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Classification of multiplicity free quasi-Hamiltonian
manifolds
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Abstract: A quasi-Hamiltonian manifold is called multiplicity free
if all of its symplectic reductions are 0-dimensional. In this paper,
we classify compact, multiplicity free, twisted quasi-Hamiltonian
manifolds for simply connected, compact Lie groups. Thereby, we
recover old and find new examples of these structures.
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Introduction

Consider a compact, connected Lie group K. Within the class of Hamiltonian
K-manifolds, the most basic ones are known as multiplicity-free manifolds.
These objects can be characterized in several ways, such as the fact that their
symplectic reductions are zero-dimensional or that their generic orbits are
coisotropic. In the context of classical mechanics, multiplicity-free manifolds
are intimately connected with completely integrable systems.

In the 1980s, Delzant launched a program to classify compact, multi-
plicity-free Hamiltonian manifolds. When K is a torus that acts effectively,
he proved in [Del88] that such a manifold M is uniquely determined by its
momentum image PM . Furthermore, Delzant was able to provide a char-
acterization of the sets that take the form of PM : they are precisely the
simple polytopes, i.e., polytopes which satisfy a technical integrality condi-
tion. Delzant extended his investigation to non-abelian groups of rank two in
[Del90], which led him to conjecture that, in general, M is uniquely deter-
mined by its momentum image PM , i.e., the image of the invariant momen-
tum map (see Section 2.3) and a certain lattice ΛM that encodes the principal
isotropy group.

Delzant’s conjecture was subsequently confirmed in [Kno11] with an im-
portant step due to Losev [Los09b]. Furthermore, the pairs (PM ,ΛM ) arising
this way were characterized in terms of smooth affine, spherical varieties. This
completed Delzant’s program.

Meanwhile, Alekseev, Malkin, and Meinrenken sought a way to describe
Hamiltonian actions for the loop group of K, leading to the development of the
notion of a quasi-Hamiltonian manifold [AMM98]. These finite-dimensional
K-manifolds are equipped with a momentum map that takes values in K
instead of the dual Lie algebra k∗.

In this paper, we extend the results in [Kno11] to the quasi-Hamiltonian
case, by classifying compact, multiplicity-free quasi-Hamiltonian manifolds
under the condition that K is simply connected. We also consider the case
where the momentum map is twisted by an automorphism of K. Our result is
that a compact multiplicity free quasi-Hamiltonian manifold M is classified
by a pair (P,Λ), which is compact and spherical with respect to an affine
root system (see Definition 2.5.2).

To prove this, we follow the approach in [Kno11] and first study quasi-
Hamiltonian manifolds locally over PM . More precisely, let (P,Λ) be a fixed
spherical pair. Then we show that the category of multiplicity free quasi-
Hamiltonian manifolds M with PM ⊆ P open and ΛM = Λ forms a gerbe.
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Crucial use is made of a reduction procedure to ordinary Hamiltonian mani-
folds due to Alekseev-Malkin-Meinrenken [AMM98] and Meinrenken [Mei17].

Since all automorphism groups are abelian, they form a sheaf of abelian
groups over P, called a band. To identify the band, we use the computations
in the Hamiltonian case [Kno11].

A central point is to show that the higher cohomology of this band van-
ishes whenever P is convex. This cohomology computation is more involved
than in the Hamiltonian case due to complications with affine root systems.
General properties of gerbes then imply that there exists precisely one M
with (PM ,ΛM ) = (P,Λ).

We end the paper by constructing examples of compact multiplicity free
quasi-Hamiltonian manifolds using our classification. We recover some old
examples, such as the double of a group by Alekseev-Malkin-Meinrenken
[AMM98], the spinning 4-sphere by Alekseev-Meinrenken-Woodward
[AMW02], its generalization, the spinning 2n-sphere by Hurtubise-Jeffreys-
Sjamaar [HJS06], and the quaternionic projective space due to Eshmatov
[Esh09]. We end the paper, by constructing some multiplicity free quasi-
Hamiltonian manifolds which have not yet appeared in the literature. For ex-
ample we list all multiplicity free quasi-Hamiltonian SU(2)-manifolds (twisted
and untwisted) and Eshmatov’s example is extended to all quaternionic Grass-
mannians. Most remarkable are multiplicity free quasi-Hamiltonian mani-
folds for which the momentum map is surjective. These exist for example for
K = SU(n) and K = Sp(2n).

This paper replaces the preprint [Kno16] from 2016, which is now obso-
lete. Our classification theorem has already been successfully used by Paulus
in his thesis [Pau18] to classify other interesting subclasses of multiplicity
free quasi-Hamiltonian manifolds like those of with one-dimensional momen-
tum polytope, see [Pau17, KP19]. Also the list of manifolds with surjective
momentum map has been completed, see [PVS22].

Notation a) In the entire paper, K will be a compact connected Lie group.
Whenever quasi-Hamiltonian manifolds are involved, K will additionally be
assumed to be simply connected and equipped with an automorphism k �→ τk
of K (a “twist”) and a scalar product on its Lie algebra k which is invariant
for both K and τ .

b) We adopt the following conventions: a polytope is the convex hull of a
finite subset of a finite dimensional real affine space while a polyhedron is cut
out by finitely many affine linear inequalities α1 ≥ 0, . . . , αn ≥ 0. It is well
known, that polytopes are precisely the bounded polyhedra. A polyhedral
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cone is a subset of a real vector space which is cut out by linear inequali-
ties.

c) As usual, we define the fiber product X×Z Y with respect to two maps
ϕ : X → Z and ψ : Y → Z as the set of (x, y) ∈ X×Y with ϕ(x) = ψ(y). The
fiber product is easily confused with the notation K ×L Y for an associated
fiber bundle. The latter denotes by definition the orbit space (K×Y )/L where
K is a group, L is a subgroup, Y is a set with an L-action, and L acts on
K × Y via l · (k, y) := (kl−1, ly).

Part 1
Local root systems and cohomology
The principal purpose of this part is to state and prove the Vanishing The-
orem 1.4.1 which forms the central technical step in the proof of the Classi-
fication Theorem 2.6.1. In fact, the material of Sections 1.2, 1.3, and 1.4 is
only used in the proof of Theorem 2.6.1.

1.1. Affine root systems

In this section we set up notation for (affine) root systems. In Section 2.2 they
will be used to describe the geometry of the (twisted) conjugation action
of a compact connected Lie group. They also control the automorphisms
of multiplicity free quasi-Hamiltonian manifolds (see Theorem 2.6.4). In the
latter case, the root systems are more complicated in that they don’t have
to be irreducible and that both finite and affine root systems may occur as
irreducible components. Note also that our root systems carry a fixed metric
as part of the structure. Thus the approach is very similar to (and inspired
by) the treatises [Mac72, Mac03] of Macdonald.

Let a be an Euclidean vector space, i.e., a finite dimensional R-vector
space equipped with a positive definite scalar product 〈·, ·〉 and let a be an
affine space for a, i.e., a non-empty set equipped with a free and transitive
a-action

(1.1.1) a× a → a : (x, t) �→ x + t.

The set of affine linear functions on a is denoted by L(a). Since a carries a
metric every α ∈ L(a) has a gradient α := ∇α ∈ a. It is characterized by the
equation

(1.1.2) α(x + t) = α(x) + 〈α, t〉, x ∈ a, t ∈ a.
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This way L(a) is an extension

(1.1.3) 0 → R → L(a) ∇→ a → 0.

Every non-constant α ∈ L(a) defines an affine hyperplane Hα := {α = 0}
with normal vector α.

Similarly, let M(a) be the group of isometries of a. For every w ∈ M(a)
let w ∈ O(a) be its linear part. It is characterized by the equation

(1.1.4) w(x + t) = w(x) + w(t), x ∈ a, t ∈ a.

This way, we obtain a short exact sequence

(1.1.5) 0 → a → M(a) → O(a) → 1.

For a subgroup W of M(a) let W be its image in O(a).
A reflection is an isometry s ∈ M(a) whose fixed point set as is an affine

hyperplane. Conversely, if α ∈ L(a) is non-constant then there is a unique
reflection sα with asα = Hα given by

(1.1.6) sα(x) = x− α(x)α∨, x ∈ a with α∨ := 2
‖α‖2 α ∈ a.

The induced action on L(a) is given by

(1.1.7) sα(β) = β − 〈β, α∨〉α, β ∈ L(a).

After these preliminaries, affine root systems are defined as follows:

1.1.1 Definition. A set Φ ⊂ L(a) \R of non-constant affine linear functions
is an affine root system if it has the following properties:

a) Rα ∩ Φ = {α,−α} for all α ∈ Φ.
b) 〈α, β∨〉 ∈ Z for all α, β ∈ Φ.
c) sα(Φ) = Φ for all α ∈ Φ.
d) Φ := {α ∈ a | α ∈ Φ} is finite.

The Weyl group of Φ is the subgroup WΦ ⊆ M(a) generated by all reflec-
tions sα, α ∈ Φ.

This definition differs slightly from Macdonald’s in two respects: First,
condition a) says that we consider only reduced root systems. Secondly, we
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do not assume L(a) to be spanned by Φ or that Φ is infinite. In fact, Φ = ∅
is also a root system.

If Φ is an affine root system then for any x ∈ a

(1.1.8) Φx := {α ∈ Φ | α(x) = 0}

is a finite root system. Its Weyl group is the isotropy group of x in WΦ (see
e.g. [Bou68, V, §3, Prop. 1 (vii)]).

It is well known that every root system has a unique orthogonal decom-
position

(1.1.9) a = a0 × a1 × · · · × an and Φ = Φ1 ∪ · · · ∪ Φn,

such that the Weyl group WΦ = WΦ1 × · · · × WΦn acts trivially on a0 and
Φi ⊂ L(aν) is irreducible for ν ≥ 1. Each pair (aν ,Φν) with ν ≥ 1 corresponds
either to a finite, to an affine, or to a twisted affine Dynkin diagram (see, e.g.,
[Kac90, Ch. 4]).

A chamber of Φ (or WΦ) is a connected component of a \ ⋃
α∈Φ Hα. Its

closure is called an alcove. It is known, that WΦ acts simply transitively on
the set of alcoves and that each alcove A is a fundamental domain for WΦ.
The reflections about the walls of A are called simple (with respect to A).
They generate WΦ as a group.

If the factor Φν , ν ≥ 1, is finite then its alcoves are simplicial cones.
Otherwise, they are simplices. So in general, an alcove is a product of an
affine space, a simplicial cone and a finite number of simplices.

The set Φ ⊆ a of gradients of affine roots is a finite, but possibly non-
reduced root system (e.g., if the root system is of type A(2)

2n ). Its Weyl group
WΦ is the image WΦ of WΦ in O(a).

If Λ ⊆ a is a lattice we will denote its dual lattice {χ ∈ a | 〈Λ, χ〉 ⊆ Z}
by Λ∨.

1.1.2 Definition. Let Φ ⊂ L(a) be an affine root system. A weight lattice
for Φ is a lattice Λ ⊆ a with

(1.1.10) Φ ⊂ Λ and Φ∨ ⊂ Λ∨.

The pair (Φ,Λ) is called an integral affine root system.

Let (Φ,Λ) be an integral affine root system on a. Then its Weyl group
will also act on the compact torus A := a/Λ∨. The character group Ξ(A) can
be identified with Λ. More specifically, to χ ∈ Λ we attach the character

(1.1.11) χ̃(a + Λ∨) := e2πi 〈χ,a〉.
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For ease of notation, we are going to set α̃ := α̃ for α ∈ Φ. Dually, every
η ∈ Λ∨ defines the cocharacter

(1.1.12) η̃ : U(1) → A : e2πi t �→ tη + Λ∨.

Again, for α ∈ Φ we write α̃∨ := α̃∨. Then we have the formula

(1.1.13) χ̃(α̃∨(u)) = u〈χ,α
∨〉 for all χ ∈ Λ, α ∈ Φ, u ∈ U(1).

Note that this implies in particular

(1.1.14) α̃(α̃∨(u)) = u2 for all α ∈ Φ, u ∈ U(1).

The action of a reflection sα ∈ WΦ is given by the formula

(1.1.15) sα(a) = a · α̃∨(α̃(a))−1 for all a ∈ A.

1.2. Local root systems

In this section we introduce a localized version of a root system.

1.2.1 Definition. Let P be a subset of the affine space a. A local root system
on P is a family Φ(∗) = (Φ(x))x∈P and a lattice Λ ⊆ a with:

a) For each x ∈ P, the pair (Φ(x),Λ) is an integral affine root system on a.
b) Every x ∈ P has a neighborhood U ⊆ P such that Φ(y) = Φ(x)y for all

y ∈ U .
c) Every α ∈ Φ(x), x ∈ P, has α|P ≥ 0 or α|P ≤ 0.

Observe that b) applied to x = y means α(x) = 0 for all α ∈ Φ(x). Hence
each of the root systems Φ(x) is finite.

If (Φ,Λ) is an integral affine root system and P is a subset of an alcove
then the pair ((Φx)x∈P ,Λ) is a local root system. Systems of this type are
called trivial.

1.2.2 Definition. A non-empty subset P ⊆ a is called solid if its interior
P0 (i.e., the largest open subset contained in P) is dense in P. Observe that
if P is convex then P is solid if and only if dimP = dim a if and only if P
spans a as an affine space.

The goal of this section is to prove the following triviality criterion.

1.2.3 Proposition. Let (Φ(∗),Λ) be a local root system on P ⊆ a and let
W ⊆ M(a) be the subgroup generated by all local Weyl groups W (x) of Φ(x)
with x ∈ P. Assume:
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a) The subset P is convex and solid.
b) Every W -orbit meets P in at most one point.

Then the local root system is trivial.

1.2.4 Remark. In the application later, a will be a subspace of an affine
space t which carries an affine reflection group W̃ such that each element of
W (x) is induced by an element of W̃ and such that P lies in an alcove of W̃ .
In this setting, condition b) in Proposition 1.2.3 holds since it already holds
for W̃ -orbits in a.

The proof will proceed in two steps. First we consider the corresponding
system of Weyl groups (W (x))x∈P and prove that it is trivial under similar
assumptions. From that we deduce that the local root system itself is trivial.

The reflection group analogue for Definition 1.2.1 is:

1.2.5 Definition. A local reflection group on a subset P ⊆ a is a family
W (∗) = (W (x))x∈P with the following properties:

a) W (x) is a reflection group on a for each x ∈ P.
b) Every x ∈ P has a neighborhood U ⊆ P such that W (y) = W (x)y for

all y ∈ U where W (x)y is the isotropy group of y inside W (x).
c) For every reflection s ∈ W (x), x ∈ P, the set P lies entirely in one of

the two closed halfspaces determined by the reflection hyperplane as.

Again condition b) implies that x is a fixed point of W (x) and therefore
that W (x) is a finite reflection group.

If Φ(∗) is a local root system then its system of Weyl groups (W (x))x∈P
forms a local reflection group. Moreover, if W is an affine reflection group on
a and P a subset of an alcove then the family of isotropy groups (Wx)x∈P
is a local reflection group on P. These local reflection groups will be called
trivial.

The main tool for showing triviality is the following classical criterion
for a given set of reflections to be the set of simple reflections of an affine
reflection group.

1.2.6 Lemma. Let α1, . . . , αn ∈ L(a) be non-constant affine linear functions
with:

a) For any i �= j, the angle between αi and αj equals π − π
� with � ∈

Z≥2 ∪ {∞}.
b) There is a point x ∈ a with αi(x) > 0 for all i = 1, . . . , n.
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Let W ⊆ M(a) be the group generated by the reflections sα1 , . . . , sαn. Then
W is an affine reflection group,

(1.2.1) A := {x ∈ a | α1(x) ≥ 0, . . . , αn(x) ≥ 0}

is an alcove for W , and the reflections sα1 , . . . , sαn are the simple reflection
of W with respect to A.

Proof. Condition b) implies that A is a solid polyhedron. Let, after renumber-
ing, α1, . . . , αm be the non-redundant functions defining A, i.e., those whose
intersection {αi = 0} ∩A is of codimension 1 in A. Then a classical theorem
(see e.g. Vinberg [Vin71, Thm. 1] for a much more general statement) asserts
that, under condition a), sα1 , . . . , sαm are the simple reflections for an affine
reflection group W and that A is a fundamental domain. So, it remains to
show that m = n. Suppose not. Then αm+1 would be redundant. This im-
plies that there are real numbers c1, . . . , cm ≥ 0 such that αm+1 =

∑m
i=1 ciαi.

From a) we get that

(1.2.2) 〈αi, αm+1〉 = ‖αi‖‖αm+1‖ · cos
(
π − π

�

)
≤ 0

for i = 1, . . . ,m and therefore the contradiction 〈αm+1, αm+1〉 ≤ 0.

The triviality criterion for local reflection groups is:

1.2.7 Lemma. Let (W (x))x∈P be a local reflection group on P ⊆ a. Let W
be the group generated by all W (x), x ∈ P. Assume:

a) P is convex and solid.
b) Every W -orbit in a meets P in at most one point.

Then W is an affine reflection group with W (x) = Wx for all x ∈ P.

Proof. Let me first remark that it is important to keep in mind that the var-
ious reflection hyperplanes might not meet within P. Typical is the situation
of figure (2.7.15) where the shaded area is P and the local Weyl group at
each vertex is generated by the reflection about the dashed lines through the
vertex.

In a first step we claim that

(1.2.3) W (x)y = W (y)x for all x, y ∈ P .
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Indeed, let l = [x, y] ⊆ a be the line segment joining x and y. Then l ⊆ P
since P is convex. For any z ∈ l let

(1.2.4) W (z)l := {w ∈ W (z) | wu = u for all u ∈ l}

Then

(1.2.5) W (u)l = (W (z)u)l = W (z)l

for all u ∈ l which are sufficiently close to z. This means that the map
z �→ W (z)l is locally constant, hence constant, on l. Thus

(1.2.6) W (x)y = W (x)l = W (y)l = W (y)x.

Let s = sα ∈ W be a reflection with fixed point set H := {α = 0},
i = 1, 2. We claim that H does not meet P0, the interior of P inside a.
Otherwise, there would be points x, y ∈ P0 with α(x) > 0 and α(y) < 0. The
line segment joining x and y lies entirely in P0 and meets H in exactly one
point z. Moreover there is an ε > 0 such that both points z± := z ± εα are
in P0. But then z+ and z− = s(z+) would be two different points of P lying
in the same W -orbit contradicting our assumption.

The claim implies that P0, being connected, lies entirely in one of the
open halfspaces determined by H. Hence P lies entirely in one of the two
closed halfspaces determined by H.

This reasoning applies, in particular, to all reflections contained in W (x),
where x ∈ P. Thus, P is contained in a unique closed Weyl chamber C(x) ⊆ a

for W (x). This chamber determines in turn a set Σ(x) ⊂ W (x) of simple re-
flections. It is well-known that for every y ∈ C(x) the set Σ(x)y := {s ∈ Σ(x) |
sy = y} is a set of simple reflections for W (x)y. Therefore equation (1.2.3)
implies that

(1.2.7) Σ(x)y = Σ(y)x for all x, y ∈ P .

Now let Σ be the union of all Σ(x), x ∈ P. Then

(1.2.8) Σ(x) = {s ∈ Σ | sx = x}

for all x ∈ P. Indeed, let s ∈ Σ with sx = x. Then s ∈ Σ(y) for some y ∈ P.
Thus, s ∈ Σ(y)x = Σ(x)y ⊆ Σ(x).

For each s ∈ Σ choose affine linear functions αs with s = sαs and such
that αs ≥ 0 on P. We are going to show that {αs | s ∈ Σ} satisfies the
assumptions of Lemma 1.2.6.
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Let s1 �= s2 ∈ Σ. Put αi := αsi and Hi := {αi = 0}. Assume first that
H1 and H2 are parallel. Then α1 = cα2 with c �= 0 and we have to show that
c < 0. The functions αi vanish, by construction, at some points xi ∈ P. Put
t := x1 − x2 ∈ a. Then 〈α1, t〉 = −α1(x2) < 0 and 〈α2, t〉 = α2(x1) > 0 which
shows c < 0.

Now assume that H1 and H2 are not parallel. Then E := H1 ∩ H2 is a
subspace of codimension two. Let W ′ ⊆ W be the dihedral group generated
by s1 and s2 and let θ be the angle between α1 and α2. Then W ′ contains the
rotation r around E with angle 2θ. If r had infinite order then the union of all
〈r〉-translates of, say, H1 would be dense in a. Since P is solid that contradicts
the assumption that every W -orbit meets P at most once. Therefore W ′ is a
finite reflection group.

Now we claim that {s1, s2} is a set of simple reflections for W ′. If E∩P �=
∅ this is clear since s1, s2 ∈ Σ(x) for all x ∈ E∩P (by eqn. (1.2.8)). So assume
E ∩P = ∅. Let C ′ be the unique Weyl chamber of W ′ which contains P and
let s′i ∈ W ′, i = 1, 2, be the corresponding simple reflections. Choose functions
α′
i with s′i = sα′

i
such that α′

i ≥ 0 on P. Observe that

(1.2.9) E = {α1 = α2 = 0} = {α′
1 = α′

2 = 0} = aW
′
.

Now fix i ∈ {1, 2}. Then αi = c1α
′
1 + c2α

′
2 for some real numbers c1, c2 ≥ 0.

Suppose c1, c2 > 0, i.e., si is not simple. By construction si ∈ W (x) for some
x ∈ P. Then

(1.2.10) 0 = αi(x) = c1α
′
1(x) + c2α

′
2(x)

implies α′
1(x) = α′

2(x) = 0 and therefore x ∈ P ∩ E which is excluded.
The fact that s1 and s2 are simple reflections of W ′ implies that the angle

between α1 and α2 is of the form π − π
� with � ∈ Z≥2. Since condition b) of

Lemma 1.2.6 is obvious from P0 ⊆ A and the fact that P is solid we can
apply Lemma 1.2.6 and infer that W is an affine reflection group with alcove
A containing P and that Σ is a set of simple reflections of W . Finally, (1.2.8)
implies

(1.2.11) Wx = 〈s ∈ Σ | sx = x〉 = 〈Σ(x)〉 = W (x)

for all x ∈ P.

For the second step of the proof of Proposition 1.2.3 we analyze to what
extent a root system Φ is determined by its Weyl group W and a weight
lattice Λ.
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Choose an alcove A of W and let Σ ⊆ W be the set of simple reflections
with respect to A. For every s ∈ Σ there is a unique affine linear function
πs ∈ L(a) such that {πs = 0} = as, πs|A ≥ 0, and πs ∈ Λ is primitive.

Let (Φ,Λ) be an integral affine root system with Weyl group W and let
αs ∈ Φ be the simple root corresponding to s. Then αs = nπs with n ∈ Z>0.
Since α∨

s = 1
nπ

∨
s ∈ Λ∨ we have 〈χ, α∨

s 〉 = 1
n〈χ, π∨

s 〉 ∈ Z. Applied to χ = πs
one gets n = 1 or n = 2. Moreover, if n = 2 then 〈Λ, π∨

s 〉 = 2Z. Therefore, we
define the set of ambiguous reflections as

(1.2.12) Σa := Σa(Λ) = {s ∈ Σ | 〈Λ, π∨
s 〉 = 2Z}

and

(1.2.13) Σa(Φ) := Σa(Φ,Λ) := {s ∈ Σ | αs = 2πs}.

Then the discussion above implies that Σa(Φ) ⊆ Σa and that the set of simple
roots of Φ and therefore Φ itself is determined by Σa(Φ). To see that every
subset of Σa can be realized this way we need the following lemma

1.2.8 Lemma. Let s ∈ Σa and t ∈ Σ be W -conjugate. Then s = t.

Proof. Since s, t ∈ Σ are conjugate there is a string of simple reflections s =
s1, s2, . . . , sn = t such that the order of sνsν+1 is odd for all ν = 1, . . . , n− 1
(see e.g. [Bou68, IV, §1, Prop. 3]). For Weyl groups this happens only if πsν ,
πsν+1 span a root system type A2. Thus, if s �= t then n ≥ 2 and 〈πs2 , π∨

s1〉 =
−1 �∈ 2Z in contradiction to s being ambiguous.

1.2.9 Lemma. Fix an affine reflection group W on a, a W -invariant lattice
Λ ⊆ a, and an alcove A of W . Then the map Φ �→ Σa(Φ) is a bijection
between integral affine root systems (Φ,Λ) with WΦ = W and subsets of Σa.

Proof. It remains to prove that for every I ⊆ Σa there is a root system ΦI

with Σa(ΦI) = I. If ΦI exists at all then its set SI of simple roots has to be
{αs | s ∈ Σ} with

(1.2.14) αs :=
{

2πs if s ∈ I,

πs if s ∈ Σ \ I.

Then ΦI = WSI is a root system except that it might not be reduced. So
suppose α, β ∈ ΦI are distinct and positively proportional. By applying an
element of W and by the discussion above Lemma 1.2.8 we may assume
without loss of generality that α = πs and β = 2αs for some s ∈ Σ. In



483

particular s ∈ Σa. On the other hand there are t ∈ Σ and w ∈ W with
β = wαt. Because of s = sα = sβ = wtw−1 it follows from Lemma 1.2.8 that
s = t and therefore αs = αt. But that is impossible since α is primitive and
β is not.

Now we can finish the

Proof of Proposition 1.2.3. The system W (x) of Weyl groups forms a local
reflection group on P. Moreover, the assumptions on Φ(∗) imply the as-
sumptions of Lemma 1.2.7. Therefore, W is an affine reflection group with
W (x) = Wx for all x ∈ P. In particular, (Φ(x),Λ) is an integral affine root
system with Weyl group Wx. Let Σ ⊆ W be the set of simple reflections. Then
Σx = Σ∩Wx is a set of simple reflections for Wx. The integral affine root sys-
tem (Φ(x),Λ) is therefore determined by a subset Σa(x) := Σa(Φ(x)) ⊆ Σa.
Now the same argument as for (1.2.3) also shows

(1.2.15) Φ(x)y = Φ(y)x for all x, y ∈ P .

This implies that whenever s ∈ Σx∩Σy then s ∈ Σa(x) if and only if s ∈ Σa(y).
Thus, the union Σa(∗) :=

⋃
x∈P Σa(x) has the property that Σa(∗) ∩ Σx =

Σa(x) for all x ∈ P. Let Φ be the root system with Σa(Φ) = Σa(∗) whose
existence is guaranteed by Lemma 1.2.9. Because of Σa(Φx) = Σa(Φ) ∩Σx =
Σa(x) = Σa(Φ(x)) we obtain Φx = Φ(x), as required.

1.3. The automorphism sheaf

We keep the notation of Section 1.1: (Φ,Λ) is an integral affine root system on
the affine space a with Weyl group W and fundamental alcove A. Recall the
torus A := a/Λ∨. Let, moreover, P ⊆ A be a solid subset which is additionally
assumed to be locally polyhedral, i.e., every x ∈ P has a neighborhood U ⊆ a

with P ∩ U = Q ∩ U for some polyhedron Q ⊆ a depending on x.
In this section, we consider certain maps ϕ : P → A.

a) A map ϕ : P → A is smooth if every point of P has an open neighbor-
hood U ⊆ a such that ϕ is the restriction of a smooth map ϕ̃ : U → A
to U ∩ P. Let Ĉa,x and ĈA,a be the completions of the local ring of
smooth functions (i.e., the rings of formal power series) in x ∈ a and
a ∈ A, respectively. Then a smooth map ϕ with a = ϕ(x) induces an
algebra homomorphism

(1.3.1) ϕ̂x : ĈA,a → Ĉa,x.
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In fact, any local extension ϕ̃ : U → A defines a homomorphism ̂̃ϕx :
ĈA,a → Ĉa,x which, by continuity, is independent of the choice of ϕ̃ since
P0 is dense in P. Thus ϕ̂x := ̂̃ϕx is well defined.

b) Since each tangent space of the product space a×A is canonically iso-
morphic to a⊕a, the scalar product on a induces a symplectic structure
on a× A by

(1.3.2) ω(ξ1 + η1, ξ2 + η2) = 〈ξ1, η2〉 − 〈ξ2, η1〉, with ξ1, ξ2, η1, η2 ∈ a.

Using the identifications a ∼= a ∼= a∗ one can consider ω as the canonical
symplectic form on the cotangent bundle T ∗

A = a∗ × A. A smooth map
ϕ : P → A is closed if the graph of ϕ|P0 is a Lagrangian submanifold
of a× A.

c) A smooth map ϕ : P → A is W -equivariant if for every x ∈ P the point
a = ϕ(x) is Wx-fixed (i.e., w ∈ W,wx = x ⇒ wa = a) and the induced
homomorphism (1.3.1) is Wx-equivariant.

d) A smooth map ϕ : P → A is Φ-equivariant if it is W -equivariant and

(1.3.3) α̃(ϕ(x)) = 1 for all x ∈ P and all roots α ∈ Φ with α(x) = 0,

where α̃ is as in (1.1.11).

1.3.1 Remarks. a) If P is convex, so in particular simply connected, the
notion of closedness can be rephrased: Because exp : a → A is a covering the
map ϕ can be lifted to a smooth map ϕ̃ : P → a. Because of the identification
a ∼= a∗ one can interpret ϕ̃ as a 1-form. Then it easy to see that ϕ is closed
if and only if ϕ̃ is closed as a 1-form (whence the name).

b) For α ∈ Φ let sα ∈ W be the corresponding reflection. Then sα ∈ Wx

if and only if α(x) = 0. In this case, W -equivariance implies sα(a) = a where
a = ϕ(x). This means

(1.3.4) α̃∨(α̃(a)) = 1 ∈ A

by equation (1.1.15). Applying α̃ to both sides, we see (equation (1.1.14))
that W -equivariance alone already implies

(1.3.5) α̃(a)2 = 1 ∈ R, i.e., α̃(a) = ±1.

So Φ-equivariance just means that additionally α̃(a) equals 1 instead of −1.

Now we localize these definitions.
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1.3.2 Definition. Let ((Φ(x))x∈P ,Λ) be a local system of roots on P and
U ⊆ P open. Then L

Φ(∗)
P,Λ (U) is the set of smooth and closed maps U → A

which are Φ(x)-equivariant for every x ∈ U .

Clearly L
Φ(∗)
P,Λ is a sheaf of abelian groups on P. If the local root system

is trivial and comes from an integral affine root system (Φ,Λ) we simply
write LΦ

P,Λ.

1.4. The vanishing theorem

In this section, we compute the cohomology of LΦ
P,Λ. This will be the central

step in the proof of Theorem 2.6.1.

1.4.1 Theorem. Let (Φ,Λ) be an integral affine root system on the affine
space a, let A ⊆ a be an alcove and let P ⊆ A be a convex, solid, locally
polyhedral subset. Then H i(P,LΦ

P,Λ) = 0 for all i ≥ 1.

The proof will occupy the rest of this section. We start with a reduction
step:

1.4.2 Lemma. Let Λ1,Λ2 ⊆ a be two commensurable weight lattices for Φ
(i.e. Λ1∩Λ2 is also a lattice). Then H i(P,LΦ

P,Λ1
) = H i(P,LΦ

P,Λ2
) for all i ≥ 1

Proof. By replacing Λ1 with the intersection Λ1∩Λ2 we may assume Λ1 ⊆ Λ2.
Then A1 := a/Λ∨

1 is a quotient of A2 := a/Λ∨
2 with kernel

(1.4.1) E := Λ∨
1 /Λ∨

2 ⊆ A2.

Let U ⊆ P be convex and open. Then any smooth map ϕ1 : U → A1 can
be lifted to a smooth map ϕ2 : U → A2. This lifted map ϕ2 is closed and
Φ-equivariant if and only ϕ1 is. Thus, we get a short exact sequence of sheaves

(1.4.2) 0 −→ EP → LΦ
P,Λ2 −→ LΦ

P,Λ1 −→ 0

where EP denotes the constant sheaf on P with fiber E. Since P is convex,
we have H i(P, EP) = 0 for i ≥ 1 and the assertion follows.

A weight lattice will be called of adjoint type if

(1.4.3) Λ = ZΦ ⊕ ΛW ⊆ RΦ ⊕ aW = a.

Since every weight lattice Λ is commensurable to ZΦ ⊕ ΛW Lemma 1.4.2
allows to assume that Λ is of adjoint type.
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Next, we need a method to produce sections of LΦ
P,Λ. To this end, we

define a function f on P to be smooth if it can be locally extended to a smooth
function on an open subset of a. The differential df of a smooth function f
can be considered as a smooth map P → a∗. Since the form df is closed it
follows from Remark 1.3.1 a) that ϕ := exp(∇f) defines a closed smooth map
P → A. After localizing this construction, we get a homomorphism of sheaves

(1.4.4) ε : CP → Lclosed
P,Λ

where CP is the sheaf of smooth functions on P and Lclosed
P,Λ is the sheaf of

closed maps from P to A.

1.4.3 Lemma. The homomorphism ε is surjective, i.e., all closed maps ϕ
from P to A are locally of the form

(1.4.5) ϕ(x) = exp(∇f(x))

where f is a smooth function on an open subset of P.

Proof. Let U ⊆ a be a convex open neighborhood of a ∈ P such that P ∩ U
is convex and ϕ is defined on P ∩ U . Then ϕ|P∩U lifts to a closed 1-form
ϕ̃ : P ∩ U → a

∼→ a∗ which extends to a smooth 1-form ω on U . The
derivative dω of this form vanishes on P ∩ U . The convexity of U allows us
to define the smooth function f(x) :=

∫
[a,x] ω in U where [a, x] is the line

segment from a to x. Because P ∩ U is convex this line segment lies entirely
in P∩U when x ∈ P∩U . Since dω vanishes on P∩U (the proof of) Poincaré’s
Lemma shows df |P∩U = ϕ̃.

This construction produces closed maps to A. To get W -equivariant ones
let f be a W -invariant smooth function in the sense that for each x ∈ P
the Taylor series of f in x is Wx-invariant. Then ε(f) is a W -equivariant
closed map to A. We claim that ε(f) is automatically Φ-equivariant. Indeed,
consider the continuous family ϕt = ε(tf), t ∈ R of closed maps and let α ∈ Φ
with α(x) = 0. Since α̃(ϕt(x)) ∈ {±1} (see (1.3.5)) and ϕ0(x) = 1 we get
α̃(ϕ1(x)) = 1 by continuity.

Thus, if we denote the sheaf of W -invariant smooth functions on P by
CW
P we obtain a homomorphism of sheaves

(1.4.6) εW : CW
P → LΦ

P,Λ.

The first step towards proving the vanishing theorem is:

1.4.4 Lemma. H i(P, CW
P ) = 0 for i ≥ 1.
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Proof. Since P is paracompact it suffices to show that CW
P is soft (see [Bre97,

Thm. 9.11]). To this end we claim that there is a smooth closed embedding π :
a/W ↪→ Rn with n = dim a. It suffices to prove this claim for W irreducible.
Then either W is finite in which case we can apply Chevalley’s theorem or W
is the affine Weyl group attached to a finite root system Φ0 with Weyl group
W0 (observe that for every twisted affine root system there is an untwisted one
with the same Weyl group). Then an embedding is provided by the smooth
W -invariant functions fω(x) :=

∑
w∈W0 exp(2πiω(wx)), where ω runs through

the fundamental weights of Φ0 (see, e.g., [Bou68, VI, §3.4, Thm. 1]).
Since π(P) is homeomorphic to P, it suffices to show that π∗CP is soft.

Now observe that π∗CP is a C∞
Rn-module because the Wx-invariance of a Taylor

series is preserved by multiplication with a W -invariant. Thus, π∗CP is a
module for the soft sheaf of algebras C∞

Rn and, therefore, itself soft (see [Bre97,
Thms. 9.16 and 9.17]).

Now we investigate the cokernel of (1.4.6). To this end, consider the sub-
group

(1.4.7) AΦ := {u ∈ A | α̃(u) = 1 for all α ∈ Φ}

of Φ-fixed points of A. By (1.1.15) it is contained in the subgroup AW of
W -fixed points.

Of particular interest will be the group AΦx and its component group
π0(AΦx), where x ∈ P. If y is close to x then Φy ⊆ Φx and therefore

(1.4.8) AΦx ⊆ AΦy .

This shows that there is a constructible sheaf CP on P such that π0(AΦx)
is its stalk at x and the restriction maps π0(AΦx) → π0(AΦy) are induced
by (1.4.8). Its significance is given by

1.4.5 Lemma. There is an exact sequence of sheaves of abelian groups

(1.4.9) CW
P

εW→ LΦ
P,Λ

η→ CP → 0.

Proof. Let U ⊆ P be a convex, open neighborhood of x ∈ P such that P ∩U
is convex, as well. If ϕ ∈ LΦ

P,Λ(U) then ϕ(x) ∈ AΦx , by Φ-equivariance. Thus
we can define η(ϕ)(x) to be the image of ϕ(x) in π0(AΦx).

Now let u ∈ AΦx be a representative of some element u ∈ π0(AΦx). Then
the constant map ϕ : x �→ u is a section of LΦ

P,Λ with η(ϕ) = u, which shows
that η is surjective.
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On the other hand, for any section f of CW
P , the image εW (f)(x) lies in

exp(aWx) = (AΦx)0, which shows im εW ⊆ ker η.
To show equality, let ϕ : U → A be a section of LΦ

P,Λ with η(ϕ) = 0,
i.e., ϕ(x) ∈ (AΦx)0 for all x ∈ U . Then there is a lift ϕ̃ : U → a of ϕ with
ϕ̃(x) ∈ aWx . Since ϕ̃ is smooth and closed there is a smooth function f on U
with ∇f = ϕ̃ (Lemma 1.4.3). Let f̂ be the Taylor series of f in x. Then the
Wx-equivariance of ϕ̃ implies ∇(wf̂) = ∇f̂ for all w ∈ Wx. Hence wf̂ = f̂+cw
with a constant cw ∈ R. Evaluating this at x implies cw = 0, i.e., f is in fact
Wx-invariant. Therefore, ϕ = εW (f) is indeed in the image of εW .

To calculate the cohomology of CP we need a more explicit description.
The character group of AΦ is given by

(1.4.10) Ξ(AΦ) = Λ/ZΦ.

In particular, π0(AΦ) = 0 if and only if the root lattice ZΦ is a direct summand
of Λ. More generally, we have

(1.4.11) Ξ(π0(AΦ)) = Tors(Λ/ZΦ) = Λ ∩ RΦ
ZΦ

.

Dualizing, this is equivalent to

(1.4.12) π0(AΦ) = (ZΦ)∨

Λ∨ + (RΦ)∨
,

where (ZΦ)∨ is the coweight lattice and (RΦ)∨ is the orthogonal complement
of RΦ in a.

We compute CP in two stages, the first treating the case of finite root
systems.

1.4.6 Lemma. Assume Φ is finite and Λ = ZΦ. Then CP = 0.

Proof. Let S = {α1, . . . , αn} be the set of simple roots of Φ. Since these form
a basis of a we get an isomorphism

(1.4.13) α∗ : a → Rn : x �→ (〈α1, x〉, . . . , 〈αn, x〉)

For any subset I ⊆ {1, . . . , n} let I ′ be its complement. For k ∈ {R,Z} we
set

(1.4.14) kI := {(xi) ∈ kn | xi = 0 for i ∈ I ′} ∼= k|I|
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For a fixed x ∈ P, let I := {i | αi(x) = 0}. Then α∗ maps (ZΦx)∨,
(RΦx)⊥, and Λ∨ to ZI ⊕ RI′ , RI′ , and Zn, respectively, and the claim fol-
lows from (1.4.12).

Now assume that Φ is an infinite irreducible root system with simple roots
S = {α1, . . . , αn}. The labels of S are defined as the components of the unique
primitive vector δ := (a1, . . . , an) ∈ Zn

>0 such that

(1.4.15) a1α1 + · · · + anαn = 0.

For I � {1, . . . , n} let again I ′ �= ∅ be its complement and

(1.4.16) dI := gcd{aj | j ∈ I ′}.

1.4.7 Lemma. Assume Φ is an infinite irreducible root system and Λ = ZΦ.
For any fixed x ∈ A let Cx be the stalk of CP in x and I = Ix := {i | αi(x) =
0}. Then there is a canonical isomorphism

(1.4.17) Cx = π0(AΦx) → Z/dIZ.

Moreover, this isomorphism is compatible with the restriction homomorphisms
of CP .

Proof. We keep the notation of the proof of Lemma 1.4.6. The map α∗
of (1.4.13) with αi replaced by αi identifies a with the hyperplane H of Rn

which is perpendicular to δ. Thus (1.4.12) becomes

(1.4.18) π0(AΦx) = (ZI ⊕ RI′) ∩H

(RI′ ∩H) + (Zn ∩H)

Now consider the homomorphism

(1.4.19) pI : (ZI ⊕ RI′) ∩H → Z/dIZ : (xi) �→
∑
i∈I

aixi + dIZ.

Since dI′ and dI are coprime there are a′, a ∈ Z with a′dI′ + adI = 1. Because
I ′ �= ∅, there is (xi) ∈ (ZI⊕RI′)∩H with

∑
i∈I aixi = a′dI′ . Then pI(xi) = 1,

i.e., pI is onto.
Next we claim that the kernel of pI is precisely E := (RI′ ∩H)+(Zn∩H).

Clearly RI′ ∩H ⊆ ker pI . Let (xi) ∈ Zn ∩H. Then

(1.4.20)
∑
i∈I

aixi = −
∑
j∈I′

ajxj ∈ dIZ
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shows that E ⊆ ker pI . To show the converse, let (xi) ∈ ker pI . Then, by
definition,

∑
i∈I aixi ∈ dIZ. Hence there is (yi) ∈ ZI′ with

(1.4.21)
∑
i∈I

aixi = −
∑
j∈I′

ajyj .

Now define

(1.4.22) xi :=
{
xi if i ∈ I

yi if i ∈ I ′

Then (xi) ∈ Zn ∩H with (xi) − (xi) ∈ RI′ ∩H, proving the claim. Thus pI
induces an isomorphism between π0(AΦx) and Z/dIZ.

For the final assertion, we denote I by Ix. Let y ∈ P be close enough to
x such that Iy ⊆ Ix. Then dIy |dIx . Thus, we have to show that the diagram

(1.4.23)
(ZIx ⊕ RI′x) ∩H

pIx
Z/dIxZ

[1] �→[1]

(ZIy ⊕ RI′y) ∩H
pIy

Z/dIyZ

commutes. But this follows from dIy | ai for all i ∈ Ix \ Iy.

From this we deduce:

1.4.8 Lemma. Assume Λ is of adjoint type. Then CP has a finite filtration
such that each factor is a constant sheaf supported on a face of P.

Proof. Let a = a0 × a1 × · · · × am and Φ = Φ1 ∪ · · · ∪ Φm be the unique
decomposition of (a,Φ) into a trivial part a0 and irreducible parts a1, . . . , am.
The alcove A of Φ will split accordingly as A = a0 × A1 × · · · × Am. Then
CP = C(1) ⊕ . . .⊕C(m) where C(i) is the pull-back of CAi to P. Thus it suffices
to show the assertion for C := C(i) for any i. By Lemma 1.4.6 we may also
assume that Φi is infinite. Let α1, . . . , αn ∈ Φi be the simple roots.

For any prime power pe let C[pe] ⊆ CP be the kernel of multiplication by
pe. The union C[p∞] over all e is the p-primary component of CP . Since CP
is the direct sum of its primary components it suffices to show the assertion
for C[p∞]. Now it follows from Lemma 1.4.7 that C[pe]/C[pe−1] is a constant
sheaf with stalks Z/pZ which is supported in the face

(1.4.24) {x ∈ P | αi(x) = 0 for all i with pe � ai}
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Since constant sheaves on contractible spaces have trivial cohomology, we
get:

1.4.9 Corollary. Assume Λ is of adjoint type and that P is convex. Then
H i(P,CP) = 0 for all i ≥ 1.

Next we study the kernel of εW (cf. (1.4.6)). Observe that the constant
sheaf RP is contained in the kernel. From this we get a homomorphism

(1.4.25) ε̄W : CW
P /RP → LΦ

P,Λ

1.4.10 Lemma. Let KP be the kernel of ε̄W . Then its stalk Kx at x ∈ P is
equal to Λ∨ ∩ (RΦx)∨.

Proof. Let x ∈ P and let U ⊆ P be a small convex open neighborhood.
A smooth function f on U is in the kernel of ε if and only if its gradient is
in Λ∨. Continuity implies that ∇f must be in fact constant. This implies that
f is an affine linear function with f = ∇f ∈ Λ∨. Moreover, f is a section of
CW
P if and only if f is Wx-invariant. This means f should be orthogonal to

all α ∈ Φx.

In the following lemma let Λ∨
P be the constant sheaf with stalks Λ∨ on P.

Similarly, ZHi∩P will be the constant sheaf with stalks Z on Hi ∩ P which is
then extended by zero to P.

1.4.11 Lemma. Let Λ be of adjoint type and let α1, . . . , αn be the simple
roots of Φ. Let Hi be the hyperplane {αi = 0}. Then the sheaf KP fits into an
exact sequence

(1.4.26) 0 → KP → Λ∨
P

�→
n⊕

i=1
ZHi∩P

ψ→ CP → 0.

If Φ is an infinite irreducible root system then ψ maps the generator of the
stalk ZHi∩P,x in x ∈ P to the class ai + dIZ (notation as in Lemma 1.4.7).

Proof. All sheaves are restrictions of the corresponding sheaves on A to P.
Thus we may assume that P = A. Therefore we may treat every factor of
the root system Φ separately. Thus, we may assume that Φ is either finite or
irreducible and infinite.

For x ∈ P we have to show that the stalk Kx = Λ∨ ∩ (RΦx)∨ fits into an
exact sequence

(1.4.27) 0 → Kx → Λ∨ �x→ ZIx ψx→ Cx → 0.
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First, we define �x as �x(v) := (〈αi, v〉)i∈Ix ∈ ZIx . Then Kx is the kernel of �x
by Lemma 1.4.10.

If Φ is finite then the set of all αi with i ∈ Ix is part of a dual basis of
Λ∨. Thus, �x is surjective and (1.4.27) is exact since Cx = 0 in this case by
Lemma 1.4.6.

Now assume that Φ is irreducible and infinite. Then Cx = Z/dIxZ by
Lemma 1.4.7 and we define ψx as ψx(yi) :=

∑
i∈Ix aiyi + dIxZ. Identifying a

with the hyperplane H and Λ∨ with Zn as in the proof of Lemma 1.4.7 we
have to show that

(1.4.28) Zn ∩H
�x→ ZIx ψx→ Z/dIZ → 0

is exact where �x is the projection (xi) �→ (xi)i∈Ix . Surjectivity of ψx fol-
lows again from gcd(dI , dI′) = 1. Moreover, the kernel of ψx consists of all
(yi)i∈Ix which can be extended to an n-tuple (yi)ni=1 ∈ Zn with

∑n
i=1 aiyi =

0, since this is equivalent to
∑

i∈Ix aiyi being divisible by dI (see proof of
Lemma 1.4.7).

1.4.12 Lemma. Assume Λ is of adjoint type and that P is convex. Then the
homomorphism

(1.4.29) H0(ψ) : H0(P,
⊕
i

ZHi∩P) → H0(P,CP)

is surjective.

Proof. Both sides decompose as direct sums according to the decomposition
of Φ into factors. Thus we may assume that Φ is irreducible. Then there is
nothing to prove if Φ is finite since then CP = 0. So assume that Φ is infinite.

Let p be a prime and let C[p] be the p-primary component of CP . Then
it suffices to show that the composition of H0(ψ) with the projection onto
H0(CP)[p] = H0(C[p]) is surjective.

To this end define the faces Fj ⊆ A, j ≥ 0, by the equations αi = 0 with
pj � ai. Then A = F0 ⊇ F1 ⊇ · · · is a descending chain of faces of A. Let e
be maximal with Pe := Fe ∩ P �= ∅. Then

(1.4.30) P = P0 ⊇ P1 ⊃ · · · ⊇ Pe ⊃ Pe+1 = ∅

is a chain of of closed subsets of P. Let P ′
j := Pj \ Pj+1 = P ∩ (Fj \ Fj+1).

Then the convexity of P implies that also P ′
j is convex, hence contractible.

Moreover, the explicit description of CP of Lemma 1.4.7 implies that the
restriction C′

j of C[p] to P ′
j is locally constant with fiber Z/pjZ. It follows
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that either P ′
j is empty or H0(P ′

j ,C[p]) = Z/pjZ. Therefore, a global section
of C[p] is given by a system of elements of H0(P ′

j ,C[p]) which is compatible
with the canonical restriction maps. This immediately implies H0(P,C[p]) =
H0(Pe,C[p]) = Z/peZ.

Finally, since the labels a∗ of Φ are coprime there is at least one label ai
which is not divisible by p. Then Pj ⊆ Hi ∩ P for all j ≥ 1 and ψ maps the
generator of ZHi∩P to ai + peZ ∈ H0(P,C[p]) which yields the assertion.

1.4.13 Lemma. Assume Λ is of adjoint type. Then H i(P,KP) = 0 for all
i ≥ 2.

Proof. Let T be the kernel of ψ, yielding a short exact sequence

(1.4.31) 0 → T →
⊕
i

ZHi∩P
ψ→ CP → 0.

Since Hi∩P is convex, hence contractible, the higher cohomology of
⊕

i ZHi∩P
vanishes. We already proved that H i(P,CP) = 0 for all i ≥ 1 in Corol-
lary 1.4.9. Combined with the surjectivity of H0(ψ) this implies that
H i(P,T) = 0 for all i ≥ 1. Since also H i(P,Λ∨) = 0 for all i ≥ 1, the
short exact sequence

(1.4.32) 0 → KP → Λ∨
P → T → 0

induced by (1.4.26) implies H i(P,KP) = 0 for all i ≥ 2.

Proof of Theorem 1.4.1. By Lemma 1.4.2 we may assume that Λ is of adjoint
type. Consider the short exact sequence

(1.4.33) 0 → RP → CW
P → CW

P /RP → 0.

The higher cohomology of the two sheaves on the left vanishes (see Lem-
ma 1.4.4 for the second one) and thus so does that of the right hand sheaf.
Let S ⊆ LΦ

P,Λ be the image of εW . Then we get a short exact sequence

(1.4.34) 0 → KP → CW
P /RP → S → 0

from (1.4.25). Lemma 1.4.13 implies H i(P,S) = 0 for all i ≥ 1. Finally,
Corollary 1.4.9 and the short exact sequence

(1.4.35) 0 → S → LΦ
P,Λ → CP → 0

induced by (1.4.9) imply H i(P,LΦ
P,Λ) = 0 for all i ≥ 1.
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Part 2
Multiplicity free quasi-Hamiltonian manifolds

This part constitutes the main part of the paper. Except for Section 1.1 on
affine root systems, the content of the preceding part will only be used in the
proof of the classification Theorem 2.6.1.

2.1. Quasi-Hamiltonian manifolds

Recall the definition of Hamiltonian manifolds:

2.1.1 Definition. Let K be Lie group. A Hamiltonian K-manifold is a K-
manifold M which is equipped with 2-form ω and a smooth map m : M → k∗

(the momentum map) such that

a) m is K-equivariant,
b) the 2-form ω is K-invariant, closed and non-degenerate,
c) ω(ξx, η) = 〈ξ,m∗η〉 for all ξ ∈ k, x ∈ M , and η ∈ TxM .

The concept of quasi-Hamiltonian manifolds is a multiplicative version of
Hamiltonian manifolds. It was introduced in [AMM98, §8] (see also [GS05,
§1.4] for a short survey). The main difference is that the momentum map has
values in the Lie group instead of the dual of the Lie algebra.

To define quasi-Hamiltonian manifolds one needs the Lie algebra k to be
equipped with an AdK-invariant scalar product. This allows us to identify
k∗ with k.

Not essential but natural is to consider Lie groups with a twist, i.e., a
fixed automorphism k �→ τk of K. The target of the momentum map will
then be K as a set but with K acting on it by τ -twisted conjugation:

(2.1.1) k ∗τ g := k · g · τk−1.

The set K with this action will be denoted by Kτ . To distinguish elements
of the group K from those of the space Kτ we frequently denote the latter
by kτ with k ∈ K.

Next, we need to introduce a couple of differential forms. First, let θ
and θ be the two canonical k-valued 1-forms on K induced by left and right
translation:

(2.1.2) θ(kξ) = ξ = θ(ξk) with ξ ∈ k and k ∈ K.
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These are combined to a k-valued 1-form on Kτ :

(2.1.3) Θτ := 1
2
(
θ + τ−1

θ
)
.

Explicitly

(2.1.4) Θτ (kξ) = 1
2(Ad(k)ξ + τ−1

ξ).

Using the scalar product on k one defines the canonical biinvariant closed
3-form on K

(2.1.5) χ := 1
12〈θ, [θ, θ]〉 = 1

12〈θ, [θ, θ]〉.

2.1.2 Definition. Let K be a Lie group which is equipped with a K-
invariant scalar product on k and an automorphism τ . A quasi-Hamiltonian
Kτ -manifold is a K-manifold M equipped with a 2-form ω and a smooth
map m : M → Kτ (the group valued momentum map) such that:

a) The map m : M → Kτ is K-equivariant,
b) the form ω is K-invariant and satisfies dω = −m∗χ,
c) ω(ξx, η) = 〈ξ,m∗Θτ (η)〉 for all ξ ∈ k, x ∈ M , and η ∈ TxM ,
d) kerωx = {ξx ∈ TxM | ξ ∈ k with Adm(x)(τξ) + ξ = 0}.

2.1.3 Remark. This definition originates very naturally from studying (or-
dinary) Hamiltonian actions of the twisted loop group

(2.1.6) LτK := {ϕ : R → K | ϕ(t + 1) = τϕ(t)}.

See [AMM98] for the untwisted case and [Mei17] or the first version of this
paper [Kno16] for the twisted version.

For the proof of Proposition 2.4.2 we will need the following observation:

2.1.4 Lemma. Let M be a quasi-Hamiltonian manifold, x ∈ M , and Ex :=
ker(1 + Adm(x) ◦ τ) ⊆ k. Then

(2.1.7) (kx)⊥ = kerDxm + Exx.

Proof. The inclusion “⊇” follows from part c) of Definition 2.1.2 and Exx =
kerωx (part d)). For the opposite inclusion let η ∈ (kx)⊥. Put a := m(x) and
σ := 1

2m∗(η)a−1 ∈ k. Then part c) implies σ ∈ Ex. Moreover, the equivariance
of m (part a)) implies

(2.1.8) m∗(σx) = σ ∗τ a = σa− a τσ = 2σa = m∗(η).

Thus if � := η − σx then η = � + σx with � ∈ kerDxm and σx ∈ Exx.
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2.2. Twisted conjugacy classes

In this section we recall the geometry of Kτ as a K-manifold. As sources
we use mostly the papers [Wen01], [MW04], and [Mei17]. From now on K is
assumed to be a simply connected and compact Lie group. For our take on
affine root systems see Section 1.1.

Let T ⊆ K be a maximal torus, t = LieT its Lie algebra, and Ξ(T ) its
character group. For any χ ∈ Ξ(T ) there is a unique aχ ∈ t with

(2.2.1) χ(exp ξ) = e2πi〈aχ,ξ〉 for all ξ ∈ t.

Then χ �→ aχ identifies Ξ(T ) with a lattice in t. In particular, the root system
Φ(k, t) ⊆ Ξ(T ) of k can be considered as a subset of t.

2.2.1 Theorem. Let K be a simply connected compact Lie group K and τ
an automorphism of K. Then there is a τ -stable maximal torus T ⊆ K and
an integral affine root system (Φτ ,Λτ ) on a = tτ , the τ -fixed part of t = LieT ,
with the following properties:

a) (Comparison) Let pra : t → a be the orthogonal projection. Then
Φτ = pra Φ(k, t) and Λτ = pra Ξ(T ). Moreover, Λτ = 〈Φ∨

τ 〉∨ (the weight
lattice of Φτ ).

b) (Orbit space) Let A ⊆ a be an alcove of Φτ . Then the composition

(2.2.2) c : A ⊆ a
exp−→ K → Kτ/K

is a homeomorphism.
c) (Orbits) For a ∈ A let u = exp(a),

(2.2.3) Kaτ := {k ∈ K | k ∗τ u = u},

and

(2.2.4) Φτ (a) := {α ∈ Φτ | α(a) = 0}.

Then Kaτ is a connected subgroup of K with maximal torus exp a and
root datum (Φτ (a),Λτ ).

Proof. Morally, all assertions are contained in the papers [Wen01], [MW04],
and [Mei17] but it is a bit unclear to which degree of generality they are
proven. Unproblematic is the case when K is simple and τ is a diagram
automorphism, i.e., is induced by an automorphism of the Dynkin diagram:
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Parts a) and b) follow from the discussion in [MW04, §3] while c) is [MW04,
§4].

The general case follows easily.
Step 1: Reduction to “K simple”. If K decomposes into a nontrivial prod-

uct K1 ×K2 with τ -invariant factors then all assertions reduce to the factors
Ki. So assume that this is not the case. Then τ permutes the simple factors
of K cyclically. Thus we may assume that K = K0×· · ·×K0 (with m simple
factors) and that τ acts as

(2.2.5) τ(k1, k2, . . . , km) = (k2, . . . , km,
τ0k1)

where τ0 ∈ AutK0. The τ -twisted action then has the form

(2.2.6) (ki) (gi) τ(ki)−1 = (k1g1k
−1
2 , . . . , km−1gm−1k

−1
m , kmgm

τ0k−1
1 ).

It follows that the twisted action of 1×Km−1
0 ⊆ K is free with quotient map

(2.2.7) Kτ → K0τ0 : (g1, . . . , gm) �→ g1 . . . gm

which is equivariant with respect to the first copy of K0. This implies easily
that T = Tm

0 , a = a0 := t
τ0
0 diagonally embedded in am0 ⊆ t, Λτ = Λτ0 , and

Φτ = m∗Φτ0 have all required properties, where (m∗α)(a) := 1
mα(ma).

Step 2: Reduction to “τ diagram automorphism”. Fix a maximal torus
T0 ⊆ K and consider all diagram automorphism with respect to T0 (and a
choice of positive roots). Since these represent all classes of OutK there is
h ∈ K and a diagram automorphism τ0 with τ = Ad(h) ◦ τ0. Let A0 be an
alcove for Φτ0 . Then, by b), there are a ∈ A0 and t ∈ K with h = t ∗τ0 u
where u := exp a. Then a short calculation yields

(2.2.8) τ = Ad(t) Ad(u)τ0 Ad(t)−1.

The automorphism τ1 := Ad(u)τ0 = τ0 Ad(u) is intertwined with τ0 via right
translation by u. So, Φτ1 is the root system Φτ0 translated by −a living on
the same torus T1 = T0. Finally, put T = Ad(t)T0 and define Φτ on T by
“transport of structure”.

2.2.2 Remark. The quadruple (T, a,Φτ ,Λτ ) is actually uniquely determined
by K and τ up to conjugation by Kτ = Kτ . To see this, observe that a is,
by c), a Cartan subspace of kτ , hence unique up to conjugation by Kτ . Then
there is only one choice for T namely the centralizer of a in K. For this one
has to prove that a is regular, i.e., no root of K vanishes on a. Since aτ with
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a ∈ exp a and τ yield the same subspace a one may assume that τ is a diagram
automorphism. But then a is defined by the equalities α = τα where α runs
through all simple roots of K. Thus a contains the sum of the fundamental
coweights which clearly has a nonzero scalar product with every root. Finally
assertion b) determines an alcove A. Then Φτ and Λτ are again determined
by property c).

Next we describe the local structure of Kτ . For a ∈ A let Ca := R≥0(A−a)
be the tangent cone of A in a. It is a Weyl chamber of LieKaτ .

2.2.3 Corollary. Keep the notation from Theorem 2.2.1 and let a ∈ A.
There exists an open neighborhood U of a in A such that U − a is an open
neighborhood of 0 in Ca and such that

(2.2.9) K ×L lU−a
∼−→ (Kτ)U : [k, ξ] �→ k ∗τ (exp(ξ) exp(a))

is a K-diffeomorphism where L = Kaτ , lU−a := l×Ca (U − a), and (Kτ)U :=
Kτ ×A U .

Proof. Consider the twisted orbit Y := K ∗τ u of u := exp(a) in Kτ . The
isotropy group of u is L. Because of τ(u) = u we have u∗τ u = u and therefore
u ∈ L. Then it has been shown in [Mei17, Prop. 2.5] that Lτ ⊆ Kτ is a slice
of Y in u. This means that Lτ is L-stable and that it is transversal to Y in
u. The slice theorem implies that K ×L Lτ → Kτ : [k, lτ ] �→ (k ∗τ l)τ is a
diffeomorphism on a K-invariant neighborhood of K ×L {u}.

Now observe that l ∈ L means lu τl−1 = l ∗τ u = u and therefore
τ l = u−1lu. Hence the τ -twisted action of L on itself is conjugation twisted
by Adu−1. Thus, the map Lτ → L : lτ �→ lu−1 intertwines the twisted conju-
gation on L with the usual conjugation action. Moreover, it sends u to e ∈ L.
This implies that the map K ×L L → Kτ : [k, l] �→ k ∗τ (lu) is a diffeomor-
phism near K ×L {e} where L acts on itself by conjugation. The assertion
follows now from the fact that exp : l → L is a diffeomorphism in a small
open neighborhood lU−a of 0.

2.2.4 Remarks. a) The type of the root system Φτ depends only on the
image τ of τ in Out(K). If K is simple let Xn with X ∈ {A,B,C,D,E,F,G}
be the type of the Dynkin diagram of K. Then Φτ is the affine root system
of type X

(r)
n in the notation of [Kac90] where r ∈ {1, 2, 3} is the order of τ .

The general case is reduced to this one by the first reduction in the proof of
Theorem 2.2.1.

b) As seen in the proof of Theorem 2.2.1, multiplying τ with Adu, where
u = exp(a) with a ∈ A results in a translation of the root system Φτ by −a.
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Accordingly the alcove A will also be translated which means that 0 may
no longer be a vertex. Take, e.g., K = SU(2) and let τk = k (complex
conjugation). Then τ is also conjugation by j :=

( 0 −1
1 0

)
. Thus we can take

T = SO(2) and have a = t = Rj. Since AidK
= [0, π]j and j = exp(π2 j) we

have Aτ = AidK
− π

2 j = [−π
2 ,

π
2 ]j. Thus expAτ is a fundamental domain for

the twisted action k ∗τ g = kgk
−1 = kgkt.

2.3. The local structure of quasi-Hamiltonian manifolds

Now we describe how to transfer the results on the local structure of Kτ
to quasi-Hamiltonian manifolds. Thereby we follow mostly [AMM98] and
[Mei17].

Let m : M → Kτ be the momentum map of a quasi-Hamiltonian mani-
fold. Then the inverse of the homeomorphism c : A → Kτ/K of (2.2.2) yields
a map m+ = c−1 ◦ π ◦m, the invariant momentum map, which fits into the
commutative diagram

(2.3.1)
M

m

m+

Kτ

π

A c
Kτ/K

The image m+(M) ⊆ A will be called the momentum image of M and will
be denoted by PM . Our first goal is to describe M locally over PM .

Let a, L and U be as in Corollary 2.2.3 and assume m+(M) ⊆ U . Put

(2.3.2) logLM := M ×Kτ l = M ×(Kτ)U lU−a

(with respect to the map l → Kτ : ξ �→ exp(ξ) exp(a)). Then (2.2.9) shows
that

(2.3.3) K ×L logLM → M : [k, (m, ξ)] �→ km

is a homeomorphism. Using the two projections ι : logLM ↪→ M and m0 :
logLM → l ∼= l∗ one defines the 2-form ω0 = ι∗ω −m∗

0ω̃ on logLM where ω̃
is the 2-form on l which was defined in [AMM98, Lemma 3.3].

2.3.1 Remark. Let (M0,m0, ω0) be a Hamiltonian K-manifold. Then com-
pletely analogously to m+ one can define the invariant momentum map (m0)+
for M0. It has values in a Weyl chamber t+ inside the dual Cartan subalgebra
t∗ of k. For details see [Kno11, Eqn. (2.1)].
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2.3.2 Theorem. Let a, L and U be as in Corollary 2.2.3.

a) Let (M,m,ω) be a quasi-Hamiltonian Kτ -manifold with m+(M) ⊂ U .
Then the triple (logLM,m0, ω0) is a Hamiltonian L-manifold.

b) logL is an equivalence of the category of quasi-Hamiltonian Kτ -mani-
folds M with m+(M) ⊆ U and the category of Hamiltonian L-manifolds
M0 with (m0)+(M0) ⊆ U−a where in both categories the morphisms are
the isomorphisms. Moreover, as a manifold, we have M = K×L logLM .

c) Let m+(M) ⊆ U . Then logL preserves the momentum image in the
sense that m+(M) = (m0)+(logL M) + a.

Proof. a) The construction of logLM can be performed in three steps. For
the first observe that L = Kaτ is τ -stable. Hence the inclusion Lτ ↪→ Kτ
is L-equivariant. By [Mei17, Prop. 4.1] the preimage M2 := M ×Kτ Lτ has
the structure of a quasi-Hamiltonian Lτ -manifold. For the second step put
M1 := M2 with momentum map changed to x �→ m(x)u−1. Recall from the
proof of Corollary 2.2.3 that the map Lτ → L : lτ �→ lu−1 intertwines the
twisted conjugation on L with the usual conjugation. Then M1 is an untwisted
quasi-Hamiltonian L-manifold. Finally, logLM = M0 is the pull-back of M1
via the exponential map exp : l → L. Now the assertion follows from [AMM98,
Remark 3.3].

b) For the inverse functor we invert each of the three steps above sepa-
rately. We start with a Hamiltonian L-manifold (M0,m0, ω0) satisfying
(m0)+(M0) ⊆ U − a. Then according to [AMM98, Prop. 3.4] the triple
(M1,m1, ω1) := (M0, exp ◦q ◦ m0, ω0 + m∗

0ω̃) is an (untwisted) quasi-Ham-
iltonian L-manifold with (m1)+(M1) ⊆ U − a. Here q is the identification
l∗

∼→ l. Observe that Prop. 3.4 of [AMM98] is applicable since the exponen-
tial function is locally invertible on lU−a. Thus, the functor M0 �→ M1 inverts
the functor M1 �→ M0.

In the second step we put (M2,m2, ω2) := (M1,m1 · u, ω1). Then M2
is an Ad(u−1)-twisted quasi-Hamiltonian L-manifold with (m2)+(M2) ⊆ U
satisfying m+(M) ⊆ U . This inverts the functor M2 �→ M1.

It remains to invert the functor M �→ M2 = m−1(L). This means in par-
ticular that we need to provide M := K×LM2 with a quasi-Hamiltonian Kτ -
structure whenever M2 is an Adu−1-twisted quasi-Hamiltonian L-manifold
with (m2)+(M2) ⊆ U .

To this end recall the double D(K) of a group K from [AMM98, §3.2]. As
a set it is D(K) = K ×K with K ×K-action (u, v) ∗ (a, b) = (uav−1, vbu−1)
and K ×K-valued momentum map m(a, b) = (ab, a−1b−1). Now we consider
Kτ as a connected component of the semidirect product K̃ := K�Zτ . Then
inside K̃ products like b · τ and a(b · τ)a−1 = ab(τa−1τ−1)τ = (a∗τ b) · τ make
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sense. The latter formula shows that τ -twisted conjugation becomes ordinary
conjugation on Kτ .

Now we define the twisted double Dτ (K) as the connected component
K×Kτ inside D(K̃) = K̃×K̃. Then Dτ (K) is Kτ×Kτ−1-quasi-Hamiltonian
with K ×K-action

(2.3.4) (u, v) ∗ (a, b · τ) = (uav−1, vbτu−1) = (uav−1, vb τu−1 · τ)

and momentum map

(2.3.5) mD(a, b · τ) = (abτ, a−1τ−1b−1) = (abτ, a−1 τ−1
b−1 · τ−1).

Let

(2.3.6) Z := m−1
D (Kτ × (Lτ)−1

U ) = {(b, cτ) ∈ Dτ (K) | c τb ∈ (Lτ)U}.

where (Lτ)U is the open subset Lτ ∩ (Kτ)U = Lτ ×A U of Lτ and (Lτ)−1
U ⊆

Kτ−1 is the set of its inverses. Again by [Mei17, Prop. 4.1] this is a quasi-
Hamiltonian Kτ × Lτ−1-manifold. One easily checks that the map

(2.3.7) K × (Lτ)U → Z : (a, lτ) �→ (a, lτa−1)

is invertible, yielding a quasi-Hamiltonian structure on K× (Lτ)U with Kτ×
Lτ−1-valued momentum map.

Now consider the fusion product Z ⊗L M2 with respect to the factor L
(see [AMM98, §6]∗.) which equals Z×M2 as a manifold and is Kτ ×L-quasi-
Hamiltonian with momentum map

(2.3.8) m⊗ : (a, lτ, x) �→ (alτa−1, (lτ)−1m(x)) ∈ Kτ × L

where we have identified Z with K× (Lτ)U using (2.3.7). The q-Hamiltonian
reduction

(2.3.9) M ′ := (Z ⊗L M2)//L := m−1
⊗ (Kτ × {1})/L

defined in [AMM98, § 5]∗ with respect to L is a quasi-Hamiltonian Kτ -mani-
fold. It is diffeomorphic to M := K ×L M2 via the map

(2.3.10) M → M ′ : [a, x] �→ (a,m(x), x).
∗Strictly speaking, the paper [AMM98] deals only with the untwisted case but

as explained above one may consider twisted Kτ -manifolds as open subsets of (un-
twisted) K̃-manifolds to which [AMM98] applies.
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This provides M with a Kτ -quasi-Hamiltonian structure. Since all construc-
tions are functorial for isomorphisms we have defined a functor M2 �→ M . It
remains to show that it is quasiinverse to the functor M �→ M2 defined above.

We start with the composition M2 �→ M �→ M2 which needs to be iso-
morphic to the identity functor. For this, let M2 be as above. Then it suffices
to show that the map

(2.3.11) ϕ : M2 → (K ×L M2) ×Kτ Lτ : x �→ ([1, x],m2(x))

is an isomorphism of quasi-Hamiltonian Lτ -manifolds. Tracing through all
definitions one sees easily that ϕ is a diffeomorphism which is compatible
with the L-actions and the momentum maps. It is more difficult to see that
that the 2-forms match up, as well.

For this observe that x ∈ M2 is mapped by ϕ to the L-orbit of

(2.3.12) (1,m2(x), x) ∈ K × L×M2 ⊆ Dτ (K) ×M2.

Recall the explicit formula of [AMM98, Thm. 6.1] for the 2-form on the fusion
product of two quasi-Hamiltonian manifolds (M ′, ω′,m′) and (M ′′, ω′′,m′′):

(2.3.13) π∗
1ω

′ + π∗
2ω

′′ + 1
2〈m

′∗θ,m′′∗θ〉.

We apply this formula to M ′ = Z and M ′′ = M2. Let ι : L → L : h �→ h−1 be
the inversion. Because of ι∗θ = −θ the pull-back of the third term in (2.3.13)
to M2 vanishes. To see that also the first summand vanishes on M2 we look
at the explicit form of ωD on D(K̃) (see [AMM98, Prop. 3.2]):

(2.3.14) ωD = 1
2〈p

∗
1θ, p

∗
2θ〉 + 1

2〈p
∗
1θ, p

∗
2θ〉

where p1, p2 are the two projections of D(K̃) to K̃. The map from M2 to
Z ⊆ Dτ (K) is x �→ (1,m2(x)). Hence p1 is constant on M2 implying that the
pull-backs of p∗1θ and p∗1θ, hence of ωD to M2 vanish. This finishes the proof
that ϕ is an isomorphism of quasi-Hamiltonian manifolds.

Now let (M,m,ω) be given with m∗(M) ⊆ U and M2 := M ×Kτ Lτ as
in part a). Then we show that

(2.3.15) ψ : K ×L M2 → M : [k, x] �→ kx

is an isomorphism of quasi-Hamiltonian Kτ -manifolds. As above it is easy to
check that ψ is a K-equivariant diffeomorphism which is compatible with the
momentum maps. At stake are again the 2-forms.
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The map ψ defines a second 2-form ω′ on M such that (M,m,ω′) is quasi-
Hamiltonian. Moreover, by the previous discussion the pull-backs of ω and ω′

to M2 coincide. Thus, to show ω = ω′ it suffices to show that ω is uniquely
determined by m and its pullback to M2. Let x ∈ M . By K-invariance we
may assume that x ∈ M2. The momentum map property c) of Definition 2.1.2
allows to compute ωx(ξ, η) where ξ ∈ kx and η ∈ TxM . Moreover, also ωx(ξ, η)
is known for ξ, η ∈ TxM2. Because of kx + TxM2 = TxM we proved our
assertion.

c) is obvious.

Theorem 2.3.2 can be used to analyze the local structure of an arbi-
trary M . To enforce the requirement m+(M) ⊆ U we apply the theorem to
the open part

(2.3.16) MU := m−1
+ (U) = M ×A U ⊆ M.

There is a subtlety however in that MU might not be connected despite M
being so. This is a problem since some fundamental structure theorems like
convexity of the momentum image m+(M) or connectedness of fibers of m
depend crucially on connectedness of M . Therefore we impose an extra con-
dition on M which is automatic in case M is compact.

2.3.3 Definition. A (quasi-)Hamiltonian manifold (M,m) is locally convex
if all fibers of m+ are connected and m+ : M → m+(M) is an open map. It
is convex if in addition PM = m+(M) is convex.

2.3.4 Lemma. Let M be a (quasi-)Hamiltonian manifold.

a) If M is locally convex then MU is locally convex for all U ⊆ A open. If
additionally, PM ∩ U is connected then MU is connected.

b) If M is locally convex then the momentum image PM is locally poly-
hedral (hence locally convex, locally closed, and locally connected). In
particular, every a ∈ PM has a neighborhood U such that PM ∩ U , and
therefore MU , is convex.

c) Assume that all fibers of m+ are connected and that m+ is proper
onto PM . Then M is locally convex.

d) Assume M is compact. Then M is convex and PM is a polytope.

Proof. a) is easy point set topology.
b) Using Theorem 2.3.2 and a) we may assume that M is Hamiltonian.

Then [Kno02, Cor. 2.8, Thm. 5.1] implies that every x ∈ M has a K-invariant
open neighborhood V ⊆ M such that m+(V ) is open in Cx where Cx is a
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polyhedral cone with vertex m+(x). Since m+ is open, m+(V ) is also open in
m+(M).

c) It suffices to show that every x ∈ M has an open neighborhood W ⊆ M
such that W → m+(M) is an open map. Again by Theorem 2.3.2 we may as-
sume that M is Hamiltonian (possibly not connected). Choose a neighborhood
Vx of x and let a = m+(x) and Cx be as above. By [Kno02, Cor. 6.1], the cone
Cx is locally constant in x ∈ m−1

+ (a). Since the fiber F = m−1
+ (a) is connected

this implies that C = Cx is the same for all x ∈ F . The fiber F being compact,
there are finitely many x1, . . . , xn ∈ F with F ⊆ V := Vx1 ∪· · ·∪Vxn . Because
all restrictions Vxi → C of m+ are open, the same holds for V . Because of
properness, the set m+(M \ V ) is closed in m+(M). Hence the complement

(2.3.17) U = m+(M) \m+(M \ V ) = {b ∈ m+(M) | m−1(b) ⊆ V }

is an open neighborhood of a in m+(M) with U ⊆ m+(V ). Thus, W :=
m−1

+ (U) ⊆ V has the required property.
d) This is [Mei17, Thm. 4.4]. Openness of m+ follows from c).

Besides the momentum image PM , the most important invariant of a
(quasi)-Hamiltonian is its principal isotropy group. We briefly recall its defi-
nition. Before that we need to make the following

2.3.5 Remark. Assume M is quasi-Hamiltonian with m+(M) ⊆ F where
F is a face of A. Let a ∈ m+(M) and let U ⊆ A be as in Theorem 2.3.2.
Then m−1((Lτ)U ) and logLM actually only depend on the intersection of U
with F . Therefore, one may as well regard U as an open subset of F which
can be extended to an open subset of A if needed.

2.3.6 Lemma. For a connected, locally convex quasi-Hamiltonian Kτ -mani-
fold let F ⊆ A be the smallest face of A containing PM and let U ⊆ F be
its relative interior. Then LM := Kaτ is independent of a ∈ U . The preimage
M0 := m−1(Lτ) ∩ m−1

+ (U) is a connected quasi-Hamiltonian LM -manifold
such that K ×LM M0 → M is a diffeomorphism onto an open dense subset
of M . Let L′

M ⊆ LM be the kernel of LM → Aut(M0). Then AM = LM/L′
M

is a torus acting freely on a dense open subset of M0. In particular, L′
M is a

generic isotropy group for the K-action on M .

Proof. All assertions are local over PM . Theorem 2.3.2 implies therefore that
we may assume that M is Hamiltonian. But in this context, all assertions
have been proved in [LMTW98].

In practice, it is more convenient to encode L′
M by the character group

ΛM := Ξ(AM ). Let A ⊆ LM be the subtorus with LieA = a = tτ . Then
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A → AM is surjective and we can consider ΛM as a subgroup of Ξ(A)⊗R =
a∗ = a.

The two objects PM and ΛM are not unrelated: Let aM ⊆ a be the affine
span of PM . Since aM0 = aM − a = aM and ΛM0 = ΛM we see that ΛM is a
lattice inside aM . Its dimension will be called the rank rkM of M .

2.4. Multiplicity free manifolds

We can use Lemma 2.3.6 to compute the dimension of M where M is con-
nected, locally convex and quasi-Hamiltonian. Since m+ is K-invariant we get
an induced map M/K → PM which is surjective by definition. This implies
the inequality

(2.4.1) dimM/K ≥ dimPM = rkM.

On the other side, the generic isotropy group L′
M has dimension dimLM −

dimAM = dimLM − rkM . Thus (2.4.1) is equivalent to

(2.4.2) dimM ≥ dimK − dimLM + 2 rkM.

This suggests the following

2.4.1 Definition. A quasi-Hamiltonian manifold M is multiplicity free if it is
connected, locally convex, and the equivalent inequalities (2.4.1) and (2.4.2)
are actually equalities.

Observe, that this is a verbatim generalization of the concept of multiplic-
ity freeness of ordinary Hamiltonian manifolds (see, e.g., [Kno11, Def. 2.1]).
As in that case, multiplicity freeness for quasi-Hamiltonian manifolds has
numerous equivalent characterizations. The following statement mentions a
couple of them. Thereby we adopt the convention that a submanifold N ⊆ M
is called coisotropic if (TxN)⊥ ⊆ TxN for all x ∈ N even in the case that the
2-form ω is degenerate.

2.4.2 Proposition. For a connected, locally convex quasi-Hamiltonian man-
ifold M the following are equivalent:

a) M is multiplicity free.
b) The induced map m+/K : M/K → PM is a homeomorphism.
c) km(x)x = kerDxm for x in a non-empty open subset of M .
d) The orbit Kx is coisotropic for x in a non-empty open subset of M .
e) logLM is a multiplicity free Hamiltonian manifold for all (or one) open

subset(s) U as in Theorem 2.3.2 with U ∩ PM connected.
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Proof. a)⇔e) Let M0 := logLM which is connected by Lemma 2.3.4a). Since
there are open embeddings M0/L ↪→ M/K and PM0 ↪→ PM − a we get that
dimM/K = dimPM if and only if dimM0/L = dimPM0 .

a)⇔b) The manifold M is by definition multiplicity free if and only if
dimM/K = dimPM . Since the fibers of m+ are connected, this is equivalent
to m+/K being bijective over a non-empty open subset U of PM . Now it
suffices to prove that m+/K is (globally) injective since m+/K is already
surjective and open. Using Theorem 2.3.2 we may assume that M is actually
Hamiltonian. Let V ⊆ PM the non-empty set of points in which m+/K
is locally invertible. It follows from the symplectic slice theorem (see e.g.
[GS05, 2.3]) that m+/K is locally analytic (even semialgebraic). It follows
that (m+/K)−1(V ) is open and dense in M/K. Since M/K is connected it
suffices to show that V is closed. So let a ∈ PM , b ∈ F := (m+/K)−1(a) and
ai ∈ V a sequence so that the preimages bi ∈ M/K converge to b. Consider
the open subset U := M/K \ {bi | i} ∪ {b}. Then the image (m+/K)(U) is
an open subset of P which does not contain the ai. Thus it does not contain
a either, i.e., m+/K is injective over a.

a)⇔c): It follows from Lemma 2.3.6 that the generic orbit in m(M) is
isomorphic to K/LM and that dimm(M)/K = dimP = rkM . Thus

(2.4.3) dimm(M) = dimK − dimLM + rkM.

Thus, M is multiplicity free if and only if dimm(M) = dim− rkM or, equiv-
alently, dimFx = rkM where Fx = m−1(m(x)) ⊆ M0 is a generic fiber of m.
On the other side, the isotropy group Km(x) is conjugate to LM which means
that the generic Km(x)-orbits in Fx have dimension rkM . Thus M is multi-
plicity free if and only if Km(x) has open orbits in Fx which is precisely c).

c)⇔d): Condition c) is equivalent to kerDxm ⊆ kx. Hence the equivalence
with d) follows from Lemma 2.1.4.

2.4.3 Remark. Generally, the fiber of m+/K over a ∈ PM is called the
symplectic reduction of M in a. So, another characterization of multiplicity
freeness of a locally convex, connected M is that all its symplectic reductions
are points.

2.5. Local models

In this section we make the first step towards the goal of classifying multi-
plicity free manifolds. More precisely, we characterize the pairs (P,Λ) which
eventually will be shown to be those of the form (PM ,ΛM ) for M multiplicity
free.
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Let G = KC be the complexification of K which is a connected complex
reductive group. Let B ⊆ G be a Borel subgroup containing a maximal torus
T ⊆ K and let ΞC(B) := Hom(B,C∗) ∼= ZrkG be its algebraic character
group. Since ΞC(B) can be identified with Ξ(T ) the space ΞC(B)⊗R identifies
with t∗ and therefore with t. The choice of B determines a Weyl chamber
t+ ⊆ t and characters lying in t+ are called dominant. Recall, that there is
a 1 : 1-correspondence χ �→ Lχ between dominant characters and irreducible
representations of G.

An algebraic G-variety X is called spherical if B has a Zariski dense orbit
in X. In the following we are only interested in the case when X is affine.
Then there is a purely representation theoretic criterion for sphericity due to
Vinberg-Kimel’fel’d, [VK78]: Let C[X] be the ring of regular functions on X.
Then X is spherical if and only if C[X] is multiplicity free, i.e., it is a direct
sum of distinct irreducible representations of G. Thus, for a spherical variety
there is a well defined set Λ+

X ⊆ t+ of dominant weights such that

(2.5.1) C[X] ∼=
⊕
χ∈Λ+

X

Lχ.

2.5.1 Definition. For an affine spherical G-variety X let PX := R≥0Λ+ be
the convex cone and let ΛX := ZΛ+

X be the subgroup spanned by Λ+
X in t∗.

Then (PX ,ΛX) will be called the spherical pair determined by X.

Recall the notation of Theorem 2.2.1 and in particular that every a ∈ A
determines a subgroup Kaτ ⊆ K. Because a ⊆ kaτ is a Cartan subalgebra,
the characters of the complexification KC

aτ can be considered to be elements
of a. Thus, if X is a spherical KC

aτ -variety then PX and Λ+
X will be subsets

of a.

2.5.2 Definition. Let P ⊆ A be a subset and let Λ ⊆ a be a subgroup.

a) The pair (P,Λ) is spherical in a ∈ P if there is a smooth affine spherical
KC

aτ -variety X and a neighborhood U of a in a such that

(2.5.2) ((PX + a) ∩ U,ΛX) = (P ∩ U,Λ).

b) The pair (P,Λ) is spherical if P is connected and (P,Λ) is spherical in
all a ∈ P.

c) The pair (P,Λ) is convex if P is convex.

First we remark that sphericity is a necessary condition:
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2.5.3 Lemma. Let M be a (convex and) multiplicity free quasi-Hamiltonian
Kτ -manifold. Then (PM ,ΛM ) is (convex and) spherical.

Proof. Using the Local Structure Theorem 2.3.2, the assertion is reduced to
the Hamiltonian case where it is follows from [Kno11, Thm. 11.2].

The following remarks are not necessary to understand the proof of the
classification theorem but they are useful for recognizing and constructing
spherical pairs.

2.5.4 Remarks. Let (P,Λ) be a spherical pair.
a) Let aP ⊆ a be the affine subspace spanned by P. Then the group Λ

is a lattice in the group of translations aP which in turn follows from (2.5.2)
and the fact that PX and ΛX have the same R-span.

b) The subset P is locally polyhedral and therefore locally convex, locally
closed and solid inside aP . It follows, in particular, that P has a well defined
dimension, namely dimP := dim aP = rk Λ. This follows from (2.5.2), the
fact that PX is a finitely generated cone and the connectedness of P.

c) The tangent cone CaP of P in a is defined as the convex cone generated
in a by (P ∩ U) − a where P ∩ U is a convex neighborhood of a in P. It is
easy to see that CaP is independent of the choice of U . From Definition 2.5.2
follows

(2.5.3) (PX ,ΛX) = (CaP,Λ).

which means that (PX ,ΛX) is uniquely determined by P, Λ and a.
d) For any affine spherical variety X the set Λ+

X is a monoid, i.e., is
additively closed. The reason for this is that C[X] is a domain. If X is normal
(e.g., smooth) then Λ+

X = PX ∩ ΛX . This means that Λ+
X and (PX ,ΛX)

determine each other.
e) It is a non-trivial theorem of Losev [Los09a, Thm. 1.3] that a smooth

affine spherical G-variety is uniquely determined by its weight monoid Λ+
X .

With c) and d) this implies that the KC
aτ -variety X from Definition 2.5.2 is

uniquely determined by P,Λ and a. We call X the local model of (P,Λ) in a.
f) Assume (P,Λ) = (PM ,ΛM ) for some multiplicity free quasi-Hamilto-

nian manifold M and let X be the local model in a ∈ P. We sketch how a
neighborhood of m−1

+ (a) in M is described by X. Since X is affine, it can be
embedded equivariantly into a KC

aτ -vector space Z as a closed KC
aτ -subvariety.

The choice of a Kaτ -invariant Hermitian scalar product on Z induces a Kähler-
hence symplectic structure on X. With m̃(x) := (ξ �→ 1

2〈ξx, x〉) ∈ k∗aτ , the
variety X becomes a Hamiltonian Kaτ -manifold and (PX ,ΛX) is also the
pair attached to X when considered as a Hamiltonian manifold (see [Sja98,
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Thm. 4.9] or [Los09a, Prop. 8.6(3)]). Moreover, there is an open neighborhood
U of a in a such that

(2.5.4)
K ×Kaτ m̃−1

+ (PX ∩ (U − a))
∼

open
K ×Kaτ X

m−1
+ (P ∩ U) open

M

g) Affine spherical varieties have been classified by Knop-Van Steirteghem
in [KVS06]. Pezzini-Van Steirteghem, [PVS19], developed an algorithm for
deciding the sphericity of a pair (P,Λ) in any given point a ∈ P.

h) For deciding sphericity in all points of P the following observations
help:

2.5.5 Lemma. The set of points a ∈ P where (P,Λ) is spherical is open
in P.

Proof. Let a, U and X as in Definition 2.5.2a). Recall from Remark 2.5.4 f)
that X carries a structure as multiplicity free Hamiltonian K-manifold with
pair (PX ,ΛX). Now it follows from [Kno11, Thm. 11.2] applied to X that
every point of P ∩ U = (PX + a) ∩ U is spherical.

The tangent cone is constant on open intervals:

2.5.6 Lemma. Let P ⊆ a be a locally convex subset and let I ⊆ P be an
open interval. Then the tangent cone CaP is the same for all a ∈ I.

Proof. It suffices to show that a �→ CaP is locally constant on I. Fix a ∈ I.
Since the tangent cone depends only on a neighborhood of a we can replace
P by a convex neighborhood P ∩ U and therefore assume that P is convex.
Now let b ∈ I be so close to a that the two points b′ := b + (b − a) and
a′ := a + (a− b) still lie in I. Then

CaP = R≥0(P − a) = R≥0(P − b + (b′ − b))
⊆ R≥0(P − b) + R≥0(b′ − b) ⊆ CbP

(2.5.5)

and similarly CbP ⊆ CaP.

Now for compact sets P we have the following criterion:

2.5.7 Proposition. Let P ⊆ A be compact. Then a pair (P,Λ) is spherical
if and only if P is a polytope and the pair (P,Λ) is spherical in every vertex
of P.
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Proof. Assume first that (P,Λ) is spherical. Then P is a polytope by Lem-
ma 2.5.8 below.

Now assume conversely that P is a polytope such that (P,Λ) is spherical
in every extremal point. Then it follows from the preceding two lemmas that
the set of spherical points is convex. Since it contains all extremal points it
is all of P.

2.5.8 Lemma. Let a be an affine space and let P ⊆ a be locally polyhedral,
compact, and connected. Then P is a polytope.

Proof. Since P is closed, connected, and locally convex it is convex (Tietze
[Tie28, Satz 1]). It follows that P is the convex hull of its extremal points
(Krein–Milman). But there are only finitely many extremal points since P is
locally polyhedral. So P is a polytope.

2.6. Classification of multiplicity free quasi-Hamiltonian
manifolds

Now we can tie all strings together and prove our main theorem.

2.6.1 Theorem. Let K be a simply connected compact Lie group with twist
τ and let A ⊆ a be as in Theorem 2.2.1. Let P ⊆ A be a subset and Λ ⊆ a

a subgroup. Then there is a convex multiplicity free quasi-Hamiltonian Kτ -
manifold M with (PM ,ΛM ) = (P,Λ) if and only if (P,Λ) is convex and
spherical. Moreover, this M is unique up to isomorphism.

For compact multiplicity free quasi-Hamiltonian manifolds this means:

2.6.2 Corollary. Compact multiplicity free quasi-Hamiltonian Kτ -manifolds
are classified by pairs (P,Λ) for which P ⊆ A is a polytope and (P,Λ) is
spherical in every vertex of P.

Proof. Follows from Theorem 2.6.1 using Lemma 2.3.4d) and Proposition
2.5.7.

We reduce the proof of the main Theorem 2.6.1 to a statement about
automorphisms. For this we use the language of gerbes.

Let (P,Λ) be a spherical pair. For any open subset U ⊆ P let MP,Λ(U)
be the category whose objects are multiplicity free quasi-Hamiltonian Kτ -
manifolds M with (PM ,ΛM ) = (U,Λ). The morphisms are K-equivariant
diffeomorphisms ϕ : M → M ′ such that ω = ϕ∗ω′ and that m = m′ ◦ϕ. Since
all morphisms are invertible, MP,Λ(U) is a groupoid.
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For any pair of open subsets U ⊆ V ⊆ P the groupoids are linked by
restriction functors resVU : MP,Λ(V ) → MP,Λ(U) : M �→ m−1(U) which satisfy
resVU ◦ resWV = resWU whenever U ⊆ V ⊆ W .

This means that MP,Λ is a presheaf of groupoids over P. Since all mor-
phisms and objects can be glued along any gluing data, the system of cate-
gories MP,Λ is even a sheaf of groupoids, also known as stack (see e.g. [Bry93,
Def. 5.2.1] for a precise definition). A very particular kind of stacks are gerbes
which means that they have the following two additional properties:

a) M is locally non-empty, i.e. every point a ∈ P has an open neighborhood
U ⊆ P such M(U) �= ∅ and

b) any two objects M,M ′ ∈ M(V ) with V ⊆ P open are locally isomorphic,
i.e., every a ∈ V has an open neighborhood U ⊆ V such that resVU M ∼=
resVU M ′.

See e.g. [Bry93, Def. 5.2.4] (where the definition of a gerbe is combined
with that of a band) or [SP23, Def. 8.11.2]. In the next two proofs we ex-
tensively use the local structure theorem 2.3.2 and the obvious fact that if it
holds for an open set U then it will also hold for all smaller open subsets V
regardless of whether V contains the base point a or not.

2.6.3 Theorem. Let (P,Λ) be spherical. Then MP,Λ is a gerbe over P.

Proof. We have to prove that a) and b) hold for MP,Λ.
Hereby, a) is basically the definition of a spherical pair: let X be a smooth

affine spherical variety with (2.5.2). Then X has a K-Hamiltonian struc-
ture such that (PX ,ΛX) = (CaP,Λ) (cf. remark 2.5.4 f)). Choosing U small
enough as in Theorem 2.3.2, there is a quasi-Hamiltonian manifold M with
m+(M) = (a + CaP ) ∩ U and logL M = XU−a. Then M has the required
properties.

The second assertion b) follows using Theorem 2.3.2 from [Los09b, Thm.
1.3] to the effect that the local model X is uniquely determined by Λ+

X

(cf. 2.5.4 e) and [Kno11, Thm. 2.4]).

A particular nice type of gerbes are those for which the automorphism
group of every object is abelian. In this case, the automorphism groups com-
bine to a sheaf of abelian groups LM on P, the so-called band of M. More
precisely, let M,M ′ ∈ M(U) be two objects over U and ϕ : M

∼→ M ′ an
isomorphisms. Then ϕ induces an isomorphism ϕ̃ : Aut(M) ∼→ Aut(M ′) by
ϕ̃(f) = ϕfϕ−1. If ψ : M

∼→ M ′ is another isomorphism then one checks
easily that ψ̃−1ϕ̃ ∈ Aut(Aut(M)) is conjugation by ψ−1ϕ ∈ Aut(M). Thus,
if Aut(M) is abelian, then Aut(M) depends only on the isomorphism class
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of M . This means, that L
#
M(U) := Aut(M) with M ∈ M(U) is a well-defined

presheaf of abelian groups on P. The band LM is by definition the sheafifica-
tion of L#

M. See [SP23, Lemma 8.11.8] for details.
In the remainder of this section we are going to finally make use of the

results of first part of this paper. Recall, in particular, the sheaf of abelian
groups L

Φ(∗)
P,Λ from Definition 1.3.2.

2.6.4 Theorem. Let (P,Λ) be spherical. Then the gerbe M := MP,Λ has
abelian automorphism groups. Its band LM is canonically isomorphic to L

Φ(∗)
P,Λ

for a unique local root system on P ⊆ aP .

Proof. For every a ∈ P choose a open neighborhood V as in Corollary 2.2.3
and let M be the gerbe of Hamiltonian manifolds over U := P ∩ V . Then
the Local Structure Theorem 2.3.2 yields an isomorphism of gerbes M ∼→
M|U . The automorphism groups of the objects of M have been determined in
[Kno11, Thm. 9.2]. Translated into the language of gerbes the result is that
there is unique root system Φ(a) with α(a) = 0 for all α ∈ Φ(a) such that the
band of M is isomorphic to L

Φ(a)
U,Λ . Now it follows from [Kno11, eq. (9.4)] that

the system ((Φ(a))a∈P ,Λ) forms a local root system on P. In other words,
the band LM is locally isomorphic to L := L

Φ(∗)
P,Λ .

We claim that that the local isomorphisms ΦU : L|U → LM|U glue to a
global isomorphism Φ : L ∼→ LM. This is not completely obvious since the
local model of (P,Λ) at a ∈ P is a Hamiltonian manifold for the group Kaτ

which therefore does not depend continuously on a.
To bypass this problem we restrict the isomorphisms ΦU to P0, the inte-

rior of P inside aP . Since P0 is dense in P and since the sections of both L

and LM are continuous it suffices to prove compatibility on P0.
To this end, let a ∈ P and let U ⊆ P be a convex neighborhood of a

in P. Then U0 := U ∩ P0 is open in P and convex, as well. Choose U small
enough such that an object M ∈ M(U) exists. Let L := Kaτ . Then we can
choose U such that also M := logLM exists. With M0 := MU0 = m−1

+ (U0)
and M

0 := MU0 = m−1
+ (U0) we obtain the following diagram:

(2.6.1)

L(U0)
∼

C∞(U0)ε

h
h

Aut(M0) ∼ Aut(M0).

Here ε is the map f �→ exp(∇f) from (1.4.4) which is surjective by Lem-
ma 1.4.3. The maps marked with h and h map f to the Hamiltonian flow
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exp(Hf ) on M0 and M
0, respectively (see [AMM98, Prop. 4.6] for Hamilto-

nian flows on quasi-Hamiltonian manifolds). The upper left triangle is com-
mutative by [Kno11, Thm. 9.1]. One can easily check that the Hamiltonian
flow on M restricts to the corresponding Hamiltonian flow on M . So the
bottom right triangle commutes as well. It follows that the upper right tri-
angle commutes. Because of Aut(M0) = LM(U0) we obtain the commutative
triangle

(2.6.2)
L(U0)

ΦU |U0

C∞(U0)η

h

LM(U0).

Since both η and h depend only on U0 (instead of U), the same holds for
the restriction ΦU |U0 . This shows that all isomorphisms ΦU coincide on the
intersection of their domains. Hence they glue to a global isomorphism Φ.

If P is convex we can say more:

2.6.5 Corollary. Let (P,Λ) be a spherical pair with P convex. Then the
higher cohomology of the band of MP,Λ vanishes.

Proof. It follows from Proposition 1.2.3 that the local root system Φ(∗) is
trivial. Indeed, every convex set is solid in its affine span. Moreover, it follows
from [Kno11, Thm. 4.1] that every local Weyl group W (a) is a subquotient
of the Weyl group of Kaτ . Thus every element w ∈ W (a) can be lifted to an
element w̃ of WΦτ with w̃aP = aP . Thus, the second condition follows from
P ⊆ A and the fact that every WΦτ -orbit meets A in exactly one point.

Now the assertion follows from Theorem 1.4.1.

Proof of Theorem 2.6.1. Let M := MP,Λ and let M1,M2 ∈ Obj M(P) be two
global objects. Then the sheaf I := IsomP(M1,M2) is a torsor for LM. The
vanishing of H1(P,LM) implies that I has a global section, i.e., M1 and M2
are isomorphic (see [Bry93, 5.2.5(1)]). This shows uniqueness of M .

For the existence, observe that there are arbitrary fine open coverings
P =

⋃
μ Uμ which are good in the sense that H1 of LM vanishes on all Uμ

and Uμ ∩ Uν . Indeed one can take for the Uμ intersections of P with a small
open balls. Then all Uμ and Uμ ∩ Uν are convex, hence have vanishing H1.
Under these circumstances the vanishing of H2(P,L) implies that M is the
only gerbe with band LM ([Bry93, 5.2.8], see also [SP23, Lemma 21.11.1]).
Thus M is isomorphic to the category of all LM-torsors which has a global
object, namely the trivial torsor. So M(P) �= ∅.
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2.7. Examples

We conclude this paper with a series of examples. It should be mentioned
that Paulus has obtained many more in his thesis [Pau18].

Doubles A particularly important quasi-Hamiltonian manifold is the double
D(K) of a Lie group K. It was defined in [AMM98] and since it was used for
the proof of Theorem 2.3.2. Hence, our construction is just an a posteriori
reason for the existence of D(K). In case K is compact and simply connected
the double has a nice description in terms of a spherical pair: Recall from the
proof of Theorem 2.3.2 that the acting group is K = K ×K. As a manifold
D(K) equals K ×K with K acting on D(K) as

(2.7.1) (x, y) ∗ (a, b) = (xay−1, xby−1).

The momentum map is

(2.7.2) m(a, b) = (ab−1, a−1b).

(this differs from [AMM98, §3.2] by the coordinate change (a, b) �→ (a, b−1)
on D(K)). Let A and Λ be the alcove and the weight lattice of K. Then
A = A × A and Λ = Λ ⊕ Λ are alcove and weight lattice of K. Let w0 the
longest element of the Weyl group W of K and δ = id×(−w0) : t → t ⊕ t.
Then

(2.7.3) (PD(K),ΛD(K)) = (δ(A), δ(Λ)) ⊆ (A,Λ).

Indeed, let T ⊆ K be a maximal torus and (a, b) ∈ T := T × T . Then (2.7.2)
shows that PD(K) is the set of (a1, a2) ∈ A such that exp(a1) is the w0-
conjugate of exp(−a2). This shows PD(K) = δ(A). Furthermore, for generic
(a, b) the stabilizer of m(a, b) is T which shows LD(K) = T . The stabilizer of
(a, b) in LD(K) is the diagonal torus ΔT . Thus AD(K) = T/ΔT ∼= T which
implies ΛD(K) = δ(Λ).

2.7.1 Remark. The case of doubles shows that the classification of quasi-
Hamiltonian manifolds does depend on the choice of an invariant scalar prod-
uct on k. To see this observe that the alcove A for K = SU(2) × SU(2)
is a rectangle whose side lengths depend on the chosen metric. The double
D(SU(2)) corresponds to the case when P is the diagonal of A. In order for
(P,Λ) to be spherical, P has to be parallel to the sum α + α′ of the simple
roots of K. This holds if and only if A is a square, i.e., when the metrics on
both factors of K are the same. This phenomenon does not occur when K is
simple or for Hamiltonian manifolds.
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Groups of rank 1 Let K = SU(2). Then A is an interval and PM ⊆ A is a
subinterval. If PM �= A then M is of the form K ×L M0 (see Theorem 2.3.2)
for some Hamiltonian L-manifold M0 with L ⊆ K. Quasi-Hamiltonian man-
ifolds which are not of this form will be called genuine. Since genuine mul-
tiplicity free quasi-Hamiltonian SU(2)-manifolds have necessarily PM = A
we just have to check which lattice ΛM can occur. Because the possible lo-
cal models in the end points are the SL(2,C)-varieties C2, SL(2,C)/C∗ and
SL(2,C)/N(C∗) we get 3 different genuine multiplicity free quasi-Hamiltonian
SU(2)-manifolds:

• ΛM = P ∼= Zω, the weight lattice of SU(2). Here M is obtained by
equivariantly gluing two copies of the closed unit disk D in C2 along
their boundary S3. One can check that the result of such a glueing is al-
ways diffeomorphic to the 4-sphere S4. This example has been found by
Alekseev-Meinrenken-Woodward [AMW02] under the name “spinning
4-sphere”.

• ΛM = 2P . In this case one can show that M ∼= P1(C) × P1(C).
• ΛM = 4P . Here, M is the quotient of the previous case by the switching

involution. Hence M ∼= P2(C).

There is another affine root system of rank 1, namely A(2)
2 . It is the root

system of K = SU(3) with the twist being an outer automorphism τ of K,
e.g., complex conjugation. The alcove A is an interval and the two simple
roots α0, α1 satisfy α0 = −2α1. The weight lattice of the affine root system
is P = Zα1. The centralizers corresponding to the end points are SU(2) and
SO(3), respectively. Let PM = A. Then a discussion as above yields two cases

• ΛM = P : In this case, the local models are C2 and SO(3,C)/ SO(2,C).
• ΛM = 2P . In this case, the local models are SL(2,C)/ SO(2,C) and

SO(3,C)/O(2,C).

Note that ΛM = 4P does not work since Λ+
X = Z≥0(4α1) is not the weight

monoid of any smooth affine spherical SO(3,C)-variety.

Manifolds of rank 1 The spinning 4-sphere has been generalized by Hurtu-
bise-Jeffrey-Sjamaar in [HJS06] to that of a spinning 2n-sphere. In our terms
it can be constructed as follows: let K = SU(n). Then the alcove A has n
vertices, namely x0 = 0 and the fundamental weights xi = ωi, i = 1, . . . , n−1.
Let P be the edge joining x0 and x1. Let Λ = Zω1. Then (P,Λ) with Λ =
Zω1 is a spherical pair. Indeed, the smooth affine spherical SL(n,C)-variety
X = Cn has weight monoid Z≥0ω1. This shows that it is a local model at the
vertex x0. The situation in x1 is similar: the centralizer is still K = SU(n)
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but the simple root system is different, namely α2, α3, . . . , αn−1, αn = α0.
The last fundamental weight with respect to this system is −ω1. Therefore
the monoid Cx1P ∩ Λ = Z≥0(−ω1) has a model, as well, namely again Cn.
Glued together this yields the spinning 2n-sphere.

Eshmatov, [Esh09], has found an analogue of the spinning 2n-sphere for
the symplectic group. More precisely, he showed that the quaternionic projec-
tive space Pn(H) carries a structure of a multiplicity free quasi-Hamiltonian
Sp(2n)-manifold. Using our theory, this example can be obtained as follows.
Let K = Sp(2n) and let ε1, . . . , εn be the standard basis of the Cartan sub-
algebra t. Let P be the line segment joining the origin x0 = 0 with x1 = 1

2ε1.
This is an edge of the fundamental alcove A. Put Λ := Zε1. Then the smooth
affine spherical Sp(2n,C)-variety C2n is a local model in x0. The other end-
point x1 behaves differently, though. In this case the simple roots of the
centralizer Kx1 are α0, α2, α3, . . . , αn which yields Kx1 = Sp(2)× Sp(2n− 2).
Moreover −ω1 is now the fundamental weight of the first factor of Kx1 . The
local model with weight monoid Z≥0(−ω1) is C2 with the second factor of
Kx1 acting trivially. This shows that M is obtained by gluing the open pieces
U1 = Cn and

(2.7.4) U2 = Sp(2n)
Sp(2)×Sp(2n−2)

× C2.

This example has been further generalized by Knop-Paulus in [KP19]. We
keep K = Sp(2n). Then the vertices of A are xk := 1

2
∑k

i=1 εk for k = 0, . . . , n.
Fix k with k > 0 and let Pk be the line segment joining xk−1 and xk. Let
moreover Λk := Zεk. Then one shows as above that (Pk,Λk) is spherical and
it is even possible to identify the corresponding manifold:

2.7.2 Theorem. Let n, k be integers with 1 ≤ k ≤ n. Then there is a multi-
plicity free quasi-Hamiltonian Sp(2n)-manifold structure on the quaternionic
Grassmannian M = Grk(Hn+1) with (PM ,ΛM ) = (Pk,Λk).

Proof. The open pieces at xk−1 and xk, respectively, are the spaces

(2.7.5) X1 := Sp(2n) ×Hk−1 C2n−2k+2 and X2 := Sp(2n) ×Hk C2k

where Hk := Sp(2k) × Sp(2n − 2k) ⊆ Sp(2n) and they glue to a multiplic-
ity free quasi-Hamiltonian manifold M . Now recall that Sp(2n) can also be
interpreted as the unitary group of Hn. Then Hk is the isotropy group of
Hk ⊆ Hn. Therefore X2 can be identified with the universal bundle G̃rk(Hn)
over the quaternionic Grassmannian Grk(Hn). Similarly, X1 is isomorphic to
G̃rn−k+1(Hn). Now consider the space Hn+1 = Hn ⊕H where K acts on the
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first factor. Let e := (0, 1) be the fixed point. Each element of G̃rk(Hn) can be
interpreted as a pair (L, v) with L ∈ Grk(Hn) and v ∈ L. Let ΓL,v ⊆ Hn⊕H be
the graph of the map L → H : u �→ 〈u, v〉. Then the map (L, v) �→ ΓL,v iden-
tifies X2 = G̃rk(Hn) with the open subset of all L̃ ∈ Grk(Hn+1) with e �∈ L̃.
Similarly, X1 be identified with the set of all L̃ ∈ Grk(Hn+1) with e �∈ L̃⊥. So
Grk(Hn+1) is also obtained by gluing X1 and X2. One can check using, e.g.,
[AA92] or [AA93, Thm. 7.1] that all such gluings give diffeomorphic results.
So M ∼= Grk(Hn+1).

Surjective momentum maps It is interesting to look at multiplicity free
quasi-Hamiltonian manifolds M which are in a sense as big as possible. For
us this means that PM is the entire alcove A and ΛM is the weight lattice
P of Φ. In geometric terms, these are the multiplicity free quasi-Hamiltonian
manifolds where the momentum map is surjective and where the principal
isotropy group is trivial.

2.7.3 Proposition. Let (K, τ) be one of the following three cases:

(2.7.6) (SU(n), id), (Sp(2n), id), (SU(2n + 1), k �→ k)

(the last τ is complex conjugation). Then (A, P ) is spherical, i.e., there is a
unique multiplicity free quasi-Hamiltonian Kτ -manifold M whose momentum
map is surjective and such that K acts freely on M .

Proof. It suffices to find a local model in each of the vertices a of A. For that,
each case will be treated separately.

(K, τ) = (SU(n), id): We start with a = 0 ∈ P = A. Then Ka = K and
CaA is the dominant Weyl chamber. Therefore, we have to show that there
is a smooth affine SL(n,C)-variety Xn such that C[X] =

⊕
χ L(χ) where χ

runs through all dominant weights. Such a variety does in general not exist
for an arbitrary reductive group but it does for SL(n,C), namely

(2.7.7) Xn :=

⎧⎨⎩SL(n,C)
Sp(n,C)
× Cn if n is even,

SL(n,C)/ Sp(n− 1,C) if n is odd.

Thus (A,Λ) is spherical in a = 0. But then it is also spherical in all other
vertices of A since they differ only in a translation by an element of the center.

(K, τ) = (Sp(2n), id): A local model in a = 0 is

(2.7.8) Yn :=

⎧⎪⎨⎪⎩Sp(2n,C)
Sp(n,C)×Sp(n,C)

× Cn if n is even,

Sp(2n,C)
Sp(n−1,C)×Sp(n+1,C)

× Cn+1 if n is odd.
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In general, A has n + 1 vertices x0 = 0, x1, . . . , xn which are enumerated in
such a way that αi(xi) �= 0 where α0, . . . , αn are the simple roots. Then the
centralizer of xi in K is L = Sp(2i)× Sp(2n− 2i). Since Λ = Zn = Zi ⊕Zn−i

splits accordingly, the manifolds

(2.7.9) Yi,n−i := Sp(2n)
Sp(2i)×Sp(2n−2i)

× (Yi × Yn−i)

are the open pieces in xi.
(K, τ) = (SU(2n+1), τ) with τ an outer automorphism: Here, the Dynkin

diagram of (K, τ) is of type A(2)
2n . In this case, A has n+ 1 vertices x0, . . . , xn

such that the centralizer of xi is L = Sp(2i)×SO(2n+1−2i). It is well-known
that the coordinate ring of

(2.7.10) Zn := SO(2n + 1,C)/GL(n,C)

contains all irreducible SO(2n + 1,C)-modules exactly once. So

(2.7.11) Zi,n−i := SU(2n + 1)
Sp(2i)×SO(2n+1−2i)

× (Yi × Zn−i)

is an open piece in xi.

2.7.4 Remark. Paulus, [Pau18], has determined all multiplicity free quasi-
Hamiltonian manifolds with surjective momentum map. Thereby he showed
that the manifolds above are the only ones where K is simple and the generic
isotropy is trivial.

It is also interesting to determine the (global) root system ΦM generated
by the local root system from Theorem 2.6.4 using Proposition 1.2.3. For that
it suffices to calculate its simple roots, the so called spherical roots of M . To
do this we use that the spherical roots of the local models are known.

We only treat the case (K, τ) = (SU(n), id) in Proposition 2.7.3. The
simple affine roots of K are

(2.7.12) α0 = 1 + xn − x1, α1 = x1 − x2, . . . , αn−1 = xn−1 − xn.

The spherical roots of Xn are α1 + α2, α2 + α3, . . . , αn−2 + αn−1. For n odd,
see [BP15] while the even case is handled in [Lun07]. It follows from the com-
parison results of [Kno11], in particular Thms. 3.3 and 9.1, that the spherical
roots of Xn are the simple roots of the local root systems of M . Therefore,
the simple roots of ΦM are

(2.7.13) 1 + xn − x2, x1 − x3, x2 − x4, . . . , xn−2 − xn, 1 + xn−1 − x1.
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Hence

(2.7.14) ΦM
∼=

⎧⎨⎩A(1)
n
2 −1 × A(1)

n
2 −1 n even,

A(1)
n−1 n odd.

Observe that in the odd case the root systems of K and M are isomorphic
but they are not the same. For example, for n = 3, i.e., K = SU(3), one gets
the picture

(2.7.15)

where the gray triangle denotes P = A and the axes of the simple reflections
of ΦM are marked by dashed lines. There is also something to be observed
in the even case: here all roots of ΦM are perpendicular to the vector δ =
(1,−1, . . . , 1,−1) ∈ a. Let f be an affine linear function of a with ∇f = δ.
Then f is WM -invariant and t �→ ε(tf) from (1.4.6) defines a 1-parameter
subgroup of automorphisms of M . Since δ lies in the weight lattice, this action
factors through an action of an 1-dimensional torus. Thus, the SU(n)-action
on M extends to an U(1) × SU(n)-action.

Inscribed triangles For the last example, we toyed with triangles inscribed
in a triangular alcove. Here are some examples of spherical pairs (P,Λ):

K SU(3) SU(3) Sp(4) Sp(4) G2

P ⊆ A

Λ P or R R R R R

(2.7.16)

We make no claim of completeness. In particular, we considered only un-
twisted groups. The letters P and R denote the weight and the root lattice
of K, respectively. At each vertex, the complexified centralizer L is isoge-
nous to SL(2,C) × C∗. Then one can show that the local models are either
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of the form X = SL(2,C)/μn in case P touches A in form of a reflection and
X = SL(2,C) ×C∗

C otherwise.

2.7.5 Remark. As communicated to me by Eckhart Meinrenken, the first
triangle has also been found by Chris Woodward (unpublished).

Acknowledgements

I would like to thank Chris Woodward who, a long time ago, suggested the
topic of this paper to me. Thanks are also due to Kay Paulus and Bart Van
Steirteghem for numerous discussions about this paper. Finally, I am indebted
to the unknown referee for the many comments which highly improved the
paper.

References

[AMM98] Anton Alekseev, Anton Malkin, and Eckhard Mein-

renken, Lie group valued moment maps, J. Differential Geom.
48 (1998), 445–495. MR1638045

[AMW02] Anton Alekseev, Eckhard Meinrenken, and Chris

Woodward, Duistermaat-Heckman measures and moduli spaces
of flat bundles over surfaces, Geom. Funct. Anal. 12 (2002), 1–
31. MR1904554

[AA92] Andrey V. Alekseevskĭı and Dmitry V. Alekseevskĭı,
G-manifolds with one-dimensional orbit space, in: Lie groups,
their discrete subgroups, and invariant theory, Adv. Soviet
Math., vol. 8, Amer. Math. Soc., Providence, RI, 1992, pp. 1–
31. MR1155662

[AA93] Andrey V. Alekseevsky and Dmitry V. Alekseevsky,
Riemannian G-manifold with one-dimensional orbit space, Ann.
Global Anal. Geom. 11 (1993), 197–211. MR1237453

[Bou68] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV.
Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et
systèmes de Tits. Chapitre V: Groupes engendrés par des réflex-
ions. Chapitre VI: systèmes de racines, Actualités Scientifiques
et Industrielles, No. 1337, Hermann, Paris, 1968. MR0240238

[BP15] Paolo Bravi and Guido Pezzini, The spherical systems of
the wonderful reductive subgroups, J. Lie Theory 25 (2015), 105–
123. MR3345829

https://mathscinet.ams.org/mathscinet-getitem?mr=1638045
https://mathscinet.ams.org/mathscinet-getitem?mr=1904554
https://mathscinet.ams.org/mathscinet-getitem?mr=1155662
https://mathscinet.ams.org/mathscinet-getitem?mr=1237453
https://mathscinet.ams.org/mathscinet-getitem?mr=0240238
https://mathscinet.ams.org/mathscinet-getitem?mr=3345829


521

[Bre97] Glen E. Bredon, Sheaf Theory, 2nd ed., Graduate
Texts in Mathematics, vol. 170, Springer-Verlag, New York,
1997. MR1481706

[Bry93] Jean-Luc Brylinski, Loop Spaces, Characteristic Classes and
Geometric Quantization, Progress in Mathematics, vol. 107,
Birkhäuser Boston, Inc., Boston, MA, 1993. MR1197353

[Del88] Thomas Delzant, Hamiltoniens périodiques et images con-
vexes de l’application moment, Bull. Soc. Math. France 116
(1988), 315–339. MR0984900

[Del90] Thomas Delzant, Classification des actions hamiltoniennes
complètement intégrables de rang deux, Ann. Global Anal. Geom.
8 (1990), 87–112. MR1075241

[Esh09] Alimjon Eshmatov, A new example of a group-valued moment
map, J. Lie Theory 19 (2009), 395–407. MR2572136

[GS05] Victor Guillemin and Reyer Sjamaar, Convexity Prop-
erties of Hamiltonian Group Actions, CRM Monograph Se-
ries, vol. 26, American Mathematical Society, Providence, RI,
2005. MR2175783

[HJS06] Jacques Hurtubise, Lisa Jeffrey, and Reyer Sjamaar,
Group-valued implosion and parabolic structures, Amer. J. Math.
128 (2006), 167–214. MR2197071

[Kac90] Victor G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed.,
Cambridge University Press, Cambridge, 1990. MR1104219

[Kno02] Friedrich Knop, Convexity of Hamiltonian manifolds, J. Lie
Theory 12 (2002), 571–582. MR1923787

[Kno11] Friedrich Knop, Automorphisms of multiplicity free Hamil-
tonian manifolds, J. Amer. Math. Soc. 24 (2011), 567–
601. MR2748401

[Kno16] Friedrich Knop, Multiplicity free quasi-Hamiltonian mani-
folds, preprint (2016), 42 pages.

[KP19] Friedrich Knop and Kay Paulus, (Quasi-)Hamiltonian man-
ifolds of cohomogeneity one, preprint (2019). MR4646954

[KVS06] Friedrich Knop and Bart Van Steirteghem, Classifica-
tion of smooth affine spherical varieties, Transform. Groups 11
(2006), 495–516. MR2264463

https://mathscinet.ams.org/mathscinet-getitem?mr=1481706
https://mathscinet.ams.org/mathscinet-getitem?mr=1197353
https://mathscinet.ams.org/mathscinet-getitem?mr=0984900
https://mathscinet.ams.org/mathscinet-getitem?mr=1075241
https://mathscinet.ams.org/mathscinet-getitem?mr=2572136
https://mathscinet.ams.org/mathscinet-getitem?mr=2175783
https://mathscinet.ams.org/mathscinet-getitem?mr=2197071
https://mathscinet.ams.org/mathscinet-getitem?mr=1104219
https://mathscinet.ams.org/mathscinet-getitem?mr=1923787
https://mathscinet.ams.org/mathscinet-getitem?mr=2748401
https://mathscinet.ams.org/mathscinet-getitem?mr=4646954
https://mathscinet.ams.org/mathscinet-getitem?mr=2264463


522

[LMTW98] Eugene Lerman, Eckhard Meinrenken, Sue Tolman,
and Chris Woodward, Nonabelian convexity by symplectic
cuts, Topology 37 (1998), 245–259. MR1489203

[Los09a] Ivan Losev, Proof of the Knop conjecture, Ann. Inst. Fourier
(Grenoble) 59 (2009), 1105–1134. MR2543664

[Los09b] Ivan Losev, Uniqueness property for spherical homogeneous
spaces, Duke Math. J. 147 (2009), 315–343. MR2495078

[Lun07] Domingo Luna, La variété magnifique modèle, J. Algebra 313
(2007), 292–319. MR2326148

[Mac72] Ian Macdonald, Affine root systems and Dedekind’s η-
function, Invent. Math. 15 (1972), 91–143. MR0357528

[Mac03] Ian Macdonald, Affine Hecke Algebras and Orthogonal Poly-
nomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge
University Press, Cambridge, 2003. MR1976581

[Mei17] Eckhard Meinrenken, Convexity for twisted conjugation,
Math. Res. Lett. 24 (2017), 1797–1818. MR3762696

[MW04] Stephan Mohrdieck and Robert Wendt, Integral conju-
gacy classes of compact Lie groups, Manuscripta Math. 113
(2004), 531–547. MR2129875

[Pau17] Kay Paulus, Momentum polytopes of rank one for multiplicity
free quasi-Hamiltonian manifolds, preprint (2017).

[Pau18] Kay Paulus, Some momentum polytopes for multiplicity
free quasi-Hamiltonian manifolds, Dissertation, FAU-Erlangen-
Nürnberg, 2018.

[PVS22] Kay Paulus and Bart Van Steirteghem, Quasi-
Hamiltonian model spaces, Preprint (2022).

[PVS19] Guido Pezzini and Bart Van Steirteghem, Combinato-
rial characterization of the weight monoids of smooth affine
spherical varieties, Trans. Amer. Math. Soc. 372 (2019), 2875–
2919. MR3988597

[Sja98] Reyer Sjamaar, Convexity properties of the moment mapping
re-examined, Adv. Math. 138 (1998), 46–91. MR1645052

[SP23] The Authors of the Stacks Project, The Stacks Project (2023).
http://stacks.math.columbia.edu

https://mathscinet.ams.org/mathscinet-getitem?mr=1489203
https://mathscinet.ams.org/mathscinet-getitem?mr=2543664
https://mathscinet.ams.org/mathscinet-getitem?mr=2495078
https://mathscinet.ams.org/mathscinet-getitem?mr=2326148
https://mathscinet.ams.org/mathscinet-getitem?mr=0357528
https://mathscinet.ams.org/mathscinet-getitem?mr=1976581
https://mathscinet.ams.org/mathscinet-getitem?mr=3762696
https://mathscinet.ams.org/mathscinet-getitem?mr=2129875
https://mathscinet.ams.org/mathscinet-getitem?mr=3988597
https://mathscinet.ams.org/mathscinet-getitem?mr=1645052
http://stacks.math.columbia.edu


523

[Tie28] Heinrich Tietze, Über Konvexheit im kleinen und im großen
und über gewisse den Punkten einer Menge zugeordnete Dimen-
sionszahlen, Math. Z. 28 (1928), 697–707. MR1544985

[Vin71] Ernest Vinberg, Discrete linear groups that are generated by
reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1072–
1112. MR0302779

[VK78] Ernest Vinberg and Boris N. Kimel’fel’d, Homogeneous
domains on flag manifolds and spherical subsets of semisimple
Lie groups, Funktsional. Anal. i Prilozhen. 12 (1978), 12–19,
96. MR0509380

[Wen01] Robert Wendt, Weyl’s character formula for non-connected
Lie groups and orbital theory for twisted affine Lie algebras,
J. Funct. Anal. 180 (2001), 31–65. MR1814422

Friedrich Knop
Department Mathematik
FAU Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen
Germany
E-mail: friedrich.knop@fau.de

https://mathscinet.ams.org/mathscinet-getitem?mr=1544985
https://mathscinet.ams.org/mathscinet-getitem?mr=0302779
https://mathscinet.ams.org/mathscinet-getitem?mr=0509380
https://mathscinet.ams.org/mathscinet-getitem?mr=1814422
mailto:friedrich.knop@fau.de

	Introduction
	1 Local root systems and cohomology
	Affine root systems
	Local root systems
	The automorphism sheaf
	The vanishing theorem

	2 Multiplicity free quasi-Hamiltonian manifolds
	Quasi-Hamiltonian manifolds
	Twisted conjugacy classes
	The local structure of quasi-Hamiltonian manifolds
	Multiplicity free manifolds
	Local models
	Classification of multiplicity free quasi-Hamiltonian manifolds
	Examples
	Acknowledgements
	References


