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The number of multiplicity-free primitive ideals
associated with the rigid nilpotent orbits

Alexander Premet and David. I. Stewart
∗

To Corrado De Concini with admiration

Abstract: Let G be a simple algebraic group defined over C and
let e be a rigid nilpotent element in g = Lie(G). In this paper we
prove that the finite W -algebra U(g, e) admits either one or two 1-
dimensional representations. Thanks to the results obtained earlier
this boils down to showing that the finite W -algebras associated
with the rigid nilpotent orbits of dimension 202 in the Lie algebras
of type E8 admit exactly two 1-dimensional representations. As
a corollary, we complete the description of the multiplicity-free
primitive ideals of U(g) associated with the rigid nilpotent G-orbits
of g. At the end of the paper, we apply our results to enumerate the
small irreducible representations of the related reduced enveloping
algebras.

1. Introduction

Denote by G a simple algebraic group of adjoint type over C with Lie algebra
g = Lie(G) and let X be the set of all primitive ideals of the universal
enveloping algebra U(g). We shall identify g and g∗ by means of an (AdG)-
invariant non-degenerate symmetric bilinear form ( · , · ) of g. Given x ∈ g we
write Gx the centraliser of x in G and write gx := Lie(Gx).

It is well known that for any finitely generated S(g∗)-module M there exist
prime ideals q1, . . . , qn containing AnnS(g∗) M and a chain 0 = R0 ⊂ R1 ⊂
· · · ⊂ Rn = R of S(g∗)-modules such that Ri/Ri−1 ∼= S(g∗)/qi for 1 ≤ i ≤ n.
Let p1, . . . , pl be the minimal elements in the set {q1, . . . , qn}. The zero sets
V(pi) of the pi’s in g are the irreducible components of the support Supp(M)
of M . If p is one of the pi’s then we define m(p) := {1 ≤ i ≤ n | qi = p} and we
call m(p) the multiplicity of V(p) in Supp(M). The formal linear combination∑l

i=1 m(pi)[pi] is often referred to as the associated cycle of M and denoted
AC(M).
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Given I ∈ X we can apply the above construction to the S(g∗)-module
S(g∗)/gr(I) where gr(I) is the corresponding graded ideal in gr(U(g)) =
S(g) ∼= S(g∗). The support of S(g∗)/ gr(I) in g is called the associated variety
of I and denoted V(I). By Joseph’s theorem, V(I) is the closure of a single
nilpotent orbit O in g and, in particular, it is always irreducible. Hence in our
situation the set {p1, . . . , pl} is the singleton containing J :=

√
gr(I) and we

have that AC
(
S(g∗)/ gr(I)

)
= m(J)[J ]. The positive integer m(J) is referred

to the multiplicity of O in U(g)/I and denoted multO(U(g)/I).
For a nilpotent orbit O in g we denote by XO the set of all I ∈ X with

V(I) = O. Following [25] we call I ∈ XO multiplicity-free if multO(U(g)/I) =
1 and we say that a 2-sided ideal J of U(g) is completely prime if U(g)/J is
a domain.

Classification of completely prime primitive ideals of U(g) is a classical
problem of Lie Theory which finds applications in the theory of unitary repre-
sentations of complex simple Lie groups. The subject has a very long history
and many partial results can be found in the literature. In particular, it is
known that any multiplicity-free primitive ideal is completely prime and that
the converse fails outside type A for simple Lie algebras of rank ≥ 3; see [24]
and [16] for more detail. A description of multiplicity-free primitive ideals in
Lie algebras of types B, C and D was first obtained in [27]; that paper also
solved the problem fo the majority of induced nilpotent orbits in exceptional
Lie algebras.

Fix a nonzero nilpotent orbit O ⊂ g and let {e, h, f} be an sl2-triple
in g with e ∈ O. Let Q be the generalised Gelfand–Graev module associ-
ated with {e, h, f}; see [28] for more detail. Let U(g, e) := (EndgQ)op, the
finite W -algebra associated with (g, e). If V is a finite dimensional irreducible
U(g, e)-module, then Skryabin’s theorem [19, Appendix] in conjunction with
[21, Theorem 3.1(ii)] implies Q ⊗U(g, e) V is an irreducible g-module and its
annihilator IV in U(g) lies in XO. Conversely, any primitive ideal in XO has
this form for some finite dimensional irreducible U(g, e)-module V . This result
was conjectured in [21, 3.4] and proved in [22, Theorem 1.1] for the primitive
ideals admitting rational central characters. In full generality, the conjecture
was first proved by Losev; see [11, Theorem 1.2.2(viii)]. A bit later, alternative
proofs were found by Ginzburg in [7, 4.5] and by the first-named author in [23,
Sect. 4]. The ideal IV depends only on the image of V in the set IrrU(g, e) of
all isoclasses of finite dimensional irreducible U(g, e)-modules. We write [V ]
for the class of V in IrrU(g, e).

It is well-known that group C(e) := Ge ∩ Gf is reductive and its fi-
nite quotient Γ := C(e)/C(e)◦ identifies with the component group of the
centraliser Ge. From the Gan–Ginzburg realization of the finite W -algebra
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U(g, e) it follows that C(e) acts on U(g, e) by algebra automorphisms; see [5,
Theorem 4.1]. By [21, Lemma 2.4], the connected component C(e)◦ preserves
any 2-sided ideal of U(g, e). As a result, we have a natural action of Γ on
IrrU(g, e). For V as above, we let ΓV denote the stabiliser of [V ] in Γ. In [15,
4.2], Losev proved that IV ′ = IV if an only if [V ′] = [V ]γ for some γ ∈ Γ. In
particular, dimV = dimV ′. In conjunction with [15, Theorem 1.3.1(2)], this
result of Losev also implies that

multO(U(g)/IV ) = [Γ : ΓV ] · (dimV )2.

As a consequence, a primitive ideal IV is multiplicity-free if and only if
dimV = 1 and ΓV = Γ. This brings our attention to the set E of all one-
dimensional representations of U(g, e) and its subset EΓ consisting of all C(e)-
stable such representations. Since E identifies with the maximal spectrum of
the largest commutative quotient U(g, e)ab of U(g, e), it follows that E is an
affine variety and EΓ is a Zariski closed subset of E .

If g is a classical Lie algebra then it is proved in [27, Theorem 1] the variety
EΓ is isomorphic to the affine space AcΓ(e) where cΓ(e) = dim(ge/[ge, ge])Γ (one
should keep in mind here that the connected component of Ge acts trivially
on ge/[ge, ge]). This result continues to hold for g exceptional provided that
the orbit O is induced (in the sense of Lusztig–Spaltenstein) and not listed
in [27, Table 0]. That table contains seven induced orbits (one in types F4,
E6, E7 and four in type E8).

It is also known that E 	= ∅ for all nilpotent orbits O in the finite di-
mensional simple Lie algebras g and E is a finite set if and only if the orbit
O ⊂ g is rigid, that is cannot be induced from a proper Levi subalgebra of g
in the sense of Lusztig–Spaltenstein. This was first conjectured in [21, Conjec-
ture 3.1]. Several mathematicians contributed to the proof of this conjecture
and we refer to [25, Introduction] for more detail on the history of the subject.

Furthermore, it is known that EΓ 	= ∅ in all cases. If e is rigid and g

is classical then ge = [ge, ge] by [30], whilst if g is exceptional then either
ge = [ge, ge] or ge = Ce ⊕ [ge, ge] and the second case occurs for one rigid
orbit in types G2, F4, E7 and for three rigid orbits in type E8; see [3, 26]. The
Bala–Carter labels of these orbits are listed in Table 1.

Table 1: Rigid nilpotent elements with imperfect centralisers

Type of Φ G2 F4 E7 E8 E8 E8

Label of e Ã1 Ã2 + A1 (A3 + A1)′ A3 + A1 A5 + A1 D5(a1) + A2
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Since EΓ 	= ∅, it follows from [27, Proposition 11] that for any simple Lie
algebra g the equality ge = [ge, ge] implies that E is a singleton. In view of
the above we see that for any rigid nilpotent element in a classical Lie algebra
the set E = EΓ contains one element, whilst for g exceptional and e rigid the
inequality |E| ≥ 2 may occur only for the six orbits listed in Table 1.

Let T be a maximal torus of G and t = Lie(T ). Let Φ be the root system
of g with respect to T and let Π be a basis of simple roots in Φ. By Duflo’s
theorem [4], any primitive ideal I ∈ X has the form I = I(λ) := AnnU(g) L(λ)
for some irreducible highest weight g-modules L(λ) with λ ∈ t∗, and all
multiplicity-free primitive ideals I constructed in [25] are given in their Duflo
realisations. It is known that if 〈λ, α∨〉 ∈ Z for all α ∈ Π then V(I) is the
closure of a special (in the sense of Lusztig) nilpotent orbit in g. One also
knows that to any sl2-triple {e, h, f} in g with e special there corresponds
an sl2-triple {e∨, h∨, f∨} in the Langlands dual Lie algebra g∨ with h∨ ∈ t∗.
As Barbasch–Vogan observed in [1, Proposition 5.10], for e special and rigid
there is a unique choice of h∨ such that 〈1

2h
∨, α∨〉 ∈ {0, 1} for all α ∈ Π.

Furthermore, in this case we have that I(1
2h

∨ − ρ) ∈ XO (here ρ is the half-
sum of the positive roots of Φ with respect to Π and O is the nilpotent orbit
containing e).

If g is classical and e is special rigid, then it follows from [17] that one
of the Duflo realisations of the multiplicity-free primitive ideal in XO is ob-
tained by using the Arthur–Barbasch–Vogan recipe described above. By [25,
Theorem A], this result continues to hold for the special rigid nilpotent orbits
in exceptional Lie algebras. (It is worth mentioning here that all nilpotent
elements listed in Table 1 are non-special.) It was also proved in [25] that for
any orbit O listed in Table 1 the set XO contains (at least) two multiplicity-
free primitive ideals and their Duflo realisations I(Λ) and I(Λ′) were found
in all cases by using a method described by Losev in [14, 5.3].

It should be stressed at this point that in the case of rigid nilpotent orbits
in exceptional Lie algebras the set E was first investigated by Goodwin–
Röhrle–Ubly [8] and Ubly [29] who relied on some custom GAP code. In
particular, it was checked in [8] that |E| = 2 for all orbits in types G2, F4 and
E7 listed in Table 1. After [8] was submitted Ubly has improved the GAP
code and was able to check that |E| = 2 for the nilpotent orbit in type with
Bala–Carter label A3 + A1 in type E8; see [29]. This left open the two largest
rigid nilpotent orbits (of dimension 202) in Lie algebras of type E8.

The main result of this paper is the following:

Theorem A. If e lies in a nilpotent orbit O listed in Table 1 then |E| =
|EΓ| = 2. Consequently, the set XO contains two multiplicity-free primitive
ideals.
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Combined with the main results of [25], Theorem A provides a full list
of all multiplicity-free primitive ideals of U(g) associated with rigid nilpotent
orbits. Since Γ = {1} for all nilpotent elements listed in Table 1, in order to
prove the theorem we just need to show that |E| = 2 for the nilpotent elements
in Lie algebras of type E8 labelled A5 + A1 and D5(a1) + A2. By the proof of
Proposition 2.1 in [25] and by [28, Proposition 5.4], the largest commutative
quotient U(g, e)ab of U(g, e) is generated by the image of a Casimir element
of U(g) in U(g, e)ab; we call it c. Looking very closely at the commutators of
certain PBW generators of Kazhdan degree 5 in U(g, e) we are able to show
that λc2 + ηc+ ξ = 0 for some λ ∈ C

× and η, ξ ∈ C. This quadratic equation
results from investigating certain elements of Kazhdan degree 8 in the graded
Poisson algebra P(g, e) associated with the Kazhdan filtration of U(g, e).

Let R = Z[ 12 ,
1
3 ,

1
5 ]. In [28, 4.1], a natural R-form, QR, of the Gelfand–

Graev module Q was introduced, and it was proved for e rigid that the ring
U(gR, e) := Endg(QR)op has a nice PBW basis over R. In the present paper,
we use these results to carry out all our computations over the ring R. In
particular, we show that λ ∈ R× and η, ξ ∈ R. The explicit form of Λ and Λ′

in [25, 3.16, 3.17] in conjunction with [28, Theorem 1.2] and [19, Theorem 2.3]
then enables us to obtain the following:

Theorem B. Let gk := Lie(Gk) be a Lie algebra of type E8 over an alge-
braically closed field k of characteristic p > 5 and let e be a nilpotent element
of gk with Bala–Carter label A5 + A1 or D5(A1) + A2. Let χ ∈ g∗k be such
that χ(x) = κ(e, x) for all x ∈ g∗k where κ is the Killing form of gk. Then the
reduced enveloping algebra Uχ(gk) has two simple modules of dimension pd(χ)

where d(χ) = 101 is half the dimension of the coadjoint Gk-orbit of χ.

We recall that Uχ(gk) = U(gk)/Iχ where Iχ is the 2-sided ideal of U(gk)
generated by all elements xp − x[p] − χ(x)p with x ∈ gk (here x 
→ x[p] is the
[p]-th power map of the restricted Lie algebra gk). By the Kac–Weisfeiler con-
jecture (proved in [18]) any finite-dimensional Uχ(gk)-module has dimension
divisible by pd(χ). It would be interesting to prove an analogue of Theorem B
for the first four orbits in Table 1 and to reestablish the remaining results of
[8] and [29] by the methods of the present paper.

2. Notation and preliminaries

Let GZ be a Chevalley group scheme of type E8 and gZ = Lie(GZ). Let R =
Z[ 12 ,

1
3 ,

1
5 ] (recall that 2, 3 and 5 are bad primes for GZ). We set gR := gZ⊗ZR,

and g := gZ ⊗ZC. Let Φ be the root system of GZ with respect to a maximal
split torus TZ of GZ. Let Π = {α1, . . . , α8} be a set of simple roots in Φ and
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write Φ+ for the set of positive roots of Φ with respect to Φ. We always use
Bourbaki’s numbering of simple roots; see [2, Planche VII].

We choose a Chevalley system
⋃

α∈Φ+{hα, eα, fα} of gZ so that that the
signs of the structure constants Nα,β ∈ {−1, 0, 1} with α, β ∈ Φ follow the
conventions of [9] and [13]. Recall that hα = [eα, fα] for all α ∈ Φ+. We set
ei := eαi , fi := fαi and hi := hαi for all αi ∈ Π and denote by ( · , · ) the
Z-valued invariant symmetric bilinear form on gZ such that (eα, fα) = 1 for
all α ∈ Φ+.

Given x ∈ g we denote by gx the centraliser of x in g. Of course, our
main concern is with the nilpotent elements e ∈ gZ labelled A5 + A1 and
D5(a1) + A2. A lot of useful information on the structure of ge can be found
in [12, pp. 149, 150]. We note that the cocharacter τ ∈ X∗(TZ) introduced
in op. cit. is optimal for e in the sense of the Kempf–Rousseau theory; see
[20] for detail. The adjoint action of τ(C∗) on g gives rise to a Z-grading
ge =

⊕
i∈Z≥0

ge(e) of ge. As explained in [28, 3.4], this grading is defined over
R, that is gR,e := ge ∩ gR =

⊕
i∈Z≥0

gR,e(i) where gR,e(i) = gR ∩ ge(i). Also,
gR,e is a direct summand of the Lie ring gR.

In what follows we adopt the notation introduced in [19] and [28]. Let
Q be the generalised Gelfand–Graev module associated with e and write QR

and U(gR, e) for the R-forms of Q and U(g, e) defined in [28, 4.1, 5.1]. We
write Fi(Q) and Fi(QR) for the i-th components of the Kazhdan filtration of
Q and QR, respectively, and regard U(g, e) as a subspace of Q. By [26, 4.5]
and [28, Sect. 5], the associative algebra U(g, e) is generated by elements Θy

with y ∈ ⋃
i≤5 ge(i) and every such element is defined over R, i.e. has the

property

Θ(y) = y +
∑

|(i,j)|e ≤nk+2, |i|+|j|≥2
λi,j(y)xizj(2.1)

for some λi,j(y) ∈ R; see [28, 4.2]. The monomials xizj involved in (2.1) will
be described in more detail in Subsection 3.3.

3. Dealing with the orbit A5A1

3.1. A relation in ge(6) involving four elements of weight 3

Following [12, p. 149] we choose e = e1 + e2 + e4 + e5 + e6 + e7. Then

f = f1 + 5f2 + 8f4 + 9f5 + 8f6 + 5f7
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and h = h1 + 2h2 − 9h3 + 2h4 + 2h5 + 2h6 + 2h7 − 9h8. The Lie algebra ge(0)
consists of two commuting sl2-triples generated by eα̃, fα̃ and e′ := e 123

2
2100 +

e 123
1
2110 − e 122

1
2210, f ′ := f 123

2
2100 + f 123

1
2110 − f 122

1
2210. The 4-dimensional graded

component ge(3) is a direct sum of two ge(0)-modules of highest weights
(1, 0) and (0, 1). As in loc. cit. we choose

v := e 124
2
3211− e 123

2
3221 + e 123

1
3321,

v′ := e 112
1
1100− e 012

1
2100− e 012

1
1110 + 2e 111

1
1110

as corresponding highest weight vectors. Setting v := −[fα̃, u] and v′ :=
−[f ′, u′] and using the structure constants Nα,β tabulated in [13, Appendix]
we then check directly that

u := f 123
2
2111− f 123

1
2211 + f 122

1
2221,

u′ := f 111
1
0000 + f 111

0
1000 + f 011

1
1000 + 2f 011

0
1100.

One has to keep in mind here that

N 122
1
2221, 1242

3211 = N 123
1
2221, 1232

3211 = N 123
2
2111, 1231

3321 = 1,

N 011
0
1100, 1111

1110 = N 111
0
1000, 0121

1110 = N 111
1
0000, 0121

2100 = −N 011
1
1000, 1121

1100 = 1,

and Nα,β = −N−α,−β for all α, β ∈ Φ+; see [9, p. 409] and [13, Appendix].
Let

w := e 001
1
1000 + e 001

0
1100 + e 000

0
1110.

Since both [u, v] and [u′, v′] lie in ge(6) and have weight (0, 0) with respect
to ge(0) it follows from [12, p. 149] that [u, v] = aw and [u′, v′] = bw for
some a, b ∈ C. Applying ad e4 to both sides of the equation [u, v] = aw gives
[[e4, u], v] + [u, [e4, v]] = a[e4, w] implying that

−[[e4, f 123
1
2211], v] − [u, [e4, e 123

2
3221]] = a[e4, e 000

0
1110].

It follows from [13, Appendix] that [e4, e 000
0
1110] = e 001

0
1110 and [e4, e 123

2
3221] =

e 124
2
3221. Also, [e 123

1
2211, f4] = εe 122

1
2211 for some ε ∈ {±1}. As Nα4,− 123

1
2211 =

N 123
1
2211,−α4

by [9, p. 409], applying ad e4 to both sides of the last equa-
tion gives [e 123

1
2211, h4] = ε[e4, e 122

1
2211]. In view of [13, Appendix] this yields

−e 123
1
2211 = εe 123

1
2211 forcing ε = −1. As a result,

[f 122
1
2211, e 123

1
3321] − [f 123

2
2111, e 124

2
3221] = ae 001

0
1110.
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Using [13, Appendix] we see [e 001
0
1110, e 122

1
2211] = e 123

1
3321 and [e 001

0
1110, e 123

2
2111] =

−e 124
2
3221. Therefore,

[f 122
1
2211, [e 001

0
1110, e 122

1
2211]] + [f 123

2
2111, [e 001

0
1110, e 123

2
2111]] = ae 001

0
1110.

Equivalently, −[e 001
0
1110, h 122

1
2211] − [e 001

0
1110, h 123

2
2111] = ae 001

0
1110. Thus a = −2 so

that
[u, v] = −2w.

Since [e4, u
′] = 0, applying ad e4 to both sides of the equation [u′, v′] = bw we

get
[u′, [e4, 2e 111

1
1110]] = 2[u′, e 112

1
1110] = b[e4, e 000

0
1110] = be 001

0
1110

(we use the fact that Nα4,
111

1
1110 = 1 which follows from the conventions

in [9]). Our formula for u′ implies that [u′, e 112
1
1110] = [f 111

1
0000, e 112

1
1110]. As

[e 001
0
1110, e 111

1
0000] = −e 112

1
1110 by [13, Appendix], we now obtain

−2[f 111
1
0000, [e 001

0
1110, e 111

1
0000]] = 2[e 001

0
1110, h 111

1
0000] = be 001

0
1110.

Hence b = 2 so that [u′, v′] = 2w. In view of the above the following relation
holds in ge(6):

(3.1) [u, v] + [u′, v′] = 0.

3.2. Searching for a quadratic relation in U(g, e)ab

Our hope is that despite (3.1) the element [Θu,Θv] + [Θu′ ,Θv′ ] ∈ U(g, e) is
nonzero; moreover, that lies in F8(Q) \ F7(Q). Let

P(g, e) =
(
grF (U(g, e)), { · , · }

)

denote the Poisson algebra associate with Kazhdan-filtered algebra U(g, e). It
is well-known that P(g, e) identifies with the algebra of regular functions on
the Slodowy slice e + gf to adjoint G-orbit e; see [19, 5]. We identify P(g, e)
with the symmetric algebra S(ge) by using the isomorphism between g and
g∗ induced by the G-invariant symmetric bilinear form ( · , · ) on g. We write
I for the ideal of P(g, e) generated by

⋃
i	=2 ge(i) and put P̄ := P(g, e)/I.

Obviously, P̄ ∼= S(g2(2)) as C-algebras.
Given y ∈ ge(i) we write θy for the F -symbol of Θy in Pi+2(g, e). We put

ϕ := {θu, θv} + {θu′ , θv′}, an element of P8 (possibly zero), and denote by ϕ̄
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the image of ϕ in P̄. By [12, p. 149], the graded component ge(2) = ge(2)ge(0)

is spanned by e and e1 = eα1 . In view of (3.1) and [19, Theorem 4.6(iv)] the
linear part of ϕ is zero and there exist scalars λ, μ, ν such that

ϕ̄ = λe2 + μee1 + νe2
1.

In fact, the main results of [28, Theorem 1.2] imply that λ, μ, ν ∈ R. Since
it follows from [25, Prop. 2.1] and [28, 5.2] that the commutative quotient
U(g, e)ab is generated by the image of Θe, we wish to take a closer look at
the image of {θu, θv} + {θu′ , θv′} in P̄.

By [12, p. 149], the graded component ge(1) is an irreducible ge(0)-
module generated by e 234

2
3210, a highest weight vector of weight (0, 3) for ge(0).

Hence [ge(1), ge(1)] ⊆ ge(2) = ge(2)ge(0) has dimension ≤ 1. On the other
hand, a rough calculation relying on the above expression of f ′ shows that
(ad f ′)3(e 234

2
3210) ∈ Re1. Since in the present case ge = Ce ⊕ [ge, ge], we see

that

[ge, ge](2) = [ge(1), ge(1)] + [ge(0), ge(2)ge(0)] = [ge(1), ge(1)]ge(0)

has codimension 1 in ge(2). The preceding remark now entails that e1 ∈
[ge(1), ge(1)].

Since it is immediate from [25, Prop. 2.1] and [28, 5.2] that the largest
commutative quotient of U(g, e) is generated by the image of Θe we would
find a desired quadratic relation in U(g, e)ab if we managed to prove that the
coefficient λ of ϕ̄ is nonzero. Indeed, let Ic denote the 2-sided ideal of U(g, e)
generated by all commutators. If it happens that λ ∈ R× then the element
[Θu,Θv]+ [Θu′ ,Θv′ ] ∈ Ic∩QR has Kazhdan degree 8 and is congruent to λΘ2

e

modulo Ic ∩ U(gR, e) + F7(QR). As [28, Prop. 5.4] yields

U(g, e) ∩ F7(QR) ⊂ R1 + RΘe + Ic ∩ U(gR, e)

the latter would imply that λΘ2
e+ηΘe+ξ1 ∈ Ic for some λ ∈ R× and η, ξ ∈ R.

From the expression for f in Subsection 3.1 we get (e, f) = 5 + 8 + 9 +
8 + 5 + 1 = 36. As (e, f1) = (e1, f1) = 1 we obtain (e1, f − f1) = 0 and
(e, f − f0) = 35. Since all elements of I vanish on f − f1 this gives

(3.2) ϕ(f − f1) = λ(e, f − f1)2 = 5272λ.

This formula indicates that we might expect some complications in charac-
teristic 7.
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3.3. Computing λ, part 1

In order to determine λ we need a more explicit formula for commutators
[Θa,Θb] with a, b ∈ ge(3). For that purpose, it is more convenient to use the
construction of U(g, e) introduced by Gan–Ginzburg in [5]. Let χ ∈ g∗ be such
that χ(x) = (e, x) for all x ∈ g and set n′ :=

⊕
i≤−2 g(i) and n :=

⊕
i≤1 g(i).

Let Jχ denote the left ideal of U(g) generated by all x − χ(x) with x ∈ n′

and put Q̂ := U(g)/Jχ. Since χ vanishes on [n, n′] ⊆ ⊕
i≤−3 g(i), the left

ideal Jχ is stable under the adjoint action of n. Therefore, n acts on Q̂.
Moreover, the fixed point space Q̂adn carries a natural algebra structure given
by (x+Jχ)(y+Jχ) = xy+Jχ for all x+Jχ, y+Jχ ∈ Q̂χ. By [5, Theorem 4.1],
U(g, e) ∼= Q̂adn as algebras. The Kazhdan filtration F of Q̂ (induced by that
of U(g)) is nonnegative.

Let 〈 · , · 〉 be the non-degenerate symplectic form on g(−1) given by
〈x, y〉 = (e, [x, y]) for all x, y ∈ g(−1) and let z1, . . . , zs, zs+1, . . . , z2s be a
basis of g(−1) such that 〈zi+s, zj〉 = δij and 〈zi, zj〉 = 〈zi+s, zj+s〉 = 0 for
all 1 ≤ i, j ≤ s. Let p =

⊕
i≥0 g(i), the parabolic subalgebra associated with

the cocharacter τ , and let x1, . . . , xm be a homogeneous basis of p such that
x1, . . . , xr is a basis of ge ⊂ p and xi ∈ g(ni) for some ni ∈ Z≥0 (and all
i ≤ m). Given (i, j) ∈ Z

m
≥0 × Z2s

≥0 we set xizj := xi11 · · · ximm zj11 · · · zj2s2s . Clearly,
Fd(Q̂) ⊂ U(g)/Jχ has C-basis consisting of all xizj with

|(i, j)|e :=
m∑
k=1

ik(nk + 2) +
2s∑
k=1

jk = wth(xizj) + 2 deg(xizj) ≤ d.

As explained in [21, 2.1] the algebra U(g, e) has a PBW basis consisting
of monomials Θi := Θi1

1 · · ·Θxr
r with i ∈ Z

r
≥0, where

Θk = xk +
∑

|(i,j)|e ≤nk+2, |i|+|j|≥2
λk

i,jx
izj, 1 ≤ k ≤ r,

where λk
i,j ∈ C and λk

i,j = 0 whenever j = 0 and ij = 0 for j > r. The elements
{Θk | 1 ≤ k ≤ r} are unique by [28, Lemma 2.4].

Given a =
∑

i ξixi ∈ ge we put Θa :=
∑

i ξiΘi. Following [21, 2.4] we
denote by Ae the associative C-algebra generated by z1, . . . , zs, zs+1, . . . , z2s
subject to the relations [zi+s, zj ] = δij and [zi, zj ] = [zi+s, zj+s] = 0 for
all 1 ≤ i, j ≤ s. Clearly, Ae

∼= As(C), the s-th Weyl algebra over C. Let
i 
→ i∗ denote the involution of the index set {1, . . . , s, s + 1, . . . , 2s} such
that i∗ = i + s for i ≤ s and i∗ = i − s for i > s, and put z∗i := (−1)p(i)zi∗



Multiplicity-free primitive ideals 547

where p(i) = 0 if i ≤ s and p(i) = 1 if i > s. Then [z∗i , zj ] ∈ δij + Jχ for all
i ≤ 2s.

Let a ∈ ge(d) where d ≥ 1. As g(−1) ⊂ n and Θa ∈ Q̂n it is straightfor-
ward to see that

Θa ≡ a +
2s∑
i=1

[a, z∗i ]zi +
∑

|(i,0)|e=d+2, |i|=2
λi,0(a)xi

+
∑

|(i,j)|e=d+2, |i|+|j|≥3
λi,j(a)xizj mod Fd+1(Q̂)

where λi.j(a) ∈ C. By [21, Prop. 2.2], there exists an injective homomorphism
of C-algebras μ̃ : U(g, e) ↪→ U(p) ⊗ Aop

e such that

μ̃(Θk) = xk ⊗ 1 +
∑

|(i,j)|e ≤nk+2, |i|+|j|≥2
λk

i,jx
i ⊗ zj, 1 ≤ k ≤ r.

If u1, u2 ∈ U(p) and c1, c2 ∈ Aop
e then

[u1 ⊗ c1, u2 ⊗ c2] = u1u2 ⊗ c2c1 −u2u1 ⊗ c1c2 = u1u2 ⊗ [c1, c2] + [u1, u2]⊗ c1c2.

Now let a ∈ ge(d1) and b ∈ ge(d2), where d1, d2 are positive integers.
Combining the above expressions for Θa and Θb with the preceding remark
and properties of μ̃ one observes that

[Θa,Θb] ≡ [a, b] +
2s∑
i=1

[[a, b]z∗i ]zi +
2s∑
i=1

[a, z∗i ][b, zi] + q(a, b)

+
∑

|(i,j)|e=d1+d2+2, |i|+|j|≥3
λi,j(a, b)xizj mod Fd1+d2+1(Q̂),

where λi,j(a, b) ∈ C and q(a, b) is a linear combination of [a, xi]xj with ni +
nj = d2 + 2 and [b, xi]xj with ni + nj = d1 + 2. In view of (3.1) this implies
that

{θu, θv} + {θu′ , θv′} =
2s∑
i=1

(
[u, z∗i ][v, zi] + [u′, z∗i ][v′, zi]

)

+ q(u, v, u′, v′) + terms of standard degree ≥ 3,

where q(u, v, u′, v′) = q(u, v) + q(u′, v′). All terms of standard degree ≥
3 involved in {θu, θv} + {θu′ , θv′} have Kazhdan degree 8. Therefore, they



548 Alexander Premet and David. I. Stewart

must vanish at f − f1 ∈ g(−2). Since each quadratic monomial involved in
q(u, v, u′, v′) has a linear factor of standard degree ≥ 3 we also have that
q(u, v, u′, v′)(f − f1) = 0. As a consequence,

(
{θu, θv} + {θu′ , θv′}

)
(f − f1) =

2s∑
i=1

([u, z∗i ], f − f1)([v, zi], f − f1)

+
2s∑
i=1

([u′, z∗i ], f − f1)([v′, zi], f − f1).

3.4. Computing λ, part 2

Our deliberation in Subsection 3.3 show that in order to determine λ we need
to evaluate two sums:

A :=
2s∑
i=1

([u, z∗i ], f − f1)([v, zi], f − f1),

and B :=
2s∑
i=1

([u′, z∗i ], f − f1)([v′, zi], f − f1).

To simplify notation we put E := ad e, H := adH, F = ad f and H1 :=
adh1 = adhα1 . Since u, u′, v, v′ ∈ ge(3) there exist u− ∈ CF 3(u), v− ∈
CF 3(v), u′− ∈ CF 3(u′) and v′− ∈ CF 3(v′) such that u = E3(u−), v = E3(v−),
u′ = E3(u′−) and v′ = E3(v′−). As ge ⊂ p the sl2-theory shows that the
elements u−, v−, u′−, v′− lie in gf (−3). Using the g-invariance of ( · , · ) and the
fact that E3(f − f1) = 0 we get

A =
2s∑
i=1

([E3(u−), z∗i ], f − f1)([E3(v−), zi], f − f1)

=
2s∑
i=1

(z∗i , [E3(u−), f − f1])(zi, [E3(v−), f − f1])

=
2s∑
i=1

(z∗i , E3([u−, f − f1])

− 3E([E(u−), h− h1]))(zi, E3([v−, f − f1]) − 3E([E(v−), h− h1]))

=
2s∑
i=1

(e, [E2([u−, f − f1])

− 3[E(u−), h− h1], z∗i ])(e, [E2([v−, f − f1]) − 3[E(v−), h− h1], zi]).
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Our choice of the z∗i ’s implies that 〈x, y〉 =
∑2s

i=1〈z∗i , x〉〈zi, y〉 for all x, y ∈
g(−1). The definition of 〈 · , · 〉 then yields

A =
(
e,
[
[E2([u−, f − f1]) − 3[E(u−), h− h1], [E2([v−, f − f1])

− 3[E(v−), h− h1]
])

=
(
[E3(u−), f − f1], E2([v−, f − f1]) − 3[E(v−), h− h1]

)
=

(
[u, f − f1], E2([v−, f − f1])

)
− 3

(
[u, f − f1], [E(v−), h− h1]

)
= 2([u, e1], [v−, f − f1]) − 3(u, [f − f1, [[e, v−], h− h1])
= 2([[u, e1], f1], v−) − 3(u, [[−h + h1, v−], h− h1])

+ 3(u, [[e, [f1, v−]], h− h1]) − 6(u, [[e, v−], f − f1])
= 2([[u, e1], f1], v−) − 3

(
u, (H −H1)2(v−)

)
+ 3([e, [u, [f1, v−]], h− h1) − 6([e, [u, v−]], f − f1)

= 2([[u, e1], f1], v−) − 3
(
u, (H −H1)2(v−)

)
− 6([f1, v−], [u, e− e1]) + 6([u, v−], h− h1)

= 2([[u, e1], f1], v−) − 3
(
u, (H −H1)2(v−)

)
+ 6(u, [e1, [f1, v−]]) − 6(u, [h− h1, v−])

= 8([[u, e1], f1], v−) − 3
(
(H −H1)(H −H1 − 2)(u), v−

)
.

Absolutely similarly we obtain that

B = 8([[u′, e1], f1], v′−) − 3
(
(H −H1)(H −H1 − 2)(u′), v′−

)
.

The expression for v in Subsection 3.1 yields [e1, u] = [h1, u] = 0. Since
[h, u] = 3u this implies that A = −9(u, v−). Also, u′ = u′1 + u′2 where

u′1 = f 111
1
0000 + f 111

0
1000 and u′2 = f 011

1
1000 + 2f 011

0
1100.

As [e1, u
′
2] = [f1, u

′
1] = 0 and [h1, u

′
1] = −u′1 we have

[[u′, e1], f1] = [[u′1, e1], f1] = [u′1, h1] = u′1.

As [h1, u
′
2] = u′2 and u′1, u

′
2 ∈ g(3) we have

(H −H1)(H −H1 − 2)(u′) = (H1 − 3)(H1 − 1)(u′) = −2(H1 − 3)(u′1) = 8u′1.

From this it is immediate that B = 8(u′1, v′−)− 24(u′1, v′−) = −16(u′1, v′−) and

A + B = −9(u, v−) − 16(u′1, v′−).
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Recall that v = E3(v−) and v′ = E3(v′−). Since both v and v′ have weight 3
it is straightforward to check that v− = 1

36F
3(v) and v′−− = 1

36F
3(v′). As a

result,
36(A + B) = 9

(
F 3(u), v

)
+ 16

(
F 3(u′1), v′

)
.

Our next step is to compute F 3(u1) = (ad f)3(f 111
1
0000 + f 111

0
1000). The

formula for f in Subsection 3.1 shows that

[f, u′1] = 9[f5, f 111
1
0000] + 5[f2, f 111

0
1000] + 8[f6, f 111

0
1000].

Using the structure constants and conventions of [9] we get

[f, u′1] = 4(f 111
1
1000 + 2f 111

0
1100).

Then

[f, [f, u′1]] = 4
(
10[f1, f 111

0
1100] + 8[f4, f 111

1
1000] + 8[f6, f 111

1
1000] + 8[f7, f 111

0
1100]

)

= 4(−10f 111
1
1100− 8f 112

1
1000 + 8f 111

1
1100 + 10f 111

0
1110

)

= 8(−f 111
1
1100− 4f 112

1
1000 + 5f 111

0
1110).

Finally,

F 3(u′1) = 8
(
− 8[f4, f 111

1
1100] − 5[f7, f 111

1
1100] − 32[f6, f 112

1
1000] + 25[f2, f 111

0
1110]

)

= 8(8f 112
1
1100− 5f 111

1
1110− 32f 112

1
1100− 25f 111

1
1110)

= −48(4f 112
1
1100 + 5f 111

1
1110).

Therefore,
(
F 3(u′1), v′

)
= −48(4f 112

1
1100 + 5f 111

1
1110, e 112

1
1100 + 2e 111

1
1110) = −25 · 3 · 7.

Next we determine F 3(u) = (ad f)3(f 123
2
2111 − f 123

1
2211 + f 122

1
2221). Here we use

conventions of [9] and the structure constants from [13, Appendix]. We have

[f, u] = 8[f6, f 123
2
2111] − 5[f2, f 123

1
2211] − 5[f7, f 123

1
2211] − 9[f5, f 123

1
2211]

+ 8[f4, f 122
1
2221]

= −8f 123
2
2211 + 5f 123

2
2211 + 5f 123

1
2221 + 9f 123

1
3211− 8f 123

1
2221

= −3(f 123
2
2211− 3f 123

1
3211 + f 123

1
2221).
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Then

[f, [f, u]] = −3
(
9[f5, f 123

2
2211] + 5[f7, f 123

2
2211] − 15[f2, f 123

1
3211] − 15[f7, f 123

1
3211]

+ 5[f2, f 123
1
2221] + 9[f5, f 123

1
2221]

)
= −3(−9f 123

2
3211− 5f 123

2
2221

− 5f 123
2
2221− 9f 123

1
3221 + 15f 123

2
3211 + 15f 123

1
3221)

= 6(5f 123
2
2221− 3f 123

1
3221− 3f 123

2
3211).

Finally,

F 3(u) = 6
(
45[f5, f 123

2
2221] − 15[f2, f 123

1
3221] − 24[f6, f 123

1
3221] − 24[f4, f 123

2
3211]

− 15[f7, f 123
2
3211]

)

= 6(−45f 123
2
3221 + 15f 123

2
3221 + 24f 123

1
3321 + 24f 124

2
3211

+ 15f 123
2
3221) = 18(−5f 123

2
3221 + 8f 123

1
3321 + 8f 124

2
3211).

Therefore,
(
F 3(u), v

)
= 18(−5f 123

2
3221 + 8f 123

1
3321 + 8f 124

2
3211, e 124

2
3211− e 123

2
3221 + e 123

1
3321)

= 18(5 + 8 + 8) = 2 · 33 · 7.

As a result, 36(A+B) = −16·25·3·7+9·2·33·7 = 6·7·(92−162) = −6·52·72. In
view of (3.2) we now deduce that 52 ·72λ = A+B = −1

6 ·52 ·72 forcing λ = −1
6 .

This enables us to conclude that in the present case dimU(g, e)ab = 2. It is
quite remarkable that 72 gets cancelled and we obtain λ ∈ R× at the end!
Remark 3.1. For safety, we have used GAP [6] to double-check our computa-
tions and obtained the same result; i.e. 36(A + B) = −6 · 52 · 72.1

4. Dealing with the orbit D5(a1)A2

4.1. A relation in ge(6) involving two elements of weight 3

Following [12, p. 150] we choose e = e1+e2+e3+e5+e7+e8+eα2+α4 +eα4+α5

where eα2+α4 = [e2, e4] and eα4+α5 = [e4, e5]. Then h = 6h1 + 7h2 + 10h3 +
12h4 + 7h5 + 2h7 + 2h8. As fα2+α4 = −[f2, f4] and fα4+α5 = −[f4, f5] by the
conventions of [9] a direct verification shows that

f = 6f1 + f2 + 10f3 + f5 + 2f7 + 2f8 − 6[f2, f4] − 6[f4, f5].
1The relevant code is available at https://github.com/davistem/

the_number_of_multiplicity-free_primitive_ideals/

https://github.com/davistem/the_number_of_multiplicity-free_primitive_ideals/
https://github.com/davistem/the_number_of_multiplicity-free_primitive_ideals/
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Therefore, (e, f) = 6 + 1 + 10 + 1 + 2 + 2 + 6 + 6 = 34.
The Lie algebra ge(0) ∼= sl(2) is spanned by

e′ := e 123
1
2221− 2e 123

2
3210− e 123

2
2211− e 123

1
3211,

f ′ := 2f 123
1
2221− f 123

2
3210− f 123

2
2211− f 123

1
3211

and h′ := 2�∨
6 , where �∨

6 (ei) = δi,6 ei for 1 ≤ i ≤ 8.

The 4-dimensional graded component ge(3) is a direct sum of two ge(0)-
modules of highest weights 1. As in loc. cit. we choose

u := e 122
1
1110 + e 112

1
1111− e 122

1
2100− 2e 112

1
2110 + 3e 111

1
1111 + e 123

1
2100

as a highest weight vector of one of these modules and set v := [f ′, u]. By
standard properties of the root system Φ,

v = 2[f 123
1
2221, e 122

1
1110] + 2[f 123

1
2221, e 112

1
1111] + [f 123

2
3210, e 122

1
2100]

+ 2[f 123
2
3210, e 112

1
2110] − [f 123

2
2211, e 112

1
1111] − 3[f 123

2
2211, e 111

1
111]

+ [f 123
1
3211, e 122

1
2100] − [f 123

1
3211, e 123

1
2100].

From [13, Appendix] we get

N 001
0
1111, 1221

1110 = N 011
0
1110, 1121

1111 = N 012
1
1100, 1111

1111 = N 000
0
1111, 1231

2100 = −1,

N 001
1
1110, 1221

2100 = N 011
1
1100, 1121

1111 = N 001
0
1111, 1221

2100 = N 011
1
1100, 1121

2110 = 1.

Since Nα,β = −N−α,−β by [9], a straightforward computation shows that

v = 2f 001
0
1111 + 2f 011

0
1110− f 001

1
1100− 2f 011

1
1100

+ f 011
1
1100− 3f 012

1
110 − f 001

0
1111− f 000

0
1111

= −f 000
0
1111− f 001

1
1100− f 011

1
1100 + 2f 011

0
1110− 3f 012

1
110 + f 001

0
1111.

It is worth mentioning that v also appears in the extended (unpublished)
version of [12] as a linear combination of vectors v12 and v14.

Since u is a highest weight vector of weight 1 for ge(0) it must be that
[u, v] ∈ ge(6)ge(0). By [12, p. 150], the latter subspace is spanned by e 111

1
0000 +

e 111
0
1000 + 2e 012

1
1000. On the other hand, a rough calculation (ignoring the signs

of structure constants) shows that [u, v] is a linear combination of e 111
1
0000 and
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e 111
0
1000. This implies that

(4.1) [u, v] = 0.

4.2. Searching for a quadratic relation in U(g, e)ab

Similar to our discussion in (3.2) we hope (with fingers crossed) that the
element [Θu,Θv] lies in F8(Q) \ F7(Q). For that purpose we have to look
closely at the element ϕ := {θu, θv} ∈ P8(g, e) Here, as before, θy denotes the
F -symbol of Θy in the Poisson algebra P(g, e) = grF (U(g, e)).

As in (3.2) we identify P(g, e) with the symmetric algebra S(ge) and write
J for the ideal of P(g, e) generated by the graded subspace [ge(0), ge(2)] ⊕∑

i	=2 ge(i). We know from [12, p. 150] that [ge(0), ge(2)] is an irreducible ge(0)-
module of highest weight 4 and ge(2) = [ge(0), ge(2)]⊕ge(2)ge(0). Furthermore,
ge(2)ge(0) is a 2-dimensional subspace spanned by e and e0 := e2 +e5 +e7+e8.
It follows that the factor-algebra P̄(g, e) := P(g, e)/J is isomorphic to a
polynomial algebra in e and e0. We let ϕ̄ denote the image of ϕ in P̄(g, e).
Then

ϕ̄ = λe2 + μee0 + νe2
0,

and the main results of [28, Theorem 1.2] imply that the scalars λ, μ, ν lie in
the ring R. Since is immediate from [25, Prop. 2.1] and [28, 5.2] that the largest
commutative quotient of U(g, e) is generated by the image of Θe we would
find a desired quadratic relation in U(g, e)ab if we managed to prove that the
coefficient λ of ϕ̄ is nonzero. Indeed, let Ic denote the 2-sided ideal of U(g, e)
generated by all commutators. If λ ∈ R× then the element [Θu,Θv] ∈ Ic∩QR

has Kazhdan degree 8 and is congruent to λΘ2
e modulo Ic∩U(gR, e)+F7(QR).

As it follows from [28, Prop. 5.4] that

U(g, e) ∩ F7(QR) ⊂ R1 + RΘe + Ic ∩ U(gR, e)

the latter would imply that λΘ2
e + ηΘe + ξ1 ∈ Ic for some η, ξ ∈ R.

Lemma 4.1. We have that [ge(1), ge(1)]ge(0) = Ce0.

Proof. It follows from [26, 4.4] that [ge, ge](2) = [ge(0), ge(2)] + [ge(1), ge(1)]
has codimension 1 in ge(2). Hence [ge, ge](2)ge(0) 	= {0}. On the other hand,
[12, p. 150] shows that [ge(0), ge(2)] ∼= L(4) and [ge(1), ge(1)] is a homo-
morphic image of ∧2L(3), where L(r) stands for the irreducible sl(2)-module
of highest weight r. This implies that the subspace [ge(1), ge(1)]ge(0) is 1-
dimensional.
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By [12, p. 150], the ge(0)-module ge(1) is generated by the highest weight
vector

w := e 234
2
4321− e 135

3
4321.

Given a root γ ∈ Φ we write ν3(γ) for the coefficient of α3 in the expression
of γ as a linear combination of the simple roots αi ∈ Π, and we denote
by t3 the derivation of g such that t3(eγ) = ν3(γ)eγ for all γ ∈ Φ. Then
t3(w) = 3w and t3(f ′) = −2f ′. Our preceding remarks show that the subspace
[ge(1), ge(1)]ge(0) is spanned by a nonzero vector of the form

a[(ad f ′)3(w), w] + b[(ad f ′)2(w), (ad f ′)(w)]

with a, b ∈ C. Since such a vector is a linear combination of e and e0 and lies
in the kernel of t3 we now deduce that [ge(1), ge(1)]ge(0) = Ce0 as stated (one
should keep in mind here that t3(e0) = 0 and t3(e) = e3 	= 0).

Let h0 = [e0, f ] = h2 + h5 + 2h7 + 2h8. Since [e, e0] = 0 we have that
[h0, e] = [[e0, f ], e] = [h, e0] = 2e0. Since h0 ∈ t, each ei is an eigenvector for
adh0 this forces [h0, e0] = 2e0. Next we set f0 := 1

2 [f, [f, e0]] = 1
2 [h0, f ] and

observe that

[e, f0] = 1
2
(
[h, [f,e0]] + [f, [h, e0]]

)
= [f, e0] = −h0.

Since [f, e0] = −h0 we get [f0, e0] = 1
2 [[h0, f ], e0] = [e0, f ] = −[e, f0] which

yields

[f0, [f0, e]] = −[f0, [f, e0]] = −[f, [f0, e0]] = [f, [e, f0]] = −[h, f0] = 2f0.

As both f and f0 lie in gf (−2)ge(0), they are orthogonal to [ge(0), ge(2)] with
respect to our symmetric bilinear form ( · , · ). Since

(e0, f0) = (e0,
1
2[h0, f ]) = 1

2([e0, h0], f) = −(e0, f) = −(1 + 1 + 2 + 2) = −6

we have that (e0, f + f0) = 0. As (e, f0) = 1
2(e, [f, [f, e0]]) = 1

2(h, [f, e0]]) =
−(f, e0) = −6 we get (e, f + f0) = (e, f) − (e0, f0) = 34 − 6 = 28. Since the
ideal J vanishes on gf (−2)ge(0) it follows that

(4.2) ϕ(f + f0) = ϕ̄(f + f0) = λ(e, f + f0)2 = 2472λ.

As in (3.2) this indicates that we might expect some complications in char-
acteristic 7.
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4.3. Computing λ

In order to determine λ we use the method described in Subsections 3.3
and 3.4. We adopt the notation introduced there and put E := ad e, E0 :=
ad e0, H := adh, H0 := adh0, F = ad f and F0 := ad f0. Since u and v are
in ge(3) there exist u− ∈ CF 3(u) and v− ∈ CF 3(v) such that u = E3(u−)
and v = E3(v−). As ge ∩ g(−5) = {0} it follows from the sl2-theory that the
elements u− and v− lie in gf (−3). Arguing as in Subsection 3.3 we observe
that

{θu, θv} =
2s∑
i=1

[u, z∗i ][v, zi] + q(u, v) + terms of standard degree ≥ 3.

Since all terms of standard degree ≥ 3 involved in {θu, θv} have Kazhdan
degree 8 they must vanish at f + f0 ∈ g(−2). Since each quadratic monomial
involved in q(u, v) has a linear factor of standard degree ≥ 3 we also have
that q(u, v)(f + f0) = 0. Using the g-invariance of ( · , · ) and the fact that
E3(f + f0) = 0 we get {θu, θv}(f + f0) =

=
2s∑
i=1

([u, z∗i ], f + f0)([v, zi], f + f0)

=
2s∑
i=1

([E3(u−), z∗i ], f + f0)([E3(v−), zi], f + f0)

=
2s∑
i=1

(z∗i , [E3(u−), f + f0])(zi, [E3(v−), f + f0])

=
2s∑
i=1

(z∗i , E3([u−, f + f0]) − 3E([E(u−), h− h0]))(zi, E3([v−, f + f0])

− 3E([E(v−), h− h0]))

=
2s∑
i=1

(e, [E2([u−, f + f0]) − 3[E(u−), h− h0], z∗i ])(e, [E2([v−, f − f1])

− 3[E(v−), h− h0], zi]).

Here we used the fact that E(f + f0) = h + [e, f0] = h− [e0, f ] = h− h0. As
before, our choice of the z∗i ’s implies that 〈x, y〉 =

∑2s
i=1〈z∗i , x〉〈zi, y〉 for all

x, y ∈ g(−1). The definition of 〈 · , · 〉 then yields: {θu, θv}(f + f0)

=
(
e,
[
[E2([u−, f + f0]) − 3[E(u−), h− h0],
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[E2([v−, f + f0]) − 3[E(v−), h− h0]
])

=
(
[E3(u−), f + f0], E2([v−, f + f0]) − 3[E(v−), h− h0]

)
.

One should keep in mind here that E3([u−, f+f0])−3[e, [E(u−), E(f−f0)]] =
[E3(u−), f + f0] which holds since E3(f + f0) = 0. As E4(u−) = 0 the latter
equals to

(4.3) ([u,E2(f0)], [v−, f0]) − 3(u, [f + f0, [E(v−), h− h0]])

thanks to the g-invariance of ( · , · ). Recall that −h0 = [e, f0] = [f, e0] and
[h, f0] = −2f0. Also, [f, v−] = 0 and [f, f0] = 0. By the Jacobi identity, (4.3)
equals to

([u,E2(f0)], [v−, f0]) − 3(u, [[[f + f0, e], v−], h− h0])
− 3(u, [[e, [f + f0, v−]], h− h0])
− 3(u, [[e, v−], 2f + [f, [e, f0]] + 2f0 + [f0, [e, f0]]])

= ([u, [e, [f, e0]]], [v−, f0]) − 3
(
u, (H + [E,F0])2(v−)

)
− 3([u, [e, [f0, v−]], h + [e, f0])
− 3(u, [E(v−), 2f + 2f0 + 2f0 − F0

2(e)]).

Since h commutes with [u, [e, [f0, v−]] the last expression equals

2([u, e0], [v−, f0]) − 3
(
u, (H + [E,F0])2(v−)

)
+ 3([u, [e, f0]], [e, [f0, v−]])

− 3(u, [E(v−), 2f + 2f0 + 2f0 − 2f0]) = −2([[u, e0], f0], v−)
− 3

(
u, (H + [E,F0])2(v−)

)
− 3([u,E2(f0)], [f0, v−])

+ 6([u, v−], h + [e, f0])
= −2([[u, e0], f0], v−) − 3

(
(H − [E0, F ])2(u), v−)

)
− 6([u, e0], [f0, v−])

+ 6((H − [E0, F ])(u), v−)
= −8([f0, [e0, u]], v−) − 3

(
(3 − [E0, F ])2(u), v−

)
+ 6

(
(3 − [E0, F ])(u), v−

)
= −3

(
([E0, F ]2 − 4[E0, F ] + 3)(u), v−

)
− 8

(
[f0, [e0, u]], v−

)
.

Finally, a GAP computation2 reveals that

−3
(
([E0, F ]2 − 4[E0, F ] + 3)(u), v−

)
− 8

(
[f0, [e0, u]], v−

)
= 1176 = 23 · 3 · 72.

2Again, see https://github.com/davistem/the_number_of_multiplicity-free_
primitive_ideals/ for the code.

https://github.com/davistem/the_number_of_multiplicity-free_primitive_ideals/
https://github.com/davistem/the_number_of_multiplicity-free_primitive_ideals/
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In view of (4.2) the factor 72 gets cancelled and we obtain λ = 3
2 ∈ R×.

Arguing as in Subsection 3.2 we now deduce that U(g, e)ab has dimension 2.
Remark 4.2. For safety, we have also used GAP to compute the expressions
(4.3) and (4.4), and the number 1176 was the output in both cases.

4.4. The modular case

In this subsection we prove Theorem B. First suppose that e has Bala–Carter
label A5 + A1. By [25, 3.16], we then have

Λ + ρ = 1
3�1 + 1

3�2 + 1
6�3 + 1

6�4 + 1
6�5 + 1

6�6 + 1
6�7 + 1

6�8,

Λ′ + ρ = 1
3�1 + 1

3�2 + 1
6�3 + 7

6�4 −
11
6 �5 + 7

6�6 + 1
6�7 + 1

6�8.

In view of [2, Planche VII], we get

Λ + ρ = 1
6(�1 + �2) + 1

6ρ

= 1
3ε8 + 1

12(ε1 + ε2 + ε3 + ε4 + ε5 + ε6 + ε7 + 5ε8)

+ 1
6(ε2 + 2ε3 + 3ε4 + 4ε5 + 5ε6 + 6ε7 + 23ε8).

Using the standard coordinates of R8 we obtain

Λ + ρ = 1
12(1, 3, 5, 7, 9, 11, 13, 55).

Next we observe that Λ′ + ρ = Λ + ρ + �4 − 2�5 + �6. Since

�4 − 2�5 + �6

= (0, 0, 1, 1, 1, 1, 1, 5) − 2(0, 0, 0, 1, 1, 1, 1, 4) + (0, 0, 0, 0, 1, 1, 1, 3)
= (0, 0, 1,−1, 0, 0, 0)

by [2, Planche VII], we have Λ′ + ρ = 1
12(1, 3, 17,−5, 9, 11, 13, 55). It follows

that

(Λ + ρ |Λ + ρ) − (Λ′ + ρ |Λ′ + ρ) = 1
144

(
(52 − 172) + (72 − 52)

)
(4.4)

= 1
144(72 − 172)) = −5

3 .
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Now suppose that e has Bala–Carter label D5(a1) + A2. By [25, 3.17],

Λ + ρ = −1
4�1 −

1
4�2 −

1
4�3 + �4 −

1
4�5 + �6 + −1

4�7 −
1
4�8,

Λ′ + ρ = −1
4�1 −

1
4�2 −

1
4�3 + 2�4 −

9
4�5 + 2�6 −

1
4�7 −

1
4�8.

Hence Λ + ρ = −1
4ρ + 5

4(�4 + �6) =

= −1
4(0, 1, 2, 3, 4, 5, 6, 23) + 5

4(0, 0, 1, 1, 2, 2, 2, 8) = 1
4(0,−1, 3, 2, 6, 5, 4, 17).

Similarly,

Λ′ + ρ = −1
4ρ + 9

4(�4 + �6) − 2�5

= −1
4(0, 1, 2, 3, 4, 5, 6, 23) + 9

4(0, 0, 1, 1, 2, 2, 2, 8) − (0, 0, 0, 0, 2, 2, 2, 8)

= 1
4(0,−1, 7, 6,−3,−4,−5, 17).

Therefore,

(Λ + ρ |Λ + ρ) − (Λ′ + ρ |Λ′ + ρ) = 1
16(22 − 72) = −45

16 .

This shows that in both cases the element (Λ + ρ |Λ + ρ)− (Λ′ + ρ |Λ′ + ρ) is
invertible in R. We set r := (Λ′ + ρ |Λ′ + ρ) − (ρ | ρ) and r′ := (Λ′ + ρ |Λ′ +
ρ) − (ρ | ρ). Clearly, r, r′ ∈ R.

Since the ideals I(Λ) and I(Λ′) are multiplicity-free, our discussion in the
introduction shows that I(Λ) = IV and I(Λ′) = IV ′ for some 1-dimensional
U(g, e)-modules V and V ′. There exist 2-sided ideals I and I ′ of codimension
1 in U(g, e) such that V = U(g, e)/I and V ′ = U(g, e)/I ′. As L(Λ) and L(Λ′)
are highest weight modules, we can find a Casimir element C ∈ U(gR) which
acts on L(Λ) and L(Λ′) as rId and r′Id, respectively.

Obviously, C − r ∈ I, C − r′ ∈ I ′, and the ideals I and I ′ contain all
commutators in U(g, e). Put IR := I ∩ U(gR, e), I ′R := I ′ ∩ U(gR, e) and
VR := U(gR, e)/IR, V ′

R := U(gR, e)/I ′R. It follows from [28, Proposition 5.4]
that U(gR, e) = R 1 ⊕ IR and U(gR, e) = R 1 ⊕ I ′R.

To ease notation we identify e with its image in gk = gR ⊗R k (this
will cause no confusion). Following [10] we let U(gk, e) denote the modular
finite W -algebras associated with the pair (gk, e). By [28, Theorem 1.2(1)],
we have that U(gk, e) ∼= U(gR, e) ⊗R k as k-algebras. Our computations in
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Subsections 3.3 and 3.4 imply that the image of C in the largest commu-
tative quotient of U(gk, e) satisfies a non-trivial quadratic equation. As a
consequence, U(gk, e) cannot have more than two 1-dimensional representa-
tions. On the other hand, the formulae for r − r′ obtained earlier yield that
in each case the image of r − r′ in R/pR ⊂ k is nonzero for any good prime
p of GZ. This entails that Vk := VR ⊗R k and V ′

k := V ′
R ⊗R k are the only

non-equivalent 1-dimensional representations of U(gk, e).
Given ξ ∈ g∗k we let g

ξ
k denote the coadjoint stabiliser of ξ in gk. As

explained in [10, 8.1] the modular finite W -algebra U(gk, e) contains a large
central subalgebra Zp(gk, e) isomorphic to a polynomial algebra in dim g

χ
k

variables. The algebra U(gk, e) is free Zp(gk, e)-module of rank pdimg
χ
k and

the maximal spectrum of Zp(gk, e) identifies with a Frobernius twist of a good
transverse slice Sχ = χ+ κ̃(o) to the coadjoint orbit of χ. Here κ̃ : gk → g∗k is
the Gk-module isomorphism induced by the Killing form κ and o is a graded
subspace of

⊕
i≤0 gk(i) complementary to the tangent space Te((AdGk) e) =

[e, gk].
Every ξ ∈ Sχ gives rise to a maximal ideal Jξ of Zp(gk, e) which leads to

a p-central reduction

Uξ(gk, e) := U(gk, e)/Jξ U(gk, e) ∼= U(gk, e) ⊗Zp(gk,e) kξ.

By [23, Lemma 2.2(iii)] and [10, Sections 8 and 9], for every ξ ∈ Sχ we have
an algebra isomorphism

(4.5) Uξ(gk) ∼= Matpd(χ)(Uξ(gk, e)).

The 1-dimensional U(gk, e)-modules Vk and V ′
k are annihilated by some max-

imal ideals Jη and Jη′ of Zp(gk, e). Therefore, Vk and V ′
k are 1-dimensional

modules over the p-central reductions Uη(gk, e) and Uη′(gk, e), respectively.
By (4.5), the reduced enveloping algebras Uη(gk) and Uη′(gk) with η, η′ ∈ Sχ

afford simple modules of dimension pd(χ); we call them Ṽk and Ṽ ′
k. As ex-

plained in [23, Lemma 2.2(iii)] and [10, Sections 8 and 9] we may assume fur-
ther that the U(gk)-modules Ṽk and Ṽ ′

k are generated by their 1-dimensional
subspaces Vk and V ′

k, respectively.
At this point we invoke a contracting k×-action on Sχ given by μ(t) ·

ξ = t−2(Ad∗ τ(t)) ξ for all t ∈ k× and ξ ∈ Sχ. It shows, in particular,
that dim(AdGk) ξ ≥ dim(AdGk)χ for every ξ ∈ Sχ. In conjunction with
the main result of [18] this entails that dim(AdGk) η = dim(AdGk) η′ =
dim(AdGk)χ. By [26, Theorem 3.8], the Gk-orbit of e is rigid in gk. There-
fore, χ lies in a single sheet of g∗k which coincides with the coadjoint orbit
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of χ. Since the contracting action of μ(k×) on Sχ now shows that both η and
η′ lie in the only sheet of g∗k containing χ, we deduce that χ = (Ad∗ g) η and
χ = (Ad∗ g′) η′ for some g, g′ ∈ Gk.

Given ξ ∈ g∗k we denote by Iξ the 2-sided ideal of U(gk) generated by
all elements xp − x[p] − ξ(x)p with x ∈ gk. It is well-known (and easy to
check) that for any y ∈ Gk the automorphism Ad y of U(gk) sends Iξ onto
I(Ad∗ y) ξ and thus gives rise to an algebra isomorphism between the respective
reduced enveloping algebras. The image Ck of our Casimir element C in
U(gk) = U(gR) ⊗R k lies in the Harish-Chandra centre of U(gk). Hence
(Ad y)(Ck − a) = Ck − a for all y ∈ Gk and a ∈ k.

Let Ĩ and Ĩ ′ denote the annihilators of Ṽk and Ṽ ′
k in U(gk), and write

r̄ and r̄′ for the images of r and r′ in k. The above discussion shows that
Ĩ contains Iη and Ck − r̄ whereas Ĩ ′ contains Iη′ and Ck − r̄′. By con-
struction, Ĩ/Iη and Ĩ ′/Iη′ have codimension p2d(χ) in Uη(gk) and Uη′(gk), re-
spectively. Hence the 2-sided ideals (Ad g)(Ĩ)/(Ad g)(Iη) = (Ad g)(Ĩ)/Iχ and
(Ad g′)(Ĩ ′)/(Ad g)(Iη′) = (Ad g)(Ĩ ′)/Iχ have codimension p2d(χ) in Uχ(gk) =
U(gk)/Iχ. These ideals are distinct since (Ad g)(Ck) = (Ad g′)(Ck) = Ck
and r̄ 	= r̄′. Thanks to the main result of [18] this yields that Uχ(gk) has
at least two simple modules of dimension pd(χ). On the other hand, being a
homomorphic image of U(gk, e) the algebra Uχ(gk, e) cannot have more than
two 1-dimensional representations. Applying (4.5) with ξ = χ we finally de-
duce that Uχ(gk) has exactly two simple modules of dimension pd(χ). This
completes the proof of Theorem B.
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