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Abstract: We discuss a general framework for the analytic Lang-
lands correspondence over an arbitrary local field F introduced
and studied in our works [EFK1, EFK2, EFK3], in particular in-
cluding non-split and twisted settings. Then we specialize to the
archimedean cases (F = C and F = R) and give a (mostly conjec-
tural) description of the spectrum of the Hecke operators in var-
ious cases in terms of opers satisfying suitable reality conditions,
as predicted in part in [EFK2, EFK3] and [GW]. We also describe
an analogue of the Langlands functoriality principle in the analytic
Langlands correspondence over C and show that it is compatible
with the results and conjectures of [EFK2]. Finally, we apply the
tools of the analytic Langlands correspondence over archimedean
fields in genus zero to the Gaudin model and its generalizations,
as well as their q-deformations.

1. Introduction

1.1. Overview

Let X be a smooth irreducible projective curve of genus g > 1 and G a re-
ductive algebraic group, both defined over a local field F . Let Bun◦

G(X) be
the variety of regularly stable principal G-bundles on X (see e.g. [EFK1],
Section 1.1). In [EFK1, EFK2, EFK3], motivated in part by the works [BK1,
Ko, La, Te], we proposed the analytic Langlands correspondence, which
is the study of the spectrum of Hecke operators acting on the space of
complex-valued half-densities on Bun◦

G(X)(F ). Justifying its name, this cor-
respondence is a natural analytic analog of two previously known settings of
Langlands correspondence – arithmetic (for curves over a finite field) and

arXiv: 2311.03743
Received October 27, 2023.

307

https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php
http://arxiv.org/abs/2311.03743


308 Pavel Etingof et al.

geometric (involving D-modules on complex curves and on moduli stacks
of G-bundles on curves), to both of which it is actually intimately related.
We also proposed a ramified generalization of the analytic Langlands corre-
spondence for G-bundles with level structure at an F -rational effective divisor
D ⊂ X (which allows one to also consider g = 0, 1).

However, previously for simplicity we focused on the basic case when G
and D are split, and in fact mostly assumed that F = C. Yet the natural gen-
erality of the (arithmetic) Langlands correspondence is that of a flat reductive
group scheme G over X, for example, one defined by an action of the étale
fundamental group πet

1 (X) on G. Roughly speaking, one of the main goals of
this paper is to discuss the (ramified) analytic Langlands correspondence in
this more general setting, when F is arbitrary and G, D are not necessarily
split; in particular, this means that we need focus on Galois-theoretic aspects
of the theory. We also allow twists by Z(G)-gerbes on X and, in the ramified
case, by unitary representations of the group of changes of the level structure.
A detailed discussion of the general framework of the analytic Langlands cor-
respondence with a focus on these additional features is the subject of the
first half of the paper.

The second half of the paper is dedicated to the archimedean cases, F = C
and F = R. In these cases, as shown in [EFK2], the Hecke operators Hx,λ

commute with the quantum Hitchin Hamiltonians and also satisfy a cer-
tain differential equation with respect to x ∈ X involving these Hamiltoni-
ans, called the universal oper equation. As a result, the joint spectrum of
the Hecke and quantum Hitchin Hamiltonians is (conjecturally) labeled by
G∨-opers L on X satisfying a certain topological condition called a reality
condition. For F = C, as explained in [EFK2], this is the condition that the
monodromy of L can be conjugated into an inner (conjecturally, split) real
form G∨

R of G∨. On the other hand, for F = R the theory depends on several
additional pieces of data (an antiholomorphic involution of X, an inner class
of G, a form Gσ of G in this class attached to each oval of X(R), etc.), and
the exact form of the reality condition depends on these details. We work
out this condition in several examples for G = GL1 and PGL2, generalizing
[EFK3], Subsection 4.7 and [GW], Section 6.

Finally, we explain how the generalized Bethe Ansatz method for
the Gaudin model can be viewed (in several ways) as an instance of the
tamely ramified analytic Langlands correspondence in genus 0 over R and C.
Interestingly, the role of Hecke operators in this setting is played by Baxter’s
Q-operator of the Gaudin model, the q → 1 limit of the Q-operator of the
XXZ quantum spin chain introduced by R. Baxter. Motivated by this, we dis-
cuss a q-deformation of the archimedean analytic Langlands correspondence
in genus 0.
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1.2. Summary of the main results

To summarize, in this paper we accomplish the following.
1. We formulate the problem of (ramified) analytic Langlands correspon-

dence in a general setting when the group G and the ramification divisor
D ⊂ X are not necessarily split and ramification points carry unitary repre-
sentations of the groups of changes of level structure, in presence of possible
twists by a Z-gerbe on X and an action of π1(X) on the root datum of G.
We state the conjecture on compactness of Hecke operators, which leads to
discreteness of their spectrum.

2. For G = PGL2 and genus 0 with split ramification divisor, in the tamely
ramified case when ramification points carry principal series representations
of G(F ), we compute explicitly the Hecke operators Hx (which are known to
be compact in this case) and find their asymptotics near ramification points.
This gives the asymptotics of eigenvalues of Hx.

3. In the cases F = C and F = R, we conjecturally describe the spectrum
of Hecke operators in the setting of (1) in terms of opers with monodromy
representation satisfying suitable “reality conditions”. We formulate reality
conditions in various special cases, and show that spectral opers must satisfy
these conditions. In particular, we work out reality conditions for G = GL1,
F = R, and also G = PGL2, F = R in the ramified and tamely ramified
cases. We describe behavior of eigenvalues of Hx near real ovals of X (when
they are present) in various situations.

4. In the case F = C, we discuss in detail in Section 3.6 the Hecke opera-
tors corresponding to the principal weights of G∨ (such that the corresponding
irreducible representation of g∨ remains irreducible under a principal sl2 sub-
algebra), following the approach of [EFK2], Section 5. We then consider the
general case. In Subsection 3.7, we prove that for a generic G∨-oper χ on a
curve of genus g > 1, the Zariski closure Mχ of the image of its monodromy
representation is equal to G∨. We also show if G∨ is connected simple group
of adjoint type, then for any G∨-oper χ, the group Mχ is a connected sim-
ple subgroup of G∨ that contains a principal PGL2 subgroup of G∨. This
allows us to elucidate the conjectural formula for the eigenvalues of the Hecke
operators presented in [EFK2], Conjecture 5.1 (see Subsection 3.8). We also
use these results in Subsection 3.9 to describe an analogue of the Langlands
functoriality principle in the analytic Langlands correspondence over C and
show that it is compatible with the results and conjectures of [EFK2].

5. We describe several settings of the Gaudin model in terms of the ana-
lytic Langlands correspondence, enabling us to describe the spectrum of the
commuting Gaudin Hamiltonians. In particular, we reinterpret the known
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description of the spectrum of the Gaudin Hamiltonians in the case of the
tensor product of finite-dimensional representations in terms of monodromy-
free opers [F2, R] as a special case of real analytic Langlands correspondence.
Namely, we use our results in the “quaternionic” real case discussed in Sub-
section 4.7 to obtain this description of the spectrum. We also explain the
connection to the Bethe Ansatz method of diagonalization of these Hamilto-
nians.

Our interpretation of the Gaudin model in terms of the analytic Langlands
correspondence allows us to extend it to a more general setting in which
the space of states is infinite-dimensional and the traditional Bethe Ansatz
methods do not apply; for example, the tensor product of unitary principal
series representations.

In all of these cases, the key new element is the existence of the Hecke
operators commuting with the Gaudin Hamiltonians and the fact that they
satisfy differential equations (the universal oper equations), which can be used
to describe the analytic properties of the G∨-opers encoding the possible joint
eigenvalues of the Gaudin Hamiltonians. We show that the Hecke operators
in this setting are closely related to the analogue of the Baxter Q-operator in
the Gaudin model. We use this relation to discuss a possible q-deformation
of the analytic Langlands correspondence, where the role of Hecke operators
is played by Baxter’s Q-operators of the XXZ model (and its generalization
from SL2 to a general simple complex Lie group).

We note that some results on the spectra of the Gaudin Hamiltonians for
SL2 in the real case were obtained in [NRS] from the point of view of N = 2
SUSY 4d gauge theory (see also [JLN]). It would be interesting to see if there
is a connection between their results and ours.

1.3. Structure of the paper

The structure of the paper is as follows.
In Section 2 we give an informal description of the general framework

for the analytic Langlands correspondence over an arbitrary local field F .
We start with reviewing the theory of forms of reductive groups, especially
over non-archimedean local fields (the Kneser-Bruhat-Tits theory). Then we
explain that in the unramified case the appropriate moduli space of F -rational
G-bundles is determined by an inner class C(s) of G over F , s ∈
H1(F,OutG). We also explain that every such bundle P and a geometric
point x of X defines an F -form Gσ of G over the field Ex of definition of
x in C(s). Thus in the tamely ramified case (� = 1) with ramification divi-
sor D ⊂ X, the input data of the theory is a choice, for each t ∈ D, of a
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form Gσ of G over Et in C(s) and a unitary representation V of Gσ(Et). For
such input data, we define Hecke operators on the L2 space of the moduli
space of F -rational G-bundles, pose the spectral problem for them, consider
various examples and present several conjectures that we’ve proved in some
interesting special cases.

In Section 3 we discuss the case F = C. We start by reviewing the results
and conjectures of [EFK1, EFK2, EFK3] on parametrizing the spectrum Σ
of Hecke and quantum Hitchin Hamiltonians by real opers on the Riemann
surface X(C). Next, we consider the differential equations satisfied by the
Hecke operators Hλ in various cases: G = PGL2 and X = P1 with parabolic
structures at finitely many points in Subsection 3.3 (recalling and generaliz-
ing the results of [EFK3]); G = PGLn, X of genus g > 1, and λ = ω1 in
Subsection 3.4 (recalling the results of [EFK2]); a generalization of the latter
case to an arbitrary principal λ in Subsection 3.6; and the general case in
Subsections 3.5 and 3.8. In Subsection 3.7 we describe the Zariski closures
of the monodromy representations of G∨-opers in the case that G∨ is a con-
nected simple group of adjoint type and g > 1. In particular, we show that
the monodromy of a generic G∨-oper is dense in G∨. We use this in Subsec-
tion 3.8 to elucidate some results of [EFK2] and in Subsection 3.9 to describe
an analogue of the Langlands functoriality principle in the analytic Langlands
correspondence. In Subsection 3.10 we discuss the twists by Z(G)-gerbes and
by AutG-torsors on X. We also consider the twists by unitary representa-
tions at ramification points for G = PGL2. For all these twists, we describe
(conjecturally) the set of opers parametrizing Σ.

In Section 4, we consider the case F = R. In this case the curve X is
a Riemann surface with an antiholomorphic involution τ . We first assume
that τ has no fixed points on X (i.e., X(R) = ∅) and review the conjectures
from [GW], Section 6 on the opers that are expected to label the eigenspaces
of Hecke operators. We also show following [W] that these conjectures hold
for G = GL1. Then we proceed to the general case, when X(R) may be
nonempty, discussed in [GW], Subsection 6.3. This case is more complicated
since it involves boundary conditions for oper solutions on the ovals of X(R).
We describe what happens for G = GL1, and then propose a conjectural real-
ity condition for spectral opers for G = SL2. In this case, we have two forms
of G (both inner) – the split form and the compact form, giving rise to two
types of ovals – real and quaternionic, respectively. We propose the boundary
conditions for spectral opers on both real and quaternionic ovals. We also ex-
plain what happens in presence of ramification points, and in the case X = P1

with the usual real structure and all ramification points real, we recover the
description of spectral opers from [EFK3], Subsection 4.7 (“balanced” opers).



312 Pavel Etingof et al.

Finally, in Section 5 we interpret the Gaudin model and its generalization
in terms of the analytic Langlands correspondence. In particular, for G = SL2,
we derive the description of the spectrum of the Gaudin Hamiltonians in terms
of monodromy-free PGL2-opers [F2, R] from a special case of the analytic
Langlands correspondence over R (namely, for the compact form of SL2(C)).
We give a description of the spectrum of the Gaudin Hamiltonians on the
tensor product of representations of the unitary principal series of SL2(R)
in terms of balanced PGL2-opers. We also discuss a q-deformation of the
analytic Langlands correspondence in genus 0 and its connection with Bethe
Ansatz method for the XXZ model (a q-deformation of the Gaudin model).

2. Analytic Langlands correspondence over a general local
field

2.1. Varieties over arbitrary fields

Let L be a separably closed field and X be an algebraic variety defined over L.
Since X is reduced, X(L) = X(L), where L ⊃ L is an algebraic closure of L;
in particular, X(L) �= ∅. For γ ∈ AutL, let γX be the twist of X by γ. Thus
X(L) = γX(L) and the structure sheaf of γX is obtained from the one of X
by twisting the scalar multiplication by γ.

Now let F be any field. Let Fsep be a separable closure of F and for a field
extension F ⊂ E ⊂ Fsep, ΓE := Gal(Fsep/E) be the absolute Galois group
of E.

Let X be a variety defined over F . Let τ(γ) : γX → X, γ ∈ ΓF , be the
collection of isomorphisms defining the F -structure on X. This defines an
action

γ �→ τ(γ) : X(Fsep) → X(Fsep)

of ΓF on X(Fsep), and the set X(E) of E-points of X is the fixed point set
of ΓE ⊂ ΓF on X(Fsep).

Let x ∈ X(Fsep) be a point with stabilizer Γx ⊂ ΓF . We will call the field
E := FΓx

sep the field of definition of x; thus Γx = ΓE .1 Let XE ⊂ X(Fsep)
be the subset of points with field of definition E. Then X(E) is the disjoint
union of XK over all F ⊂ K ⊂ E.

1Note that the field of definition E of a point x is not just an abstract field
extension of F , but rather a subfield of Fsep containing F ; so if fields of definition
of two points are not Galois then they may be distinct but nevertheless isomorphic.
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Example 2.1. Let F = R, then Fsep = F = C and ΓF = Z/2. An R-
structure on X is given by an antiholomorphic involution τ : X(C) → X(C).
Furthermore, the real locus XR = X(R) = X(C)τ is just the set of fixed
points of τ on X(C), and XC = X(C) \X(R).

2.2. Forms of reductive groups

Let G be a split connected reductive algebraic group over Z corresponding to
a polarized root datum ΔG. In particular, this means that we fix a positive
Borel subgroup B ⊂ G and a maximal torus T ⊂ B. Let Gad be the corre-
sponding adjoint group. For any field E let AutG(E) := Aut ΔG � Gad(E);
here Aut ΔG = OutG is the group of outer automorphisms of G.2 This group
acts on G(K) for any field extension K of E.

Let F be a field whose characteristic is either zero or coprime to the
determinant of the Cartan matrix of G.3

The classification of forms of G over F is as described in Subsection 2.1,
except that unlike the case of general varieties, we already have a distinguished
F -form of G (the split form) defining an action g �→ γ(g) of ΓF on G(Fsep),
so we can describe all F -forms of G by counting from this form, in terms
of Galois cohomology. Namely, forms of G over F are parametrized by the
(continuous) Galois cohomology H1(ΓF ,AutG(Fsep)) ([S]). Specifically, let
θ : ΓF → AutG(Fsep) be a 1-cocycle, i.e.,

θ(γ1γ2) = θ(γ1) ◦ γ1(θ(γ2)).

Then we have an action σ = σθ of ΓF on G(Fsep) given by

σ(γ) = θ(γ) ◦ γ,

and conversely, an action σ of ΓF such that for γ ∈ ΓF , θσ(γ) := σ(γ)◦γ−1 ∈
AutG(Fsep) gives rise to a 1-cocycle θ = θσ. The form Gσ of G corresponding
to σ (or θ) is defined by its functor of points

Gσ(A) := G(A⊗F Fsep)ΓF

2The group AutΔG may be infinite, for example if G is an n-dimensional torus
then Aut ΔG = GLn(Z). Thus AutG is not an algebraic group, in general. More
specifically, it is an algebraic group iff the center of G has dimension ≤ 1 (e.g., for
G = GLn or G semisimple). But this is not important for our considerations.

3This assumption is not essential and is made to simplify the exposition.
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for any commutative F -algebra A. In particular, for any field extension F ⊂
E ⊂ Fsep, Gσ(E) is the subgroup of fixed points of σ(ΓE). In other words,
Gσ(E) is the group of elements of G(Fsep) satisfying the equation

γ(g) = θ(γ)−1(g)

for all γ ∈ ΓE .
For example, if σ = 1 then Gσ = Gspl, the split form of G.
Moreover, if an element a ∈ AutG(Fsep) transforms a 1-cocycle θσ1 into

a 1-cocycle θσ2 then it canonically defines an isomorphism χ(a) : Gσ1 → Gσ2

such that for any b transforming θσ2 into θσ3 we have χ(ba) = χ(b) ◦ χ(a).
In other words, denoting by A = A(F,G) the groupoid whose objects are
1-cocycles θ : ΓF → AutG(Fsep) and morphisms from θ to θ′ are elements
a ∈ AutG(Fsep) such that θ′(γ) = aθ(γ)γ(a)−1, we obtain a functor θσ �→ Gσ

from A to the category of algebraic F -groups. In particular, Gσ depends only
on the cohomology class [θσ] up to isomorphism.

Since the sequence

(2.1) 1 → Gad(Fsep) → AutG(Fsep) → Aut ΔG → 1

splits, it defines a short exact sequence of pointed sets

1 → H1(ΓF , Gad(Fsep)) → H1(ΓF ,AutG(Fsep)) → H1(ΓF ,Aut ΔG) → 1,
(2.2)

where H1(ΓF ,Aut ΔG) = Hom(ΓF ,Aut ΔG)/conjugation (note that ΓF acts
trivially on ΔG since we start with the split form). In other words, the second
map in (2.2) is injective and its image coincides with the kernel (i.e., the
preimage of 1) of the third map, which is surjective.

Recall that a form Gσ is called inner if [θσ] ∈ H1(ΓF , Gad(Fsep)), i.e., if
it projects to 1 ∈ H1(ΓF ,Aut ΔG). The inner class of Gσ is the collection
C(σ) of all forms Gη of G such that [θσ] and [θη] map to the same element
of H1(ΓF ,Aut ΔG). Thus inner classes are labeled by conjugacy classes [s] of
homomorphisms s : ΓF → Aut ΔG. For example, C(1) (the inner class of the
split form) consists of all the inner forms of G.

Note that since the sequence (2.1) is canonically split, so is the sequence
(2.2). Thus for every s ∈ Hom(ΓF ,Aut ΔG) the inner class C(s) has a canon-
ical representative called the quasi-split form of G in C(s) and denoted by
Gs; this is the only form of G in C(s) which has an F -rational Borel sub-
group. For example, the quasi-split inner form is the split form. By (2.2),
this implies that each inner class C(s) can be canonically identified with
H1(ΓF , G

s
ad(Fsep)) (with the action of ΓF defined by s).
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2.3. Forms of reductive groups over a local field

Now let F be a non-archimedean local field. We recall the theory of forms of
reductive groups over F . We start with two classical theorems.

Theorem 2.2 (Kneser, Bruhat-Tits, [BT], 4.7). For a simply connected
semisimple group G over F , one has H1(ΓF , G(Fsep)) = 1.

Theorem 2.3 (Tate duality for Galois cohomology, [S], II.5.2, Theorem 2).
Let A be a finite ΓF -module of order prime to char(F ) and A∗ := Hom(A,Gm).
Then for 0 ≤ i ≤ 2, H i(ΓF , A) is finite and we have a canonical isomorphism

H i(ΓF , A) ∼= Hom(H2−i(ΓF , A
∗),Q/Z).

In particular, taking i = 2, we get H2(ΓF , A) ∼= Hom((A∗)ΓF ,Q/Z) =
A(−1)ΓF , the coinvariants of ΓF in the negative Tate twist A(−1) of A.

Corollary 2.4. Let Gs be a simply connected quasi-split semisimple group
over F , Gs

ad the corresponding adjoint group, and Zs(Fsep) the center of
Gs(Fsep) regarded as a ΓF -module (with action defined by s). Then there is a
natural inclusion

H1(ΓF , G
s
ad(Fsep)) ↪→ Zs(Fsep)(−1)ΓF .

Proof. By Theorem 2.2 and the “long” exact sequence of Galois cohomology,
we have an embedding ξ : H1(ΓF , G

s
ad(Fsep)) ↪→ H2(ΓF , Z

s(Fsep)), so the
result follows from Theorem 2.3, using that p does not divide the determinant
of the Cartan matrix of G.

In fact, there is an even stronger result:

Corollary 2.5. The map of Corollary 2.4 is an isomorphism.

Proof. It is known ([K], [T]) that the map of Corollary 2.4 is surjective, so
the result follows.

Thus we obtain the following corollary. Let Gs
sc be the universal cover

of Gs
ad.

Corollary 2.6. Let G be a split connected reductive group and suppose s ∈
Hom(ΓF ,Aut ΔG). Then the inner class C(s) is naturally identified with the
group Zs(Fsep)(−1)ΓF , where Zs is the center of Gs

sc.

Thus we get
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Proposition 2.7. Over any local field, every inner class of a split connected
reductive group G is finite.4

Proof. Recall that if F = R then we have the well known Cartan classification
of forms of G over F . This implies the proposition in the archimedean case.
In the non-archimedean case the proposition follows from Corollary 2.6.

Example 2.8. Let G = SLn and char(F ) be coprime to n.
(1) The split inner class. In this case, Zs = μn. Thus by Corollary 2.6,

forms in this class are parametrized by Z/n. Namely, we identify Z/n with
1
nZ/Z ⊂ Q/Z = Br(F ). Thus every m ∈ Z/n (represented by an integer in
[1, n]) gives rise to a central division algebra Dm over F of dimension (n/m)2,
and the corresponding form Gσ is SLn/m,Dm

(i.e., Gσ(E) = SLn/m(E⊗F Dm)
for a field extension E ⊃ F ).

(2) The non-split inner class CL attached to a separable quadratic field
extension L of F (n ≥ 3). The quadratic extension defines a character
χL : ΓF → ±1, which gives rise to an action of ΓF on Z; we denote this
module by ZL. Then Zs = μn⊗ZZL, so the inner class CL is parametrized by
(ZL/n)ΓF , which is trivial if n is odd and Z/2 if n is even. Thus we should ex-
pect the quasi-split form and also an additional form for even n. And indeed,
this is the case: these forms are the corresponding special unitary groups.
Namely, recall that if N : L× → F× is the norm map then |F×/N(L×)| = 2.
Thus we have two equivalence classes of nondegenerate Hermitian forms on
Ln up to isomorphism – B+ whose determinant is a norm and B− whose de-
terminant is not. So we have the corresponding special unitary groups SU+

n,L

and SU−
n,L (namely, SU±

n,L(E) = SU±
n (E ⊗F L) for a field extension E ⊃ F ).

However, if n is odd then for any non-norm a ∈ F×, the forms aB− and B+
are equivalent, so these two groups are isomorphic.

We note that SU+
2,L = SL1,D2 and SU−

2,L = SL2 (for any L).

Remark 2.9. If char(F ) = 0 then F has finitely many extensions of every
fixed degree. Thus for any finite group Γ, there are finitely many homomor-
phisms ΓF → Γ. Also by a theorem of Jordan and Zassenhaus, for each n there
are finitely many finite subgroups of GLn(Z) up to isomorphism, so the num-
ber of homomorphisms ΓF → GLn(Z) (i.e., of F -forms of the n-dimensional
torus) is finite. It follows that the number of inner classes over F of any split
connected reductive group is finite as well.

4We have shown this when char(F ) does not divide the determinant of the Cartan
matrix of F , but this assumption is, in fact, unnecessary.
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This is, however, false in positive characteristic p > 0, as in this case
|Hom(ΓF ,Z/p)| = ∞. For example, for p = 2 there are infinitely many sepa-
rable quadratic extensions of F , so there are infinitely many inner classes of
SLn for n ≥ 3. But this is not going to matter for us here.

Finally, we have

Proposition 2.10. Let T be an abelian reductive group over F . Then

(i) there exists a finite subgroup R ⊂ H1(ΓF , T (Fsep)) such that the quotient
H1(ΓF , T (Fsep))/R embeds into H1(ΓF , (T/T0)(Fsep)), where T0 is the
identity component of T ;

(ii) If char(F ) is coprime to the order of T/T0 then H1(ΓF , T (Fsep)) is
finite.

Proof. By Theorem 2.3, (ii) follows from (i), so it remains to prove (i).
We have an exact sequence

H1(ΓF , T0(Fsep)) → H1(ΓF , T (Fsep)) → H1(ΓF , (T/T0)(Fsep)).

Thus it suffices to prove (i) when T = T0 is connected (a torus), i.e., to show
that in this case H1(ΓF , T (Fsep)) is finite. Let ΓE ⊂ ΓF be the kernel of the
action of ΓF on T . Then we have the inflation-restriction exact sequence

0 → H1(ΓF /ΓE , T (E)) → H1(ΓF , T (Fsep)) → H1(ΓE , T (Fsep))ΓF /ΓE .

By Hilbert Theorem 90, the last term vanishes, so

H1(ΓF , T (Fsep)) ∼= H1(ΓF /ΓE , T (E)).

But the group H1(ΓF /ΓE , T (E)) has exponent dividing N = [E : F ], so it is
finite. This implies the result.

2.4. Principal G-bundles

Let F, Fsep,ΓF be as above, X be an algebraic F -variety, and G an algebraic
F -group. We denote by BunG(X) the F -stack of principal G-bundles on X.
Then ΓF acts on the set BunG(X)(Fsep). If a G-bundle P ∈ BunG(X)(Fsep)
is defined by transition functions gij : Ui ∩ Uj → G where {Ui} is an open
cover of X, and γ ∈ ΓF , then we can define the G-bundle P γ by the transition
functions gγij : Uγ

i ∩Uγ
j → G. It is clear that this definition is independent on

choices and gives rise to an action of ΓF on BunG(X)(Fsep).
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Now let us write this definition slightly more explicitly. Let θ : ΓF →
AutG(Fsep) be a 1-cocycle, σ(γ) := θ(γ) ◦ γ be the corresponding action of
ΓF , and Gσ be the form of G over F defined by σ. Also let τ be the natural
action of ΓF on X(Fsep) (the F -structure on X). Then given a principal Gσ-
bundle P on X defined over Fsep, we have the Gσ-bundle P γ = (σ, τ)(γ)P
with transition functions gγij = g

(σ,τ,γ)
ij given by

g
(σ,τ,γ)
ij = σ(γ) ◦ gij ◦ τ(γ)−1.

Let BunG,σ(X, τ) := BunG(X)(Fsep)ΓF be the set of fixed points of this action
of ΓF .

Now suppose that G is a split connected reductive group over Z. If h :
ΓF → Gσ

ad(Fsep) is a 1-cocycle then

g
(hσ,τ,γ)
ij = h(γ) ◦ g(σ,τ,γ)

ij .

Hence h(γ) defines a canonical isomorphism (hσ, τ)(γ)P ∼= (σ, τ)(γ)P . In
other words, (σ, τ)(γ) depends only on the inner class C(σ) of σ, i.e. on
s ∈ Hom(ΓF ,Aut ΔG) such that C(σ) = C(s). Thus (σ, τ)(γ) = (s, τ)(γ) for
all γ and BunG,σ(X, τ) = BunG,s(X, τ).

2.5. Moduli of G-bundles on a smooth projective curve

Let X be a smooth irreducible projective curve of genus g ≥ 2 over F . In this
case we have a notion of a regularly stable principal G-bundle on X, which
is a stable bundle whose group of automorphisms is the minimal possible, i.e.,
reduces to the center Z of G.

The set Bun◦
G(X)(Fsep) ⊂ BunG(X)(Fsep) of regularly stable bundles is

the set of Fsep-points of a smooth algebraic variety Bun◦
G(X) of dimension

(g − 1) dimG defined over F (this is, in fact, the underlying variety of a stack
which is the quotient of a variety by the trivial action of Z). Moreover, every
pair (s, τ) defines a form Bun◦

G(X)s,τ of this variety.
Let

Bun◦
G,s(X, τ) := Bun◦

G(X)s,τ (F ) ⊂ BunG,s(X, τ)

be the subset of isomorphism classes of regularly stable bundles.
Define a pseudo-F -structure on P ∈ BunG,s(X, τ) to be a collection of

isomorphisms
A(γ) : (s, τ)(γ)P → P, γ ∈ ΓF .
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Such a data defines a 2-cocycle a = aA on ΓF with coefficients in Zs(Fsep)
such that

(2.3) A(γ1γ2) = A(γ1) ◦ (s, τ)(γ1)(A(γ2)) ◦ a(γ1, γ2).

We will say that a pseudo-F -structure A is an F -structure if aA = 1.
Any two pseudo-F -structures A,A′ on P differ by a 1-cochain c : ΓF →

Zs(Fsep), and aA/aA′ = dc. Thus the class [aA] ∈ H2(ΓF , Z
s(Fsep)) does not

depend on A and only depends on P , so we’ll denote it by αP . So we obtain

Lemma 2.11. We have a decomposition

Bun◦
G,s(X, τ) = �α∈H2(ΓF ,Zs(Fsep)) Bun◦

G,s,α(X, τ),

where Bun◦
G,s,α(X, τ) is the subset of P with αP = α.

In fact, it is more natural to consider a Galois covering of Bun◦
G,s,α(X, τ)

which keeps track of the isomorphism A. To this end, fix a 2-cocycle a rep-
resenting α. Then for a principal bundle P ∈ Bun◦

G,s,α(X, τ) a solution A
of (2.3) is unique up to multiplication by a 1-cocycle c : ΓF → Zs(Fsep). On
the other hand, if c is a coboundary then A and cA are equivalent by an
element of Z(Fsep). Thus the set of solutions A of (2.3) up to isomorphism is
a torsor over H1(ΓF , Z

s(Fsep)). In other words, the set Bun◦
G,s,a(X, τ) of iso-

morphism classes of pseudo-F -structures (P,A) satisfying (2.3) with aA = a
is a H1(ΓF , Z

s(Fsep))-torsor over Bun◦
G,s,α(X, τ).

Furthermore, if [a] = [a′] = α and a/a′ = dc then multiplication by the
1-cochain c defines a bijection νc : Bun◦

G,s,a(X, τ) ∼= Bun◦
G,s,a′(X, τ) which

depends on c only up to coboundaries, and if c is a 1-cocycle (so a = a′), this
recovers the action of H1(ΓF , Z

s(Fsep)) on the fibers of the projection

Bun◦
G,s,a(X, τ) → Bun◦

G,s,α(X, τ).

In other words, for any α we may consider the groupoid Hα whose objects
are 2-cocycles a with [a] = α and morphisms are Hom(a, a′) = {c : a/a′ =
dc} with composition defined by addition. Then canonically we have an Hα-
set Bun◦

G,s,α(X, τ) (a functor Hα → Sets), which is the collection of sets
Bun◦

G,s,a(X, τ), [a] = α with an action of the groupoid Hα.

2.6. The form of G attached to a principal bundle and a point

Now let x ∈ X(Fsep) be a point with field of definition E and stabilizer
Γx = ΓE ⊂ ΓF . Let P ∈ Bun◦

G,s(X, τ) and Px be the fiber of P at x. Fix
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a pseudo-F -structure A on P . Then for γ ∈ ΓE we have an isomorphism
A(γ) : Px → Px. By (2.3), if we identify Px with G, we obtain a 1-cocycle
θ : ΓE → Gs

ad(Fsep); indeed, the aA-factor goes away upon projection to the
adjoint group. Moreover, this cocycle is independent on the choice of A, since
two different choices differ by a central element of G which maps to 1 in Gad.

When we change the identification Px
∼= G by g ∈ G(Fsep), the cocycle θ

changes by the coboundary dg, so we obtain a well defined cohomology class
[θ] ∈ H1(ΓE , G

s
ad(Fsep)). This class defines an action σ = σθ of ΓE on G(Fsep).

Thus we get

Proposition 2.12. The above procedure assigns to a bundle P ∈Bun◦
G,s(X, τ)

and a point x ∈ X(Fsep) with field of definition E, an E-form Gσ of G in the
inner class CE(s).

Moreover, the connecting homomorphism

ξ : H1(ΓE , G
s
ad(Fsep)) → H2(ΓE , Z

s(Fsep))

maps [θ] to αP |ΓE . It follows that if X(E) �= ∅ then αP |ΓE comes from an
element of H2(ΓE , Z

s
0(Fsep)), where Z0 := Z ∩ [G,G].

Example 2.13. Let G = Gm, s = 1 (the split 1-dimensional torus). Then

H2(ΓF , Z
s(Fsep)) = H2(ΓF , F

×
sep) = Br(F ),

the Brauer group of F . However, if X(E) �= ∅ and α ∈ Br(F ) is such that
Bun◦

G,s,α(X, τ) �= ∅ then the image of α in Br(E) is trivial, i.e., the central
division F -algebra Dα splits over E. Thus, assuming that E is a Galois ex-
tension of F , we get that α belongs to Br(E/F ) := H2(Gal(E/F ), E×

sep), the
relative Brauer group which is a finite subgroup of Br(F ).

Thus all components Bun◦
G,s,α(X, τ) are empty except finitely many. It is

not hard to show that the same is true in general.

2.7. Principal bundles on curves over a local field

Now let F be a local field. Then Bun◦
G,s,α(X, τ) is an analytic F -manifold of

dimension (g − 1) dimG. Thus by Proposition 2.10, for any a with [a] = α,
Bun◦

G,s,a(X, τ) is also an analytic manifold of this dimension (as it is a finite
covering of Bun◦

G,s,α(X, τ)). Note that these manifolds are non-empty for
α = 1 even if X(F ) = ∅ (although they might be empty for some α �= 1).

Let E/F be a finite extension and XE ⊂ X(Fsep) be the subset of points
with field of definition equal to E. Then XE is an open subset of X(E), hence
a 1-dimensional analytic E-manifold.



A general framework for the analytic Langlands correspondence 321

Corollary 2.14. If F is non-archimedean and P ∈ Bun◦
G,s,α(X, τ) then the

E-form Gσ of G in the class CE(s) attached to P and x ∈ XE in Subsec-
tion 2.6 is independent on x.

Proof. By Theorem 2.2 the map ξ is injective. Thus there exists a unique θ
up to coboundaries such that ξ([θ]) = α, and we have σ = σθ.

However, for F = R, Corollary 2.14 is not true (even for G = SL2). In
this case X(R) = XR is a union of ovals, and the form Gσ attached to a given
bundle P and x ∈ X(R) is only locally constant in x, i.e., may depend on
the oval to which x belongs. This leads to interesting topological phenomena
described in Subsection 4.4 below.

2.8. Hecke operators

As before, let F be a local field and a a 2-cocycle such that [a] = α. Consider
the Hilbert space

H(s, τ, a) := L2(Bun◦
G,s,a(X, τ))

of square-integrable half-densities on the analytic F -manifold Bun◦
G,s,a(X, τ).

The collection of Hilbert spaces H(s, τ, a), [a] = α is an Hα-Hilbert space (uni-
tary representation of the groupoid Hα) which we will denote by H(s, τ, α).
We have a decomposition

H(s, τ, α) = ⊕χH(s, τ, α, χ),

where H(s, τ, α, χ) is the isotypic component of the character

χ : H1(ΓF , Z
s(Fsep)) → C×.

Note that H(s, τ, α, χ) is a well defined Hilbert space up to scaling by a phase
factor. Namely, it is canonically isomorphic up to a phase factor to the space
L2(Bun◦

G,s,α(X, τ),Lχ) of half-densities with values in Lχ, where Lχ is the
complex line bundle over Bun◦

G,s,α(X, τ) associated to the principal bundle
Bun◦

G,s,a(X, τ) → Bun◦
G,s,α(X, τ) via the character χ (namely, the line bundle

Lχ is independent of a up to scaling by a phase factor).
We would like to define the action of commuting Hecke operators on

H(s, τ, α) and to find the joint spectral decomposition of the algebra gen-
erated by these operators, see [EFK2]. In more down-to-earth terms, these
should be operators on the Hilbert space H(s, τ, a) for any fixed choice of the
representative a of α which commute with the action of H1(ΓF , Z

s(Fsep)),
i.e., preserve the spaces H(s, τ, α, χ). We view the eigenfunctions of these
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operators as the automorphic forms in the setting of the analytic Langlands
correspondence.

The Hecke operators are defined as follows. Let Λ be the coweight lattice
of G and λ ∈ Λ+ be a dominant coweight. Then we define a variety Zλ called
the (regularly stable) Hecke correspondence equipped with a map

(p1, p2, q) : Zλ → Bun◦
G(X)2 ×X,

see [BD1]. Namely, Zλ consists of triples T = (P1, P2, x) where P1, P2 ∈
Bun◦

G(X) are principal G-bundles on X which are identified outside x and are
in relative position λ at x (see [EFK2], p.4), and pi(T ) = Pi, q(T ) = x. For x ∈
X(F ) let Zλ,s,τ,x be the set of pairs (P1, P2) such that (P1, P2, x) ∈ Zλ(Fsep)
and P1, P2 are F -rational with respect to (s, τ), i.e., belong to BunG,s(X, τ).5
It is easy to see that if (P1, P2) ∈ Zλ,s,τ,x then αP1 = αP2 . Thus we may
“define” the Hecke operator Hx,λ on H(s, τ, α) by the formula

(Hx,λψ)(P ) =
∫
Zλ,s,τ,x(P )

ψ(Q) ‖dQ‖ ,

where Zλ,s,τ,x(P ) := {Q : (P,Q) ∈ Zλ,s,τ,x} and dQ is an appropriate canoni-
cally defined algebraic volume element introduced by Beilinson and Drinfeld
in [BD1], see also [EFK2], Theorem 1.1. If (λ, ρG) ∈ Z + 1

2 , where ρG is the
half-sum of positive roots of G, then dQ depends on a choice of a spin struc-
ture on X, but in any case ‖dQ‖ is independent of choices. Thus the domain
of integration Zλ,s,τ,x(P ) is (non-canonically) isomorphic to the set GrλG,σ(F )
of fixed points of the cell GrλG in the affine Grassmannian GrG over Fsep un-
der the ΓF -action corresponding to the F -form Gσ of G defined by (P, x)
([EFK2], Introduction and Section 5). The element dQ is a −(λ, ρG)-form
on X, thus the family of operators {Hx,λ, x ∈ X(F )} is an operator-valued
−(λ, ρG)-density on X(F ).

The word “define” is in quotation marks because we can prove the conver-
gence of these integrals only in some special cases. However, we expect that if
ψ is a smooth function (locally constant in the non-archimedean case) com-
pactly supported in the locus of sufficiently generic bundles then the integral
Hx,λψ is convergent and defines a function whose restriction to the open dense
subset of very stable6 bundles is smooth. This is indeed easy to see when

5For Zλ,s,τ,x to be non-empty, λ must be invariant under the action of ΓF on
ΔG via s.

6A G-bundle P on X is said to be very stable if it does not admit a nonzero
nilpotent Higgs field, i.e. a section of Ω1(X, adP ) taking values in the nilpotent
cone of LieG. It is known that very stable bundles are stable and form a dense
open set in the variety of stable bundles, see [Z] and references therein.
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the genus g is big with respect to λ, so that the codimension of the unstable
locus in the moduli stack of G-bundles is bigger than dim GrλG = 2(λ, ρG).

This makes the operator Hx,λ at least densely defined on H(s, τ, α), al-
though it is not obvious that it lands in H(s, τ, α). We have conjectured in
[EFK2, EFK3] (see also [BK2]) that in fact it does, and moreover it extends
to a bounded operator which is norm-continuous in x (see Conjecture 2.16
below).

If so, then one can show that the operators Hx,λ are normal (with H†
x,λ =

Hx,λ∗), commute for different x and λ (as Hecke modifications at different
points are done independently), and

Hx,λ1Hx,λ2 = Hx,λ1+λ2 .

2.9. Hecke operators for effective divisors with coefficients in the
coweight lattice

It is possible that X(F ) = ∅, then there are no x ∈ X(F ), so we cannot
define the operators Hx,λ. But we can make a generalization.7 Namely, let
M(X,G) be the set of ΓF -invariant (for the action defined by s) functions
μ : X(Fsep) → Λ+ with finite support (i.e., effective divisors with coefficients
in Λ). The set M(X,G) is a commutative monoid graded by Λ+: the degree
|μ| is the sum of all values of μ. Let M(X,G)[λ] be the part of M(X,G) of
degree λ ∈ Λ+.

For μ ∈ M(X,G), let Zμ,s,τ be the set of pairs (P1, P2) of F -rational
bundles which are identified outside suppμ and are in relative position μ(x)
at each point x ∈ suppμ. Then we can define the Hecke operator

(Hμψ)(P ) =
∫
Zμ,s,τ (P )

ψ(Q) ‖dQ‖ ,

where Zμ,s,τ (P ) := {Q : (P,Q) ∈ Zμ,s,τ}. For example, if x ∈ X(F ) and
μ = λδx then Hμ = Hx,λ.

The set M(X,G)[λ] is the direct limit of subsets

M(X,G,E)[λ] = {μ ∈ M(X,G)[λ]| suppμ ⊂ X(E)}

over finite Galois extensions F ⊂ E ⊂ Fsep. Note that M(X,G,E)[λ] has a
natural topology induced by the topology of F , so we have the topology of

7In the case of X = P1 with ramification points and G = PGL2, this generaliza-
tion is discussed in [EFK3], Subsection 3.12.



324 Pavel Etingof et al.

direct limit on M(X,G)[λ] for each λ, hence on M(X,G). We expect that
the operator Hμ is norm-continuous with respect to μ in this topology.

Moreover, let x ∈ XE for a finite extension F ⊂ E ⊂ Fsep and μx :=∑
γ∈ΓF /ΓE

γ(λδx) for some ΓE-invariant coweight λ ∈ Λ+. Then Hμx is an
operator-valued −(λ, ρG)-density on the 1-dimensional analytic E-manifold
XE .

These operators are expected to have similar properties to Hx,λ for x ∈
X(F ) (bounded, normal with H†

μ = Hμ∗ , Hμ1Hμ2 = Hμ1+μ2), except that
they always exist, as X(Fsep) �= ∅.

Remark 2.15. Let C be a finite central subgroup of G defined over F (for
example, we can take C = Z if G is semisimple). Then in genus zero the
Hecke operators Hμ make sense more generally, when μ ∈ M(X,G/C)[λ]
with λ ∈ Λ+.

2.10. The spectral decomposition

As we have mentioned, the main problem of the analytic Langlands corre-
spondence is to describe the joint spectral decomposition of the Hecke oper-
ators Hμ.

The following conjecture was made in [EFK2] (see Conjecture 1.2 and
Corollary 1.3).

Conjecture 2.16. If G is semisimple and μ is nonzero on every simple factor
then the operator Hμ is compact, and the intersection of the kernels of Hμ

(for various μ) is zero. Thus the spectrum of {Hμ} is discrete, i.e., we have
an orthogonal decomposition

H(s, τ, α) = ⊕kH(s, τ, α)k,

where H(s, τ, α)k are finite dimensional joint eigenspaces.

2.11. The abelian case

Consider the abelian case, i.e., G = Gn
m is a torus. Then an inner class (or,

equivalently, an F -form) of G is defined by a homomorphism with finite image
s : ΓF → GLn(Z), and all bundles are stable with the automorphism group
G = Z. Thus Bun◦

G,s(X, τ) is the group Pic(X)n(Fsep)ΓF where ΓF acts via
(s, τ). We have a homomorphism

ϕ : Pic(X)n(Fsep)ΓF → H2(ΓF , Z
s(Fsep)),
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so we may consider the fibers

Pic(X)n(Fsep)ΓF
α := ϕ−1(α),

and
H(s, τ, α, χ) = L2(Pic(X)n(Fsep)ΓF

α ,Lχ).

The Hecke operators act by translations. Thus the spectral decomposition
in this case is just the decomposition of L2(Pic(X)n(Fsep)ΓF

α ,Lχ) into the
characters of some finite index subgroup of Pic(X)n(Fsep)ΓF

0 = Kerϕ.
The group Pic(X)n(Fsep)ΓF is isomorphic (albeit non-canonically) to the

product of the compact group Pic0(X)n(Fsep)ΓF and a lattice. So the prob-
lem boils down to finding the character group of Pic0(X)n(Fsep)ΓF . In the
archimedean case, this reduces to classical Fourier analysis, so let us consider
the non-archimedean case.

Example 2.17. Suppose n = 1, s = 1 and char(F ) = 0, so that F is an
extension of Qp of some degree m. Then we need to describe the character
group of J(F ) where J := Pic0(X). Let OF be the ring of integers in F ,
m ⊂ OF the maximal ideal, and Fq = OF /m the residue field of characteristic
p. Suppose that X has a good reduction X0 over Fq. In this case by Hensel’s
lemma, J(F ) = J(OF ) and thus we have a short exact sequence

0 → J(m) → J(F ) → J(Fq) → 0,

which implies that we have a short exact sequence of character groups

0 → J(Fq)∨ → J(F )∨ → J(m)∨ → 0.

The group J(m) is the formal Lie group attached to J over OF , which is a
finitely generated Zp-module of rank mg. So it has a (non-canonical) decom-
position

J(m) ∼= Tors(J(m)) ⊕ Zmg
p ,

where Tors(J(m)) is a finite abelian p-group whose exact structure depends
on the arithmetic of F and X. Thus

J(m)∨ ∼= Tors(J(m))∨ ⊕ (Qp/Zp)mg.

On the other hand, the group J(Fq)∨ can be described as usual through global
class field theory of the function field Fq(X0).
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Remark 2.18. In general, recall that G is isogenous to a product of a torus
and a semisimple group. Thus the problem of computing the spectrum of
Hecke operators for a general G effectively reduces to the case of semisimple
G, once the abelian case has been understood.

2.12. The archimedean case

Consider now the case when F = R or F = C. In this case we have the quan-
tum Hitchin system of Beilinson and Drinfeld ([BD1]). This is a commu-
tative algebra D consisting of global differential operators acting on a square
root of the canonical bundle on BunG(X), which is naturally isomorphic to
the algebra of polynomial functions on the affine space Opg∨ of Beilinson-
Drinfeld opers for the Langlands dual Lie algebra g∨ of g = LieG. The
algebra D acts by unbounded (i.e., densely defined) operators on H(s, τ, α),
namely, on the subspace of smooth half-densities with compact support. More-
over, for F = C there is a similar action of the complex conjugate algebra D
which commutes with D, so we get an action of A := D ⊗D.

Furthermore, these algebras commute in an algebraic sense with Hecke
operators, i.e., the Schwartz kernels of the Hecke operators satisfy appropriate
differential equations, see [EFK2].8 It is moreover expected that they commute
in a stronger, analytic sense. Namely, we conjecture that the operators from
D (and in the complex case, D) have canonical normal extensions which
strongly commute with each other and with Hecke operators, thereby having
a common spectral decomposition.

2.13. The Schwartz space

Let G be a semisimple group.
1. Assume first that F is a non-archimedean local field. Let φ be a locally

constant Lχ-valued half-density on Bun◦
G,s,α(X, τ) supported at sufficiently

generic bundles. We conjecture that the space S(φ) generated by φ under the
action of Hecke operators is finite dimensional. Then S(φ) a direct sum of
eigenspaces of Hecke operators.9 So we may consider the Schwartz space

8More precisely, these differential equations are proved in [EFK2] for F = C,
but the same argument applies to F = R, except that we get just a single equation
rather than two complex conjugate equations.

9Since the action of Hecke operators on these finite dimensional spaces is given
by matrices with algebraic entries, this would imply that all eigenvalues of Hecke
operators are algebraic numbers, as conjectured by Kontsevich in [Ko], p. 19.
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S(s, τ, α, χ) =
∑

φ S(φ). Equivalently, S(s, τ, α, χ) is the space of smooth (=fi-
nite) vectors in H(s, τ, α, χ), or the algebraic direct sum of joint eigenspaces
of Hecke operators.

2. Now assume that F is archimedean. For λ ∈ (Λ+)ΓF , let Hλ ⊂ H
be the (algebraic) sum of the images of Hμ with |μ| = λ. Then we define
the Schwartz space S(s, τ, α, χ) ⊂ H(s, τ, α, χ) to be the intersection of
Hλ over all λ; thus unlike the non-archimedean case, the Schwartz space
is no longer countably dimensional, but it has a natural Fréchet topology
defined by a collection of seminorms in which it is complete. It is clear that
all eigenfunctions of Hecke operators belong to S(s, τ, α, χ).

Moreover, we expect that the Schwartz space S(s, τ, α) is the intersec-
tion of domains of the operators from D. In other words, it is the space of
square integrable half-densities whose Fourier coefficients cΛ with respect to
an orthonormal eigenbasis ψΛ of the algebra D decay rapidly (faster than any
polynomial) as a function of the eigenvalues Λi of generators Di ∈ D.

Remark 2.19. Another, more geometric definition of the Schwartz space
based on the geometry of the stack of G-bundles on X, which is conjec-
turally equivalent to the above, is proposed in the non-archimedean case in
[BK2], see also [BKP1], [BKP2]. A similar definition is expected to exist in
the archimedean case.

2.14. The ramified case

The above picture has a generalization to the ramified case, i.e., the case of
bundles with level structure along an F -rational effective divisor on X. This
is, in particular, required to extend the analytic Langlands correspondence
to curves of genus 0 and 1 (as such curves admit stable bundles only in the
ramified setting). Before considering the ramified case we remind the following
general construction.

Let F be a local field, Y be an analytic F -manifold, and G an analytic
F -group acting properly and freely on Y . Let π be a unitary representation
of G. Let Vπ := (Y × π)/G be the associated Hilbert space bundle over the
F -manifold Y/G (the action of G is given by g(y, v) = (gy, gv)). So we have
the projection Vπ → Y/G with fiber π. Let ψ be a measurable half-density
on Y/G with values in Vπ. Then |ψ|2 is a density on Y/G. Let H(Y,G, π) be
the Hilbert space of all ψ with

∫
Y/G |ψ|2 < ∞.

More generally, if L is a G-equivariant hermitian line bundle on Y (i.e., a
hermitian line bundle on Y/G), the we can define the Hilbert space
H(Y,G, π,L) of L-valued sections ψ with

∫
Y/G |ψ|2 < ∞.
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If P ⊂ G is a closed subgroup and π a unitary representation of P then
we have a canonical isomorphism

H(Y,P, π,L) ∼= H(Y,G, indG
Pπ,L),

where ind denotes unitary induction. Moreover, if π is a representation of a
closed subgroup P ⊂ N ⊂ NG(P) then this space carries a unitary action of
N/P.

We are now ready to discuss the ramified case. The most general setting
is as follows.

Let t1, . . . , tN be distinct points in X(Fsep) and ζi be local parameters on
X near ti. Let � ≥ 1. Denote by Bun�

G(X, t1, . . . , tN ) the stack of principal
G-bundles on X trivialized on the �-th nilpotent neighborhood D�(ti) of each
ti (i.e., modulo ζ�i ). We have a torsor Bun�

G(X, t1, . . . , tN ) → BunG(X) for
the algebraic group

∏N
i=1 Map(D�(ti), G) ∼=

∏N
i=1 G�, where for a commuta-

tive ring R, G�(R) := G(R[ζ]/ζ�) (the identification is made using the local
parameters ζi).

Now assume that ti are permuted by ΓF acting via τ . Let {ti, i ∈ S}, S ⊂
[1, n] be a set of representatives of orbits of this action. Then given s : ΓF →
Aut ΔG, we have an action of ΓF on Bun�

G(X, t1, . . . , tN )(Fsep). Denote by
Bun�◦

G,s(X, τ, t1, . . . , tN ) the subset of regularly stable bundles fixed by this
action. Let F ⊂ Ei ⊂ Fsep be the field of definition of ti, i.e., Ei = F

Γtisep .
Recall that in Subsection 2.6, to every P ∈ Bun�◦

G,s(X, τ, t1, . . . , tN ) and each
i we have attached an Ei-form Gσi of G in the inner class s. This form, in
turn, defines an Ei-form Gσi

� of G�. Let Bun�◦
G,s(X, τ, t1, . . . , tN , σ1, . . . , σN ) be

the subset of bundles defining the fixed forms σ1, . . . , σN (clearly, if γti = tj
then γEi = Ej and γσi = σj). This is an analytic F -manifold with an action
of G :=

∏
i∈S G

σi

� (Ei), and, as in the unramified case, it is the disjoint union
of open submanifolds Bun�◦

G,s,α(X, τ, t1, . . . , tN , σ1, . . . , σN ).
Fix a closed subgroup P ⊂ G acting freely and properly on

Bun�◦
G,s(X, τ, t1, . . . , tN , σ1, . . . , σN )

and let π be an irreducible unitary representation of P. Analogously to the
unramified case, define the Hilbert space

H = H(s, τ, α, χ, t1, . . . , tN , π) :=
H(Bun�◦

G,s,α(X, τ, t1, . . . , tN , σ1, . . . , σN ),P, π,Lχ),
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where Lχ is the line bundle defined in Subsection 2.8 (it is clear that this
space does not change if we replace the set of stable points by its P-invariant
dense open subset).

The space H (conjecturally) carries an action of Hecke operators Hμ where
μ(ti) = 0 for all i, and the main question of the (ramified) analytic Langlands
correspondence is to describe the joint spectrum of Hμ (which in general won’t
be discrete).10 Note that if π is a unitary representation of a closed subgroup
P ⊂ N ⊂ NG(P) (for example, π = C, N = NG(P)), then this space carries
a commuting action of N/P.

Moreover, in the archimedean case the space H carries a (densely defined)
action of the quantum Hitchin system (extended from the unramified case to
produce a quantum integrable system), which conjecturally commutes with
the Hecke operators and thus has compatible spectral decomposition.11

Consider first the case g ≥ 2. In this case we may define stable bundles
as above, to be the bundles stable in the usual sense with automorphism
group Z. Then we may take P to be the entire group G, so that π =

⊗
i∈S πi,

where πi are irreducible unitary representations of Gσi

� (Ei). For instance, for
� = 1 (tame ramification) πi are irreducible unitary representations of the
groups of Ei-points of the reductive groups Gσi .

In the (generally simpler) case g ≤ 1 the situation is a bit more tricky
since G does not act freely any more, so one has to take proper subgroups
P ⊂ G which act freely. For simplicity consider the tamely ramified case
� = 1. For i ∈ S let Pi be cocompact closed subgroups of Gi := Gσi(Ei) and
πi be finite dimensional unitary representations of Pi. Let P :=

∏
i∈S Pi and

10The definition of Hecke operators is the same as in [EFK2] in the unrami-
fied case, using the Beilinson-Drinfeld isomorphism a from [EFK2], Theorem 1.1.
Ramification data does not alter this definition. However, the definition is still
conjectural because of the analytic issues (landing in L2, boundedness) which are
present already in the unramified case and are discussed in [EFK2].

11Recall that the moduli stack Bun�
G(X, t1, . . . , tN ) can be represented as a dou-

ble quotient

Bun�
G(X, t1, . . . , tN ) = Ker(G[[t]] → G�)N\G((t))N/G(O(X)),

and the quantum Hitchin system is obtained by reduction of two-sided invariant
differential operators on the Kac-Moody central extension of G((t))N at the critical
level (the Feigin-Frenkel center of the Kac-Moody algebra) down to the double quo-
tient. Because of the critical level, we get commuting differential operators acting
on half-forms on Bun�

G(X, t1, . . . , tN ), and Beilinson and Drinfeld showed that they
form a quantum integrable system (i.e., the number of algebraically independent
commuting operators is the maximal possible, namely dim Bun�

G(X, t1, . . . , tN )).
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π :=
⊗

i∈S πi. If P acts freely then we may define the space H as above and
we expect the spectrum of Hecke operators on this space to be discrete.

Example 2.20. 1. Pi = Pi(Ei) for parabolic subgroups Pi ⊂ Gσi defined over
Ei; this corresponds to doing harmonic analysis on the moduli space of bun-
dles with parabolic structures. For instance, if Pi = Bi are Borel subgroups
then we must have σi = s for all i.

Another extreme is Pi = Gσi and πi = C. Then we recover the unramified
case discussed above.

2. Gi are compact. In this case we may take Pi = 1, so π = C, and the
space H carries a commuting action of the compact group G, so we have

H = ⊕
ρ∈ĜHρ ⊗ ρ∗

where ρ =
⊗

i∈S ρi for some irreducibles ρi of Gi, and Hρ := (H ⊗ ρ)G. In
this case the Hecke operators act on Hρ for each ρ.

Of course, these two examples can also be combined, with (1) occurring
at some of the points ti and (2) at other ones.

2.15. The ramified genus 0 case

In the case g = 0, i.e., X = P1, the space H can be described entirely in terms
of Lie theory. Indeed, suppose that the group G is semisimple and simply
connected and � = 1 (the tamely ramified case). In this case, it suffices to
consider only trivial G-bundles (with trivializations at ti). Thus the moduli
space is non-empty only if σi = σ|ΓEi

for all i up to conjugation. In this case,
we have a natural inclusion Gσ(F ) ↪→ Gσi(Ei), and the moduli space looks
like (

∏
i∈S G

σi(Ei))/Gσ(F ). Thus

H = H
((∏

i∈S
Gσi(Ei)

)
/Gσ(F ),

∏
i∈S

Pi,
⊗
i∈S

πi

)
.

This picture extends in an obvious way to the case of wild ramification.12

For instance, in Example 2.20(2), we have

Hρ =
(⊗

i∈S
ρi

)Gσ(F )

,

12The parameters α and χ do not appear here, since the automorphism group
of the trivial G-bundle trivialized on a a non-empty subset of X is trivial.
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a finite dimensional space. In this case, all the analytic issues disappear and
the spectral problem is automatically well defined.

Example 2.21. Let � = 1, g = 0, N ≥ 2, ti ∈ X(F ), σi = σ for all 1 ≤ i ≤ N .
Let Pi = 1, πi = C. Then

H = L2(Gσ(F )N/Gσ(F )diagonal).

So the spectral decomposition of H is an extension of the Plancherel formula
for Gσ(F ). Namely, we have

H=
∫ ⊕

Ĝσ(F )
N MultGσ(F )(V ∗

N , V1⊗· · ·⊗VN−1)⊗(V ∗
1 ⊗· · ·⊗V ∗

N )dμ(V1) · · · dμ(VN ),

(2.4)

where dμ(V ) is the Plancherel measure of Gσ(F ) and MultGσ(F )(L,M) is the
multiplicity space13 of an irreducible tempered representation L of Gσ(F ) in a
tempered representation M , defined using Plancherel theory (see [D], Subsec-
tion 18.8).14 For example, for N = 2 by Schur’s lemma the multiplicity space
vanishes unless V1 ∼= V ∗

2 , in which case it is 1-dimensional, so formula (2.4)
takes the form

H =
∫ ⊕

Ĝσ(F )
(V ∗ ⊗ V )dμ(V ),

which is the usual Plancherel formula for L2(Gσ(F )).
Each multiplicity space

(2.5) HV1,...,VN := MultGσ(F )(V ∗
N , V1 ⊗ · · · ⊗ VN−1)

carries an action of commuting Hecke operators. For example, as follows from
[EFK3], Section 3, if G = PGL2, Gσ is the split form, and x ∈ P1(F ), then
the Hecke operator has the form

(2.6) Hxψ =
∫
F

((
0 x− t1
1 −s

)
⊗ · · · ⊗

(
0 x− tN−1
1 −s

))−1

ψ ‖ds‖

13The multiplicity space MultGσ(F )(L,M) is a generalization of HomGσ(F )(L,M)
in presence of continuous spectrum. Namely, it coincides with the latter when M
is a Hilbert direct sum (finite or infinite) of irreducible unitary representations.

14Note that the representation V1 ⊗ · · · ⊗ VN is tempered, so does not contain
the trivial representation in its spectrum. Hence in the L2 context we cannot talk
about MultGσ(F )(C, V1⊗· · ·⊗VN ). This is why we break the symmetry and dualize
one of the factors. However, it can be shown that the result does not depend on
the choice of this factor.
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where the tensor product acts in V1 ⊗ · · · ⊗ VN−1.

Remark 2.22. One may take Vi to be projective representations of Gσ

(i.e., replace Gσ with a central extension), as long as the product of Schur
multipliers attached to them equals 1. For instance, in Example 2.21 we may
replace SL2(R) by its universal cover S̃L2(R). For an example of this see
Remark 5.14 below.

2.16. The ramified genus 0 case for PGL2

2.16.1. Hypergeometric integrals Let F be a local field and a, b ∈ iR.
For α ∈ C, Reα > 0 let

K(α) :=
∫
v∈F :‖v‖≤1

‖v‖α−1 ‖dv‖ .

Under suitable normalization of the Lebesgue measure on F we have K(α) =
1
α if F is archimedean and K(α) = log q

qα−1 if not, where q is the order of the
residue field of F .

For Reα = 0 this integral does not converge (even conditionally). But we
can regularize it if α �= 0 by using an ε-deformation:

(2.7)
∫
v∈F :‖v‖≤1

‖v‖α−1 ‖dv‖ := lim
ε→0+

∫
v∈F :‖v‖≤1

‖v‖α+ε−1 ‖dv‖ .

Denote by ΓF the Γ-function of F , which is the meromorphic function
on C defined by the condition that

F ‖u‖a−1 = ΓF (a) ‖u‖−a ,

where F is the Fourier transform on F (so ΓF (a)ΓF (1 − a) = 1).15

Recall the beta integral∫
F
‖s‖α−1 ‖s− 1‖β−1 ‖ds‖ = BF (α, β) := ΓF (α)ΓF (β)

ΓF (α + β) .

Thus
BF (α, β) = BF (β, α) = BF (α, 1 − α− β).

15Here for simplicity we consider the Γ-function for unramified characters, but
all the formulas extend straightforwardly to general multiplicative characters of F .
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Now consider the integral

I(x) :=
∫
s∈F :‖s‖≥1

‖s‖α−1 ‖s− x‖β−1 ‖ds‖

where Reα = 0, 0 < Re β < 1. Setting s = xv−1, we get

I(x) = ‖x‖α+β−1
∫
‖v‖≤‖x‖

‖v‖−α−β ‖v − 1‖β−1 ‖dv‖ .

Thus I(x) depends only on ‖x‖.
The following lemma is a generalization of [EFK3], Lemma 8.1.

Lemma 2.23. If ‖·‖α �= 1 then we have

I(x) = K(−α) ‖x‖β−1 + BF (α, β) ‖x‖α+β−1 + o(‖x‖Reβ−1), x → ∞.

Proof. We write

‖x‖1−α−β I(x) =
∫
‖v‖≤R

‖v‖−α−β ‖v − 1‖β−1 ‖dv‖

+
∫
R<‖v‖≤‖x‖

‖v‖−α−β ‖v − 1‖β−1 ‖dv‖ =
∫
‖v‖≤R

‖v‖−α−β ‖v − 1‖β−1 ‖dv‖

+
∫
R<‖v‖≤‖x‖

(∥∥∥1 − v−1
∥∥∥β−1

− 1
)
‖v‖−α−1 ‖dv‖ +

∫
R<‖v‖≤‖x‖

‖v‖−α−1 ‖dv‖ .

The first two integrals have a limit as x → ∞, namely

CR(α, β) :=
∫
‖v‖≤R

‖v‖−α−β ‖v − 1‖β−1 ‖dv‖

+
∫
R<‖v‖

(∥∥∥1 − v−1
∥∥∥β−1

− 1
)
‖v‖−α−1 ‖dv‖ ,

while the last integral equals

K(−α)(‖x‖−α −R−α).

So we get

I(x) = K(−α) ‖x‖β−1 + (CR(α, β) −K(−α)R−α) ‖x‖α+β−1 + o(‖x‖Reβ−1)

as x → ∞. Thus CR(α, β) − K(−α)R−α is independent of R. In fact, it is
easy to show that for any R,

CR(α, β) −K(−α)R−α = BF (α, β).
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This implies the result.

The following lemma is a generalization of [EFK3], Lemma 8.2.

Lemma 2.24. Let α, β be as above and ϕ be a locally integrable function on
P1(F ) which is smooth near ∞ and has power decay at 0. Let

I(x, ϕ) :=
∫
F
ϕ(s) ‖s‖α−1 ‖s− x‖β−1 ‖ds‖ , ‖x‖ � 1.

Then if ‖·‖α �= 1 then

I(x, ϕ) = ‖x‖β−1
∫
F
ϕ(s) ‖s‖α−1 ‖ds‖+ϕ(∞)BF (α, β) ‖x‖α+β−1+o(‖x‖Reβ−1)

as x → ∞, where the integral is understood in the sense of ε-deformation.

Proof. If ϕ(∞) = 0, this follows by taking the limit directly, and if ϕ = 1‖s‖≥1
is the indicator function then this is Lemma 2.23. So the result follows from
the decomposition

ϕ(s) = (ϕ(s) − ϕ(∞)1‖s‖≥1) + ϕ(∞)1‖s‖≥1.

Now for x ∈ F , x �= 0, 1, 0 < Re γ < 1, and consider the hypergeometric
integral

ΦF (α, β, γ;x) :=
∫
F
‖s‖α−γ ‖s− 1‖γ−1 ‖s− x‖β−1 ‖ds‖ .

Taking in Lemma 2.24 ϕ(s) =
∥∥1 − s−1∥∥γ−1, where 0 < Re γ < 1, we get

Proposition 2.25.

ΦF (α, β, γ;x) = BF (−α, γ) ‖x‖β−1 + BF (α, β) ‖x‖α+β−1 + o(‖x‖Reβ−1)

as x → ∞.

2.16.2. Principal series representations Let G be a split connected
reductive algebraic group over a local field F , B ⊂ G a Borel subgroup
defined over F , and let G := G(F ),B := B(F ). Then any integral weight
μ of G defines a character B → F×, denoted b �→ bμ. Let ρ := ρG be the
sum of fundamental weights of G. Then densities on G/B can be realized as
functions h : G → C such that h(gb) =

∥∥b−2ρ∥∥h(g), g ∈ G, b ∈ B.
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Now let χ be a unitary character B → C× (or, equivalently, T → C×,
where T := B/[B,B]). Then we can define the principal series represen-
tation M(χ) of G, which is the space of functions f : G → C such that

f(gb) = χ(b)
∥∥b−ρ

∥∥ f(g), g ∈ G, b ∈ B,

and |f |2 is an L1-density on G/B, with the action of G by left multiplication
((gf)(x) := f(g−1x)). Then M(χ) is a unitary representation of G with inner
product

(f1, f2) =
∫
G/B

f1f2.

It is well known (see e.g. [ABV] for the archimedean cases and [Ca] for
non-archimedian ones) that the representations M(χ) are irreducible and
M(χ1) ∼= M(χ2) iff χ1 = wχ2 for some element w of the Weyl group W
of G. These isomorphisms are nontrivial and are called intertwining oper-
ators; we discuss them below for G = PGL2.

2.16.3. Principal series representations for PGL2 and intertwining
operators Let us now consider the case G = PGL2. Then T = F×, so
for c ∈ iR we may take χc(t) = ‖t‖c , t ∈ T, and define the unramified (or
spherical) principal series representation M(χc). We will set λ := −1+c

and denote M(χc) by Mλ. Thus Mλ = L2(P1(F ), ‖K‖−
λ
2 ), where K is the

canonical bundle (as c ∈ iR, this is naturally a Hilbert space with inner
product (f1, f2) =

∫
P1(F ) f1f2).

It is well known that we have an isomorphism of unitary representations
ι : Mλ

∼= M−λ−2 such that ι2 = Id, namely the intertwining operator

ι : L2(P1(F ), ‖K‖−
λ
2 ) → L2(P1(F ), ‖K‖

λ+2
2 )

given by
ι = F ◦ ‖·‖λ+1 ◦ F−1,

where ‖·‖λ+1 denotes the operator of multiplication by the function ‖·‖λ+1.
In other words, for smooth f vanishing near ∞ we have

(2.8) (ιf)(z) = lim
ε→0+

1
ΓF (−λ− 1 + ε)

∫
F
f(w) ‖z − w‖−λ−2+ε ‖dzdw‖

λ+2
2 .

Observe that this integral is absolutely convergent near the diagonal z = w
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and the right hand side tends to the identity operator when λ → −1.16 Thus
for λ = −1 we have ι = 1.

The existence of ι implies that Mλ depends only on the Casimir eigenvalue
1
2(λ + 1)2 = c2

2 .
Let λj ∈ −1 + iR, j = 0, . . . ,m + 1, Vj := Mλj , j ∈ [0,m + 1] and

λ := (λ0, . . . , λm, λm+1). Consider the Hilbert space

(2.9) H(λ) := HV0,...,Vm+1 = MultPGL2(F )(M∗
λm+1 ,Mλ0 ⊗ · · · ⊗Mλm).

Similarly to [EFK3], Section 3.3, the space H(λ) may be realized as the space
of functions ψ(y0, . . . , ym) on Fm+1 invariant under simultaneous translations
yj �→ yj + C, homogeneous of degree 1

2(
∑m

j=0 λj − λm+1), and specializing at
y0 = 0, ym = 1 to square integrable functions on Fm−1 (see e.g. [P, Re] for
F = R, [Na, Wi] for F = C, [Ma] for a general local field). The inner product
on H(λ) is given by

(ψ, η) =
∫
Fm−1

ψ(0, y1, . . . , ym−1, 1)η(0, y1, . . . , ym−1, 1) ‖dy1 · · · dym−1‖ .

Note that if ε = (ε0, . . . , εm, εm+1) ∈ (Z/2)m+2 is a collection of signs, and
(ε ◦ λ)j := εj(λj + 1) − 1, then we have isomorphisms17 Rε = Rλ

ε : H(λ) ∼=
H(ε◦λ) given by composing the isomorophisms ι in all variables yj for which
εj = −1, and Rεε′ = RεRε′ . Thus we can think of the collection of spaces
H(λ) attached to an orbit O of (Z/2)m+2 as a single Hilbert space H(O)
with multiple realizations H(λ), λ ∈ O connected by a consistent family of
isomorphisms.

Furthermore, we can write an explicit formula for Rε. For example, let
us write an explicit formula for R := R1,...,1,−1 : H(λ) → H(λ′), where
λ′ := (λ0, . . . , λm,−λm+1 − 2). In fact, we can write a more general formula
for the operator

R : MultPGL2(F )(M∗
λ , V ) → MultPGL2(F )(M∗

−λ−2, V )

induced by ι for any tempered representation V of PGL2(F ) (note that
R2 = 1, so R† = R). To this end, assume first that V is a direct sum of
irreducible representations and realize elements of MultPGL2(F )(M∗

λ , V ) as
16 Here we use the ε-deformation as in (2.7) to make sense of the divergent

integral in (2.8).
17Here and below we will consider various operators with source H(λ). While

these operators by definition depend on λ, we will drop it from the notation when
no confusion is possible.
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V -valued (generalized) −λ
2 -densities v = v(y) ‖dy‖−

λ
2 on P1(F ) equivariant

under PGL2(F ). Then formula (2.8) implies that

Rv = lim
ε→0+

1
ΓF (−λ− 1 + ε)

∫
F
v(s) ‖y − s‖−λ−2+ε ‖ds‖ ‖dy‖

λ+2
2 ,

which we will write for brevity as

Rv = 1
ΓF (−λ− 1)

∫
F
v(s) ‖y − s‖−λ−2 ‖ds‖ ‖dy‖

λ+2
2 .

Let v̂ := v(u−1) ‖u‖λ ‖du‖−
λ
2 be the image of v under the change of coordi-

nates u = y−1, so v̂(u) := v(u−1) ‖u‖λ. Then

R̂v(u) = 1
ΓF (−λ− 1)

∫
F
v(s) ‖1 − su‖−λ−2 ‖ds‖ .

Specializing this at u = 0, we have

R̂v(0) = 1
ΓF (−λ− 1)

∫
F
v(s) ‖ds‖ = 1

ΓF (−λ− 1)

∫
F
v̂(s−1) ‖s‖λ ‖ds‖ .

But s−1 is obtained from 0 by the element g(s) ∈ PGL2(F ) sending u to
u + s−1, i.e. y to (y−1 + s−1)−1 = y

s−1y+1 . Thus g(s) =
( 1 0
s−1 1

)
. So we get

R̂v(0) = 1
ΓF (−λ− 1)

∫
F
g(s)−1v̂(0) ‖s‖λ ‖ds‖ .

This formula continues to hold if V is not necessarily a direct sum of ir-
reducible representations but rather a direct integral. For example, in our
situation V = V0 ⊗ · · · ⊗ Vm is the space of translation invariant functions in
y0, . . . , ym which are homogeneous of degree 1

2(
∑m

i=0 λi − λm+1), so we get

Rψ = 1
ΓF (−λm+1 − 1)

∫
F
g(s)−1ψ ‖s‖λm+1 ‖ds‖ ,

i.e.,

Rψ(y0, . . . , ym) =

1
ΓF (−λm+1−1)

∫
F
ψ
(

y0s
s−y0

, . . . , y0s
s−ym

)
‖s‖λm+1−

∑m

i=0 λi

m∏
i=0

‖s− yi‖λi ‖ds‖ =
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1
ΓF (−λm+1−1)

∫
F
ψ

(
s2

s−y0
, . . . ,

s2

s−ym

)
‖s‖λm+1−

∑m

i=0 λi

m∏
i=0

‖s− yi‖λi ‖ds‖ .

We thus obtain the following lemma.

Lemma 2.26. We have18

(Rψ)(y0, . . . , ym)

= 1
ΓF (−λm+1 − 1)

∫
F
ψ

( 1
s− y0

, . . . ,
1

s− ym

) m∏
i=0

‖s− yi‖λi ‖ds‖ .

Remark 2.27. Setting in Lemma 2.26 t0 = y0 = 0 and ϕ(y1, . . . , ym) :=
ψ(0, y1, . . . , ym), we obtain

(2.10) (Rϕ)(y1, . . . , ym) =
1

ΓF (−λm+1 − 1)

∫
F
ϕ

(
y1

1 − y1s−1 , . . . ,
ym

1 − yms−1

)
×

m∏
j=1

∥∥∥1 − yjs
−1

∥∥∥λj ‖s‖λm+1 ‖ds‖ .

We will also need to consider the operator Q = Qλ : H(λ) → H(λ′)
given by

(Qψ)(y0, . . . , ym) = 1
ΓF (λm+1 + 1)

∫
F
ψ(y0− t0s, . . . , ym− tms) ‖s‖λm+1 ‖ds‖ .

Setting t0 = y0 = 0 and ϕ := ψ|y0=0, we have

(Qϕ)(y1, . . . , ym) = 1
ΓF (λm+1 + 1)

∫
F
ψ(y1 − t1s, . . . , ym − tms) ‖s‖λm+1 ‖ds‖ .

(2.11)

Recall that by [EFK3], Proposition 3.3,

S0(y1, . . . , ym) = ( t1
y1
, . . . , tm

ym
).

Thus, setting λ∗ := (−λ0 − 2, λ1, . . . , λm,−λm+1 − 2), we get the unitary
involution

S0 : H(λ) → H(λ∗)
18Note that this integral is not convergent near s = ∞ and should be understood

in the sense of ε-deformation in λm+1, as explained in footnote 16.
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given by

(S0ϕ)(y1, . . . , ym) =
m∏
j=1

∥∥∥∥ tj
y2
j

∥∥∥∥−
λj
2
ϕ( t1

y1
, . . . , tm

ym
),

and we see that Q = S0RS0. In fact, since for any 1 ≤ i ≤ m the operator
SiS0 commutes with R, we have Q = SiRSi for any 0 ≤ i ≤ m. We also see
that

Q2 = 1, Q† = Q.

2.16.4. Formulas for Hecke operators Now let us study the Hecke op-
erators on the Hilbert space HV0,...,Vm+1 . This is the setting of the tamely
ramified analytic Langlands correspondence with parameters λj for
G = PGL2 and X = P1 with N = m + 2 ramification points. It generalizes
the setting of [EFK3] where λj = −1 for all j, so that

HV0,...,Vm+1 = L2(Bun◦
G(X, t0, . . . , tm+1), ‖K‖

1
2 )

is the space of square-integrable half-densities. Similarly to [EFK3], Subsec-
tion 3.3, we’ll denote the ramification points by t0, . . . , tm+1 to align notation
with [EFK3], and assume that tj ∈ X(F ) for all j, while tm+1 = ∞.

First we would like to write a formula for the (modified) Hecke operator
Hx that generalizes the formula for Hx from [EFK3], Proposition 3.9. Recall
that we have two components of the moduli of bundles, Bun0 and Bun1 (bun-
dles of even and odd degree), which are identified by the Hecke modification
Sm+1 at infinity. Thus, as in [EFK3], Section 3, we can use Sm+1 to identify
the sectors H0,H1 of the Hilbert space corresponding to bundles of degree
0 and 1. Then the modified Hecke operator Hx : H0 → H1 can be written
as an endomorphism of H0. In fact, it is convenient to write this endomor-
phism as an operator H(λ) → H(λ′). In other words, it maps homogeneous
functions of degree 1

2(
∑m

j=0 λj − λm+1) to homogeneous functions of degree
1 + 1

2
∑m+1

j=0 λj .

Proposition 2.28. The modified Hecke operator Hx = Hλ
x : H(λ) → H(λ′)

is given by the formula

(Hxψ)(y0, . . . , ym) =
∫
F
ψ

(
t0 − x

s− y0
, . . . ,

tm − x

s− ym

) m∏
j=0

‖s− yj‖λj ‖ds‖ .

The proof of Proposition 2.28 is parallel to the proof of [EFK3], Proposi-
tion 3.9.
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We also have the ordinary (unmodified) Hecke operator Hx : H(λ) →
H(λ′), which differs from Hx by normalization:

Hx =
m∏
j=0

‖x− tj‖−
λj
2 Hx.

This is a special case of formula (2.6). It is not hard to check that

Rε ◦Hx = Hx ◦Rε

when εm+1 = 1; however, this does not hold for εm+1 = −1 since we used
Sm+1 acting at tm+1 = ∞ to identify Bun0 and Bun1.

Remark 2.29. By setting t0 = y0 = 0 and ϕ(y1, . . . , ym) := ψ(0, y1, . . . , ym),
we obtain the following formula for the action of Hx on homogeneous functions
of degree 1

2(
∑m

j=0 λj − λm+1):

(Hxϕ)(y1, . . . , ym) =
∫
F
ϕ

(
t1s− xy1

s(s− y1)
, . . . ,

tms− xym
s(s− ym)

) m∏
j=0

‖s− yj‖λj ‖ds‖ .

(2.12)

This formula generalizes the formula of Theorem 3.6 in [EFK3].
We can further set tm = ym = 1 and get the following analog of [EFK3],

Proposition 3.7. Let φ(y1, . . . , ym−1) = ϕ(y1, . . . , ym−1, 1) ∈ L2(Fm−1). Then

(Hxφ)(y1, . . . , ym−1) =∫
F
φ

((t1s− xy1)(s− 1)
(s− y1)(s− x) , . . . ,

(tm−1s− xym−1)(s− 1)
(s− ym−1)(s− x)

)
×

∥∥∥∥s(s− 1)
s− x

∥∥∥∥−
1
2 (
∑m

j=0 λj−λm+1) m∏
j=0

‖s− yj‖λj ‖ds‖ .

Similarly to [EFK3], Subsection 3.3, define the unitary operator Us,x on
L2(Fm−1) by

(Us,xφ)(y1, . . . , ym−1) :=

φ

((t1s− y1x)(s− 1)
(s− y1)(s− x) , . . . ,

(tm−1s− ym−1x)(s− 1)
(s− ym−1)(s− x)

)
×

∥∥∥∥s(s− 1)
s− x

∥∥∥∥−
1
2

∑m−1
j=1 λj m−1∏

j=1

∥∥∥∥∥ tj − x

(s− yj)2

∥∥∥∥∥
−λj

2

.
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Then we get

(2.13) Hxφ = ‖x‖−
λ0
2 ‖x− 1‖−

λm
2 ×∫

F
‖s‖

1
2 (λ0−λm+λm+1) ‖s− 1‖

1
2 (−λ0+λm+λm+1) ‖s− x‖

1
2 (λ0+λm−λm+1) Us,xφ ‖ds‖ ,

which generalizes [EFK3], Proposition 3.7. From this formula it follows by the
argument of [EFK3], Proposition 3.10 that Hx is a bounded operator which
depends norm-continuously on x for x �= tj ,∞.

2.16.5. Properties of Hecke operators The properties of the operator
Hx are analogous to those in the untwisted case ([EFK3], Section 3). To
avoid confusion, from now on the operators R,Q,Hx : H(λ) → H(λ′) will
be denoted by R+, Q+, Hx+ and the operators R,Q,Hx : H(λ′) → H(λ) by
R−, Q−, Hx− (thus Q†

+ = Q−, R
†
+ = R−).

Proposition 2.30.

(i) The operators Hx,±, x ∈ P1(F ), x �= tj are compact.
(ii) Hx−Hy+ = Hy−Hx+, x, y ∈ P1(F ), x, y �= tj.
(iii) H†

x+ = Hx−.

Proof. (i) is proved analogously to [EFK3], Proposition 3.13. (ii), (iii) are
proved analogously to [EFK3], Proposition 3.11. (ii) can also be checked ex-
plicitly from the formula of Proposition 2.28 as explained in [EFK3], Re-
mark 3.28.

Define the full Hecke operator on H = H0 ⊕ H1 = H(λ) ⊕ H(λ′) by
the formula

Hx,full =
(

0 Hx−
Hx+ 0

)
.

It follows that the operators Hx,full are self-adjoint and pairwise commuting.

2.16.6. Asymptotics of Hecke operators and the spectral decompo-
sition Let us now discuss the asymptotics of Hecke operators as x → ∞.
Set c := λm+1 + 1.

Proposition 2.31. (i) If c �= 0 then

‖x‖−
1
2 Hx± = ΓF (±c)‖x‖±

c
2Q± + ΓF (∓c)‖x‖∓

c
2R± + o(1), x → ∞.
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Thus

‖x‖−
1
2 Hx,full = ΓF (c)‖x‖

c
2D + ΓF (−c)‖x‖−

c
2D† + o(1), x → ∞,

where

D :=
(

0 R−
Q+ 0

)
.

(ii) If c = 0 then one has

‖x‖−
1
2 Hx,± = log ‖x‖ + M + o(1), x → ∞,

where

(Mϕ)(y1, . . . , ym) :=∫
F

(
ϕ(y1−t1s, . . . , ym−tms)+

ϕ( y1
1−y1s−1 , . . . ,

ym
1−yms−1 )∏m

j=1 ‖1 − yjs−1‖−λj
−ϕ(y1, . . . , ym)

)∥∥∥∥dss
∥∥∥∥ .

Note that Proposition 2.31(ii) generalizes [EFK3], Propositions 3.15(i)
and 3.21.

Proof. (i) We follow the proof of [EFK3], Proposition 3.21. By (2.12) we have

(2.14) ‖x‖−
1
2 (Hx+ϕ)(y1, . . . , ym) =

‖x‖−
c
2

∫
F
ϕ

(
t1sx

−1 − y1

1 − y1s−1 , . . . ,
tmsx

−1 − ym
1 − yms−1

)
m∏
j=1

∥∥∥1 − yjs
−1

∥∥∥λj ‖s‖c
∥∥∥∥dss

∥∥∥∥ .
Now, as explained in the proof of [EFK3], Proposition 3.21, in the limit
x → ∞ the curve Zx,y with parametrization s �→ ( t1sx−1−y1

1−y1s−1 , . . . , tmsx−1−ym
1−yms−1 )

along which we are integrating in (2.14) falls apart into two components cor-
responding to the regimes when s = s(x) has a finite limit as x → ∞ and
when sx−1 has a finite limit when x → ∞, respectively. As a result, similarly
to the proof of [EFK3], Proposition 3.21, the integral (2.14) is asymptotic to
the sum of two integrals over these components. Namely, we have

‖x‖−
1
2 (Hx+ϕ)(y1, . . . , ym) =

‖x‖−
c
2

∫
F
ϕ

(
y1

1 − y1s−1 , . . . ,
ym

1 − yms−1

) m∏
j=1

∥∥∥1 − yjs
−1

∥∥∥λj ‖s‖c
∥∥∥∥dss

∥∥∥∥+
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‖x‖
c
2

∫
F
ϕ(y1 − t1s, . . . , ym − tms) ‖s‖c

∥∥∥∥dss
∥∥∥∥ + o(1), x → ∞.

Now, the first integral is the operator Γ(−c)R+ (formula (2.10)), while the
second integral is the operator Γ(c)Q+ (formula (2.11)), which implies the
claimed asymptotics for Hx+. The asymptotics for Hx− is obtained by re-
placing c by −c.

(ii) follows from (i) by taking the limit c → 0. Namely, write (i) in the
form

‖x‖−
1
2 (Hx+ϕ)(y1, . . . , ym) =

(‖x‖−
c
2 − 1)

∫
F
ϕ

(
y1

1 − y1s−1 , . . . ,
ym

1 − yms−1

) m∏
j=1

∥∥∥1 − yjs
−1

∥∥∥λj ‖s‖c
∥∥∥∥dss

∥∥∥∥+

(‖x‖
c
2 − 1)

∫
F
ϕ(y1 − t1s, . . . , ym − tms) ‖s‖c

∥∥∥∥dss
∥∥∥∥+∫

F

(
ϕ(y1 − t1s, . . . , ym − tms) +

ϕ( y1
1−y1s−1 , . . . ,

ym
1−yms−1 )∏m

j=1 ‖1 − yjs−1‖−λj
− ϕ(y1, . . . , ym)

)
×

‖s‖c
∥∥∥∥dss

∥∥∥∥ + o(1), x → ∞.

Now, each of the first two summands tends to 1
2 log ‖x‖ as c → 0, while the

third summand tends to M , as desired.19

Corollary 2.32. (i) We have ∩x KerHx± = 0, ∩x KerHx,full = 0.
(ii) We have a spectral decomposition

H = ⊕kH±
k ,

where H±
k are finite dimensional joint eigenspaces of Hx,full with eigenvalues

±βk(x).

Proof. (i) It suffices to show that ∩x KerHx,full = 0. But this follows from
Proposition 2.31 and the fact that R±, Q± are unitary operators, hence so
is D.

(ii) immediately follows from (i) and the compactness of Hx,full.

Let ±δk ∈ C be the eigenvalue of D on H±
k , so |δk| = 1. We choose the

signs so that arg δk ∈ (−π
2 ,

π
2 ]. Then Proposition 2.31 implies the following

asymptotics for βk(x).
19Here it needs to be checked that the o(1) term remains o(1) as c → 0. We leave

this argument to the reader.
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Corollary 2.33. We have

βk(x) = ‖x‖
1
2 (2 Re(δkΓF (c)‖x‖

c
2 ) + o(1)), x → ∞.

So setting δ∗k = e2πiθk := cΓF (c)
|cΓF (c)|δk, −π < θk ≤ π, we get

‖x‖−
1
2 βk(x) = |cΓF (c)|

c
(e2πiθk‖x‖

c
2 − e−2πiθk‖x‖−

c
2 ) + o(1) =

|cΓF (c)|
c

(
cos θk · (‖x‖

c
2 − ‖x‖−

c
2 ) + i sin θk · (‖x‖

c
2 + ‖x‖−

c
2 )
)
+o(1), x → ∞.

Thus, Proposition 2.31(ii) implies that

θk = c

2iμ
(k) + o(c), c → 0,

where μ(k) ∈ R are the eigenvalues of M .
Thus we see that we have orthonormal bases {e0

k} of H0 and {e1
k} of H1

such that

Q+e0
k = δke1

k, Q−e1
k = δ−1

k e0
k, R+e0

k = δ−1
k e1

k, R−e1
k = δke0

k,

and the eigenvectors of Hx,full with eigenvalues ±βk(x) are e±k = e0
k ± e1

k.
Thus the vectors e0

k satisfy the equation

R−Hx+e0
k = δkβk(x)e0

k.

So the spectral problem for the operator Hx,full on H is equivalent to the
spectral problem for R−Hx+ on H0, and the eigenvalues of R−Hx+ are

β̂k(x) := δkβk(x) = ‖x‖
1
2 (δ2

kΓ(c) ‖x‖
c
2 + Γ(−c) ‖x‖−

c
2 + o(1)), x → ∞.

Note that β̂k(x) do not depend on the above choice of signs for δk.

Example 2.34. Let m = 1 (3 points), then H(λ) ∼= C by sending ϕ to ϕ(1).
Let

λ0 = −1 + a, λ1 = −1 + b, t1 = y1 = 1.

Hence

Q+ = 1
ΓF (c)

∫
F
‖1 − s‖

a+b−c−1
2 ‖s‖c−1 ‖ds‖ =

ΓF (a+b−c+1
2 )

ΓF (a+b+c+1
2 )

,
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R− = 1
ΓF (c)

∫
F
‖1 − s‖

−a+b−c−1
2 ‖s‖

a−b−c−1
2 ‖ds‖ =

ΓF (a−b−c+1
2 )

ΓF (a−b+c+1
2 )

.

Thus

δk =

√√√√ΓF (a+b−c+1
2 )ΓF (a−b−c+1

2 )
ΓF (a+b+c+1

2 )ΓF (a−b+c+1
2 )

.

Also by (2.13),

Hx+ =
∫
F
‖s‖

a−b+c−1
2 ‖s− 1‖

−a+b+c−1
2 ‖s− x‖

a+b−c−1
2 ‖ds‖ ,

so Proposition 2.31(i) takes the form∫
F
‖s‖

a−b+c−1
2 ‖s− 1‖

−a+b+c−1
2 ‖s− x‖

a+b−c−1
2 ‖ds‖ =

BF (−a+b+c+1
2 , a−b+c+1

2 )‖x‖
a+b−c−1

2 + BF (a+b−c+1
2 , −a−b−c+1

2 )‖x‖
a+b+c−1

2 +

o(‖x‖−
1
2 ), x → ∞.

This asymptotic formula is also a special case of (2.25), when Reβ = Re γ = 1
2 .

Remark 2.35. Analogously to [EFK3], Proposition 3.15(i), a similar asymp-
totic formula for Hx to Proposition 2.31 holds when x → tj 0 ≤ j ≤ m, with
an additional factor Sj : if λj �= −1 then

‖x− tj‖−
1
2 Hx = ΓF (λj + 1) ‖x− tj‖−

λj+1
2 R(j)Sj +

ΓF (−λj − 1) ‖x− tj‖
λj+1

2 SjR
(j) + o(1), x → tj ,

where R(j) := R1,...,1,−1,1,...,1 with −1 in the j-th position. The proof and the
computation of the limit λj → −1 are parallel to the case x → ∞.

Remark 2.36. This analysis may be extended to the complementary se-
ries, i.e., when some λj , instead of being in −1 + iR, are allowed to lie
in the interval (−2, 0). For simplicity assume that λm+1 ∈ −1 + iR, so
that Mλm+1 is tempered and we can define a reasonable multiplicity space
MultPGL2(F )(M∗

λm+1
,Mλ0 ⊗ · · · ⊗ Mλm). If λ ∈ (−2, 0), we still have Mλ =

L2(P1(F ), ‖K‖−
λ
2 ), but now with inner product

(f, g) = 1
ΓF (−λ− 1)

∫
P1(F )2

f(y)g(z)‖y − z‖−λ−2 ‖dydz‖
λ+2

2
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(more precisely, the integral converges for λ ∈ (−2,−1) but analytically con-
tinues to λ ∈ (−2, 0) as a positive definite inner product). Thus the in-
ner product in H(λ) (translation invariant homogeneous functions of degree
1
2(
∑m

j=0 λj−λm+1)) also has to be modified accordingly and will become more
complicated, but the formula for Hecke operators remains the same.

Remark 2.37. At least for � = 1, one should be able to extend this theory to
the case of admissible representations Vi (not necessarily tempered, or even
unitarizable) by working in the Schwartz space context instead of L2 space
(for example, using the approach of [BK2]). For instance, in this context the
extension to complementary series from Remark 2.36 should be much more
straightforward – we don’t need to worry about positive inner products and
can just do analytic continuation with respect to the Casimir eigenvalues
1
2(λj + 1)2 (which are no longer required to be real).

Remark 2.38. The material of Subsection 2.16 generalizes in a straightfor-
ward way when λj are taken to be arbitrary multiplicative characters of F
of the form λj(y) = ‖y‖−1 λ0

j (y), where λ0
j are unitary characters. The above

setting is the special case when λ0
j are imaginary powers of the norm.

3. Analytic Langlands correspondence over C

In this section we discuss the analytic Langlands correspondence over C,
including various twists. We begin by recalling the basic setup introduced in
[EFK2].

3.1. The general setting of the analytic Langlands correspondence
over C

When one talks of Langlands correspondence for a group G, one usually
means not just a formulation of a spectral problem for Hecke operators, but
also a parametrization of their spectrum by data related to the Langlands
dual group G∨. Such a description is essentially available for the arithmetic
Langlands correspondence for a curve X over a finite field. In this case the
Langlands conjecture describes the spectrum of Hecke operators in terms of
étale G∨-local systems on X. On the other hand, for the analytic Lang-
lands correspondence dealing with curves over a general non-archimedean
field local field F , we cannot yet formulate even a conjectural description
of the spectrum. But for archimedean fields we can use quantum Hitchin
Hamiltonians commuting with Hecke operators to describe the spectrum (see
Subsection 2.12). The most complete conjectural picture exists for F = C
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([EFK1, EFK2, EFK3]); we discuss it in this section. The case of curves over
F = R is discussed in Section 4.

Consider first the unramified case. Let B∨ be a Borel subgroup of G∨ with
maximal torus T∨, Z∨ the center of G∨, g∨ := LieG∨, b∨ := LieB∨, t∨ :=
LieT∨. Let Q∨ ⊂ Λ be the root lattice of G∨, then Hom(Λ/Q∨,C×) = Z∨.
Let di, i = 1, . . . , rankG be the degrees of the basic invariants for G and G∨.

Definition 3.1 ([BD1, BD2]). A G∨-oper on X is a triple (E , EB∨ ,∇), where
E is a G∨-bundle on X, EB∨ is its B∨ ∩ [G∨, G∨]-reduction, and ∇ is a con-
nection on E which has the form

∇ = d + (f + b(z))dz, b ∈ b∨[[z]]

for any trivialization of EB∨ (and hence E) on the formal neighborhood of any
point x0 ∈ X, where f is the lower nilpotent element of a principal sl2-triple
{e, h, f} ⊂ g∨ such that h ∈ t∨ and e ∈ b∨ and z is a formal coordinate
at x0.20

The above sl2 triple defines a principal homomorphism φ : SL2 → G∨.
Since any two Borel subgroups of G∨ are conjugate to each other, any

two maximal tori in a given Borel subgroup B∨ of G∨ are conjugate to each
other by an element of B∨, and any two sl2-triples of the kind considered in
the above definition are conjugate by an element of the torus T∨, we obtain
the following result.

Lemma 3.2. Let B′∨ be another Borel subgroup of G∨. The spaces of G∨-
opers corresponding to B∨ and B′∨ are canonically isomorphic.

Given a flat G∨-bundle (E ,∇), we may speak of an oper structure on it,
which is a reduction EB∨ of E to B∨∩ [G∨, G∨] satisfying the above condition.

Lemma 3.3 ([BD1, BD2]). A flat G∨-bundle can have at most one oper
structure.

Thus it makes sense to say that a given flat G∨-bundle is or is not an
oper.

Example 3.4. If T∨ is a torus then a T∨-oper on X is any connection ∇ on
the trivial T∨-bundle on X. Thus ∇ = d+ω where ω ∈ H0(X,KX ⊗LieT∨).

20In fact, this definition is more restrictive than the one in [BD1, BD2], where
EB∨ is assumed to be a B∨-bundle. But the two definitions coincide when G∨ is
semisimple.
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As explained in [BD1, BD2], G∨
ad-opers on X are parametrized by a certain

affine space OpG∨
ad

(X) of dimension (g− 1) dimG – a torsor over the Hitchin
base

(3.1) Hitch := ⊕iH
0(X,K⊗di

X ).

By Example 3.4, this is also true for a torus, hence for a product of a torus
with an adjoint group, i.e., for any G∨ such that [G∨, G∨] is adjoint. In other
words, denoting by Z∨

der the intersection Z∨∩ [G∨, G∨] of Z∨ with the derived
group [G∨, G∨], we see that this description is always valid for G∨/Z∨

der-opers.
More generally, for arbitrary G∨ the variety OpG∨(X) of G∨-opers on X is

a torsor over the affine space OpG∨/Z∨
der

(X) with fiber H1(X,Z∨
der). Moreover,

any choice of a spin structure K
1
2
X on X gives rise to a splitting of this torsor,

i.e., fixes a canonical component Op0
G∨(X) ∼= OpG∨/Z∨

der
(X). Indeed, consider

the unique up to isomorphism (by the Riemann-Roch theorem) nontrivial
extension

(3.2) 0 → K
1
2
X → ESL2 → K

− 1
2

X → 0

defining an SL2-bundle ESL2 on X, and define EG∨ := φ(ESL2). If the genus
g > 1, then according to [BD1], any connection on EG∨ is an oper. Moreover,
there is a canonical isomorphism H0(X,KX ⊗ ad EG∨) ∼= Hitch identifying
the translation actions of H0(X,KX⊗ad EG∨) on connections and of Hitch on
opers. So such opers form a component of OpG∨(X), which we will denote by
Op0

G∨(X).21 In other words, an oper from this component is just a connection
on a certain fixed G∨-bundle EG∨ .22

Given a G∨-oper χ = (E , EB∨ ,∇), we have the underlying flat G∨-bundle
(E ,∇) and the corresponding G∨-local system on X. Recall that any flat
G∨-bundle has at most one oper structure. Also, according to [BD2], §1.3,

21If g = 0, the bundle underlying SL2-opers is still the non-trivial extension ESL2

given by (3.2) but it is isomorphic to the trivial SL2-bundle in this case. The bundle
underlying G∨-opers is EG∨ = φ(ESL2), so it is isomorphic to the trivial G∨-bundle,
and there is a unique G∨-oper that corresponds to the trivial connection on EG∨ .
If g = 1, we should take instead the trivial extension (3.2) and set EG∨ = φ(ESL2).
In this case KX � OX and so K

± 1
2

X is a square root of OX . With a choice of such a
square root, we obtain a component in the space of G∨-opers which is isomorphic
to Hitch.

22Note that the associated PGL2-bundle to ESL2 is independent on the choice
of K

1
2
X , Thus if φ factors through PGL2 then the component Op0

G∨(X) does not
depend on the choice of K

1
2
X .
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the automorphism group of every flat G∨-bundle underlying a G∨-oper is
the center Z∨. Therefore, the space OpG∨(X) can be realized as a certain
half-dimensional (in fact, Lagrangian in the Atiyah-Bott holomorphic sym-
plectic structure) complex analytic submanifold of the complex manifold
LocSys◦G∨(X) of G∨-local systems on X with the smallest possible group
of automorphisms; namely, Z∨. The group H1(X,Z∨

der) naturally acts on
OpG∨(X).

If we choose a base point x0 ∈ X, then the G∨-local system on X cor-
responding to χ gives rise to a monodromy representation ρχ : π1(X, x0) →
G∨(C) (it is well-defined up to conjugation by an element of G∨(C)). In this
section, to simplify our notation when we discuss monodromy representations,
we will write G∨ instead of G∨(C).

Remark 3.5. Let G∨ = SL2 and χ any SL2-oper on X. Denote by M the
Zariski closure of the image of the monodromy representation ρχ : π1(X, p) →
SL2. We claim that for g > 1, M = SL2. Indeed, by passing to a cover of
X if needed, we can assume without loss of generality that M is connected.
Hence it is either contained in a Borel subgroup of SL2 or is SL2 itself. If it’s
the former, then the vector bundle ESL2 would contain a line subbundle L
preserved by the oper connection. Then deg(L) = 0, and since deg(K− 1

2
X ) < 0

for g > 1, it follows that the map L → K
− 1

2
X defined by the extension (3.2) is 0.

But then L must be isomorphic to K
1
2
X which is impossible since deg(K

1
2
X) > 0.

This also implies an analogous statement for G∨ = PGL2: if g > 1, then
for any PGL2-oper χ the Zariski closure of the image of the corresponding
monodromy representation ρχ : π1(X, p) → PGL2(C) is equal to PGL2.

Given a G∨-local system ρ on X and an algebraic representation ϕ : G∨ →
GLN (C), we have a GLN (C)-local system ϕ(ρ) on X. There exists a unique
G∨-local system ρ such that for every ϕ, ϕ(ρ) ∼= ϕ(ρ).

Definition 3.6. We say that a G∨-local system ρ on X is real if ρ ∼= ρ.

Thus the space LocSys◦G∨(X)R of real local systems is a half-dimensional
real submanifold of LocSys◦G∨(X) (in fact, Lagrangian under the real part of
the holomorphic symplectic form). As explained in [EFK2], Remark 1.9, ρ is
real iff its monodromy group can be conjugated into an inner real form G∨

R

of G∨.

Definition 3.7. A real G∨-oper is a G∨-oper such that the corresponding
G∨-local system ρ is real.
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In other words, a real oper is an intersection point of the above two half-
dimensional submanifolds. It is expected (and known for G∨ = SL2, see [Fa])
that these manifolds intersect transversally, so the set of real opers is discrete.
Moreover, it is conjectured in [EFK2] that for real opers the inner form G∨

R

is, in fact, split, and this is known for G∨ = SL2 ([GKM]).23

Note that we may also consider the complex conjugate submanifold

OpG∨(X) ⊂ LocSys◦G∨(X).

The points of this submanifold are local systems that are realized by an
antiholomorphic G∨-oper (which we call an anti-oper for short). This is a
third Lagrangian submanifold of LocSys◦G∨(X) with respect to the real part of
the holomorphic symplectic form, which intersects the other two submanifolds
exactly at the same points where they intersect each other (i.e., at real opers).
In other words, a real oper is the same thing as a real anti-oper and also the
same as a local system that’s both an oper and an anti-oper.

Now, the main conjecture of [EFK2] is as follows (we formulate it for
semisimple G, as for abelian G it is not difficult and proved in [F4], see
also [EFK2]). Recall that the manifold Bun◦

G(X) is the union of connected
components Bun◦

G,α(X) labeled by the first Chern class c ∈ H2(X, π1(G)) =
π1(G) of a G-bundle on X, and that π1(G) = Z∨∗ = Λ/Q∨.

Conjecture 3.8. (i) The Hilbert space H = L2(Bun◦
G(X)) can be written

as an orthogonal direct sum of 1-dimensional spaces

H =
⊕
ρ,β

Hρ,β

invariant under Hecke operators, where ρ runs over real G∨-opers in Op0
G∨(X),

and β runs over eigenvalues of Hecke operators corresponding to ρ. The quan-
tum Hitchin Hamiltonians act on Hρ,β via the character ρ.

(ii) The eigenvalue βλ(x, x) for the Hecke operator Hx,λ in Hρ,β is given
up to scaling by the formula of [EFK2], Conjecture 5.1 (see Conjecture 3.38
below).

(iii) The set of such eigenvalues corresponding to a given ρ is a torsor
over the group Z∨ = Hom(Λ/Q∨,C×) where the action of this group on
eigenvalues is by multiplication, i.e.

(ξ ◦ β)λ = ξ(λ)βλ.
23This is also easy to see for any G∨ in the tamely ramified case, see [EFK2],

Remark 1.9.
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(iv) The decomposition H = ⊕c∈Z∨∗L2(Bun◦
G,c(X)) is invariant under

quantum Hitchin Hamiltonians, and on each summand L2(Bun◦
G,c(X)) they

have simple spectrum labeled by real G∨-opers ρ in Op0
G∨(X). The Hecke

operators Hx,λ act between these summands, acting on labels c by c �→ c+λ,
which gives rise to the action in (iii).

In in Corollary 3.18 below, we will recall the formula for the Hecke eigen-
values βλ(x, x) obtained in [EFK2], Corollary 1.19 in the case G = PGLn and
λ = ω1. For G of types B�, C�, or G2 and λ = ω1, we conjecture an analogous
formula in Conjecture 3.28. In the general case, the formula for the Hecke
eigenvalues is given in Conjecture 3.38 (it coincides with Conjecture 5.1 of
[EFK2]).

Note that we have a free action of the finite group H1(X,Z) on Bun◦
G(X),

where Z is the center of G, and this action commutes with Hecke and quantum
Hitchin operators. Hence this group acts by a character χρ ∈ H1(X,Z)∗ ∼=
H1(X,Z∗) on each (1-dimensional) joint eigenspace of these operators corre-
sponding to a real G∨-local system ρ and some choice of eigenvalue β. Let us
explain how to compute χρ.

Let G∨
sc be the simply connected cover of G∨. Recall that we have an

exact sequence

1 → H1(X, π1(G∨)) → H1(X,G∨
sc) → H1(X,G∨) → H2(X, π1(G∨)),

and that π1(G∨) = Z∗. Thus every G∨-local system ρ : π1(X) → G∨ has a
first Chern class cρ ∈ H2(X,Z∗). However, as explained above, if ρ is an oper
then as a holomorphic bundle it reduces to the principal SL2, so cρ = 1 (as
SL2(C) is simply connected). Moreover, in this case there is a unique lift of
ρ to a G∨

sc-oper ρ′ in the canonical component Op0
G∨

sc
(X). Now, the reality of

ρ means that ρ ∼= ρ, where ρ is the complex conjugate of ρ, but then ρ′ is
not necessarily real: we have ρ′ ∼= ηρ′ for a unique η ∈ H1(X,Z∗). We expect
that χρ = η.24

3.2. Analytic Langlands correspondence twisted by Z-gerbes on X

The setting of the previous subsection has a twisted generalization where we
take G simply connected, but instead of ordinary principal G-bundles take

24Note that the isomorphism H1(X,Z)∗ ∼= H1(X,Z∗) comes from the cup prod-
uct on H1(X,Z), so it is defined uniquely up to inversion and changes to inverse
when we change the complex structure on X (hence the orientation) to the opposite
one. So replacing this isomorphism by its inverse results just in replacing η by η−1.
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bundles twisted by Z-gerbes on X defined by c ∈ H2(X,Z) = Z (this is
mentioned in [GW], Subsection 9.2). Such twisted bundles are defined on an
open cover {Ui} of X by holomorphic transition functions gij : Ui ∩ Uj →
G such that gijgjkgki = c̃ijk ∈ Z on Ui ∩ Uj ∩ Uk, where c̃ is a Čech 2-
cocycle representing c. Let Bun◦

G(X)c be the variety of regularly stable twisted
bundles with class c, and Bun◦

G(X)tw be the disjoint union of Bun◦
G(X)c over

all c ∈ H2(X,Z). We have a principal H1(X,Z)-bundle

Bun◦
G(X)tw → Bun◦

Gad
(X).

Thus the Hilbert space H = L2(Bun◦
G(X)tw) carries commuting actions of

quantum Hitchin Hamiltonians and Hecke operators.

Conjecture 3.9. Conjecture 3.8 and the formula for χρ holds in this twisted
setting with the group Z∨ (trivial in our case) replaced by π1(G∨), the center
of G∨

sc.

3.3. Differential equations for the Hecke operators for G = PGL2
and X = P1

In this subsection we consider the case of G = PGL2 and X = P1 with
parabolic structures at finitely many points. We will consider the case of
G = PGLn and a smooth projective curve X of genus g > 1 in in the next
subsection.

We generalize the results of [EFK3], Subsection 4.2 to the twisted setting
of Subsection 2.16. Namely, we show that for F = R the Hecke operators sat-
isfy a second-order differential equation (the oper equation), while for F = C
they satisfy a system of two such equations – holomorphic (the oper equa-
tion) and anti-holomorphic (the anti-oper equation, conjugate to the oper
equation), which can be used to describe their spectrum. Let us now derive
the oper equation.

We return to the setting of Subsection 2.16 for F = R or F = C. Consider
the Gaudin operators

Gi :=
∑
j �=i

Ωij

ti − tj
, 0 ≤ i ≤ m,

where Ω = e⊗ f + f ⊗ e + 1
2h⊗ h and

(3.3) e = ∂y, h = −2y∂y + λ, f = −y2∂y + λy
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(this differs from [EFK3], (7.7) by the Chevalley involution). Thus, setting
∂i := ∂

∂yi
, we have ([EFK1], (7.8)):

Gi =
∑
j �=i

1
ti − tj

(
−(yi − yj)2∂i∂j + (yi − yj)(λi∂j − λj∂i) + λiλj

2

)
,

Ĝi := Gi−
∑
j �=i

λiλj

2(ti − tj)
=
∑
j �=i

1
ti − tj

(
−(yi−yj)2∂i∂j+(yi−yj)(λi∂j − λj∂i)

)
.

Note that on translation invariant functions of y0, . . . , ym we have
m∑
i=0

Gi =
m∑
i=0

Ĝi = 0,
m∑
i=0

tiGi = E(E − λ− 1) + λ2 −∑
i λ

2
i

4 ,

m∑
i=0

tiĜi = E(E − λ− 1),

where E :=
∑m

i=0 yi∂i is the Euler vector field and λ :=
∑

i λi (see e.g. [EFK1],
Section 7).

The following proposition is a complete analog of [EFK3], Proposition 4.3.

Proposition 3.10 (Universal oper equations). (i) We have⎛⎝∂2
x −

∑
i≥0

λi

x− ti
∂x

⎞⎠Hx −Hx

∑
i≥0

Ĝi

x− ti
= 0.

(ii) We have⎛⎝∂2
x −

∑
i≥0

λi(λi + 2)
4(x− ti)2

⎞⎠Hx −Hx

∑
i≥0

Gi

x− ti
= 0.

Here the differential equations hold in the same sense as in [EFK3], Propo-
sition 4.3.

Proof. (ii) easily follows from (i), so let us prove (i). The proof is parallel to
the proof of [EFK3], Proposition 4.3. We only redo the algebraic part of the
proof, as the analytic details are exactly the same. Let ui = ui(s) := yi − s
and ψ, ψi, ψij be the zeroth, first and second derivatives of ψ evaluated at the
point z with coordinates zi := ti−x

yi−s = ti−x
ui

. Thus

(3.4) ∂iψj = (x− ti)ψij

u2
i

,
∑
i≥0

∂iψj = −∂sψj
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Also let

(3.5) dμ(s) :=
m∏
i=0

‖s− yi‖λi ‖ds‖ .

We have

∂x(Hxψ) =
∫
F

∑
i≥0

ψi

ui
dμ(s), ∂2

x(Hxψ) =
∫
F

∑
i,j≥0

ψij

uiuj
dμ(s).

Also

∑
i≥0

HxĜiψ

x− ti
= −

∫
F

∑
i�=j

( ti−x
ui

− tj−x
uj

)2ψij + ( ti−x
ui

− tj−x
uj

)(λjψi − λiψj)
(x− ti)(ti − tj)

dμ(s).

Subtracting, we get

∂2
x(Hxψ) −Hx

∑
i≥0

Ĝiψ

x− ti
=

∫
F

(∑
i

ψii

u2
i

+
∑
i�=j

( (ti−x)2
u2
i

+ (tj−x)2
u2
j

)ψij + ( ti−x
ui

− tj−x
uj

)(λjψi − λiψj)

(x− ti)(ti − tj)

)
dμ(s) =

∫
F

(∑
i,j≥0

(ti − x)ψij

(tj − x)u2
i

+
∑
i�=j

( ti−x
ui

− tj−x
uj

)(λjψi − λiψj)
(x− ti)(ti − tj)

)
dμ(s).

Now, using integration by parts, (3.4) and (3.5), we have∫
F

∑
i,j≥0

(ti − x)ψij

(tj − x)u2
i

dμ(s) = −
∫
F

∑
j≥0

1
x− tj

∑
i≥0

∂iψjdμ(s) =

∫
F

∑
j≥0

1
x− tj

∂sψjdμ(s) = −
∫
F

∑
j≥0

ψj

x− tj

∑
i≥0

λi

ui
dμ(s).

Thus

∂2
x(Hxψ) −Hx

∑
i≥0

Ĝiψ

x− ti
=

−
∫
F

⎛⎝∑
j≥0

ψj

x− tj

∑
i≥0

λi

ui
+ 1

2
∑
i�=j

( ti−x
ui

− tj−x
uj

)(λjψi − λiψj)
(ti − x)(tj − x)

⎞⎠ dμ(s) =
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−
∫
F

⎛⎝∑
i≥0

λi

(ti − x)ui
ψi +

∑
i�=j

λj

(tj − x)ui
ψi

⎞⎠ dμ(s) =

−
∫
F

⎛⎝∑
j≥0

λj

tj − x

∑
i≥0

ψi

ui

⎞⎠ dμ(s) =
∑
j≥0

λj

x− tj
∂x(Hxψ).

Also, similarly to [EFK3], Proposition 4.11, we have

Proposition 3.11.
[Hx, Gj ] = 0.

As shown in [EFK2], if F = C then the Hecke operators also satisfy an
anti-holomorphic second-order differential equation (the anti-oper equation)
which is the complex conjugate of the oper equation of Proposition 3.10(ii).
Thus, introducing the operator-valued oper ∂2

x − S(x), where

(3.6) S(x) :=
m∑
i=0

λi(λi + 2)
4(x− ti)2

+
m∑
i=0

Gi

x− ti
,

for F = C we obtain

(3.7) (∂2
x − S(x))Hx = 0, (∂2

x − S(x))Hx = 0

(for F = R we only have the first equation).
We also obtain the following equation for the eigenvalues βk(x) of Hx,full,

which is a generalization of Corollary 4.14 of [EFK3].

Corollary 3.12. The function βk(x) satisfies the differential equation

(3.8) L(μk)βk(x) = 0,

where

L(μk) := ∂2
x −

∑
i≥0

λi(λi + 2)
4(x− ti)2

−
∑
i≥0

μi,k

x− ti

is an SL2-oper, with

(3.9)
m∑
i=0

μi,k = 0,
m∑
i=0

tiμi,k = λm+1(λm+1 + 2)
4 −

m∑
i=0

λi(λi + 2)
4 .

Moreover, if F = C, then β also satisfies the complex conjugate equation
L(μk)βk(x) = 0.
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Note that equation (3.8) is Fuchsian at the points tj with characteristic
exponents 1

2 ±
λj+1

2 , and by (3.9) it is also Fuchsian at ∞ with characteristic
exponents −1

2 ∓ λm+1+1
2 . In other words, basic solutions behave near tj as

(x − tj)
1
2 and (x − tj)

1
2 log(x − tj) if λj = −1 and as (x − tj)

1
2±

λj+1
2 else,

while at ∞ they behave as x
1
2 , x

1
2 log x if λm+1 = −1 and x

1
2±

λm+1+1
2 else.25

Thus the monodromy operators of (3.8) at tj , 0 ≤ j ≤ m + 1 are conjugate
to

(−1 1
0 −1

)
if λj = −1 and to

(
eπiλj 0

0 e−πiλj

)
else.

Thus for F = C the spectral opers have a property that the system
Lβ = 0, Lβ = 0 has a single-valued solution. So the monodromy of such an
oper must preserve a nondegenerate hermitian form. Moreover, as the above
matrices cannot be conjugated to SU(2), this form must be of signature (1,1).
Thus spectral opers must have monodromy in SU(1, 1) ∼= SL(2,R), i.e. they
belong to the (discrete) set B = B(λ0, . . . , λm+1) of real opers of the form of
Corollary 3.12. Furthermore, the joint eigenspaces of Hx,full are 1-dimensional.
In other words, we have

Theorem 3.13. Theorem 4.15 of [EFK3] extends mutatis mutandis to the
ramified setting with any weights λj ∈ −1 + iR.

Moreover, similarly to [EFK3], the set of spectral opers conjecturally co-
incides with B, and this is definitely true at least for 4 and 5 points. The
proofs of these facts are analogous to the proofs in the untwisted case given
in [EFK3].

3.4. Differential equations for the Hecke operators for G = PGLn

Let G = PGLn and X a smooth projective curve of genus g > 1. Analogues
of the universal oper equations of Proposition 3.10 were obtained in Sub-
section 1.4 and Section 4 of [EFK2]. In this subsection we summarize these
results.

Recall the component Op0
SLn

(X) of the space of SLn-opers on X intro-
duced in Subsection 3.1. For even n it depends on the choice of an equivalence
class of the square root K

1
2
X (a spin structure), which we will denote by γ.26

It is an affine space which is a torsor over the vector space Hitch defined by
formula (3.1).

25We remind that since the oper L(μ) is a map from K− 1
2 to K

3
2 , solutions of

the equation L(μ)β = 0 are sections of K− 1
2 , but we view them as functions by

multiplying by (dx)− 1
2 .

26In [EFK2], we denoted this component by Opγ
SLn

(X).
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Given χ ∈ Op0
SLn

(X), denote by (Vω1 ,∇χ) the corresponding holomorphic
flat rank n vector bundle on X whose determinant is identified with the trivial
flat line bundle. The oper Borel reduction gives rise to an embedding

κω1 : K
n−1

2
X ↪→ Vω1 ,

and therefore an embedding

κ̃ω1 : OX ↪→ Vω1 ⊗K
−n−1

2
X .

Hence we obtain a section

sω1 := κ̃ω1(1) ∈ Γ(X,Vω1 ⊗K
−n−1

2
X ).

Likewise, we obtain a section

sωn−1 ∈ Γ(X,Vωn−1 ⊗K
−n−1

2
X ) = Γ(X,V∗

ω1 ⊗K
−n−1

2
X ).

Let Dγ
n(X) be the affine space of nth order differential operators P :

K
−n−1

2
X → K

n+1
2

X , where for even n we use our chosen square root K
1
2
X , such

that

1. symb(P ) ∈ H0(X,OX) equals 1;
2. The operator P − (−1)nP ∗, where P ∗ : K−n−1

2
X → K

n+1
2

X is the algebraic
adjoint operator (see [BB], Sect. 2.4), has order n− 2.

The following statement is proved in [BD2], §2.8.

Lemma 3.14. The assignment

χ ∈ Op0
SLn

(X) �→ Pχ ∈ Dγ
n(X)

defines a bijection Op0
SLn

(X) � Dγ
n(X) such that the sections sω1 ∈Γ(X,Vω1⊗

K
−n−1

2
X ) and sωn−1 ∈ Γ(X,Vωn−1 ⊗K

−n−1
2

X ) satisfy

Pχ · sω1 = 0, P ∗
χ · sωn−1 = 0,

where P ∗
χ is the algebraic adjoint of Pχ.

Let Vuniv
ω1 be the universal vector bundle over Op0

SLn
(X) × X equipped

with a partial connection ∇univ (along X) defined by the property

(Vuniv
ω1 ,∇univ)|χ×X = (Vω1 ,∇χ).
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Set Vuniv
ω1,X := π∗(Vuniv

ω1 ), where π : Op0
SLn

(X) × X → X is the natural pro-
jection and π∗ is the O-module direct image. Using the connection ∇univ, we
obtain a left DX -module Vuniv

ω1,X .
Now let DPGLn,α be the algebra of global holomorphic differential op-

erators acting on the component BunPGLn,α of BunPGLn . According to the
results of [BD1], these algebras are isomorphic to each other and

DPGLn,α � Fun Op0
SLn

(X).

From now on, we will use the notation DPGLn for DPGLn,α.
Thus, DPGLn naturally acts on Vuniv

λ,X , and this action commutes with the
action of DX . We obtain the following result.

Lemma 3.15. There is a unique n-th order differential operator

(3.10) σ : K−n−1
2

X → DPGLn ⊗K
n+1

2
X

satisfying the following property: for any χ ∈ Op0
SLn

(X) = SpecDPGLn , ap-
plying the corresponding homomorphism DPGLn → C we obtain Pχ.

Let Op0
SLn

(X)R be the set of real SLn-opers in Op0
SLn

(X). If χ is in
Op0

SLn
(X)R, then the monodromy representations associated to χ and χ are

isomorphic. Therefore, (Vω1 ,∇χ) and (Vω1 ,∇χ) are isomorphic as C∞ flat
vector bundles on X. Hence we obtain a non-degenerate pairing

hχ,ω1(·, ·) : (Vω1 ,∇χ) ⊗ (Vωn−1 ,∇χ) → (C∞
X , d)

of C∞ flat vector bundles on X. The flat vector bundle (Vω1 ,∇χ) is known
to be irreducible if g > 1 (see [BD1], Sect. 3.1.5(iii)); therefore this pairing is
unique up to a scalar.

The following results were proved in [EFK2], Theorem 1.18 and Corol-
lary 1.16.

Theorem 3.16. The Hecke operator Hω1 , viewed as an operator-valued sec-
tion of Ω−n−1

2
X = K

−n−1
2

X ⊗K
−n−1

2
X , satisfies the system of differential equations

(3.11) σ ·Hω1 = 0, σ ·Hω1 = 0.

Proposition 3.17. hχ,ω1(sω1 , sωn−1) is a unique, up to a scalar, section Φ of
Ω−n−1

2
X which is a solution of the system of differential equations

(3.12) Pχ · Φ = 0, P ∗
χ · Φ = 0
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These two results have the following corollary describing the eigenvalues
of the Hecke operator Hω1 obtained in [EFK2], Corollary 1.19.

Corollary 3.18. Each of the eigenvalues βω1(x, x) of the Hecke operator Hω1

on H corresponding to a real oper χ ∈ Op0
SLn

(X)R (see Conjecture 3.8) is
equal to a scalar multiple of hχ,ω1(sω1 , sωn−1).

3.5. General case

In [EFK2], Section 5, we described a conjectural analogue of this picture for
general G,X, and λ ∈ Λ+. In the general case, the analogues of the differen-
tial equations (3.11) satisfied by the Hecke operators are more complicated
(see Subsection 3.8 below). However, there are several cases in which these
equations can be presented in a simple form similar to equations (3.11). Those
cases will be discussed in Subsection 3.6.

We start by introducing some notation following [EFK2], Section 5. For
χ ∈ Op0

G∨(X) and λ ∈ Λ+, we have the flat holomorphic vector bundle
(Vλ,∇χ,λ) on X associated to the irreducible representation Vλ of G∨ with
highest weight λ (according to [BD2], §3, the corresponding vector bundles are
isomorphic to each other for all χ ∈ Op0

G∨(X), which justifies the notation Vλ;
see Theorem 3.19 below). The oper Borel reduction gives rise to an embedding

(3.13) κλ : K〈λ,ρ〉
X ↪→ Vλ

(if n is a half-integer, we take the power of K
1
2
X in our chosen isomorphism

class γ).
For n ∈ 1

2Z, denote by DX,n the sheaf of differential operators acting on
the line bundle Kn

X on X. We have

DX,n � Kn
X ⊗

OX

DX ⊗
OX

K−n
X .

For λ ∈ Λ+, set

(3.14) d(λ) := 2〈λ, ρ〉.

The DX -module structure on Vλ defined by the oper connection ∇χ,λ gives
rise to a D

X,− d(λ)
2

-module structure on the OX -module

VK
λ := K

− d(λ)
2

X ⊗
OX

Vλ.
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We denote this D
X,− d(λ)

2
-module by VK

χ,λ.
The map (3.13) gives rise to a map

κ̃λ : OX ↪→ K
− d(λ)

2
X ⊗ Vλ

and a non-zero section

(3.15) sλ := κ̃λ(1) ∈ Γ(X,K
− d(λ)

2
X ⊗ Vλ).

Following [EFK2], Section 5.2, we denote by Iλ,χ the left annihilating ideal of
sλ in the sheaf D

X,− d(λ)
2

.
Now suppose that χ ∈ Op0

G∨(X)R. Then we have an isomorphism of C∞

flat bundles
(Vλ,∇χ,λ) � (Vλ,∇χ,λ)

and hence a pairing

hχ,λ(·, ·) : (Vλ,∇χ,λ) ⊗ (V−w0(λ),∇χ,−w0(λ)) → (C∞
X , d)

as V ∗
λ � V−w0(λ). Since 〈−w0(λ), ρ〉 = 〈λ, ρ〉 = d(λ)

2 , we have

s−w0(λ) ∈ Γ(X,K
− d(λ)

2
X ⊗ V−w0(λ)).

We recall the results of [BD2], §3, on the structure of (Vλ,∇χ,λ) and κλ.
Fix a principal sl2 subalgebra

sl2 = span{e, h, f} ⊂ g∨

such that span{e, h} is in the Borel subalgebra b∨ ⊂ g∨ used in the definition
of G∨-opers.

Denote by Vm the irreducible (m + 1)-dimensional representation of sl2.
The irreducible representation Vλ of G∨ decomposes into a direct sum of
irreducible representations of the principal sl2 subalgebra:

(3.16) Vλ � Vd(λ) ⊕

⎛⎝ ⊕
m<d(λ)

V ⊕cm,λ
m

⎞⎠ , cm,λ ∈ Z≥0,

where d(λ) is given by formula (3.14).
Recall the rank two vector bundle ESL2 which is a non-trivial exten-

sion (3.2) (as before, here we take K
1
2
X in the isomorphism class γ that we
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have chosen). Define the rank (m+1) vector bundle Em := Symm(ESL2) on X.
By construction, Em is equipped with a filtration {E≤i

m }i=0,...,m such that

E≤i
m /E≤(i−1)

m � K
m
2 −i

X .

Fix isomorphisms

jim : E≤i
m /E≤(i−1)

m → (E≤(i+1)
m /E≤i

m ) ⊗KX , i = 0, . . . ,m.

Let Bm ⊂ End(Em) be the subbundle of endomorphisms preserving this
filtration, and p the canonical section of (End(Em)/Bm) ⊗ KX such that
p(E≤i

m ) ⊂ E≤(i+1)
m ⊗ KX and it induces the isomorphisms jim on successive

quotients.
The following results are due to Beilinson and Drinfeld [BD1, BD2].

Theorem 3.19. (1) For any χ ∈ Op0
SLm+1(X), we have Vχ,ω1 � Em, the oper

Borel reduction corresponds to Bm, and ∇χ,ω1 = d + p mod Bm.
(2) For any χ ∈ Op0

G∨(X),

(3.17) Vλ � Ed(λ) ⊕

⎛⎝ ⊕
m<d(λ)

E⊕cm,λ
m

⎞⎠ ,

where the numbers cm,λ are defined by (3.16), and

(3.18) ∇χ,λ = d + p mod B

where B is the direct sum of Bd(λ) and all Bm’s corresponding to the sum-
mands of (3.17).

3.6. Differential equations for Hecke operators corresponding to
principal weights

In the Subsection 3.4 we used the interpretation of SLn-opers as scalar differ-
ential operators of order n (see Lemma 3.14). As we show in this subsection,
an analogous interpretation is possible if G is a connected simple algebraic
group such that G∨ has an irreducible representation Vλ with highest weight
λ that remains irreducible under a principal sl2 subalgebra of g∨. We will call
such weights principal. According to the results of [SS], which go back to E.
Dynkin in characteristic 0 (see Theorem 3.34 below), principal weights are
λ = ω1 and ω� for g∨ of type A�, and λ = ω1 for g∨ of types B�, C� and
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G2. For A�, B�, and C�, the corresponding scalar differential operators were
described in [DrS, BD2] (see also [FG] and [LM], where such operators were
discussed in special cases).

We have Vλ � Vd(λ) in the decomposition (3.16) (i.e. there are no lower
terms) if and only if λ is a principal weight of G∨. In this case, we have the
following corollary of Theorem 3.19.

Corollary 3.20. Suppose that λ is a principal weight of G∨.

(1) (Vλ,∇χ,λ) together with its oper Borel reduction is an SLd(λ)+1-oper.
(2) If g > 1, then the flat vector bundle (Vλ,∇χ,λ) is irreducible.

Proof. If λ is principal, then Vλ � Ed(λ). Part (1) readily follows from Theo-
rem 3.19. By [BD1], Proposition 3.1.5(iii), if g > 1, then the flat G∨-bundle
underlying any G∨-oper does not admit a reduction to a nontrivial parabolic
subgroup of G∨. This proves part (2).

Remark 3.21. If λ is not a principal weight, so Vλ is reducible as a repre-
sentation of a principal sl2 subalgebra of g∨ (see (3.16)), then there exists
χ ∈ Op0

G∨(X) such that the flat vector bundle (Vλ,∇χ,λ) is reducible. For ex-
ample, this is so if the G∨-oper χ is in the image of the canonical embedding
OpPGL2(X) ↪→ Op0

G∨(X) constructed in [BD2], §3. Indeed, for such χ, the
oper connection ∇χ,λ preserves the decomposition (3.17).

However, in the next subsection we will show that for generic χ ∈ Op0
G∨(X)

the flat vector bundle (Vλ,∇χ,λ) is irreducible for any λ ∈ Λ+, if g > 1 (see
Corollary 3.32,(2)).

Recall from Subsection 3.5 that for any λ ∈ Λ+ we have a canonical section
sλ ∈ Γ(X,VK

λ ) defined by the oper Borel reduction and the left annihilating
ideal Iλ,χ of sλ in the sheaf D

X,− d(λ)
2

. Let us specialize to the case of a principal
weight λ. Corollary 3.20 then implies the following.

Lemma 3.22. Suppose that λ is a principal weight of a group G. Then
VK
χ,λ is an irreducible D

X,− d(λ)
2

-module, and we have an exact sequence of
left D

X,− d(λ)
2

-modules

0 → Iλ,χ → D
X,− d(λ)

2
→ VK

χ,λ → 0

Recall from Subsection 3.5 that sλ and s−w0(λ) are sections of K− d(λ)
2 and

K
− d(λ)

2 , respectively.
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Proposition 3.23. Let λ is a principal weight of a group G and χ ∈
OpG∨(X)R. Then hχ,λ(sλ, s−w0(λ)) is a unique, up to a scalar, non-zero global

C∞ section of Ω− d(λ)
2

X over X annihilated by the ideals Iλ,χ and I−w0(λ),χ.

Proof. Clearly, hχ,λ(sλ, s−w0(λ)) satisfies the conditions of the lemma. Con-

versely, suppose that φλ(χ) is a non-zero section of Ω− d(λ)
2

X annihilated by the
ideals Iλ,χ and I−w0(λ),χ. By the definition of these ideals, we then have a
non-zero homomorphism of D

X,− d(λ)
2

⊗D
X,− d(λ)

2
-modules

αλ,χ : VK
χ,λ ⊗ VK

χ,−w0(λ) → Ω− d(λ)
2

X

sending sλ ⊗ s−w0(λ) to φλ(χ). Equivalently, we have a non-zero homomor-
phism of flat C∞ vector bundles

(Vλ,∇χ,λ) ⊗ (V−w0(λ),∇χ,−w0(λ)) → (C∞, d)

By Corollary 3.20, the flat vector bundle (Vλ,∇χ,λ) is irreducible. Therefore
the vector space of such homomorphisms is one-dimensional. Hence φλ is
equal to a scalar multiple of hχ,λ(sλ, s−w0(λ)).

For G = PGLn, λ = ω1, let

I ′ω1,χ := Kn
X ⊗ Iω1,χ.

This is a left submodule of the (DX,n+1
2
,DX,−n+1

2
)-bimodule of differential

operators acting from K
−n+1

2
X to K

n+1
2

X . The submodule I ′ω1,χ is generated by
a globally defined nth order differential operator Pχ on X associated to χ by
Lemma 3.14, that is

I ′ω1,χ = DX,n+1
2

· Pχ.

Therefore in this case a section annihilated by the ideal Iλ,χ is the same as a
section satisfying the nth order differential equation (3.12).

A similar statement is true for a general principal weight λ of a group G.
For χ ∈ Op0

G∨(X) let
I ′λ,χ := K

d(λ)+1
X ⊗ Iλ,χ,

which is a left submodule of the (D
X,

1+d(λ)
2

,D
X,− d(λ

2
)-bimodule of differential

operators acting from K
− d(λ)

2
X to K

1+d(λ)
2

X . As shown in the proof of Corol-
lary 3.20, the flat vector bundle (Vλ,∇χ,λ) has the structure of an SLd(λ)+1-
oper, which we will denote by χ̃λ. This implies that the ideal I ′λ,χ is generated
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by the corresponding differential operator Pχ̃λ
of order d(λ) + 1 on X acting

from K
− d(λ)

2
X to K

1+ d(λ)
2

X . Therefore, we again obtain that a section annihilated
by the ideal Iλ,χ is the same as a section satisfying a differential equation of
the form (3.12) of order d(λ) + 1. Thus, Proposition 3.23 has the following
equivalent reformulation which is an analogue of Corollary 3.17 for a general
principal weight.

Corollary 3.24. For a principal weight λ of a group G, hχ,λ(sλ, s−w0(λ)) is

a unique, up to a scalar, non-zero section Φ of Ω− d(λ)
2

X which is a solution of
the system of differential equations

(3.19) Pχ̃λ
· Φ = 0, P ∗

χ̃λ
· Φ = 0.

Remark 3.25. (1) For G∨ of type B� (resp. C�) the map χ �→ Pχ̃λ
sets

up a one-to-one correspondence between Op0
G∨(X) and the space of self-

adjoint (resp. anti-self adjoint) scalar differential operators, respectively, of
order d(λ) + 1 acting from K

− d(λ)
2

X to K
1+ d(λ)

2
X and having symbol 1. This is

proved in [BD2], §3 (following [DrS]) together with Lemma 3.14, which is the
analogous statement for G∨ of type A�.

(2) If λ is not principal, then we do not expect that the ideal Iλ,χ, or
its twist such as I ′λ,χ is generated by a single globally defined differential
operator. Hence in [EFK2], Section 5, we formulated everything in terms of
the ideal Iλ,χ itself. See also Subsection 3.8 below.

Now we are going to formulate a conjectural analogue of Theorem 3.16
for principal weights (Conjecture 3.27).

For any λ ∈ Λ+, let Vuniv
λ be the universal vector bundle over Op0

G∨(X)×
X with a partial connection ∇univ along X, such that

(Vuniv
λ ,∇univ)|χ×X = (Vλ,∇χ,λ), χ ∈ Op0

G∨(X).

Let π : Op0
G∨(X) ×X → X be the projection and set

Vuniv
X,λ := π∗(Vuniv

λ ), VK,univ
X,λ := K

− d(λ)
2

X ⊗ Vuniv
X,λ .

Then VK,univ
X,λ is naturally a D

X,− d(λ)
2

-module on X, equipped with a commut-
ing action of Fun Op0

G∨(X) � DG.
Moreover, the oper Borel reduction gives rise to an embedding

κuniv
λ : K− d(λ)

2
X ↪→ Vuniv

λ,X
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and hence a canonical section

suniv
λ ∈ Γ(X,VK,univ

X,λ ).

Consider the cyclic DG ⊗D
X,− d(λ)

2
-module (DG ⊗D

X,− d(λ)
2

) · suniv
λ generated

by suniv
λ .
The next lemma, which follows from Corollary 3.20(2), is an analogue of

Lemma 3.15 for a general principal weight.

Lemma 3.26. For a principal weight λ of a group G, there is an isomorphism

(3.20) (DG ⊗D
X,− d(λ)

2
) · suniv

λ � VK,univ
X,λ

of DG ⊗D
X,− d(λ)

2
-modules.

Recall that the Hecke operator Hλ is an operator-valued section of Ω− d(λ)
2

X .
Hence we can apply to it the sheaf D

X,− d(λ)
2

as well as the algebra DG. The
two actions commute, and they generate a D

X,− d(λ)
2

-module inside the sheaf

of operator-valued C∞ sections of Ω− d(λ)
2

X on X. Let us denote this D
X,− d(λ)

2
-

module by 〈Hλ〉. Likewise, we can apply to Hλ the sheaf D
X,− d(λ)

2
and the

algebra DG. Denote the resulting D
X,− d(λ)

2
-module by 〈Hλ〉.

Recall that for any χ ∈ Op0
G∨ we then have the corresponding differential

operator Pχ̃λ
. These operators give rise to an analogue of the operator (3.15);

namely,

(3.21) σ : K− d(λ)
2

X → DG ⊗K
1+ d(λ)

2
X

satisfying the property that for any χ ∈ Op0
G∨(X) = SpecDG, applying the

corresponding homomorphism DG → C we obtain Pχ̃λ
.

The following statement is an analogue of Theorem 3.16 for a general
principal weight.

Conjecture 3.27. For a principal weight λ of a group G, the Hecke operator
Hλ satisfies the system of equations

(3.22) σ ·Hλ = 0, σ ·Hλ = 0.

Equivalently, there are isomorphisms

(3.23) 〈Hλ〉 � VK,univ
X,λ , 〈Hλ〉 � VK,univ

X,λ

of DG ⊗D
X,− d(λ)

2
-modules (resp. DG ⊗D

X,− d(λ)
2

-modules).
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The following conjecture follows from Conjecture 3.27 and Proposition
3.23 in the same way as Corollary 3.18 follows from Theorem 3.16 and Corol-
lary 3.17 in the case G = PGLn, λ = ω1.

Conjecture 3.28. Let λ be a principal weight of a group G. Each of the
eigenvalues βλ(x, x) of the Hecke operator Hλ on H corresponding to a real
oper χ ∈ Op0

G∨(X)R (see Conjecture 3.8) is equal to a scalar multiple of
hχ(sλ, s−w0(λ)).

This is a special case (corresponding to the principal weights) of Con-
jecture 5.1 of [EFK2] which we mentioned in Conjecture 3.8(ii) above. In
Subsection 3.8 we will discuss the general case (see Conjecture 3.38).

3.7. Monodromy of opers

Let G be a connected reductive algebraic group over C and X a smooth
projective curve over C of genus g > 1.

Let LocSysG∨(X) be the stack of Betti G∨-local systems on X, and let
ConnG∨(X) be the stack of G∨-connections (i.e., de Rham G∨-local systems)
on X. It contains the stack of G∨-opers which, according to [BD1, BD2], is
the quotient of the variety of G∨-opers (which is a union of affine spaces which
are torsors over Hitch) by the trivial action of the center Z∨ of G∨. Slightly
abusing notation, in this section we will denote this stack by OpG∨(X).

We have the analytic monodromy map M : ConnG∨(X) → LocSysG∨(X),
which is an analytic isomorphism. Let Z ⊂ ConnG∨(X) be the Zariski closed
substack of connections whose differential Galois group is a proper subgroup
of G∨.

Despite the map M not being algebraic, we have

Lemma 3.29. M(Z) is a Zariski closed substack of LocSysG∨(X).

Proof. M(Z) can be defined algebraically in the Betti realization – it is the
substack of local systems whose structure group is a proper subgroup of G∨.
This implies the statement.

Theorem 3.30. Z does not contain OpG∨(X). In other words, there exists
a G∨-oper χ whose monodromy is Zariski dense in G∨ (equivalently, whose
differential Galois group is the entire G∨).

Proof. It is sufficient to prove the theorem in the case that G∨ is simple of
adjoint type. In this case OpG∨(X) is an affine space which we will view
as a subvariety of LocSysG∨(X). Since the automorphism group of the flat
G∨-bundle underlying any G∨-oper is trivial if G∨ is of adjoint type (see
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[BD2], §1.3), it follows that any χ ∈ OpG∨(X) has a Zariski open neighbor-
hood LocSysG∨(X)χ in LocSysG∨(X) which is a smooth subvariety. The set
LocSysG∨(X)χ(C) of its C-points is a smooth complex manifold.

Suppose that χ is a real G∨-oper. Then the set LocSysG∨(X)χ(R) of R-
points of the variety LocSysG∨(X)χ is a smooth real submanifold of
LocSysG∨(X)χ(C). Hence χ is a point of intersection of two smooth mani-
folds, OpG∨(X)(C) and LocSysG∨(X)χ(R), in LocSysG∨(X)χ(C) (all viewed
as real manifolds).

Following [Wa], call a real G∨-oper coming from a principal PGL2 sub-
group of G∨ permissible. According to Theorem A of [Wa], if χ is permissible,
then the above two subvarieties are transversal at χ (note that this implies
that permissible opers are discrete in OpG∨(X)). We will prove the Zariski
density of the image of the monodromy representation of a generic G∨-oper
by doing linear analysis around any given permissible G∨-oper (for instance,
we can take the image of the real PGL2-oper uniformizing X).

We start with an obvious lemma from linear algebra.

Lemma 3.31. Let V be a finite dimensional real vector space of dimension
2d and U a complex subspace of VC of dimension d transversal to V (as a real
vector space), i.e., such that U + V = VC. Also, let W be a subspace of V . If
U is contained in WC then W = V .

Proof. Since U ⊕ V = VC, we have WC ⊕ V = VC, hence W = V .

According to Remark 3.5, for a permissible G∨-oper the Zariski clo-
sure of the corresponding monodromy representation is equal to a princi-
pal PGL2 subgroup of G∨. Therefore, the Zariski closure of the monodromy
group of a sufficiently generic G∨-oper χ has to be a subgroup K of G∨

containing its principal PGL2 subgroup. Hence K is a semisimple group (it
is the same for all sufficiently generic χ up to conjugacy). Fix a permissi-
ble G∨-oper ψ. Note that ψ is a smooth point of both LocSysG∨(X) and
LocSysK(X), since the centralizer of the principal PGL2 in G∨ is trivial (this
also follows from the fact [BD2] we mentioned above that the group of auto-
morphisms of any G∨-oper is trivial if G∨ is of adjoint type). Consider the
tangent spaces V := Tψ LocSysG∨(X)(R), U := TψOpG∨(X)(C) = Hitch,
and W := Tψ LocSysK(X)(R). Then by assumption, U is contained in WC,
and by Theorem A of [Wa], U and V (which have the same real dimension)
are transversal in VC. Thus by Lemma 3.31 W = V , and hence K = G∨. This
completes the proof of the theorem.

Theorem 3.30 implies
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Corollary 3.32. (1) Opers χ ∈ OpG∨(X) whose differential Galois group
is G∨ (equivalently, such that the Zariski closure of their monodromy is G∨)
form a dense Zariski open subset U ⊂ OpG∨(X).

(2) For a generic χ ∈ OpG∨(X) (namely, for χ ∈ U from part (1)) the
associated flat vector bundle (Vλ,∇χ,λ) on X corresponding to an arbitrary
dominant integral weight λ of G∨ is irreducible.

Suppose that G∨ is a simple algebraic group of adjoint type. Let χ be a
G∨-oper and denote by Mχ the Zariski closure of the monodromy of χ. By
Corollary 3.32, we have Mχ = G∨ for generic χ. But this is not the case for
some G∨-opers. For example, for the permissible G∨-opers χ discussed above
(coming from a principal PGL2 subgroup of G∨) we have Mχ = PGL2. The
proof of the following result was communicated to us by D. Arinkin [Ari].

Theorem 3.33. Suppose that the Zariski closure Mχ of the monodromy group
of a G∨-oper χ on a curve of genus g > 1 is a proper subgroup of G∨. Then
Mχ ⊂ G′, a proper simple subgroup of G∨ that contains a principal PGL2
subgroup of G∨ and such that the flat G∨-bundle underlying χ is induced
from a flat G′-bundle admitting a G′-oper structure.

Proof. By going, if needed, to a finite cover of X, we can assume without
loss of generality that Mχ is connected (the statement for this cover will
imply the statement for X, since pullback of an oper to the cover is still
an oper). By [BD1], Proposition 3.1.5(iii), Mχ is not contained in any non-
trivial parabolic subgroup of G∨. Hence by Morozov’s theorem (see e.g. [Bou],
Ch. VIII, Section 10) it is contained in a proper connected reductive subgroup
G′ ⊂ G∨.

The flat G∨-bundle Eχ = (EG∨ ,∇χ) (where EG∨ is the G∨-bundle intro-
duced after equation (3.2)) underlying χ can then be reduced to a flat G′-
bundle EG′,χ = (EG′,χ,∇′

χ), i.e. we have an isomorphism of flat G∨-bundles
EG′,χ ×G′ G∨ ∼= Eχ.

Fix a point x0 ∈ X. Conjugating inside G∨ if needed, we may assume
that G′ is the fiber of Ad(EG′,χ) at x0.

It is shown in [BH] that if H is a connected reductive group over C, then
any H-bundle EH on X has a canonical Harder-Narasimhan reduction to a
parabolic subgroup P (EH) of H. These canonical Harder-Narasimhan reduc-
tions for EG′,χ and EG∨ define a parabolic subgroup P (EG′,χ) of G′ and the
Borel subgroup P (EG∨) = B∨ ⊂ G∨ (the one we have used in the definition
of G∨-opers), respectively. These subgroups must be compatible. Therefore
P (EG′,χ) = B′ := G′∩B∨ is a Borel subgroup of G′, and EG′,χ

∼= EB′,χ×B′ G′,
where EB′,χ is a B′-bundle on X.
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Let T ′ be a maximal torus in B′ and T∨ a maximal torus of B∨, such
that T ′ ⊂ T∨. Consider the B′/[B′, B′] ∼= T ′-bundle ET ′,χ associated to EB′,χ.
By construction, the induced T∨-bundle is the T∨-bundle ET∨ associated to
the B∨-bundle EB∨ which is the oper B∨-reduction of the G∨-bundle EG∨ . As
explained at the beginning of Subsection 3.1, the G∨-bundle EG∨ is induced
from the PGL2-bundle corresponding to the vector bundle (3.2) under the
principal embedding PGL2 ↪→ G∨. This implies that ET∨ � Kρ

X in the sense
that for any character ψ ∈ X∗(T∨), the corresponding line bundle ψ(ET∨)
is isomorphic to K

〈ψ,ρ〉
X . This implies that the image of the cocharacter ρ :

Gm → T∨ is contained in T ′ ⊂ T∨.
Let us trivialize the bundle EB′,χ over the formal neighborhood of x0, on

which we pick a formal coordinate z. This trivializes EG′,χ as well as EB∨

and EG∨ . We also obtain a trivialization of the corresponding adjoint vector
bundles. The affine space of connections on EG∨ is then identified with the
space d + g∨[[z]]dz. The connections that come from connections on the G′-
bundle EG′,χ belong to its subspace d+g′[[z]]dz. On the other hand, according
to Definition 3.1, the oper connection ∇χ has the form

(3.24) ∇χ = d + (f + b(z))dz,

where f ∈ g∨ is a principal nilpotent element satisfying [ρ, f ] = −f and
b(z) ∈ b∨[[z]].

Therefore g′ contains f + b(0). Since g′ also contains ρ, we obtain that

lim
t→0

tAd(ρ(t))(f + b(0)) = f ∈ g′.

By the Jacobson-Morozov theorem, it now follows that G′ contains a principal
subgroup of G∨, as desired. Subtracting fdz from (3.24), we obtain that
b(z) ∈ g′ ∩ b∨[[z]] = b′[[z]]. Therefore, EG′,χ with its B′-reduction EB′,χ and
connection (3.24) is a G′-oper.

From the classical result of Dynkin (see [SS, EO]), which we recall in
Theorem 3.34 below, it also follows that G′ is simple. This completes the
proof.

We recall the classification of pairs G′ ⊂ G∨, where G∨ is a simple al-
gebraic group over C and G′ is its connected reductive subgroup containing
a regular unipotent element of G∨ (and hence a principal PGL2 subgroup
of G∨). Following [EO], we will call such a pair (and the corresponding pair
of Lie algebras) a principal pair. In the case when G∨ is of adjoint type that
we are considering, it suffices to classify the principal pairs of Lie algebras.
This classification is given by the following theorem, which is due to [SS]
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and in the characteristic 0 case goes back to the work of Dynkin (see [EO],
Theorem 6.4).

Theorem 3.34. The principal pairs of Lie algebras g′ ⊂ g∨ (with a proper
inclusion) are given by the following list:

(1) sp(2n) ⊂ sl(2n), n ≥ 2;
(2) so(2n + 1) ⊂ sl(2n + 1), n ≥ 2;
(3) so(2n + 1) ⊂ so(2n + 2), n ≥ 3;
(4) G2 ⊂ so(7);
(5) G2 ⊂ so(8);
(6) G2 ⊂ sl(7);
(7) F4 ⊂ E6.
(8) sl2 ⊂ g∨ for any simple g∨.

The Lie subalgebras g′ given in (1),(2),(3),(5),(7) are the invariant subal-
gebras of an automorphism of the Dynkin diagram g∨; (4) is obtained by
composing (5) and (3); and (6) is obtained by composing (5) and (2).

Using Theorem 3.33 and Theorem 3.34, we can give a description of
the possible Zariski closures Mχ of the monodromy groups of arbitrary G∨-
opers χ. Namely, Mχ must be a simple subgroup of G∨ that contains a prin-
cipal PGL2 subgroup of G∨.

Lemma 3.35. Suppose that a connected simple subgroup H∨ of a connected
simple group G∨ contains a principal (P )SL2 subgroup of G∨. Then we have
a canonical map

(3.25) αH∨,G∨ : OpH∨(X) → OpG∨(X).

Proof. Under the condition of the lemma, the Borel subgroup B∨
H of H∨ used

in the definition of H∨-opers contains the Borel subgroup of a particular prin-
cipal (P )SL2 subgroup of G∨ with the Lie algebra spanned by the elements
h and e of the corresponding principal sl2 triple. Then B∨

H is contained in a
unique Borel subgroup B∨ of G∨. Definition 3.1 implies that for every H∨-
oper η, the flat G∨-bundle induced from the flat H∨-bundle underlying η
has a structure of G∨-oper with respect to B∨. This structure is unique by
Lemma 3.3. Since the space of opers does not depend on the choice of a Borel
subgroup by Lemma 3.2, we obtain a canonical map (3.25).

Theorem 3.36. Let Mχ be the Zariski closure of the monodromy group of a
G∨-oper χ on a curve of genus g > 1, where G∨ is a simple algebraic group of
adjoint type. Then Mχ is a simple algebraic group of adjoint type containing
a principal PGL2 subgroup of G∨ and χ is in the image of the map αMχ,G∨ .
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Proof. We argue by induction on d = dim(G∨), with the base being the
case d = 3, which follows from Remark 3.5. Suppose that Mχ �= G∨. Then
by Theorem 3.33 and Lemma 3.35, Mχ is contained in a simple subgroup
G′ ⊂ G∨ and χ is in the image of the map αG′,G∨ . But dimG′ < dimG∨ and
by passing to a finite cover of X, we can assume without loss of generality
that G′ is connected. Moreover, according to the list of Theorem 3.34, if G∨ is
of adjoint type, then so is G′. Passing from G∨ to G′ and using our inductive
assumption, we obtain the result.

Remark 3.37. Explicit examples of opers with proper subgroups Mχ ⊂ G∨

(in genus 0 with ramification) can be found in [FG].

3.8. General case, continued

Let G be a connected simple algebraic group and λ ∈ Λ+. We will use the
notation introduced in Subsection 3.6. In Conjecture 5.1 of [EFK2] we gave
a conjectural formula for the eigenvalues βλ(x, x) of the Hecke operator Hλ.
It generalizes Corollary 3.18 in the case G = PGLn and Conjecture 3.28 in
the case of principal weights. Actually, for each χ ∈ Op0

G∨(X)R there are
(conjecturally) finitely many eigenvalues which differ from each other by a
root of unity (see [EFK2], Remark 5.1). Hence the statement Conjecture 5.1
of [EFK2] is made in the form “up to a non-zero scalar.” Here it is in terms
of the notation of the present paper.

Conjecture 3.38. The eigenvalues βλ(x, x) of the Hecke operator Hλ cor-
responding to χ ∈ Opγ

G∨(X)R are equal to hχ,λ(sλ, s−w0(λ)) up to a non-zero
scalar.

In [EFK2], Section 5, we gave the following strategy for proving this
conjecture:

(1) Prove that eigenvalues βλ(x, x) satisfy a system or differential equa-
tions

(3.26) Dβλ(x, x) = 0, D′βλ(x, x) = 0, D ∈ Iλ,χ, D
′ ∈ I−w0(λ),χ.

This is essentially the statement of [EFK2], Conjecture 5.5.
(2) Show that every solution of the system (3.26) is equal to

hχ,λ(sλ, s−w0(λ)) up to a non-zero scalar. In the case when the monodromy
representation of the flat vector bundle (Vλ,∇χ,λ) is irreducible, this is the
statement of [EFK2], Corollary 5.4.

We now consider this statement in the case when the monodromy repre-
sentation of the flat vector bundle (Vλ,∇χ,λ) is reducible, using the results of
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the previous subsection. For simplicity, we will assume that G∨ is of adjoint
type.

Proposition 3.39. For every χ ∈ Op0
G∨(X)R, hχ,λ(sλ, s−w0(λ)) is a unique,

up to a scalar, non-zero section of Ω− d(λ)
2

X annihilated by the ideals Iλ,χ and
I−w0(λ),χ.

Proof. In the case when the monodromy representation of the flat vector
bundle (Vλ,∇χ,λ) is irreducible, this was proved in [EFK2], Corollary 5.4.

Suppose now that (Vλ,∇χ,λ) is reducible. This means that the Zariksi
closure M = Mχ of the monodromy of χ is a proper subgroup of G∨. By
Theorem 3.36, M is a simple subgroup of G∨ (also of adjoint type) that
contains a principal PGL2 subgroup of G∨, and χ is the image of an M -oper
χM under the map αM,G∨ : OpM (X) → OpG∨(X).

Under the action of M , the representation Vλ of G∨ decomposes into a
direct sum of irreducible representations of M . Denote by V M

λ its component
containing the highest weight subspace of Vλ with respect to the Borel sub-
group B∨ ∩ M of M (where B∨ is the Borel subgroup of G∨ we have used
to define G∨-opers). Since m := Lie(M) contains a principal sl2 subalgebra,
V M
λ contains the highest component Vd(λ) in the decomposition (3.16) of Vλ

under the principal sl2. This implies that the dual representation (V M
λ )∗ is

isomorphic to V M
−w0(λ), the component containing the highest weight subspace

of V−w0(λ) = V ∗
λ .

The decomposition of Vλ into a direct sum of irreducible representations of
M gives rise to a direct sum decomposition of the flat vector bundle (Vλ,∇χ,λ)
into irreducible flat vector bundles each having real monodromy. In particu-
lar, the flat subbundle (VM

λ ,∇χ,λ) of (Vλ,∇χ,λ) corresponding to the highest
weight component V M

λ ⊂ Vλ is irreducible and has real monodromy. There-
fore, there is a unique up to a scalar non-zero pairing

hM
χ,λ(·, ·) : (VM

λ ,∇χ,λ) ⊗ (VM
−w0(λ),∇χ,−w0(λ)) → (C∞

X , d),

where VM
−w0(λ) is the subbundle of V−w0(λ) corresponding to V M

−w0(λ) � (V M
λ )∗.

From the above direct sum decomposition it is clear that hM
χ,λ(·, ·) is equal to

the restriction of hχ,λ(·, ·) to VM
λ ⊗ VM

−w0(λ) up to a non-zero scalar.

Moreover, the canonical section sλ ∈ Γ(X,K
− d(λ)

2
X ⊗Vλ) corresponding to

the Borel reduction of the G∨-oper χ (see formula (3.15)) is equal to the image
of the canonical section sMλ ∈ Γ(X,K

− d(λ)
2

X ⊗ VM
λ ) for the M -oper χM under

the embedding VM
λ ↪→ Vλ. And likewise, for the canonical sections s−w0(λ)

and sM−w0(λ).



A general framework for the analytic Langlands correspondence 373

Using irreducibility of the flat bundle (VM
λ ,∇χ,λ) in the same way as

in the proof of Corollary 3.23, we obtain that hM
χ,λ(sMλ , sM−w0(λ)) is a unique,

up to a scalar, non-zero section of Ω− d(λ)
2

X annihilated by the ideals Iλ,χ and
I−w0(λ),χ. But according to the above discussion, hM

χ,λ(sMλ , sM−w0(λ)) is equal to
hχ,λ(sλ, s−w0(λ)) up to a non-zero scalar. This implies the statement of the
proposition.

This proves part (2) of the above argument. Hence in order to prove
Conjecture 5.1 of [EFK2] it remains to prove Conjecture 5.5 of [EFK2] (see
[EFK2], Section 5.3 for an outline of how to prove it using the results of
[BD1]).

3.9. Functoriality in the analytic Langlands correspondence

Consider the framework of the Langlands Program for a smooth projective
curve X over a finite field Fq. Let G and H be two split reductive algebraic
groups over Fq, and G∨ and H∨ their Langlands dual groups. The Langlands
functoriality principle (see [Art] for a survey) is the statement that for any
homomorphism

(3.27) a : H∨ → G∨

between them there should be a map (sometimes called transfer) from the set
of L-packets of tempered automorphic representations of H(AF ) to the set of
L-packets of tempered automorphic representations of G(AF ) (where AF is
the ring of adeles of F = Fq(X), the function field of X).

The existence of such a map is quite surprising: even though we have
a homomorphism (3.27) of dual groups a : H∨ → G∨, there is a priori no
connection between the groups G and H. The explanation is found on the
dual side of the Langlands correspondence, which gives a parameterization
of L-packets of tempered automorphic representations of G(A) in terms of
homomorphisms W (F ) → G∨, where W (F ) is the Weil group of F . Given a
homomorphism (3.27), every Langlands parameter σ : W (F ) → H∨ for H(A)
gives rise to a Langlands parameter a ◦ σ : W (F ) → G∨ for G(AF ).

This interpretation also makes it clear that functoriality should satisfy
the following transitivity property: if K is another reductive group and we
have a chain of homomorphisms of dual groups:

(3.28) K∨ → H∨ → G∨,
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then the composition of the transfers from K(AF ) to H(AF ) and from H(AF )
to G(AF ) should coincide with the transfer obtained directly from the com-
position K∨ → G∨.

Another important property is that the Hecke eigenvalues of the auto-
morphic representations (at the unramified places) should match under the
transfer in a natural way.

What should be the analogues of the Langlands functoriality and the
transfers in the analytic Langlands correspondence for a curve X over C?

According to our main Conjecture 3.8, the role of the Langlands param-
eters for a reductive group X is now played by real G∨-opers. From Theo-
rem 3.36, it is clear that the homomorphisms (3.27) that we should consider
are the ones that map a principal SL2 (or PGL2) subgroup of H∨ to a prin-
cipal SL2 (or PGL2) subgroup of G∨. We will call such homomorphisms
principal. For simple G∨, at the level of Lie algebras, the list of principal
homomorphisms is given in Theorem 3.34 following [SS] and [EO] (note also
that we have discussed principal embeddings in the case when g∨ = sln in
Subsection 3.6.)

Suppose for simplicity that G∨ is of adjoint type. Then it follows from
Theorem 3.34 that H∨ is also of adjoint type. Given a principal homomor-
phism (3.27), by Lemma 3.35 we obtain a canonical map

(3.29) αH∨,G∨ : OpH∨(X) → OpG∨(X)

which is an embedding of affine spaces in the case when H∨ and G∨ are of
adjoint type. The following result follows immediately from Theorem 3.36.

Proposition 3.40. A G∨-oper in the image of αH∨,G∨ which is not in the
image of αK∨,G∨ for any K∨ ⊂ H∨ consists of the G∨-opers on X such that
the Zariski closure of their monodromy is equal to H∨.

Thus, we obtain a stratification of the affine space OpG∨(X) by affine
subspaces given by the images of the embeddings αH∨,G∨ corresponding to
all principal homomorphisms (3.27). It gives rise to the corresponding family
of embeddings of the sets of real opers, which are the Langlands parameters
of the analytic Langlands correspondence:

(3.30) αR
H∨,G∨ : OpH∨(X)R ↪→ OpG∨(X)R.

Since these maps are transitive for a pair of embeddings (3.28), Conjec-
ture 3.8 implies that an analogue of the transitivity property holds in the
analytic Langlands correspondence.
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Next, by analogy with the Langlands functoriality discussed above, we
expect that the eigenvalues of the Hecke operators for the groups G and
H related by a principal homomorphism (3.27) should match. Let us ver-
ify that this is compatible with our Conjecture 3.38 (which is Conjecture 5.1
of [EFK2]) that gives an explicit formula for these eigenvalues up to a
scalar).

Given λ ∈ Λ+
G, let a(λ) ∈ Λ+

H be the dominant integral weight of H∨

obtained via the homomorphism (3.27). We have the corresponding Hecke
operators Hλ and Ha(λ) for the groups G and H, respectively, depending on
a point of X. According to Conjecture 3.38, the eigenvalues Hλ and Ha(λ)
are parametrized by real opers in OpG∨(X)R and OpH∨(X)R, respectively
(more precisely, for each real oper, we expect finitely many Hecke eigenvalues
differing by a root of unity; see [EFK2], Remark 5.1 for more details). Given
χ ∈ OpH∨(X)R, denote by a(χ) the image of χ under the embedding (3.30).
Let βχ

a(λ)(x, x) be the eigenvalue of Ha(λ), and β
a(χ)
λ (x, x) the corresponding

eigenvalue of Hλ. Matching of these eigenvalues means that they are equal
up to an overall non-zero scalar (independent of x, x).

Our conjectural formula for these eigenvalues in Conjecture 3.38 says that
βχ
a(λ)(x, x) = hH∨

χ,λ(sa(λ), sa(−w0(λ))) and β
a(χ)
λ (x, x) = hG∨

a(χ),λ(sλ, s−w0(λ))) up
to non-zero scalars. But we have shown in the proof of Proposition 3.39 that
the two expressions are proportional to each other. Hence we find that our
conjectural formulas for the Hecke eigenvalues are indeed compatible with the
analytic Langlands version of functoriality.

Remark 3.41. An important example of functoriality in the case of a curve
over a finite field comes from the embedding of a maximal torus of the group
G∨, T∨ ↪→ G∨. In this case, the corresponding automorphic functions for
the group G over the adeles are known as the Eisenstein series. The above
discussion explains why we do not expect analogues of Eisenstein series in
the analytic Langlands correspondence for a simple algebraic group G and a
curve over C (as we can see from Conjecture 3.8): such an embedding is not
principal and therefore should not lead to functoriality.

3.10. Analytic Langlands correspondence twisted by an
AutG-torsor on X

Analytic Langlands correspondence can be naturally generalized to the case
when the connected reductive group G is replaced by a flat group scheme G
over X with fibers isomorphic to G. For simplicity let us discuss this theory
in the case of complex curves (F = C).
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Example 3.42. Suppose G = Gn
m is an n-dimensional torus. Then the pos-

sible groups G are parametrized by homomorphisms φ : π1(X) → GLn(Z)
with finite image Γ. Let X̃ be the cover of X corresponding to the kernel of φ.
Then Γ acts on X̃ and G trivializes over X̃, so the corresponding moduli stack
BunG(X) is the stack of Γ-equivariant G-bundles on X̃. Set-theoretically, this
is the subgroup of Pic(X̃)n consisting of bundles E with a consistent family of
isomorphisms γ∗E ∼= φ(γ)E, γ ∈ Γ. In this case it is easy to see (see [EFK2])
that the spectrum of Hecke operators is parametrized by Γ-equivariant real
G∨ = Gn

m-opers on X̃, i.e., lifts ρ : π1(X) → Γ�Gn
m(R) of φ such that the lo-

cal system ρ : Kerφ = π1(X̃) → Gn
m(R) is an oper (hence also an anti-oper),

similarly to Subsection 3.1.

Example 3.43. Suppose that G is adjoint. In this case, the possible groups
G are classified by H1(X,Aut ΔG�OX,G), where OX,G is the sheaf of regular
functions on X with values in G. Two elements θ1, θ2 ∈ H1(X,Aut ΔG�OX,G)
which map to the same element in H1(X,Aut ΔG) = Hom(π1(X),Aut ΔG)
define Morita equivalent groups G, so the corresponding moduli spaces are
the same ([Br], Subsection 1.6, Proposition 1.2). In other words, similarly
to Subsection 2.4, the theory depends only on the inner class of G (see
[Br], Remark 1.2). This is, in fact, a general feature which extends beyond
F = C.

Thus we may restrict ourselves to groups G obtained from maps φ :
π1(X) → Aut ΔG. So, similarly to Example 3.42 we may define Γ := Imφ
and realize the corresponding stack BunG(X) as the stack of Γ-equivariant
principal G-bundles on the Γ-cover X̃ of X. As in Example 3.42, we expect
that the spectrum of Hecke operators is parametrized by Γ-equivariant real
G∨-opers on X̃, i.e. lifts ρ : π1(X) → Γ � G∨(R) of φ whose restriction to
Kerφ is an oper (hence also an anti-oper).

Remark 3.44. More generally, suppose a finite group Γ acts simultaneously
on G by root datum automorphisms and on a curve X̃. Then we can consider
harmonic analysis on the space Bun◦

G(X̃)Γ of Γ-equivariant regularly stable
G-bundles on X̃. If Γ acts on X̃ freely, this reduces to the above setting with
X = X̃/Γ, but the theory extends naturally to the case when the action is
not necessarily free. We note that such moduli spaces of twisted bundles have
been recently studied in connection with twisted conformal blocks and twisted
Verlinde formula, see [DM, HK]. In the framework of the usual Langlands
correspondence over function fields, such twisted setting is considered in [L],
Section 12.
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4. Analytic Langlands correspondence over R

4.1. The general setup

In this section we will focus on the case F = R and propose a conjectural
description of the spectrum of Hecke operators in terms of G∨-opers satisfying
suitable reality conditions, generalizing the results of [EFK3], Subsection 4.7.
Much of our analysis is based on [GW], Section 6.

We first specialize the setting of Subsection 2.2 to the case F = R, so
Fsep = C and ΓF = Z/2. We will only consider either real or complex points
of algebraic groups G, and will write G for G(C) when no confusion is possible.
Let G a split connected reductive group defined over Q and G∨ its Langlands
dual group. Let Z,Z∨ be the centers of G,G∨. These groups are equipped with
a natural operation of complex conjugation, g �→ g. A real structure on G

is a holomorphic automorphism θ : G → G satisfying the 1-cocycle condition
θ◦θ∗ = Id, where θ∗(g) := θ(g). Two such 1-cocycles differ by a coboundary iff
the corresponding real structures are isomorphic. In fact, one can (and usually
does) choose a representative θ of its cohomology class so that θ commutes
with complex conjugation, i.e., θ∗ = θ and θ2 = Id, which gives rise to the
Satake diagram of the corresponding real form.27 Such θ gives rise to an
antiholomorphic involution σ(g) := θ(g). The corresponding group of
real points Gσ = Gσ(R) (which may be disconnected) is the subgroup of
g ∈ G stable under σ, i.e., satisfying θ(g) = g. The inner class of σ gives rise
to a root datum involution s = sσ for G which is also one for G∨.

Recall [ABV] that to G, s we may attach the Langlands L-group LG =
LGs, the semidirect product of Z/2 = Gal(C/R) by G∨, with the action of
Z/2 defined by ω ◦ s, where ω is the Chevalley involution defining the
compact form of G.

Let X = X(C) be a compact complex Riemann surface of genus g ≥ 2.
Let τ : X → X be an antiholomorphic involution. We specialize the set-
ting of Subsections 2.4, 2.5, 2.8 to the case F = R. Given a holomorphic
principal G-bundle P on X, we can define the antiholomorphic bundle τ(P ),
hence a holomorphic bundle (σ, τ)(P ). A pseudo-real structure on P is an
isomorphism A : (σ, τ)(P ) → P . Such a structure defines a class αP in

H2(Z/2, Zs(C)) = Ker(1 − s|Z)/ Im(1 + s|Z)

27Another possibility is to choose θ to commute with the complex conjugation of
the compact form of G, which gives rise to the Vogan diagram of the real form.
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which depends only on P and not on A. A pseudo-real structure A on P is a
real structure if

(4.1) A ◦ (σ, τ)(A) = 1

(in particular, this means that the cocycle aA and hence the class αP equals 1).
For example, if G is adjoint then the isomorphism A is unique if exists
and (4.1) is automatic if Aut(P ) = 1, which happens for regularly stable
bundles. Note that if g ∈ G and gσ(g) = 1 then

Ag−1 : (Ad(g)σ, τ)(P ) → P

satisfies (4.1) with σ replaced by σ′ = Ad(g)σ. Thus the space of such regu-
larly stable bundles depends only on the inner class s of σ, in agreement with
Subsection 2.4 (see also [BGH], Proposition 3.8). Following Subsection 2.4,
we denote this space by Bun◦

G,s(X, τ).
The space Bun◦

G,s(X, τ) is a real analytic manifold, which is a disjoint
union of open submanifolds Bun◦

G,s,α(X, τ), α ∈ H2(Z/2, Zs(C)). Moreover,
for every character χ of

H1(Z/2, Zs(C)) = Ker(1 + s|Z)/ Im(1 − s|Z)

we have a Hermitian line bundle Lχ on each Bun◦
G,s,α(X, τ) defined in Sub-

section 2.8.
Let

H(s, τ, α, χ) := L2(Bun◦
G,s,α(X, τ),Lχ)

be the Hilbert space of L2 half-densities on Bun◦
G,s,α(X, τ) valued in Lχ. Let

H(s, τ, α) = ⊕χH(s, τ, α, χ), H(s, τ) = ⊕αH(s, τ, α).

We have (conjecturally) a spectral decomposition of H(s, τ) under the action
Hecke operators compatible with the (α, χ)-grading.

Remark 4.1. To be more precise, the definition of the Langlands L-group
in [ABV] uses s instead of ω ◦ s. This is in fact a major difference between
the classical Langlands correspondence for real groups and the analytic Lang-
lands correspondence for curves over R. An explanation of this phenomenon
is provided by [EFK1], Proposition 3.6, which says that taking the formal ad-
joint of quantum Hitchin Hamiltonians corresponds to applying the Chevalley
involution on opers. See also Remark 4.3 below.
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4.2. The case when τ has no fixed points

We first consider the easier case when τ has no fixed points. Let ρ be a
local system on the non-orientable surface X/τ with structure group LG. If
we choose a base point p ∈ X/τ then such a local system corresponds to a
homomorphism π1(X/τ, p) → LG which is unique up to conjugation. We will
say that ρ is an L-system if it attaches to every orientation-reversing path in
X/τ a conjugacy class in LG that maps to the nontrivial element in Z/2. The
following conjecture is equivalent to the conjecture made in [GW], Section 6.2
on the basis of insights from 4-dimensional supersymmetric gauge theory (as
well as the duality proposal from [BS]).

Conjecture 4.2. (i) There is an orthogonal decomposition

H(s, τ, 1) =
⊕
ρ

H(s, τ, 1)ρ,

where ρ runs over L-systems on X/τ with values in LG = LGs whose pullback
to X have the structure of a G∨-oper.

(ii) For λ ∈ Λ+ the Hecke operator Hλx+s(λ)x acts on H(s, τ, 1)ρ by the
eigenvalue βρ,λ(x, x) defined by the formula in [EFK2], Conjecture 5.1. In
particular, if G = PGLn, λ = ω1 and Lρ = ∂n +a2∂

n−2 + · · ·+an is the SLn-
oper (i.e., holomorphic differential operator K

1−n
2

X → K
1+n

2
X ) corresponding to

ρ then βλ,ρ(x, x) is the (unique up to scaling) single-valued section of |KX |1−n

satisfying the system of oper equations Lρβ = 0, L∗
ρβ = 0.

Remark 4.3. More precisely, as was explained to us by E. Witten, what
comes from ordinary gauge theory is this picture for the compact inner
class s. To obtain other inner classes, one needs to consider twisted gauge
theory where the twisting is by a root datum automorphism of G. Namely,
gauge fields in this theory are invariant under complex conjugation τ com-
posed with this automorphism. This may be seen as the physical explana-
tion of the appearance of the Chevalley involution in the definition of LG
in analytic Langlands correspondence, which does not happen in the usual
Langlands correspondence for real groups.

Example 4.4. Let s = ω (the compact inner class). Then LG = Z/2 × G∨,
so an L-system is the same thing as a G∨-local system on X/τ . So in this
case according to Conjecture 4.2, the spectral local systems are ρ which are
isomorphic to ρτ and such that ρ is an oper (hence also an anti-oper), so ρ is
a real oper “with real coefficients”. But among these we should only choose
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those local systems that descend to X/τ and the eigenspaces are labeled by
these extensions.

More precisely, recall that opers for adjoint groups have no nontrivial au-
tomorphisms ([BD2], §1.3). So for any connected reductive G we get an ob-
struction for such ρ to descend to X/τ which lies in Z∨/(Z∨)2 = H2(Z/2, Z∨).
Moreover, if this obstruction vanishes then the freedom for choosing the ex-
tension is in a torsor over H1(Z/2, Z∨) = Z∨

2 , the 2-torsion subgroup in Z∨.
Indeed, π1(X/τ) is generated by π1(X) and an element t such that tbt−1 =

γ(b) for some automorphism γ of π1(X), and t2 = c ∈ π1(X), so that γ2(b) =
cbc−1. So given a representation ρ : π1(X) → G∨, an L-system would be
given by an assignment ρ(t) = T ∈ G∨ such that (1) T 2 = ρ(c) and (2)
Tρ(a)T−1 = ρ(γ(a)). If ρ ∼= ρ ◦ γ then T satisfying (2) is unique up to
multiplying by u ∈ Z∨, and T 2 = ρ(c)z, z ∈ Z∨. Moreover, if T is replaced
by Tu then z is replaced by zu2, hence the obstruction to satisfying (1) lies
in Z∨/(Z∨)2. And if this obstruction vanishes, then the choices of T form a
torsor over Z∨

2 acting by T �→ Tz.

Remark 4.5. As pointed out in [GW], Section 6, this reality condition on the
G∨-oper on X is equivalent to the condition that ρ extends as a topological
local system to the 3-manifold

Uτ := (X × [−1, 1])/(τ,−Id)

whose boundary is X, introduced in [GW], and this extension is a part of the
data. This follows from the fact that the inclusion X/τ ↪→ Uτ is a homotopy
equivalence.

Remark 4.6. We have the inflation-restriction exact sequence

H1(π1(X), Zs(C))Z/2 → H2(Z/2, Zs(C)) → H2(π1(X/τ), Zs(C)).

Let α be the image in H2(π1(X/τ), Zs(C)) of α ∈ H2(Z/2, Zs(C)). So α = 1
iff α is the image of η ∈ H1(π1(X), Zs(C))Z/2 = H1(X,Zs(C))Z/2, which
corresponds to a pseudo-real Zs-bundle on X. Multiplication by η acts on
the space of pseudo-real bundles commuting with Hecke operators, changing
αP to αP + α. This implies that if α = 1 then Conjecture 4.2 generalizes
in a straightforward way to give the spectral decomposition of H(s, τ, α):
namely, the spectrum of the Hecke operators is the same as in H(s, τ, 1). More
generally, this shows that the spectrum of Hecke operators on H(s, τ, α) for
general α depends only on α.

It remains to describe the spectrum in the case when α �= 1. As was ex-
plained to us by D. Gaiotto, in this case Conjecture 4.2 can be generalized by
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considering gauge theory on the 3-manifold Uτ (homotopy equivalent to X/τ)
twisted by the Zs-gerbe corresponding to α. Mathematically this corresponds
to the setting of Subsection 3.2 extended to the case F = R. We omit the
details.

Example 4.7. Let G = K×K for some complex group K, and s be the per-
mutation of components (the only real form in this inner class is K regarded
as a real group). In this case Bun◦

G,s(X, τ) = Bun◦
G(X), the usual moduli

space for the complex field. Also LGs = LGω◦s = Z/2 � (K∨ × K∨), where
Z/2 acts by permutation. So an L-system is a K∨ ×K∨ local system on X
of the form (ρ, ρτ ). Thus the spectrum is parametrized by ρ such that both
ρ and ρτ are opers, i.e., ρ is both an oper and an anti-oper, i.e. a real oper,
which agrees with the main conjecture from [EFK2]. (Note that in this case
H i(Z/2, Z∨) = 1 so there is no obstructions or freedom for extensions.)

Example 4.8.28 Let us verify Conjecture 4.2 for G = GL1. In this case the
possible s are 1 and −1, each being its entire inner class. So consider two
cases:

1. Compact case: s = −1. Then the spectrum is parametrized by charac-
ters of π1(X/τ), i.e., elements of H1(X/τ,C×) = (C×)g × Z/2, which come
from GL1-opers.

2. Split case: s = 1. Then the spectrum is parametrized by H1(X/τ,C×
τ ),

where C×
τ is the local system where τ acts by inversion. We have H1(X/τ,C×

τ )
= (C×)g, and the spectrum is parametrized by such local systems that come
from GL1-opers.

In both cases the resulting “spectral” opers form a lattice Zg. They are
of the form d + φ where (roughly speaking) φ in the first case has integral
periods on τ -antiinvariant cycles and in the second case integral periods on
τ -invariant cycles.

Example 4.9. Consider the simplest instance of the previous example, with
genus 1 curve X = C/(Z⊕Zi) and coordinate z = x+ iy, with τ(z) = z + 1

2 .
Then X/τ is the Klein bottle with π1(X/τ) generated by t and b with tbt−1 =
b−1.

1. In the compact case s = −1 we need to consider characters of this
group, which send b to ±1 and t to any nonzero number. So the corresponding
opers are L = d+φ where φ has half-integral period in the imaginary direction,
i.e. φ = πn, n ∈ Z. Thus the Hecke eigenvalue is expected to be proportional
to e2πiny0 = eπn(z0−z0).

28This is based on the letter [W] in which E. Witten kindly explained to us the
predictions of [GW] in the abelian case.
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And indeed, this is what we see if we compute the eigenvalues of Hecke op-
erators. Namely, the moduli of bundles of degree 0 admitting a real structure
consist of two circles x = 0 and x = 1

2 , call them S0 and S1, with coordinate
y ∈ [0, 1), swapped by τ . However, the space of real bundles of degree 0 is
the union of their double covers S̃0 and S̃1. The reason is that a real bun-
dle is a bundle admitting a real structure with a choice of an isomorphism
A : (s, τ)(E) → E such that A◦(s, τ)(A) = 1, which is defined up to sign, and
there is no canonical choice of this sign (one can check that it changes as we go
around the circle). So the eigenbasis of Hecke operators is ψ+

n = (eπiny, eπiny)
and ψ−

n = (eπiny,−eπiny), n ∈ Z, with eigenvalues e2πiny0 and −e2πiny0 . This
also shows that we have a 2-dimensional space corresponding to each oper,
which agrees with the fact that we have two extensions for each oper to a
local system on X/τ (as Z∨

2 = Z/2).
2. In the split case s = 1 we need to consider homomorphisms π1(X/τ) →

Z/2 � C× that send t to {−1, 1}, so b goes to any nonzero number, while t2

maps to 1. So the corresponding opers are L = d + φ where φ has integral
period in the real direction, i.e. φ = 2πin, n ∈ Z. So the Hecke eigenvalue is
expected to be proportional to e4πinx0 = e2πin(z0+z0).

And indeed, this is what we see. Namely, in this case bundles admitting
a real structure form the circle S defined by the equation y = 0, with co-
ordinate x. The circle y = 1

2 consists of pseudo-real bundles, i.e., those for
which A ◦ (s, τ)(A) < 0 for any isomorphism A : (s, τ)E → E, so it does not
contribute. Moreover, in this case the choice of A such that A ◦ (s, τ)(A) = 1
is unique up to isomorphism if exists. So the set of real bundles is S (i.e.,
we don’t get double covers) and the basis of eigenfunctions is ψn = e2πinx,
n ∈ Z, with Hecke eigenvalue e4πinx0 . Also extension of opers is unique and
the space corresponding to each oper is 1-dimensional.

Remark 4.10. We can derive that every eigenvalue β(x, x) of the Hecke
operator Hλx+s(λ)x is indeed of the form βρ,λ(x, x) for some oper ρ satisfying
the reality condition of Conjecture 4.2 (for semisimple G) from Conjecture 5.5
of [EFK2] (which is proved in Theorem 1.18 of loc. cit. for G = PGLn and
λ = ω1). Namely, this statement implies that each eigenvalue of the Hecke
operators is a unique (up to a scalar) solution of the system of linear dif-
ferential equations Lβ = 0, L∗

β = 0, where L runs over the holomorphic
differential operators from the annihilating ideal Iλ,ρ introduced in Section 5
of [EFK2]. Therefore, we obtain that this system has a single-valued solution
on X invariant under τ . The topological condition on the oper ρ given in
Conjecture 4.2 should follow from this similarly to the argument of [EFK1],
Corollary 1.19.
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4.3. The case when τ has fixed points: genus 0 with m + 2 real
ramification points

4.3.1. The untwisted case We will now consider the case when τ has
fixed points, which is more complicated. We restrict ourselves to G = PGL2.
We start with the genus zero case with ramification points considered in
[EFK3].

Let t0 < t1 < · · · < tm, tm+1 = ∞ ∈ RP1 be the ramification points. Let
a, b ∈ R, x = a + ib ∈ C, and let Hx,x be the Hecke operator from [EFK3],
Example 3.30, obtained by averaging over Hecke modifications at (x, x) using
the lines (s, s). The following lemma is straightforward.

Lemma 4.11. The eigenvalues βk(x, x) of Hx,x satisfy the equality

βk(x, x)|x=a = βk(a)2

for a ∈ R, where βk are the eigenvalues of Ha.

Let us now study the function βk(x, x) for x /∈ R. To do so, note that
β = βk satisfies the oper equations

Lβ = 0, Lβ = 0,

where L = L(μk) (using the notation of [EFK3], Subsection 4.4). Recall also
that the points tj divide RP1 into intervals Ij = (tj , tj+1), and that in [EFK3],
Subsection 4.7 we defined the functions fj , gj on Ij . Recall that on Ij we have
β(x) = fj(x). Thus by Lemma 4.11 along the interval Ij we have

β(x, x) = |fj(x)|2 + γj Im(fj(x)gj(x)), γj ∈ R,

for x on and above Ij .
Let the function g∗j : Ij → R be defined by

gj = bjfj − ajg
∗
j ,

where aj , bj ∈ R are as in [EFK3], Subsection 4.7. Then

β(x, x) = |fj(x)|2 − ajγj Im(fj(x)g∗j (x)).

For an analytic function h on Ij let ha be its analytic continuation from Ij to
Ij−1 along a path passing above tj . Recall from [EFK3], Subsection 4.7, that

(4.2) fj−1 = ifa
j + ga

j , g∗j−1 = iga
j .
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This yields

β = |ifa
j + ga

j |2 − aj−1γj−1 Im((fa
j + iga

j )ga
j ) =

|fa
j |2 + (2 − aj−1γj−1) Im(fa

j g
a
j ) + |ga

j |2 − aj−1γj−1|ga
j |2,

on Ij−1. The last two terms must cancel, so aj−1γj−1 = 1. Thus we get

β = |fa
j |2 + Im(fa

j g
a
j ),

on Ij−1. But we also have

β = |fa
j |2 + γj Im(fa

j g
a
j ).

Thus for all j we have γj = 1, hence aj = 1 (i.e. the local system is balanced,
in agreement with [EFK3], Subsection 4.7). Thus we obtain

Proposition 4.12. We have

β(x, x) = |fj(x)|2 + Im(fj(x)gj(x))

on and above Ij.

In particular, for 3 points this gives an explicit formula for the function
β in terms of classical elliptic integrals (see [EFK3], Example 4.5).

Corollary 4.13. The one-sided normal derivative of β(x, x) at the real line
(with x approaching from above) equals π. Thus

β(a + ib, a− ib) = β(a)2 + π|b| + o(|b|), b → 0.

In particular, β(x, x) is continuous, but only one-sided differentiable on the
real locus (excluding ramification points).

Proof. It is easy to check that the normal derivative equals the Wronskian
W (fj , gj), which equals π, as explained in [EFK3] (Proof of Proposition
4.25).

Remark 4.14. Note that the statement of Corollary 4.13 makes sense on any
real curve near its real point (indeed fj , gj are −1/2-forms, so their Wronskian
is a function, and it makes sense to say that it equals π). Moreover, it holds
for any real curve since it is a local statement and it holds in genus zero by
Corollary 4.13. It can also be checked by direct computation of the normal
derivative.
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4.3.2. The twisted case Consider now the twisted case with arbitrary
twisting parameters λj = −1 + cj , cj ∈ iR. In this case the story is similar
to the previous subsection and [EFK3], Subsection 4.7. Namely, fix k and
consider the function βk(x). On the interval Ij , 0 ≤ j ≤ m, we have the
following solutions of the oper equation L(μk)β = 0: first of all,

fj(x) = βk(x)|Ij ∼ δkjΓR(cj)(x− tj)
1−cj

2 + δ−1
kj ΓR(−cj)(x− tj)

1+cj
2 , x → tj+,

and also

ĝj(x) ∼
πδ−1

kj

cjΓR(cj)
(x− tj)

1+cj
2 , x → tj + .

The function ĝj is not real-valued on the real axis, however, so let us look for
a real-valued solution of the form

gj = ĝj + iξjfj , ξj ∈ R.

A short calculation using that

ΓR(c) = Γ(c) cos πc2

yields

ξj =
Λj − Λ−1

j

Λj + Λ−1
j

, Λj := e
πicj

2 ,

and the Wronskian W (fj , gj) = W (fj , ĝj) equals π.
Similarly, let ĝ∗j−1(x) be the solution of the oper equation on Ij−1 of the

form

ĝ∗j−1(x) =
πδ−1

kj

cjΓR(cj)
(tj − x)

1+cj
2 , x → tj − .

and g∗j−1 := ĝ∗j−1 + iξj−1fj−1 be the corresponding real solution. Then

gj = bjfj − ajg
∗
j , aj , bj ∈ R, aj �= 0.

Also instead of (4.2) we get

(4.3)
(
fj−1
g∗j−1

)
= Jj

(
fa
j

ga
j

)
,
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where

Jj :=
Λj + Λ−1

j

2

⎛⎝i − (Λj−Λ−1
j )2

(Λj+Λ−1
j )2

1 i

⎞⎠ .

It follows that the monodromy of our oper in appropriate bases looks as
follows:

(4.4) M(tj+1− → tj+) = Bj :=
(

1 bj
0 −aj

)
, M±(tj+ → tj−) = J±1

j ,

where M± denotes the monodromy above and below the real axis, respec-
tively. Also W (fj−1, g

∗
j−1) = −π, hence aj = 1.

When j = m+1, the formulas are the same, except that x− tj is replaced
by −1/x and J±1

j is replaced by −J±1
j .

We thus obtain a deformation of the theory of balanced local systems and
opers described in [EFK3], Subsection 4.7. Namely, similarly to [EFK3], given
a sufficiently generic 2-dimensional local system ∇ on X with ramifications
at tj and regular local monodromies with eigenvalues −Λ±2

j , it can be written
(generically in two different ways) in the form (4.4), where aj , bj ∈ C and Bj

must satisfy the equations

(4.5)
m+1∏
j=0

JjBj = −1,
m+1∏
j=0

J−1
j Bj = −1,

which are deformations of equations (4.7) of [EFK3] (the total monodromy
around the circle above and below the real axis is trivial).

Define a Λ-balancing of ∇ to be an isomorphism (considered up to
scaling) of ∇ with a local system (4.4) such that aj = 1 for all j. In this
case, as in [EFK3], the two equations in (4.5) are, in fact, equivalent, since
SJ−1

j BjS
−1 = JjBj , where S :=

( 1 2i
0 1

)
. We call such a local system ∇ Λ-

balanced if it is equipped with a balancing. Generically a local system admits
at most one balancing, as in [EFK3].

We obtain the following analog of [EFK3], Proposition 4.25 and Theo-
rem 4.29. Denote by BΛ the set of Λ-balanced opers.

Theorem 4.15. The spectral opers for Hecke operators Hx,full are Λ-balanced
with balancing defined by the eigenvalue βk(x), and bi ∈ R, as in [EFK3],
Proposition 4.7. Thus the spectrum ΣΛ of the Hecke operators is a subset
of BΛ.

Moreover, as in [EFK3], we expect that these sets are, in fact, equal, and
can show this for 4 and 5 points.
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4.4. The case when τ has fixed points: real and quaternionic ovals

Now suppose X is an arbitrary real curve and C is a connected component
(oval) of X(R). Given a real PGL2-bundle P on X (with respect to the split
form of the group), recall that its fiber Px is a PGL2(C)-torsor. So for a point
x ∈ C, the real structure on P defines a map A : Px → Px such that Ag = gA
for g ∈ PGL2(C), and A2 = 1. Pick p ∈ Px, then A(p) = bp for a unique
b ∈ PGL2(C), so A(bp) = bA(p) = bbp, thus bb = 1. Replacing p with q := gp,
we get

A(q) = A(gp) = gA(p) = gbp = gbg−1q.

Thus b is well defined up to b �→ gbg−1. It is easy to show that such b fall
into two orbits of this action – that of b = 1 (which we call real) and that
of b =

( 0 1
−1 0

)
(which we call quaternionic). Namely, if b∗ is a lift of b to

SL2(C) then b∗b∗ = 1 or −1, and this is what determines the type of b (real
for 1, quaternionic for −1). In the language of Subsections 2.6, 2.7, P is real
at x if the associated real form Gσ of G is split and quaternionic if Gσ is
compact.

It is clear that the type of P at x is independent on x as it varies along C.
Thus given P , on every oval Ci of X(R), i = 1, . . . , r, P is either real or
quaternionic. So the manifold Bun◦

G,s(X, τ) splits into 2r disconnected parts
according to the type of P at each Ci (some of which can be empty). In fact,
how many of them (and which ones) are non-empty is specified on p.18 of
[BGH] and references therein.

Remark 4.16. 1. The analog of this for general groups is as follows (see Sub-
sections 2.6, 2.7). By Subsection 2.6, every real G-bundle P on X and every
x ∈ X(R) defines a real form of G in the inner class C(s) which is continuous,
hence locally constant, with respect to x (see also [GW], Section 6). So each
component Ci of X(R) carries a real form Gσi of G in C(s) – the type of P
at Ci. For example, as explained above, if G = SL2 then Ci is real if the form
of G attached to Ci is SL2(R) and quaternionic if it is SU2.

2. On components containing tame ramification points, in the untwisted
setting this form has to be quasi-split, as we need a real Borel subalgebra
to define parabolic structures. So in particular for G = PGL2 all contours
containing ramification points must be real. More generally, if we consider
parabolic structures for an arbitrary parabolic subgroup P of G, the corre-
sponding ramification points can occur only on components for which the
corresponding real group contains a form of P.

3. More generally, following Subsections 2.14, 2.15, at ramification points
p one can place unitary representations πi of the complex group G if τ(p) �= p
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and of the real form Gi if p ∈ Ci (the twisted setting). In this case we no
longer have the restriction that Gi should be quasi-split if p ∈ Ci (e.g. see
Subsection 5.6). The untwisted setting of (2) then corresponds to taking πi
to be the spherical principal series representations with central character of
−ρ, consisting of L2-half-densities on the flag manifold, which requires the
groups Gi to be quasi-split.

4.5. Real ovals, separating real locus

Now consider the case of PGL2-bundles on an arbitrary real curve X without
ramification points, and let us characterize the part of the spectrum coming
from bundles for which all ovals are real. Let the set X(R) of fixed points of
τ be the union of ovals C1, . . . , Cn ⊂ X. Assume first that these ovals cut
X into two pieces X+, X− swapped by τ . Then the behavior of the Hecke
eigenvalue β(x, x) gives us conditions which allow us to pinpoint opers L
(with real coefficients) that can occur in the spectrum of Hecke operators.

Namely, first of all, the eigenvalue β(x), x ∈ X(R) of the Hecke operator
Hx is a solution of the oper equation Lβ = 0 periodic along Cj . So (assuming
this eigenvalue is not identically zero), the local system ρL must satisfy

Condition 1. The monodromies of ρL around Cj are unipotent.

Indeed, this is necessary for the existence of the periodic solution β(x),
since the monodromy lies in SL2.

Also, since the eigenvalue β(x, x) of Hx,x is single-valued on X+ and
satisfies the oper equations Lβ = Lβ = 0, we see that ρL must also satisfy

Condition 2. The monodromy representation ρL : π1(X+) → SL2(C) lands
in SL2(R) ∼= SU(1, 1), up to conjugation.

To write this condition more explicitly, fix a base point x0 ∈ X+ and
paths pj from x0 to cj ∈ Cj . This defines elements δj := p−1

j Cjpj ∈ π1(X, x0),
where we agree that Cj begins and ends at cj and is oriented so that when
we travel around it, X+ remains on the left. Let g+ be the genus of X+ and
Ak, Bk, 1 ≤ k ≤ g+ be the A-cycles and B-cycles of X+. Then δj , Ak, Bk

generate π1(X+, x0) with defining relation
g+∏
k=1

[Ak, Bk]
n∏

j=1
δj = 1

(for a suitable choice of the paths pj). Then Condition 2 is equivalent to the
condition that there exists a basis in which the matrices ρL(δj), ρL(Ak), ρL(Bk)
are real for all j, k.
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Definition 4.17. We will say that a local system ρ on X+ (not necessarily
an oper) satisfying Conditions 1, 2 is balanced.

Let us now reformulate Condition 2 on the local system ρL attached to
the oper L in a more analytic language, assuming that Condition 1 holds
for ρL. By Condition 1, for each j we have a nonzero real periodic solution
of the equation Lf = 0 on Cj , call it fj(x). We also have the other real
solution gj(x) which changes by a multiple of fj when we go around Cj such
that the Wronskian W (fj , gj) = π.29 We will use the notation fj , gj also
for the analytic continuations of fi, gj to a neighborhood of Ij . Motivated by
Proposition 4.12, introduce

Condition 2a. There is a single-valued solution β of the system

Lβ = 0, Lβ = 0

on X \ ∪jCj such that near each Cj , we have

β(x, x) = εj1|fj(x)|2 ± εj2 Im(fj(x)gj(x))

for a suitable choice of fj , gj with W (fj , gj) = π (unique up to sign) and
εj1, εj2 = ±1, where the sign in front of the second summand is + if x is
above Cj and − if x is below Cj .30

Proposition 4.18. If Condition 1 holds and ρL(Cj) �= 1 for all j then Con-
dition 2a is equivalent to Condition 2.

Proof. Since β is a single-valued solution of the oper equations Lβ = 0,
Lβ = 0, Condition 2a implies Condition 2. To prove the converse, note that
Condition 1 implies that there exist bases {fj , gj} of the fibers of the local
system ρL at the points cj in which ρL(Cj) =

( 1 λj

0 1
)

for λj ∈ R, and Condi-
tion 2 implies that on these fibers there are nondegenerate Hermitian forms
invariant under ρL(Cj) and compatible with the operators ρL(pkp−1

j ), and
det ρL(pkp−1

j ) = 1.
Now, nondegenerate Hermitian forms in two variables X, Y invariant un-

der the matrix
( 1 λ

0 1
)

for nonzero λ ∈ R are of the form p|X|2 + q Im(XY ),
where p, q ∈ R, q �= 0. This implies that the Hermitian form at cj in the basis

29Note that if ρ(Cj) �= 1 then fj is uniquely defined up to scaling, and once it is
chosen, gj is uniquely defined up to adding a real multiple of fj .

30Note that the function Im(fj(x)gj(x)) does not depend on the choice of gj ,
is single-valued in the neighborhood of Cj , and vanishes on Cj . Hence β(x, x) is
continuous but only one-sided differentiable on Cj .
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fj , gj has the form pj |X|2 + qj Im(XY ), where pj , qj ∈ R, qj �= 0. We can now
renormalize fj , gj by reciprocal positive constants to make sure that pj = ±1.

It remains to show that all qj are the same up to sign, then we can
renormalize β to make sure that qj = ±1, and construct the solution β
satisfying Condition 2a from the invariant Hermitian form on the fibers of ρL.
But this follows from the equality det ρL(pkp−1

j ) = 1.

Remark 4.19. 1. The continuation of gj around Cj gives gj + λjfj , and the
real numbers λj attached to the components Cj do not depend on any choices
and are invariants of a balanced oper.

2. If the representation ρL of π1(X+) is irreducible then the solution β
satisfying Conditions 1 and 2a is unique up to sign if exists.

The above discussion implies

Proposition 4.20. Every oper appearing in the spectrum of Hecke operators
is balanced.

There is, however, another condition satisfied by spectral opers. Namely,
let us say that a balanced oper L is positive if there is a solution β satisfying
Condition 2a with εj1 = εj2 = 1 for all j.

Proposition 4.21. Every oper appearing in the spectrum of Hecke operators
is positive.

Proof. Since βk(x, x) = βk(x)2 for x ∈ X(R), εj1 are all the same, so can be
assumed to be 1. Then it follows from Remark 4.14 that we also have εj2 = 1
for all j.

Conjecture 4.22. The spectrum of Hecke operators is labeled by positive
balanced opers, possibly with finitely many eigenvalues corresponding to the
same oper.

Example 4.23. Let X be of genus 2 with X(R) having 3 components,
C1, C2, C3 that cut X into two trinions X+, X−. Thus g+ = 0, so π1(X+)
is generated by δj , j = 1, 2, 3, with defining relation δ1δ2δ3 = 1. So Con-
dition 1, saying that all Ai := ρ(δi) are unipotent, implies that they all
commute, as A1A2A3 = 1. In spite of having three equations (Tr ρ(δi) = 2,
i = 1, 2, 3), one can show that the space of such (real) local systems on
X is of codimension 2 (i.e., 4-dimensional over R) so it is not a complete
intersection. However, Condition 2 provides one more equation to get a 3-
dimensional real manifold. Therefore if appropriate transversality holds, then
Conditions 1, 2 and the oper condition imply the discreteness of the spectrum.
Namely, isomorphism classes of (nontrivial) unipotent representations of the
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group π1(X+, x0) = F2 are labeled by one complex parameter κ, which lives
in CP1 (namely, ρ(δ2) = ρ(δ1)κ). So Condition 2 just tells us that κ ∈ RP1.

Let us write down a formula for β(x, x) in this case, for ρ = ρL. If Condi-
tion 1 holds then we have a global holomorphic solution f(x) of the equation
Lf = 0 on X+, generically unique up to scaling. We can normalize it to be
real on C1. We also have another holomorphic solution g(x) on X+ which
is changed by a multiple of f(x) when we go around cycles, which we can
normalize so that W (f, g) = π. Then g is uniquely determined up to adding
a multiple of f . We can make sure that g is real on C1, then the remaining
freedom is adding to g a real multiple of f . Now consider the function

β(x, x) := |f(x)|2 + Im(f(x)g(x)).

Note that this function is independent on the choice of g, and is single-valued
since κ is real. This function is the eigenvalue of Hx,x when f is normalized
so that f(x)|C1 = β(x) (then this will also hold on C2 and C3, up to sign).
Thus we see that in this case every balanced oper is automatically positive.

Example 4.24. Suppose X has genus g ≥ 3 with X(R) having g + 1
components C1, . . . , Cg+1; thus g+ = 0 so π1(X+) is generated by δj with∏g+1

j=1 δj = 1. Then Condition 1 imposes g+1 constraints on the local system:
we have that Aj := ρ(δj) are unipotent for j = 1, . . . , g+1. Moreover, now this
actually defines a complete intersection (unlike the previous example, which
is a degenerate case). Once this condition is imposed, our representation ρ of
π1(X+, x0) = Fg is a point of the unipotent SL2-character variety Munip

0,g+1
for the sphere with g+1 holes, which has (complex) dimension 2(g−2). Thus
the condition that this point is real is 2(g − 2) real equations. So altogether
we get g+1+2(g−2) = 3g−3 real equations, i.e. if appropriate transversality
holds then we should get a real submanifold of middle dimension 3g−3 in the
6g−6-dimensional manifold of local systems, as needed for discrete spectrum.

Example 4.25. More generally, suppose X(R) is the union of C1, . . . , Cn

where n ≤ g + 1. Then X+ has genus g+ = g+1−n
2 (so g + 1 − n must be

even). So Condition 1 gives us n real equations, and then we end up in the
unipotent character variety Munip

g+1−n
2 ,n

, which has (complex) dimension d =
3(g+1−n)−6+2n = 3g−3−n. So altogether we again get 3g−3−n+n = 3g−3
real equations, as needed for discrete spectrum.

4.6. Real ovals, non-separating real locus

Now suppose that X(R) still consists of n circles C1, . . . , Cn of real type
but now is non-separating. To handle this case, let Σ be a connected non-
orientable surface with n holes of Euler characteristic χ, and let Munip,−

χ,n be
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the corresponding unipotent character variety. Note that Σ can be obtained
by gluing s = 1 or 2 Möbius strips into an orientable surface Σ+ with n + s
holes and the same Euler characteristic χ. We have 2−2g(Σ+)−n−s = χ, so
g(Σ+) = 1− n+s+χ

2 , and s is such that n+s+χ is even. Thus Munip
g(Σ+),n+s has

dimension −3(n+s+χ)+2(n+s) = −n−s+3χ. So dimMunip,−
χ,n = −n−3χ

(since we no longer have unipotency condition at s of the n + s holes, where
we glue in a Möbius strip).

Now let Σ = X/τ . This is a non-orientable surface of Euler characteristic
χ = 1 − g and n holes. So dimMunip,−

χ,n = −n − 3χ = 3g − 3 − n. Thus
Condition 1 gives n equations, and the real locus in Munip,−

χ,n another 3g−3−n
equations, so altogether we get 3g − 3 equations, again as needed.

4.7. Quaternionic ovals

For a quaternionic oval Cj the Hecke operator Hx for x ∈ Cj is not defined,
so the function β(x) is not defined either. As a result, it is not hard to show
that

lim
x→Cj

Hx,x = 0

and thus β(x, x) = 0 for x ∈ Cj . More specifically, the function β(x, x) near
Cj has the form

(4.6) β(x, x) = ± Im(fj(x)gj(x)),

where as before fj , gj are real solutions of the oper on Cj such that W (fj , gj) =
π, so we have

β(x, x) ∼ π|b|
where b is the distance from x to the oval (this makes sense because β is not
a function but actually a −1/2-density, i.e., |b| is really |db/b|−1). However,
the normalization of fj is now not fixed, so we are free to multiply fj by a
nonzero real scalar and divide gj by the same scalar.

Also, we no longer have a condition that monodromy around Cj is unipo-
tent. It only has to have real eigenvalues μ±1

j , so it can preserve the indefinite
Hermitian form defined by β (see (4.6)), and fj , gj are the corresponding
eigenvectors.

4.8. Conditions with ramification points

In presence of ramification points on Cj (in which case in absence of twists
Cj is necessarily of real type), the story should be the same, except that by
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monodromy along Cj we should mean monodromy “in the sense of principal
value”, as explained in [EFK3], Subsection 4.7; i.e., when we continue through
a ramification point, we take minus the half-sum of upper and lower analytic
continuation. So for genus 0 we recover exactly the answer from [EFK3],
Subsection 4.7. In this case the real locus divides CP1 into two disks, which are
simply connected, so we don’t have any conditions similar to Subsection 4.2,
and the balancing conditions on ρL can be formulated solely in terms of
the neighborhood of the real locus. This is exactly what happens in [EFK3],
Subsection 4.7.

5. Analytic Langlands correspondence and Gaudin model

In this section we discuss the Gaudin model and its generalizations and relate
these models to various settings of the analytic Langlands correspondence on
P1 with ramification points over R and C.

Initially, the Gaudin model associated to a simple Lie algebra g was de-
fined for the tensor products of finite-dimensional representations of g. But
in fact the Gaudin Hamiltonians (which we have already encountered in Sub-
section 3.3 in the case g = sl2) give rise to well-defined commuting operators
on the tensor product of any representations of g. If this tensor product has a
weight space decomposition with finite-dimensional weight spaces, then since
these subspaces are preserved by the Gaudin Hamiltonians, the corresponding
spectral problem is clearly well-defined. This is the case, for example, when
all representations are of highest weight or lowest weight.

If this is not the case, the spectral problem may still be well-defined if
there is a natural Hilbert space structure on a completion of this tensor prod-
uct and the Gaudin Hamiltonians can be extended to self-adjoint strongly
commuting operators on it. This conjecturally happens when the representa-
tions of g come from tempered unitary representations of a connected real Lie
group G(R) whose complexified Lie algebra is g; for example, this happens
for representations of the unitary principal series of SL2(R). The traditional
methods of Bethe Ansatz can no longer be used in this case. But here we
get into the setting of the analytic Langlands correspondence for G = SL2,
X = P1, and F = R with real ramification points discussed in Section 4 (with
the Gaudin Hamiltonians being the Hitchin Hamiltonians). Hence we can use
the results of Section 4 to describe the spectrum of the Gaudin Hamiltonians.

In fact, we will show that even the original case of the tensor product of
finite-dimensional representations of g can be interpreted in the framework of
the analytic Langlands correspondence (namely, it appears in the quaternionic
case discussed in Subsection 4.7). Applying our results, we obtain a new



394 Pavel Etingof et al.

interpretation of the description of the spectrum of the Gaudin Hamiltonians
in this case in terms of monodromy-free opers [F2, R]. This description is
closely related to the Bethe Ansatz in the Gaudin model. We discuss all this
in Subsections 5.1–5.3 and 5.5–5.7.

In Subsection 5.4 we consider the case of the tensor product of the infinite-
dimensional contragredient Verma modules with arbitrary highest weights. In
this case the weight subspaces of the tensor product are finite-dimensional and
the spectral problem for the Gaudin Hamiltonians is well-defined. It is natural
to expect that the spectrum is given by opers whose monodromy is contained
in a Borel subgroup of G∨, the Lie group of adjoint type associated to the
Lie algebra g∨. In a follow-up paper [EF] we intend to prove this result using
the tools of the present paper.

In Subsection 5.8 we interpret this result, in the case when the highest
weights satisfy a certain reality condition, as a description of the spectrum
for the tensor product of the holomorphic discrete series representations of
G(R). In Subsection 5.9 we introduce chiral versions of the Hecke operators
acting on the tensor product of contragredient Verma modules.

Next, in Subsection 5.10 we discuss the infinite-dimensional case. First,
we describe the spectrum for the tensor product of unitary principal series
representations in terms of balanced opers. This is essentially the statement of
Theorem 4.15. This case is very interesting because we cannot use the ordinary
Bethe Ansatz method (since these representations don’t have highest weight
vectors). We also comment on the case of a tensor product of discrete series
representations involving both holomorphic and anti-holomorphic ones.

In Subsection 5.11 we interpret the analytic Langlands correspondence
for P1 with parabolic structures over C (discussed in Subsection 3.3) as a
“double” of the Gaudin model.

In all of these settings, our description of the spectrum relies on the exis-
tence of the Hecke operators, which commute with the Gaudin Hamiltonians
and satisfy differential equations (the universal oper equations). These equa-
tions can be used to describe the analytic properties of the opers encoding
the possible eigenvalues of the Gaudin Hamiltonians.

Interestingly, the role of the Hecke operators is played by the Gaudin
model analogues of Baxter’s Q-operators or closely related operators (see Sub-
section 5.7). This allows us to regard the generalized Bethe Ansatz method
and Baxter’s Q-operators as arising from special cases of the tamely ram-
ified analytic Langlands correspondence in genus 0. We also discuss a q-
deformation of this story, which has to do with the quantum integrable mod-
els of XXZ type associated to the quantum affine algebra Uq(ĝ), in Subsec-
tions 5.12 and 5.13.
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5.1. The Gaudin model and monodromy-free opers

Let g be a simple Lie algebra over C and G the connected simply-connected
algebraic group with the Lie algebra g. Let g = n+ ⊕ h⊕ n− be a triangular
decomposition of g with Weyl group W ⊂ Aut(h). Let Λ+

G ⊂ h∗ be the set of
dominant integral weights of g (and G), and let Vλ be the finite-dimensional
irreducible representation of G with highest weight λ ∈ Λ+

G.
Let

{ti} := {t0, t1, . . . , tm+1 = ∞}
be a collection of (m + 2) distinct points on P1, with the last point tm+1
identified with the point ∞ (with respect to a once and for all chosen global
coordinate x on P1). Fix λi ∈ Λ+

G, 0 ≤ i ≤ m + 1, and let

(5.1) H := (Vλ0 ⊗ · · · ⊗ Vλm+1)g � (Vλ0 ⊗ · · · ⊗ Vλm)n+ [λ∗
m+1].

Thus, H is the subspace of singular vectors of weight λ∗
m+1 = −w0(λm+1) in

Vλ0 ⊗ · · · ⊗ Vλm , where w0 ∈ W is the maximal element.
On the space H acts the commutative subalgebra G ⊂ (U(g)⊗m+1)g of

the generalized Gaudin Hamiltonians introduced in [FFR] (see also [F1,
F2]).31 The algebra G includes the original (quadratic) Gaudin Hamiltonians

(5.2) Gi :=
∑
j �=i

∑
a

Ja(i)J
(j)
a

tj − ti
,

where {Ja} and {Ja} are two bases of the Lie algebra g dual to each other
with respect to the normalized non-degenerate invariant bilinear form. In the
case g = sl2, the algebra G is generated by the Gi’s. For groups of rank greater
than 1, there are also higher Gaudin Hamiltonians.

Joint eigenvectors and eigenvalues of the algebra G in H have been con-
structed explicitly in [FFR] generalizing the classical Bethe Ansatz method in
the case g = sl2 (in [RV] an alternative proof was given that these vectors are
eigenvectors of the Gi’s). It has been proved in [SV] (see also [F1]) that for
g = sl2 these eigenvectors form a basis in H if the collection {ti} is generic.
But for other groups this is not always the case. The reasons for this are
explained in [F2], Section 5.5. An explicit counterexample in the case g = sl3
has been given in [MV].

However, an alternative description of the spectrum of the algebra G on
the space H, which does not rely on explicit formulas for the eigenvectors,

31This algebra is called the Bethe algebra or the Gaudin algebra.
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was conjectured in [F2] (following [F1]) and proved in [R]. Namely, let G∨ be
the Langlands dual group of G (thus, G∨ is the Lie group of adjoint type with
associated with the Lie algebra g∨ which is Langlands dual to g). There is a
bijection between the joint spectrum of the algebra G of generalized Gaudin
Hamiltonians on H given by formula (5.1) (without multiplicities) and the
set of monodromy-free G∨-opers on P1 with regular singularities at the
points ti, with residues �(−λi − ρ) ∈ h∗/W , where � is the projection
h∗ → h∗/W .32 (In the case of g = sln, a similar result for the spectrum of a
certain deformation of G follows from [MTV1].) Moreover, it is shown in [R]
that for a generic collection {ti} the algebra G is diagonalizable on H and its
spectrum is simple. The precise statement is given in Theorem 5.5 below.

5.2. The Gaudin model for g = sl2

Consider first the Gaudin model for g = sl2. Note that w0(λ) = −λ, so
λ∗ = λ for all weights λ. We identify the dominant integral weights λi with
non-negative integers and define n by the formula

(5.3) 2n =
m∑
i=0

λi − λm+1.

For the space

(5.4) H =
(

m⊗
i=0

Vλi

)n+

[λm+1]

to be non-zero, n must be a non-negative integer.
The algebra G of Gaudin Hamiltonians is in this case generated by the

Gi’s given by formula (5.2). The original formulation of Bethe Ansatz for
diagonalization of these operators is the following. Given a collection w =
{w1, . . . , wn} of distinct complex numbers such that wj �= ti for all i and j,
define the Bethe vector by the formula

(5.5) vw := f(w1) . . . f(wm)v,

where

(5.6) f(w) :=
m∑
i=0

fi
w − ti

32The notion of residue was introduced in [BD1], Section 3.8.11; see also [F3],
Subsection 9.1.
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and v is the tensor product of the highest weight vectors of the representa-
tions Vλi .

The following is the system of Bethe Ansatz equations on the numbers
wj , j = 1, . . . , n:

(5.7)
m∑
i=0

λi

wj − ti
=

∑
s�=j

2
wj − ws

, j = 1, . . . , n.

Theorem 5.1 ([SV]). For a generic collection {ti}, the vectors vw with
w = {w1, . . . , wn} satisfying the system (5.7) form an eigenbasis of H. The
eigenvalue μi of Gi on vw is given by the formula

(5.8) μi = λi

⎛⎝∑
k �=i

λk

2(ti − tk)
−

n∑
j=1

1
ti − wj

⎞⎠ .

This result is referenced as completeness of Bethe Ansatz for g = sl2.
Analogs of Bethe vectors have been constructed for an arbitrary Lie alge-

bra g [FFR, RV]. Unfortunately, they do not give an eigenbasis for a general
g even for a generic collection {ti}, so Bethe Ansatz is incomplete; a coun-
terexample has been found already for g = sl3 [MV].

Luckily, there is an alternative approach to describing the joint spectrum
of the Gaudin Hamiltonians on the space H given by (5.1). It uses a realization
[FFR, F1, F2] of the algebra of Gaudin Hamiltonians as the quotient of the
center of the completed enveloping algebra of the affine Kac-Moody algebra
at the critical level and its isomorphism with the algebra of functions on the
space of G∨-opers on the punctured disc [FF, F3]. We will now explain this
approach in the case of g = sl2 and connect it to the Bethe Ansatz discussed
above.

For g = sl2, we have G = SL2 and G∨ = PGL2. The Bethe Ansatz
equations can be interpreted in terms of monodromy-free PGL2-opers on P1

as follows.
Recall that a PGL2-oper is a second order-differential operator acting

from K− 1
2 to K

3
2 of the form ∂2

x−v(x). Such an oper is said to have a regular
singularity at the point x = t with residue �(λ+1) = 1

2(λ+1)2 if its expansion
near this point has the form

∂2
x − λ(λ+2)

4(x−t)2 + O( 1
x−t), x → t

(where for t = ∞ we take the expansion in 1/x).
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Lemma 5.2. If

(5.9) ∂2
x − v(x) = (∂x − u(x))(∂x + u(x)),

where

(5.10) u(x) =
m∑
i=0

λi

2(x− ti)
−

n∑
j=1

1
x− wj

for some distinct wj , 1 ≤ j ≤ n, with wj �= ti, satisfying the system (5.7),
then the PGL2-oper ∂2

x − v(x) on P1 has trivial monodromy representation

(5.11) π1(P1\{t0, . . . , tm, tm+1 = ∞}) → PGL2

and regular singularities at the points ti, with residues �(λi + 1), λi ∈ Z≥0,
0 ≤ i ≤ m + 1.

Moreover, the converse is also true for a generic collection {t0, . . . , tm,
tm+1 = ∞}.
Proof. If the PGL2-oper ∂2

x − v(x) has the form (5.9) with u(x) given by
formula (5.10), then the section

(5.12) Φ := Φ(x)dx−
1
2 , Φ(x) :=

m∏
i=0

(x− ti)−
λi
2

n∏
j=1

(x− wj)

of K− 1
2 is a solution of the equation

(5.13) (∂2
x − v(x))Φ(x) = 0.

Moreover,

Φ∗(x) := Φ(x)
∫

Φ−2(x)dx

is then another, linearly independent local solution of the same equation.
This solution is a single-valued global solution on P1 with singularities only
at the points {ti} if and only if equations (5.7) are satisfied (in fact, the j-th
equation in (5.7) is equivalent to it having no monodromy at x = wj).

Conversely, suppose that ∂2
x−v(x) is a PGL2-oper on P1 which has regular

singularities at ti’s with residues �(λi + 1), λi ∈ Z≥0 and trivial monodromy
representation (5.11). Equation (5.13) then must have a solution of the form

(5.14) Φ := Φ(x)dx−
1
2 , Φ(x) :=

m∏
i=0

(x− ti)−
λi
2 Q(x),
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where Q(x) is a polynomial of degree n. According to Theorem 13 of [SV],
the roots of this polynomial do not belong to the set {ti} for generic collec-
tions {ti}. Writing

(5.15) Q(x) =
n∏

j=1
(x− wj),

we obtain formula (5.9). Moreover, formula (5.13) then implies that the wj ’s
are pairwise distinct. Using the argument of the preceding paragraph, we find
that the wj ’s must satisfy Bethe Ansatz equations (5.7). This completes the
proof.

Lemma 5.2 links Bethe Ansatz equations to monodromy-free PGL2-opers.
In fact, the j-th equation in (5.7) is equivalent to the property that oper (5.9)
has no singularity at x = wj .

Theorem 5.1 describes the case of generic parameters {ti}. For special
collections {ti} the Gaudin Hamiltonians may not be diagonalizable and/or
the Bethe vectors may not give a basis of H (see the examples in Subsec-
tion 5.5). Nevertheless, it turns out that the joint spectrum of the Gaudin
Hamiltonians is in bijection with the monodromy-free PGL2-opers satisfying
the conditions of Lemma 5.2 for all collections {ti}, as stated in the following
theorem. Its part (1) was proved in [F1]; part (2) was conjectured in [F2] and
proved in [R] (without explicit construction of eigenvectors).

Theorem 5.3. (1) The joint eigenvalues {μi}i=0,...,m of the Gaudin Hamil-
tonians {Gi}i=0,...,m acting on the space (5.4) are such that the PGL2-oper
on P1

(5.16) L(μ) = ∂2
x −

m∑
i=0

λi(λi + 2)
4(x− ti)2

−
m∑
i=0

μi

x− ti

has regular singularity with residue �(λm+1 + 1) at tm+1 = ∞ and trivial
monodromy representation (5.11).

(2) For any collection {t0, t1, . . . , tm+1 = ∞} this defines a one-to-one
correspondence between the set of joint eigenvalues (without multiplicity) of
the Gaudin Hamiltonians and the set of all such PGL2-opers.

Remark 5.4. 1. Under this correspondence, the eigenvalues μi of the Gaudin
operators Gi are given by the formula

μi = Resti
(Φ′′(x)

Φ(x)

)
= λi

⎛⎝∑
k �=i

λk

2(ti − tk)
−

n∑
j=1

1
ti − wj

⎞⎠ ,
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where Φ(x)dx− 1
2 is the solution (5.14) (compare with formula (5.8)).

The conditions that L(μ) has a regular singularity and residue �(λm+1 +
1) at tm+1 = ∞ are equivalent to the conditions on the eigenvalues μi’s given
by the first and second equations in (3.9), respectively.

2. The equation L(μ)β = 0 can we written in the form of connection with
first order poles in two different ways. Namely, setting

b :=
(
∂xβ + (

∑m
j=0

λj

2(x−tj))β
β

)
,

for the first way we get

(5.17) ∂xb =

⎛⎝∑m
j=0

λj

2(x−tj)
∑m

j=0
μ̂j

x−tj

1 −∑m
j=0

λj

2(x−tj)

⎞⎠b.

The second way is the same but replacing λj with −λj − 2. Note that near
x = tj equation (5.17) in the variable z := x− tj looks like

∂zb =
(

λj

2z + aj(z) μ̂j

z + cj(z)
1 −λj

2z − aj(z)

)
b

where aj , cj are regular at z = 0. So we can make the residue of the matrix on
the right hand side independent of μ̂j by setting b̃ := diag(z 1

2 , z−
1
2 )b. Then

we get

∂zb̃ =
(

λj+1
2z + aj(z) μ̂j + zcj(z)

1
z −λj+1

2z − aj(z)

)
b̃.

Now the residue is the regular element(
λj+1

2 0
1 −λj+1

2

)

which maps to �(λj + 1) = 1
2(λj + 1)2 under the map A �→ TrA2.

5.3. The case of a general Lie algebra g

Theorem 5.3 generalizes to an arbitrary simple Lie algebra g as follows.

Theorem 5.5. (1) For any collection {t0, . . . , tm+1 = ∞}, there is a one-
to-one correspondence between the set of joint eigenvalues (without multi-
plicity) of the algebra G of generalized Gaudin Hamiltonians on the space H
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given by (5.1) and the set of all G∨-opers on P1 with regular singularities and
residues �(−λi − ρ) at ti and with trivial monodromy representation

π1(P1\{t0, . . . , tm, tm+1 = ∞}) → G∨.

(2) For generic {t0, . . . , tm}, the algebra G of generalized Gaudin Hamilto-
nians is diagonalizable and has simple spectrum on the space H given by (5.1).

In [F2], part (1) of this theorem was conjectured and a map in one direc-
tion (from the set of joint eigenvalues to the set of monodromy-free opers) was
constructed. The bijectivity of this map (and hence the statement of part (1))
was proved in [R]. Part (2) was also proved in [R].

Analytic Langlands correspondence provides a novel conceptual frame-
work for (and in many cases, solution of) the problem of diagonalization of
the Gaudin Hamiltonians. In particular, Theorem 5.3 will be derived using
this framework in Subsection 5.6. We will then extend this framework to
infinite-dimensional representations.

5.4. The Gaudin model with complex weights

The theory of Subsections 5.1, 5.2, and 5.3 can be “analytically continued”
to complex weights λj such that α :=

∑m
i=0 λi − λ∗

j+1 ∈ Q+ (nonnegative
integer linear combination of simple roots). Namely, we may replace the finite
dimensional modules Vλj , 0 ≤ j ≤ m, by contragredient Verma modules
∇(λj) over g with highest weights λj , and consider the action of Gaudin
Hamiltonians in

(5.18) H := (∇(λ0) ⊗ · · · ⊗ ∇(λm))n+ [λ∗
m+1].

First consider the case of sl2, so λ∗
m+1 = λm+1 and equation (5.3) is

satisfied for a non-negative integer n. Analytically continuing the explicit
formulas for the Bethe vectors vw and using Theorem 5.1, we obtain the
following result.

Theorem 5.6. For generic collections {t0, t1, . . . , tm+1 = ∞} and {λ0, λ1,
. . . , λm+1} satisfying formula (5.3) with a non-negative integer n:

(1) The Bethe vectors vw given by formula (5.5) with w = {w1, . . . , wn}
satisfying the system (5.7) form an eigenbasis of the space H given by (5.18).
The eigenvalue μi of Gi on vw is given by the formula (5.8).

(2) The spectrum of the Gaudin Hamiltonians is simple and the set of their
joint eigenvalues is in one-to-one correspondence with the set of PGL2-opers
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on P1 with regular singularities and residues �(λi +1) at ti, i = 0, . . . ,m+1,
and with solvable monodromy, i.e. contained in a Borel subgroup B∨ ⊂
PGL2. Under this correspondence, the collection {μi} of joint eigenvalues of
the Gaudin Hamiltonians Gi, i = 0, 1, . . . ,m, maps to the PGL2-oper given
by formula (5.16).

Proof. Suppose that λi and λ∗
m+1 = λm+1 are dominant integral weights.

Then we have a canonical inclusion (up to a scalar)

(5.19) (Vλ0 ⊗ · · · ⊗ Vλm)n+ [λm+1] ↪→ (∇(λ0) ⊗ · · · ⊗ ∇(λm))n+ [λm+1] = H,

which commutes with the Gaudin Hamiltonians.
For any fixed n given by formula (5.3), this map is an isomorphism for

sufficiently large {λi}. Suppose that this is the case. Theorem 5.1 then im-
plies that for generic {ti} the Bethe vectors vw given by formula (5.5), with
w = {w1, . . . , wn} satisfying the system (5.7), form an eigenbasis of H, and
moreover, the spectrum of the Gaudin Hamiltonians on H is simple. Since
this is an open condition, the same is true for generic {λi} and {ti}. Moreover,
explicit calculation shows that the eigenvalues μi of the Gaudin Hamiltonians
Gi are still given by formula (5.8). This proves part (1).

Consider the corresponding oper L(μ) on P1 given by formula (5.16). By
construction, it has regular singularities and residues �(λi + 1) at ti, i =
0, . . . ,m + 1. Since equations (5.7) are satisfied, this oper can be written
as the Miura transformation (5.9), where u(z) is given by formula (5.10).
Therefore Φ given by formula (5.14) is a solution of the equation L(μ)Φ = 0.
This implies that the monodromy of L(μ) is contained in a Borel subgroup
of PGL2.

Conversely, suppose that the numbers μ = {μi} are such that the PGL2-
oper L(μ) satisfies the conditions of the theorem. According to Lemma 5.7
below, if λm+1 /∈ {−2,−3, . . . ,−n − 1}, then L(μ) is equal to the Miura
transformation (5.9) of u(x) given by formula (5.10). The set of numbers
w = {wj} appearing in u(x) then must satisfy equations (5.7). But then
the corresponding Bethe vector vw is an eigenvector of the Gi’s with the
eigenvalues μi’s. Since we know that these vectors form an eigenbasis for
generic {ti} and {λi}, we obtain the statement of part (2).

Lemma 5.7. Let L(μ) be a PGL2-oper of the form (5.16) with λi ∈ C
that has a regular singularity at ∞ with residue �(λm+1 + 1), where λm+1 /∈
{−2,−3, . . . ,−n− 1} and satisfies equation (5.3) with a non-negative integer
n. Then for any collection {λi} and generic {ti} the equation L(μ)Φ = 0 has
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a unique solution of the form

(5.20) Φ := Φ(x)dx−
1
2 , Φ(x) :=

m∏
i=0

(x− ti)−
λi
2 Q(x),

where Q(x) is a polynomial of degree n with n distinct roots w1, . . . , wn that
are also distinct from {ti} and satisfy the Bethe Ansatz equations (5.7). More-
over, if λi /∈ {0, 1, . . . , n− 1} for all i = 0, . . . ,m, then this is so for all {ti}.

Equivalently, under the above the above conditions, L(μ) is equal to the
Miura transformation (5.9) of u(x) given by formula (5.10).

Proof. Substituting (5.20) into the equation L(μ)Φ = 0, we obtain the equa-
tion

(5.21)
(
∂2
x −

m∑
i=0

λi

x− ti
∂x −

m∑
i=0

μ̂i

x− ti

)
Q(x) = 0,

where
μ̂i := μi −

∑
j �=i

λiλj

2(ti − tj)
.

One of the characteristic exponents of this equation at ∞ is equal to n.
Hence for any λi ∈ C, i = 0, . . . ,m + 1, satisfying (5.3) there is a solution
of this differential equation of the form xn +

∑∞
j=1 Qjx

n−j , as long as the
coefficients Q1, . . . , Qn are uniquely determined by this condition. If this is
the case, we set Qj = 0 for j > n, and this will give us a solution since it does
so when all λi’s are positive integers. The standard theory of ODE implies
that Q1, . . . , Qn are indeed uniquely determined if and only if the second
characteristic exponent of equation (5.21) is not in {0, 1, . . . , n − 1}, which
translates into the condition λm+1 /∈ {−2,−3, . . . ,−n− 1}.

Denote by w1, . . . , wn the roots of Q(x) counted with multiplicity. If wj �=
ti for all i = 0, . . . ,m, equation (5.21) implies that wj is a simple root.

Suppose now that wj = ti for a some i and j ∈ Ji ⊂ {1, . . . , n}. Then
the expansion of the solution (5.20) of the equation L(μ)Φ = 0 near x = ti is
equal to

(x− ti)−
λi
2 +|Ji|(1 + O(x− ti))

up to a non-zero scalar factor. But since the leading term of L(μ) at x = ti
is λi(λi + 2)/4(x− ti), this is only possible if |Ji| = λi + 1 which means that
λi ∈ {0, 1, . . . , n− 1}.

If λi /∈ {0, 1, . . . , n− 1} for all i = 0, . . . ,m, we find that wj �= ti for all i
and any collection {ti}. If λi ∈ {0, 1, . . . , n− 1} for some i, then we find that
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wj �= ti for all i provided that the collection {ti} is sufficiently generic. That’s
because we know from [SV] that this is so when all λi’s are non-negative
integers (see the last paragraph of the proof of Lemma 5.2).

Motivated by Theorem 5.5, it is natural to conjecture the following state-
ments for a general Lie algebra g.

Conjecture 5.8. (1) For all {ti} and {λi}, there is a one-to-one correspon-
dence between the set of joint eigenvalues of the algebra G of generalized
Gaudin Hamiltonians on H given by formula (5.18) (without multiplicity) and
the set of G∨-opers on P1 with regular singularities and residues �(−λi − ρ)
at ti, i = 0, . . . ,m + 1, and solvable monodromy.

(2) Suppose that λi and λ∗
m+1 are dominant integral weights. Then the

monodromy of the corresponding G∨-opers is unipotent, and the inclusion
(5.19) corresponds to the inclusion of the set of opers with trivial monodromy
into the set of opers with unipotent monodromy.

(3) Let I ⊂ {1, . . . ,m} and

H :=
(⊗

i∈I
Vλi ⊗

⊗
i/∈I

∇(λi)
)n+

[λ∗
m+1],

where λi are dominant integral for i ∈ I. Then the set of joint eigenvalues of
the algebra G on H is in one-to-one correspondence with the set of G∨-opers
as above with solvable monodromy and trivial local monodromy around the
points ti, i ∈ I.

(4) More generally, suppose that for i = 0, . . . ,m, pi are parabolic sub-
algebras of g containing the positive Borel subalgebra b+ ⊂ g, ∇(λi, pi) are
parabolic contragredient Verma modules for pi, and

H :=
( m⊗

i=0
∇(λi, pi)

)n+

[λ∗
m+1].

Then the set of joint eigenvalues of the algebra G on H is in one-to-one
correspondence with the set of G∨-opers as above with solvable monodromy
and local monodromy at ti belonging to Z(L∨

i )U∨
i ⊂ G∨, where L∨

i , U
∨
i ⊂ P∨

i

are the Levi factor and unipotent radical of the positive parabolic P∨
i ⊂ G∨

dual to pi, and Z(L∨
i ) is the center of L∨

i .

Note that part (3) is a special case of (4) where pi = g if i ∈ I and pi = b+
if i /∈ I.

In a follow-up paper [EF], we plan to prove one direction of part (1);
namely, construct an injective map from the set of joint eigenvalues of G
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to the corresponding set of G∨-opers with solvable monodromy. It follows
from the results [MTV2] that if g = sln and the set {λi} is generic, then the
cardinality of the subset of the set of PGLn-opers from part (1) corresponding
(via the Miura transformation) to solutions of the Bethe Ansatz equations is
not greater than the dimension of H given by (5.18). If for genetic {λi} all
PGLn-opers from part (1) have this form and the spectrum of G is simple,
this would imply part (1) for g = sln and generic {λi}.

Remark 5.9. Still more generally, one may consider the action of the algebra
G on

(M0 ⊗ · · · ⊗Mm)n+ [λ∗
m+1],

where Mi are arbitrary objects from category O. It would be very interesting
to parametrize the spectrum of this action, but here we don’t even have a
conjectural picture yet.

5.5. Examples of Bethe vectors

In this subsection for readers convenience we give some (well known) exam-
ples of Bethe vectors in the space H defined by formula (5.18) and various
phenomena related to them.

Example 5.10. Let g = sl2 and assume that λj is generic for all 0 ≤ j ≤ m,
and let n = 1. Then dimH = m and the Bethe Ansatz equation has the form

m∑
i=0

λi

w − ti
= 0,

which reduces to a polynomial equation of degree m in w, so its solution set
S ⊂ C has cardinality m. For every w ∈ S the Bethe vector vw has the form:

(5.22) vw =
(

m∑
i=0

fi
w − ti

)
v,

where v is the tensor product of the highest weight vectors of ∇(λi) and fi is
f ∈ sl2 acting in the i-th factor (this is a special case of formula (5.5)). These
vectors form a basis in H.

For special weights, however, the Gaudin Hamiltonians may fail to be
semisimple and the Bethe Ansatz equations may have fewer solutions than
dimH (possibly none at all), or infinitely many solutions. Thus Bethe vectors
may fail to form a basis of H. Such things happen, for instance, when λj are
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dominant integral for 0 ≤ j ≤ m while λ∗
m+1 is integral, but not dominant

(see [F2]).

Example 5.11. Let m = 2, so we have four ramification points t0, t1, t2,∞.
Let Ek be the space of n+-invariant vectors in ∇(λ0) ⊗ ∇(λ1) ⊗ ∇(λ2) of
weight

∑2
i=0 λi − 2k. Thus dimEk = k + 1.

In E0 we have a unique up to scaling Bethe vector, which is merely the
tensor product v of highest weight vectors of ∇(λi). The eigenvalues of Gi on
v are μ0

i :=
∑

j �=i
λiλj

2(ti−tj) .
Now consider Bethe vectors in E1. The Bethe Ansatz equation has the

form
2∑

i=0

1
w − ti

= 0,

i.e.,

P (λ, t, w) :=λ0(w − t1)(w − t2)+λ1(w − t0)(w − t2)+λ2(w − t0)(w − t1)=0,
(5.23)

so it is quadratic if
∑2

i=0 λi �= 0, and for generic tj has two solutions w± giving
rise to two Bethe vectors v+, v− which form a basis of E1. The eigenvalues of
Gi on the vectors v± are μ±

i := μ0
i − λi

ti−w±
.

Now consider the case
∑2

i=0 λi = 0. In this case

Ek = Hom(Δ(−2k),∇(λ0) ⊗∇(λ1) ⊗∇(λ2)),

so we have an injective map R = Δ3(f) : E0 → E1 which is defined by
restricting of a homomorphism Δ(0) → ∇(λ1) ⊗∇(λ2) ⊗∇(λ3) to Δ(−2) ⊂
Δ(0). Thus Rv ∈ E1 is an eigenvector of Gi with eigenvalues μ0

i (as [R,Gi] =
0).

The vector Rv is not, however, a Bethe vector of the form (5.5). Namely,
if

∑2
i=0 λi = 0 then the quadratic term in the Bethe Ansatz equation (5.23)

drops out and it becomes linear, so has only one finite solution

w+ = −λ0t1t2 + λ1t0t2 + λ2t0t1
λ0t0 + λ1t1 + λ2t2

(provided that the denominator
∑2

i=0 λiti is nonzero). The second solution
w− escapes to ∞ as we approach the hyperplane

∑2
i=0 λi = 0. Thus we

obtain only one Bethe vector v+; the second vector v− = Rv is a limit of
Bethe vectors from generic λi, but is not itself a Bethe vector, as it does not
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correspond to a finite solution of the Bethe Ansatz equations. Nevertheless,
the vectors v+, v− are still an eigenbasis in E1 for the operators Gi, which for
generic ti still act regularly and semisimply on this space.

It is instructive to consider the resonance case when
∑2

i=0 λi =
∑2

i=0 λiti =
0 but λi don’t vanish simultaneously. Then the Bethe Ansatz equations have
no solutions, so there are no Bethe vectors at all. The operators Gi are not
semisimple on E1 in this case, so their only joint eigenvector in E1 up to
scaling is v−.

Finally, in the most degenerate case λ0 = λ1 = λ2 = 0, the Bethe Ansatz
equation is vacuous, so any w ∈ C is a solution. In this case, Gi act by scalars
on E1 and there are infinitely many Bethe vectors given by (5.22).

A slightly more interesting example is
∑2

i=0 λi = 2 (assuming that oth-
erwise λi are generic). In this case we have the injective restriction map
R = Δ3(f) : E1 → E2. Generically we have a basis of Bethe vectors v+, v− of
E1 as above, so we have eigenvectors Rv+, Rv− of Gi with the same eigenval-
ues.

These vectors are not Bethe vectors, however. Indeed, the Bethe Ansatz
equations for E2 have the form

2∑
i=0

λi

w1 − ti
= 2

w1 − w2
,

2∑
i=0

λi

w2 − ti
= 2

w2 − w1
,

which implies that

2(w1 − t0)(w1 − t1)(w1 − t2) = (w1 − w2)P (λ, t, w1),
2(w2 − t0)(w2 − t1)(w2 − t2) = (w2 − w1)P (λ, t, w2).

This is a system of two cubic equations in w1, w2, so for generic λi by Bezout’s
theorem it has 3 · 3 = 9 solutions. However, three of these solutions are w1 =
w2 = ti, i = 0, 1, 2, which are not solutions of the Bethe Ansatz equations.
This leaves us with 6 solutions, or 3 modulo the symmetry exchanging w1 and
w2, each defining a Bethe vector. But on the hyperplane

∑2
i=0 λi = 2 two of

these solutions run away to infinity, tending to (∞, w±). This leaves us with
just one solution w which gives rise to a single Bethe vector vw. The vectors
vw, Rv+, Rv− form a basis of E2.

5.6. Analytic Langlands correspondence over R for compact
groups

In this subsection and the next, we incorporate the Gaudin model for finite-
dimensional representations into the framework of the analytic Langlands
correspondence.
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Let F = R and X = P1 with the usual real structure and distinct real
ramification points t0, . . . , tm+1 (in this cyclic order). As before, we will set
tm+1 = ∞, so t0 < · · · < tm. Let the group Gσi , 0 ≤ i ≤ m+1, be the compact
form Gc of G for all i. Place the finite-dimensional irreducible representation
Vλi of Gc with highest weight λi at the point ti. Then, as we explained in
Subsection 2.15, the Hilbert space of the analytic Langlands correspondence
is defined precisely by formula (5.1). Also the quantum Hitchin Hamiltonians
are exactly the Gaudin Hamiltonians in this case.

It remains to explain why in our setting the monodromy-free condition is
precisely the topological reality condition on spectral opers arising from the
analytic Langlands correspondence. Let us do so for G = SL2. We expect
that this argument can be generalized to all simple Lie groups G.

In view of Remark 2.15, we can define the Hecke operator Hx,x for x ∈ C
(with coweight 1 of SL2 = (G/(±1))∨ attached to both x and x). Recall that
since the real locus X(R) is a quaternionic oval, the eigenvalue of the Hecke
operator Hx,x is given by formula (4.6):

β(x, x) = Im(f+
j (x)g+

j (x)), Im(x) > 0

near the interval (tj , tj+1), where f+
j , g+

j are the basic local solutions of the
oper equation Lβ = 0 near tj such that

g+
j (tj + u) = πu

λj
2 +1(1 + ug0

j (u)),

f+
j (tj + u) = u−

λj
2 (1 + uf0

j (u)) + γju
λj
2 +1(1 + ug0

j (u)) log u,

where f0
j (u), g0

j (u) ∈ R[[u]], γj ∈ R. Consider also the basic local solutions
f−
j , g−j of the oper equation near tj such that for small u > 0

g−j (tj − u) = πu
λj
2 +1(1 − ug0

j (−u)),

f−
j (tj − u) = u−

λj
2 (1 − uf0

j (−u)) − γju
λj
2 +1(1 − ug0

j (−u)) log u.

Then the half-monodromy matrix along the upper (respectively, lower) half-
circle around tj between the bases f+

j , g+
j and f−

j , g−j is

J±
j =

(
i∓λj 0

i∓(1+λj)γj −i∓λj

)
.

Thus the real analytic continuation along the upper half-circle transforms β =
Im(f+

j g+
j ) to ± Im(f−

j g−j )∓γj |g−j |2. So to preserve the vanishing condition for
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β on the real locus, we must have γj = 0. This means that the monodromy
of the oper L around tj , which is given by the matrix (J−

j )−1J+
j = (−1)λj is

trivial in PGL2 for all j, i.e. the oper is monodromy-free.

5.7. The connection between Hecke operators and Baxter’s
Q-operator

Let us go back to the case of the Gaudin model with the space of states H
given by formula (5.18). The following result is proved in the same way as
Lemma 5.7.

Theorem 5.12. For arbitrary collections {ti} and {λi} satisfying (5.3) with

λm+1 /∈ {−2,−3, . . . ,−n− 1},

there is a unique linear operator Q(x) acting on H given by formula (5.18)
commuting with the Gaudin Hamiltonians Gi, which is a monic polynomial
in x of degree n satisfying the universal oper equation (compare with Propo-
sition 3.10(i)):

(5.24)
(
∂2
x −

m∑
i=0

λi

x− ti
∂x

)
Q(x) − Q(x)

m∑
i=0

Ĝi

x− ti
= 0,

where

Ĝi := Gi −
∑
j �=i

λiλj

2(ti − tj)
.

In particular, if v ∈ H is an eigenvector of the Gi’s with eigenvalues
μ = {μi}, we have

Q(x)v = Qv(x)v,

where Qv(x) is the polynomial appearing in the corresponding solution (5.20)
of the equation L(μ)Φ = 0.

As we will see in Subsection 5.12, this operator can be obtained as the
q → 1 limit of the celebrated Baxter Q-operator introduced by R. Baxter in
the study of integrable quantum spin chains. For this reason we call Q(x)
the Baxter Q-operator of the Gaudin model (or Baxter’s Q-operator
for short).

On the other hand, as we explain presently, this operator Q(x) may be
viewed as an algebraic version of the Hecke operators of the analytic Lang-
lands correspondence.
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Let us switch to the setting of the previous subsection (for G = SL2).
Thus, H is now given by formula (5.4). The proof of Theorem 5.12 (which
follows the proof of Lemma 5.7) carries over without changes to this case.
Thus, we obtain a Q-operator in this case as well, for which we will use
the same notation. Moreover, the condition λm+1 /∈ {−2,−3, . . . ,−n − 1}
becomes vacuous in this case because all λi’s are assumed to be dominant
integral.

It is clear that the resulting operator is the restriction of the Q-operator
acting on the tensor product of contragredient Verma modules with dom-
inant integral weights (which is described in Theorem 5.12) to the tensor
product of the corresponding finite-dimensional representations under the
embedding (5.19).

Consider now the finite-dimensional case with H given by formula (5.4).
Let L(μ) be a monodromy-free PGL2-oper corresponding via Theorem 5.3 to
a set of joint eigenvalues μ = {μi} of the Gaudin Hamiltonians acting on H.
Formula (4.6) implies that the eigenvalue β(x, x) of the Hecke operator Hx,x

corresponding to the PGL2-oper L(μ) is, up to scaling by an x-independent
constant, given by

β(x, x) ∼ |Φ(x)|2 Im
∫ x

x0

Φ−2(z)dz, Im(x) ≥ 0,

where Φ is defined by (5.14), and the same expression with a minus sign
if Im(x) < 0. Here the lower limit x0 of integration can be any point of
X(R); recall from Subsection 5.6 that if the oper is monodromy-free then the
imaginary part of the integral is independent on the choice of this point.

Thus, again up to a constant,

Hx,x ∼
m∏
i=0

|x− ti|−λiQ(x)†Q(x) Im
∫ x

x0

Q−2(z)
m∏
i=0

(z − ti)λidz, Im(x) > 0,

Hx,x ∼ Q(x)†Q(x) Im
∫ x

x0

Q−2(z)
m∏
i=0

(z − ti)λidz, Im(x) > 0.

Thus we see that the Hecke operator can be expressed in a rather direct way
in terms of Baxter’s Q-operator of the Gaudin model.

5.8. Analytic Langlands correspondence for discrete series
representations

Consider now another example of the analytic Langlands correspondence in
the setting of the Gaudin model, which involves discrete series representations
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of SL2(R). As in Subsection 5.6, we take F = R, X = P1 with the standard
real structure and real ramification points t0, . . . , tm+1 ∈ R, but now set
Gσ to be the split real group SL2(R). So this setting is somewhat different
from the one of Subsection 5.6, where we deal with compact groups; they are
related by analytic continuation in highest weights.

Let Vi = Δ̂(−ri) be the completion of the Verma module for 0 ≤ i ≤ m,
and Vm+1 = Δ̂(−rm+1)∗, where ri ∈ Z≥1. So Vi is a holomorphic discrete
series representation for all 0 ≤ i ≤ m, while Vm+1 is an antiholomorphic
discrete series representation.33 Then

HV0,...,Vm+1 = Hom(Δ(−rm+1),Δ(−r0) ⊗ · · · ⊗ Δ(−rm))
= (Δ(−r0) ⊗ · · · ⊗ Δ(−rm))n+

−rm+1 .

So the Hilbert space is finite dimensional in this case. It is non-zero if and
only if

(5.25) rm+1 −
m∑
i=0

ri = 2n,

where n is a non-negative integer. It is easy to see that the Gaudin operators
Gi are self-adjoint, and hence diagonalizable, in this case.

Theorem 5.13. For all real {ti} and all {ri ∈ Z≥1} the Gaudin Hamiltonians
are diagonalizable on HV0,...,Vm+1 with simple joint spectrum and there is a
one-to-one correspondence between the set of their joint eigenvalues and the
set of PGL2-opers on P1 with regular singularities and residues �(−ri + 1)
at ti, i = 0, . . . ,m + 1, and solvable monodromy.

Proof. According to Theorem 5.6, this statement holds for generic collections
{ti} and {λi = −ri}. However, Corollary 2.4.6 of [V] implies that in the
case that all ri’s are positive (so that all λi’s are negative) and all ti’s are
real, the Bethe vectors vw corresponding to the solutions w = {w1, . . . , wn}
(with n defined by formula (5.25)) of the Bethe Ansatz equations (5.7) form
a basis of eigenvectors of the Gaudin Hamiltonians. As before, for each such
solution w, denote by μ = {μi} the corresponding set of joint eigenvalues of
the Gaudin Hamiltonians {Gi}. Then the PGL2-oper L(μ) = ∂2

x−v(x) given
by formula (5.16) (with λi = −ri) is equal to the Miura transformation (5.9)

33More precisely, the representations Δ̂(−1), Δ̂(−1)∗ are limit of discrete series
representations.
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of u(x) given by formula (5.10). Equivalently, equation L(μ)Φ = 0 has a
solution Φ given by formula (5.20) with

(5.26) Q(x) =
n∏

j=1
(x− wj).

This shows that all opers L(μ) corresponding to the joint eigenvalues μ of
the Gaudin Hamiltonians have solvable monodromy representation.

Suppose that the joint spectrum of the Gaudin Hamiltonians is not sim-
ple. Then there are two different solutions w1 and w2 of the Bethe Ansatz
equations (5.7) such that the corresponding joint eigenvalues coincide; that
is, μ1 = μ2 and so L(μ1) = L(μ2). But then equation L(μ1)Φ = 0 has two
different solutions Φ1 and Φ2 of the form (5.20) with the monic polynomials
Q1(x) and Q2(x) of degree n of the form (5.26) corresponding to w1 and w2.
Therefore, Φ = Φ1 − Φ2 is also a solution of L(μ1)Φ = 0, such that the
corresponding polynomial Q(x) = Q1(x) −Q2(x) is non-zero and has degree
0 ≤ k ≤ n− 1.

It follows from our condition (5.25) that near tm+1 = ∞, any solution
of the equation L(μ1)Φ = 0 has the expansion (up to a non-zero scalar)
either yrm/2(1 + O(y)) or y(−rm+1+2)/2(1 + O(y)), where y = x−1. Therefore,
if L(μ1)Φ = 0 has a solution of the form (5.20) with Q(x) of degree 0 ≤
k ≤ n− 1, then rm+1 = n− k + 1. But this is impossible because (5.25) also
implies that rm+1 > 2n. This shows that the joint spectrum of the Gaudin
Hamiltonians is simple.

Conversely, suppose that a PGL2-oper L(μ) = ∂2
x − v(x) has regular

singularities with residues �(−ri + 1) at ti, i = 0, . . . ,m + 1, where ri ∈
Z≥1, i = 0, . . . ,m+1. Then the ri’s must satisfy equation (5.25), which implies
that rm+1 /∈ {2, 3, . . . , n + 1}. Therefore, by Lemma 5.7, for all {ti}, the
PGL2-oper L(μ) is equal to the Miura transformation (5.9) of u(x) given
by formula (5.10) with λi = −ri, with all wj ’s being distinct and different
from the ti’s. But then the set of numbers w = {wj} appearing in u(x) must
satisfy Bethe Ansatz equations (5.7), so the corresponding Bethe vector vw
is an eigenvector of the Gi’s with the eigenvalues μi’s. Since we know from
above that these vectors form an eigenbasis, this completes the proof.

Remark 5.14. 1. We hope that this statement can be proved within the
framework of the analytic Langlands correspondence, using the results of
Subsection 4.3.

2. The above argument showing the simplicity of the joint spectrum of
the Gaudin Hamiltonians can also be used to prove the simplicity of the joint
spectrum of the Gaudin Hamiltonians in the setting of Subsection 5.6.
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3. The above proof shows that the statement of Theorem 5.13 remains true
if the ri’s are arbitrary positive real numbers constrained by equation (5.25). If
ri is not an integer, one cannot define an action of SL(2,R) on a completion of
Δ(−ri). But it can be interpreted as a unitary representation of the universal
cover of SL(2,R), and according to Remark 2.22, such representations can
also included into the framework of the analytic Langlands correspondence.

5.9. Chiral analytic Langlands correspondence

In this subsection we consider another setting in which the analytic Langlands
correspondence can be linked to a particular Gaudin model. Let F = C,
X = P1 with ramification points t0, . . . , tm, tm+1 = ∞, and suppose that
the representations Vj of G are holomorphic. Then in the definition of the
Hecke operator Hx,λ we may replace the integral

∫
Zλ,x(P ) ψ(Q)dQdQ over

the complex variety Zλ,x(P ) by the “contour” integral
∫
C ψ(Q)dQ, where

C ⊂ Zλ,x(P ) is a real cycle, and by Cauchy’s theorem the result is stable
under deformations of C. Since Vj are not Hermitian, the corresponding space
H will not carry a Hermitian form, but we may still consider eigenvectors and
eigenvalues of Hecke operators (in the spirit of Remark 2.37).

Admittedly, there are very few holomorphic irreducible representations of
G (only the finite dimensional ones), but we may in fact take Vj to be certain
representations of the Lie algebra g = LieG which do not necessarily integrate
to G. We call this setting the chiral analytic Langlands correspondence.
Let us show how it works in an example with G = SL2.

For λ ∈ C let Δ(λ),∇(λ) be the Verma and contragredient Verma mod-
ules over sl2 with highest weight λ. For 0 ≤ i ≤ m take Vi := ∇(λi), and let
Vm+1 = Δ(λm+1)∗ be the graded dual of Δ(λm+1), i.e., the contragredient
Verma module with lowest weight −λm+1. Assume that

∑m
i=0 λi−λm+1 = 2n

and that λm+1 = r − 1, where n, r ∈ Z≥0. Then the space

H := Hom(V ∗
m+1, V0 ⊗ · · · ⊗ Vm) = Hom(Δ(r − 1),∇(λ0) ⊗ · · · ⊗ ∇(λm))

has dimension
(n+m

m

)
; it is the space of singular vectors in V0 ⊗ · · · ⊗ Vm of

weight r−1. We realize ∇(λ) as C[y] with the action of g given by (3.3). Then
the space H is realized as the space of homogeneous polynomials of degree n

in y0, . . . , ym which are invariant under simultaneous translations. Consider
also the space

H′ := Hom(Δ(−r − 1),∇(λ0) ⊗ · · · ⊗ ∇(λm))
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of dimension
(n+r+m

m

)
; it is the space of homogeneous polynomials of y0, . . . , ym

of degree n + r. Then we can define the (modified) chiral Hecke operator
Hchir

x : H → H′ by analogy with (2.6), replacing integration over C by contour
integration:

(5.27) (Hchir
x ψ)(y0, . . . , ym) =

∮
ψ

(
t0 − x

s− y0
, . . . ,

tm − x

s− ym

) m∏
j=0

(s− yj)λjds,

where
∮
f(s)ds denotes the residue of f(s)ds at ∞. Note that this residue is

well defined since
∑m

i=0 λi = n+r−1 ∈ Z, hence the integrand is single-valued
near ∞. So this formula makes sense even though the g-modules Vi do not
integrate to G.

Note that we have an inclusion ι : Δ(−r− 1) ↪→ Δ(r− 1), so we have the
restriction operator R : H → H′.

Lemma 5.15. Under suitable normalization of ι, we have

(Rψ)(y0, . . . , ym) =
∮

ψ

( 1
s− y0

, . . . ,
1

s− ym

) m∏
j=0

(s− yj)λjds.

Proof. The proof is similar to the proof of Lemma 2.26. We have

Rψ = Δm+1( f
r

r! )ψ =
∮

Δm+1(exp(s−1f)ψ)sr−1ds.

The 1-parameter group generated by f ∈ sl2 consists of fractional linear
transformations z �→ z

tz+1 . Therefore

Rψ =
∮

ψ

(
y0s

s− y0
, . . . ,

yms

s− ym

)
s
r−1−

∑
j
λj

m∏
j=0

(s− yj)λjds =

∮
ψ

( 1
s− y0

, . . . ,
1

s− ym

) m∏
j=0

(s− yj)λjds.

By Lemma 5.15, Hchir
x ∼ xnR, x → ∞. Also it is easy to show that

Hchir
x satisfies the universal oper equation of Proposition 3.10(i) (the proof is

the same as for Hx), hence it commutes with Gaudin Hamiltonians. So the
discussion of Section 5.2 implies

Proposition 5.16. The chiral Hecke operator is the composition of the re-
striction operator and the Baxter Q-operator:

Hchir
x = RQ(x).
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5.10. Infinite dimensional generalizations, including principal
series

The above discussion shows that tamely ramified analytic Langlands corre-
spondence in genus 0 may be viewed as a generalization of the Gaudin model
in which we can consider the action of Gaudin Hamiltonians on tensor prod-
ucts of any admissible representations of a real reductive group G, so that the
space of states can be infinite dimensional. For instance, in the case G = SL2
and F = R (Subsection 5.2), we may replace finite dimensional representa-
tions Vi of SU(2) by principal series representations Vi of SL2(R) (taking the
real locus X(R) = RP1 ⊂ X(C) = CP1 to be real rather than quaternionic).
Then the Gaudin operators {Gi} act as self-adjoint unbounded strongly com-
muting operators on the Hilbert space

H := MultSL2(R)(V∗
m+1,V0 ⊗ · · · ⊗ Vm).

So the spectral problem for {Gi} becomes analytic and can no longer be solved
by algebraic Bethe Ansatz. Nevertheless, the description of the spectrum of
the operators {Gi} in terms of monodromy-free opers (see Theorem 5.5) can
be generalized: the spectrum is parametrized (at least conjecturally) by the set
of balanced opers with prescribed residues, as explained in Subsection 4.3.2.
Namely, we have the following result.

Theorem 5.17. The set of joint joint eigenvalues μi of the Gaudin operators
Gi on the Hilbert space MultSL2(R)(V∗

m+1,V0 ⊗ · · · ⊗ Vm) is in one-to-one
correspondence with the set of Λ-balanced opers on P1 of the form

L(μ) = ∂2
x −

m∑
i=0

λi(λi + 2)
4(x− ti)2

−
m∑
i=0

μi

x− ti
,

subject to the equations

(5.28)
m∑
i=0

μi = 0,
m∑
i=0

tiμi = λm+1(λm+1 + 2)
4 −

m∑
i=0

λi(λi + 2)
4 ,

where λj are the parameters of the principal series representations Vj :=
L2(RP1, |K|−

λj
2 ) and Λ = (Λ0, . . . ,Λm+1), Λj = −ie

πiλj
2 .

Indeed, this follows from the fact that the Gaudin operators {Gi} strongly
commute with Hecke operators, hence have the same spectral decomposition,
and the latter is described in Subsection 4.3.2.
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Similarly, one can generalize to the infinite dimensional case the setting
of Subsection 5.8. Namely, we may consider the situation when Vi = Δ̂(−ri),
0 ≤ i ≤ p, and Vi = Δ̂(−ri)∗ for p+1 ≤ i ≤ m+1, i.e., we have p holomorphic
discrete series representations and m− p+ 1 antiholomorphic ones. Then the
Hilbert space H is infinite dimensional if 1 ≤ p ≤ m − 1, so the problem is
again no longer algebraic. Since discrete series representations are composition
factors of (non-unitary) principal series representations, one can presumably
generalize the analysis of Subsection 4.3.2 to describe the spectrum in this
case, but we will not discuss this here.

5.11. Double Gaudin model

The discussion of the analytic Langlands correspondence for a group G on P1

with parabolic points over C in Subsection 3.3 can be framed as a “double”
of the Gaudin model for the Lie algebra g in which we combine holomorphic
and anti-holomorphic degrees of freedom.

For concreteness, consider the case of SL2. Then we associate to the points
ti, i = 0, 1, . . . ,m+1, with tm+1 = ∞ as before (these are the parabolic points)
spherical unitary principal series representations of SL2(C), which are com-
pletions of spherical Harish-Chandra bimodules, i.e., spaces of finite type
linear maps between Verma modules for sl2. We have two commuting actions
of the Lie algebra sl2 on such representations (by left and right multiplica-
tions), which we can view as holomorphic and anti-holomorphic. Therefore,
on such representations act not only the above Gaudin Hamiltonians Gi but
also their complex conjugates Gi. Hence it is natural to form the generating
series S(x) given by formula (3.6) and its complex conjugate S(x).

We have proved in [EFK2, EFK3] that the Hecke operator Hx (which
is a section of K−1/2 ⊗ K

−1/2 on P1) satisfies a system of two second-order
differential equations (3.7), see Corollary 3.12.

The corresponding eigenvalues of the Hecke operators are single-valued
C∞ solutions of this system with S(x) and S(x) replaced by the correspond-
ing eigenvalues v(x) and v(x). As explained in Subsection 3.1, such single-
valued solutions exist if and only if the oper ∂2

x− v(x), where v(z) is given by
formula (5.16), has real monodromy, and such opers are called real opers.
Theorem 3.13 implies the following result.

Theorem 5.18. If {μi} is the set of joint eigenvalues of the Gaudin operators
{Gi} on the Hilbert space (2.9) then the PGL2-oper

L(μ) = ∂2
x −

m∑
i=0

λi(λi + 2)
4(x− ti)2

−
m∑
i=0

μi

x− ti
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on P1 satisfies equations (5.28) and has real monodromy. The corresponding
eigenvalues of Gi are equal to μi.

Moreover, we conjecture that there is a one-to-one correspondence be-
tween the spectrum of Gaudin operators {Gi} on this Hilbert space and the
set of such opers. This is an extension of a conjecture from [EFK3] from the
case when all λi = −1 to the case when λi ∈ −1 + R

√
−1. In the case when

m = 3 or 4 it is proved in the same way as in [EFK3].

5.12. q-deformation of the Gaudin model

The q-deformation of this Gaudin model is known as the XXZ model. The
role of the affine Kac-Moody algebra ŝl2 is now played by the corresponding
quantum affine algebra Uq(ŝl2).34 In particular, the role of the representations
Vλk

attached to the points tk is now played by the corresponding evaluation
representations of Uq(ŝl2), and the role of the space H given by (5.4) is played
by the space Hq in which we replace each Vλk

by the corresponding evaluation
representation (see [FH] for more details).

The role of the generating function S(x) of the Gaudin Hamiltonians given
by formula (3.6) is now played by the transfer-matrix T(z) associated to
the two-dimensional evaluation representation of Uq(ŝl2) corresponding to z
(see [FH]).

The q-deformation of the Hecke operator Hz is now closely related to the
transfer-matrix H(z) corresponding to an infinite-dimensional representation
of a Borel subalgebra of Uq(ŝl2) called prefundamental, see [FH]. Just as in
the q = 1 case, it is equal to the product of a scalar factor that depends
only on the values of {tk} and {λk} and an operator Q(z) acting on Hq

whose eigenvalues are polynomials in z. The latter is is known as Baxter’s
Q-operator.

Moreover, there is an analogue of the second-order differential equation
(3.7). It is a second-order difference equation

(5.29) (D2 −DT(z) + 1)H(z) = 0,

where D is a shift operator, (D · f)(z) := f(zq2), i.e., D := q2z∂ . If we write
T(z) = 2 + h2z2S(z) + · · · , where q = e�, expand equation (5.29) in a power

34There is also an intermediate deformation called the XXX model, which pre-
serves the classical sl2 symmetry; its full symmetry algebra is the (doubled) Yangian
Y (sl2), which is a degeneration of Uq(ŝl2). The material of this subsection applies
mutatis mutandis to the XXX model.



418 Pavel Etingof et al.

series in �, divide by �2 and set � = 0 (i.e. q = 1), we obtain equation (3.7).
In this sense, equation (5.29) is indeed a q-deformation of equation (3.7).

The second-order difference operator in the RHS of (5.29) is known as
a q-oper for the group SL2. The notion of a q-oper has been defined for an
arbitrary simple Lie group in [FKSZ].

Relation (5.29) can be interpreted as a relation in the Grothendieck ring
of a certain category of representations of a Borel subalgebra of Uq(ŝl2), see
e.g. [FH]. It is often written in the form

(5.30) T(z) = H(zq2)
H(z) + H(zq−2)

H(z) ,

and it can be further rewritten as a q-difference equation on Q(z) known as
the Baxter TQ-relation:

(5.31) T(z) = A(z)Q(zq2)
Q(z) + D(z)Q(zq−2)

Q(z)

(here A(z) and D(z) are functions that only depend on the parameters {tk}
and {λk} of Hq, see e.g. [FH], formula (1.1)). It has been conjectured by
Baxter and proved in [FH] that the eigenvalues of Q(z) on Hq are polynomials
whose roots satisfy a q-deformation of the Bethe Ansatz equations (5.7) (see
[FH], Section 5.6).

At the level of the eigenvalues, we obtain that the Baxter TQ-relation
(5.31) expressing the eigenvalues of T(z) on Hq is a q-deformation of the
Miura transformation (5.9) expressing the eigenvalues of S(z) on H. This
was one of the key observations of [FR] (Section 1.3 and Remark 6), see also
[F1] (Section 6.8). (Moreover, both maps preserve natural Poisson structures
[FR].)

An insight of the present paper is that Baxter’s Q-operator Q(z) may be
viewed as a q-deformation of an operator closely related to the Hecke operator
Hz of the tamely ramified analytic Langlands correspondence for SL2 on P1.
There is a similar statement for an arbitrary simple algebraic group G. This
opens the door to the investigation of q-deformation of the analytic Langlands
correspondence (which we expect to exist in the ramified setting in genus 0
and 1).

5.13. q-deformation of the double Gaudin model

In conclusion, let us speculate what this q-deformation of the analytic Lang-
lands correspondence should look like for F = C and G = SL2 in the case
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of X = P1 with parabolic structures. As we explained in Subsection 5.11, for
q = 1 this is the double Gaudin model.

In the undeformed situation (with twists) we place at the parabolic points
the spherical unitary principal series representations of SL2(C), which are
completions of spherical Harish-Chandra bimodules, on which we have an
action of the Gaudin Hamiltonians Gi and their complex conjugates Gi. Hence
it is natural to form the generating series S(z) given by formula (3.6) and its
complex conjugate S(z).

As shown in Subsection 3.3 (following [EFK2, EFK3]), the Hecke operator
Hz satisfies the following system of two second-order differential equations:

(5.32) (∂2
z − S(z))Hz = 0, (∂2

z − S(z))Hz = 0.

Such a solution exists if and only if the corresponding oper has real mon-
odromy, and such opers are called real opers. Locally, the Hecke eigenvalue
can be written in the form

(5.33) Ψ0(z)Ψ1(z) + Ψ1(z)Ψ0(z),

where Ψ0(z) and Ψ1(z) are two linearly independent local solutions of equa-
tion (5.13) (see [EFK3]).

In light of the discussion of the previous subsection, we expect that the
q-deformation of this picture for 0 < q < 1 should look as follows. We also
expect that a similar picture exists for F = R, and also for elliptic curves.

1. The spherical unitary principal series representations of SL2(C) should
be replaced by their q-analogs defined in [Pu]; they are completions of spher-
ical Harish-Chandra Uq(sl2)-bimodules, which are spaces of finite maps be-
tween Verma modules for Uq(sl2).

2. We should view these as bimodules over Uq(ŝl2) via the evaluation
homomorphism. Then we can define the transfer-matrices T(z) and T(z)
which are the q-analogues of S(z) and S(z).

3. The Hecke operator Hz should be given by a suitable q-deformation
of the formulas of Subsection 2.16.4 satisfying the following universal q-oper
equations:

(5.34) (D2 −DT(z) + 1)Hz = 0, (D2 −DT(z) + 1)Hz = 0,

where D := q2z∂ , D := q2z∂ .
The challenge is to make sense of the system (5.34) which at the outset

is only well-defined if the eigenvalues of Hz extend to analytic functions in
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z and z (viewed as independent variables). We may also consider the setting
where q = e� and � is a formal variable, in which this analytic subtlety
disappears. Finally, we need to identify the property of the solutions of (5.34)
that is a q-analogue of the existence of a single-valued C∞ solution of the
oper equations.

Answering this question should lead us to the notion of a real q-oper.
We leave this interesting topic for a future paper.
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