (together with the above pieces of structure
on it) will be given in Proposition 5.5.2.

5.4.5. The group scheme G! Let G! be the Cartier dual of the formal
group H ! from §5.4.2. Then G!

Q = G! ×A1 Q.
The pieces of structure from §5.4.4(i,iii) are pullbacks of similar pieces

of structure on G!. On the other hand, the piece of structure from §5.4.4(ii)
does not have an analog for G!.

The affine group scheme G! and its coordinate ring are described in Ap-
pendix D. We will use these results below.

5.5. Explicit description of G!
Q

5.5.1. The ring B Let B0 be the Hopf algebra over Z[h] from Proposi-
tion D.2.2 (see also §D.3.6 for a description of B0⊗Z(p)). Let B be the (p, h)-
adic completion of B0. Then B is a topological Hopf algebra over Zp[[q− 1]],
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where q = 1 + h. Elements of B are infinite sums

∞∑
n=0

an · t(t− q + 1) . . . (t− (n− 1)(q − 1))
n! , where an ∈ Zp[[q − 1]], an → 0.

(5.9)

An element (5.9) is in B0 if and only if an ∈ Z[q] for all n and an = 0 for
n � 0. Note that B is torsion-free as a Zp[[q − 1]]-module.

Proposition 5.5.2. (a) The group scheme G!
Q identifies with Spf B so that

in terms of this identification the pairing G!
Q ×H !

Q → (Gm)Q is given by the
formal series

(1 + (q − 1)z)
t

q−1 :=
∞∑
n=0

t(t− q + 1) . . . (t− (n− 1)(q − 1))
n! · zn ∈ B[[z]]×,

(5.10)

where z is the coordinate on H !
Q from §5.4.2.

(a′) The regular function on G!
Q corresponding to t ∈ B defines a group

homomorphism

(5.11) G!
Q → (Ga)Q.

(b) The homomorphism φ : B → B corresponding to the morphism F :
G!

Q → G!
Q from §5.4.4(i) is given by

φ(q) = qp, φ(t) = Φp(q)t.

Moreover, φ makes B into a δ-ring.
(c) The homomorphism G!

Q → (Gm)Q from §5.4.4(ii) is given by the
element

(5.12) q
pt

q−1 :=
∞∑
n=0

t(t− q + 1) . . . (t− (n− 1)(q − 1))
n! · Φp(q)n ∈ B×,

which is obtained from (5.10) by setting z = Φp(q) (the sum converges because
Φp(1) = p).

(c′) One has

q
pt

q−1 =
∞∑
n=0

αn, where αn := pt(pt− q + 1) . . . (pt− (n− 1)(q − 1))
n! ;
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more precisely, αn ∈ B0 and the series
∑∞

n=0 αn converges in B to the element
q

pt
q−1 defined by (5.12).

(d) The section σ! : Q → G!
Q from §5.4.4(iii) corresponds to the algebra

homomorphism B → Zp[[q − 1]] such that t �→ q − 1.

The “true meaning” of the homomorphism (5.11) will be explained later,
see formula (5.16).

Proof. Statement (a) follows from Proposition D.2.2 and formula (D.4).
Statement (a′) is clear from §D.2 or Proposition D.2.2(iii). It also follows

from (5.10) combined with the formula

(1 + (q − 1)z)
t1+t2
q−1 = (1 + (q − 1)z)

t1
q−1 · (1 + (q − 1)z)

t2
q−1 .

By Lemma D.3.5(ii), F : G!
Q → G!

Q is the base change of the morphism
Ψp : G! → G! from §D.3.4, so φ : B → B is the base change of the homomor-
phism ψp : B0 → B0 from Lemma D.3.3. Since B is p-torsion-free, φ makes
B into a δ-ring. This proves (b).

Statement (c) is clear because the homomorphism G!
Q → (Gm)Q comes

from the section (5.8), which is given by z = Φp(q).
To prove (d), recall that σ! comes from the homomorphism (5.6), which

is given by the function 1+(q−1)z; this function is the result of substituting
t = q − 1 into (5.10).

Let us prove (c′). By Lemma D.2.3, αn ∈ B0 and in the ring B0[[z]] one
has

(5.13)
∞∑
n=0

αnz
n = (1 + (q − 1)vz)

t
q−1 :=

∞∑
n=0

βnv
nzn,

where βn := t(t−q+1)...(t−(n−1)(q−1))
n! and

v = v(q, z) := (1 + (q − 1)z)p − 1
(q − 1)z =

p∑
i=1

(
p

i

)
(q − 1)i−1zi−1 ∈ Z[q, z].

Note that v ∈ I[z], where I ⊂ Z[q] is the ideal (p, q−1). So the r.h.s of (5.13)
belongs to the subring lim

←−
m

(B/ImB)[z] ⊂ B[[z]]. Therefore we can set z = 1

and get ∑
n

αn =
∑
n

βn · v(q, 1)n =
∑
n

βn · Φp(q)n;

in other words,
∑

n αn equals the r.h.s of (5.12).
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5.6. The isomorphism G!
Q

∼−→ GQ in explicit terms

5.6.1. The isomorphisms HQ
∼−→ H !

Q and G!
Q

∼−→ GQ Theo-
rem 2.10.4 yields a canonical isomorphism HQ

∼−→ H !
Q. It is compatible

with the pieces of structure on HQ and H !
Q introduced in §2.10.2 and §5.4.3.

So the Cartier dual isomorphism G!
Q

∼−→ GQ transforms the pieces of struc-
ture on G!

Q from §5.4.4 into the corresponding pieces of structure on GQ (see
§5.1.2–5.1.3).

5.6.2. The isomorphism between the coordinate rings of G!
Q and

GQ Recall that GQ = Spf R, G!
Q = Spf B, where R := R̂0 and B := B̂0 are

the (p, q − 1)-adic completions of the Z[q]-algebras R0 and B0 from Propo-
sitions 5.2.1 and D.2.2. So the canonical isomorphism G!

Q
∼−→ GQ induces

an isomorphism R
∼−→ B; using it, we identify R and B. Then the element

x0 ∈ R0 from Proposition 5.2.1 and the element t ∈ B0 from §5.5.1 live in
the same ring R = B. Let us discuss the relation between them.

By Proposition 5.5.2(c), we have

1 + Φp(q)x0 = q
pt

q−1 ,(5.14)

x0 = q
pt

q−1 − 1
Φp(q)

=
∞∑
n=1

t(t− q + 1) . . . (t− (n− 1)(q − 1))
n! · Φp(q)n−1.(5.15)

We claim that in terms of the q-logarithm (see §5.3.2) one has

(5.16) t = logq(u), where up = 1 + Φp(q)x0,

which implies that pt = logq(1 + Φp(q)x0). This follows from parts (a′), (d)
of Proposition 5.5.2 and the definition of logq(u) at the end of §5.3.2.

5.6.3. Remark Using (5.15), it is easy to show that R0 and B0 are different
as subrings of R = B; moreover, R0/(q−1)R0 and B0/(q−1)B0 are different
as subrings of the ring R/(q − 1)R = B/(q − 1)B.

5.6.4. Plan of what follows By Proposition 5.5.2, G!
Q = Spf B. By (5.1),

the isomorphism

(5.17) Spf B = G!
Q

∼−→ GQ

is given by an element x ∈ W (B) such that 1 + Φp([q])x ∈ B×, where B× ⊂
W (B)× is the subgroup of Teichmüller elements. In Proposition 5.6.6 we will
write a formula for x.
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5.6.5. The homomorphism ψ : B → W (B) According to A. Joyal
[J85], the forgetful functor from the category of δ-rings to that of rings has a
right adjoint, which is nothing but the functor W . Our B is a δ-ring, so the
unit of Joyal’s adjunction yields a homomorphism of δ-rings ψ : B → W (B).
It is the unique homomorphism of δ-rings B → W (B) whose composition
with the canonical epimorphism W (B) � W1(B) = B equals idB. For any
b ∈ B the n-th Buium-Joyal component (see §C.3.7) of the Witt vector ψ(b)
equals δn(b).

Proposition 5.6.6. One has

x = ψ

(
q

pt
q−1 − 1
Φp(q)

)
,(5.18)

1 + Φp([q])x = [q
pt

q−1 ],(5.19)

where ψ : B → W (B) is as in §5.6.5 and q
pt

q−1 ∈ B is defined by (5.12) (so
q

pt
q−1 − 1 is divisible by Φp(q)).

Proof. By §5.6.1, the morphism Spf B = G!
Q

∼−→ GQ is a δ-morphism.
So x : Spf B → W is a δ-morphism. Therefore the corresponding map
H0(W,OW ) → B is a δ-homomorphism. So the description of H0(W,OW )
from §C.3.7 shows that x = ψ(x0), where x0 is the 0-th component of the
Witt vector x. Combining this with (5.15), we get (5.18).

Formula (5.19) follows from (5.14) because 1 + Φp([q])x is a Teichmüller
element.

5.7. The group schemes G!?
Q and G!!

Q

Using Witt vectors, we will define group δ-schemes G!?
Q and G!!

Q over Q; each
of them is canonically isomorphic to G!

Q and therefore to GQ. The author
is not sure that G!?

Q is really useful; this explains the question mark in the
notation.

5.7.1. Definition of G!?
Q For any p-nilpotent ring A let

(5.20) G!?
Q(A) = {(q, y) ∈ Q(A) ×W (A) |Fy = [q − 1]p−1 · y}.

Then G!?
Q ⊂ WQ is a group subscheme. The map

G!?
Q → G!?

Q, (q, y) �→ (qp, [Φp(q)] · y)
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makes G!?
Q into a group δ-scheme over the formal δ-scheme Q.

Proposition 5.7.2. One has a canonical isomorphism

(5.21) G!
Q

∼−→ G!?
Q;

of group δ-schemes over Q; it is induced by the map (D.20).

Proof. Follows from Proposition D.4.10 and (D.17).

5.7.3. Definition of G!!
Q For any p-nilpotent ring A let

(5.22) G!!
Q(A) = {(q, y) ∈ Q(A) ×W (A) |Fy = Φp([q]) · y}.

Then G!!
Q ⊂ WQ is a group subscheme. Moreover, G!!

Q is a δ-subscheme if
WQ = W × Q is equipped with the product of the standard δ-structures on
W an Q.

5.7.4. The isomorphism G!
Q

∼−→ G!!
Q Let t ∈ H0(G!!

Q,OG!!
Q
) be the

function that takes (q, y) ∈ G!!
Q(A) to the 0-th component of the Witt vector

y. Similarly to the proof of Proposition 5.2.1, one shows that H0(G!!
Q,OG!!

Q
) is

the (p, q−1)-adic completion of the δ-algebra over Z[q] with a single generator
t and a single relation

tp + pδ(t) = Φp(q) · t.
Combining this with §D.3.6 and Proposition 5.5.2(a,b), we get an isomor-
phism of δ-rings H0(G!!

Q,OG!
Q
) ∼−→ H0(GQ,OG!

Q
). The corresponding iso-

morphism G!
Q

∼−→ G!!
Q is a group isomorphism by Proposition 5.5.2(a′).

5.7.5. Remark Combining Proposition 5.7.2 and §5.7.4 with the isomor-
phism G!

Q
∼−→ GQ from §5.6, we get canonical isomorphisms between the

group δ-schemes GQ, G!?
Q, and G!!

Q. These group δ-schemes are defined in
terms of W , but I do not know an explicit description of these isomorphisms
in terms of the standard Witt vector formalism. However, after the “de Rham”
specialization q = 1 the isomorphisms in question specialize to the explicit iso-
morphisms from §4.4 (note that GQ, G!?

Q, and G!!
Q specialize to GdR, W (F )

Spf Zp
,

and WF=p
Spf Zp

, respectively).
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Appendix A. On the prismatic cohomology of (A1 \ {0})Spf Zp

A.1. The result

Let GΔ
m be the prismatization of (A1 \{0})Spf Zp = (Gm)Spf Zp . The projection

(Gm)Spf Zp → Spf Zp induces a morphism π : GΔ
m → (Spf Zp)Δ = Σ. The goal

of this Appendix is to compute the higher derived images Riπ∗OGΔ
m

using
some results of §2. Here is the answer; it is almost contained14 in [BS, §16].

Theorem A.1.1. (i) Riπ∗OGΔ
m

= 0 if i �= 0, 1.
(ii) R0π∗OGΔ

m
= OΣ.

(iii) R1π∗OGΔ
m

=
⊕

n∈ZMn, where M0 := OΣ{−1} and if n �= 0 and m

is the biggest number such that pm|n then Mn := OΣ(Δ0 + · · · + Δm)/OΣ.
Here Δ0 ⊂ Σ is the Hodge-Tate divisor and Δi := (F i)−1(Δ0).

A.2. Proof of Theorem A.1.1

By Corollary 2.7.3, GΔ
m = Cone(GΣ → (Gm)Σ). Thus

Riπ∗OGΔ
m

= H i(GΣ,OΣ ⊗ A),

where A is the regular representation of Gm (so OΣ ⊗ A is a (Gm)Σ-module
and therefore a GΣ-module). Equivalently,

(A.1) Riπ∗OGΔ
m

=
⊕
n∈Z

H i(GΣ,OΣ ⊗ χn),

where χn is the 1-dimensional Gm-module corresponding to the character
z �→ zn.

By Theorem 2.7.5, GΣ is the Cartier dual of a 1-dimensional formal group
HΣ. Let s : Σ → HΣ be the section corresponding to the canonical homomor-
phism GΣ → (Gm)Σ. For n ∈ Z, let Dn ⊂ HΣ be the image of the composite
morphism Σ s−→ HΣ

n−→ HΣ; in particular, D0 ⊂ HΣ is the image of the zero
section. Then

(A.2) H i(GΣ,OΣ ⊗ χn) = Ri0!ODn ,

where 0 : Σ → HΣ is the zero section and ODn is viewed as an OHΣ-module.
14In [BS, §16] the pullback of Riπ∗OGΔ

m
to the q-de Rham prism Q was computed.

Theorem A.1.1 can be easily deduced from this computation.
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Lemma A.2.1. Ri0!OD0 = 0 for i �= 0, 1, R00!OD0 = OΣ, and R10!OD0 =
OΣ{−1}.

Proof. By Theorem 2.7.10, Lie(HΣ) = OΣ{−1}.

The following lemma is a reformulation of Corollary 2.9.3.

Lemma A.2.2. Let n = pmn′, where (n′, p) = 1. Then the projection HΣ →
Σ induces an isomorphism D0 ∩ Dn

∼−→ Δ0 + · · ·Δm, where Δ0 ⊂ Σ is the
Hodge-Tate divisor and Δi := (F i)−1(Δ0).

Corollary A.2.3. If n �= 0 then Ri0!ODn = 0 for i �= 1 and R10!ODn = Mn,
where Mn is as in Theorem A.1.1(iii).

Combining Lemma A.2.1, Corollary A.2.3, and (A.1)–(A.2), we get The-
orem A.1.1.

Appendix B. The Cartier dual of the divided powers version
of Gm

B.1. Plan

As usual, let Gm = SpecZ[x, x−1] be the multiplicative group over Z. Let
Mm denote the scheme A1 = SpecZ[x] viewed as a multiplicative monoid
over SpecZ. Let G�

m (resp. M�
m) be the PD hull of the unit in Gm (resp. in

Mm); explicitly,

(B.1) M�
m = SpecA, where A := Z

[
x,

(x− 1)2

2! ,
(x− 1)3

3! , . . .

]

and G�
m = SpecA[1/x]. The monoid structure on Mm and Gm extends to a

monoid structure on M�
m and G�

m. Moreover, the monoid G�
m is a group.

Theorem B.2.3 below describes the Cartier duals15 of G�
m and M�

m (this
description is likely to be known, but I was unable to find a reference). The
description becomes even simpler after base change to Spf Zp, see §B.4.

In §B.5 we construct an exact sequence (B.10) of group schemes over
Spf Zp, which plays an important role in [BL]. In §B.6 we discuss a variant
of (B.10) over SpecZ(p), where Z(p) is the localization of Z at p.

15By the Cartier dual of M�
m we mean Hom(M�

m,Mm); equivalently, the bialge-
bras corresponding to M�

m and its Cartier dual are dual to each other.
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B.2. Formulation of the theorem

We will define ind-schemes Γ and Γ+ equipped with a monoid structure;
moreover, Γ is a group. Then we will identify the Cartier duals of G�

m and
M�

m with Γ and Γ+, respectively.

B.2.1. Definition of Γ and Γ+ Given integers a ≤ b, define a polynomial
fa,b ∈ Z[u] by

(B.2) fa,b(u) :=
b∏

i=a

(u− i).

Define a closed subscheme Γ[a,b] ⊂ A1 = SpecZ[u] by

Γ[a,b] := SpecZ[u]/(fa,b).

The addition map A1 × A1 → A1 induces a morphism Γ[a,b] × Γ[c,d] →
Γ[a+c,b+d]. So the ind-schemes

Γ := Γ[−∞,∞] := lim
−→
N

Γ[−N,N ], Γ+ := Γ[0,∞] := lim
−→
N

Γ[0,N ]

are monoids; moreover, Γ is a group.

B.2.2. The pairings We have a pairing

(B.3) M�
m × Γ+ → Mm, (x, u) �→ xu :=

∞∑
n=0

f0,n(u) · (x− 1)n

n! ,

where f0,n is defined by formula (B.2). Since G�
m is a group, the morphism

(B.3) maps G�
m × Γ+ to Gm. Define a pairing

(B.4) G�
m × Γ → Gm

as follows: for each integer a ≥ 0 its restriction to G�
m × Γ[−a,∞] is given by

(x, u) �→ x−a · xu+a = x−a ·
∞∑
n=0

f0,n(u + a) · (x− 1)n

n! .

Theorem B.2.3. (i) The pairings (B.4) and (B.3) induce isomorphisms

G�
m

∼−→ Hom(Γ,Gm), M�
m

∼−→ Hom(Γ+,Mm).
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(ii) The coordinate ring of G�
m is a free Z-module.16

B.3. Proof of Theorem B.2.3

B.3.1. Distributions on Γ and Γ+ Let Distr(Γ[a,b]) be the Z-module
dual to the coordinate ring of Γ[a,b]; equivalently, Distr(Γ[a,b]) is the Z-module
of those linear functionals Z[u] → Z that are trivial on the ideal (fa,b) ⊂ Z[u].
We think of elements of Distr(Γ[a,b]) as distributions on Γ[a,b]. Let

Distr(Γ) := lim
−→
N

Distr(Γ[−N,N ]), Distr(Γ+) := lim
−→
N

Distr(Γ[0,N ]).

Then Distr(Γ) and Distr(Γ+) are rings with respect to convolution; moreover,
they are bialgebras over Z.

For each n ∈ Z we have the functional Z[u] → Z given by evaluation at
n; it defines an element δn ∈ Distr(Γ). If n ≥ 0 then δn ∈ Distr+(Γ). It is
clear that δmδn = δm+n and δ0 is the unit of Distr(Γ). So δ−n = δ−1

n .

Lemma B.3.2. (i) For every n ≥ 0 one has (δ1 − δ0)n ∈ n! · Distr(Γ[0,n]);
(ii) the distributions (δ1−δ0)n

n! = (δ1−1)n
n! , n ≥ 0, form a basis in Distr(Γ+);

(iii) Distr(Γ) is equal to the localization Distr(Γ)[δ−1
1 ] = Distr(Γ)[δ−1].

Proof. (δ1 − δ0)n is the unique element of Distr(Γ[0,n]) such that the corre-
sponding functional Z[u] → Z takes un to n! and un−1, . . . , u, 1 to 0. The
value of this functional on the polynomial f0,n−1 equals n!. This implies (i)-
(ii). Statement (iii) follows from (ii).

B.3.3. End of the proof The pairings (B.4) and (B.3) induce bialgebra
homomorphisms

(B.5) Distr(Γ) → Fun(G�
m) and Distr(Γ+) → Fun(M�

m),

where Fun stands for the coordinate ring. The homomorphisms (B.5) take δn
to xn, where x is the coordinate on Gm or Mm. Lemma B.3.2 implies that
the maps (B.5) are isomorphisms. Theorem B.2.3(i) follows.

It is easy to see that the Z-module Distr(Γ[−N−1,N+1])/Distr(Γ[−N,N ]) is
free. Therefore the Z-module Distr(Γ) is free. Theorem B.2.3(ii) follows.

16A similar statement for M�
m is obvious, see formula (B.1).
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B.4. Base change to Spf Zp

Fix a prime p. Let Γ be as in §B.2.1. Let

ΓZ/pnZ := Γ × SpecZ/pnZ, ΓSpf Zp := Γ × Spf Zp.

ΓZ/pnZ is a group ind-scheme over Z/pnZ, and ΓSpf Zp is a group ind-scheme
over Spf Zp. The next lemma shows that in fact, these ind-schemes are formal
schemes.

Lemma B.4.1. ΓZ/pnZ is the formal completion of A1
Z/pnZ = Spec(Z/pnZ)[u]

along the subscheme of A1
Fp

defined by the equation u(u− 1) . . . (u− p+ 1) =
0.

The lemma yields canonical exact sequences

0 → (Ĝa)Z/pnZ → ΓZ/pnZ → Z/pZ → 0,(B.6)
0 → (Ĝa)Spf Zp → ΓSpf Zp → Z/pZ → 0.(B.7)

Remark B.4.2. If n = 1 the exact sequence (B.6) has a unique splitting. If
n > 1 then (B.6) has no splittings.

B.5. Dualizing the exact sequence (B.7)

B.5.1. The homomorphism log : (G�
m)Spf Zp → (Ga)Spf Zp We have

the homomorphism log : (G�
m)Spf Zp → (Ga)Spf Zp given by

log x :=
∞∑
n=1

(−1)n−1 · (x− 1)n

n
=

∞∑
n=1

(−1)n−1(n− 1)! · (x− 1)n

n! .

Let G�
a be the divided powers additive group, i.e., the PD hull of 0 in Ga;

as a scheme,

G�
a = SpecZ

[
y,

y2

2! ,
y3

3! , . . .
]
.

Lemma B.5.2. The homomorphism log : (G�
m)Spf Zp → (Ga)Spf Zp factors

through (G�
a)Spf Zp , so we get a homomorphism

(B.8) log : (G�
m)Spf Zp → (G�

a)Spf Zp .
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Remark B.5.3. In the lemma the factorization is unique because the map
Fun(Ga) → Fun(G�

a) becomes an isomorphism after tensoring by Q (here
Fun stands for the ring of regular functions).

Proof of Lemma B.5.2. We have to show that (log x)k is divisible by k! in
the ring of regular functions on (G�

m)Spf Zp for any k > 0. Since d
dx(log x)k =

kx−1(log x)k−1, this follows by induction on k.

Lemma B.5.4. The embedding (μp)Spf Zp ↪→ (Gm)Spf Zp comes from a unique
homomorphism

(B.9) (μp)Spf Zp ↪→ (G�
m)Spf Zp .

Proof. It suffices to show that (μp)SpecZp is a PD-thickening of the unit of
(μp)SpecZp . We have (μp)SpecZp = SpecA, where A = Zp[x]/(xp − 1), and the
unit corresponds to the ideal I := (x − 1) ⊂ A, so the problem is to show
that fp ∈ pI for f ∈ I. Indeed, the image of (x− 1)p in A/pA is zero, so for
f ∈ I one has fp ∈ pA ∩ I = pI.

Remark B.5.5. The composition of (B.9) and (B.8) is zero because

Hom((μp)Spf Zp , (G�
a)Spf Zp) = 0.

Proposition B.5.6. (i) The sequence

(B.10) 0 → (μp)Spf Zp → (G�
m)Spf Zp

log−→ (G�
a)Spf Zp → 0,

whose morphisms are (B.9) and (B.8), is exact.
(ii) The exact sequence (B.10) is Cartier dual to (B.7); the pairing between

(G�
m)Spf Zp and ΓSpf Zp is given by (B.4), and the pairing

(G�
a)Spf Zp × (Ĝa)Spf Zp → Gm

is the exponent of the product.

Proof. It suffices to prove that the morphisms (B.9) and (B.8) are dual to the
corresponding morphisms in the exact sequence (B.7). This follows from the
equality xu = exp(u · log x).

In the next subsection we describe another approach to the exact se-
quence (B.10).
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B.6. A variant of (B.10) over Z(p)

Let Z(p) be the localization of Z at p. Base-changing Gm and μp to Z(p), one
gets group schemes (Gm)Z(p) and (μp)Z(p) over Z(p). Similarly to Lemma B.5.4,
one sees that the embedding (μp)Z(p) ↪→ (Gm)Z(p) comes from a unique homo-
morphism

(B.11) (μp)Z(p) ↪→ (G�
m)Z(p) .

We are going to describe the cokernel of (B.11), see Proposition B.6.3. Then
we will deduce exactness of (B.10) from this description, see §B.6.5.

B.6.1. The group schemes G and G� Let G be the group scheme over
Z whose group of A-points is the set {z ∈ A | 1 + pz ∈ A×} equipped with
the operation z1 ∗ z2 := z1 + z2 + pz1z2; in other words, G is the p-rescaled
version of Gm. We have a canonical homomorphism

(B.12) G → Gm, z �→ 1 + pz.

As usual, let G� be the divided powers version of G (i.e., the PD hull of the
unit in G).

Lemma B.6.2. There is a unique homomorphism

(B.13) G�
m → G�

such that the diagram
G�

m

p

G�

G�
m

commutes; here the vertical arrow comes from (B.12).

Proof. As above, let z be the coordinate on G. Let x be the usual coordinate
on Gm and t := x− 1. The homomorphism (G�

m)Q
p−→ (G�

m)Q = G�
Q is given

by z = (1+t)p−1
p . The problem is to check that (1+t)p−1

p =
∑p

i=1 miγi(t) for
some mi ∈ Z (here γi is the i-th divided power). This is clear.

Proposition B.6.3. The homomorphism (G�
m)Z(p) → (G�)Z(p) corresponding

to (B.13) induces an isomorphism (G�
m)Z(p)/(μp)Z(p)

∼−→ (G�)Z(p).

For a proof, see §B.7.
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B.6.4. Passing to formal completions (i) Let Ĝ, Ĝa be the formal com-
pletions of the group schemes G,Ga along their units; these are formal groups
over Z. Let ĜZ(p) , (Ĝa)Z(p) be the corresponding formal groups over Z(p). One
has an isomorphism

(B.14) ĜZ(p)
∼−→ (Ĝa)Z(p) , z �→ log(1 + pz)

p
:=

∞∑
n=1

(−p)n−1

n
· zn.

(ii) The isomorphism (B.14) induces an isomorphism

(B.15) G�
Spf Zp

∼−→ (G�
a)Spf Zp

because one can think of G�
Spf Zp

(resp. (G�
a)Spf Zp) as the p-adically completed

PD version of ĜZ(p) (resp. (Ĝa)Z(p)).
Note that (B.14) is an isomorphism of formal groups over the scheme

SpecZ(p), while (B.15) is an isomorphism of group schemes over the formal
scheme Spf Zp.

B.6.5. A proof of exactness of (B.10) Using that log(xp) = p · log x,
one checks that the homomorphism log : (G�

m)Spf Zp → (G�
a)Spf Zp from (B.10)

equals the composite map

(G�
m)Spf Zp → G�

Spf Zp

∼−→ (G�
a)Spf Zp ,

where the first arrow comes from (B.13) and the second one is (B.15). So
exactness of (B.10) follows from Proposition B.6.3.

B.7. Proof of Proposition B.6.3

B.7.1. Straightforward proof The kernel of the homomorphism

(G�
m)Z(p) → (G�)Z(p)

equals (μp)Z(p) . The problem is to show that the homomorphism is faithfully
flat.

We will use the coordinates z and t from the proof of Lemma B.6.2. We
have

(B.16) z = (1 + t)p − 1
p

= γ(t) +
p−1∑
i=1

nit
i for some ni ∈ Z,
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where γ(t) := tp

p .
The coordinate ring of (G�)Z(p) is

A

[ 1
1 + pz

]
, where A := Z(p)[z, γ(z), γ2(z), . . .] ⊂ Q[z].

The coordinate ring of (G�
m)Z(p) is

B

[ 1
1 + t

]
= B

[ 1
1 + pz

]
, where B := Z(p)[t, γ(t), γ2(t), . . .] ⊂ Q[t].

It suffices to show that the homomorphism A → B given by (B.16) makes B
into a free A-module with basis 1, t, . . . , tp−1. These elements form a basis of
B ⊗Q = Q[t] over A⊗Q = Q[z], so we only have to check that 1, t, . . . , tp−1

generate B as an A-module. Note that as a Z(p)-module, B is generated by
elements

∞∏
i=0

(γi(t))mi , where 0 ≤ mi < p and mi = 0 for i � 0.

By (B.16),
∏∞

i=0(γi(t))mi = tm0 ·∏i>0(γi−1(z))mi + {lower terms}, so we can
proceed by induction.

B.7.2. Proof via Cartier duality (sketch) One can also prove Propo-
sition B.6.3 by passing to the Cartier duals. Similarly to Theorem B.2.3, the
Cartier dual of G� identifies with the group ind-scheme Γp whose definition
is parallel to that of Γ (see §B.2.1) but with the polynomial

∏b
i=a(u− i) from

formula (B.2) being replaced by
∏b

i=a(u− pi). Details are left to the reader.

Appendix C. The Cartier dual of Ĝm

Let Ĝm denote the formal multiplicative group over Z. For any ring A one
has

Ĝm(A) = {y ∈ A× | y − 1 is nilpotent}.

In this section we give two descriptions of the Cartier dual of Ĝm, see §C.1 and
§C.3. They are probably well known: the description from §C.3 is contained
in [MRT], and the one from §C.1 was known to T. Ekedahl (see Remark 4 on
p. 197 of [Ek]).
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C.1. The Cartier dual in terms of the ring of integer-valued
polynomials

C.1.1. The ring scheme R Let R := Hom(Ĝm, Ĝm). This is a unital ring
scheme over SpecZ. The action of R on Lie(Ĝm) defines a homomorphism of
ring schemes

(C.1) R → Ga

(the multiplication operation in Ga is the usual one). The coordinate ring of
Ga equals Z[u], so (C.1) induces a ring homomorphism

(C.2) Z[u] → H0(R,OR).

As a group scheme, R equals Hom(Ĝm,Gm), i.e., the Cartier dual of Ĝm.
So R is a flat affine scheme over SpecZ.

By Lie theory, the homomorphism (C.1) induces an isomorphism

(C.3) R ⊗Q
∼−→ Ga ⊗Q.

The action of SpecQ[u] = Ga ⊗Q = R ⊗Q on Ĝm ⊗Q is given by Newton’s
binomial formula

(C.4) yu =
∞∑
n=0

(
u

n

)
(y − 1)u,

(
u

n

)
:= u(u− 1) . . . (u− n + 1)

n! ∈ Q[u].

The ring scheme R is commutative by virtue of (C.3) and flatness of R
over SpecZ.

The homomorphism (C.2) becomes an isomorphism after tensoring by Q.
So

Z[u] ⊂ H0(R,OR) ⊂ Q[u].
The homomorphism H0(R,OR) → H0(R,OR) ⊗H0(R,OR) corresponding
to addition (resp. multiplication) in R takes u to u ⊗ 1 + 1 ⊗ u (resp. to
u ⊗ u). To finish the explicit description of R, it remains to describe the
subring H0(R,OR) ⊂ Q[u].

Proposition C.1.2. H0(R,OR) = Int, where Int ⊂ Q[u] is the subring
generated by the polynomials

(u
n

)
, n ≥ 0.

Proof. H0(R,OR) is the smallest subring A ⊂ Q[u] such that the action
of SpecQ[u] = R ⊗ Q on Ĝm extends to an action of SpecA on Ĝm. So
H0(R,OR) is generated by the coefficients of the formal series (C.4).
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C.1.3. On the ring Int It is well known that

Int = {f ∈ Q[u] | f(m) ∈ Z for all m ∈ Z};

for this reason, Int is known as the ring of integer-valued polynomials. It is
also well known that

(i) the polynomials
(u
n

)
form a basis of the Z-module Int;

(ii) one has

(C.5) Int = {f ∈ Fun(Z,Z) |Δm(f) = 0 for some m},

where Fun(Z,Z) is the ring of all functions Z → Z and Δ : Fun(Z,Z) →
Fun(Z,Z) is the difference operator Δ : Fun(Z,Z) → Fun(Z,Z) defined by

(Δf)(u) = f(u + 1) − f(u).

More details about the ring Int and some references can be found in
[CC, Ch, Ek, El].

C.1.4. Remark Here is an interpretation of (C.5) via Cartier duality be-
tween R and Ĝm.

The Cartier dual of the embedding Ĝm ↪→ Gm is a morphism Z ×
SpecZ → R, and the embedding

(C.6) H0(R,OR) = Int ↪→ Fun(Z,Z)

is the corresponding homomorphism of coordinate rings. As a Z-module,
H0(R,OR) is the topological dual (Z[[y−1]])∗, and the map (C.6) is just the
natural map

ϕ : (Z[[y − 1]])∗ → (Z[y, y−1])∗.
So (C.5) means that ϕ is injective, and Imϕ consists of those linear functionals
on Z[y, y−1] that are trivial on (y−1)mZ[y, y−1] for some m. This is, of course,
true because Z[[y − 1]] is the (y − 1)-adic completion of Z[y, y−1].

C.2. The reduction of the scheme R modulo pn and the λ-ring
structure on Int

C.2.1. The reduction of R modulo pn Let p be a prime. If A is a ring
in which p is nilpotent then Ĝm ⊗ A is the inductive limit of μpn ⊗ A. The
Cartier dual of μpn is Z/pnZ. So

(C.7) R ⊗ A = (Zp)A := lim
←−
n

(Z/pnZ)A,
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where (Z/pnZ)A is the constant ring scheme over SpecA with fiber Z/pnZ.

C.2.2. Mahler’s theorem Let A = Z/pnZ. Combining (C.7) with the
equality H0(R,OR) = Int, we get an isomorphism

(C.8) Int /pn Int ∼−→ {Locally constant functions Zp → Z/pnZ};

the map (C.8) is as follows: given a function f ∈ Int ⊂ Fun(Z,Z), we re-
duce it modulo pn and then extend from Z to Zp by continuity. The isomor-
phism (C.8) is due to K. Mahler [Ma]. It is discussed, e.g., in [La, Ch. 4].

Lemma C.2.3. For every prime p, the Frobenius endomorphism of Int /p Int
equals the identity.

This well known fact follows from (C.8) or from (C.5).

C.2.4. Wilkerson’s theorem on λ-rings Any λ-ring R is equipped with
an action of the multiplicative monoid N; the endomorphism of R correspond-
ing to n ∈ N is denoted by ψn and called the n-th Adams operation. So we
get a functor from the category of λ-rings to that of rings equipped with
N-action. C. Wilkerson [W] proved that this functor identifies the category
of torsion-free λ-rings with the category of torsion-free rings equipped with
an action of N satisfying the following condition: ψp(x) is congruent to xp

modulo p for every prime p and every x ∈ R.

C.2.5. The λ-ring structure on Int By §C.2.4, a torsion free ring R
such that for every prime p the Frobenius endomorphism of R/pR equals the
identity is the same as a torsion-free λ-ring such that ψn = id for all n. It is
known (see [W, El]) that for such R one has

(C.9) λn(x) = x(x− 1) . . . (x− n + 1)
n! for all n ∈ N, x ∈ R.

By Lemma C.2.3, this applies to the ring Int. On the other hand, in the case
R = Int the λ-ring structure comes from the embedding Int ↪→ Fun(Z,Z) =
Z× Z× . . . and the λ-ring structure on Z, so (C.9) is clear.

C.2.6. Generators of Int⊗Z(p) Fix a prime p. Let Z(p) be the localiza-
tion of Z at p and Int(p) := Int⊗Z(p) ⊂ Q[u]. For x ∈ Ind(p) set

δ(x) := (x− xp)/p;
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then δ(x) ∈ Int(p) by Lemma C.2.3. The pair (Int(p), δ : Int(p) → Int(p)) is a
δ-ring in the sense of [J85] and [BS]. The following lemma is well known (e.g.,
see [El, §3]).

Lemma C.2.7. (i) The elements δn(u), n ∈ Z+, generate Int(p) as an Z(p)-
algebra.

(ii) Elements of the form
∏
i

(δi(u))di , where 0 ≤ di < p for all i and di = 0 for i � 0

form a basis of the Z(p)-module Int(p).

Proof. It suffices to proof (ii). Let n ≥ 0 be an integer. Write n =
∑

i dip
i,

where 0 ≤ di < p for all i and di = 0 for i � 0. There exists c ∈ Q such that
the polynomial (

u

n

)
− c

∏
i

(δi(u))di

has degree < n. It remains to check that c ∈ Z(p). To do this, use that
n! ∈ pm · Z×

(p), where m =
∑

i di(pi−1 + · · · + p + 1).

C.3. The ring scheme R via Witt vectors

C.3.1. The ring scheme Wbig Let Wbig be the ring scheme of “big” Witt
vectors. Recall that for any ring A, the additive group of Wbig(A) is the
subgroup of A[[z]]× that consists of all power series with constant them 1.
For each n ∈ Z one has the Witt vector Frobenius map Fn : Wbig → Wbig,
which is a ring scheme endomorphism; one has FmFn = Fmn and F1 = id.
Recall that the unit of Wbig(A) corresponds to 1 − z ∈ A[[z]]×.

C.3.2. The map R → Wbig By definition, an A-point of R is an element
f ∈ A[[y − 1]] satisfying the functional equation

(C.10) f(y1y2) = f(y1)f(y2).

Associating to such f the formal power series f(1−z) ∈ A[[z]]×, we get a group
homomorphism R(A) → Wbig(A) functorial in A, i.e., a homomorphism of
group schemes

(C.11) R → Wbig.
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This morphism is a closed immersion because (C.10) is a closed condition.
Note that the map (C.11) takes 1 ∈ R(Z) to 1 ∈ Wbig(Z) (see the end of
§C.3.1).

C.3.3. Remark Here is a slightly different way of thinking about (C.11).
Consider the unique homomorphism of unital rings f : Z → Wbig(Z). Then
each component of the Witt vector f(n) is an (integer-valued) polynomial in
n, so we get an element of Wbig(Int), i.e., a morphism Spec Int → Wbig. This
is (C.11).

Proposition C.3.4. (i) The map (C.11) is a homomorphism of ring schemes.
(ii) It induces an isomorphism R

∼−→ WF
big, where

(C.12) WF
big := {w ∈ Wbig |Fn(w) = w for all n ∈ N}.

Proof. We know that R is flat over SpecZ and the morphism R → Wbig is a
closed immersion. It is straightforward to check (i) and (ii) after base change
to SpecQ. It remains to show that WF

big is flat over SpecZ. This follows from
Lemmas C.3.5–C.3.6 below.

Lemma C.3.5. Let p be a prime and W the ring scheme of p-typical Witt
vectors. Let F : W → W be the Witt vector Frobenius and

(C.13) WF := {w ∈ W |F (w) = w}.

Then the natural ring scheme morphism Wbig → W induces an isomorphism

(C.14) WF
big ⊗ Z(p)

∼−→ WF ⊗ Z(p)

Proof. The proof is based on the identification of Wbig⊗Z(p) with the product
of infinitely many copies of W⊗Z(p) (the copies are labeled by positive integers
coprime to p) and the usual description of the morphisms Fn : Wbig ⊗Z(p) →
Wbig ⊗ Z(p) in terms of this identification.

Lemma C.3.6. The scheme WF defined by (C.13) is flat over Z.

Before proving the lemma, let us briefly recall the approach to W devel-
oped by Joyal [J85] (a detailed exposition of this approach can be found in
[B16] and [BG, §1]).
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C.3.7. Joyal’s approach to W Let C be the coordinate ring of W . Let
φ : C → C be the homomorphism corresponding to F : W → W . The map
W ⊗ Fp → W ⊗ Fp induced by F is the usual Frobenius, so there is a map
δ : C → C such that φ(c) = cp + pδ(c) for all c ∈ C (of course, the map δ is
neither additive nor multiplicative).

The pair (C, δ) is a δ-ring in the sense of [J85] and [BS, §2]. The main
theorem of [J85] says that C is the free δ-ring on x0, where x0 ∈ C corresponds
to the canonical homomorphism W → W/VW = Ga. This means that as a
ring, C is freely generated by the elements xn := δn(x0), n ≥ 0. We have

(C.15) φ(xn) = xpn + pxn+1

The elements xn (which are regular functions on W ) are called Buium-
Joyal coordinates or Buium-Joyal components (this terminology is introduced
in [BG]). For n > 1 they are different from Witt components (i.e., the usual
ones).

C.3.8. Proof of Lemma C.3.6 Let C be as in §C.3.7. Formula (C.15)
implies that the coordinate ring of WF is the quotient of C by the ideal I
generated by the elements

(C.16) xpn + pxn+1 − xn, n ∈ Z+.

This quotient is a free Z-module whose basis is formed by elements
∏

i x
di
i ,

where 0 ≤ di < p for all i and di = 0 for i � 0. Indeed, these elements clearly
generate C/I, and they are linearly independent in (C/I) ⊗Q = Q[x0].

Appendix D. The rescaled Ĝm and its Cartier dual

As noted by the reviewer, a substantial part of this Appendix and the previous
one is contained in [MRT].

D.1. Rescaling Ĝm

D.1.1. The formal group H ! Let H ! be the formal group scheme over
A1 = SpecZ[h] defined by the formal group law

z1 ∗ z2 = z1 + z2 + hz1z2.
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Note that 1 + h · (z1 ∗ z2) = (1 + hz1)(1 + hz2). So we have a homomorphism
of formal groups over A1

(D.1) H ! → Ĝm × A1, z �→ 1 + hz,

which induces an isomorphism over the locus h �= 0.
After specializing h to 1 and 0, the formal group H ! becomes Ĝm and Ĝa,

respectively. If you wish, H ! is a deformation of Ĝm to Ĝa.

D.1.2. Remarks (i) The action of Gm on A1 by multiplication lifts to an
action of Gm on H !: namely, λ ∈ Gm takes (h, z) to (λh, λ−1z). So H ! descends
from A1 to the quotient stack A1/Gm.

(ii) H ! is obtained from Ĝm by rescaling depending on a parameter h.
This is a particular case of the construction of §3.5.

D.1.3. Plan In §D.2 (which is parallel to §C.1) we give a description of the
Cartier dual G! of H !. In §D.4–D.5 we describe G! in terms of Witt vectors
in two different ways; the description from §D.4 is quite parallel to §C.3. In
§D.3 we discuss a certain λ-ring structure on the coordinate ring of G!.

D.2. The first description of the Cartier dual of H !

D.2.1. The group scheme G! Let G! be the Cartier dual of H !; this is a
flat affine scheme over A1 = SpecZ[h]. The group scheme R from §C.1 can
be obtained from G! by specializing h to 1. In this subsection we describe
G! in the spirit of §C.1. Later we will give two different descriptions of G! in
terms of Witt vectors (see Propositions D.4.10 and D.5.5).

For any Z[h]-algebra A, an A-point of G! is a formal series f ∈ 1+zA[[z]] ⊂
(A[[z]])× such that f(z1 ∗ z2) = f(z1)f(z2). Associating f ′(0) to such f , we
get a homomorphism

(D.2) G! → Ga × A1

of group schemes over A1 = SpecZ[h]. The coordinate ring of Ga equals Z[t],
so (D.2) induces a homomorphism of Z[h]-algebras

(D.3) Z[h, t] → H0(G!,OG!).

By Lie theory, the homomorphism (D.2) becomes an isomorphism after
base change to A1

Q = SpecQ[h]. So we have a pairing Ga ×H !
A1

Q

→ Gm ×A1
Q,
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where H !
A1

Q

:= H ! ×A1 A1
Q. The corresponding map Ga ×H !

A1
Q

→ Gm is given
by the formal series

(D.4) (1 + hz)t/h =
∞∑
n=0

t(t− h) . . . (t− h(n− 1))
n! · zn ∈ (Q[h, t][[z]])×,

where t is the coordinate on Ga and z is the coordinate on H !. Note that after
substituting h = 0 the formal series (D.4) becomes equal to exp(tz).

The homomorphism (D.3) becomes an isomorphism after tensoring by Q.
Since G! is flat over Z[h], we see that Z[h, t] ⊂ H0(G!,OG!) ⊂ Q[h, t].

Proposition D.2.2. (i) H0(G!,OG!) = B0, where B0 ⊂ Q[h, t] is the subring
generated over Z[h] by the polynomials

(D.5) t(t− h) . . . (t− h(n− 1))
n! , n ≥ 0.

(ii) The polynomials (D.5) form a basis of the Z[h]-module B0.
(iii) The Hopf algebra structure on B0 corresponding to the group struc-

ture on G! is given by t �→ t⊗ 1 + 1 ⊗ t.

Proof. The proof of (i) is parallel to that of Proposition C.1.2.
Let us prove (ii). The product of two polynomials of the form (D.5) can

be represented as an Z[h]-linear combination of such polynomials using the
formula

(1+hz1)t/h(1+hz2)t/h = (1+h(z1 ∗z2))t/h, where z1 ∗z2 = z1 +z2 +hz1z2.

So polynomials of the form (D.5) generate B0 as a Z[h]-module. They are
linearly independent over Z[h] because the polynomial (D.5) has degree n
with respect to u.

Finally, (iii) is clear because t is the pullback via (D.2) of the natural
coordinate on Ga.

The following simple lemma is used in the proof of Proposition 5.5.2(c′).

Lemma D.2.3. Let m ∈ N. Then
(i) the homomorphism gm : B0 → B0 induced by the morphism G! m−→ G!

takes t to mt;
(ii) mt(mt−h)...(mt−(n−1)h)

n! ∈ B0 for all n;
(iii) in B0[[z]] one has the equality

∞∑
n=0

mt(mt− h) . . . (mt− (n− 1)h)
n! · zn = (1 + hvz)

t
h ,
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where v := (1+hz)m−1
hz ∈ Z[h, z] and (1+hvz) t

h :=
∑∞

n=0
t(t−h)...(t−(n−1)h)

n! ·vnzn.
Proof. Statement (i) follows from Proposition D.2.2(iii). The expression from
(ii) is just gm(t), where gm is as in (i); so (ii) is clear. In statement (iii) one
can replace B0 by B0 ⊗Q = Q[h, t], so (iii) is classical.

D.2.4. The homomorphism R ×A1 → G! Recall that R is the Cartier
dual of Ĝm. So the Cartier dual of (D.1) is a homomorphism

(D.6) R × A1 → G!

of group schemes over A1 = SpecZ[h], which induces an isomorphism over
the locus h �= 0.

D.2.5. Relation between B0 and Int The map (D.6) induces a homo-
morphism of Z[h]-algebras

(D.7) B0 → Int[h],

which becomes an isomorphism after base change to Z[h, h−1]. The homor-
phism (D.7) takes t to hu, so the polynomial (D.5) goes to hn

(u
n

)
.

Equip Q[h, t] with the grading such that deg h = deg t = 1, then B0 is a
graded subring of Q[h, t]. Equip Int[h] with the grading such that deg h = 1
and all elements of Int have degree 0. Then the homomorphism (D.7) is
graded.

The subring Int ⊂ Q[u] from Proposition C.1.2 is filtered by degree of
polynomials. Let Int≤n be the n-th term of this filtration. It is easy to see
that (D.7) induces an isomorphism

(D.8) B0
∼−→

⊕
n

hn Int≤n .

Thus the graded Z[h]-algebra B0 is obtained from the filtered ring Int by a
very familiar procedure.

D.2.6. Remarks (i) B0/hB0 = gr Int is the ring of divided powers poly-
nomials in u.

(ii) One can rewrite (D.8) as an isomorphism

(D.9) B0
∼−→ Int[h] ∩Q[h, hu] ⊂ Q[h, u];

under this isomorphism t ∈ B0 corresponds to hu ∈ Q[h, u]. Note that (D.9)
induces an isomorphism B0 ⊗Q

∼−→ Q[h, hu] ⊂ Q[h, u].
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D.3. λ-ring structure on B0

D.3.1. Notation Let q := h + 1 ∈ Z[h]; then Z[h] = Z[q].

D.3.2. A λ-ring structure on Z[h] By §C.2.4, there is a unique λ-ring
structure on Z[h] = Z[q] such that ψn(q) = qn for all n ∈ N.

Another way to get this λ-ring structure is to chose a field k and to iden-
tify Z[q, q−1] (resp. Z[q]) with the Grothendieck ring of the category of finite-
dimensional representations of (Gm)k (resp. of the multiplicative monoid over
k) so that q identifies with the class of the tautological 1-dimensional repre-
sentation.

Let us note that the λ-ring Z[q] is studied in Pridham’s article [Pri].
In the next lemma we define a λ-ring structure on B0; the definition will

be motivated by Lemma D.3.5(ii).

Lemma D.3.3. Consider B0 as a graded ring (see §D.2.5). For n ∈ N let
ψn be the endomorphism of B0 whose restriction to the m-th graded piece of
B0 is multiplication by ( qn−1

q−1 )m. Then
(i) the endomorphisms ψn define a λ-ring structure on B0;
(ii) in B0 one has ψn(q) = qn, so the map Z[q] = Z[h] ↪→ B0 is a

homomorphism of λ-rings;
(iii) the diagram

B0
Δ

ψn

B0 ⊗Z[q] B0

ψn⊗ψn

B0
Δ

B0 ⊗Z[q] B0

commutes, where Δ is the coproduct.

Proof. By the definition of ψn : B0 → B0, in the ring B0 we have ψn(q−1) =
qn − 1 (because q − 1 = h is in the degree 1 graded piece) and therefore
ψn(q) = qn.

Let us prove (i). It is easy to check that ψn ◦ψn′ = ψnn′ . So by §C.2.4, it
remains to check that for every prime p the endomorphism of B0/pB0 induced
by ψp equals the Frobenius. This follows from (D.8), the fact that ψp(h) is
congruent to hp modulo p, and Lemma C.2.3, which says that the Frobenius
endomorphism of Int /p Int equals the identity.

To prove (iii), recall that B0 ⊗ Q = Q[h, t], Δ(t) = t ⊗ 1 + 1 ⊗ t (see
Proposition D.2.2(iii)) and ψn(t) = qn−1

q−1 · t.
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D.3.4. The morphisms Ψn : G! → G! The endomorphisms ψn ∈
EndZ[h] and ψn ∈ EndB0 induce maps Ψn : A1 → A1 and Ψn : G! → G!.
By Lemma D.3.3(ii), the diagram

G! Ψn
G!

A1 Ψn
A1

commutes, so we get a morphism

(D.10) G! → Ψ∗
nG

!

of schemes over A1, where Ψ∗
nG

! is the pullback of G! via Ψn : A1 → A1.
Moreover, (D.10) is a group homomorphism by Lemma D.3.3(iii).

Lemma D.3.5. (i) Let n ∈ N. Let Ψ∗
nH

! be the pullback of H ! via Ψn : A1 →
A1. Then there is a unique group homomorphism

(D.11) Ψ∗
nH

! → H !

which makes the following diagram commute:

(D.12) Ψ∗
nH

! H !

Ĝm × A1

Here the vertical arrow is the map (D.1) and the diagonal one is its pullback
via Ψn : A1 → A1.

(ii) The homomorphisms (D.10) and (D.11) are Cartier dual to each
other.

Proof. (i) H ! is the formal group over A1 given by the group law

z1 ∗ z2 = z1 + z2 + (q − 1)z1z2.

So Ψ∗
nH

! is given by the group law y1 ∗ y2 = y1 + y2 + (qn − 1)y1y2. The
homomorphism (D.11) is given by z = qn−1

q−1 · y.
(ii) The Cartier dual of the vertical arrow of (D.12) is the homomorphism

f : R × A1 → G! from (D.6). So it suffices to check commutativity of the
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diagram
Ψ∗

nG
! G!

R × A1
Ψ∗

n(f)
f

whose horizontal arrow is (D.10). This is equivalent to commutativity of the
diagram

(D.13) R × A1 f

idR ×Ψn

G!

Ψn

R × A1 f
G!

and then (after passing to coordinate rings) to commutativity of the diagram

Int⊗Z[h]

id⊗ψn

B0

ψn

Int⊗Z[h] B0

in which each horizontal arrow is the homomorphism (D.7). The commuta-
tivity of the latter diagram is clear from the definition of ψn : B0 → B0 from
Lemma D.3.3.

D.3.6. The δ-ring B0 ⊗ Z(p) Fix a prime p. Let Z(p) be the localization
of Z at p. Let φ ∈ End(B0 ⊗ Z(p)) be induced by ψp ∈ EndB0. For every b ∈
B0⊗Z(p), the element δ(b) := φ(b)−bp

p belongs to B0⊗Z(p) by Lemma D.3.3(i).
The map δ : B0 ⊗Z(p) → B0 ⊗Z(p) makes B0 ⊗Z(p) into a δ-ring in the sense
of [J85] and [BS]. The subring Z(p)[q] ⊂ B0 ⊗ Z(p) is a δ-subring.

By the definition of ψp (see Lemma D.3.3), the element t ∈ B0 ⊗ Z(p)
satisfies the relation ψp(t) := qp−1

q−1 · t or equivalently,

(D.14) tp + pδ(t) = Φp(q) · t.

On the other hand, let C be the δ-algebra over Z(p)[q] with a single generator
(denoted by t) and the defining relation (D.14). We claim that the canonical
homomorphism C → B0 ⊗ Z(p) is an isomorphism. Indeed, elements of the
form ∏

i

(δi(t))di , where 0 ≤ di < p for all i and di = 0 for i � 0
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generate17 the Z(p)[q]-module C and form a basis of the Z(p)[q]-module B0 ⊗
Z(p) (the latter is similar to Lemma C.2.7).

D.3.7. Some generalizations The generalizations discussed here are not
used in the rest of the article.

(i) In §D.3.2 we set ψn(h) := (1 + h)n − 1. This choice of ψn is motivated
by our interest in the q-de Rham prism. On the other hand, one could set
ψn(h) := hn and define ψn : B0 → B0 by setting ψn(b) = hm(n−1) for b in the
m-th graded piece of B0. Then we would still get a λ-ring structure on Z[h]
and B0; moreover, Lemmas D.3.3 and D.3.5 would remain valid.

(ii) In §D.3.6 we considered the δ-ring structure on B0⊗Z(p) corresponding
to the endomorphism of B0 ⊗ Z(p) that acts on the m-th graded piece as
multiplication by ((1 + h)p − 1)/h)m. If we replace ((1 + h)p − 1)/h by any
polynomial f ∈ Z(p)[h] congruent to hp−1 modulo p we would still get a δ-ring
structure on B0 ⊗Z(p) such that the elements δi(t), i ≥ 0, generate B0 ⊗Z(p)
over Z(p)[h].

D.4. The group scheme G! in terms of Witt vectors. I

D.4.1. λ-schemes By a λ-scheme we mean a scheme X equipped with a
collection of endomorphisms Ψn : X → X, n ∈ N, such that Ψm ◦Ψn = Ψmn,
Ψ1 = id, and for every prime p the morphism Ψp : X ⊗ Fp → X ⊗ Fp equals
FrX⊗Fp . (This definition is good enough for us because we will be dealing
with schemes flat over Z.) Similarly to §2.2.3 we have the notion of group
λ-scheme over a λ-scheme.

D.4.2. Plan of §D.4–D.5 G! is a group λ-scheme over the λ-scheme A1 =
SpecZ[q] (see §D.3.2–D.3.4). We will describe two realizations of this group
λ-scheme in terms of Witt vectors, denoted by G!? and G!!. The definitions
of G!? and G!! are given in §D.4.3 and §D.5.2, respectively. According to
Propositions D.4.10 and D.5.5, the group λ-schemes G!, G!?, and G!! are
canonically isomorphic.

Probably G!! is better than G!? (this opinion is influenced, in part, by my
correspondence with Lance Gurney). However, let us start with G!?, which is
obtained by rescaling §C.3 in a straightforward way.

17To see this, note that δ(t)p = φ(δi(t)) − pδi+1(t) = δi(Φp(q) · t) − pδi+1(t).
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D.4.3. Definition of G!? Let Wbig be the ring scheme of “big” Witt vec-
tors (so Wbig × A1 is a ring scheme over A1). Define G!? ⊂ Wbig × A1 to be
the following subgroup:

(D.15) G!? := {(w, q) ∈ Wbig × A1 |Fm(w) = [q − 1]m−1w for all m ∈ N}.

For n ∈ N define Ψn : G!? → G!? by

(D.16) Ψn(w, q) =
([

qn − 1
q − 1

]
· w, qn

)
.

It is easy to check that for each prime p the morphism Ψp : G!?⊗Fp → G!?⊗Fp

is equal to the Frobenius. So G!? is a group λ-scheme over A1 = SpecZ[q].

D.4.4. Remark Let p be a prime and W the ring scheme of p-typical Witt
vectors. Similarly to the proof of Lemma C.3.5, one shows that the canonical
epimorphism Wbig � W induces an isomorphism

(D.17) G!? ⊗ Z(p)
∼−→ {(w, q) ∈ W × A1

Z(p)
|F (w) = [q − 1]p−1 · w}.

Lemma D.4.5. G!? is flat over Z[q].

Proof. It suffices to show that the r.h.s of (D.17) is flat over Z(p)[q]. The
argument is parallel to that of §C.3.8, but the role of the elements

xpn + pxn+1 − xn

from §C.3.8 is played by xpn + pxn+1 − (q − 1)pn(p−1)xn.

D.4.6. A homomorphism G! → Wbig × A1 For any Z[q]-algebra A,
an A-point of G! is an element f ∈ 1 + zA[[z]] ⊂ (A[[z]])× satisfying the
functional equation

(D.18) f(z1)f(z2) = f(z1 + z2 + (q − 1)z1z2).

Associating to such f the formal power series

(D.19) f(−z) ∈ 1 + zA[[z]] = Wbig(A),

we get a group homomorphism G!(A) → 1 + zA[[z]] = Wbig(A) functorial in
A, i.e., a homomorphism of group schemes over A1

(D.20) i : G! ↪→ Wbig × A1.



A 1-dimensional formal group over the prismatization of Spf Zp 301

The morphism (D.20) is a closed immersion because (D.18) is a closed con-
dition.

D.4.7. Relation to the homomorphism R → Wbig It is easy to check
that after the specialization q = 2 (i.e., q− 1 = 1) the homomorphism (D.20)
becomes the homomorphism

(D.21) R
∼−→ WF

big ↪→ Wbig

from §C.3.2 (the minus sign in (D.19) was introduced to ensure this). More-
over, one has the following

Lemma D.4.8. (i) The following diagram commutes:

(D.22) R × A1 G!

i

Wbig × A1 [q−1]
Wbig × A1

Here the upper horizontal arrow is (D.6), the lower horizontal arrow is mul-
tiplication by the Teichmüller representative [q − 1] ∈ Wbig(Z[q]), the right
vertical arrow is (D.20), and the left vertical arrow comes from (D.21).

(ii) After base change to the open subset SpecZ[q, (q−1)−1] ⊂ SpecZ[q] =
A1, the horizontal arrows of (D.22) become isomorphisms.

Proof. Recall that for any Z[q]-algebra A, multiplication by [q−1] in Wbig(A)
takes a formal series g(x) ∈ 1 + xA[[x]] = Wbig(A) to g((q− 1)x). The rest is
straightforward.

D.4.9. Remarks (i) By Lemma C.2.3, R is a λ-scheme with Ψn = id for
all n. Moreover, commutativity of (D.13) means that the upper horizontal
arrow of (D.22) is a morphism of λ-schemes.

(ii) The lower horizontal arrow of (D.22) induces a morphism WF
big×A1 →

G!? of λ-schemes over A1, which becomes an isomorphism over the locus q �= 1.

Proposition D.4.10. The homomorphism (D.20) induces an isomorphism

(D.23) G! ∼−→ G!?

of λ-schemes over A1.
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Proof. The schemes G! and G!? are flat over Z[q] (for G!? this is Lemma D.4.5).
The morphism i : G! → Wbig×A! is a closed immersion. So it remains to show
that i induces an isomorphism of λ-schemes G!

q �=1
∼−→ G!?

q �=1, where G!
q �=1 and

G!?
q �=1 are the restrictions of G! and G!? to the locus q �= 1. This follows from

Lemma D.4.8 and §D.4.9.

D.5. The group scheme G! in terms of Witt vectors. II

This subsection is a non-p-typical version of §5.7.4. Part (iii) of Lemma D.5.4
is somewhat surprising.

D.5.1. Recollections on G! G! is the group scheme over A1 = SpecZ[q]
such that for any Z[q]-algebra A, G!(A) is the group of elements f ∈ 1 +
zA[[z]] ⊂ (A[[z]])× satisfying the functional equation

(D.24) f(z1)f(z2) = f(z1 + z2 + (q − 1)z1z2).

Recall that H0(G!,OG!) = B0, where B0 is as in Proposition D.2.2. The
λ-scheme structure on G! was defined in §D.3.2–D.3.4.

D.5.2. Definition of G!! Define G!! ⊂ Wbig ×A1 to be the following sub-
group:

(D.25) G!! :=
{

(w, q) ∈ Wbig × A1 |Fm(w) = [q]m − 1
[q] − 1 · w for all m ∈ N

}
,

where [q]m−1
[q]−1 := 1 + [q] + · · · + [q]m−1. Define Ψn : G!! → G!! by the following

very simple formula:

(D.26) Ψn(w, q) = (Fn(w), qn).

Then G!? is a group λ-scheme over A1 = SpecZ[q].

D.5.3. Remark Let p be a prime and W the ring scheme of p-typical Witt
vectors. Similarly to the proof of Lemma C.3.5, one shows that the canonical
epimorphism Wbig � W induces an isomorphism

(D.27) G!! ⊗ Z(p)
∼−→ {(w, q) ∈ W × A1

Z(p)
|F (w) = Φp([q]) · w}.
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Lemma D.5.4. Equip Wbig with the λ-scheme structure given by the Frobe-
nius endomorphisms Fn : Wbig → Wbig, n ∈ N. Equip G! and A1 = SpecZ[q]
with the λ-structure from §D.3.2–D.3.4. Let π : Wbig � Ga be the morphism
that takes a Witt vector to its first component. Then

(i) there exists a unique morphism

(D.28) G! → Wbig × A1

of λ-schemes over A1 whose composition with the projection Wbig × A1 →
Wbig

π−→ Ga is given by the element t ∈ B0 = H0(G!,OG!) from Proposi-
tion D.2.2;

(ii) the map (D.28) is a group homomorphism;
(iii) the morphism (D.28) has the following explicit description: for any

Z[q]-algebra A, it takes a formal series f ∈ 1 + zA[[z]] satisfying (D.24) to
the formal series f( z

z−1) viewed as an element of Wbig(A).

Proof. The coordinate ring of the λ-scheme Wbig is known to be the free
λ-ring on a single generator π. This implies (i). Statement (ii) follows from
(iii).

Let us prove (iii). Our map G! → Wbig is given by the unique element of
Wbig(B0) whose n-th ghost component equals ψn(t) = qn−1

q−1 · t ∈ B0 (see the
definition of ψn in Lemma D.3.3). Recall that the universal solution to (D.24)
is given by

f(z) = (1 + (q − 1)z)t/(q−1).

So it remains to check that for this f one has

−z
d

dz
log f

( z

z − 1
)

= t ·
∞∑
n=1

qn − 1
q − 1 · zn.

This is straightforward; one uses that 1+(q−1)z/(z−1) = (1−qz)/(1−z).

Proposition D.5.5. The homomorphism (D.28) induces an isomorphism

(D.29) G! ∼−→ G!!,

where G!! ⊂ Wbig × A1 is as in §D.5.2.

Proof. It suffices to show that (D.28) induces an isomorphism G! ⊗ Z(p)
∼−→

G!! ⊗ Z(p) for each prime p. The description of G!! ⊗ Z(p) from (D.27) allows
one to prove this quite similarly to §5.7.4.
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