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Congruences for Hasse–Witt matrices and solutions of
p-adic KZ equations

Alexander Varchenko
∗

and Wadim Zudilin

To Corrado De Concini

Abstract: We prove general Dwork-type congruences for Hasse–
Witt matrices attached to tuples of Laurent polynomials. We apply
this result to establishing arithmetic and p-adic analytic properti-
es of functions originating from polynomial solutions modulo ps

of Knizhnik–Zamolodchikov (KZ) equations, the solutions which
come as coefficients of master polynomials and whose coefficients
are integers. As an application we show that the p-adic KZ connec-
tion associated with the family of hyperelliptic curves y2 = (t −
z1) . . . (t−z2g+1) has an invariant subbundle of rank g. Notice that
the corresponding complex KZ connection has no nontrivial sub-
bundles due to the irreducibility of its monodromy representation.
Keywords: KZ equations, Dwork congruences, master polynomi-
als, Hasse-Witt matrices.

1. Introduction

It is classical that the periods of the Legendre family y2 = t(t− 1)(t− x) of
elliptic curves viewed as functions of x satisfy the hypergeometric differential
equation

x(1 − x)I ′′ + (1 − 2x)I ′ − 1
4I = 0;(1.1)

the hypergeometric series

F (x) := 2F1

(1
2 ,

1
2; 1;x

)
(1.2)
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= 1
π

∫ ∞

1
t−1/2(t− 1)−1/2(t− x)−1/2dt =

∞∑
k=0

(
−1/2
k

)2

xk

represents the analytic solution of (1.1) at the origin. In order to investigate
the local zeta function of the x-fiber in the family, Dwork [4] studied the
differential equation (1.1) p-adically using truncations of the infinite sum
in (1.2),

Fs(x) =
ps−1∑
k=0

(
−1/2
k

)2

xk for s = 1, 2, . . . ,

as p-adic approximations to its analytic solution (1.2). Clearly, the series
(Fs(x)) converges to F (x) as s → ∞ in the disk D0,1 = {x | |x|p < 1}.
Dwork showed that the uniform limit Fs+1(x)/Fs(xp) as s → ∞ exists in
a larger domain DDw, thus giving the p-adic analytic continuation of the
function F (x)/F (xp), originally defined in D0,1, to that larger domain. This
limit, called the “unit root”, defines a root of the local zeta function.

The second part of Dwork’s investigation [4] concerned with the p-adic
analytic continuation of the function F (x) as a solution of (1.1). Dwork con-
sidered differential equation (1.1) as a system of first order linear differential
equations for the vector (F (x), F ′(x)) and approximated the direction-vector
(1, F ′(x)/F (x)) by rational functions (1, F ′

s(x)/Fs(x)). He showed that the
uniform limit as s → ∞ of these rational functions does exist in the same
larger domain DDw, thus giving the p-adic analytic continuation to the do-
main DDw of the direction-vector (1, F ′(x)/F (x)) (but not of the solution
(F (x), F ′(x))).

This fact indicates a clear difference of structure between solutions of
complex analytic linear differential equations and their p-adic versions. A local
solution of a complex linear differential equation can be analytically continued
to a multi-valued analytic function on the domain of the definition of the
differential equation, while in the p-adic setting only certain subspaces of the
space of all local solutions can be analytically continued as subspaces to larger
domains. In Dwork’s situation only the one-dimensional subspace generated
by F (x) in the two-dimensional space of all local solutions at x = 0 can be
p-adic analytically continued to the larger domain DDw.

Dwork’s work initiated significant research in p-adic differential equations
and their applications to arithmetic of algebraic varieties. There is hardly a
way to list all of them here, so we limit ourselves to mentioning some very
recent contributions on the theme [1, 2]. The principal direction of that re-
search is generalization of the first part of Dwork’s work —on the relation
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between the unit root F (x)/F (xp) and the zeros of the local zeta function of
the x-fiber in the Legendre family y2 = t(t−1)(t−x). In such a generalization
the function F (x)/F (xp) becomes a square matrix with roots of its charac-
teristic polynomial related to zeros of the local zeta function of the fibers of
the corresponding family of algebraic varieties.

Our present paper is related to the second part of Dwork’s investigation
on the p-adic analytic continuation of the direction-vector (1, F ′(x)/F (x)).
We study this phenomenon for a system of Knizhnik–Zamolodchikov (KZ)
differential equations. The KZ equations over C are objects of conformal field
theory, representation theory, enumerative geometry, see for example [8, 5, 9].
In [14] the KZ equations over C were identified with the differential equations
for flat sections of a suitable Gauss–Manin connection and solutions of the
KZ differential equations were constructed in the form of multidimensional
hypergeometric integrals. In that sense the KZ differential equations are dis-
tant relatives of the hypergeometric differential equation (1.1). It is known
that the KZ equations and their solutions have remarkable properties, see for
example [5, 17]. This motivates the study of KZ differential equations and
their solutions over p-adic fields.

We consider the differential KZ equations over C in the special case, when
the hypergeometric solutions are given by hyperelliptic integrals of genus g.
In this case the space of solutions of the differential KZ equations is a 2g-
dimensional complex vector space. We also consider the p-adic version of
the same differential equations. We show that the 2g-dimensional space of
local solutions of these p-adic differential KZ equations has a remarkable g-
dimensional subspace of solutions which can be p-adic analytically continued
as a subspace to a large domain D

(m),o
KZ in the space where the KZ equations are

defined, see Theorems 6.7 and 6.9 for precise statements. This g-dimensional
global subspace of solutions is defined as the uniform p-adic limit of the g-
dimensional space of polynomial solutions of these KZ equations modulo ps,
the polynomial solutions constructed in [20].

In [15] general KZ differential equations were considered over the field
Fp and their polynomial solutions were constructed. In [20] this construc-
tion was modified and polynomial solutions modulo ps of the KZ equations
associated with the hyperelliptic integrals were constructed. The polyno-
mial solutions are vectors of polynomials with integer coefficients. They are
“ps-approximations” of the corresponding hyperelliptic integral solutions of
the same differential KZ equations over C. In [20] the constructed polyno-
mial solutions are called the ps-hypergeometric solutions. While the com-
plex hyperelliptic integrals give the 2g-dimensional space of all solutions of
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the complex KZ equations, the ps-hypergeometric solutions span only a g-
dimensional subspace. More general ps-approximation constructions are dis-
cussed in [15, 12, 13].

In order to prove his two results stated above, Dwork developed in [4] two
types of congruences,

Fs+1(x)/Fs

(
xp

)
≡ Fs(x)/Fs−1

(
xp

)
(mod ps),

F ′
s+1(x)/Fs+1(x) ≡ F ′

s(x)/Fs(x) (mod ps),

which are now called Dwork congruences. A suitable matrix form of Dwork
congruences is used in most papers on p-adic differential equations. The clos-
est versions of Dwork congruences related to our needs were developed in
papers [10, 11, 22] by Mellit and Vlasenko. Motivated by our KZ equation
considerations we give a generalization of Dwork congruences from [10, 11, 22]
in Section 2, see Theorems 2.6 and 2.8. The proofs of these theorems are mod-
ifications of the proofs in [22].

In Sections 5 and 6 we apply Dwork congruences from Section 2 to the
matrices composed of coordinates of the ps-hypergeometric solutions and their
antiderivatives. This application allows us to define the g-dimensional global
subspace of solutions on a large domain D

(m),o
KZ .

Notice that the main tool in [4] to prove the properties of the function
F (x) are polynomials Fs(x) which are truncations of the power series expan-
sion of the function F (x). In our KZ equation case we do not have distin-
guished solutions whose power series expansions may be truncated and whose
ratios could be p-adic analytically continued. Instead, we have a collection of
ps-hypergeometric solutions defined independently of any Dwork congruences,
but which surprisingly satisfy appropriate Dwork congruences and give us a
global subspace of solutions in the s → ∞ limit.

This paper may be viewed as a continuation of our work [21] where the
case g = 1 is developed. The Hasse–Witt matrices in [21] are of size 1 × 1
only, while in this paper the matrices are of arbitrary size.

Notice that in [20] the first authors considered the same KZ differen-
tial equations and ps-hypergeometric solutions as in this paper. He showed
that the space of ps-hypergeometric solutions p-adically converges to the g-
dimensional space of analytic solutions of the KZ differential equations in a
suitable asymptotic zone. This statement is analogous to Dwork’s observation
in which his globally defined direction-vector (1, F ′(x)/F (x)) represents the
direction-vector of the unique analytic solution (F (x), F ′(x)) of his differential
equation at x = 0.
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2. On ghosts

In this paper p is an odd prime. We denote by Zp[w±1] the ring of Laurent
polynomials in variables w with coefficients in Zp. A congruence F (w) ≡ G(w)
(mod ps) for two Laurent polynomials from the ring is understood as the
divisibility by ps of all coefficients of F (w) −G(w).

Throughout this section x = (t, z), where t = (t1, . . . , tr) and z =
(z1, . . . , zn) are two groups of variables.

2.1. Definition of ghosts

Let Λ=(Λ0(x),Λ1(x), . . . ,Λl(x)) be a tuple of Laurent polynomials in Zp[x±1].
For every 0 � j � s � l, we define the Laurent polynomials

Ws(x) = Ws(Λ0, . . . ,Λs)(x) := Λ0(x)Λ1(x)p . . .Λs(x)ps

and

W (j)
s (x) = W (j)

s (Λ0, . . . ,Λs)(x)

:= Ws−j(Λj , . . . ,Λs)(x) = Λj(x)Λj+1(x)p . . .Λs(x)ps−j

.

Furthermore, we introduce the tuple Vs = Vs(x) = Vs(Λ0, . . . ,Λs)(x), s =
0, 1, . . . , l, of Laurent polynomials in Zp[x±1] by the recursive formula

(2.1) Vs(x) = Ws(x) −
s∑

j=1
Vj−1(x)W (j)

s

(
xp

j)
.

The Laurent polynomials Vs(x) are called ghosts associated with the tu-
ple Λ. They are useful for studying the congruences related to the tuple, but
they do not enter the final results. The ghosts Vs(x) are essentially offered in
Vlasenko’s work [22], though stated there for a very particular situation. The
ghosts Vs(x) are quite different from the ghosts we use in our previous work
[21] — those are rooted in Mellit’s preprint [10].

Lemma 2.1. For s = 0, 1, . . . , l, we have Vs(x) ≡ 0 (mod ps).

Proof. For s = 0 we have V0(x) = Λ0(x) and no requirements on divisibility.
For s = 1, we have modulo p:

V1(x) = Λ0(x)Λ1(x)p − V0(x)Λ1
(
xp

)
= Λ0(x)

(
Λ1(x)p − Λ1

(
xp

))
≡ 0.
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More generally, for s � 1 applying Vj−1(x) ≡ 0 (mod pj−1) for 0 < j � s and

Λs(x)ps ≡ Λs

(
xp

)ps−1
(mod ps) ≡ Λs

(
xp

2)ps−2
(mod ps−1)

≡ · · · ≡ Λs

(
xp

j)ps−j

(mod ps−j+1)

(which follows from iterative use of F (xp)pi−1 ≡ F (x)pi (mod pi) valid for
i > 0) we deduce modulo ps:

Vs(x) = Ws−1(x)Λs(x)ps−
s−1∑
j=1

Vj−1(x)W (j)
s−1

(
xp

j)Λs

(
xp

j)ps−j

−Vs−1(x)Λs

(
xp

s)
≡

(
Ws−1(x) −

s−1∑
j=1

Vj−1(x)W (j)
s−1

(
xp

j)− Vs−1(x)
)

Λs(x)ps = 0,

giving the required statement.

For a Laurent polynomial F (t, z) in t, z, let N(F ) ⊂ Rr be the Newton
polytope of F (t, z) with respect to the t variables only.

Lemma 2.2. For s = 0, 1, . . . , l, we have

N(Vs) ⊂ N(Λ0) + pN(Λ1) + · · · + psN(Λs).

Proof. This follows from (2.1) by induction on s.

2.2. Admissible tuples

Let Δ ⊂ Zr be a finite subset.

Definition 2.3. A tuple (N0, N1, . . . , Nl) of convex polytopes in Rr is called
Δ-admissible if for any 0 � i � j < l we have(

Δ + Ni + pNi+1 + · · · + pj−iNj

)
∩ pj−i+1Zr ⊂ pj−i+1Δ.

Notice that subtuples (Ni, Ni+1, . . . , Nj) of a Δ-admissible tuple are also
Δ-admissible.

Example. Let r = 1, Δ = {0, 1} ⊂ Z and N = [−(p− 1)/2, 3(p− 1)/2] ⊂ R.
Then the tuple (N,N, . . . , N) is Δ-admissible.

Definition 2.4. A tuple (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) of Laurent polyno-
mials is called Δ-admissible if the tuple (N(Λ0), N(Λ1), . . . , N(Λl)) is Δ-
admissible.
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2.3. Hasse–Witt matrix

For v ∈ Zr denote by Coeffv F (t, z) the coefficient of tv in the Laurent poly-
nomial F (t, z); clearly, this is a Laurent polynomial in z.

Given m � 1 and a finite subset Δ ⊂ Zr with g = #Δ, define the
g× g Hasse–Witt matrix of level m of the Laurent polynomial F (t, z) by the
formula

A
(
m,F (t, z)

)
:=

(
Coeffpmv−u F (t, z)

)
u∈Δ,v∈Δ.(2.2)

The entries of this matrix are Laurent polynomials in z.
Furthermore, for a Laurent polynomial G(z) define σ(G(z)) = G(zp).

Lemma 2.5. Let (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) be a Δ-admissible tuple of
Laurent polynomials in Zp[x±1] = Zp[t±1, z±1]. Then for 0 � s � l we have

(i) A(s + 1, Vs) ≡ 0 (mod ps);
(ii) A(s + 1,Ws) = A(1, V0) · σ

(
A
(
s,W (1)

s

))
+ A(2, V1) · σ2(A(

s− 1,W (2)
s

))
+ · · ·

+ A(s, Vs−1) · σs(A(
1,W (s)

s

))
+ A(s + 1, Vs).

Proof. Part (i) follows from Lemma 2.1. To prove (ii) consider the identity

Λ0(t, z)Λ1(t, z)p . . .Λs(t, z)p
s

=
s∑

j=1
Vj−1(t, z)Λj

(
tp

j

, zp
j)Λj+1

(
tp

j

, zp
j)p

. . .Λs

(
tp

j

, zp
j)ps−j

+ Vs(t, z),

which is nothing else but (2.1). Let u, v ∈ Δ. In order to calculate the coef-
ficient of tps+1v−u in the term Vj−1(t, z)Λj(tp

j
, zp

j ) . . .Λs(tp
j
, zp

j )ps−j , we look
for all pairs of vectors w ∈ N(Vj−1) and y ∈ N(Λj(t, z) . . .Λs(t, z)p

s−j ) such
that

w + pjy = ps+1v − u,

hence u + w ∈ pjZr. On the other hand, it follows from Lemma 2.2 that
w ∈ N(Λ0) + pN(Λ1) + · · · + pj−1N(Λj−1), so that

u + w ∈ Δ + N(Λ0) + pN(Λ1) + · · · + pj−1N(Λj−1).
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From the Δ-admissibility we deduce that u + w = pjδ for some δ ∈ Δ, thus
w = pjδ − u, y = ps+1−jv − δ and

Coeffps+1v−u

(
Vj−1(t, z)Λj

(
tp

j

, zp
j)Λj+1

(
tp

j

, zp
j)p

. . .Λs

(
tp

j

, zp
j)ps−j)

=
∑
δ∈Δ

Coeffpjδ−u

(
Vj−1(t, z)

)
× σj(Coeffps+1−jv−δ

(
Λj(t, z)Λj+1(t, z)p . . .Λs(t, z)p

s−j))
.

This proves (ii).

Our next results discuss congruences of the type

F1(z)F2(z)−1 ≡ G1(z)G2(z)−1 (mod ps),

where F1, F2, G1, G2 are g×g matrices whose entries are Laurent polynomials
in z. We consider such congruences when the determinants detF2(z) and
detG2(z) are Laurent polynomials both nonzero modulo p. Using Cramer’s
rule we write the entries of the inverse matrix F2(z)−1 in the form fij(z)/
detF2(z) for fij(z) ∈ Zp[z±1] and do a similar computation for G2(z). This
presents the congruence F1(z)F2(z)−1 ≡ G1(z)G2(z)−1 (mod ps) in the form
F (z) ·1/ detF2(z) ≡ G(z) ·1/ detG2(z) (mod ps) for some g×g matrices F,G
with entries in Zp[z±1], while the latter is nothing else but the congruence
F (z) · detG2(z) ≡ G(z) · detF2(z) (mod ps).

Theorem 2.6. Let (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) be a Δ-admissible tuple of
Laurent polynomials in Zp[x±1] = Zp[t±1, z±1].

(i) For 0 � s � l we have

A
(
s + 1,Λ0(x)Λ1(x)p . . .Λs(x)ps

)
≡ A

(
1,Λ0(x)

)
σ
(
A
(
1,Λ1(x)

))
. . . σs(A(

1,Λs(x)
))

(mod p).

(ii) Assume that the determinants of the matrices A(1,Λi(t, z)), i = 0, 1, . . . , l,
are Laurent polynomials all nonzero modulo p. Then for 1 � s � l the
determinant of the matrix A(s,Λ1(x)Λ2(x)p . . .Λs(x)ps−1) is a Laurent
polynomial nonzero modulo p and we have modulo ps:

A
(
s + 1,Λ0(x)Λ1(x)p . . .Λs(x)ps

)
× σ

(
A
(
s,Λ1(x)Λ2(x)p . . .Λs(x)ps−1))−1

≡ A
(
s,Λ0(x)Λ1(x)p . . .Λs−1(x)ps−1)
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× σ
(
A
(
s− 1,Λ1(x)Λ2(x)p . . .Λs−1(x)ps−2))−1

,

where for s = 1 we understand the second factor on the right as the
g × g identity matrix.

Proof. By Lemma 2.5 we have

A
(
s + 1,Λ0(x)Λ1(x)p . . .Λs(x)ps

)
≡ A

(
1,Λ0(x)

)
· σ

(
A
(
s,Λ1(x)Λ2(x)p . . .Λs(x)ps−1)) (mod p).

Iteration gives part (i) of the theorem.
If the determinants of the matrices A(1,Λi(t, z)), i = 0, 1, . . . , l, are Lau-

rent polynomials all nonzero modulo p, then part (i) implies that the deter-
minant

detA
(
s,Λ1(x)Λ2(x)p . . .Λs(x)ps−1)

≡
s∏

j=1
detσj−1(A(

1,Λj(t, z)
))

(mod p)

is a Laurent polynomial nonzero modulo p. This proves the first statement of
part (ii) of the theorem and allows us to consider the inverse matrices in the
congruence of part (ii).

We prove part (ii) by induction on s. The case s = 1 follows from
part (i). For 1 < s < l we substitute the expressions for A(s + 1,Ws(x))
and A(s,Ws−1(x)) from part (ii) of Lemma 2.5 into the two sides of the
desired congruence:

A
(
s + 1,Λ0(x)Λ1(x)p . . .Λs(x)ps

)
· σ

(
A
(
s,Λ1(x)Λ2(x)p . . .Λs(x)ps−1))−1

= A(1, V0) +
s∑

j=2
A(j, Vj−1) · σj(A(

s− j + 1,W (j)
s

))
· σ

(
A
(
s,W (1)

s

))−1

+ A(s + 1, Vs) · σ
(
A
(
s,W (1)

s

))−1

and

A
(
s,Λ0(x)Λ1(x)p . . .Λs−1(x)ps−1)

× σ
(
A
(
s− 1,Λ1(x)Λ2(x)p . . .Λs−1(x)ps−2))−1

= A(1, V0) +
s∑

j=2
A(j, Vj−1) · σj(A(

s− j,W
(j)
s−1

))
σ
(
A
(
s− 1,W (1)

s−1
))−1

.
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Since we want to compare these two expressions modulo ps, the last term in
the upper sum containing A(s + 1, Vs) ≡ 0 (mod ps) can be ignored.

Given j = 2, . . . , s, we use the inductive hypothesis as follows:

A
(
s− i + 1,W (i)

s

)
· σ

(
A
(
s− i,W (i+1)

s

))−1

≡ A
(
s− i,W

(i)
s−1

)
· σ

(
A
(
s− i− 1,W (i+1)

s−1
))−1 (mod ps−i)

for i = 1, . . . , j − 1. Applying σi−1 to the i-th congruence and multiplying
them out lead to telescoping products on both sides:

A
(
s,W (1)

s

)
· σj−1(A(

s− j + 1,W (j)
s

))−1

≡ A
(
s− 1,W (1)

s−1
)
· σj−1(A(

s− j,W
(j)
s−1

))−1 (mod ps−j+1).

By our assumptions these four matrices are invertible. Therefore, we can
invert them to obtain the congruence

σj−1(A(
s− j + 1,W (j)

s

))
· A

(
s,W (1)

s

)−1(2.3)

≡ σj−1(A(
s− j,W

(j)
s−1

))
· A

(
s− 1,W (1)

s−1
)−1 (mod ps−j+1).

Since A(j, Vj−1) ≡ 0 (mod pj−1), application of σ to (2.3) and summation in
j of the resulted congruences

A
(
j, Vj−1(x)

)
· σj(A(

s− j + 1,W (j)
s

))
· σ

(
A
(
s,W (1)

s

))−1

≡ A
(
j, Vj−1(x)

)
· σj(A(

s− j,W
(j)
s−1

))
· σ

(
A
(
s− 1,W (1)

s−1
))−1 (

mod ps
)

completes the proof of part (ii) of the theorem.

Corollary 2.7. Under the assumptions of part (ii) of Theorem 2.6 for 1 �
s � l we have:

detA
(
s + 1,Λ0(x)Λ1(x)p . . .Λs(x)ps

)
× detσ

(
A
(
s− 1,Λ1(x)Λ2(x)p . . .Λs−1(x)ps−2))

≡ detA
(
s,Λ0(x)Λ1(x)p . . .Λs−1(x)ps−1)

× detσ
(
A
(
s,Λ1(x)Λ2(x)p . . .Λs(x)ps−1)) (mod ps).

2.4. Derivatives

Recall that z = (z1, . . . , zn). Denote

Dv = ∂

∂zv
, v = 1, . . . , n.
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Let F1(z), F2(z), G1(z), G2(z) ∈ Zp[z±1] and m � 1. If

Dv

(
F1(z)

)
· F2(z) ≡ Dv

(
G1(z)

)
·G2(z) (mod ps),

then

Dv

(
σm(

F1(z)
))

· σm(
F2(z)

)
−Dv

(
σm(

G1(z)
))

· σm(
G2(z)

)
(2.4)

= Dv

(
F1

(
zp

m))
· F2

(
zp

m)
−Dv

(
G1

(
zp

m))
·G2

(
zp

m)
= pmzp

m−1
v

(
Dv

(
F1(z)

)
· F2(z) −Dv

(
G1(z)

)
·G2(z)

)
|z→zpm

≡ 0 (mod ps+m).

Theorem 2.8. Let (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) be a Δ-admissible tuple of
Laurent polynomials in Zp[x±1] = Zp[t±1, z±1]. Let D = Dv for some v =
1, . . . , n. Then under assumptions of part (ii) of Theorem 2.6 we have

D
(
σm(

A
(
s + 1,Λ0Λp

1 . . .Λps

s

)))
· σm(

A
(
s + 1,Λ0Λp

1 . . .Λps

s

))−1(2.5)

≡ D
(
σm(

A
(
s,Λ0Λp

1 . . .Λ
ps−1

s−1
)))

× σm(
A
(
s,Λ0Λp

1 . . .Λ
ps−1

s−1
))−1 (mod ps+m)

for 1 � s � l and 0 � m.

Proof. First we notice that it is sufficient to establish the congruences (2.5)
for m = 0, as the general m case follows from (2.4). So, we assume that m = 0
and proceed by induction on s � 0. For s = 0 the statement is trivially true.

Consider the case of general s. Using part (ii) of Lemma 2.5 we can write

D
(
A(s + 1,Ws)

)
A(s + 1,Ws)−1 =

=
s+1∑
j=1

D
(
A(j, Vj−1)

)
σj(A(

s− j + 1,W (j)
s

))
A(s + 1,Ws)−1+

+
s+1∑
j=1

A(j, Vj−1)D
(
σj(A(

s− j + 1,W (j)
s

)))
A(s + 1,Ws)−1

and

D
(
A(s,Ws−1)

)
A(s,Ws−1)−1

=
s∑

j=1
D
(
A(j, Vj−1)

)
σj(A(

s− j,W
(j)
s−1

))
A(s,Ws−1)−1
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+
s∑

j=1
A(j, Vj−1)D

(
σj(A(

s− j,W
(j)
s−1

)))
A(s,Ws−1)−1.

The summand corresponding to j = s+1 in the first expression vanishes mod-
ulo ps, because A(s+1, Vs) ≡ 0 (mod ps), implying that D(A(s+1, Vs)) ≡ 0
(mod ps). For the same reason D(A(j, Vj−1)) ≡ 0 (mod pj−1) more generally;
combining this with the congruence

σj(A(
s− j + 1,W (j)

s

))
A(s + 1,Ws)−1(2.6)

≡ σj(A(
s− j,W

(j)
s−1

))
A(s,Ws−1)−1 (mod ps−j+1)

and summing over j we arrive at

s+1∑
j=1

D
(
A(j, Vj−1)

)
σj(A(

s− j + 1,W (j)
s

))
A(s + 1,Ws)−1

≡
s∑

j=1
D
(
A(j, Vj−1)

)
σj(A(

s− j,W
(j)
s−1

))
A(s,Ws−1)−1 (mod ps).

Here (2.6) follows from (2.3), in which we take j + 1 and s + 1 for j and s

and use Ws = Λ0Λp
1 . . .Λps

s instead of W (1)
s+1 = Λ1Λp

2 . . .Λ
ps

s+1.
To match the other sums we recall the inductive hypothesis in the form

D
(
σj(A(

s− j + 1,W (j)
s

)))
σj(A(

s− j + 1,W (j)
s

))−1(2.7)

≡ D
(
σj(A(

s− j,W
(j)
s−1

)))
σj(A(

s− j,W
(j)
s−1

))−1 (mod ps)

and notice that both sides in (2.7) are congruent to zero modulo pj by for-
mula (2.4). Therefore, multiplying congruences (2.7) and (2.6) (in this order!)
we obtain

D
(
σj(A(

s− j + 1,W (j)
s

)))
A(s + 1,Ws)−1

≡ D
(
σj(A(

s− j,W
(j)
s−1

)))
A(s,Ws−1)−1 (mod ps);

then multiplying both sides of this congruence by A(j, Vj−1) from the left and
summing over j we deduce

s∑
j=1

A(j, Vj−1)D
(
σj(A(

s− j + 1,W (j)
s

)))
A(s + 1,Ws)−1
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≡
s∑

j=1
A(j, Vj−1)D

(
σj(A(

s− j,W
(j)
s−1

)))
A(s,Ws−1)−1 (mod ps).

This completes the proof of the theorem.

There are similar congruences for higher order derivatives of the matrices
A(s + 1,Ws). We restrict ourselves with the second order derivatives.

Theorem 2.9. Let (Λ0(t, z),Λ1(t, z), . . . ,Λl(t, z)) be a Δ-admissible tuple of
Laurent polynomials in Zp[x±1] = Zp[t±1, z±1]. Then under assumptions of
part (ii) of Theorem 2.6 we have

Du

(
Dv

(
A
(
s + 1,Λ0Λp

1 . . .Λps

s

)))
· A

(
s + 1,Λ0Λp

1 . . .Λps

s

)−1(2.8)

≡ Du

(
Dv

(
A
(
s,Λ0Λp

1 . . .Λ
ps−1

s−1
)))

× A
(
s,Λ0Λp

1 . . .Λ
ps−1

s−1
)−1 (mod ps+2m)

for all 1 � u, v � n and 1 � s � l.

Proof. Notice that, for an invertible matrix F (z) and a derivation D, we have
D(F−1) = −F−1 D(F )F−1.

We apply the derivation Du to congruence (2.5) with D = Dv and m = 0:

Du

(
Dv

(
A(s + 1, . . . )

))
A(s + 1, . . . )−1

−Dv

(
A(s + 1, . . . )

)
A(s + 1, . . . )−1 Du

(
A(s + 1, . . . )

)
A(s + 1, . . . )−1

≡ Du

(
Dv

(
A(s, . . . )

))
A(s, . . . )−1−

−Dv

(
A(s, . . . )

)
A(s, . . . )−1 Du

(
A(s, . . . )

)
A(s, . . . )−1 (mod ps),

where we write A(s + 1, . . . ) and A(s, . . . ) for

A
(
s + 1,Λ0Λp

1 . . .Λps

s

)
and A

(
s,Λ0Λp

1 . . .Λ
ps−1

s−1
)
.

It remains to apply (2.5) with D = Du and D = Dv and m = 0 to see that
the second terms on both sides agree modulo ps. After their cancellation we
are left with the required congruences in (2.8).

3. Convergences

3.1. Infinite tuples

Let Λ = (Λ0(x),Λ1(x),Λ2(x), . . . ) be an infinite Δ-admissible tuple of Laurent
polynomials in Zp[x±1] with only finitely many distinct elements. Thus there
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is a finite set {F1(x), . . . , Ff (x)} ⊂ Zp[x±1] = Zp[t±1, z±1] of distinct Laurent
polynomials such that for any j there is a unique 1 � ij � f with Λj(x) =
Fij (x).

Definition 3.1. The Δ-admissible tuple Λ is called nondegenerate, if for
any i = 1, . . . , f , the Laurent polynomial detA(1, Fi(x)) ∈ Zp[z±1] is nonzero
modulo p.

Recall the notation:

Ws(x) = Λ0(x)Λ1(x)p . . .Λs(x)ps ,

W (j)
s (x) = Λj(x)Λj+1(x)p . . .Λs(x)ps−j

.

If a Δ-admissible tuple Λ is nondegenerate, then for any 0 � j � s, the
Laurent polynomials detA(s − j + 1,W (j)

s (x)) ∈ Zp[z±1] are not congruent
to zero modulo p and we may consider congruences involving the inverse
matrices A(s− j + 1,W (j)

s (x))−1.

3.2. Domain of convergence

Recall that z = (z1, . . . , zn). Denote

D =
{
z ∈ Zn

p | | detA
(
1, Fi(t, z)

)
|p = 1, i = 1, . . . , f

}
.

Lemma 3.2. For any 0 � j � s and a ∈ D we have

| detA
(
s− j + 1,W (j)

s (t, a)
)
|p = 1.

Corollary 3.3. All entries of A(s−j+1,W (j)
s (t, z))−1 are rational functions

in z regular on D. For every a ∈ D all entries of A(s− j + 1,W (j)
s (t, a)) and

A(s− j + 1,W (j)
s (t, a))−1 are elements of Zp.

Theorem 3.4. Let Λ = (Λ0(x),Λ1(x),Λ2(x), . . . ) be an infinite nondegener-
ate Δ-admissible tuple. Consider the sequence of g × g matrices(

A
(
s + 1,Ws(t, z)

)
· σ

(
A
(
s,W (1)

s (t, z)
))−1)

s�0(3.1)

whose entries are rational functions in z regular on the domain D. This se-
quence uniformly converges on D as s → ∞ to an analytic g× g matrix with
values in Zp. Denote this matrix by AΛ(z). For a ∈ D we have

| detAΛ(a)|p = 1(3.2)

and the matrix AΛ(a) is invertible.
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Proof. By part (i) of Theorem 2.6 we have | det σ(A(s,W (1)
s (t, a)))|p = 1 for

a ∈ D. Hence A(s+ 1,Ws(t, z)) · σ(A(s,W (1)
s (t, z)))−1 is a matrix of rational

functions in z regular on D. Moreover, if a ∈ D, then every entry of this matrix
is an element of Zp. The uniform convergence on D of the sequence (3.1) is a
corollary of part (ii) of Theorem 2.6. Equation (3.2) follows from part (i) of
Theorem 2.6. The theorem is proved.

Theorem 3.5. Let Λ = (Λ0(x),Λ1(x),Λ2(x), . . . ) be an infinite nondegener-
ate Δ-admissible tuple, and D = Dv, v = 1, . . . , n. Given m � 0 consider the
sequence of g × g matrices(

D
(
σm(

A
(
s + 1,Ws(x)

)))
· σm(

A
(
s + 1,Ws+1(x)

))−1)
s�0

whose entries are rational functions in z regular on the domain D. This se-
quence uniformly converges on D as s → ∞ to an analytic g× g matrix with
values in Zp. Denote this matrix by AΛ,Dσm(z).

Proof. The theorem is a corollary of Theorem 2.8.

Theorem 3.6. Let Λ = (Λ0(x),Λ1(x),Λ2(x), . . . ) be an infinite nondegener-
ate Δ-admissible tuple. Given 1 � u, v � n, consider the sequence of g × g
matrices (

Du

(
Dv

(
A
(
s + 1,Ws(x)

)))
· A

(
s + 1,Ws+1(x)

)−1)
s�0

whose entries are rational functions in z regular on the domain D. This se-
quence uniformly converges on D as s → ∞ to an analytic g× g matrix with
values in Zp. Denote this matrix by AΛ,DuDv(z).

Proof. The theorem is a corollary of Theorem 2.9.

Let Λ = (Λ0(x),Λ1(x),Λ2(x), . . . ) be an infinite nondegenerate Δ-admis-
sible tuple. Let 1 � u, v � n. Consider the g × g matrix valued functions
AΛ, ∂

∂zu
σ0(z), AΛ, ∂

∂zv
σ0(z) in Theorem 3.5 and denote them by Au(z), Av(z),

respectively. Consider the g × g matrix valued function AΛ, ∂
∂zu

∂
∂zv

(z) in The-
orem 3.6 and denote it by Au,v(z). All the three functions are analytic on D.

Lemma 3.7. We have
∂

∂zu
Av = Au,v −AvAu.

Proof. The lemma follows from the formula

∂

∂zu

(
∂A

∂zv
· A−1

)
= ∂2A

∂zu∂zv
· A−1 − ∂A

∂zv
· A−1 · ∂A

∂zv
· A−1.
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4. KZ equations

4.1. KZ equations

Let g be a simple Lie algebra with an invariant scalar product. The Casimir
element is Ω =

∑
i hi⊗hi ∈ g⊗g, where (hi) ⊂ g is an orthonormal basis. Let

V = ⊗n
i=1Vi be a tensor product of g-modules, κ ∈ C× a nonzero number. The

KZ equations is the system of differential equations on a V -valued function
I(z1, . . . , zn),

∂I

∂zi
= 1

κ

∑
j �=i

Ωi,j

zi − zj
I, i = 1, . . . , n,

where Ωi,j : V → V is the Casimir operator acting in the ith and jth tensor
factors, see [8, 5].

This system is a system of Fuchsian first order linear differential equa-
tions. The equations are defined on the complement in Cn to the union of all
diagonal hyperplanes.

The object of our discussion is the following particular case. Let n = 2g+1
be an odd positive integer. We consider the following system of differential
and algebraic equations for a column n-vector I = (I1, . . . , In) depending on
variables z = (z1, . . . , zn):

∂I

∂zi
= 1

2
∑
j �=i

Ωij

zi − zj
I, i = 1, . . . , n, I1 + · · · + In = 0,(4.1)

where z = (z1, . . . , zn), the n× n-matrices Ωij have the form

Ωij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
i ...

j

i · · · −1 · · · 1 · · ·
...

...
j · · · 1 · · · −1 · · ·

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and all other entries are zero. This joint system of differential and algebraic
equations will be called the system of KZ equations in this paper.

For i = 1, . . . , n denote

Hi(z) = 1
2
∑

j �=i
Ωij

zi−zj
, ∇KZ

i = ∂
∂zi

−Hi(z), i = 1, . . . , n.(4.2)
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The linear operators Hi(z) are called the Gaudin Hamiltonians. The KZ equa-
tions can be written as the system of equations,

∇KZ
i I = 0, i = 1, . . . , n, I1 + · · · + In = 0.

System (4.1) is the system of the differential KZ equations with param-
eter κ = 2 associated with the Lie algebra sl2 and the subspace of singular
vectors of weight 2g − 1 of the tensor power (C2)⊗(2g+1) of two-dimensional
irreducible sl2-modules, up to a gauge transformation, see this example in
[17, Section 1.1].

4.2. Solutions over C

Define the master function

Φ(t, z) = (t− z1)−1/2 . . . (t− zn)−1/2

and the column n-vector

I(C)(z) = (I1, . . . , In) :=
∫
C

(Φ(t, z)
t− z1

, . . . ,
Φ(t, z)
t− zn

)
dt,(4.3)

where C ⊂ C − {z1, . . . , zn} is a contour on which the integrand takes its
initial value when t encircles C.

Theorem 4.1 (cf. [20]). The function I(C)(z) is a solution of system (4.1).

This theorem is a very particular case of the results in [14].

Proof. The theorem follows from Stokes’ theorem and the two identities:

−1
2

(Φ(t, z)
t− z1

+ · · · + Φ(t, z)
t− zn

)
= ∂Φ

∂t
(t, z),(4.4) (

∂

∂zi
− 1

2
∑
j �=i

Ωi,j

zi − zj

)(Φ(t, z)
t− z1

, . . . ,
Φ(t, z)
t− zn

)
= ∂Ψi

∂t
(t, z),(4.5)

where Ψi(t, z) is the column n-vector (0, . . . , 0,−Φ(t,z)
t−zi

, 0, . . . , 0) with the non-
zero element at the i-th place.

Theorem 4.2 (cf. [16, Formula (1.3)]). All solutions of system (4.1) have
this form. Namely, the complex vector space of solutions of the form (4.3) is
(n− 1)-dimensional.
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4.3. Solutions as vectors of first derivatives

Consider the hyperelliptic integral

T (z) = T (C)(z) =
∫
C

Φ(t, z) dt.

Then

I(C)(z) = 2
(
∂T (C)

∂z1
, . . . ,

∂T (C)

∂zn

)
.

Denote ∇T = ( ∂T
∂z1

, . . . , ∂T
∂zn

). Then the column gradient vector of the function
T (z) satisfies the following system of (KZ) equations

∇KZ
i ∇T = 0, i = 1, . . . , n, ∂T

∂z1
+ · · · + ∂T

∂zn
= 0.

This is a system of second order linear differential equations on the function
T (z).

4.4. Solutions modulo ps

For an integer s � 1 define the master polynomial

Φs(t, z) =
(
(t− z1) . . . (t− zn)

)(ps−1)/2
.

Recall that n = 2g + 1. For � = 1, . . . , g define the column n-vector

Is,�(z) = (Is,�,1, . . . , Is,�,n)

as the coefficient of t�ps−1 in the column n-vector of polynomials(Φs(t, z)
t− z1

, . . . ,
Φs(t, z)
t− zn

)
.

Notice that degt
Φs(t,z)
t−zi

= (2g + 1)ps−1
2 − 1. If � /∈ {1, . . . , g}, then Φs(t,z)

t−zi

does not have the monomial t�ps−1.

Theorem 4.3 ([20]). The column n-vector Is,�(z) of polynomials in z is a
solution of system (4.1) modulo ps.
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The column n-vectors Is,�(z), � = 1, . . . , g, were called in [20] the ps-
hypergeometric solutions of the KZ equations (4.1).

Proof. We have the following modifications of identities (4.4), (4.5):

ps − 1
2

(Φs(t, z)
t− z1

+ · · · + Φs(t, z)
t− zn

)
= ∂Φs

∂t
(t, z),(

∂

∂zi
+ ps − 1

2
∑
j �=i

Ωi,j

zi − zj

)(Φs(t, z)
t− z1

, . . . ,
Φs(t, z)
t− zn

)
= ∂Ψi

s

∂t
(t, z),

where Ψi
s(t, z) is the column n-vector (0, . . . , 0,−Φs(t,z)

t−zi
, 0, . . . , 0) with the

nonzero element at the i-th place. Theorem 4.3 follows from these identities.

Consider the n× g matrix

Is(z) = (Is,1, . . . , Is,g) = (Is,�,i)i=1,...,n
�=1,...,g ,

where Is,�,i stays at the �-th column and i-th row. The matrix Is(z) satisfies
the KZ equations,

∇KZ
i Is(z) = 0, i = 1, . . . , n,

Is,�,1(z) + · · · + Is,�,n(z) = 0, � = 1, . . . , g,

modulo ps.

5. Congruences for solutions of KZ equations

5.1. Congruences for Hasse–Witt matrices of KZ equations

Let p > 2g + 1,

Δ = {1, . . . , g} ⊂ Z, N =
[
0, gp + (p− 1)/2 − g

]
⊂ R.(5.1)

Lemma 5.1. The infinite tuple (N,N, . . . ) is Δ-admissible, see Definition
2.3.

Denote

F (t, z) := Φ1(t, z) =
(
(t− z1) . . . (t− zn)

)(p−1)/2
.
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The Newton polytope of F (t, z) with respect to variable t is the interval
N = [0, gp + (p− 1)/2 − g], see (5.1), and

Φs(t, z) = F (t, z) · F (t, z)p . . . F (t, z)ps−1
.

The infinite tuple (F (t, z), F (t, z), . . . ) is Δ-admissible, see Definition 2.4.
For s � 1 consider the Hasse–Witt g × g matrix

A
(
s,Φs(t, z)

)
=

(
Coeffpsv−u

(
Φs(t, z)

))
u,v=1,...,g,

see (2.2). The entries of this matrix are polynomials in z.

Theorem 5.2. The polynomial detA(1, F (t, z)) is nonzero modulo p.

Proof. Consider the lexicographical ordering of monomials zd1
1 . . . z

d2g+1
2g+1 . We

have z1 > · · · > z2g+1 and so on. For a nonzero Laurent polynomial f(z) =∑
d1,...,d2g+1 ad1,...,d2g+1z

d1
1 . . . zd2g+1

2g+1 with coefficients in Z, the nonzero summand
ad1,...,d2g+1z

d1
1 . . . z

d2g+1
2g+1 with the largest monomial zd1

1 . . . zd2g+1
2g+1 is called the

leading term of f(z).
If f(z) and g(z) are two nonzero Laurent polynomials, then the leading

term of f(z)g(z) equals the product of the leading terms of f(z) and g(z).
Denote A(1, F (t, z)) =: (Au,v(z))u,v=1,...,g.

Lemma 5.3. If p > 2g + 1, the leading term of Au,v(z) equals

±
(

(p− 1)/2
v − u

)
(z1z2 . . . z2g+1−2v)(p−1)/2/zv−u

2g+1−2v, if v � u,

±
(

(p− 1)/2
u− v

)
(z1z2 . . . z2g+1−2v)(p−1)/2zu−v

2g+2−2v, if v � u.

For example, for g = 2 the matrix of leading terms is⎛⎝ ±(z1z2z3)(p−1)/2 ±
((p−1)/2

1
)
z

(p−1)/2
1 /z1

±
((p−1)/2

1
)
(z1z2z3)(p−1)/2z4 ±z

(p−1)/2
1

⎞⎠ .(5.2)

Proof. The proof is by inspection.

It is easy to see that the leading term of the determinant of the matrix
of leading terms of Au,v(z) equals the product of diagonal elements,

±
g∏

v=1
(z1 . . . z2g+1−2v)(p−1)/2.(5.3)
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This term is not congruent to zero modulo p. This proves Theorem 5.2.

Corollary 5.4. The Δ-admissible infinite tuple (F (t, z), F (t, z), . . . ) satisfies
the assumptions of Theorem 2.6. Therefore,

(i) for s � 1 we have

A
(
s,Φs(t, z)

)(5.4)

≡ A
(
1, F (t, z)

)
· σ

(
A
(
1, F (t, z)

))
. . . σs−1(A(

1, F (t, z)
))

(mod p);

(ii) for s � 1 the determinant of the matrix A(s,Φs(t, z)) is a polynomial,
which is nonzero modulo p, and we have modulo ps:

A
(
s + 1,Φs+1(t, z)

)
· σ

(
A
(
s,Φs(t, z)

))−1

≡ A
(
s,Φs(t, z)

)
· σ

(
A
(
s− 1,Φs−1(t, z)

))−1
,

where for s = 1 we understand the second factor on the right as the
g × g identity matrix.

Proof. The corollary follows from Theorems 5.2 and 2.6.

5.2. Congruences for frames of solutions of KZ equations

Theorem 5.5. We have the following congruences of n× g matrices.

(i) For s � 1,

Is+1(z) · A
(
s + 1,Φs+1(t, z)

)−1

≡ Is(z) · A
(
s,Φs(t, z)

)−1 (mod ps).

(ii) For s � 1 and j = 1, . . . , n,

∂Is+1

∂zj
(z) · A

(
s + 1,Φs+1(t, z)

)−1

≡ ∂Is
∂zj

(z) · A
(
s,Φs(t, z)

)−1 (mod ps).

Proof. Consider the first row of the Hasse–Witt matrix A(s,Φs(t, z)),(
A1,1

(
s,Φs(t, z)

)
, . . . , A1,g

(
s,Φs(t, z)

))
,
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where A1,�
(
s,Φs(t, z)

)
= Coeff�ps−1

(
Φs(t, z)

)
.

For each A1,�(s,Φs(t, z)) we view the gradient

∇A1,�
(
s,Φs(t, z)

)
=

(
∂A1,�(s)

∂z1
, . . . ,

∂A1,�(s)
∂zn

)
as a column n-vector. The resulting n× g matrix of gradients

∇A(s, z) :=
(
∇A1,1

(
s,Φs(t, z)

)
, . . . ,∇A1,g

(
s,Φs(t, z)

))
is proportion to the matrix Is(z), ∇A(s, z) = 1−ps

2 Is(z). By Theorems 2.8
and 2.9 we have modulo ps,

∇A(s + 1, z) · A
(
s + 1,Φs+1(t, z)

)−1 ≡ ∇A(s, z) · A
(
s,Φs(t, z)

)−1
,

∂

∂zj

(
∇A(s + 1, z)

)
· A

(
s + 1,Φs+1(t, z)

)−1

≡ ∂

∂zj

(
∇A(s, z)

)
· A

(
s,Φs(t, z)

)−1
.

These congruences imply the theorem.

Corollary 5.6. For s � 1 we have

Is(z) · A
(
s,Φs(t, z)

)−1 ≡ I1(z) · A
(
1,Φ1(t, z)

)−1 (mod p).

6. Convergence of solutions of KZ equations

6.1. Nonzero polynomials

Lemma 6.1. Let z = (z1, . . . , zn). Let F (z) ∈ Fp[z] be a nonzero polynomial,
degF (z) � d for some d. Let pm > d. Then there are at least pmn−1

pm−1 (pm− 1−
d) + 1 points of (Fpm)n where F (z) is nonzero.

Proof. First we show that there exists a ∈ (Fpm)n such that F (a) 
= 0. The
proof is by induction on n. If n = 1, then the nonzero polynomial F (z1) cannot
have more than d zeros. Hence there exists a ∈ Fpm such that F (a) 
= 0.

Assume that the existence of a is proved for all nonzero polynomials with
less than n variables. Write F (z) =

∑
i ci(z2, . . . , zn)zi1. By the induction

assumption, there exists a2, . . . , an ∈ Fpm such that ci(a2, . . . , an) 
= 0 for
at least one i. Hence F (z1, a2 . . . , an) is a nonzero polynomial of degree � d
which defines a nonzero function of z1. The existence of a is proved.
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Let a ∈ (Fpm)n be such that F (a) 
= 0. In (Fpm)n there are pmn−1
pm−1 distinct

lines through a. On each of the lines there are at least pm − 1 − d points
different from a where F (z) is nonzero. Hence the total number of points
where F (z) 
= 0 is at least pmn−1

pm−1 (pm − 1 − d) + 1.

6.2. Unramified extensions of Qp

We fix an algebraic closure Qp of Qp. For every m, there is a unique unramified
extension of Qp in Qp of degree m, denoted by Q

(m)
p . This can be obtained

by attaching to Qp a primitive root of 1 of order pm − 1. The norm | · |p on
Qp extends to a norm | · |p on Q

(m)
p . Let

Z(m)
p =

{
a ∈ Q(m)

p | |a|p � 1
}

denote the ring of integers in Q
(m)
p . The ring Z

(m)
p has the unique maximal

ideal

M(m)
p =

{
a ∈ Q(m)

p | |a|p < 1
}
,

such that Z(m)
p /M

(m)
p is isomorphic to the finite field Fpm .

For every u ∈ Fpm there is a unique ũ ∈ Z
(m)
p that is a lift of u and such

that ũp
m = ũ. The element ũ is called the Teichmuller lift of u.

6.3. Domain DB

For u ∈ Fpm and r > 0 denote

Du,r =
{
a ∈ Z(m)

p | |a− ũ|p < r
}
.

We have the partition

Z(m)
p =

⋃
u∈Fpm

Du,1.

Recall z = (z1, . . . , zn). For B(z) ∈ Z[z], define

DB =
{
a ∈

(
Z(m)
p

)n | |B(a)|p = 1
}
.
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Let B̄(z) be the projection of B(z) to Fp[z] ⊂ Fpm [z]. Then DB is the union
of unit polydiscs,

DB =
⋃

u1,...,un∈Fpm

B̄(u1,...,un)�=0

Du1,1 × · · · ×Dun,1.

For any k we have{
a ∈

(
Z(m)
p

)n | |B
(
ap

k)|p = 1
}

=
⋃

u1,...,un∈Fpm

σk(B̄(u1,...,un)) �=0

Du1,1 × · · · ×Dun,1

=
⋃

u1,...,un∈Fpm

B̄(u1,...,un)�=0

Du1,1 × · · · ×Dun,1 = DB.

6.4. Uniqueness theorem

Let D ⊂ (Z(m)
p )n be the union of some of the unit polydiscs Du1,1×· · ·×Dun,1,

where u1, . . . , un ∈ Fpm .
Let (Fi(z))∞i=1 and (Gi(z))∞i=1 be two sequences of rational functions on

(Z(m)
p )n. Assume that each of the rational functions has the form P (z)/Q(z),

where P (z), Q(z) ∈ Z[z], and for any polydisc Du1,1 × · · · × Dun,1 ⊂ D, we
have

|Q(ũ1, . . . , ũn)|p = 1,

which implies that

|Q(a1, . . . , an)|p = 1, ∀ (a1, . . . , an) ∈ D.

Assume that the sequences (Fi(z))∞i=1 and (Gi(z))∞i=1 uniformly converge on
D to analytic functions, which we denote by F (z) and G(z), respectively.

Theorem 6.2. Under these assumptions, if F (z) = G(z) on an open non-
empty subset of D. Then F (z) = G(z) on D.

The following proof was communicated to us by Vladimir Berkovich.

Proof. The domain D is a disjoint union of open unit polydiscs, and so it
gives rise to a similar domain D′ over the algebraic closure of Q

(m)
p . Each

rational function of our sequence has no poles in D′. This property implies
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that the restriction of the function to each of open unit polydisc contained in
D is a formal power series convergent at all points of the polydisc.

First, recall the definition and some properties of the affine space An over
a non-Archimedean field K (as Q(m)

p ). As a space it is the set of all multiplica-
tive seminorms | · |x : K[T1, . . . , Tn] → R+ that extend the (multiplicative)
valuation | · | : K → R+, and it is provided with the weakest topology with
respect to which all functions An → R+ : x �→ |f |x for polynomials f are
continuous. We need only one point g, called the Gauss point and defined as
follows: |∑μ aμT

μ|g = maxμ |aμ|. One can show that

(1) the point g lies in the closure of each open polydisc of radius one with
center at a point t ∈ Kn with |ti| � 1, and

(2) for each bounded convergent power series f on such an open polydisc,
the real valued function x �→ |f |x extends by continuity to the point g,
and one has |f |x � |f |g for all points of the polydisc.

Uniqueness Since F and G are uniform limits of rational functions regular
on D, their restrictions to each open polydisc in D are bounded convergent
power series and, in particular, the number |F −G|g is well defined and one
has |F −G|x � |F −G|g for all points x ∈ D. If F (x) = G(x) for points from
a nonempty open subset of an open unit polydisc, then F (x) = G(x) for all
points of the polydisc (it is uniqueness property for convergent power series)
and, therefore, |F −G|g = 0. This implies that F = G on D.

6.5. Domain of convergence

By Theorem 5.2 the polynomial detA(1, F (t, z)) ∈ Z[z] is nonzero modulo p.
The polynomial detA(1, F (t, z)) is a homogeneous polynomial in z of degree

d = p− 1
2 g2,(6.1)

cf. (5.3). Define

D
(m)
KZ =

{
a ∈

(
Z(m)
p

)n | | detA
(
1, F (t, a)

)
|p = 1

}
.

By Lemma 6.1 the domain D
(m)
KZ is nonempty if pm > d. In what follows we

assume that pm > d.

Remark. The space (Zpm)n is the disjoint union of pmn unit polydiscs Du1,1×
· · · ×Dun,1. By Lemma 6.1 at least pmn−1

pm−1 (pm − 1 − d) + 1 > pmn(1 − d
pm−1)

of them belong to D
(m)
KZ . So, as m grows almost all polydiscs belong to D

(m)
KZ .
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We have | detA(s,Φs(t, a))|p = 1 for a ∈ D
(m)
KZ . All entries of

A(s,Φs(t, z))−1 are rational functions in z regular on D
(m)
KZ . For every a ∈ D

(m)
KZ

all entries of A(s,Φs(t, a)) and A(s,Φs(t, a))−1 are elements of Z(m)
p .

Theorem 6.3. The sequence of g × g matrices(
A
(
s + 1,Φs(t, z)

)
· σ

(
A
(
s,Φs−1(t, z)

))−1)
s�1,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges

on D
(m)
KZ as s → ∞ to an analytic g×g matrix which will be denoted by A(z).

For a ∈ D
(m)
KZ we have

| detA(a)|p = 1

and the matrix A(a) is invertible.

Proof. The theorem follows from Theorem 3.4.

Theorem 6.4. For i = 1, . . . , n the sequence of g × g matrices((
∂

∂zi
A
(
s,Φs(t, z)

))
· A

(
s,Φs(t, z)

)−1
)
s�1

,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges

on D
(m)
KZ as s → ∞ to an analytic g × g matrix, which will be denoted by

A(i)(z).
The sequence of n× g matrices(

Is(z) · A
(
s,Φs(t, z)

)−1)
s�1,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges

on D
(m)
KZ as s → ∞ to an analytic n×g matrix which will be denoted by I(z).

For i = 1, . . . , n the sequence of n× g matrices(
∂Is
∂zi

(z) · A
(
s,Φs(t, z)

)−1
)
s�1

,

whose entries are rational functions in z regular on D
(m)
KZ , uniformly converges

on D
(m)
KZ as s → ∞ to an analytic n×g matrix which will be denoted by I(i)(z).
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We have

∂I
∂zi

= I(i) − I · A(i).

Proof. The theorem follows from Theorems 3.5, 3.6, and Lemma 3.7.

Theorem 6.5. We have the following system of equations on D
(m)
KZ :

I(i) = Hi · I, i = 1, . . . , n,

where Hi are the Gaudin Hamiltonians defined in (4.2).

Proof. The theorem is a corollary of Theorem 4.3.

Corollary 6.6. For a ∈ D
(m)
KZ we have

I(a) ≡ I1(a) · A
(
1,Φ1(t, a)

)−1 (mod p).

Proof. The corollary follows from Corollary 5.6 and Theorem 6.4.

6.6. Vector bundle L → D
(m),o
KZ

Denote

W =
{
(I1, . . . , In) ∈

(
Q(m)

p

)n | I1 + · · · + In = 0
}
.

We consider vectors (I1, . . . , In) as column vectors. The differential operators
∇KZ

i , i = 1, . . . , n, define a connection on the trivial bundle W×D
(m)
KZ → D

(m)
KZ ,

called the KZ connection. The connection has singularities at the diagonal
hyperplanes in (Z(m)

p )n and is well-defined over

D
(m),o
KZ

=
{
a = (a1, . . . , an) ∈

(
Z(m)
p

)n | | detA
(
1, F (t, a)

)
|p = 1, ai 
= aj ∀i, j

}
.

The KZ connection is flat,[
∇KZ

i ,∇KZ
j

]
= 0 ∀ i, j,

see [5]. The flat sections of the KZ connection are solutions of system (4.1)
of KZ equations.
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For any a ∈ D
(m)
KZ let La ⊂ W be the vector subspace generated by

columns of the n× g matrix I(a). Then

L :=
⋃

a∈D(m)
KZ

La → D
(m)
KZ

is an analytic distribution of vector subspaces in the fibers of the trivial bundle
W ×D

(m)
KZ → D

(m)
KZ .

Theorem 6.7. The distribution L → D
(m)
KZ is invariant with respect to the

KZ connection. In other words, if s(z) is a local section of L → D
(m)
KZ , then

the sections ∇KZ
i s(z), i = 1, . . . , n, also are sections of L → D

(m)
KZ .

Proof. Let I(z) = (I1(z), . . . , Ig(z)) be columns of the n × g matrix I(z).
Let a ∈ D

(m)
KZ . Let c(z) = (c1(z), . . . , cg(z)) be a column vector of analytic

functions at a. Consider a local section of the distribution L → D
(m)
KZ ,

s(z) =
g∑

j=1
cj(z)Ij(z) =: I · c.

Then

∇KZ
i s(z) = −Hi · I · c + ∂I

∂zi
· c + I · ∂c

∂zi

= −Hi · I · c +
(
I(i) − I · A(i)) · c + I · ∂c

∂zi

= −Hi · I · c +
(
Hi · I − I · A(i)) · c + I · ∂c

∂zi

= −I · A(i) · c + I · ∂c

∂zi
.

Clearly, the last expression is a local section of L → D
(m)
KZ .

Theorem 6.8. The function a �→ dim
Q

(m)
p

La is constant on D
(m),o
KZ , in other

words, L → D
(m)
KZ is a vector bundle over D

(m),o
KZ ⊂ D

(m)
KZ .

Proof. First, we prove that the function a �→ dim
Q

(m)
p

La is locally constant on

D
(m),o
KZ . This holds true in the following more general setting. Let k be a posi-

tive integer, a ∈ (Z(m)
p )n. Let Bi(z), i = 1, . . . , n, be k×k matrices defined and

analytic in a neighborhood of a. The differential operators Bi = ∂
∂zi

− Bi(z),



Congruences for solutions of p-adic KZ equations 593

i = 1, . . . , n, act on (Q(m)
p )k-valued functions defined and analytic in a neigh-

borhood of a. The operators (Bi) define a connection ∇B on the restriction of
the trivial bundle (Q(m)

p )k × (Q(m)
p )n → (Q(m)

p )n to a neighborhood of a. As-
sume that the connection is flat, [Bi,Bj ] = 0 for all i, j. Then, for a sufficiently
small neighborhood D of a, the space S of solutions of the system Biy = 0,
i = 1, . . . , n, on D is a k-dimensional Q

(m)
p -vector space. For any b ∈ D

the values of solutions at b span (Q(m)
p )k. Under these assumptions, the ∇B-

invariant subspace distributions in fibers of (Q(m)
p )k×(Z(m)

p )n → (Z(m)
p )n over

D are labeled by Qp-vector subspaces Y ⊂ S. The corresponding distribution
assigns to b ∈ D the subspace {y(b) | y ∈ Y } ⊂ (Q(m)

p )k. Such distributions
have constant rank. Hence the function a �→ dim

Q
(m)
p

La is locally constant

on D
(m),o
KZ .

By Theorem 6.2 the locally constant function a �→ dim
Q

(m)
p

La cannot take

more than one value on D
(m),o
KZ since the dimension dim

Q
(m)
p

La may drop from

its maximal value only on a proper analytic subset of D(m)
KZ . The theorem is

proved.

Recall that d is the degree of the polynomial detA(1, F (t, z)), see (6.1).

Theorem 6.9. If pm > 2d, then the analytic vector bundle L → D
(m),o
KZ is of

rank g.

Proof. First we show that there is a g × g minor of the n× g matrix valued
function I(z) which is nonzero on D

(m)
KZ . By Corollary 6.6 this fact holds true

if there is a g×g minor of the n×g matrix I1(z)·A(1,Φ1(t, z))−1, which defines
a function on D

(m)
KZ nonzero modulo p. Since | detA(1,Φ1(t, a))|p = 1 for any

a ∈ D
(m)
KZ , it is enough to prove that there is a nonzero g × g minor of the

n × g polynomial matrix I1(z). But this fact follows from [20, Lemma 7.2],
also see [19, Lemma 6.1]. More precisely, [20, Lemma 7.2] implies that the
leading term of the g × g minor in rows 1, 3, . . . , 2g − 1 equals

±
g∏

l=1

(
(p− 1)/2

l

)
z

(p−1)/2
1 . . . z

(p−1)/2
2g−2l z

(p−1)/2−l
2g−2l+1 .

The degree of this minor equals

g(2g + 1)p− 1
2 − p(1 + · · · + g) = g2 p− 1

2 − g(g + 1)
2 < g2 p− 1

2 = d.



594 Alexander Varchenko and Wadim Zudilin

Thus, we have two polynomials of degree � d: this minor and detA(1,Φ1(t, z)).
Both polynomials are nonzero modulo p. By Lemma 6.1 if pm > 2d, then this
minor is nonzero on D

(m),o
KZ .

6.7. Remarks

6.7.1. It was shown in [20, Section 10.4] that the span of columns of the
n × g matrix Is(z) has a p-adic limit as s → ∞ when z belongs to one of
the asymptotic zones of the KZ equations. The limit is a g-dimensional space
of power series solutions of the KZ equations with respect to the coordinates
attached to that asymptotic zone. It is not clear yet if that asymptotic zone
belongs to D

(m)
KZ .

6.7.2. One may expect that the subbundle L → D
(m),o
KZ can be extended to

a rank g subbundle over D(m)
KZ −D

(m),o
KZ , the union of the diagonal hyperplanes

in D
(m)
KZ .

6.7.3. Following Dwork we may expect that locally at any point a ∈
D

(m),o
KZ , the solutions of the KZ equations with values in L → D

(m),o
KZ are

given at a by power series in zi − ai, i = 1, . . . , n, bounded in their polydiscs
of convergence, while any other local solution at a is given by a power series
unbounded in its polydisc of convergence, cf. [4] and [20, Theorem A.4].

6.7.4. The KZ connection ∇KZ
i , i = 1, . . . , n, over C is identified with

the Gauss–Manin connection of the family of hyperelliptic curves y2 = (t −
z1) . . . (t− zn). The monodromy representation of that Gauss–Manin connec-
tion is described in [3, Appendix]. The image of the monodromy representa-
tion is so big that the connection does not have proper invariant subbundles.
The monodromy representation is irreducible, see [7, Lemma 6]. Thus the
existence of the invariant subbundle L → D

(m),o
KZ is a p-adic feature.

6.7.5. The invariant subbundles of the KZ connection over C usually are
related to some additional conformal block constructions, for example, see
[6, 15, 18]. Apparently our subbundle L → D

(m),o
KZ is of a different p-adic

nature.
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