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Monotone quantities of p-harmonic functions and their
applications
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Abstract: We derive local and global monotonic quantities associ-
ated to p-harmonic functions on manifolds with nonnegative scalar
curvature. As applications, we obtain inequalities relating the mass
of asymptotically flat 3-manifolds, the p-capacity and the Willmore
functional of the boundary. As p → 1, one of the results retrieves a
classic relation that the ADM mass dominates the Hawking mass
if the surface is area outer-minimizing.

1. Introduction and statement of results

The Riemannian Penrose inequality (RPI) in 3-dimension relates the mass of
an asymptotically flat manifold to the area of its boundary if the boundary
is the outermost minimal surface in the sense that it is not enclosed by an-
other minimal surface. The inequality was proved by Huisken-Ilmanen [23] in
the case of connected boundary via a weak formulation of the inverse mean
curvature flow. The general case was proved by Bray [8] using a conformal
flow of metrics. The higher dimensional inequality was proved by Bray and
Lee [9] in dimensions less than eight.

Recently, Agostiniani-Mantegazza-Mazzieri-Oronzio [3] gave a new proof
of the 3-dimensional RPI in the case of connected boundary. In their approach,
a related inequality was first established via p-harmonic functions with p > 1.
The RPI was obtained by letting p → 1 using [17, Theorem 1.2] on the limiting
behavior of p-capacity. A main ingredient in the approach was a generalization
to p-harmonic functions of a monotonic property of harmonic functions found
by Agostiniani-Mazzieri-Oronzio in [2].
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In [34], some distinct monotone properties of harmonic functions were
found by the second author. It is natural to ask if those properties of har-
monic functions can be generalized to p-harmonic functions, and if so, what
applications such a generalization may give.

This paper is motivated by the above questions. Among other things, we
retrieve in Corollary 5.1 that

(1.1)

√
|∂M |
16π

(
1 − 1

16π

∫
∂M

H2
)
≤ m, if ∂M is area outer-minimizing.

Here area outer-minimizing means that every surface Σ enclosing ∂M has
larger area. (1.1) represents a well-known relation

Hawking mass ≤ ADM mass,

provided ∂M is area outer-minimizing and M has simple topology. This was
first proved by Huisken and Ilmanen [23] via the method of weak inverse
mean curvature flow. In Corollary 5.1, we show (1.1) can be derived from
p-harmonic functions.

We recall that a complete Riemannian 3-manifold (M, g) is asymptotically
flat (AF) if there is a compact set K such that M \ K is diffeomorphic to
the exterior of a ball in R

3, such that if δij is the Euclidean metric, then for
0 ≤ l ≤ 2

(1.2) |gij − δij | = O2
(
r−σ)

as r → ∞, with σ > 1
2 , where r is the Euclidean distance from a fixed point.

This means |Dl(gij − δij)| = O(r−l−σ) for 0 ≤ l ≤ 2. Suppose the scalar
curvature S of M is integrable, then the ADM mass m introduced in [4] is
well-defined [5, 13]:

(1.3) m = 1
16π lim

r→∞

∫
Sr

(gij,i − gii,j)νjedσe,

where Sr = {|x| = r}, νe is the unit outward normal to Sr and dσe is the area
element on Sr both with respect to the Euclidean metric ge. In this work, we
prove the following:

Theorem 1.1. Let (M3, g) be a complete, orientable, asymptotically flat 3-
manifold with boundary ∂M . Suppose ∂M is connected and H2(M,∂M) = 0.
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For 1 < p ≤ 2, let u be the p-harmonic function on M with u = 0 on ∂M ,
and u → 1 at infinity. If g has nonnegative scalar curvature, then

4π +
∫
∂M

|∇u|H ≥ a−2(1 + 2a)
∫
∂M

|∇u|2,(1.4)

c
1
a

(
8π − a−1

∫
∂M

|∇u|H
)
≤ 4π(5 − p)m,(1.5)

c
1
a

(
4π − a−2

∫
∂M

|∇u|2
)
≤ 4π(3 − p)m.(1.6)

Here a = 3−p
p−1 , c = a−1(Cp

4π )
1

p−1 , Cp is the p-capacity of ∂M in (M, g) and H is
the mean curvature of ∂M . If equality holds in any of the above inequalities,
then (M, g) is isometric to R

3 outside a round ball.

For simplicity, we only consider orientable manifolds in this work. By
taking two-fold cover, some results are also true for non-orientable manifolds.
Besides retrieving (1.1), other applications of Theorem 1.1 include sufficient
conditions via C0-data of regions separating the boundary and the infinity,
which imply the positivity of the mass. See Corollary 5.2 for details.

We prove Theorem 1.1 by exhibiting a family of monotonic quantities for
p-harmonic functions and analyzing their asymptotic behavior.

First, let us review the concepts of p-harmonic functions and p-capacity,
also see Section 1.1 in [3]. Let (M, g) denote a complete Riemannian 3-
manifold with boundary ∂M , which is assumed to be compact throughout
this work. Given any p ∈ (1, 3), a function u is called a p-harmonic function
such that u vanishes at ∂M and u → 1 at infinity if u ∈ W 1,p

loc (M) and satisfies

(1.7)

⎧⎪⎨⎪⎩
div(|∇u|p−2∇u) = 0, in M in the weak sense;
u = 0 on ∂M ;
u(x) → 1 as x → ∞.

In case of asymptotically flat manifold, such a u exists in W 1,p
loc and on any

precompact set u is in C1,β for some β > 0. Moreover, u is smooth whenever
|∇u| > 0, see [14, Theorems 1,2], see also [15]. the maximum principle holds
for u, see [20, Lemma 3.18 and Theorem 6.5], which implies 0 ≤ u < 1 and
∂M = {u = 0}. Moreover, the Hopf lemma holds, see [40, Section 2], which
shows |∇u| > 0 at ∂M . As x → ∞, u has an asymptotic expansion of

(1.8) u = 1 − cr−a + o2
(
r−a), r = |x|.
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That is |D�u − D�(1 − cr−a)| = o(r−a−�) for � = 1, 2. See [6, Theorem 3.1],
where a = 3−p

p−1 , c = a−1(Cp

4π )
1

p−1 , and Cp is the p-capacity of ∂M in (M, g)
given by

Cp = inf
{∫

M
|∇φ|p

}
,

where the infimum is taken over all Lipschitz functions φ with compact sup-
port such that φ = 1 at ∂M . Cp is related to u by

Cp =
∫
M

|∇u|p =
∫
{u=τ}

|∇u|p−1

if τ is a regular value of u, see [7] for instance. Here we omit the volume
element and the area element for simplicity.

We want to study quantities related to the mass of an AF manifold. It
was know in [16, Lemma 2.2] (also see [24, Proposition A.2]) that, as r → ∞,

(1.9) 4πr −
∫
Sr

H + A(r)
r

= 8πm + o(1).

Here H is the mean curvature and A(r) is the area of Sr, respectively. From
this, one can check that any function f(t) with f ′(t) > 0, and if v(x) =
f(r(x)), then

4πr − f ′(r)−1
∫
{v=f(r)}

|∇v|H + f ′(r)−2r−1
∫
{v=f(r)}

|∇v|2

= 8πm + o(1).
(1.10)

Given the p-harmonic function u, motivated by (1.8), let f(t) = 1 − ct−a, if
f(t) is a regular value of u, then the above expression becomes:

(1.11) F (t) = 4πt− (ca)−1ta+1
∫
{u=f(t)}

|∇u|H+(ca)−2t2a+1
∫
{u=f(t)}

|∇u|2,

which is the quantity considered in [2, 3].
Motivated by [34], two other quantities may be constructed from u and f .

We define

(1.12)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B(t) = 4πt− (f ′)−2t−1 ∫
{u=f(t)} |∇u|2

= 4πt− (ca)−2t2a+1 ∫
{u=f(t)} |∇u|2,

A(t) = 8πt− (f ′)−1 ∫
{u=f(t)} |∇u|H

= 8πt− (ca)−1ta+1 ∫
{u=f(t)} |∇u|H.
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F (t),A(t),B(t) are related to the Hawking mass of the level surface, see Ap-
pendix C.

Similar to Ψ(s) in [34, Section 3], we also define

D(t) = t−aB′(t)

= 4πt−a + c−1
∫
{u=f(t)}

|∇u|H

− (ca)−2(1 + 2a)ta
∫
{u=f(t)}

|∇u|2.

(1.13)

On the other hand, if (M, g) is a complete manifold without boundary and G
is the positive p-harmonic Green’s function with pole at x0 and approaching
0 at infinity (provided it exists), then define

(1.14) G(τ) = −4a2πτ + τ−1
∫
{G=τ}

|∇G|2.

This was studied in [36, 11]. We will see in Section 2 that A(t), B(t), D(t),
F (t) and G(τ) and their monotone properties are closely related.

The monotone property of F for p-harmonic functions was proved in [2, 3]
and the monotone properties of A, B, D for harmonic functions were obtained
in [34]. In this work, we prove the following:

Theorem 1.2. For 1 < p ≤ 2, suppose u is a p-harmonic function on a
complete, orientable Riemannian 3-manifold (M, g) with compact boundary
∂M such that u = 0 on ∂M and u → 1 at infinity. Suppose ∂M is connected,
H2(M,∂M) = 0, and g has non-negative scalar curvature. Let f(t), A(t),
B(t), D(t) be given as above. Let Σ(t) = {u = f(t)}. Suppose 0 < t1 < t2
such that Σ(t1) and Σ(t2) are regular. Then

(i) (Local monotonicity) D(t1) ≥ D(t2). Moreover, if D(t1) = D(t2), then
{f(t1) < u < f(t2)} is isometric to an annulus in R

3.
(ii) (Global positivity) If (M, g) is asymptotically flat, then D(t) ≥ 0 and

(1 + 2a)B(t) − aA(t) ≥ 0 whenever Σ(t) is regular. Moreover, equality
holds if and only if {u > f(t)} is isometric to R

3 outside a round ball.
(iii) (Global monotonicity) If (M, g) is asymptotically flat, then

B(t2) ≥ B(t1) and A(t2) ≥ A(t1).

Moreover, if B(t1) = B(t2) or A(t1) = A(t2), then {u > f(t1)} is
isometric to R

3 outside a round ball.
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Theorem 1.2, together with the asymptotically behaviors of A(t) and B(t),
i.e. Proposition 4.1, will imply Theorem 1.1.

Next, we want to give a unified treatment on the monotone properties
regarding A(t), B(t), D(t), F (t) and G(τ) at least if no critical points are
present. First we summarise the results we want to consider in the following
table:

type p = 2 p ∈ (1, 2) IMCF (p = 1)
F local Agostiani Agostiani

–Mazzieri –Mantegazza
–Oronzio [2] –Mazzieri-Oronzio [3] Geroch [18]

D local Miao Theorem 1.2 Jang–Wald [25]
A,B non-local [34] in this work Huisken–Ilmanen [23]
G non-local Munteanu Chan–Chu

–Wang [36] –Lee–Tsang [11]

Here non-locality in this table means either one made use of the asymptot-
ically flatness of the manifold, or one used the asymptotically behavior near
the pole of the Green’s function. The above monotone properties are con-
sequences of a single formula described in the following theorem, assuming
there is no critical point.

Theorem 1.3. Let (M, g) be a compact, 3-dimensional Riemannian manifold
with boundary ∂M . Suppose ∂M consists of two connected components ∂+M ,
∂−M . Let α ∈ [−1, 1] and β = 0 or 2

1−α if |α| < 1. Suppose u is a solution
with |∇u| > 0 to the boundary value problem

(1.15)

⎧⎪⎨⎪⎩
Δu = α∇2u(ν, ν) + 2|∇u|2

u , in M
u = c+, at ∂M+
u = c−, at ∂M−

for two positive constants c− < c+. Here ∇2u denotes the Hessian of u and
ν = ∇u

|∇u| . Then the following equality holds:

1
uβ

(
Rα(u) − St|∇u|

)
(1.16)

= 2div
[ 1
uβ

(
∇|∇u| − Δu

∇u

|∇u| + 2β − 1
β − 1

|∇u|∇u

u

)]
=: div

(
u−βX

)
,
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where St = 2K denotes the scalar curvature of the level sets Σt = {u = t},
where K is the Gaussian curvature, and

Rα(u) =S|∇u| + |∇u|−1|T |2 − α2|∇u|−1u2
νν

in which S is the scalar curvature of M , uνν = ∇2u(ν, ν), and

T = ∇2u + u−1(∇u⊗∇u− |∇u|2g
)
.

As a result, upon integration,

1
2

∫
M

1
uβ

Rα(u)dV

= 2πχ
∫ c+

c−

1
tβ
dt

+
(∫

∂+M
−

∫
∂−M

) 1
ub

(
−H|∇u| + 2β − 1

β − 1
|∇u|2
u

)
dA,

(1.17)

where H = Hu is the mean curvature of the boundary with respect to ∇u/|∇u|
and χ is the Euler characteristic of ∂−M and hence of every level set of u.

A motivation to (1.15) is that it gives the equation |x| satisfies in the
setting of R3, where |x|−a is a p-harmonic function and 2 log |x| is a solution
to the inverse mean curvature flow. See the discussions following Corollary 2.1.

We want to add that all monotonic properties of p-harmonic functions
mentioned above have a model space of the exterior of a round ball in R

3.
In [37], Oronzio obtains monotonicity formulae modeled on Schwarzschild
manifolds.

The organization of the paper is as follows. In Section 2, we will prove
Theorem 1.3 and study the relation between A,B, D, F,G. In Section 3, we
will prove Theorem 1.2, and in Section 4, we will study the asymptotical
behavior of A,B and prove Theorem 1.1. We will give applications in Section 5
and list some facts in the appendices.

We would like to acknowledge that some results in the paper were known
to Man-Chun Lee and Tin-Yau Tsang. We thank for their communications
[28]. We are also grateful for the anonymous referees whose comments im-
proved the paper.

2. Relating A, B, D, F and G

We start this section with a proof of Theorem 1.3.
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Proof of Theorem 1.3. Since |∇u| > 0, we have c− < u < c+ in the interior
of M . The following computations are from [10, (4.8)] and [39]. By Bochner’s
identity and the Gauss equation,

2Δ|∇u| = 2|∇u|−1(|∇u|2 Ric(ν, ν) + |∇2u|2 + 〈∇Δu,∇u〉 − |∇|∇u||2
)

= 2|∇u|−1(|∇2u|2 + 〈∇Δu,∇u〉 − |∇|∇u||2
)

+ |∇u|
(
S − St + H2 − |A|2

)
where H is the mean curvature and A is the second fundamental form of the
level sets Σt. By Lemma A.1:

|∇2u|2 − 2|∇|∇u||2 = |∇u|2|A|2 − u2
νν ,

and
H = |∇u|−1(Δu− uνν).

Replacing H2 − |A|2 with u and its derivatives, one has

2Δ|∇u| = |∇u|−1(|∇2u|2 + 2〈∇Δu,∇u〉
+ (Δu)2 − 2uννΔu

)
+ |∇u|

(
S − St).

As a result, one has the following formula, see [10, (4.8)]:

2div
(
∇|∇u| − Δu

∇u

|∇u|

)
= |∇2u|2

|∇u| +
(
S − St)|∇u| − (Δu)2

|∇u|

= 1
|∇u|

(
|∇2u|2 − α2u2

νν − 4αuνν
|∇u|2
u

− 4|∇u|4
u2

)
+

(
S − St)|∇u|.

Moreover,

div
( |∇u|∇u

u

)
= |∇u|Δu

u
+ 〈∇|∇u|,∇u〉

u
− |∇u|3

u2

= |∇u|
u

(
(α + 1)uνν + |∇u|2

u

)
.

Since
1
2X = ∇|∇u| − Δu

∇u

|∇u| + 2β − 1
β − 1

|∇u|∇u

u
,
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hence

〈
∇u−β , X

〉
= − 2βu−β−1

(
〈∇|∇u|,∇u〉 − |∇u|Δu + 2β − 1

β − 1
|∇u|3
u

)
= − 2βu−β−1

(
(1 − α)|∇u|uνν + 1

β − 1
|∇u|3
u

)
.

Therefore,

uβ div
(
u−βX

)
−

(
S − St)|∇u|

= 1
|∇u|

(
|∇2u|2 − α2u2

νν − 4αuνν
|∇u|2
u

− 4|∇u|4
u2

)
+ 2(2β − 1)

β − 1
|∇u|
u

(
(α + 1)uνν + |∇u|2

u

)
− 2β |∇u|

u

(
(1 − α)uνν + 1

β − 1
|∇u|2
u

)
= 1
|∇u|

[
|∇2u|2 − α2u2

νν + 2(1 − α)uνν
|∇u|2
u

− 2|∇u|4
u2

]
= |∇2u + u−1(∇u⊗∇u− |∇u|2g)|2

|∇u| − α2u2
νν

|∇u| .

Note that T (ν, ν) = uνν because uν = |∇u|. This verifies (1.16).
Upon integration, one has∫

M

1
uβ

Rα(u)dV −
∫ c+

c−

1
tb

(∫
Σt

St

)
dt

=
∫
∂M+

〈
u−βX,

∇u

|∇u|

〉
dA−

∫
∂M−

〈
u−βX,

∇u

|∇u|

〉
dA,

as the unit outward normal to ∂M is ν at ∂+M and −ν at ∂−M . Using the
identity |∇u|Hu = Δu− 〈∇|∇u|,∇u〉

|∇u| , one obtains

〈
X,

∇u

|∇u|

〉
= 2

(〈∇|∇u|,∇u〉
|∇u| − Δu + 2β − 1

β − 1
|∇u|2
u

)
= 2

(
−Hu|∇u| + 2β − 1

β − 1
|∇u|2
u

)

which implies equation (1.17) by the Gauss-Bonnet theorem.
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Since α2 ≤ 1,

Rα(u) = S|∇u| + |∇u|−1(|T |2 − T 2(ν, ν)
)
+

(
1 − α2)|∇u|−1u2

νν ≥ S|∇u|

we have:

Corollary 2.1. Suppose S ≥ 0 in Theorem 1.3, then

2πχ
∫ c+

c−

1
tβ
dt +

(∫
∂+M

−
∫
∂−M

) 1
tβ

(
−Hu|∇u| + 2β − 1

β − 1
|∇u|2
u

)
dA

≥ 0,
(2.1)

where χ is the Euler characteristic of ∂−M . If the equality holds and α < 1,
(M3, g) is isometric to an annulus in R

3 and u = Cρ where ρ is the Euclidean
distance to the center of the annulus.

Remark 2.1. One can classify the rigidity case of α = 1 too. As it is not
needed in the main results, we include it in Appendix B.

Proof. (2.1) follows from Theorem 1.3. If equality holds, then S = 0 and

(2.2) |T |2 − T 2(ν, ν) +
(
1 − |α|2

)
u2
νν = 0.

Let v = u2, t20 = c−, t21 = c2 so that t0 ≤ v ≤ t1, then T = 1
u(∇2v − |∇v|2

2v g).
Since |α| ≤ 1, we have T (X, Y ) = 0, T (X, ν) = 0, for any X, Y tangent to
the level set of v, and

(2.3) ∇2v(X, Y ) = |∇v|A(X, Y ); ∇2v(X, ν) = X(|∇v|),

where ν = ∇v/|∇v|. Hence |∇v| =: η is constant on each level set, and on
{v = t},

A(X, Y ) = |∇v|
2v g(X, Y ), H = |∇v|

v
= η

t
.

Therefore, the level sets are umbilical and

g = η−2(t)dt2 + γt,

where η(t) = |∇v| depends only on t and γt is the induced metric on {v = t}.
Now ∂tγt = 2η−1(t)At = t−1γt where At is the level set Σt = {v = t}. So
γt = tt−1

0 γt0 . It remains to find η.
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If |α| < 1, then uνν = 0. So

η′ = 1
|∇v|vνν = 2u2

ν

|∇v| = |∇v|
2v = 1

2tη.

If α = −1, then

η2

t
= |∇v|H = Δv − vνν = −2vνν + 2η2

t
= −2ηη′ + 2η2

t
.

We still have η′ = 1
2tη. Hence, in either case, t− 1

2 η(t) = t
− 1

2
0 η(t0). So if we let

t = r2, then

g = t0η
−2(t0)t−1dt2 + t−1

0 tγt0

= t−1
0

(
(n− 1)2H−2(t0)dr2 + r2γt0

)
.

To find γt0 , by Lemma A.1 and the facts that |∇v| is constant on the level
set and the level set is umbilical, we have

η(t) ∂
∂t

H = − 1
2

(3
2H

2 − 2K
)
.

On the other hand
∂

∂t
H = ∂

∂t

(
η

t

)
= − η

2t2 .

So K = 1
4H

2 which is a positive constant. Thus, each level set is a sphere,
and

g = 4t−1
0 H−2(t0)

(
dr2 + r2σ0

)
,

where σ0 is the standard unit sphere in R
3. This completes the proof.

Now we illustrate how Corollary 2.1 relates to the previously mentioned
local monotone quantities. It should be emphasized that Corollary 2.1 as-
sumed |∇u| > 0. Such an assumption was not necessary in the corresponding
results below.

(I) Inverse mean curvature flow: Take α = 1 and β = 0. The function
U = 2 log u satisfies ΔU = ∇ννU + |∇U |2. This means the level sets {ΣU} of
U flow by inverse mean curvature flow and |ΣU | = |Σ0|eU . In this case,

0 ≤ 4π
∫ c+

c−
1 dt +

(∫
∂+M

−
∫
∂−M

)(
−2H|∇u| + 2 |∇u|2

u

)
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= 8π(u(Σ+) − u(Σ−) − 1
2u(Σ+)

∫
Σ+

H2 + 1
2u(Σ−)

∫
Σ+

H2

which implies mH(Σ+) ≥ mH(Σ−), where mH is the Hawking energy [19]:

mH(Σ) =

√
|Σ|
16π

(
1 − 1

16π

∫
Σ
H2

)
.

The monotonic property for the Hawking energy under inverse mean curva-
ture flowed was first proved by Georch [18] in case there are no critical points
and by Huisken-Ilmanen [23] in general under some topological assumptions.

(II) p-harmonic functions and the monotonicity formulas: Let 1 > U > 0
be a positive p-harmonic function. In [2, 3] Agostiniani-Mantegazza-Mazzieri-
Oronzio showed the following monotonicity formula: For 0 < t1 < t2

F (t2) ≥ F (t1)

where F (t) is given by (1.11) for U . In case of |∇U | > 0, this can also be de-
rived from Corollary 2.1. In fact, let u = (1−U)− 1

a . Then u satisfies (1.15) for
α = 2−p by Lemma B.1. Moreover, U = 1−ct−a if and only if u = c−

1
a t. More-

over at {U = f(t)}, |∇u| = c−
1
a (ca)−1ta+1|∇U | and ∇u/|∇u| = ∇U/|∇U |.

Hence apply Corollary 2.1 to u with β = 0, we obtain the monotonicity of
F (t) for U .

(III) Harmonic functions and the monotonicity of D(t): Let U be a pos-
itive harmonic function. In [34, Lemma 3.1] the second author showed

D(t1) ≥ D(t2)

for 0 < t1 < t2. As in (II) in case |∇U | > 0, let u = (1 − U)−1, the above
result is also a consequence of Corollary 2.1 with β = 2.
Remark 2.2. Conceptually, it should not come as a surprise that Theorem 1.3
implies various other monotonicity formulas which rely on Gauss-Bonnet’s
theorem. Informally speaking, this requires the Gaussian curvature term ap-
pearing in a divergence identity such as equation (1.16) to be of the form
f(u)|∇u|K for some function f . In order to ensure that the remaining terms
on the left hand side of (1.16) are non-negative, the freedom of choosing f is
drastically restricted.
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Remark 2.3. For β = 0, Theorem 1.3 also generalizes to initial data sets
(M, g, k) satisfying the dominant energy condition. In this case the equation

Δu = α∇2u(ν, ν) + 2|∇u|2
u

needs to be replaced by the system

Δu = − trg(k)|∇u| + α∇2u(η, η) + αk(η, η)|∇u| + 3|∇u||∇v| + 〈∇u,∇v〉
u + v

Δv = trg(k)|∇v| + α∇2v(η, η) − αk(η, η)|∇v| + 3|∇u||∇v| + 〈∇u,∇v〉
u + v

where η = ∇u|∇v|+∇v|∇u|
|∇u|∇v|+∇v|∇u|| . Note that in case k = 0, we can set u = v and the

above system reduces to equation (2.3). For more details see Theorem 1.1.
and Corollary 1.2 in [21]. We believe that for β = 2

1−α there is no analogue
for initial data sets satisfying the dominant energy condition.

Let (M3, g) denote a complete manifold with compact boundary ∂M . As
mentioned in the introduction, A,B, D, F,G are closely related. Let u be a
p-harmonic function satisfying u → 1 at ∞ and u < 1 on M . To facilitate
a comparison with the monotonicity for p-harmonic Green’s function from
[11, 36], we define, for the given u,

(2.4) G(t) = −4a2πct−a +
(
ct−a)−1

∫
{u=f(t)}

|∇u|2.

Note that if (M, g) is complete without boundary and G is the positive p-
harmonic Green’s function with pole at x0 and approaching 0 at infinity, then
choosing u = 1 −G and f(t) = 1 − t−a, we have

G(t) = − 4a2πt−a +
(
t−a)−1

∫
{1−G=1−t−a}

|∇u|2

= G(τ), upon a substitution τ = t−a,

(2.5)

the quantity given in (1.14). We have:

Lemma 2.1. Suppose |∇u| > 0. Then

(i) D(t) = t−a−1[(1 + 2a)B(t) − aA(t)]. F (t) = A(t) − B(t).
(ii) D′(t) = −at−a−1F ′(t). Hence D′ ≤ 0 if and only if F ′ ≥ 0.
(iii) G(t) = −ca2t−a−1B(t).
(iv) G′(t) = ca3t−a−2F (t). Hence G′ ≥ 0 if and only if F ≥ 0.
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(v) B′ ≥ 0 if and only if D ≥ 0.

Proof. (v) follows from the definition of D.
(i) F (t) = A(t) − B(t) follows from their definitions. By (1.12), (1.11),

and Lemma A.2

B′(t)

= 4π − (ca)−2(1 + 2a)t2a
∫
u=f(t)

|∇u|2 − (ca)−1ta
∫
u=f(t)

(2Δu− |∇u|H)

= 4π − (ca)−2(1 + 2a)t2a
∫
u=f(t)

|∇u|2 + (ca)−1ata
∫
u=f(t)

(|∇u|H

= t−1((1 + 2a)B(t) − aA(t)
)
,

because u is p-harmonic so that Δu = 2−p
1−p |∇u|H. By the definition of D

in (1.13), (i) follows. To prove (ii), by (i) we have

D′(t) = − (a + 1)t−1D(t) + t−a((1 + 2a)B′(t) − aA′(t)
)

= − at−aF ′(t).

(iii) follows from (2.4), (1.12) and (1.11). To prove (iv):

G′(t) = ca2(1 + a)t−a−2B(t) − ca2t−1D(t)
= ca2(1 + a)t−a−2B(t) − ca2t−a−2[(1 + 2a)B(t) − aA(t)

]
= ca3t−a−2F (t).

Proposition 2.1. Let (M3, g) be a complete Riemannian manifold with non-
negative scalar curvature, with compact boundary ∂M . For 1 < p ≤ 3, suppose
u is a p-harmonic function on M with u = 0 at ∂M and u → 1 at infinity.
Suppose ∂M is connected and |∇u| > 0. Then the following monotonicity
holds:

(i) (Local monotonicity) D(t1) ≥ D(t2) and F (t2) ≥ F (t1), ∀ t1 < t2.
Moreover, if equality holds, then {f(t1) < u < f(t2)} is isometric to an
annulus in R

3.
(ii) (Global monotonicity) If (M, g) is asymptotically flat, then

• D(t) ≥ 0 and (1 + 2a)B(t) − aA(t) ≥ 0;
• A(t) and B(t) are monotone non-degreasing. If B(t1) = B(t2) or
A(t1) = A(t2), then {u > f(t1)} is isometric to R

3 outside a round
ball.
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Proof. (i) We have seen F ′(t) ≥ 0 in Case (II) after Corollary 2.1. It in turns
shows (i) by Lemma 2.1 (ii). Or we can prove D(t1) ≥ D(t2) directly as
follows. Let w = (1−u

c )− 1
a , where a = (3− p)/(p− 1). Let α = 2− p. Then w

is a positive solution to

Δw = αwνν + 2w−1|∇w|2.

Choose β = 2/(1 − α) = 2/(p − 1), then 1 − β = −a. Given t1 < t2, by
Corollary 2.1,

0 ≤ 4π
∫ t2

t1

1
tβ

+
(∫

w=t2

−
∫
w=t1

) 1
tβ

(
−Hw|∇w| + 2β − 1

β − 1
|∇w|2
w

)
= −4πa−1(t−a

2 − t−a
1

)
+

∫
{u=f(t2)}

(
−Hu(ca)−1|∇u| + (1 + 2a)a−1(ca)−2ta2|∇u|2

)
−

∫
{u=f(t1)}

(
−Hu(ca)−1|∇u| + (1 + 2a)a−1(ca)−2ta1|∇u|2

)
= a−1(D(t1) −D(t2)

)
,

which proves (i). (The equality case follows from Corollary 2.1.) Note that,
by Lemma 2.1 (ii), this implies F ′(t) ≥ 0.

(ii) Since (M, g) is asymptotically flat, the asymptotical behavior of u
in (1.8) implies, as t → ∞,∫

u=f(t)
|∇u|2 = O

(
t−2a), ∫

u=f(t)
H|∇u| = O

(
t−a).

Therefore, D(t) = O(t−a) by (1.13). In particular, D(t) → 0 as t → ∞. By
(i), we have D(t) ≥ 0. As a result, by Lemma 2.1 (i), (1 + 2a)B(t) ≥ A(t).
Also recall D(t) = t−aB′(t) from (1.13). Hence, D(t) ≥ 0 shows B′(t) ≥ 0,
i.e. B(t) is monotone non-decreasing. Since A(t) = B(t) + F (t), we see A(t)
is monotone non-decreasing as well.

We may also obtain global monotone property for the Green’s function
using Lemma 2.1. Suppose G > 0 is the p-harmonic Green’s function with
pole at x0 and G → 0 at infinity. Let u = 1 − G on (M, g). The behavior of
G(x) at the pole (see [26, 33]) implies F (t) → 0 as t → 0+. By Case (II) or
Proposition 2.1 (i), one knows F ′(t) ≥ 0. Therefore, F (t) ≥ 0. By Lemma 2.1
(iv), G′(t) ≥ 0, which is equivalent to G′(τ) ≤ 0. This corresponds to the
monotone property of G in [36, 11]. Hence we have:
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Proposition 2.2 (Global monotonicity). Let (M3, g) be a complete Rieman-
nian manifold. Suppose M supports a positive p-harmonic Green’s function
G with pole at x0 and G → 0 at infinity. Assume that |∇G| > 0 on M \ {x0}.
Then G′(τ) ≤ 0, where G(τ) is as in (1.14).

Remark 2.4. It is worthy of writing B(t), A(t) directly via the level set {u = s}
and the parameter s. Let t = ( c

1−s)
1
a , B(t) and A(t) take the form of

(2.6) B(s) =
(

c

1 − s

) 1
a
[
4π − 1

a2(1 − s)2
∫
u=s

|∇u|2
]

and

(2.7) A(s) =
(

c

1 − s

) 1
a
[
8π − 1

a(1 − s)

∫
u=s

|∇u|H
]
.

If p = 2, then a = 1, these were given in [34]. A feature of such expressions is
that they pinpoint a fact

u(s) := u− s

1 − s

is the p-harmonic function, vanishing on {u = s} and approaching 1 at ∞.
This indicates B(·) and A(·) are suitable scalings of

4π − a−2
∫
∂Ms

|∇u(s)|2 and 8π − a−1
∫
∂Ms

|∇u(s)|H

on Ms = {u ≥ s}.

3. Monotonicity of A(t),B(t), D(t) via regularization

We will prove Theorem 1.2 stated in the introduction. First, we point out that
it suffices to establish the monotonicity of the quantities involved. Once the
monotonicity is shown, the equality case will follow by applying Corollary 2.1,
starting from the boundary ∂M = {u = 0} which is a regular level set of u.

We recall the setting of Theorem 1.2: (M3, g) is a complete three manifold
with smooth compact boundary ∂M such that

(i) ∂M is connected;
(ii) H2(M,∂M) = {0};
(iii) M has one end which is asymptotically flat; and
(iv) the scalar curvature S of M is nonnegative.
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Let u be the solution of the p-harmonic equation so that u = 0 on ∂M and
u → 1 near infinity. As before, we denote f(t) = f0(t) in the theorem by

f0(t) = 1 − ct−a,

where a = (3 − p)/(p − 1), c = a−1(Cp/(4π))
1

p−1 , and Cp is the p-capacity
of ∂M in M . Given any T > 0 with 0 < f0(T ) < 1, the level set {u =
f0(T )} is compact and will not intersect ∂M by strong maximum principle [20,
Theorem 6.5]. Assume this level set is a regular level set of u. We approximate
u by smooth functions. Following [3], for any ε > 0, let v = vε be the solution
of

(3.1)

⎧⎪⎨⎪⎩
div(|∇v|p−2

ε ∇v) = 0, in M(T );
v = 0 on ∂M ;
v = f0(T ) on Σ(T );

where M(T ) = {0 < u < f0(T )}, Σ(t) = {u = f0(t)}, and for any η > 0,

(3.2) |∇v|η =
√
|∇v|2 + η2.

Then vε is smooth. As ε → 0, vε → u in C1,β norm for some β > 0, and
vε → u in C∞ norm near the points where |∇u| > 0 by [14, 15]. Define

(3.3)
{
Cp,ε =

∫
∂M |∇v|p−2

ε |∇v|;
cε = a−1(Cp,ε

4π )
1

p−1 .

Note that as ε → 0, cε → c, Cp,ε → Cp. For 0 < t < T , let fε(t) = 1 − cεt
−a

and let Σ(ε, t) = {v = vε = fε(t)}, which will be in the interior of M(T ),
provided ε is small enough. Observe that Cp,ε =

∫
Σ(ε,t) |∇v|p−2

ε |∇v| whenever
Σ(ε, t) is regular. If Σ(ε, t) is regular, define corresponding Dε(t) and Bε(t)
as follows:

Dε(t) =4πt−a − (cεa)−2(1 + 2a)ta
∫

Σ(ε,t)
|∇v|2 + c−1

ε

∫
Σ(ε,t)

|∇v|H,(3.4)

Bε(t) = 4πt− (cεa)−2t2a+1
∫

Σ(ε,t)
|∇vε|2.(3.5)

Here H = Hv is the mean curvature with respect to ν = ∇v/|∇v|. The
corresponding f,B, D for u will also be denoted by f0,B0, D0 etc. By the
proof of [3, Lemma 1.3], the following fact is true:
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Lemma 3.1. Suppose {u = f0(t)} is regular with 0 < t < T which implies
that 0 < f0(t) < f0(T ). Then for ε > 0 small enough, Σ(ε, t) = {vε = fε(t)}
is also regular. Moreover,

lim
ε→0

Dε(t) = D0(t); lim
ε→0

Bε(t) = B0(t).

To simplify notation, in what follows, whenever there is no confusion, we
will suppress the index ε. For example, we denote cε by c and the original
c, which is the limit of cε as ε → 0, will be denoted by c0 instead. Direct
computations give:

Lemma 3.2. Suppose Σ(ε, t) is regular, then at this level set:⎧⎨⎩Δv = (2 − p) |∇v|2
|∇v|2ε

vνν

H = 1
|∇v|(Δv − vνν) = − 1

|∇v|
(p−1)|∇v|2+ε2

|∇v|2ε
vνν

where

vνν = ∇2v(ν, ν) = 〈∇|∇v|,∇v〉
|∇v| = 〈∇|∇v|, ν〉

and ν = ∇v/|∇v|.

Hence if Σ(ε, t) is regular, then

Dε(t) = c−1
∫

Σ(ε,t)

(
4πC−1

p,ε |∇v|p−2
ε |∇v|(1 − v)(3.6)

− a−2(1 + 2a)(1 − v)−1|∇v|2 + Δv − vνν
)
.

Let

(3.7) X = Xε = W − U + V

where ⎧⎪⎨⎪⎩
W = 4πC−1

p,ε (1 − v)|∇v|p−2
ε ∇v;

U = a−2(1 + 2a)(1 − v)−1|∇v|∇v;
V = Δv

|∇v|∇v −∇|∇v|.

Since U or V may not be defined or smooth if |∇v| = 0, we further regularize
these functions as follows. For, δ > 0, let{

Uδ = a−2(1 + 2a)(1 − v)−1|∇v|δ∇v,

Vδ = Δv
|∇v|δ∇v −∇|∇v|δ.



Monotone quantities of p-harmonic functions 617

Then W,Uδ, Vδ are smooth. Suppose 0 < t1 < t2 < T so that Σ(ε, t1),Σ(, ε, t2)
are regular. One can see that

(3.8) Dε(t2) −Dε(t1) = lim
δ→0

∫
{fε(t1)<v<fε(t2)}

div(W − Uδ + Vδ).

Lemma 3.3.

(i)

divW = −4πC−1
p,ε |∇v|p−2

ε |∇v|2.

(ii) At |∇v| = 0,

divUδ = δa−2(1 + 2a)(1 − v)−1Δv.

At |∇v| > 0,

divUδ = a−2(1 + 2a)
(

(2 − p) |∇v|δ|∇v|2
|∇v|2ε

+ |∇v|2
|∇v|δ

)
(1 − v)−1vνν

+ a−2(1 + 2a)(1 − v)−2|∇v|2|∇v|δ.

(iii) At |∇v| = 0, divVδ ≤ 0. At |∇v| > 0,

divVδ ≤
((2 − p)2|∇v|4

|∇v|4ε|∇v|δ
− (2 − p)|∇v|4

|∇v|2ε|∇v|3δ

)
v2
νν

− |∇v|−1
δ |∇v|2

(
|A|2 + Ric(ν, ν)

)
,

where A the second fundamental form of the level surface with respect
to the unit normal ν.

Proof. (i) Since v satisfies (3.1)

divW = div
(
(1 − v)|∇v|p−2

ε ∇v
)

= 4πC−1
p,ε

[
(1 − v)div

(
|∇v|p−2

ε ∇v
)
−

〈
∇v, |∇v|p−2

ε ∇v
〉]

= −4πC−1
p,ε |∇v|p−2

ε |∇v|2.
(3.9)

(ii) At |∇v| = 0, it is easy to see that

divUδ = δa−2(1 + 2a)(1 − v)−1Δv.
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At |∇v| > 0, by Lemma 3.2, we have

divUδ =a−2(1 + 2a)
(

(1 − v)−1|∇v|δΔv + (1 − v)−2|∇v|2|∇v|δ

+ (1 − v)−1 |∇v|
|∇v|δ

〈∇|∇v|,∇v〉
)

=a−2(1 + 2a)
(

(1 − v)−1|∇v|δΔv + (1 − v)−2|∇v|2|∇v|δ

+ (1 − v)−1 |∇v|2
|∇v|δ

∇2v(ν, ν)
)

=a−2(1 + 2a)
(

(2 − p)(1 − v)−1 |∇v|δ|∇v|2
|∇v|2ε

vνν

+ (1 − v)−2|∇v|2|∇v|δ + (1 − v)−1 |∇v|2
|∇v|δ

vνν

)
.

(iii) To compute divVδ, by Lemma 3.2 we have

div
( Δv

|∇v|δ
∇v

)
=(Δv)2

|∇v|δ
+ 〈∇Δv,∇v〉

|∇v|δ
− 1

2
Δv

|∇v|3δ
·
〈
∇
(
|∇v|2

)
,∇v

〉
=(2 − p)2 |∇v|4

|∇v|4ε|∇v|δ
v2
νν − (2 − p) |∇v|4

|∇v|2ε|∇v|3δ
v2
νν

+ 〈∇Δv,∇v〉
|∇v|δ

,

which is zero at the points where |∇v| = 0 because Δv will be zero at this
point by (3.1).

div(∇|∇v|δ) =Δ|∇v|δ

=1
2 |∇v|−1

δ

(
Δ|∇v|2δ − 2|∇|∇v|δ|2

)
=|∇v|−1

δ

(
|∇2v|2 + Ric(∇v,∇v) + 〈∇v,∇Δv〉 − |∇|∇v|δ|2

)
=|∇v|−1

δ

(
|∇2v|2 + Ric(∇v,∇v)

)
+ 〈∇Δv,∇v〉

|∇v|δ
− 1

4
1

|∇v|3δ
|∇

(
|∇v|2

)
|2,

which is nonnegative at the points |∇v| = 0 because Δ|∇v|δ ≥ 0.
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Hence if |∇v| = 0, then divVδ ≤ 0. If |∇v| > 0, then

divVδ =(2 − p)2 |∇v|4
|∇v|4ε|∇v|δ

v2
νν − (2 − p) |∇v|4

|∇v|2ε|∇v|3δ
v2
νν + |∇v|2

|∇v|3δ
|∇|∇v||2

− |∇v|−1
δ

(
|∇2v|2 + Ric(∇v,∇v)

)
.

For |∇v| > 0, |∇|∇v||2 = (|∇̃|∇v||2 + v2
νν), where ∇̃ is the derivative on the

level set. Hence if |∇v| > 0, then

divVδ

=(2 − p)2 |∇v|4
|∇v|4ε|∇v|δ

v2
νν − (2 − p) |∇v|4

|∇v|2ε|∇v|3δ
v2
νν

+ |∇v|2
|∇v|3δ

(
|∇̃|∇v||2 + v2

νν

)
− |∇v|−1

δ

(
|∇v|2|A|2 + 2|∇̃|∇v||2 + v2

νν + |∇v|2 Ric(ν, ν)
)

≤
(

(2 − p)2 |∇v|4
|∇v|4ε|∇v|δ

− (2 − p) |∇v|4
|∇v|2ε|∇v|3δ

)
v2
νν

− |∇v|−1
δ |∇v|2

(
|A|2 + Ric(ν, ν)

)
.

(3.10)

This completes the proof of the lemma.

Lemma 3.4. With the assumptions and notation as in Lemma 3.3, assume
1 < p ≤ 2, and 0 < t1 < t2 < T so that {u = f0(t1)}, {u = f0(t2)} are
regular. We have the following:

(i) For ε > 0 small enough, so that Σ(ε, t1), Σ(ε, t2) are regular, we have

Dε(t2) −Dε(t1) ≤
∫
{fε(t1)<v<fε(t2)}

E(ε)

where E(ε) ≥ 0 is a continuous function which is uniformly bounded
independent of ε and E(ε) → 0 everywhere as ε → 0 in M(T ).

(ii) There is a constant C independent of ε such that∫
{fε(t1)<v<fε(t2),|∇v|>0}

|Δv|
|∇v| ≤ Cε−1.

Proof. (i) We remark that since v = vε converges in C1,β(M(T )) to u, Σ(ε, t1),
Σ(ε, t2) are regular surfaces in the interior of M(T ), provided ε > 0 is small
enough.
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In the following, we denote fε by f for simplicity. By (3.8),

(3.11) Dε(t2) −Dε(t1) = lim
δ→0

∫
{f(t1)<v<f(t2)}

div(W − Uδ + Vδ).

To prove (i), we need to estimate the above limit. By Lemma 3.3, for any
δ > 0,∫

{f(t1)<v<f(t2)}
div(W − Uδ + Vδ)

≤
∫
{f(t1)<v<f(t2)}

divW + Cδ

−
∫
{f(t1)<v<f(t2)}

1{|∇v|>0} divUδ +
∫
{f(t1)<v<f(t2)}

1{|∇v|>0}(Iδ − IIδ),

for some C > 0 independent of δ, where 1Y is the characteristic function of
the set Y , and⎧⎨⎩Iδ = ((2 − p)2 |∇v|4

|∇v|4ε|∇v|δ − (2 − p) |∇v|4
|∇v|2ε|∇v|3

δ
)v2

νν − |∇v|−1
δ |∇v|2 Ric(ν, ν)

IIδ = |∇v|−1
δ |∇v|2|A|2.

Since v is smooth, vνν is uniformly bounded on 1{|∇v|>0} and so
1{|∇v|>0} divUδ is uniformly bounded. Similarly, 1{|∇v|>0}Iδ is uniformly
bounded because Ricci curvature is bounded. Also IIδ is nonnegative and is
nondecreasing as δ → 0, by dominated and monotone convergence theorems,
we have:

lim
δ→0

∫
f(t1)<v<f(t2)

div(W − Uδ + Vδ)

≤
∫
{f(t1)<v<f(t2)}

divW

+
∫
{f(t1)<v<f(t2)}

1{|∇v|>0}(−divU + I0 − II0)

=:III.

(3.12)

Here in {|∇v| > 0},
I0 = lim

δ→0
Iδ; II0 = lim

δ→0
IIδ.

In particular, since the LHS in (3.11) is finite, the integrals of divW and
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1{|∇v|>0}(−divU + I0) are finite, we have

(3.13)
∫
{f(t1)<v<f(t2)}

1{|∇v|>0}|∇v||A|2 < ∞.

Let
τ1 = f(t1), τ2 = f(t2),Στ = {v = τ}.

By the co-area formula and the Morse-Sard’s theorem, which implies the set
of critical values of v is of measure zero in [τ1, τ2], for any L1 function h in
{τ1 < v < τ2} ∫

{τ1<v<τ2}
|∇v|h =

∫
{τ1<τ<τ2,τ∈R}

(∫
Στ

h

)
dτ

where R is the set of regular values of v. We now apply this to different terms
in III.∫

{f(t1)<v<f(t2)}
divW =

∫
{f(t1)<v<f(t2)}

(
−4πC−1

p,ε |∇v|2|∇v|p−2
ε

)
=

∫
{τ1<τ<τ2,τ∈R}

∫
Στ

(
−4πC−1

p,ε |∇v||∇v|p−2
ε

)
dτ

= −
∫
{τ1<τ<τ2,τ∈R}

4πdτ

On the other hand, in the set {|∇v| > 0},

|∇v|−1 divU = a−2(1+2a)
[(

(2−p) |∇v|2
|∇v|2ε

+1
)

(1−v)−1vνν +(1−v)−2|∇v|2
]
.

So 1{|∇v|>0}|∇v|−1 divU is uniformly bounded because v is smooth and v ≤
f(t2) ≤ f(T ) < 1. Hence∫

{f(t1)<v<f(t2)}
1{|∇v|>0} divU =

∫
{τ1<τ<τ2,τ∈R}

∫
Στ

1{|∇v|>0}|∇v|−1 divU.

Similarly, we also have∫
{f(t1)<v<f(t2)}

1{|∇v|>0}I0 =
∫
{τ1<τ<τ2,τ∈R}

∫
Στ

1{|∇v|>0}|∇v|−1I0.

Let φ =: |A|21{|∇v|>0}. Since |∇v| is continuous, |A|2 is smooth in {|∇v| > 0},
φ is measurable. Since φ ≥ 0, one can apply co-area formula to φk = min{φ, k}
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for k ∈ N so that∫
{f(t1)<v<f(t2)}

|∇v|φk =
∫
{τ1<τ<τ2,τ∈R}

∫
Στ

φkdτ.

Since φk ↑ φ, one can apply monotone convergence theorem to both sides to
conclude that ∫

{f(t1)<v<f(t2)}
|∇v|φ =

∫
{τ1<τ<τ2,τ∈R}

∫
Στ

φdτ.

However, by (3.13), |∇v|φ = |∇v||A|21{|∇v|>0} = II0 is integrable, we have∫
{f(t1)<v<f(t2)}

1{|∇v|>0}II0 =
∫
{τ1<τ<τ2,τ∈R}

∫
Στ

1{|∇v|>0}|∇v|−1II0

which is finite.
Hence

III =
∫
{τ1<τ<τ2,τ∈R}

[
−4π +

∫
Στ

(
−|∇v|−1 divU + |∇v|−1(I0 − II0)

)]
dτ.

(3.14)

Here we have used the fact that 1{|∇v|>0} = 1 on Στ for τ ∈ R. Recall that,
for 1 < p ≤ 2, if |∇v| > 0, then

vνν = − |∇v| |∇v|2ε
(p− 1)|∇v|2 + ε2H.

By (3), let λ > 0 be a positive function to be determined later, if |∇v| > 0,
we have

|∇v|−1 divU(3.15)

=a−2(1 + 2a)
[
−
(

(2 − p) |∇v|2
|∇v|2ε

+ 1
)

(1 − v)−1 |∇v| |∇v|2ε
(p− 1)|∇v|2 + ε2H

+ (1 − v)−2|∇v|2
]

=a−2(1 + 2a)
[
−
((3 − p)|∇v|2 + ε2

(p− 1)|∇v|2 + ε2

)
(1 − v)−1|∇v|H
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+ (1 − v)−2|∇v|2
]

≥− 1
2(1 + 2a)λH2

+ a−2(1 + 2a)
[
1 − 1

2λ
−1

( |∇v|2 + (3 − p)−1ε2

|∇v|2 + (p− 1)−1ε2

)2]
(1 − v)−2|∇v|2

= − 1
2(1 + 2a)λH2 + a−2(1 + 2a)(1 −Q)(1 − v)−2|∇v|2

where

(3.16) Q =: 1
2λ

−1
( |∇v|2 + (3 − p)−1ε2

|∇v|2 + (p− 1)−1ε2

)2
.

At the points where |∇v| > 0, for 1 < p ≤ 2, we have

|∇v|−1(I0 − II0)

=|∇v|−2
[
(2 − p)2 |∇v|4

|∇v|4ε
− (2 − p) |∇v|2

|∇v|2ε

]
v2
νν −

(
|A|2 + Ric(ν, ν)

)
≤(2 − p)(1 − p) |∇v|2

|∇v|4ε
v2
νν −

3
4H

2 + K

= −
[ (2 − p)(p− 1)|∇v|4
((p− 1)|∇v|2 + ε2)2 + 3

4

]
H2 + K.

=: − PH2 + K,

(3.17)

where K is the Gaussian curvature of the level set and P > 0 is the function
inside the square bracket. Here we have used the facts that S ≥ 0,

Ric(ν, ν) = 1
2
(
S − 2K + H2 − |A|2

)
≥ −K + 1

2
(
H2 − |A|2

)
and that

|A|2 = |Å|2 + 1
2H

2 ≥ 1
2H

2,

where Å is the traceless part of A.
Since H2(M,∂M) = {0} and since ∂M is connected, the level-set Στ is

also connected according to [3, pages 9-10]. Consequently, we have
∫
Στ

K ≤ 4π
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for all regular τ . Hence for τ ∈ R, if we choose λ = 2(1 + 2a)−1P , we have

−4π+
∫

Στ

(−|∇v|−1 divU + |∇v|−1(I0 − II0)

≤
∫

Στ

(1
2λ(1 + 2a) − P

)
H2 − a−2(1 + 2a)(1 − v)−2|∇v|2(1 −Q)

= −
∫

Στ

a−2(1 + 2a)(1 − v)−2|∇v|2(1 −Q).

Combining with (3.14), using co-area formula and Moser-Sard’s theorem
again (Q is uniformly bounded, see below):

III ≤−
∫
{τ1<v<τ2,τ∈R}

∫
Στ

a−2(1 + 2a)(1 − v)−2|∇v|2(1 −Q)

= −
∫
{f(t1)<v<f(t2)}

a−2(1 + 2a)(1 − v)−2|∇v|3(1 −Q),
(3.18)

Since P ≥ 3
4 and 1 < p ≤ 2 so that

(
1 + 3 − p

p− 1

)−1
≤ |∇v|2 + (3 − p)−1ε2

|∇v|2 + (p− 1)−1ε2 ≤ 1,

from the definition of Q in (3.16), we conclude that Q is uniformly bounded
independent of ε. Since v ≤ f0(T ) < 1, v → u in C1,β norm for some β > 0,
we have |∇v| → |∇u| as ε → 0. At the points where |∇u| = 0, then one
conclude that

(1 − v)−2|∇v|3(1 −Q) → 0

as ε → 0. At the points where |∇u| > 0, as ε → 0 we have

Q = 1
4(1 + 2a)

[ (2 − p)(p− 1)|∇v|4
((p− 1)|∇v|2 + ε2)2 + 3

4

]−1( |∇v|2 + (3 − p)−1ε2

|∇v|2 + (p− 1)−1ε2

)2
→ 1.

Hence we also have:

(1 − v)−2|∇v|3(1 −Q) → 0.

From this, the fact that v < f(T ) < 1, v converges in C1,β to u, (3.8), (3.12)
and (3.18) we conclude that (i) is true with

E(ε) = a−2(1 + 2a)(1 − v)−2|∇v|3|1 −Q|.
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To prove (ii), if p = 2, then Δv = 0 and the result is obvious. Observe
that as ε → 0,∫

{f(t1)<v<f(t2)}
divVδ =

∫
Σ(t2)

〈
Vδ,

∇v

|∇v|

〉
−

∫
Σ(t1)

〈
Vδ,

∇v

|∇v|

〉
→

∫
Σ(t2)

(Δv − vνν) −
∫

Σ(t1)
(Δv − vνν)

≥ −C1

for some constant C1 > 0 independent of ε, because {u = f0(t1)}, {u = f0(t2)}
are regular and v = vε converge in C∞ norm near these two level sets [3]. For
1 < p < 2, by Lemma 3.3(iii), for |∇v| = 0, divVδ ≤ 0, so∫

{f(t1)<v<f(t2)}
divVδ

≤
∫
{f(t1)<v<f(t2),|∇v|>0}

[((2 − p)2|∇v|4
|∇v|4ε|∇v|δ

− (2 − p)|∇v|4
|∇v|2ε|∇v|3δ

)
v2
νν

− |∇v|−1
δ |∇v|2 Ric(ν, ν)

]
.

On the other hand, ∣∣|∇v|−1
δ |∇v|2 Ric(ν, ν)

∣∣ ≤ C2

by a constant C2 independent of 0 < δ, ε ≤ 1. Hence, letting δ → 0, by the
monotone convergence theorem, we have

−C3 ≤
∫
{f(t1)<v<f(t2),|∇v|>0}

((2 − p)2|∇v|3
|∇v|4ε

− (2 − p)|∇v|
|∇v|2ε

)
v2
νν

≤ (2 − p)(1 − p)
∫
{f(t1)<v<f(t2),|∇v|>0}

|∇v|
|∇v|2ε

v2
νν

for some C3 independent of ε. Hence∫
{f(t1)<v<f(t2),|∇v|>0}

|∇v|
|∇v|2ε

v2
νν ≤ (2 − p)−1(p− 1)−1C3,

and ∫
{f(t1)<v<f(t2),|∇v|>0}

|Δv|
|∇v|
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=
∫
{f(t1)<v<f(t2),|∇v|>0}

(2 − p) |∇v|
|∇v|2ε

|vνν |

≤ (2 − p)ε−1
∫
{f(t1)<v<f(t2),|∇v|>0}

|∇v|
|∇v|ε

|vνν |

≤ 1
2(2 − p)ε−1

∫
{f(t1)<v<f(t2),|∇v|>0}

|∇v|
|∇v|ε

( 1
|∇v|ε

v2
νν + |∇v|ε

)
≤ Cε−1

for some constant C > 0 independent of ε. Here we have used the fact that
|∇v|ε ≥ ε, and |∇v| → |∇u|.

We are ready to prove Theorem 1.2. Before we prove the theorem, let
us fix some notation. Let u be as in the theorem, then |∇u| > 0 outside a
compact set by the asymptotic behavior (1.8) of u. Let 0 < t1 < t2 be such
that such that Σ(t1) = {u = f(t1)},Σ(t2) = {u = f(t2)} are regular. Recall
that f(t) = 1− ct−a, a = (3− p)/(p− 1), 1 < p ≤ 2. Fix T > t2 so that Σ(T )
is regular. For any ε > 0, let vε be the solution of (3.1). Let fε(t) = 1− cεt

−a

and cε be as in (3.3). Let Dε(t) be as in (3.4) whenever Σ(ε, t) = {vε = fε(t)}
is regular. By [3], for ε > 0 small enough, Σ(ε, t1),Σ(ε, t2) are regular.

Proof of Theorem 1.2. (i) With the above setting, by Lemma 3.4, for ε small
enough, we have

Dε(t2) −Dε(t1) ≤
∫
{fε(t1)<v<fε(t2)}

E(ε).

where E(ε) ≥ 0 is uniformly bounded independent of ε and converges to
zero everywhere in M(T ) = {0 < u < f(T )}. Let ε → 0, we conclude by
Lemma 3.1

D(t2) −D(t1) ≤ 0.

(ii) If M is AF, then Σ(t2) is regular for t2 >> 1 and D(t2) → 0 as
t2 → ∞ by the proof of Proposition 2.1. By (i) we have D(t) ≥ 0 whenever
Σ(t) is regular. Since

D = (2a + 1)B − aA,

we conclude that (ii) is true.
To prove (iii), recall

Bε(t) = 4πt− (cεa)−2t2a+1
∫

Σ(ε,t)
|∇vε|2
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whenever Σ(ε, t) is regular.

Bε(t) =c
1
a
ε

∫
Σ(ε,t)

(cεa)1−p(1 − vε)−
1
a |∇vε|p−2

ε |∇vε| − a−2(1 − vε)−(2+ 1
a
)|∇vε|2

=c
1
a

∫
Σ(ε,t)

Qε

Try to find Xε so that at Σ(ε, t), 〈Xε,
∇vε
|∇v|ε 〉 = Qε. So let

Xε = (cεa)1−p(1 − vε)−
1
a |∇vε|p−2

ε ∇vε − a−2(1 − vε)−(2+ 1
a
)|∇vε|∇vε(3.19)

=: Zε − Yε.

For any δ > 0, let

Yε,δ = a−2(1 − vε)−(2+ 1
a
)
√
|∇vε|2 + δ2∇vε.

Then Zε−Yδ,ε is a smooth vector field. Since Σ(t1),Σ(t2) are regular, we can
conclude that Σ(ε, t1),Σ(ε, t2) are regular for small ε and so:

(3.20) c
1
a
ε lim

δ→0

∫
{fε(t1)<vε<fε(t2)}

div(Zε − Yδ,ε) = Bε(t2) − Bε(t1).

Now

divZε =(cεa)1−p 1
a
(1 − vε)−( 1

a
+1)|∇vε|p−2

ε |∇vε|2,(3.21)

which is zero if |∇vε| = 0. On the other hand, if |∇vε| = 0, then

divYδ,ε = a−2δ(1 − vε)−(2+ 1
a
)Δvε.

If |∇vε| > 0, then

divYδ,ε =a−2(1 − vε)−(2+ 1
a
)
[√

|∇vε|2 + δ2Δvε + |∇vε|〈∇|∇vε|,∇vε〉√
|∇vε|2 + δ2

+
(

2 + 1
a

)
(1 − vε)−1

√
|∇vε|2 + δ2|∇vε|2

]

Note that for |∇vε| > 0, 〈∇|∇vε|,∇vε〉 = |∇vε|(vε)νν . Since vε is smooth, one
can see that divZε is bounded and divYδ,ε is uniformly bounded independent
of δ. Moreover, divYδ,ε → divYε if |∇vε| > 0 as δ → 0 and divYδ,ε → 0
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if |∇vε| = 0. By Lebesgue’s dominated convergence theorem, let δ → 0 we
have:

c−
1
a
(
Bε(t2) − Bε(t1)

)
=

∫
{fε(t1)<vε<fε(t2)}

1{|∇vε|>0} div(Zε − Yε).

At |∇vε| > 0,

|∇vε|−1 div(Zε − Yε)

=a−1(1 − vε)−( 1
a
+2)

[ 4π
Cp,ε

(1 − vε)|∇vε|p−2
ε |∇vε| − a−1(Δvε + (vε)νν

)
− a−2(1 + 2a)(1 − vε)−1|∇vε|2

]
.

(3.22)

Since 1 − vε ≥ C > 0 for fε(t1) < vε < fε(t1) < 1 for some C > 0, and
vε is smooth, |∇vε|−11{|∇vε|>0} div(Zε − Yε) is in L1. Let τ = fε(t), τ1 =
fε(t1), τ2 = fε(t2) and let R be the set of regular values of vε. By the co-area
formula and the Morse-Sard’s theorem, using (3.4), (3.22) and the fact that
τ = fε(t),

c
− 1

a
ε

(
Bε(t2) − Bε(t1)

)
=

∫
{fε(t1)<vε<fε(t2)}

1{|∇vε|>0}) div(Zε − Yε)1{|∇vε|>0})

=
∫ τ2

τ1

∫
{vε=τ}

|∇vε|−11{|∇vε|>0}) div(Zε − Yε)dτ

=
∫
{τ1<τ<τ2,τ∈R}

∫
{vε=τ}

|∇vε|−1 div(Zε − Yε)dτ

=cεa
−1

∫
{τ1<τ<τ2,τ∈R}

(1 − τ)−( 1
a
+2)

·
[
cεDε

(
t(τ)

)
− a−1(Δvε + (vε)νν

)
− Δvε − (vε)νν

]
dτ.

On the other hand,

a−1(Δvε + (vε)νν
)
+ Δvε − (vε)νν

=
[
p− 1
3 − p

(3 − p)|∇vε|2 + ε2

|∇vε|2ε
+ (1 − p)|∇v|2 − ε2

|∇vε|2ε

]
(vε)νν

=2(p− 2)ε2

3 − p

Δvε
|∇vε|2

.
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Hence

c−
1
a
(
Bε(t2) − Bε(t1)

)
=

∫
τ1<τ<τ2,τ∈R

a−1cε(1 − τ)−2− 1
aDε(τ)dτ

+
∫
{τ1<τ<τ2,τ∈R}

a−1(1 − τ)−2− 1
a

∫
Σε,τ

2(p− 2)ε2

3 − p

Δvε
|∇vε|2

dτ

=
∫
{τ1<τ<τ2,τ∈R}

a−1cε(1 − τ)−2− 1
aDε(τ)dτ

+
∫
{τ1<vε<τ2}

a−11{|∇vε|>0}(1 − vε)−2− 1
a
2(p− 2)ε2

3 − p

Δvε
|∇vε|

dτ

=(1) + (2).

By Lemma 3.4(ii),
(2) ≥ −C1ε

for some constant C1 > 0 independent of ε. By Lemma 3.4(i),

(1) ≥ C2Dε(t2) + o(1)

as ε → 0 for some constant C2 > 0 independent of ε. Let ε → 0, we conclude
that

as ε → 0. Let ε → 0 by Lemma 3.1 we have

c−
1
a
(
B(t2) − B(t1)

)
≥ C2D(t2) ≥ 0,

by part (ii).
In [3], it was shown that F (t2) ≥ F (t1). Since F , A and B are related by

F (t) = A(t) − B(t), the monotonicity of A(t2) ≥ A(t1).
This finishes the proof of Theorem 1.2.

4. Asymptotical behavior

Let (M3, g), A(t) and B(t) be given as in Theorem 1.2. By (1.8), the level set
Σ(t) = {u = f(t)} is regular when t is large. By Theorem 1.2, A(t) and B(t)
are nondecreasing in t for those t with Σ(t) being regular.

If p = 2, it is known, as x → ∞, the harmonic function u has an asymp-
totic expansion

(4.1) u = 1 − c|x|−1 + O2
(
|x|−1−σ),
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see [32, Lemma A.2] for instance. Here c is a positive constant and σ ∈ (1
2 , 1)

is a decay rate of gij in (1.2). With the help of (4.1), it was shown in [34] that
A(t) converges to 12πm and B(t) converges to 4πm, respectively, as t → ∞.
(Note that A and B here differ with those in [34] by a factor of 1

4πC2.)
If p ∈ (1, 3) and p 
= 2, unlike harmonic functions, near infinity we only

have

(4.2) u = 1 − cr−a + o2
(
r−a)

(to the authors’ knowledge). Note that this in particular implies that level-sets
of u are regular near ∞. Nevertheless, a Hawking mass estimate

(4.3) lim sup
t→∞

t

2

(
1 − 1

16π

∫
Σ(t)

H2
)
≤ m

was proved in [3, Lemma 2.5]. (4.3) can be viewed as a Hawking mass estimate
because the ratio between t and the area-radius of {Σ(t)} tends to 1 by (4.2).
From this, it was shown in [3] that

lim sup
t→∞

F (t) ≤ 8πm.

As a corollary of (4.3) proved in [3], one has

Proposition 4.1.

(i) lim supt→∞A(t) ≤ 4π(5 − p)m.
(ii) lim supt→∞ B(t) ≤ 4π(3 − p)m.

Proof. Let c be as in the proof of Theorem 1.2. Namely, for 1 < p < 3,

ca =
(
Cp

4π

) 1
p−1

where a = (3−p)/(p−1) and Cp is the p-capacity of ∂M . Let τ = f(t). Then

t =
(

c

1 − τ

) 1
a

.

Let Στ = {u = τ}. Suppose τ is a regular value of u. By Lemma A.2,

d

dτ

∫
Στ

|∇u|H =
∫

Στ

(
K − 3

4H
2 + H

Δu

|∇u|

)
− E(τ)

≤4π −
∫

Στ

5 − p

4(p− 1)H
2

(4.4)
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where

E(τ) =
∫

Στ

( |∇̃|∇u|2|
|∇u|2 + 1

2
(
S + |Å|2

))
≥ 0.

Given any m̃ > m, by (4.3),

(4.5) −
∫

Στ

H2 ≤ 32πc−
1
a (1 − τ)

1
a m̃− 16π

for τ close to 1. By (4.2),
∫
Στ

|∇u|H → 0 as τ → 1. Integrating (4.4) and
using (4.5), we have

−
∫

Στ

|∇u|H ≤ −8πa(1 − τ)

+ 8π · 5 − p

p− 1c
− 1

a
a

1 + a
(1 − τ)1+ 1

a m̃.
(4.6)

Therefore,

A(t) = A
(
t(τ)

)
=

(
c

1 − τ

) 1
a
(

8π − 1
a(1 − τ)

∫
Στ

|∇u|H
)

≤ 8π5 − p

p− 1
1

1 + a
m̃

= 4π(5 − p)m̃.

As m̃ > m is arbitrary, from this (i) follows.
To show (ii), by (4.6),

d

dτ

∫
Στ

|∇u|2 = −a

∫
u=τ

|∇u|H

≤ a

[
−8πa(1 − τ) + 8π · 5 − p

p− 1c
− 1

a
a

1 + a
(1 − τ)1+ 1

a m̃

]
.

By (4.2) and the fact |Σ(t)| = O(t2), we have
∫
Στ

|∇u|2 → 0 as τ → 1. Hence,

−
∫

Στ

|∇u|2 ≤ −4πa2(1 − τ)2

+ 8π · 5 − p

p− 1c
− 1

a
a3

(1 + a)(1 + 2a)(1 − τ)2+ 1
a m̃.
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This implies

B(t) = B
(
t(τ)

)
=

(
c

1 − τ

) 1
a
(

4π − a−2(1 − τ)−2
∫

Στ

|∇u|2
)

≤ 4π(3 − p)m̃.

From this (ii) follows.

5. Applications

We give applications of results in the previous sections. First recall the def-
initions of some quantities. Consider a complete, orientable, asymptotically
flat 3-manifold (M3, g) with smooth boundary ∂M . For 1 < p ≤ 2, denote

(5.1)

⎧⎪⎨⎪⎩
Cp = p-capacity of ∂M in (M, g);
a = 3−p

p−1

c = a−1(Cp

4π )
1

p−1

By Theorem 1.2 and Proposition 4.1, we have:

Theorem 5.1. Let (M3, g) be a complete, orientable, asymptotically flat 3-
manifold with smooth boundary ∂M . Suppose ∂M is connected and
H2(M,∂M) = 0. For 1 < p ≤ 2, let u be the p-harmonic function on M
with u = 0 on ∂M , and u → 1 at infinity. If g has nonnegative scalar curva-
ture, then

(1 − s)4π +
∫
u=s

|∇u|H − a−2(1 + 2a)(1 − s)−1
∫
u=s

|∇u|2 ≥ 0,

c
1
a (1 − s)−

1
a

(
8π − 1

a(1 − s)

∫
u=s

|∇u|H
)
≤ 4π(5 − p)m,

and

c
1
a (1 − s)−

1
a

(
4π − a−2(1 − s)−2

∫
u=s

|∇u|2
)
≤ 4π(3 − p)m,

whenever s is a regular value of u. In particular, at ∂M ,

4π +
∫
∂M

|∇u|H ≥ a−2(1 + 2a)
∫
∂M

|∇u|2,(5.2)

c
1
a

(
8π − a−1

∫
∂M

|∇u|H
)
≤ 4π(5 − p)m,(5.3)
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and

(5.4) c−
1
a

(
4π − a−2

∫
∂M

|∇u|2
)
≤ 4π(3 − p)m.

Here H is the mean curvature of ∂M with respect to ν = ∇u/|∇u|. Moreover,
if equality holds in any of (5.2)–(5.4), then (M, g) is isometric to R

3 outside
a round ball.

If p = 2, Theorem 5.1 reduces to inequalities in [34, Theorems 3.1, 3.2].
Similar to the p = 2 case, we note (5.2) + (5.4) =⇒ (5.3).

If H = 0, (5.3) reduces to 2c 1
a (5 − p)−1 ≤ m, i.e.

(5.5) 2
5 − p

(3 − p

p− 1

) 1−p
3−p

(
Cp

4π

) 1
3−p

≤ m.

Similar to the applications in [3], by [17, Theorem 1.2] letting p → 1 in (5.5),
one retrieves the Riemannian Penrose inequality in the case that ∂M is a
connected, outer minimizing surface.

Next, we give a corollary of (5.2) and (5.4).

Corollary 5.1. Let (M3, g) be a complete, orientable, asymptotically flat 3-
manifold with smooth boundary ∂M . Suppose ∂M is connected and
H2(M,∂M) = 0. Let W = 1

16π
∫
∂M H2, where H is the mean curvature of

∂M . For 1 < p ≤ 2, if g has nonnegative scalar curvature, then

(5.6) 1 ≤ a
1
a

(4π
Cp

) 1
3−p

(3 − p)m + a2

(1 + 2a)2
(√

W +
√
W + 1 + 2a

a2

)2
.

If equality holds, then (M, g) is isometric to R
3 minus a round ball.

As a result of (5.6), if ∂M is area outer-minimizing in (M, g), then

(5.7)

√
|∂M |
16π

(
1 − 1

16π

∫
∂M

H2
)
≤ m.

Proof. Let u be the p-harmonic function on M with u = 0 on ∂M and u → 1
at infinity. By (5.2) and Hölder’s inequality,

4π +
√

16πW
(∫

∂M
|∇u|2

) 1
2

≥ a−2(1 + 2a)
∫
∂M

|∇u|2.
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This implies

(5.8) a−2
∫
∂M

|∇u|2 ≤ 4π a2

(1 + 2a)2
(√

W +
√
W + 1 + 2a

a2

)2

by elementary reasons. (5.6) follows from (5.4) and (5.8).
Letting p → 1 in (5.6) and using the fact {Cp}1<p≤2 is bounded (which

can be seen by choosing a fixed test function in the variational definition of
Cp), we have

(5.9)

√
lim supp→1 Cp

16π

(
1 − 1

16π

∫
∂M

H2
)
≤ m.

If ∂M is area outer-minimizing in (M, g), it was shown in [17] (also see [1, 3])
that limp→1 Cp = |∂M |. Hence, (5.7) follows from (5.9).

Remark 5.1. For each fixed p, (5.6) implies the 3-dimensional Riemannian
positive mass theorem. For instance, suppose M is topologically R

3 and ap-
ply (5.6) to the complement of a small geodesic ball Br(x) with radius r in
(M, g). Since Cp remains bounded and W → 1, as r → 0, we see m ≥ 0.
Remark 5.2. In [35], Moser gave another proof of the existence of weak inverse
mean curvature flow (IMCF) by constructing p-harmonic functions for p > 1
and letting p → 1. In [41], Xiao used IMCF to obtain estimates on p-capacity
and commented on their limit as p → 1. We do not use IMCF in this work.
Our approach is along the same line as in [3]. We would like to thank Jie Xiao
for bring our attention to Remark 1.2 in the work [41].

Theorem 5.2. Let (M, g) be a complete, orientable, asymptotically flat 3-
manifold with nonnegative scalar curvature, with smooth boundary ∂M . Sup-
pose ∂M is connected and H2(M,∂M) = 0. Let Hmax denote the maximum
of the mean curvature H of ∂M . Suppose Hmax ≥ 0. Then for 1 < p ≤ 2,

2 ≤ a
1
a

(4π
Cp

) 1
3−p

(5 − p)m

+ Hmaxa
1−p
3−p

(
Cp

4π

) 1
3−p

[a(√W +
√
W + 1+2a

a2 )
(1 + 2a)

] 2(2−p)
3−p

.

(5.10)

Consequently, if Ω ⊂ M is a bounded region separating ∂M and ∞, meaning
that ∂Ω has two connected components S0 and S1, where S0 encloses ∂M
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(and is allowed to coincide with ∂M) and S1 encloses S0, then

Hmax

[a(√W +
√
W + 1+2a

a2 )
(1 + 2a)

] 2(2−p)
3−p

≤ 2
( 4π
Cp(Ω)

) 1
3−p

a
p−1
3−p =⇒ m > 0.

Proof. Since p ≤ 2,∫
∂M

|∇u| =
∫
∂M

|∇u|
p−1
3−p |∇u|

2(2−p)
3−p

≤
(∫

∂M
|∇u|p−1

) 1
3−p

(∫
∂M

|∇u|2
) 2−p

3−p

.

Recall the p-capacity of Σ in (M, g) is given by

Cp =
∫
∂M

|∇u|p−1.

Thus,

(5.11)
∫
∂M

|∇u| ≤ C
1

3−p
p

(∫
∂M

|∇u|2
) 2−p

3−p

.

As Hmax ≥ 0, (5.10) follows from (5.3), (5.11) and (5.8).
Suppose Ω ⊂ M is a bounded region separating ∂M and ∞. Let uΩ be

the p-harmonic function with uΩ |S0 = 0 and uΩ |S1 = 1. Let

Cp(Ω) =
∫

Ω
|∇uΩ |p =

∫
S0

|∇uΩ |p−1.

Then Cp < Cp(Ω) by the variational nature of the p-capacity. Hence, (5.10)
holds with Cp replaced by Cp(Ω) and the inequality becomes strict. This
implies the rest claim.

Remark 5.3. One can have a rough estimate of Cp(Ω) in terms of Vol(Ω), the
volume of (Ω, g), and L, the distance between S0 and S1. Let f(x) be a test
function so that f = 0 on the region enclosed by S0 with ∂M , f(x) = L−1d(x)
for x outside S0 with d(x) ≤ L and f(x) = 1 if d(x) ≥ L. Here d(x) denote
the distance from x to S0. Then

Cp(Ω) ≤
∫

Ω
|∇f |p ≤ L−p Vol(Ω).
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Thus, Theorem 5.2 implies the following: If

(5.12) Hmax

[a(√W +
√
W + 1+2a

a2 )
(1 + 2a)

] 2(2−p)
3−p

≤ 2
( 4πLp

Vol(Ω)

) 1
3−p

a
p−1
3−p ,

then m > 0. Note the right side of (5.12) does not depend on ∂M . If p = 2,
(5.12) becomes Hmax ≤ 8πL2Vol(Ω)−1, which is exactly the condition in [34,
Equation (5.2)].

Recently, there are results on positive mass theorems on complete mani-
folds with arbitrary ends, see [30, 29, 42] for instances. We apply Theorem 5.1
to obtain a special case of those results.

Proposition 5.1. Let (M3, g) be a complete noncompact manifold with non-
negative scalar curvature with two ends E, Ẽ such that M is diffeomorphic to
R

3 \ {0} and such that E is AF. Suppose there is a harmonic function u such
that u → 1 at the infinity of E and u → 0 at the infinity of Ẽ and suppose the
Ricci curvature of M is bounded below. Then the ADM mass of E satisfies:

8πm ≥ C2 > 0

where C2 is the capacity of u. That is C2 =
∫
{u=τ} |∇u|, where 0 < τ < 1 is

any constant so that {u = τ} is regular.

Proof. Assume that the origin 0 corresponds to the infinity of Ẽ. Let ρi ↓ 0
and let vi be the harmonic function such that vi = 0 at ∂B0(ρi) and vi → 1
at infinity of E. Here B0(ρ) is the Euclidean ball of radius ρ. Then vi will
converge to u in C∞ norm on compact sets.

Fix 0 < τ < 1 so that τ is a regular value of u. Hence if i is large enough,
then τ is also a regular value of vi. By [34] or Theorem 5.1 with p = 2, we
have

8πm ≥C2(i)
4π (1 − τ)−1

(
4π − (1 − τ)−2

∫
{vi=τ}

|∇vi|2
)
.

Here C2(i) is the 2-capacity of vi. Since vi → u, by the maximum principle,
there is a compact set Q in M such that Bx(1) ⊂ Q for all x ∈ {vi = τ}.
Here Bx(1) is the geodesic ball centered as x with radius 1. Since the Ricci
curvature of M is bounded from below, by the gradient estimate for positive
harmonic functions by Cheng-Yau [12], see also [31, Theorem 6.1], we conclude
that there is a constant β depending only on the lower bound of the Ricci
curvature so that

|∇vi(x)| ≤ βvi(x) = βτ
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for all x ∈ {vi = τ} for all i, if i is large enough. Hence we have:

8πm ≥C2(i)
4π (1 − τ)−1

(
4π − βτ(1 − τ)−2

∫
{vi=τ}

|∇vi|
)

=C2(i)
4π (1 − τ)−1(4π − βC2(i)τ(1 − τ)−2).

Let i → ∞, since C2(i) → C2, we have

8πm ≥C2(i)
4π (1 − τ)−1(4π − βC2τ(1 − τ)−2).

Let τ → 0, the result follows.

Appendix A. Basic computations

Let (Mn, g) be a Riemannian manifold and u is a smooth function on M . Let
Στ = {u = τ}. Assume |∇u| > 0 on Στ . We have the following:

Lemma A.1. Let ν = ∇u
|∇u| . Let H be the mean curvature of Στ with respect

to ν. Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂τ = 1

|∇u|ν = ∇u
|∇u|2 ;

H = 1
|∇u|(Δu− uνν);

∂
∂τ |∇u|2 = 2(Δu−H|∇u|);
∂
∂τ dσ = 1

|∇u|Hdσ;

|∇u| ∂
∂τH = −1

2( n
n−1H

2 − Sτ ) − (|∇u|Δ̃ 1
|∇u| + 1

2(S + |Å|2));

where uνν = ∇2u(ν, ν), ν = ∇u/|∇u|; dσ is the area element of Στ ; S is the
scalar curvature of M ; Sτ is the scalar curvature of Στ ; Å is the traceless
part of the second fundamental form A of Στ with respect to ν; and Δ̃ is the
Laplacian operator of Στ with respect to the induced metric.

Moreover, if X, Y are tangential to Στ , then ∇2u(X, Y ) = |∇u|2A(X, Y ),
∇2u(X, ν) = X(|∇u|).

Lemma A.2. Let Στ be as in the previous lemma. Then

d

dτ

∫
Στ

|∇u|H =
∫

Στ

(1
2

(
Sτ − n

n− 1H
2
)

+ H
Δu

|∇u|

)
− E(τ)
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where

E(τ) =
∫

Στ

( |∇̃|∇u|2|
|∇u|2 + 1

2
(
S + |Å|2

))
.

and
d

dτ

∫
Στ

|∇u|2 =
∫

Στ

(2Δu− |∇u|H).

Appendix B. On equation (1.15)

In n-dimension, (1.15) takes the form:

(B.1) Δu = αuνν + (n− 1)|∇u|2
u

,

where 2 − n ≤ α ≤ 1. We assume u > 0 and |∇u| > 0.

Lemma B.1.

(i) If 2 − n < α < 1, then u is a solution to (B.1) if and only if U = u−a

is a p-harmonic function. Here p = 2 − α so that 1 < p < n and
a = (n− p)/(p− 1).

(ii) If α = 1, then u is a solution to (B.1) if and only if the level sets
of U = (n − 1) log u is a solution to the inverse mean curvature flow.
Namely

div
( ∇U

|∇U |

)
= |∇U |.

(iii) If α = 2 − n, then u is a solution to (B.1) if and only U = log u is
n-harmonic.

Proof. This follows from direct computations. We only prove (i). Let U be
p-harmonic in (Mn, g) with 1 < p < n, so that

ΔU = (2 − p)Uνν ,

with ν = ∇U/|∇U |. Here we assume that U > 0, |∇U | > 0. Let u = U− 1
a

where a = (n− p)/(p− 1). Then

Δu = − 1
a
U−1− 1

a ΔU + 1
a

(
1 + 1

a

)
U−2− 1

a |∇U |2

= − 1
a
U−1− 1

a (2 − p)Uνν + 1
a

(
1 + 1

a

)
U−2− 1

a |∇U |2



Monotone quantities of p-harmonic functions 639

Since ν̃ =: ∇u/|∇u| = −ν,

uνν = −1
a
U−1− 1

aUνν + 1
a

(
1 + 1

a

)
U−2− 1

a |∇U |2.

Hence

Δu− (2 − p)uνν = (p− 1)1
a

(
1 + 1

a

)
U−2− 1

a |∇U |2

= (n− 1)a−2U−2− 1
a |∇U |2

= (n− 1) |∇u|2
u

,

because |∇u|2 = a−2U−2− 2
a |∇U |2. Hence U is p-harmonic. The converse can

be proved similarly.

Lemma B.2. Suppose the equality holds in Corollary 2.1 and α = 1. Then
g can be written as

g = 1
1
2χ−mHρ−1 dρ

2 + ρ2γ0

where

mH =
( |∂−M |

4π

) 1
2
(

2πχ− 1
4

∫
∂−M

H2
)
,

and γ0 is a metric of constant curvature and with area 4π. Moreover u = Cρ
for some constant C.

Proof. In the proof of Corollary 2.1, if α = 1, then β = 0 and by Theorem 1.3,

2πχτ +
∫
{u=τ}

(
|∇u|2 −H|∇u|

)
= 2πχc− +

∫
∂−M

(
|∇u|2 −H|∇u|

)
for all c− ≤ τ ≤ c+. In terms of v, we have

t
1
2

(
2πχ− 1

4

∫
{v=t}

H2
)

= t
1
2
0

(
2πχ− 1

4

∫
{v=t0}

H2
)

=: m

because H = |∇v|
v = η

t . We have

η2(t) = 4t0|Σt0 |−1t
(
2πχ−mt−

1
2
)
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because |Σt| = tt−1
0 |Σt0 |. Hence, if we let t = r2, then

g = |Σt0 |dt2

4t0(2πχ−mt−
1
2 )

+ tt−1
0 γt0

= |Σt0 |dr2

t0(2πχ−mr−1) + r2t−1
0 γt0

= dρ2

1
2χ− m̃ρ−1 + ρ2γ0,

where ρ = ( |Σt0 |
4πt0 ) 1

2 r and m̃ = ( |Σt0 |
4πt0 ) 1

2m. γ0 is a metric of constant curvature
and with area 4π.

Appendix C. Comparing A(t),B(t), F (t) to the Hawking
mass

We compare A(t),B(t), F (t) with the Hawking mass. Let 1 > u > 0 be p-
harmonic with 1 < p < 3 with |∇u| > 0. Recall that

B(t) = 4πt− (ca)−2t2a+1
∫
{u=1−ct−a}

|∇u|2.

Denote c by cp because it depends on p. Let U = (1 − p) log(1 − u). Direct
computations show that U satisfies (see [35]):

div
(
|∇U |p−2∇U

)
= |∇U |p.

In terms of U ,

B(t) = 4πc
1
a
p exp

(
τ

3 − p

)(
1 − 1

4π(3 − p)2
∫
{U=τ}

|∇U |2
)
,

where τ = (1 − p) log(cpt−a). By [35], see also [27], U will converge to the
weak solution U1 of the inverse mean curvature flow as p → 1 in some weak
sense. If the convergence is C2, then one can see that B will converge to a
constant multiple of the Hawking mass of a level set of U1. Similarly, A and
F also converge to constant multiples of the Hawking mass.

On the other hand,

|∇U |p = div
( ∇U

|∇U | |∇U |p−1
)

= |∇U |p−2(|∇U |H + (p− 1)Uνν

)
.
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Here H is the mean curvature of the level surfaces of U . Hence,

(C.1) |∇U |2 = |∇U |H + (p− 1)Uνν .

This gives the following forms of B,A in terms of the mean curvature, which
also indicate that as p → 1, B,A will converge to multiples of the Hawking
mass of the level surface of the inverse mean curvature flow.

Proposition C.1.

B(τ) = 4πc
1
a
p exp

(
τ

3 − p

)[
1 − 1

4π(3 − p)2
∫
{U=τ}

(
H + (p− 1) Uνν

|∇U |

)2]
,

A(τ) = 8πc
1
a
p exp

(
τ

3 − p

)[
1 − 1

8π(3 − p)

∫
{U=τ}

H

(
H + (p− 1) Uνν

|∇U |

)]
.

References

[1] Agostiniani, V., Fogagnolo, M., and Mazzieri, L., Minkowski
inequalities via nonlinear potential theory, Arch. Ration. Mech. Anal.
244 (2022), no. 1, 51–85. MR4393385

[2] Agostiniani, V., Mazzieri, L., and F. Oronzio, A Green’s function
proof of the Positive Mass Theorem, arXiv:2108.08402.

[3] Agostiniani, V., Mantegazza,C., Mazzieri, L., and Oronzio, F.,
Riemannian Penrose inequality via Nonlinear Potential Theory,
arXiv:2205.11642.

[4] Arnowitt, R., Deser, S., and Misner, C. W., Coordinate invariance
and energy expressions in general relativity, Phys. Rev. (2) 122 (1961),
997–1006. MR0127946

[5] Bartnik, R., The mass of an asymptotically flat manifold, Commun.
Pure Appl. Math. 39 (1986), no. 5, 661–693. MR0849427

[6] Benatti, L., Fogagnolo, M., and Mazzieri, L., The asymptotic
behaviour of p-capacitary potentials in Asymptotically Conical manifolds,
arXiv:2207.08607.

[7] Benatti, L., Fogagnolo, M and Mazzieri, L., Minkowski inequality
on complete Riemannian manifolds with nonnegative Ricci curvature,
arXiv:2101.06063v4, 2021.

[8] Bray, H.L., Proof of the Riemannian Penrose inequality using the
positive mass theorem. J. Differ. Geom. 59 (2001), no. 2, 177–
267. MR1908823

https://mathscinet.ams.org/mathscinet-getitem?mr=4393385
http://arxiv.org/abs/2108.08402
http://arxiv.org/abs/2205.11642
https://mathscinet.ams.org/mathscinet-getitem?mr=0127946
https://mathscinet.ams.org/mathscinet-getitem?mr=0849427
http://arxiv.org/abs/2207.08607
http://arxiv.org/abs/2101.06063v4
https://mathscinet.ams.org/mathscinet-getitem?mr=1908823


642 Sven Hirsch et al.

[9] Bray, H. L. and Lee, D. A., On the Riemannian Penrose inequality
in dimensions less than eight, Duke Math. J. 148 (2009), no. 1, 81–
106. MR2515101

[10] Bray, H., Hirsch, S., Kazaras, D., Khuri, M., and Zhang Y.,
Spacetime harmonic functions and application to mass, arXiv:2102.
11421.

[11] Chan, P-Y., Chu, J., Lee, M-C., and Tsang, T-Y., Monotonicity
of the p-Green functions, arXiv:2202.13832.

[12] Cheng, S.-Y. and Yau, S.-T., Differential equations on Riemannian
manifolds and their geometric applications, Commun. Pure Appl. Math.
28 (1975), no. 3, 333–354. MR0385749

[13] Chruściel, P. T., Boundary conditions at spatial infinity from a
Hamiltonian point of view, in: Topological Properties and Global Struc-
ture of Space–Time (Erice, 1985), NATO Adv. Sci. Inst. Ser. B Phys.,
vol. 138, 49–59. Plenum Press, 1986. MR1102938

[14] DiBenedetto, E., C1,α local regularity of weak solutions of degenerate
elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850. MR0709038

[15] DiBenedetto, E., Interior and boundary regularity for a class of free
boundary problems, in: Free Boundary Problems: Theory and Applica-
tions, Vols. I, II (Montecatini, 1981), Res. Notes in Math., vol. 78, 383–
396. Pitman, Boston, Mass.-London, 1983. MR0714925

[16] Fan, X.-Q., Shi, Y., and Tam, L.-F., Large-sphere and small-sphere
limits of the Brown-York mass, Commun. Anal. Geom. 17 (2009), no. 1,
37–72. MR2495833

[17] Fogagnolo, M. and Mazzieri, L., Minimising hulls, p-capacity and
isoperimetric inequality on complete Riemannian manifolds, J. Funct.
Anal. 283 (2022), Paper No. 109638. MR4459004

[18] Geroch, R., Energy extraction, Ann. N.Y. Acad. Sci. 224 (1973) 108–
17.

[19] Hawking, S. W., Gravitational radiation in an expanding universe,
J. Math. Phys. 9 (1968), 598–604. MR3960907

[20] Heinonen, J., T. Kilpeläinen, and O. Martio, Nonlinear Po-
tential Theory of Degenerate Elliptic Equations, Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, New York,
1993. MR1207810

https://mathscinet.ams.org/mathscinet-getitem?mr=2515101
http://arxiv.org/abs/2102.11421
http://arxiv.org/abs/2102.11421
http://arxiv.org/abs/2202.13832
https://mathscinet.ams.org/mathscinet-getitem?mr=0385749
https://mathscinet.ams.org/mathscinet-getitem?mr=1102938
https://mathscinet.ams.org/mathscinet-getitem?mr=0709038
https://mathscinet.ams.org/mathscinet-getitem?mr=0714925
https://mathscinet.ams.org/mathscinet-getitem?mr=2495833
https://mathscinet.ams.org/mathscinet-getitem?mr=4459004
https://mathscinet.ams.org/mathscinet-getitem?mr=3960907
https://mathscinet.ams.org/mathscinet-getitem?mr=1207810


Monotone quantities of p-harmonic functions 643

[21] Hirsch, S., Hawking mass monotonicity for initial data sets, preprint,
arXiv:2210.12237.

[22] Hirsch, S., Kazaras, D., Khuri, M., and Zhang, Y., Rigid compar-
ison geometry for Riemannian bands and incomplete manifolds, preprint,
arXiv:2209.12857.

[23] Huisken, G. and Ilmanen, T., The inverse mean curvature flow and
the Riemannian Penrose inequality, J. Differ. Geom., 59 (2001), no. 3,
353–437. MR1916951

[24] Jang, H.C. and Miao, P., Hyperbolic mass via horospheres, Commun.
Contemp. Math., online available at doi: 10.1142/S0219199722500237.

[25] Jang, P.S. and Wald, R.M., The positive energy conjecture and the
cosmic censor hypothesis, J. Math. Phys. 18 (1977) 41–44. MR0523907

[26] Kichenassamy, S. and Vèron, L., Singular solutions of the p-Laplace
equation, Math. Ann. 275 (1986), no. 4, 599–615. MR0859333

[27] Kotschwar, B. and Ni, L., Local gradient estimates of p-harmonic
functions, 1/H-flow, and an entropy formula, Ann. Sci. Éc. Norm. Supér.
(4) 42 (2009), no. 1, 1–36. MR2518892

[28] Lee, M.-C. and Tsang, T.-Y., private communication.

[29] Lee, D. A., Lesourd, M., and Unger, R., Density and positive mass
theorems for initial data sets with boundary, arXiv:2112.12017.

[30] Lesourd, M, Unger, R., and Yau, S.-T., The positive mass theorem
with arbitrary ends, arXiv:2103.02744.

[31] Li, P., Geometric Analysis, Cambridge Studies in Advanced Mathemat-
ics, vol. 134. Cambridge University Press, Cambridge, 2012. MR2962229

[32] Mantoulidis, C., Miao, P. and Tam, L.-F., Capacity, quasi-local
mass, and singular fill-ins, J. Reine Angew. Math., 768, (2020), 55–
92. MR4168687

[33] Mari, L., Rigoli, M., and Setti, A. G., On the 1/H-flow by P-
laplace approximation: new estimates via fake distances under Ricci lower
bounds, arXiv:1905.00216, to appear in Amer. J. Math. MR4436145

[34] Miao, P., Mass, capacity functions, and the mass-to-capacity ratio,
Peking Math J. (2023).

[35] Moser, R., The inverse mean curvature flow and p-harmonic functions,
J. Eur. Math. Soc. 9 (2007), no. 1, 77–83. MR2283104

http://arxiv.org/abs/2210.12237
http://arxiv.org/abs/2209.12857
https://mathscinet.ams.org/mathscinet-getitem?mr=1916951
http://dx.doi.org/10.1142/S0219199722500237
https://mathscinet.ams.org/mathscinet-getitem?mr=0523907
https://mathscinet.ams.org/mathscinet-getitem?mr=0859333
https://mathscinet.ams.org/mathscinet-getitem?mr=2518892
http://arxiv.org/abs/2112.12017
http://arxiv.org/abs/2103.02744
https://mathscinet.ams.org/mathscinet-getitem?mr=2962229
https://mathscinet.ams.org/mathscinet-getitem?mr=4168687
http://arxiv.org/abs/1905.00216
https://mathscinet.ams.org/mathscinet-getitem?mr=4436145
https://mathscinet.ams.org/mathscinet-getitem?mr=2283104


644 Sven Hirsch et al.

[36] Munteanu, O. and Wang, J., Comparison theorems for three-
dimensional manifolds with scalar curvature bound, arXiv:2105.12103.

[37] Oronzio, F., ADM mass, area and capacity in asymptotically flat 3-
manifolds with nonnegative scalar curvature, arXiv:2208.06688.

[38] Schoen, R. and Yau, S.-T., Existence of incompressible minimal sur-
faces and the topology of three-manifolds of positive scalar curvature,
Ann. Math., 110 (1979), no. 1, 127–142. MR0541332

[39] Stern, D., Scalar curvature and harmonic maps to S1, arXiv:1908.
09754, to appear in J. Diff. Geom. MR4516941

[40] Tolksdorf, P., On the Dirichlet problem for quasilinear equations,
Commun. Partial Differ. Equ. 8 (1983), no. 7, 773–817. MR0700735

[41] Xiao, J., The p-harmonic capacity of an asymptotically flat 3-manifold
with non-negative scalar curvature, Ann. Henri Poincaré, 17 (2016),
2265–2283. MR3522030

[42] Zhu, J., Positive mass theorem with arbitrary ends and its application,
arXiv:2204.05491.

Sven Hirsch
Institute for Advanced Study
1 Einstein Drive
08540 Princeton, NJ
USA
E-mail: sven.hirsch@ias.edu

Pengzi Miao
University of Miami
33146 Coral Gables, FL
USA
E-mail: pengzim@math.miami.edu

Luen-Fai Tam
Chinese University Hong Kong
Shatin, Hong Kong
China
E-mail: lftam@math.cuhk.edu.hk

http://arxiv.org/abs/2105.12103
http://arxiv.org/abs/2208.06688
https://mathscinet.ams.org/mathscinet-getitem?mr=0541332
http://arxiv.org/abs/1908.09754
http://arxiv.org/abs/1908.09754
https://mathscinet.ams.org/mathscinet-getitem?mr=4516941
https://mathscinet.ams.org/mathscinet-getitem?mr=0700735
https://mathscinet.ams.org/mathscinet-getitem?mr=3522030
http://arxiv.org/abs/2204.05491
mailto:sven.hirsch@ias.edu
mailto:pengzim@math.miami.edu
mailto:lftam@math.cuhk.edu.hk

	Introduction and statement of results
	Relating A, B, D, F and G
	Monotonicity of A(t), B(t), D(t) via regularization
	Asymptotical behavior
	Applications
	Basic computations
	On equation (1.15)
	Comparing A(t), B(t), F(t) to the Hawking mass
	References

