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1. Introduction

Let M be a compact oriented Riemannian manifold. Assume that M is tri-
angulated by a simplicial complex K. Let ρ be a acyclic representation of
π1(K) by orthogonal matrices, i.e., the twisted cohomology group Hp(K; ρ)
is trivial for all p. The Reidemeister torsion τρ(M) is defined from the cochain
complex of K by taking a alternating product of determinants [16, 13]. It is a
manifold invariant and is used to distinguish homotopy equivalent spaces [3].

To describe the Reidemeister torsion in analytic terms, Ray and Singer
[15] defined an analytic torsion Tρ(M) for any compact oriented manifold M
and orthogonal representation ρ of the fundamental group π1(M). Their def-
inition used the spectrum of the Hodge Laplacian on twisted forms. When
ρ is orthogonal, Cheeger [2] and Müller [14] proved that τρ(M) = Tρ(M).
When ρ is orthogonal but not acyclic, one can also see the definition of an-
alytic torsion Tρ(M) in [6]. Bismut and Zhang [1] were the first to introduce
the analytic torsion for any ρ : π1 → GL(n,C) and without the orienta-
tion assumption, and established a comparison formula for the analytic and
combinatorial torsion in this most general situation. In [4] and [5], by in-
troducing the combinatorial vector field on CW complex, Formam defined
various Zeta functions which related to the Reidemeister torsion on CW com-
plex.



Torsion of digraphs 705

In this paper we introduce the notions of Reidemeister and analytic tor-
sions on finite digraphs by means of the path homology theory of Grigor’yan,
Lin, Muranov and Yau [7, 8, 9, 11]. Namely, we use the homology basis to
construct a preferred basis of the path complex on a digraph G, which leads
to the definition of the Reidemeister torsion τ(G). Next, we define the Hodge
Laplace operator Δp acting on p-paths and use the positive eigenvalues of Δp

in order to define the analytic torsion T (G) on graphs. This definition is basi-
cally similar to the R-torsion defined from the combinatorial Laplacian on the
smooth triangulation of manifolds in [15]. Although the homology groups can
be nontrivial in our case, we still can prove that τ(G) = T (G) (Theorem 3.14)
by using an extension of the argument of [15, Proposition 1.7]. In fact, this is
the start point of Ray-Singer to make their conjecture.

Given two finite digraphs X and Y , we obtain formulas for the torsions
of their Cartesian product X�Y and join X ∗Y (Theorems 4.8 and 5.7). Our
proofs rely essentially on the Künneth formulas for chain complexes of X�Y
and X ∗ Y proved in [10] and [11]. The approach to the proof is borrowed
from [15, Thm. 2.5] but our setting is more complicated in the following
sense. The notion of torsion depends on the choice of an inner product in
the chain spaces, and the cases of the Cartesian product and join require
usage of different inner products. Besides, the case of join requires usage of
an augmented chain complex. For that reason, the final formulas for τ(X�Y )
and τ(X ∗ Y ) stated in Corollaries 4.15 and 5.8 are more complicated than
one could expect. By using the these Künneth formulas for chain complexes
of X�Y and X ∗ Y , one can get our results from the torsion of the tensor
product of two finite dimensional complexes [12] and [17].

In Section 2 we revise the path homology theory. In Section 3 we introduce
the notions of the Hodge Laplacian on an arbitrary finite-dimensional chain
complex, prove the Hodge decomposition, define the notions of R-torsion and
analytic torsion, and prove their identity (Theorem 3.14).

In Section 4 we revise the notion of the Cartesian product of digraphs,
the Künneth formula for the Cartesian product, and use it to prove the for-
mula for the torsion of X�Y (Theorem 4.8 and Corollaries 4.12, 4.15). In
Section 5 we fulfil a similar program for the join of digraphs (Theorem 5.7
and Corollaries 5.8, 5.9).

We give numerous examples of application of our results by computing
torsions of various digraphs including simplices, cubes, spheres, cycles, prism,
etc.
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2. Path complexes and path homology

Let us briefly revise the definition of path complex and path homology intro-
duced by Grigor’yan, Lin, Muranov and Yau in [11] (see also [7]).

2.1. Path complex

Let V be a finite set. For any p ≥ 0, an elementary p-path is any (ordered)
sequence i0, . . . , ip of p+1 vertices of V that will be denoted simply by i0 . . . ip
or by ei0...ip . The number p is called the length of the path i0 . . . ip.

Formal R-linear combinations of ei0...ip are called p-paths. Denote by Λp =
Λp(V ) the linear space of all p-paths; that is, the elements of Λp are

v =
∑

i0i1...ip

vi0i1...ipei0i1...ip , where vi0i1...ip ∈ R.

Definition 2.1. For any p ≥ 0, define the boundary operator ∂ : Λp+1 → Λp

by

(2.1) (∂v)i0...ip =
∑
k∈V

p+1∑
q=0

(−1)qvi0...iq−1kiq ...ip ,

where the index k is inserted so that it is preceded by q indices i0 . . . iq−1. Set
also Λ−1 = {0} and define the operator ∂ : Λ0 → Λ−1 by setting ∂v = 0 for
all v ∈ Λ0.

It follows from (2.1) that

(2.2) ∂ej0...jp+1 =
p+1∑
q=0

(−1)qe
j0...ĵq ...jp+1

,

where ·̂ means omission of the index.
It is easy to show that ∂2v = 0 for any v ∈ Λp ([11, Lemma 2.1]). Hence,

the family of linear spaces {Λp} with the boundary operator ∂ determine a
chain complex that will be denoted by Λ(V ).

Definition 2.2. An elementary p-path ei0...ip on a set V is called regular if
ik �= ik+1 for all k = 0, . . . , p− 1, and irregular otherwise.

Let Ip be the subspace of Λp that is spanned by all irregular ei0...ip . It is
easy to verify that ∂Ip ⊂ Ip−1 (cf. [11]). Hence, the boundary operator ∂ is
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well-defined on the quotient space Rp := Λp/Ip:

∂ : Rp → Rp−1

for all p ≥ 0. Clearly, Rp is linearly isomorphic to the space of all regular
p-paths:

(2.3) Rp
∼= span{ei0...ip : i0 . . . ip is regular}.

For simplicity of notation, we will identify Rp with the space of all regular p-
paths. With this identification, the formula (2.1) for the operator ∂ : Rp+1 →
Rp is true only for regular paths i0 . . . ip whereas (∂v)i0...ip = 0 if i0 . . . ip is
irregular. The identity (2.2) remains true if we replace by 0 each irregular
path on the right hand side.

Denote by R(V ) the chain complex {Rp} with the boundary operator ∂.

Definition 2.3. A path complex over a set V is a non-empty collection P of
regular elementary paths on V with the following property:

(2.4) if ei0...in ∈ P then ei0...in−1 ∈ P and ei1...in ∈ P.

When a path complex P is fixed, all the paths from P are called allowed,
whereas the elementary paths that are not in P are called non-allowed. Con-
dition (2.4) means that if we remove the first or the last element of an allowed
n-path then the resulting (n− 1)-path is also allowed.

The set of all n-paths from P is denoted by Pn. The set P−1 consists
of a single empty path e. The elements of P0 (that is, allowed 0-paths) are
called the vertices of P . Clearly, P0 is a subset of V . By the property (2.4),
if i0 . . . in ∈ P then all ik are vertices of P . Hence, we can (and will) remove
from the set V all non-vertices so that V = P0.

There are two natural families/examples of path complexes. Any abstract
finite simplicial complex S is a collection of subsets of a finite vertex set V
that satisfies the following property:

if σ ∈ S then any subset of σ is also in S.

Let us enumerate the elements of V by distinct reals and identify any subset
s of V with the elementary path that consists of the elements of s put in
the (strictly) increasing order. Denote by P (S) this collections of elementary
paths on V that uniquely determines S. The defining property of a simplex
can be restated the following:

(2.5) if v ∈ P (S) then any subsequence of v is also in P (S).
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Consequently, the family P (S) satisfies the property (2.4) so that P (S) is a
path complex. The allowed n-paths in P (S) are exactly the n-simplexes.

2.2. Digraphs

Another natural family of path complexes comes from digraphs.

Definition 2.4. A digraph G = (V,E) is a couple, where V is a set, whose
elements are called the vertices, and E is a subset of {V × V \ diag} that
consists of ordered pairs of vertices called (directed) edges or arrows. The
fact that a pair (x, y) is an arrow will be denoted by x → y.

An elementary n-path i0 . . . in on the vertex set V of a digraph is called
allowed if ik−1 → ik for any k = 1, . . . , n. Denote by Pn = Pn(G) the set
of all allowed n-paths. In particular, we have P0 = V and P1 = E. Clearly,
the collection P =

⋃
n Pn of all allowed paths satisfies the condition (2.4) so

that P is a path complex. This path complex is naturally associated with the
digraph G and will be denoted by P (G).

2.3. Path homology

Let us return to an arbitrary path complex P over V . Denote by Ap(P ) the
subspace of Rp(V ) spanned by the allowed elementary p-paths, that is,

(2.6) Ap = span{ei0...ip : i0 . . . ip ∈ Ep}.

The elements of Ap are called allowed p-paths.
Note that the spaces Ap of allowed paths are in general not invariant

for ∂. Consider the following subspace of Ap

(2.7) Ωp ≡ Ωp(P ) := {v ∈ Ap : ∂v ∈ Ap−1}.

The spaces Ωp are ∂-invariant. Indeed, v ∈ Ωp implies ∂v ∈ Ap−1 and ∂(∂v) =
0 ∈ Ap−2, whence ∂v ∈ Ωp−1. The elements of Ωp are called ∂-invariant p-
paths.

Hence, we obtain a chain complex Ω = Ω(P ):

(2.8) 0 ← Ω0
∂← Ω1

∂← · · · ∂← Ωp−1
∂← Ωp

∂← · · ·

By construction we have Ω0 = A0 and Ω1 = A1, while in general Ωp ⊂ Ap.
Set

Zp = ker ∂|Ωp and Bp = ∂Ωp+1.
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Definition 2.5. Define for all p ≥ 0 the path homology groups Hp(P ) of the
path complex P by

(2.9) Hp(P ) := Hp

(
Ω(P )

)
= Zp/Bp.

Let us note that the spaces Hp(P ) (as well as the spaces Ωp(P )) can
be computed directly by definition using simple tools of linear algebra, in
particular, those implemented in modern computational software. On the
other hand, some theoretical tools for computation of homology groups, like
homotopy theory and Künneth formulas, were developed in [8, 10, 11].

In particular, for any digraph G define its path homology groups by

Hp(G) = Hp

(
P (G)

)
.

In what follows we are going to deal with only finite chain complexes:

0 ← Ω0
∂← Ω1

∂← · · · ∂← Ωp−1
∂← Ωp

∂← · · · ∂← ΩN ← 0
(2.10)

where N ∈ N. Clearly, any chain complex (2.8) can be truncated to the form
(2.10).

For path complexes and digraphs this means that we restrict the length
of allowed paths to N . There is a large family of digraphs where the chain
complex Ω is finite naturally because ΩN = {0} for some N (and, hence,
Ωn = {0} for all n ≥ N). All examples of digraphs that are considered in this
paper have naturally finite chain complex Ω.

If this is not the case then we can choose N arbitrarily and truncate the
chain complex Ω to (2.10). The number N will be referred to as the dimension
of the chain complex (2.10) or that of the underlying path complex.

Some examples of chain complexes Ω and homology groups of digraphs
will be given in Section 3.3.

3. Finite chain complexes

Let us fix a finite chain complex Ω (2.10) of finite dimensional linear spaces Ωp.
We are interested in chain complexes that are coming from path complexes as
described above, but in this section we revise rather well known facts about
general chain complexes Ω.

Let us choose arbitrarily an inner product 〈, 〉 in each linear space Ωp. In
the case when Ω comes from a path complex, an inner product in Ωp can be



710 Alexander Grigor’yan et al.

taken from the ambient space Rp. In this paper we use two different inner
products in Rp. Let u, v ∈ Rp and

u =
∑
i
uiei and v =

∑
i
viei

where i = i0 . . . ip. The first (standard) inner product is

(3.1) 〈u, v〉 =
∑
i
uivi,

and the second (normalized) inner product is

(3.2) 〈u, v〉 = 1
p!
∑
i
uivi.

These inner products will be used in examples and in Section 4, but in gen-
eral we do not impose any restriction on the choice of inner products in the
spaces Ωp.

3.1. Hodge Laplacian

Denote by ∂p the operator ∂ : Ωp → Ωp−1. Assuming that the inner product
structure in Ω is chosen, consider the operator ∂∗

p : Ωp−1 → Ωp that is the
adjoint operator of ∂p with respect to the inner products in Ωp and Ωp−1.

Definition 3.1. Define the Hodge-Laplace operator Δp : Ωp → Ωp by

(3.3) Δpu = ∂∗
p∂pu + ∂p+1∂

∗
p+1u.

We will use a shorter notation

Δpu = ∂∗∂u + ∂∂∗u

since it is clear from this expression in which spaces Ωp act the operators ∂
and ∂∗.

An element u ∈ Ωp is called harmonic if Δpu = 0.

Lemma 3.2. An element u ∈ Ωp is harmonic if and only if ∂u = 0 and
∂∗u = 0.
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Proof. If ∂u = 0 and ∂∗u = 0 then by (3.3) we have Δpu = 0. Conversely, if
Δpu = 0 then we obtain

0 = 〈Δpu, u〉 =
〈
∂∗∂u, u

〉
+
〈
∂∂∗u, u

〉
= 〈∂u, ∂u〉 +

〈
∂∗u, ∂∗u

〉
,

whence ‖∂u‖ = ‖∂∗u‖ = 0.

Denote by Hp the set of all harmonic elements in Ωp so that Hp is a
subspace of Ωp.

Lemma 3.3. (Hodge decomposition) The space Ωp is an orthogonal sum of
three subspaces as follows:

(3.4) Ωp = ∂Ωp+1
⊕

∂∗Ωp−1
⊕

Hp.

Proof. If u ∈ ∂Ωp+1 and v ∈ ∂∗Ωp−1 then u = ∂u′ and v = ∂∗v′, and we have

〈u, v〉 =
〈
∂u′, ∂∗v′

〉
=
〈
∂2u′, v′

〉
= 0

so that the subspaces ∂Ωp+1 and ∂∗Ωp−1 are orthogonal. Denote by K the
orthogonal complement of ∂Ωp+1

⊕
∂∗Ωp−1 in Ωp. Then we have

u ∈ K ⇔ 〈u, v〉 = 0 for all v ∈ ∂Ωp+1 and v ∈ ∂∗Ωp−1

that is,

u ∈ K ⇔
〈
u, ∂v′

〉
= 0 ∀v′ ∈ Ωp+1 and

〈
u, ∂∗v

〉
= 0 ∀v ∈ Ωp−1

⇔
〈
∂∗u, v′

〉
= 0 ∀v′ ∈ Ωp+1 and 〈∂u, v〉 = 0 ∀v ∈ Ωp−1

⇔ ∂∗u = 0 and ∂u = 0
⇔ u ∈ Hp.

Hence, K = Hp which finishes the proof.

Corollary 3.4. There is a natural isomorphism

(3.5) Hp
∼= Hp.

Proof. Observe first that Zp := ker ∂p is the orthogonal complement of ∂∗Ωp−1
in Ωp because, for any u ∈ Ωp,

u ∈ Zp ⇔ ∂u = 0 ⇔
〈
u, ∂∗v

〉
= 0 ∀v ∈ Ωp−1 ⇔ u⊥∂∗Ωp−1.
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It follows from (3.4) that

(3.6) Zp = ∂Ωp+1
⊕

Hp = Bp

⊕
Hp

whence
Hp

∼= Zp/Bp = Hp.

Remark 3.5. It follows from this argument that Hp is an orthogonal com-
plement of Bp in Zp and that a harmonic form u ∈ Hp that corresponds to a
homology class ω ∈ Hp, minimizes the norm ‖ · ‖ among all elements of ω.

3.2. R-torsion

Let Ω be a finite chain complex of finite dimensional linear spaces over R:

0 ∂← Ω0
∂← Ω1

∂← · · · ∂← Ωp−1
∂← Ωp

∂← · · · ∂← ΩN
∂← 0.

Denote Bp = ∂Ωp+1, Zp = ker ∂|Ωp and Hp = Zp/Bp.
In any Ωp choose a basis ωp and a basis hp in Hp. For each element of

hp choose its representative in Zp and denote the resulting independent set
by h̃p.

Let bp be any basis in Bp. For each element w ∈ bp−1 choose one element
v ∈ ∂−1w ⊂ Ωp so that ∂v = w. Let b̃p be the collection of chosen elements v
so that

(3.7) bp−1 = ∂b̃p.

Note that always b̃0 = ∅. Since bp−1 is linearly independent, the set b̃p is
also linearly independent. Clearly, the union (bp, h̃p) is a basis in Zp. Since
the subspaces Zp and span(b̃p) of Ωp have a trivial intersection {0}, by the
rank-nullity theorem we conclude that the direct sum of these subspaces is
Ωp. Hence, the union (bp, h̃p, b̃p) of the these sequences is a basis in Ωp.

If U and W are two bases in an n-dimensional linear space, then denote
by (U/W ) the transformation matrix from W to U and set

[U/W ] =
∣∣det(U/W )

∣∣.
In the case n = 0 set [U/W ] = 1.

Denote ω the collection {ωp} of the bases in Ωp and similarly let h = {hp}
be the collection of the bases in Hp.
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Definition 3.6. The R-torsion τ(Ω, ω, h) of the chain complex Ω with the
preferred bases ω and h is a positive real number defined by

(3.8) log τ(Ω, ω, h) =
N∑
p=0

(−1)p log[bp, h̃p, b̃p / ωp].

We justify this definition in the following statement.

Lemma 3.7. (a) The value of τ(Ω, ω, h) does not depend on the choice
of the bases bp, the representatives in b̃p and the representatives in h̃p

(which justifies the notation τ(Ω, ω, h)).
(b) If ω′ and h′ are other collections of bases in Ω and H respectively, then

log τ
(
Ω, ω′, h′) = log τ(Ω, ω, h) +

N∑
p=0

(−1)p
(
log
[
ωp/ω

′
p

]
+ log

[
h′
p/hp

])
.

(3.9)

The relation [U/W ] = 1 for bases U and W is an equivalence relation,
and each equivalence class determines a volume form in the underlying linear
space. We see from (3.9) that τ(Ω, ω, h) depends only on the volume forms
determined by ω and h in the spaces Ωp and Hp, respectively,

Proof of Lemma 3.7. (a) Let b′p be another basis in Bp with the corresponding
set b̃′p, and h̃′

p be another set of representatives of hp. Let us first verify that

(3.10)
[
b′p, h̃

′
p, b̃

′
p / bp, h̃p, b̃p

]
=
[
b′p/bp

][
b′p−1/bp−1

]
.

Let h̃p = {u1, u2, . . .} and h̃′
p = {u′1, u′2, . . .}. Since u′i and ui represent the

same homology class, we have

(3.11) u′i = ui + bi for some bi ∈ Bp.

Let b̃p = {v1, v2, . . .} and b̃′p = {v′1, v′2, . . .} so that

bp−1 = ∂b̃p = {∂v1, ∂v2, . . .} and b′p−1 = ∂b̃′p =
{
∂v′1, ∂v

′
2, . . .

}
.

Since bp−1 and b′p−1 are bases in the same subspace Bp−1, the transformation
matrix (cij) = (b′p−1/bp−1) is well defined so that

∂v′i =
∑
j

cij∂vj .
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It follows that

(3.12) v′i = zi +
∑
j

cijvj for some zi ∈ Zp.

Since Zp = span(bp, hp), we obtain from (3.11) and (3.12) that

(
b′p, h̃

′
p, b̃

′
p / bp, h̃p, b̃p

)
=

⎛⎜⎜⎝(b′p/bp)
...

...

0 id
...

0 0 (b′p−1/bp−1)

⎞⎟⎟⎠

where the dots
... denote the terms coming from bi and zi. Since this matrix is

upper block-diagonal, we obtain (3.10).
Consequently, we have[

b′p, h̃
′
p, b̃

′
p / ωp

]
=
[
b′p, h̃

′
p, b̃

′
p / bp, h̃p, b̃p

]
[bp, h̃p, b̃p / ωp]

=
[
b′p/bp

][
b′p−1/bp−1

]
[bp, h̃p, b̃p / ωp].

Computing the sum in (3.8) we obtain

N∑
p=0

(−1)p log
[
b′p, h̃

′
p, b̃

′
p / ωp

]
(3.13)

=
N∑
p=0

(−1)p log[bp, h̃p, b̃p/ωp]

+
N∑
p=0

(−1)p log
[
b′p/bp

]
+

N∑
p=0

(−1)p log
[
b′p−1/bp−1

]
.

It remains to observe that the expression in (3.13) vanishes because it is equal
to

N∑
p=0

(−1)p log
[
b′p/bp

]
+

N−1∑
q=−1

(−1)q+1 log
[
b′q/bq

]
= (−1)N log

[
b′N/bN

]
= 0.

(b) Let hp = {η1, η2, . . .} and h′
p = {η′1, η′2, . . .} so that

η′i =
∑
j

cijηj
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where (cij) = (h′
p/hp). For the representatives ui ∈ h̃p of ηi and u′i ∈ h̃′

p of η′i
in Zp we have then

u′i =
∑
j

cijuij + bi for some bi ∈ Bp.

It follows that

(
bp, h̃

′
p, b̃p / bp, h̃p, b̃p

)
=

⎛⎜⎝id
... 0

0 (h′
p/hp) 0

0 0 id

⎞⎟⎠

where the dots
... denote the terms coming from bi. Hence, we obtain[

bp, h̃
′
p, b̃p / ω

′
p

]
=
[
bp, h̃

′
p, b̃p / bp, h̃p, b̃p

]
[bp, h̃p, b̃p / ωp]

[
ωp/ω

′
p

]
=
[
h′
p/hp

]
[bp, h̃p, b̃p / ωp]

[
ωp/ω

′
p

]
,

whence (3.9) follows.

Let us fix an inner product in each space Ωp and denote by ι the inner
product structure in Ω, that is, the collection of all inner products for p =
0, . . . , N . Then we have the induced inner product in the subspaces Bp, Zp

and Hp. Using the isomorphism Hp
∼= Hp we transfer the inner product to

Hp. Hence, in this case we have a canonical choice of volume forms ω in Ω∗
and h in H∗ as we prefer orthonormal bases ωp in Ωp and hp in Hp. In fact,
we can identify hp with an orthonormal basis in Hp and set h̃p = hp. With
this choice of ω and h, we define the R-torsion of (Ω, ι) by

τ(Ω, ι) = τ(Ω, ω, h).

By (3.9) the right hand side does not depend on the choice of orthonormal
bases ω and h.

Corollary 3.8. Let ι and ι′ be two inner product structures in Ω. Assume
that there are positive reals cp, p = 0, . . . , N , such that, for all u, v ∈ Ωp,

ι′(u, v) = cpι(u, v).

Then

(3.14) τ
(
Ω, ι′

)
= τ(Ω, ι)

N∏
p=0

c
1
2 (−1)p(dimΩp−dimHp)
p .
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In particular, if all cp = c are equal, then we obtain

τ
(
Ω, ι′

)
= τ(Ω, ι)

because
N∑
p=0

(−1)p dim Ωp =
N∑
p=0

(−1)p dimHp = χ(Ω),

where χ(Ω) is the Euler characteristic of Ω.

Proof. Since the notion of orthogonality is the same for ι and ι′, the space
Hp is also the same. If ωp and hp are ι-orthonormal bases in Ωp and Hp,
respectively, then ω′

p = 1√
cp
ωp and h′

p = 1√
cp
hp are ι′-orthonormal bases.

Since [
ωp/ω

′
p

]
= cdimΩp/2

p and
[
h′
p/hp

]
= c−dimHp/2

p ,

we obtain from (3.9)

log τ
(
Ω, ι′

)
= log τ(Ω, ι) + 1

2

N∑
p=0

(−1)p(dim Ωp − dimHp) log cp,

whence (3.14) follows.

Let Ω be a chain complex that comes from a path complex P . Then the
inner product in Ωp can be taken from the ambient space Rp. So the obtained
R-torsion τ(Ω(P ), ι) will also be denoted by τ(P, ι).

Let ι be the standard inner product (3.1) in Rp and ι′ be the normalized
inner product (3.2) in Rp. We set

τ(P ) = τ(P, ι) and τ ′(P ) = τ
(
P, ι′

)
.

In this case cp = 1
p! and we obtain from (3.14)

(3.15) τ ′(P ) = τ(P )
N∏
p=0

(p!)
1
2 (−1)p+1(dimΩp−dimHp).

Denoting
rp = dim Ωp − dimHp

and observing that
N∑
p=0

(−1)prp = 0
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and

N∑
p=2

(−1)p+1rp log(p!) =
N∑
p=2

(−1)p+1rp

p∑
k=2

log k

=
N∑
k=2

log k
N∑
p=k

(−1)p+1rp

=
N∑
k=2

log k
k−1∑
p=0

(−1)prp

=
N∑
k=2

log kr0−r1+···+(−1)k−1rk−1 ,

we obtain from (3.15)

(3.16) τ ′(P ) = τ(P )
(
2r0−r1 · 3r0−r1+r2 · 4r0−r1+r2−r3 · · · ·

)1/2
.

3.3. Examples

Let us give some examples of computation of R-torsion by definition.

Example 3.9. Consider a line digraph G = (V,E) that consists of m vertices
V = {0, 1, . . . ,m − 1} and m − 1 arrows having the form either i → i + 1
or i + 1 → i, for i = 0, . . . ,m − 2. An example of a line digraph is shown in
Fig. 1.

Figure 1: A line digraph with m = 5.

Denote

(3.17) ei(i+1) =
{
ei(i+1) if i → i + 1
e(i+1)i if i + 1 → i

so that ei(i+1) ∈ Ω1, and set

(3.18) σi =
{

1, if i → i + 1
−1, if i + 1 → i
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so that
∂ei(i+1) = σi(ei+1 − ei).

Choose the following ι-orthonormal bases in Ω0 and Ω1:

ω0 = {ei : i = 0, . . . ,m− 1}

and
ω1 = {ei(i+1) : i = 0, . . . ,m− 2}.

Clearly, Ωp = {0} for p ≥ 2. In particular, we have χ(G) = 1. Since dimH0 =
1 (as for any connected graph) and dimHp = 0 for p ≥ 2, it follows that
dimH1 = 0.

Since B1 = ∂Ω2 = {0}, it follows that also Z1 = {0}. We have Z0 = Ω0
and, hence, dimB0 = m− 1. Choose in B0 = ∂Ω1 the basis

b0 =
{
σi(ei+1 − ei), i = 0, . . . ,m− 2

}
and set, respectively,

b̃1 = {ei(i+1), i = 0, . . . ,m− 2}.

The orthogonal complement of B0 in Z0 is one-dimensional:

H0 = span{e0 + · · · + em−1},

so that
h0 =

{ 1√
m

(e0 + · · · + em−1)
}
.

We see that

[b0, h0, b̃0 / ω0] = | det |

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ0 0 1√
m

σ0 −σ1
1√
m

σ1
. . . ...
. . . . . . ...

. . . . . . ...
. . . −σm−2

...
0 σm−2

1√
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

√
m,

(3.19)
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because expanding the determinant in the last column, we obtain that is equal
to

(−1)m+1mσ0 . . . σm−2
1√
m
.

Since (b1, h1, b̃1) = ω1, it follows that

τ(G) =
1∏

p=0
[bp, hp, b̃p / ωp](−1)p =

√
m.

For the normalized inner product ι′ we have the same value τ ′(G) =
√
m

since Ωp = {0} for all p ≥ 2.

Example 3.10. Consider a digraph G = (V,E) with the vertex set V =
{0, 1, 2} and with the edge set E = {01, 12, 02} (Fig. 2). This digraph is
called a triangle.

Figure 2: A triangle digraph.

We have

Ω0 = span{e0, e1, e2}, Ω1 = span{e01, e12, e02}, Ω2 = {e012}

and Ωp = {0} otherwise. Hence,

B0 = ∂Ω1 = span{e1 − e0, e2 − e1}, B1 = ∂Ω2 = span{e01 − e02 + e12}

and Bp = {0} otherwise. Next, we have

Z0 = span{e0, e1, e2}, Z1 = span{e01 − e02 + e12}

and Zp = {0} otherwise. It follows that dimH0 = 1 and dimHp = 0 otherwise.
We choose the following ι-orthonormal bases in Ωp:

ω0 = {e0, e1, e2}, ω1 = {e01, e12, e02}, ω2 = {e012}.
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Choose also

b0 = {e1 − e0, e2 − e1}, b̃1 = {e01, e12}
b1 = {e01 − e02 + e12}, b̃2 = {e012}.

The orthogonal complement of B0 in Z0 is

H0 = span{e0 + e1 + e2},

so that
h0 =

{ 1√
3(e0 + e1 + e2)

}
.

We see that

(bp, hp, b̃p) =

⎧⎪⎨⎪⎩
{e1 − e0, e2 − e1,

1√
3(e0 + e1 + e2)}, p = 0

{e01 − e02 + e12, e01, e12}, p = 1
{e012}, p = 2.

It follows that

[b0, h0, b̃0 / ω0] = | det |

⎛⎜⎜⎝
−1 0 1√

3

1 −1 1√
3

0 1 1√
3

⎞⎟⎟⎠ =
√

3,

[b1, h1, b̃1 / ω1] = | det |

⎛⎜⎝ 1 1 0
1 0 1
−1 0 0

⎞⎟⎠ = 1

and
[b2, h2, b̃2 / ω2] = | det |(1) = 1.

Hence, we obtain

τ(G) =
2∏

p=0
[bp, hp, b̃p / ωp](−1)p =

√
3.

For the normalized inner product ι′ we obtain from (3.14)

τ ′(G) = τ(G)
2∏

p=0
(p!)

1
2 (−1)p+1(dimΩp−dimHp) =

√
32−

1
2 =

√
3/2.
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Example 3.11. Consider a digraph G = (V,E) with the set of vertices
V = {0, 1, 2, 3} and the set of edges E = {01, 02, 13, 23} (Fig. 3). This digraph
is called a square.

Figure 3: A square digraph.

We have

Ω0 = span{e0, e1, e2, e3}, Ω1 = span{e01, e02, e13, e23},
Ω2 = span{e013 − e023}, Ωp = {0} for p ≥ 3.

Hence,

B0 = ∂Ω1 = span{e1 − e0, e2 − e0, e3 − e1}
B1 = ∂Ω2 = span{e01 + e13 − e02 − e23}

and Bp = {0} otherwise. Next we have

Z0 = span{e0, e1, e2, e3}, Z1 = span{e01 + e13 − e02 − e23}

and Zp = {0} otherwise. Consequently, dimH0 = 1 and dimH0 = 0 for
p ≥ 1.

We choose the following ι-orthonormal bases in Ωp:

ω0 = {e0, e1, e2, e3}, ω1 = {e01, e02, e13, e23}, ω2 =
{ 1√

2(e013 − e023)
}
.

Choose also

b0 = {e1 − e0, e2 − e0, e3 − e1}, b̃1 = {e01, e02, e13}
b1 = {e01 − e02 + e13 − e23}, b̃2 = {e013 − e023}.

The orthogonal complement of B0 in Z0 is

H0 = span{e0 + e1 + e2 + e3}
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and we take
h0 =

{1
2(e0 + e1 + e2 + e3)

}
.

It follows that

(bp, hp, b̃p) =

⎧⎪⎨⎪⎩
{e1 − e0, e2 − e0, e3 − e1,

1
2(e0 + e1 + e2 + e3)}, p = 0

{e01 − e02 + e13 − e23, e01, e02, e13}, p = 1
{e013 − e023}, p = 2.

Hence,

[b0, h0, b̃0 / ω0] = | det |

⎛⎜⎜⎜⎜⎜⎝
−1 −1 0 1

2

1 0 −1 1
2

0 1 0 1
2

0 0 1 1
2

⎞⎟⎟⎟⎟⎟⎠ = 2,

[b1, h1, b̃1 / ω1] = | det |

⎛⎜⎜⎜⎝
1 1 0 0
−1 0 −1 0
1 1 0 1
−1 0 0 0

⎞⎟⎟⎟⎠ = 1

[b2, h2, b̃2 / ω2] = | det |(
√

2) =
√

2,

and we obtain

τ(G) =
2∏

p=0
[bp, hp, b̃p / ωp](−1)p = 2

√
2.

For the normalized inner product ι′ we obtain from (3.14)

τ ′(G) = τ(G)
2∏

p=0
(p!)

1
2 (−1)p+1(dimΩp−dimHp) = 2

√
22−

1
2 = 2.

Note that the triangle and square digraphs have the same homology
groups and are even homotopy equivalent (see [8]) but their torsions are dif-
ferent. Moreover, the torsion is not preserved by covering mappings between
digraphs, which are surjective mappings that preserve arrows. For example,
consider a mapping Φ : X → Y of a square X on Fig. 3 onto a line digraph
Y = {0 → 1 → 2} such that Φ(0) = 0, Φ(1) = Φ(2) = 1 and Φ(3) = 2, which
is obviously covering but τ(X) = 2

√
2 while τ(Y ) =

√
3.

Example 3.12. We say that a digraph G = (V,E) is cyclic if it is connected
(as an undirected graph), every vertex had the degree 2, and there are no
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double arrows. For example, the triangle from Example 3.10 and the square
from Example 3.11 are cyclic.

Here we assume that G is neither triangle nor square. Some examples of
such digraphs are shown on Fig. 4.

Figure 4: Three cyclic digraphs with 3, 4 and 6 vertices.

Note that a triangular digraph on Fig. 4 is not a triangle in the sense of
Example 3.10 because of different orientation of the arrows, and the quadri-
lateral digraph here is not a square for the same reason.

For a cyclic digraph that is neither triangle nor square, it is known that
Ωp(G) = {0} and Hp(G) = {0} for all p ≥ 2, whereas

dimH0(G) = dimH1(G) = 1

and, hence, χ(G) = 0 (see [7, Sect. 4.5]). Assume that G has m vertices
0, 1, . . . ,m − 1 that we identify with residues modm. The numeration of
vertices can be chosen so that all arrows have the form either i → i + 1 or
i + 1 → i, for i = 0, . . . .,m− 1.

Let us use notations ei(i+1) from (3.17) and σi from (3.18) so that ei(i+1) ∈
Ω1 and

∂ei(i+1) = σi(ei+1 − ei).

Choose the following ι-orthonormal bases in Ω0 and Ω1:

ω0 = {ei : i = 0, . . . ,m− 1}

and
ω1 = {ei(i+1) : i = 0, . . . ,m− 1}.

Observe that Z0 = Ω0 and

Z1 = ker ∂|Ω1 = span
{

m−1∑
i=0

σiei(i+1)

}
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because

∂

(∑
i

αiei(i+1)

)
=
∑
i

αiσi(ei+1 − ei) =
∑
i

(αi−1σi−1 − αiσi)ei,

which vanishes if αi is proportional to 1/σi = σi. Then B0 = ∂Ω1 has dimen-
sion m− 1 and we choose

b0 =
{
σi(ei+1 − ei), i = 0, . . . ,m− 2

}
and, respectively,

b̃1 = {ei(i+1), i = 0, . . . ,m− 2}.
The orthogonal complement of B0 in Z0 = Ω0 is

H0 = span{e0 + · · · + em−1},

so that
h0 =

{ 1√
m

(e0 + · · · + em−1)
}
.

Hence, as in (3.19), we obtain

[b0, h0, b̃0 / ω0] =
√
m.

Next, we have B1 = ∂Ω2 = {0} whence b1 = ∅, H1 = Z1 and

h1 =
{

1√
m

m−1∑
i=0

σiei(i+1)

}
.

We see that

[b1, h1, b̃1 / ω1] = | det |

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
m
σ0 1 0

1√
m
σ1 1

... . . .

... . . .

... 1
1√
m
σm−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1√

m
.

It follows that

τ(G) =
1∏

p=0
[bp, hp, b̃p / ωp](−1)p = m

and also τ ′(G) = m.
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3.4. Analytic torsion

Let Ω be a chain complex as above and ι be an inner product structure on Ω.
It is easy to check from (3.3) that Δp is a self-adjoint non-negative definite
operator on Ωp. Hence, its eigenvalues are non-negative reals, denote them by
{λi}dimΩp

i=1 . The zeta function ζp(s) of Δp is defined by

ζp(s) =
∑
λi>0

1
λs
i

.

Definition 3.13. The analytic torsion T (Ω, ι) of the chain complex Ω with
an inner product structure ι is defined by

(3.20) log T (Ω, ι) = 1
2

N∑
p=0

(−1)p p ζ ′p(0).

The next theorem is one of the main results of this paper.

Theorem 3.14. We have

τ(Ω, ι) = T (Ω, ι).

This theorem was proved in [15, Proposition 1.7] for a special case when
the homology groups Hp are trivial. We use a modification of the argument
of [15] that works with arbitrary homology groups.

Proof. Observe that
ζ ′p(s) = −

∑
λi>0

(log λi)λ−s
i ,

whence

(3.21) ζ ′p(0) = −
∑
λi>0

(log λi) = − logDp,

where
Dp :=

∏
λi>0

λi

is the determinant of Δp restricted on the direct sum of the eigenspaces with
positive eigenvalues. In the view of (3.20) and (3.21), it suffices to prove that

(3.22) log τ(Ω, ι) = −1
2

N∑
p=0

(−1)p p logDp.
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As before, we use notations Bp = im ∂p+1 = ∂Ωp+1 and Zp = ker ∂p so that
Hp = Zp/Bp. Since any element of u ∈ Bp has the form u = ∂v for some
v ∈ Ωp+1, we have

(3.23) Δpu = ∂∗∂∂v + ∂∂∗u = ∂
(
∂∗u

)
∈ Bp.

Hence, Bp is an invariant subspace of Δp. Therefore, there exists an orthonor-
mal basis bp = {bip} of Bp that consists of the eigenvectors of Δp:

Δpb
i
p = βi

pb
i
p,

where βi
p are the corresponding eigenvalues. Since by (3.4) Bp is orthogonal

to Hp and all the eigenvectors of Δp with eigenvalue 0 belong to Hp, we have
βi
p > 0.

By (3.23) we have Δpb
i
p = ∂∂∗bip, whence

(3.24) ∂∂∗bip = βi
pb

i
p.

Set

b̃ip := 1
βi
p−1

∂∗bip−1 ∈ Ωp.

We have by (3.24)

∂b̃ip = 1
βi
p−1

∂∂∗bip−1 = 1
βi
p−1

· βi
p−1b

i
p−1 = bip−1

so that the sequences b̃p = {b̃ip} and bp−1 = {bip−1} satisfy the identity (3.7)
and, hence, can be used in the definition of R-torsion. Since also

∂∗b̃ip = 1
βi
p−1

∂∗∂∗bip−1 = 0,

we obtain
Δpb̃

i
p = ∂∗∂b̃ip + ∂∂∗b̃ip = ∂∗bip−1 + 0 = βi

p−1b̃
i
p.

Hence, b̃ip are the eigenvectors of Δp with eigenvalues βi
p−1. Moreover, the

sequence {b̃ip} is orthogonal because by (3.24) for i �= j

〈
b̃ip, b̃

j
p

〉
= 1

βi
p−1β

j
p−1

〈
∂∗bip−1, ∂

∗bjp−1
〉
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= 1
βi
p−1β

j
p−1

〈
∂∂∗bip−1, b

j
p−1

〉
= 1

βj
p−1

〈
bip−1, b

j
p−1

〉
= 0.

In the case i = j we obtain similarly

‖b̃ip‖2 = 1
βi
p−1

〈
bip−1, b

i
p−1

〉
= 1

βi
p−1

.

Note also that the vectors bip and b̃jp are necessarily orthogonal since

〈
bip, b̃

j
p

〉
= 1

βi
p−1

〈
bip, ∂

∗bjp−1
〉

= 1
βi
p−1

〈
∂bip, b

j
p−1

〉
= 0.

Let hp = {hi
p} be an orthonormal basis of Hp. Then the following sequence

(3.25) ωp = bp ∪
{√

βi
p−1 b̃

i
p

}
∪ hp

consists of the eigenvectors of Δp and is orthonormal. By construction, this
sequence is a basis in Ωp (see Section 3.2). It follows that all the positive
eigenvalues of Δp are {

βi
p−1

}
∪
{
βi
p

}
,

whence
Dp =

∏
i

βi
p−1

∏
i

βi
p.

Setting
Lk := log

∏
i

βi
k

we obtain
logDp = Lp−1 + Lp.

Using that LN = 0, we obtain

Lp−1 = (Lp−1 + Lp) − (Lp + Lp+1) + · · ·

=
N∑
q=p

(−1)q−p(Lq−1 + Lq) =
N∑
q=p

(−1)q−p logDq.(3.26)
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It follows from (3.25) that

[bp, b̃p, hp / ωp] =
∏
i

(
βi
p−1

)−1/2 = (Lp−1)−1/2.

Using the definition of τ(Ω, ι) and (3.26), we obtain

log τ(Ω, ι) =
N∑
p=0

(−1)p log[bp, b̃p, hp / ωp]

= −1
2

N∑
p=1

(−1)pLp−1

= −1
2

N∑
p=1

(−1)p
N∑
q=p

(−1)q−p logDq

= −1
2

N∑
q=1

q∑
p=1

(−1)q logDq

= −1
2

N∑
q=1

(−1)qq logDq,

which finishes the proof of (3.22).

4. Cartesian product of path complexes

4.1. Product of paths

Given two finite sets X, Y , consider their Cartesian product Z = X × Y . Let
z = z0z1 . . . zr be a regular elementary r-path on Z, where zk = (xk, yk) with
xk ∈ X and yk ∈ Y .

Definition 4.1. We say that the path z is step-like if, for any k = 1, . . . , r,
either xk−1 = xk or yk−1 = yk. In fact, exactly one of these conditions holds
as z is regular.

Any step-like path z on Z determines by projection regular elementary
paths x on X and y on Y . More precisely, x is obtained from z by taking the
sequence of all X-components of the vertices of z and then by collapsing in
it any subsequence of repeated vertices to one vertex. The same rule applies
to y. By construction, the projections x and y are regular elementary paths
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Figure 5: Left: a step-like path z and its projections x and y. Right: a staircase
S(z) and its elevation L(z) (here L(z) = 27).

on X and Y , respectively. If the projections of z = z0 . . . zr are x = x0 . . . xp
and y = y0 . . . yq then p + q = r (cf. Fig. 5(left)).

Every vertex zk = (xi, yj) of a step-like path z can be represented as a
point (i, j) of Z2 so that the whole path z is represented by a staircase S(z)
in Z

2 connecting the points (0, 0) and (p, q).

Definition 4.2. Define the elevation L(z) of the path z as the number of
cells in Z

2
+ below the staircase S(z) (the shaded area on Fig. 5(right)).

For given elementary regular p-path x on X and q-path y on Y , denote
by Πx,y the set of all step-like paths z on Z whose projections on X and Y
are x and y, respectively.

Definition 4.3. For regular elementary paths ex on X and ey on Y define
their cross product ex × ey as a path on Z as follows:

(4.1) ex × ey =
∑

z∈Πx,y

(−1)L(z)ez.

Then extend by linearly the definition of u × v to all regular paths u on X
and v on Y .

Clearly, if u ∈ Rp(X) and v ∈ Rq(Y ) then u × v ∈ Rp+q(Z). Moreover,
the cross product satisfies the product rule with respect to the boundary
operator ∂:

(4.2) ∂(u× v) = (∂u) × v + (−1)pu× (∂v)

(see [8, Prop. 6.3]).
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4.2. Product of path complexes and digraphs

Definition 4.4. Given two finite sets X and Y with path complexes P (X)
and P (Y ) over X and Y , respectively, define a path complex P (Z) over the
set Z = X × Y as follows: the elements of P (Z) are step-like paths on Z

whose projections on X and Y belong to P (X) and P (Y ), respectively. The
path complex P (Z) is called the Cartesian product of the path complexes
P (X) and P (Y ) and is denoted by P (X)�P (Y ).

In short: a path z on Z is allowed if it is step-like and if its projections on
X and Y are allowed. In particular, if x and y are elementary allowed paths
on X and Y , respectively, then all the paths z ∈ Πx,y are allowed on Z.

Definition 4.5. Let X and Y be digraphs. The Cartesian product Z = X�Y

of the digraphs X and Y is defined as a digraph with the vertices (x, y) where
x ∈ X and y ∈ Y , and arrows (x, y) → (x′, y′) where either x → x′ and y = y′

or x = x′ and y → y′.

For example, if a → a′ is an arrow in X and b → b′ is an arrow in Y then
they induce the following arrows in Z:

(a,b′)• −→ (a′,b′)•
↑ ↑

(a,b)• −→ (a′,b)•

Let P (X) and P (Y ) be the path complexes in X and Y , respectively, coming
from the digraph structures. It is easy to see that

P (X�Y ) = P (X)�P (Y ),

that is, the Cartesian product of the path complexes is compatible with the
Cartesian product of digraphs. The reader who is interested only in digraphs
can always think of X and Y as digraphs and of Z as their Cartesian product.

For a general path complex P (V ) over a set V we use the short notations

Ap

(
P (V )

)
≡ Ap(V ) and Ωp

(
P (V )

)
≡ Ωp(V ).

It follows from (4.1)

u ∈ Ap(X) and v ∈ Aq(Y ) ⇒ u× v ∈ Ap+q(Z).
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Moreover, (4.2) implies that

u ∈ Ωp(X) and v ∈ Ωq(Y ) ⇒ u× v ∈ Ωp+q(Z)

(see [8, Prop. 6.5], [10, Prop. 4.6]). Furthermore, the following Künneth for-
mula is true: for any r ≥ 0,

(4.3) Ωr(Z) =
⊕

{p,q≥0:p+q=r}
Ωp(X) ⊗ Ωq(Y ),

where ⊗ denotes the tensor product of linear spaces, and u⊗v for u ∈ Ωp(X)
and v ∈ Ωq(Y ) is identified with the element u × v of Ωr(Z) (see [8, Thm.
6.6] and [11, Thm. 6.6]).

4.3. Operators ∂∗ and Δ on products

For the standard inner product ι defined by (3.1) on each of the space R(X),
R(Y ) and R(Z) the following identity is known: if u ∈ Ap(X), v ∈ Aq(Y ),
ϕ ∈ Ap′(X) and ψ ∈ Aq′(Y ), then

〈u× v, ϕ× ψ〉ι =
(p+q

p

)
〈u, ϕ〉ι〈v, ψ〉ι

(see [10, Lemma 4.13]). This identity includes also the case when two paths
in the inner product have different length – in this case their inner product
is zero by definition. Hence, we have

1
(p + q)!〈u× v, ϕ× ψ〉ι = 1

p!〈u, ϕ〉ι
1
q!〈v, ψ〉ι.

In the case p′ = p and q′ = q we pass to the normalized inner product ι′ given
by (3.2) and obtain

(4.4) 〈u× v, ϕ× ψ〉ι′ = 〈u, ϕ〉ι′〈v, ψ〉ι′ .

This identity is true also if p′ �= p or q′ �= q as in these cases the both sides
vanish.

In the rest of this section we use the normalized inner product

〈, 〉 = 〈, 〉ι′

unless otherwise specified. In particular, we define the adjoint operator ∂∗

and the Hodge Laplacian with respect to the normalized inner product and
refer to them as normalized.
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Lemma 4.6. Let u ∈ Ωp(X) and v ∈ Ωq(Y ). Then for the normalized adjoint
operator we have

(4.5) ∂∗(u× v) = ∂∗u× v + (−1)pu×
(
∂∗v

)
.

Proof. By definition, we have, for any w ∈ Ωp+q+1(Z)〈
∂∗(u× v), w

〉
= 〈u× v, ∂w〉.

Any w ∈ Ω∗(Z) admits a representation

w =
∑
k

ϕk × ψk

where the sum is finite and

ϕk ∈ Ωpk(X) and ψk ∈ Ωqk(Y )

with pk + qk = p + q + 1 (see [8, Thm. 6.12], [10, Theorem 5.1]).
Then we have〈

∂∗(u× v), w
〉

=
〈
u× v,

∑
∂(ϕk × ψk)

〉
=
〈
u× v,

∑(
∂ϕk × ψk + (−1)pkϕk × ∂ψk

)〉
=
∑

〈u× v, ∂ϕk × ψk〉 + (−1)pk〈u× v, ϕk × ∂ψk〉
=
∑

〈u, ∂ϕk〉〈v, ψk〉 + (−1)pk〈u, ϕk〉〈v, ∂ψk〉
=
∑〈

∂∗u, ϕk

〉
〈v, ψk〉 + (−1)pk〈u, ϕk〉

〈
∂∗v, ψk

〉
.

Note that if pk �= p then
〈u, ϕk〉 = 0.

Hence, we can replace pk everywhere by p and obtain〈
∂∗(u× v), w

〉
=
∑〈

∂∗u, ϕk

〉
〈v, ψk〉 + (−1)p〈u, ϕk〉

〈
∂∗v, ψk

〉
=
∑〈

∂∗u× v, ϕk × ψk

〉
+ (−1)p

〈
u× ∂∗v, ϕk × ψk

〉
=
〈
∂∗u× v + (−1)pu× ∂∗v,

∑
ϕk × ψk

〉
=
〈
∂∗u× v + (−1)pu× ∂∗v, w

〉
,

whence
∂∗(u× v) = ∂∗u× v + (−1)pu× ∂∗v.
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Lemma 4.7. For the normalized Hodge Laplacian we have

(4.6) Δ(u× v) = (Δu) × v + u× Δv.

Proof. Let u ∈ Ωp(X) and v ∈ Ωq(X). Then we have

∂∂∗(u× v) = ∂
(
∂∗u× v + (−1)pu× ∂∗v

)
= ∂

(
∂∗u× v

)
+ (−1)p∂

(
u× ∂∗v

)
= ∂∂∗u× v + (−1)p+1∂∗u× ∂v

+ (−1)p
(
∂u× ∂∗v + (−1)pu× ∂∂∗v

)
= ∂∂∗u× v + (−1)p+1∂∗u× ∂v + (−1)p∂u× ∂∗v + u× ∂∂∗v

and

∂∗∂(u× v) = ∂∗(∂u× v + (−1)pu× ∂v
)

= ∂∗(∂u× v) + (−1)p∂∗(u× ∂v)
= ∂∗∂u× v + (−1)p−1∂u× ∂∗v

+ (−1)p
(
∂∗u× ∂v + (−1)pu× ∂∗∂v

)
= ∂∗∂u× v + (−1)p−1∂u× ∂∗v + (−1)p∂∗u× ∂v + u× ∂∗∂v.

Adding up the two identities and noticing that the terms ∂∗u×∂v and ∂u×∂∗v
cancel out, we obtain

Δ(u× v) = (Δu) × v + u× (Δv).

4.4. Torsion of products

Let P (V ) be a path complex on a set V with the maximal length N . As
before, let ι be the standard inner product structure on P (V ) given by (3.1)
and ι′ be the normalized inner product structure on P (V ) given by (3.2).
Consider the corresponding standard and normalized torsions:

T (V ) = T
(
Ω(V ), ι

)
and T ′(V ) = T

(
Ω(V ), ι′

)
.

In the same way we will use notation τ(V ) and τ ′(V ) for R-torsions with
respect to ι and ι′, respectively. Since T (V ) = τ(V ) and T ′(V ) = τ ′(V ), the
relation between T (V ) and T ′(V ) is given by (3.15) and (3.16).

Although the main object of interest for us is the standard torsion T (V ),
in this section we make an essential use of T ′(V ) as it behaves better with
respect to the Cartesian product.
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We need also the Euler characteristic of Ω(V ):

χ(V ) = χ
(
Ω(V )

)
=

N∑
p=0

(−1)p dim Ωp(V ) =
N∑
p=0

(−1)p dimHp(V ).

The next theorem is our main result about torsion on the product of path
complexes.

Theorem 4.8. If P (Z) = P (X)�P (Y ) then

(4.7) log T ′(Z) = χ(Y ) log T ′(X) + χ(X) log T ′(Y ).

Before the proof of Theorem 4.8, we need to do some preparations. In the
next lemmas we work with an arbitrary chain complex Ω with some inner
product structure ι. Let λ be an eigenvalue of the Hodge Laplacian Δp on
some chain complex Ω. Consider the eigenspace of λ and its subspaces:

Ep(λ) = {ϕ ∈ Ωp : Δpϕ = λϕ},
E′

p(λ) =
{
ϕ ∈ Ep(λ) : ∂ϕ = 0

}
,

E′′
p (λ) =

{
ϕ ∈ Ep(λ) : ∂∗ϕ = 0

}
.

In the case λ = 0 these three spaces are identical by Lemma 3.2. In the case
λ �= 0 the situation is different.

Lemma 4.9. Assume that λ �= 0. Then we have

E′
p(λ) =

{
ϕ ∈ Ωp : ∂∂∗ϕ = λϕ

}
,(4.8)

E′′
p (λ) =

{
ϕ ∈ Ωp : ∂∗∂ϕ = λϕ

}
(4.9)

and

(4.10) Ep(λ) = E′
p(λ)

⊕
E′′

p (λ).

Proof. Let us first prove (4.8). If ϕ ∈ E′
p(λ) then

λϕ = Δϕ = ∂∗∂ϕ + ∂∂∗ϕ = ∂∂∗ϕ.

Conversely, if ∂∂∗ϕ = λϕ then

∂ϕ = 1
λ
∂
(
∂∂∗ϕ

)
= 0
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and, hence, Δϕ = ∂∂∗ϕ = λϕ so that ϕ ∈ E′
p(λ). In the same way one proves

(4.9).
In order to verify (4.10), observe first that the space E′

p(λ) and E′′
p (λ) are

orthogonal because for any ϕ ∈ E′
p(λ) and ψ ∈ E′′

p (λ) we have

〈ϕ, ψ〉 = 1
λ2
〈
∂∂∗ϕ, ∂∗∂ψ

〉
= 1

λ2
〈
∂∂∂∗ϕ, ∂ψ

〉
= 0.

For any ϕ ∈ Ep(λ) we have(
∂∂∗)2ϕ = ∂∂∗(∂∂∗ϕ + ∂∗∂ϕ

)
= ∂∂∗Δϕ = λ∂∂∗ϕ,

which implies by (4.8) that ∂∂∗ϕ ∈ E′
p. Similarly, we have ∂∗∂ϕ ∈ E′′

p . Finally,
for any ϕ ∈ Ep(λ) we have

ϕ = 1
λ

Δϕ = 1
λ
∂∂∗ϕ + 1

λ
∂∗∂ϕ,

whence (4.10) follows.

Lemma 4.10. The operator λ−1/2∂ is an isometry of E′′
p (λ) onto E′

p−1(λ)
with the inverse λ−1/2∂∗.

Proof. Let ϕ ∈ E′′
p (λ) so that ∂∗ϕ = 0 and ∂∗∂ϕ = λϕ. For ψ = ∂ϕ we have

∂∂∗ψ = ∂∂∗∂ϕ = λ∂ϕ = λψ

whence ψ ∈ E′
p−1(λ). Hence, ∂ maps E′′

p (λ) into E′
p−1(λ). Let us verify that

λ−1/2∂ is an isometry. For ϕ ∈ E′′
p (λ) and ψ = λ−1/2∂ϕ we have

〈ψ, ψ〉 = 1
λ
〈∂ϕ, ∂ϕ〉 = 1

λ

〈
∂∗∂ϕ, ϕ

〉
= 〈ϕ, ϕ〉.

It remains to show that the mapping λ−1/2∂ is onto and has the inverse
λ−1/2∂∗. For any ψ ∈ E′

p−1(λ) we have ∂∗(∂∗ψ) = 0 and

Δp

(
∂∗ψ

)
=
(
∂∗∂ + ∂∂∗)∂∗ψ = ∂∗∂∂∗ψ = ∂∗(λψ) = λ∂∗ψ,

which implies ∂∗ψ ∈ E′′
p (λ). Since by (4.8) ∂∂∗ψ = λψ, we obtain

λ−1/2∂
(
λ−1/2∂∗ψ

)
= 1

λ
∂∂∗ψ = ψ.

and we conclude that λ−1/2∂ and λ−1/2∂∗ are mutually inverse.
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Let np(λ), n′
p(λ), n′′

p(λ) be the dimensions of spaces Ep(λ), E′
p(λ), E′′

p (λ),
respectively. It follows from Lemmas 4.9 and 4.10 that

n′
p−1(λ) = n′′

p(λ),
np(λ) = n′

p(λ) + n′′
p(λ).

As it follows from the definition of the Euler characteristic χ(Ω) and Hp
∼= Hp,

we have

χ(Ω) =
N∑
p=0

(−1)pnp(0).

Lemma 4.11. If λ > 0 then

N∑
p=0

(−1)pnp(λ) = 0.

Proof. We have

N∑
p=0

(−1)pnp(λ) =
N∑
p=0

(−1)pn′
p(λ) +

N∑
p=0

(−1)pn′′
p(λ)

=
N∑
p=0

(−1)pn′
p(λ) +

N∑
p=1

(−1)pn′
p−1(λ) + n′′

0(λ)

= (−1)Nn′
N (λ) + n′′

0(λ)
= 0.

Here n′
N (λ) = 0 because for every vector ϕ ∈ E′

N (λ) we have ∂∗ϕ = 0 and,
hence,

ϕ = 1
λ
∂∂∗ϕ = 0,

and n′′
0(λ) = 0 because for any ϕ ∈ E′′

0 (λ) we have ∂ϕ = 0 and, hence,

ϕ = 1
λ
∂∗∂ϕ = 0.

Now we can prove Theorem 4.8. The idea of proof is borrowed from [15,
Thm. 2.5].

Proof of Theorem 4.8. The zeta function ζp,X(s) of Δp on X can be repre-
sented in the form

ζp,X(s) =
∑
λ>0

λ−snp(λ,X),
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where the sum is taken over all distinct positive eigenvalues λ of Δp and
np(λ,X) is the multiplicity of λ. Similar formulas hold for ζq,Y (s) and ζr,Z(s).

Let u ∈ Ωp(X) be an eigenvector of Δp with eigenvalue λ and v ∈ Ωq(Y )
be an eigenvector of Δq with eigenvalue μ. It follows from (4.6) that u ×
v ∈ Ωp+q(Z) is an eigenvector of Δp+q with eigenvalue λ + μ. If {ui} is an
orthonormal basis in Ωp(X) consisting of the eigenvectors of Δp and {vj}
is an orthonormal basis in Ωq(Y ) consisting of the eigenvectors of Δq then
the sequence {ui × vj} is orthonormal by (4.4) and, hence, forms a basis in
Ωp(X) ⊗ Ωq(Y ).

Let us fix r ≥ 0 and recall that by the Künneth formula (4.3) Ωr(Z) is a
direct sum of the spaces Ωp(X)⊗Ωq(Y ) over all pairs p, q ≥ 0 with p+ q = r.
Hence, collecting all the bases in Ωp(X) ⊗ Ωq(Y ) of the form {ui × vj} we
obtain an orthonormal basis in Ωr(Z). This basis consists of the eigenvectors
of Δr in Ωr(Z). Hence, all the eigenvalues of Δr in Ωr(Z) have the form λ+μ
where λ is an eigenvalue of Δp in Ωp(X), μ is an eigenvalue of Δq in Ωq(Y ),
and the multiplicity of λ + μ is np(λ,X)nq(μ, Y ).

Hence, we obtain

(4.11) ζr,Z(s) =
∑

λ+μ>0

∑
p+q=r

(λ + μ)−snp(λ,X)nq(μ, Y ).

It follows that∑
r≥0

(−1)rrζr,Z(s)

=
∑

λ+μ>0
(λ + μ)−s

∑
p≥0

∑
q≥0

(−1)p+q(p + q)np(λ,X)nq(μ, Y )

=
∑

λ+μ>0
(λ + μ)−s

(∑
p≥0

(−1)pp np(λ,X)
)(∑

q≥0
(−1)qnq(μ, Y )

)
(4.12)

+
∑

λ+μ>0
(λ + μ)−s

(∑
p≥0

(−1)pnp(λ,X)
)(∑

q≥0
(−1)qq nq(μ, Y )

)
.(4.13)

By Lemma 4.11, if λ > 0 then∑
p≥0

(−1)pnp(λ,X) = 0

and if μ > 0 then ∑
q≥0

(−1)qnq(μ, Y ) = 0.



738 Alexander Grigor’yan et al.

Hence, in (4.12)–(4.13) all the terms with λ > 0 and μ > 0 vanish, and we
obtain

∑
r≥0

(−1)rrζr,Z(s) =
∑

λ>0,μ=0
λ−s

(∑
p≥0

(−1)pp np(λ,X)
)(∑

q≥0
(−1)qnq(0, Y )

)

+
∑

μ>0,λ=0
μ−s

(∑
p≥0

(−1)pnp(0, X)
)(∑

q≥0
(−1)qq nq(μ, Y )

)
= χ(Y )

∑
p≥0

(−1)ppζp,X(s) + χ(X)
∑
q≥0

(−1)qqζq,Y (s).

Taking derivative of the both sides at s = 0 and using the definition of analytic
torsion, we obtain

(4.14) log T ′(Z) = χ(Y ) log T ′(X) + χ(X) log T ′(Y ).

The Künneth formula (4.3) implies that

χ(Z) = χ(X)χ(Y ),

which will be used in the next statement.
For any n ≥ 2 define on the set X�n = X × · · · ×X︸ ︷︷ ︸

n times

the following path

complex
P
(
X�n) = P (X)� · · ·�P (X)︸ ︷︷ ︸

n times

= P (X)�n.

Corollary 4.12. We have

(4.15) log T ′(X�n) = nχ(X)n−1 log T ′(X).

Proof. Denote log T ′(X�n) = xn and χ(X) = a. Then χ(Xn) = an, and we
have by (4.14)

xn+1 = axn + anx1.

For n = 1 (4.15) is trivial. Assuming the induction hypothesis xn = nan−1x1,
we obtain

xn+1 = nanx1 + anx1 = (n + 1)anx1,

which finishes the proof by induction.
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Example 4.13. Let G be a cyclic digraph with m vertices from Example 3.12.
For n ≥ 2 the product G�n can be regarded as an analogue of a torus. Since
χ(G) = 0, we obtain from (4.15) that, for any n ≥ 2,

T ′(G�n) = 1.

Recall for comparison that T ′(G) = T (G) = m.
Before we can compute T (G�n), let us verify that

(4.16) dim Ωp

(
G�n) =

(n
p

)
mn.

Indeed, for n = 1 this is true because

dim Ω0(G) = dim Ω1(G) = m.

Assuming that (4.16) is true for some n, we obtain by the Künneth formula
(4.3)

dim Ωr

(
G�(n+1)) =

∑
p+q=r

dim Ωp

(
G�n) dim Ωq(G)

= m dim Ωr

(
G�n)+ m dim Ωr−1

(
G�n)

= m
(n
r

)
mn + m

( n
r−1
)
mn

= mn+1(n+1
r

)
.

In the same way, using that

dimH0(G) = dimH1(G) = 1,

we obtain that
dimHp

(
G�n) =

(n
p

)
.

Hence, by (3.15) we obtain

T
(
G�n) = T ′(G�n) n∏

p=0
(p!)

1
2 (−1)p(dimΩp−dimHp)

=
n∏

p=2
(p!)

1
2 (−1)p(np)(mn−1).

In particular, we have T (G�2) = 2 1
2 (m2−1).
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Example 4.14. For the interval I = 0• → •1. we have by Example 3.9
T ′(I) =

√
2 and χ(I) = 1. Consider the n-dimensional digraph cube I�n. In

the case n = 2 it coincides with the square from Example 3.11, in the case
n = 3 this digraph is shown on Fig. 6.

Figure 6: The cube I�3.

By (4.15) we obtain

log T ′(I�n) = n log
√

2

whence
T ′(I�n) = 2n/2.

Let us compute the torsion T (I�n) of the cube with respect to the standard
inner product ι. For that let us first verify that

(4.17) dim Ωp

(
I�n) = 2n−p(n

p

)
.

We have

dim Ω0(I) = 2, dim Ω1(I) = 1 and dim Ωp(I) = 0 for p ≥ 2

so that (4.17) holds for n = 1. For the inductive step from n to n+1, observe
that I�(n+1) = I�n�I. By the Künneth formula (4.3) we have

dim Ωr

(
I�(n+1)) =

∑
p+q=r

dim Ωp

(
I�n) dim Ωq(I)

= 2 dim Ωr

(
I�n)+ dim Ωr−1

(
I�n)

= 2n+1−r(n
r

)
+ 2n−r+1( n

r−1
)
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= 2n+1−r(n+1
r

)
,

which finishes the proof of (4.17). In the same way one obtains that

dimH0
(
I�n) = 1 and dimHp

(
I�n) = 0 for all p ≥ 1.

Hence, by (3.15) we obtain

T
(
I�n) = T ′(I�n) n∏

p=0
(p!)

1
2 (−1)p(dimΩp−dimHp)

= 2n/2
n∏

p=2
(p!)

1
2 (−1)p2n−p(np).

For example, we have

T
(
I�2) = 2

√
2, T

(
I�3) = 16

3
√

3, T
(
I�4) = 2048

81
√

6, etc.

Corollary 4.15. If P (Z) = P (X)�P (Z) then

log T (Z) = χ(Y ) log T (X) + χ(X) log T (Y )(4.18)

+ 1
2
∑
p,q≥1

(−1)p+q log
(p+q

p

)[
dim Ωp(X) dim Ωq(Y )

− dimHp(X) dimHq(Y )
]
.

Proof. We use the R-torsions τ and τ ′ defined with respect to the inner prod-
ucts ι and ι′, respectively. By Theorems 3.14 and 4.8 we have

(4.19) log τ ′(Z) = χ(Y ) log τ ′(X) + χ(X) log τ ′(Y ).

By (3.15) we have

log τ ′(X) = log τ(X) − 1
2
∑
p

(−1)p dim Ωp(X) log(p!)

+ 1
2
∑
p

(−1)p dimHp(X) log(p!),

where summation is taken over all p ≥ 0. Similar identities hold for Y and Z.
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Substituting into (4.19), we obtain

log τ(Z) − χ(Y ) log τ(X) − χ(X) log τ(Y )

(4.20)

= 1
2
∑
r

(−1)r dim Ωr(Z) log(r!) − 1
2
∑
r

(−1)r dimHr(Z) log(r!)

− 1
2χ(Y )

∑
p

(−1)p dim Ωp(X) log(p!)+ 1
2χ(Y )

∑
p

(−1)p dimHp(X) log(p!)

− 1
2χ(X)

∑
q

(−1)q dim Ωq(Y ) log(q!)+ 1
2χ(X)

∑
q

(−1)q dimHq(Y ) log(q!)

Denote for simplicity

xp = dim Ωp(X), yq = dim Ωq(Y ), zr = dim Ωr(Z).

By the Künneth formula we have

zr =
∑

p+q=r

xpyq.

It follows that∑
r

(−1)rzr log(r!) − χ(Y )
∑
p

(−1)pxp log(p!) − χ(X)
∑
q

(−1)qyp log(q!)

=
∑
r

(−1)r
∑

p+q=r

xpyq log(r!) −
∑
q

(−1)qyq
∑
p

(−1)pxp log(p!)

−
∑
p

(−1)pxp
∑
q≥0

(−1)qyp log(q!)

=
∑
p,q

(−1)p+qxpyq log
(
(p + q)!

)
−
∑
p,q

(−1)p+qxpyq log(p!)

−
∑
p,q

(−1)p+qxpyq log(q!)

=
∑
p,q

(−1)p+qxpyq log
(p+q

p

)
.

Note that the summation here can be restricted to p, q ≥ 1 since otherwise
log

(p+q
p

)
= 0. A similar formula takes place for dimHp instead of dim Ωp.

Substituting into (4.20) we obtain (4.18).
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Example 4.16. Let us compute the torsions of the digraph Z = I�Y where
I is the interval from Example 4.14 and Y is the triangle from Example 3.10
(see Fig. 7).

Figure 7: A prism digraph I�Y .

By Examples 3.9 and 3.10, we have χ(I) = χ(Y ) = 1 and

T ′(I) =
√

2, T ′(Y ) =
√

3/2.

Hence, we obtain by (4.7)

T ′(Z) = T ′(I)χ(Y )T ′(Y )χ(I) =
√

2
√

3/2 =
√

3.

Since Hp(I) and Hp(Y ) are non-trivial only for p = 0, we obtain by (4.18)

log T (Z) = χ(Y ) log T (I) + χ(I) log T (Y )

+ 1
2

1∑
p=1

2∑
q=1

(−1)p+q log
(p+q

p

)
dim Ωp(I) dim Ωq(Y )

= log
√

2 + log
√

3 + 1
2 log

(
2
1

)
· 1 · 3 − 1

2 log
(

3
1

)
· 1 · 1

= log
(√

2
√

323/23−1/2) = log 4,

so that
T (Z) = 4.
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5. Join of path complexes

5.1. Augmented chain complex

Let P be a path complex over a set V as in Section 2.1. In that section we have
constructed a chain complex R = {Rp}p≥0 with the boundary operator ∂,
and the space R−1 was defined as {0}. In this section we change the definition
of R−1 as follows. For any elementary 0-paths ei redefine ∂ by

∂ei = e

where e is an empty path that by definition has the length −1. Set R−1 =
spanR{e} ∼= R and consider the augmented chain complex R̃ = {Rp}p≥−1
where the operator ∂ still satisfies ∂2 = 0. Consequently, we obtain also the
augmented chain complex Ω̃ = {Ωp}p≥−1 of ∂-invariant paths, where Ωp with
p ≥ 0 is as before and Ω−1 = R−1, as well as the reduced homology groups
{H̃p}p≥−1 where H̃−1 = {0}, H̃p = Hp for p ≥ 1 and H0 ∼= H̃0 ⊕ R. The
reduced Euler characteristic is

(5.1) χ̃(P ) =
∑
p≥−1

(−1)p dim Ωp =
∑
p≥−1

(−1)p dim H̃p = χ(P ) − 1.

Denote by 〈, 〉 the standard inner product in Rp defined by (3.1) in the
case p ≥ 0 and by 〈e, e〉 = 1 for p = −1. If u ∈ Rp and v ∈ Rq with p �= q
then set 〈u, v〉 = 0. As before, we denote by ι the standard inner product
structure in R̃.

5.2. Join of path complexes and digraphs

Let V be a finite set.

Definition 5.1. For any paths u ∈ Rp(V ) and v ∈ Rq(V ) with p, q ≥ −1
define their join u · v ∈ Rp+q+1(V ) as follows: first set

ei0...ip · ej0...jq = ei0...ipj0...jq

and then extend this definition by linearity.

In particular, we have ei0...ip · e = ei0...ip . The following product formula
holds for the chain complex R̃(V ):

(5.2) ∂(u · v) = (∂u) · v + (−1)p+1u · (∂v),
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(see [11, Lemma 2.2] and [10, Lemma 2.4]).
Let X, Y be two finite disjoint sets, set Z = X � Y . Then all paths on X

and Y can be considered as paths on Z. It follows easily from definition of
u · v that

u ∈ Rp(X) and v ∈ Rq(Y ) ⇒ u · v ∈ Rp+q+1(Z).

Also, for the standard inner product 〈, 〉 given by (3.1), we have

(5.3) 〈u · v, ϕ · ψ〉 = 〈u, ϕ〉〈v, ψ〉,

for all u ∈ Rp(X), v ∈ Rq(Y ), ϕ ∈ Rp′(X) and ψ ∈ Rq′(X) (see also [10,
Lemma 3.10]).

Let us extend the property (2.4) of the definition of a path complex P also
to n-paths with n = 0, that is, we allow in (2.4) also n = 0. Then necessarily
the empty path e belongs to P .

Definition 5.2. Let P (X) and P (Y ) be two path complexes over finite dis-
joint sets X and Y , respectively. Define the chain complex P (Z) over the
set Z = X � Y as follows: P (Z) consists of all the paths of the form u · v
where u ∈ P (X) and v ∈ P (Y ). The path complex P (Z) is called the join of
P (X), P (Y ) and is denoted by P (Z) = P (X) ∗ P (Z).

Clearly, P (X) and P (Y ) are subsets of P (Z).

Definition 5.3. If X and Y are digraphs then define their join as a digraph
Z = X ∗ Y where the set of vertices is X � Y and the set of arrows consists
of all arrows of X, all arrows of Y as well as of all arrows of the form x → y
where x ∈ X and y ∈ Y .

It is easy to see that

P (X ∗ Y ) = P (X) ∗ P (Y )

so that the operation of join of digraphs is compatible with join of path
complexes (cf. [11]).

It is clear from the definition of P (Z) that

u ∈ Ap(X) and v ∈ Aq(Y ) ⇒ u · v ∈ Ap+q+1(Z).

It follows from (5.2) that, for all p, q ≥ −1,

u ∈ Ωp(X) and v ∈ Ωq(Y ) ⇒ u · v ∈ Ωp+q+1(Z)
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(see [11, Prop 5.4]). Furthermore, the following version of the Künneth for-
mula is true for join: for any r ≥ −1

(5.4) Ωr(Z) =
⊕

{p,q≥−1:p+q+1=r}
Ωp(X) ⊗ Ωq(Y ),

where u⊗ v for u ∈ Ωp(X) and v ∈ Ωq(Y ) is identified with the element u · v
of Ωr(Z) (see [11, Thm. 5.5]).

As a consequence of (5.4) we obtain that

(5.5) χ̃(Z) = −χ̃(X)χ̃(Y ),

where the minus comes from the additional 1 in r = p + q + 1.

5.3. Operators ∂∗ and Δ on joins

We always assume in what follows that all the spaces Rp under consideration
are endowed with the standard inner product (3.1), in particular, (5.3) is
satisfied.

Lemma 5.4. Let u ∈ Ωp(X) and v ∈ Ωq(Y ). Then

(5.6) ∂∗(u · v) =
(
∂∗u

)
· v + (−1)p+1u ·

(
∂∗v

)
.

Proof. By definition, we have, for any w ∈ Ωp+q+2(Z)〈
∂∗(u · v), w

〉
= 〈u · v, ∂w〉.

Any w ∈ Ω∗(Z) admits a representation

w =
∑
k

ϕk · ψk,

where the sum is finite and

ϕk ∈ Ωpk(X) and ψk ∈ Ωqk(Y )

with pk + qk + 1 = p + q + 2 (see [10, Thm. 5.1] and [11, Thm. 5.15]). Then
we have using (5.3)

〈
∂∗(u · v), w

〉
=
〈
u · v,

∑
∂(ϕk · ψk)

〉
=
〈
u · v,

∑(
∂ϕk · ψk + (−1)pk+1ϕk · ∂ψk

)〉
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=
∑

〈u · v, ∂ϕk · ψk〉 + (−1)pk+1〈u · v, ϕk · ∂ψk〉
=
∑

〈u, ∂ϕk〉〈v, ψk〉 + (−1)pk+1〈u, ϕk〉〈v, ∂ψk〉
=
∑〈

∂∗u, ϕk

〉
〈v, ψk〉 + (−1)pk+1〈u, ϕk〉

〈
∂∗v, ψk

〉
.

Note that if pk �= p then 〈u, ϕk〉 = 0. Hence, we can replace pk everywhere by
p and obtain〈

∂∗(u · v), w
〉

=
∑〈

∂∗u, ϕk

〉
〈v, ψk〉 + (−1)p+1〈u, ϕk〉

〈
∂∗v, ψk

〉
=
∑〈

∂∗u · v, ϕk · ψk

〉
+
〈
(−1)p+1u · ∂∗v, ϕk · ψk

〉
=
〈
∂∗u · v + (−1)p+1u · ∂∗v,

∑
ϕk · ψk

〉
=
〈
∂∗u · v + (−1)p+1u · ∂∗v, w

〉
,

whence (5.6) follows.

For the Hodge Laplacian

Δu = ∂∂∗u + ∂∗∂u

we have then the following identity.

Lemma 5.5. For all u ∈ Ωp(X) and v ∈ Ωq(X) we have

(5.7) Δ(u · v) = (Δu) · v + u · Δv.

Proof. Indeed, by (5.6) we have

∂∂∗(u · v) = ∂
(
∂∗u · v + (−1)p+1u · ∂∗v

)
= ∂

(
∂∗u · v

)
+ (−1)p+1∂

(
u · ∂∗v

)
= ∂∂∗u · v + (−1)p+2∂∗u · ∂v

+ (−1)p+1(∂u · ∂∗v + (−1)p+1u · ∂∂∗v
)

= ∂∂∗u · v + (−1)p∂∗u · ∂v + (−1)p+1∂u · ∂∗v + u · ∂∂∗v

and by (5.2)

∂∗∂(u · v) = ∂∗(∂u · v + (−1)p+1u · ∂v
)

= ∂∗(∂u · v) + (−1)p+1∂∗(u · ∂v)
= ∂∗∂u · v + (−1)p∂u · ∂∗v

+ (−1)p+1(∂∗u · ∂v + (−1)p+1u · ∂∗∂v
)
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= ∂∗∂u · v + (−1)p∂u · ∂∗v + (−1)p+1∂∗u · ∂v + u · ∂∗∂v.

Adding up the two identities, we see that the terms ∂∗u · ∂v and ∂u · ∂∗v
cancel out, and we obtain (5.7).

5.4. Torsion of joins

Let P be a path complex over a set V with the standard inner product
structure ι given by (3.1). By means of the augmented chain complex Ω̃(P ),
let us define the reduced analytic torsion T̃ (P ) by

log T̃ (P ) = log T
(
Ω̃(P ), ι

)
= 1

2

N∑
p=−1

(−1)p p ζ ′p(0).

In the previous sections we used the standard analytic torsion T (P ) given by

log T (P ) = log T
(
Ω(P ), ι

)
= 1

2

N∑
p=0

(−1)p p ζ ′p(0).

The relation between T (P ) and T̃ (P ) is given by the following formula.

Lemma 5.6. We have

(5.8) T (P ) =
√
|V |T̃ (P ).

Proof. The zeta function ζp(s) is determined by the operator Δp that is the
same for the chain complexes Ω and Ω̃ for all p ≥ 1. For p = 0 the operators
Δp are different for these two complexes, but the value p = 0 does not give
any contribution to the analytic torsions. Hence, the difference is determined
by p = −1, that is,

(5.9) log T̃ (P ) = log T (P ) + 1
2 ζ ′−1(0).

For e ∈ Ω−1 we have ∂e = 0 and

∂∗e =
∑
i∈V

ei,

because for any i 〈
∂∗e, ei

〉
= 〈e, ∂ei〉 = 〈e, e〉 = 1.
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Hence,
Δe = ∂∂∗e + ∂∗∂e = ∂

∑
i∈V

ei = |V |e.

Therefore, ζ−1(s) = |V |−s and ζ ′−1(0) = − log |V |. Substituting into (5.9) we
obtain

(5.10) log T̃ (P ) = log T (P ) − 1
2 log |V |,

which is equivalent to (5.8).

The next theorem is our main result about torsion on joins.

Theorem 5.7. For the join path complex P (Z) = P (X) ∗ P (Y ) we have

(5.11) log T̃ (Z) = −χ̃(Y ) log T̃ (X) − χ̃(X) log T̃ (Y ),

where χ̃ is the reduced Euler characteristic.

Proof of Theorem 5.7. The proof is similar to that of Theorem 4.8. Let Ep(λ)
be the eigenspace of Δp with the eigenvalue λ, and set

np(λ) = dimEp(λ).

Lemmas 4.9 and 4.10 go unchanged also for the augmented chain complex
Ω̃ = {Ωp}p≥−1. The same argument as in the proof of Lemma 4.11 gives for
any λ > 0 that

(5.12)
N∑

p=−1
(−1)pnp(λ) = 0,

because n′′
−1(λ) = 0: indeed, for any ϕ ∈ E′′

−1(λ) we have ∂ϕ = 0 and, hence,
ϕ = 1

λ∂
∗∂ϕ = 0.

Arguing as in the proof of Theorem 4.8 and using the Künneth formula
(5.4) we obtain in place of (4.11) the following identity:

ζr,Z(s) =
∑

λ+μ>0

∑
p+q+1=r

(λ + μ)−snp(λ,X)nq(μ, Y )

for any r ≥ −1. It follows that∑
r≥−1

(−1)rrζr,Z(s)
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=
∑

λ+μ>0
(λ + μ)−s

∑
p≥−1

∑
q≥−1

(−1)p+q+1(p + q + 1)np(λ,X)nq(μ, Y )

= −
∑

λ+μ>0
(λ + μ)−s

∑
p≥−1

(−1)pp np(λ,X)
∑
q≥−1

(−1)qnq(μ, Y )(5.13)

−
∑

λ+μ>0
(λ + μ)−s

∑
p≥−1

(−1)pnp(λ,X)
∑
q≥−1

(−1)qq nq(μ, Y )(5.14)

−
∑

λ+μ>0
(λ + μ)−s

∑
p≥−1

∑
q≥−1

(−1)p+qnp(λ,X)nq(μ, Y ).(5.15)

By (5.12), if λ > 0 then ∑
p≥−1

(−1)pnp(λ,X) = 0

and if μ > 0 then ∑
q≥−1

(−1)qnq(μ, Y ) = 0.

Hence, the double sum in (5.15) is equal to zero, while in (5.13)–(5.14) all the
terms with λ > 0 and μ > 0 vanish. We obtain∑
r≥−1

(−1)rrζr,Z(s) = −
∑

λ>0,μ=0
λ−s

∑
p≥−1

(−1)pp np(λ,X)
∑
q≥−1

(−1)qnq(0, Y )

−
∑

μ>0,λ=0
μ−s

∑
p≥−1

(−1)pnp(0, X)
∑
q≥−1

(−1)qq nq(μ, Y )

= −χ̃(Y )
∑
p≥−1

(−1)ppζp,X(s) − χ̃(X)
∑
q≥−1

(−1)qqζq,Y (s).

Taking derivative of the both sides at s = 0 and using the definition of analytic
torsion, we obtain (5.11).

For the standard analytic torsion T we obtain the following.

Corollary 5.8. We have

log T (Z) = −χ̃(Y ) log T (X) − χ̃(X) log T (Y )

+ 1
2 log |Z| + χ̃(Y )

2 log |X| + χ̃(X)
2 log |Y |.(5.16)

Proof. Using (5.8) and (5.1), we obtain

log T (Z) = 1
2 log |Z| + log T̃ (Z)
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= 1
2 log |Z| −

(
χ̃(Y ) log T̃ (X) + χ̃(X) log T̃ (Y )

)
= 1

2 log |Z| − χ̃(Y )
(

log T (X) − 1
2 log |X|

)
− χ̃(X)

(
log T (Y ) − 1

2 log |Y |
)

= 1
2 log |Z| + χ̃(Y )1

2 log |X| + χ̃(X)1
2 log |Y |

− χ̃(Y ) log T (X) − χ̃(X) log T (Y ).

For any n ≥ 2 define on the set X∗n = X � · · · �X︸ ︷︷ ︸
n times

the following path

complex
P
(
X∗n) = P (X) ∗ · · · ∗ P (X)︸ ︷︷ ︸

n times

= P (X)∗n.

Corollary 5.9. For Y = X∗n we have

(5.17) log T̃ (Y ) = n
(
−χ̃(X)

)n−1 log T̃ (X)

and

log T (Y )=n
(
1−χ(X)

)n−1 log T (X)− 1
2n
(
1 − χ(X)

)n−1 log |X|+ 1
2 log(n|X|).

(5.18)

Proof. Denote log T̃ (X∗n) = xn and −χ̃(X) = a. Then −χ̃(X∗n) = an, and
we have by (5.11)

xn+1 = axn + anx1.

By induction we obtain xn = nan−1x1, which proves (5.17).
Using (5.8) (or (5.10)) and (5.1), we obtain from (5.17)

log T
(
X∗n) = log T̃

(
X∗n)+ 1

2 log
∣∣X∗n∣∣

= n
(
1 − χ(X)

)n−1
(

log T (X) − 1
2 log |X|

)
+ 1

2 log
(
n|X|

)
,

whence (5.18) follows.

For example, if χ(X) = 0 then (5.18) yields

(5.19) log T
(
X∗n) = n log T (X) − n− 1

2 log |X| + 1
2 log n,
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if χ(X) = 1 then (5.18) yields

(5.20) T
(
X∗n) =

√
n|X|,

and if χ(X) = 2 then

(5.21) log T
(
X∗n) = n(−1)n−1 log T (X) + 1 + n(−1)n

2 log |X| + 1
2 log n.

Example 5.10. Let O = {•} be a trivial digraph of one vertex. It is easy to
see that χ(O) = 1. The join O ∗O = O∗2 is the interval I from Example 3.9,
the join O ∗ I = O∗3 is the triangle from Example 3.10. More generally, O∗n

can be regarded as an (n− 1)-dimensional digraph simplex (see Fig. 8).

Figure 8: Simplex O∗4 = I∗2.

From (5.20) we obtain that

T
(
O∗n) =

√
n.

For example, T (O∗3) =
√

3 as we have seen in Example 3.10.

Example 5.11. Consider the digraph D = {•, •} consisting of two dis-
joint vertices. The join D∗2 is a quadrilateral, and D∗3 is an octahedron
(see Fig. 9). The digraph D∗n can be regarded as a digraph analogue of an
(n− 1)-dimensional sphere.

We have χ(D) = 2 and τ(D) = T (D) = 1. By (5.21) we obtain that

log T (
(
D∗n) = 1 + n(−1)n

2 log 2 + 1
2 log n,

that is
T
(
D∗n) =

√
n2

1+n(−1)n
2 .
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Figure 9: The octahedron D∗3 is shown in two ways. The green subgraph
is D∗2.

For example,
T
(
D∗2) =

√
22

3
2 = 4

and

T
(
D∗3) =

√
32−1 =

√
3

2 .

Example 5.12. Let G be a cyclic digraph from Example 3.12 with m vertices.
Since χ(G) = 0 and T (G) = m, we obtain by (5.19)

log T
(
G∗n) = n logm− n− 1

2 logm + 1
2 log n

and
T
(
G∗n) =

√
nm

n+1
2 .
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