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Stability of Minkowski spacetime in exterior regions

DAWEI SHEN

Abstract: In 1993, the global stability of Minkowski spacetime has
been proven in the celebrated work of Christodoulou and Klain-
erman [5] in a maximal foliation. In 2003, Klainerman and Nicold
[14] gave a second proof of the stability of Minkowski in the case
of the exterior of an outgoing null cone. In this paper, we give
a new proof of [14]. Compared to [14], we reduce the number of
derivatives needed in the proof, simplify the treatment of the last
slice, and provide a unified treatment of the decay of initial data.
Also, concerning the treatment of curvature estimates, we replace
the vectorfield method used in [14] by the rP-weighted estimates
of Dafermos and Rodnianski [7].
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1. Introduction
1.1. Einstein vacuum equations and the Cauchy problem

A Lorentzian 4-manifold (M, g) is called a vacuum spacetime if it solves the
Einstein vacuum equations:

(1.1) Ric(g) =0 in M,

where Ric denotes the Ricci tensor of the Lorentzian metric g. The Ein-
stein vacuum equations are invariant under diffeomorphisms, and therefore
one considers equivalence classes of solutions. Expressed in general coordi-
nates, (1.1) is a non-linear geometric coupled system of partial differential
equations of order 2 for g. In suitable coordinates, for example so-called wave
coordinates, it can be shown that (1.1) is hyperbolic and hence admits an
initial value formulation.

The corresponding initial data for the Einstein vacuum equations is given
by specifying a triplet (X, g, k) where (X, g) is a Riemannian 3-manifold and
k is the traceless symmetric 2-tensor on X satisfying the constraint equations:

R= kP - (trk)?,

(1.2) ,
Djk‘ij = Di(tl“ k‘),
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where R denotes the scalar curvature of g, D denotes the Levi-Civita connec-
tion of g and

|k|? = 70"k ap kg, trk = gijki]—.

In the future development (M, g) of such initial data (X, g,k), X C M is a
spacelike hypersurface with induced metric g and second fundamental form k.

The seminal well-posedness results for the Cauchy problem obtained in
[3, 4] ensure that for any smooth Cauchy data, there exists a unique smooth
maximal globally hyperbolic development (M, g) solution of Einstein equa-
tions (1.1) such that ¥ C M and g, k are respectively the first and second
fundamental forms of ¥ in M.

The prime example of a vacuum spacetime is Minkowski space:

M =R* g = —dt* + (dz")? + (d2?)? + (dz®)?,
for which Cauchy data are given by
¥ =R3, g = (da')? + (do*)? + (dz®)?, k=0.

In the present work, we consider the problem of the stability of Minkowski
spacetime and start with reviewing the literature on this problem.

1.2. Previous works of the stability of Minkowski spacetime

In 1993, Christodoulou and Klainerman [5] proved the stability of Minkowski
for the Einstein-vacuum equations, a milestone in the domain of mathemat-
ical general relativity. In 2003, Klainerman and Nicolo [14] gave a second
proof of this result in the exterior of an outgoing cone. Moreover, Klainerman
and Nicolo [15] showed that under stronger asymptotic decay and regular-
ity properties than those used in [5, 14|, asymptotically flat initial data sets
lead to solutions of the Einstein vacuum equations which have strong peeling
properties. Given that the goal of this paper is to provide a new proof of the
stability of Minkowski in the exterior region, we will state the results of [5]
and [14] in Section 1.3.

The proofs in [5] and [14] are based respectively on the maximal foliation
and the double null foliation. Lindblad and Rodnianski [21, 22] gave a new
proof of the stability of the Minkowski spacetime using wave-coordinates and
showing that the Einstein equations verify the so called weak null structure in
that gauge. Bieri [1] gave a proof requiring less derivative and less vectorfield
compared to [5]. Huneau [12] proved the nonlinear stability of Minkowski
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spacetime with a translation Killing field using generalised wave-coordinates.
Using the framework of Melrose’s b-analysis, Hintz and Vasy [10] reproved the
stability of Minkowski space. Graf [9] proved the global nonlinear stability of
Minkowski space in the context of the spacelike-characteristic Cauchy problem
for Einstein vacuum equations, which together with [14] allows to reobtain [5].

There are also stability results concerning Einstein’s equations coupled
with non trivial matter fields:

e Einstein-Maxwell system: Zipser [31] extended the framework of [5] to
show the stability of the Minkowski spacetime solution to the Einstein—
Maxwell system. In [24], Loizelet used the framework of [21, 22] to
demonstrate the stability of the Minkowski spacetime solution of the
Einstein-scalar field-Maxwell system in (1 + n)-dimensions (n > 3).
Speck [26] gave a proof of the global nonlinear stability of the (1 + 3)-
dimensional Minkowski spacetime solution to the coupled system for a
family of electromagnetic fields, which includes the standard Maxwell
fields.

e Einstein-Klein-Gordon system: Lefloch-Ma [20] and Wang [29] proved
the global stability of Minkowski for the Einstein-Klein-Gordon system
with initial data coinciding with the Schwarzschild solution with small
mass outside a compact set. Ionescu and Pausader [13] proved the global
stability of Minkowski for the Einstein-Klein-Gordon system for general
initial data.

e Einstein-Vlasov system: Taylor [27] considered the massless case where
the initial data for the Vlasov part is compactly supported on the mass
shell. Fajman, Joudioux and Smulevici [8] considered the massive case
where the initial data coincides with Schwarzschild in the exterior region
and with compact support assumption only in space on the Vlasov
part. Lindblad and Taylor [23] considered the massive case where the
initial data has compact support for the Vlasov part. Bigorgne, Fajman,
Joudioux, Smulevici and Thaller [2] considered the massless case for
general initial data. Wang [30] considered the massive case for general
initial data.

1.3. Minkowski stability in [5] and [14]
We recall in this section the results in [5, 14]. First, we recall the definition

of a mazximal hypersurface, which plays an important role in the statements
of the main theorems in [5, 14].



Stability of Minkowski spacetime in exterior regions 763

Definition 1.1. An initial data (X, g, k) is posed on a mazimal hypersurface
if it satisfies

(1.3) trk = 0.

In this case, we say that (3, g, k) is a mazimal initial data set, and the con-
straint equations (1.2) reduce to

(1.4) R=[k]*,  divk=0, trk=0.

We introduce the notion of s-asymptotically flat initial data.

Definition 1.2. Let s be a real number with s > 3. We say that a data set

(0, 9, k) is s-asymptotically flat if there exists a coordinate system (z*, 22, x3)

defined outside a sufficiently large compact set such that*

1

2M\ ! .
(1 5) gZ] = (1 — T) d’I"Q + 7"2d0'g2 + 04(7"77),

s+1

kij = 03(7'_ 2 )

We also introduce the following functional associated to any asymptoti-
cally flat initial data set:

Jo(S0,.k) =sup ((d§ + 1)°| Ric?) / Z 02+ 1)+ Dk
3
(1.6) ’ =10
+/ Z g+ 1)"**|D'BJ?,
Ol 0

where dy is the geodesic distance from a fixed point O € ¥y, and B;; =

(curl T%)ij is the Bach tensor, R is the traceless part of Ric. Now, we can state
the main theorems of [5] and [14].

Theorem 1.3 (Global stability of Minkowski space [5]). There exists an
€ > 0 sufficiently small such that if Jo(Xo, g, k) < €2, then the initial data set
(30,9, k), 4-asymptotically flat (in the sense of Definition 1.2) and mazximal,
has a unique, globally hyperbolic, smooth, geodesically complete solution. This
development is globally asymptotically flat, i.e. the Riemann curvature tensor
tends to zero along any causal or space-like geodesic. Moreover, there exists a

'The notation f = o;(r~™) means 8% f = o(r—"1°l), |a| < 1.
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global mazimal time function t and an optical function u? defined everywhere
in an external region.

Theorem 1.4 (Minkowski Stability in the exterior region [14]). Consider
an initial data set (Yo, g, k), 4-asymptotically flat and mazximal, and assume
Jo(X0, g, k) is bounded. Then, given a sufficiently large compact set K C ¥
such that ¥ \ K is diffeomorphic to R®\ By, and under additional smallness
assumptions, there exists a unique development (M,g) with the following
properties:

(1) (M,g) can be foliated by a double null foliation {Cy} and {C,} whose
outgoing leaves Cy are complete. -

(2) We have detailed control of all the quantities associated with the double
null foliations of the spacetime, see Theorem 3.7.1 of [14].

Remark 1.5. [15] extends Theorem 1.4 to the case s > T by assuming suffi-
cient reqular initial data (X, g, k).

The goal of this paper is to reprove [14] by a different method and to
treat more general asymptotic behavior than s =4 in (1.5).

1.4. Rough version of the main theorem

In this section, we state a simple version of our main theorem. For the explicit
statement, see Theorem 3.1.

Theorem 1.6 (Main Theorem (first version)). Let s > 3, and let an initial
data set (X, g, k) which is s-asymptotically flat in the sense of Definition 1.2.
Let a sufficiently large compact set K C ¥g such that 3o\ K is diffeomorphic
to R3\ By. Assume that we have a smallness conditions in an initial layer
region IC(O)3 near Yo \ K. Then, there exists a unique future development
(M, g) in its future domain of dependence with the following properties:

e (M, g) can be foliated by a double null foliation (Cy, C,,) whose outgoing
leaves Cy are complete for all u < ug; -

o We have detailed control of all the quantities associated with the double
null foliations of the spacetime, see Theorem 3.1.

Remark 1.7. In the particular case s = 4, we reobtain the results of [14].
Also, in the case s > T, we reobtain the strong peeling properties of [15].

2An optical function u is a scalar function satisfying g*?d,udzu = 0.
3The initial data layer K(o) is defined in Section 2.1.2.
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The proof of Theorem 1.6 has the same structure as in [14], see Section 3.4.

Below, we compare the proof of this paper and that of [14]:

1.

In [14], the functional (1.6) is introduced to fix the initial conditions on
the initial hypersurface. Here we fix the initial conditions in an initial
layer region K(g) near the initial hypersurface ¥.

2. To estimate the norms of curvature components, [14] uses the vectorfield

method introduced in [5]. Here, we estimate the curvature norms by rP-
weighted estimate, a method introduced by Dafermos and Rodnianski
in [7]. This allows for a simpler treatment of the curvature estimates.

3. [14] uses second order derivatives of curvature and third order deriva-

tives of Ricci coefficients. Thanks to the use of rP-weighted estimates, we
only need first order derivatives of both curvature and Ricci coefficients.

4. In order to control one more derivative for Ricci coefficients compared

to curvature, [14] relies on the canonical foliation on the last slice C.,.
Since we control the same number of derivatives of curvature and Ricci
coefficients, instead of introducing the canonical foliation, we use the
geodesic foliation to simplify the estimates on the last slice C.,.

1.5. Structure of the paper

e In Section 2, we recall the fundamental notions and the basic equations.
e In Section 3, we present the main theorem. We then state intermediate

results, and prove the main theorem. The rest of the paper focuses on
the proof of these intermediary results. In Sections 4-6, we consider the
case s € [4,6] and deal with the other cases in Appendices B and C.

e In Section 4, we apply rP-weighted estimates to Bianchi equations to

control curvature.

e In Section 5, we estimate the Ricci coefficients using the null structure

equations.

e In Section 6, we estimate the norms of curvature components and Ricci

coefficients in the initial layer region K and on the last slice C,. We
also show how to extend the spacetime in the context of a bootstrap
argument.

e In Appendix A, we prove the equivalence between optical functions and

area radius associated to various frames used in the proof.

e In Appendix B, we prove Theorem 1.6 in the case s € (3,4).
e In Appendix C, we prove Theorem 1.6 in the case s > 6 by applying

the rP-weighted method to the Teukolsky equation of a.
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2. Preliminaries
2.1. Geometric set-up

2.1.1. Double null foliation We first introduce the geometric setup. We
denote (M, g) a spacetime M with the Lorentzian metric g and D its Levi-
Civita connection. Let u and u be two optical functions on M, that is

g(grad u, grad u) = g(grad u, grad u) = 0.

The spacetime M is foliated by the level sets of u and u respectively, and
the functions u,u are required to increase towards the future. We use C, to
denote the outgoing null hypersurfaces which are the level sets of v and use
', to denote the incoming null hypersurfaces which are the level sets of w.
We denote

(2.1) S(u,u) == C,NC,y,
which are space-like 2-spheres. We introduce the vectorfields L and L by
L:=—gradu, L := —gradu.

We define a positive function €2 by the formula

1

g(Laé) == _ﬁa

where € is called the lapse function. We then define the normalized null pair
(e3,e4) by
€3 = QQL, €4 = QQL,

and define another null pair by
ﬂ = Qeg, N = 964.

On a given two sphere S(u,u), we choose a local frame (e1,e3), we call
(e1,e2,e3,e4) a null frame. As a convention, throughout the paper, we use
capital Latin letters A, B, C, ... to denote an index from 1 to 2 and Greek
letters a, 3,7, ... to denote an index from 1 to 4, e.g. e4 denotes either ey
or es.

The spacetime metric g induces a Riemannian metric v on S(u,u). We
use V to denote the Levi-Civita connection of v on S(u, ). Using (u

), W
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introduce a local coordinate system (u, u, o) on M with e4(¢) = 0. In that
coordinates system, the metric g takes the form:

(22) g=—20%*du® du+ du ® du) + yap(de? — b du) @ (dp? — bPdu),

and we have
N =0, +b, N =0,  b:=0%.

We recall the null decomposition of the Ricci coefficients and curvature com-
ponents of the null frame (eq, es, €3, ¢e4) as follows:

X5 = 8(Daes, ep), xaB = g(Daey, ep),
§,= %g(Dses,eA), fa= %g(D4e4,eA),
(2.3) w = ig(D:a@?n €4), w = ig(D464, e3),
Ny = %g(DzLes,eA)a na = %g(D3647€A)a
Ca= %g(DeA€4,63)7
and
aap = R(ea, eq, B, e4), asp = Rlea,es,ep, e3),
(2.4) Ba = %R(GA,€4,63,64), B, = %R(GA,€3,63,64),
p= 1R(€3,€4,63,64), o= Z*R(€3,€4,€3,€4),

where *R. denotes the Hodge dual of R. The null second fundamental forms
X, x are further decomposed in their traces tr x and try, and traceless parts
X and X:

=R 1

try := 6P yas, XAB = XAB — §5AB trx,
. 1

trx == 5ABXA37 Xap ::XAB_§5ABHX'

We define the horizontal covariant operator V as follows:

1 1
VxY :=DxY — §X<X’ Yes — §X(X, Y)es.
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We also define V4 X and V3X to be the horizontal projections:

1 1
V4X = D4X — ig(X’ D463)€4 — §g(X, D4€4)€3,

1 1
VgX = D5X — ig(X, D363)63 — ig(X’ D364)64.

A tensor field ¢ defined on M is called tangent to S if it is a priori defined
on the spacetime M and all the possible contractions of ¢ with either ez or
ey are zero. We use V31 and V49 to denote the projection to S(u,u) of usual
derivatives D31 and Dyt). As a direct consequence of (2.3), we have the Ricci
formulas:

1

1
Dyep = Vaep + SXABES T 5X 454

Daes = x ,geB + Caes,
Daes = xapep — Caea,
Dses = Viea +naes + & eq,
(2:5) Dyes = Viea +1n eq+ Eaey,
Dses = —2wes + 2§ gep,
Dsey = 2wey + 2npep,
Dyey = —2wey + 2€pep,

D4€3 = 2&)63 + 2ﬂB€B.

In addition to

(2.6) {=¢£=0,

the following identities hold for a double null foliation:

1 1 1
ViegQ=5(n+n),  w=-;DilogQ),  w=-7Ds(log®),
n=C+VlgQ, n=-C+VlogQ,

(2.7)

see for example (6) in [17].

2.1.2. Initial layer region Let ¥y be a spacelike hypersurface. Let K C
¥ be a compact subset such that ¥ \ K is diffeomorphic to R?\ B; where
B is the unit closed ball in R3. We fix a foliation on the initial hypersurface
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Yo \ K by the level sets of a scalar function w. The leaves are denoted by

(2.8) Sioy(w1) = {p € Lo/ w(p) = w1},

where w; € R. We assume that

(2.9) OK ={p € X/ w(p) = wp}, K ={peXy/wlp) <w},

where wyq is the area radius of 0K defined by

0K

2.10 = —.
( ) wo 47

We can construct a double null foliation in a neighborhood of ¥4\ K. For this,
we denote T' the normal vectorfield of ¥y oriented towards the future and N
the unit vectorfield tangent to g, oriented towards infinity and orthogonal
to the leaves Sp(w). We define two null vectors on ¥y \ K by

(2.11) Loy = Nw)(T+N),  L:=N(w)(T - N).

We extend the definition of L) and L to a neighborhood of ¥y \ K by the
geodesic equations:

(2.12) Dr, Lo =0 DrL=0.

The lapse function €)(g) is defined by

1

(2.13) gLy L) = .

(0) QQ(O)Q
Then, we define two optical functions u ) and u satisfying the initial condi-
tions

“(0)|20\K =W Q}EO\K =W,
and the equations
L(O) = — grad U(0), L = — grad u.

Recall that u(g) +u = 0 on g \ K, we define the region

(2.14) Ky == {pr/ 0 < ug)(p) + u(p) < 26},
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where 0 < dg < 1 is a constant. We call KC(g) the initial layer region of height
do, the double null foliation (u(),w) is called the initial layer foliation. Its
leaves are denoted by

S(O) (U(O) ’ u) = (C(O))U(O) N Qﬁ'

We define

(2.15) wi= =0 in K,

which extend the definition of w from Yo\ K to KC(g). Moreover, we transport
the coordinates d)é]) from Yo\ K to K(g) by L(gb{[‘))) = 0. Hence, we deduce that

the metric g in K(g) takes the following form in the (u, (), gf)(}))) coordinates
system:
g = —2Q0)*(du ® dug) + du(g) ® du)

2.16
(210 + (7(0)) 4B (do(g), — b du) (do ) — b7 du),

where
b = Q(0) (64)(0) (fﬁ‘(%))

2.1.3. Bootstrap region Now, we define the bootstrap region and its dou-
ble null foliation. We choose a value u, > wg, then w = u, defines a leaf of
Yo\ K, denoted by Sp(u,). We construct an incoming cone C, called the last
slice from Sp(u,). We denote

(2.17) L,i=L

C )

~x

which is fixed by (2.11) and (2.12). Notice that L, is a generator of C,. We
denote u* an affine parameter, that is a function defined on C, satisfying

(2.18) L.(u) =2

Thus, C, is endowed with a geodesic foliation of affine parameter u*. For every
u, {u* = u} is a sphere on C,. We can therefore construct an outgoing cone
from {u* = u} to the past, denoted by C,,. Then, C,, N Y is a sphere on ¥,
which does a priori not coincide with the leaves of ¥4\ K, see Figure 1. There
exists a unique cone C,,, located outside of the J*(K), the causal future of
K, but touch the boundary 0K, see Figure 1. By (2.18), u* is unique up to
a constant. We choose uy = —wg where wy is defined in (2.10). Combining
with (2.18), this fixes u*.
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w = const

P

Figure 1: The leaves of .

Remark 2.1. Remark that we fix u* by choosing the value near OK. We do
not have

*
U So(u,) = ~Us-

The reason is that we need to integrate the quantities in the initial layer
forward instead of backward. This will lead to a logarithm difference which is
sufficient to prove the equivalences, see Appendix A.

Now we define the null vector L on C, by the relation
Hence, we have €2 = % on C,. By the equations

(2.20) —gradu =L, ulo

we can extend u to the causal past of C',. So we have constructed a double
null foliation (u,w) which is geodesic on C,. For every (u, u), we denote

(2.21) Viu,u) == J(S(u,u)) N J(Zo),

where for a domain M, J™(M) and resp. J~ (M) denotes the causal future
and resp. causal past of M. We also denote the bootstrap region by

(2.22) K :=V(up,u,).
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Remark that K is covered by the double null foliation (u,u), and that the
boundaries of K are:

1. a finite region of ¥y \ K;
2. a portion of an outgoing cone Cy, where Cy := {p € K|u(p) = uo};
3. a portion of the last slice C,.

Note that we have the following types of manifolds in this paper: space-
time regions K and Ky, initial hypersurface ¥y, and the spheres S(u,u)
and S (u(0), ). Every manifold has its metric, Levi-Civita connection and
curvature tensor:

(K,g,D,R), (K(0)8(0) D0y, R0)); (0,9, D, R),
(Svfyvva)a (5(0)77(0)7v(0)7K(0))a

where K (resp. K(g)) is the Gauss curvature of S (resp. S(g)).
2.2. Integral formulas

We define the S-average of scalar functions.

Definition 2.2. Given any scalar function f, we denote its average and its
average free part by

_ 1 - _
= — d N = — |.
fompg fdn T=r-T
The following lemma follows immediately from the definition.
Lemma 2.3. For any two scalar functions u and v, we have
U0 =UT + U,

and
w — W0 = W0+ ud + (W — W) .
We recall the following integral formulas, which will be used repeatedly

in this paper.

Lemma 2.4. For any scalar function f, the following equations hold:

e ([ ga) = [ @alp+ounn b
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Qes (/S(u&) fdv) = /S(u&) (Qes(f) +Qtrxf) dy

Taking f =1, we obtain

Qtry _Qtrx
20 B

<

eq(r) =

where r is the area radius defined by

_ |S(u )]
) = 2
Proof. See Lemma 2.26 of [16] or Lemma 3.1.3 of [14]. O

Corollary 2.5. For any scalar function f, the following equations hold:

Proof. Applying Lemma 2.4, we infer

Qes(f) = Qey (ﬁ/fdv)
Qj‘;f' /fd +15\/ (Qes(f) + Qtryf) dy

= 27 0er) + Qv g

= —Qtrx f+ Qes(f) + Qtrx f
= Qea(f) + Qe f,

which implies the first identity. The second identity can be obtained similarly.
This concludes the proof of Corollary 2.5. O

2.3. Hodge systems
Definition 2.6. For tensor fields defined on a 2-sphere S, we denote by

50 1= 60(5) the set of pairs of scalar functions, s1 := s1(S) the set of 1-forms
and s9 1= 89(S) the set of symmetric traceless 2-tensors.
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Definition 2.7. Given £ € s1, we define its Hodge dual

“€q = €aBE”.
Clearly *¢ € 51 and
(7)) = ¢
Given U € s9, we define its Hodge dual

C
*UAB = EAcU B-

Observe that *U € s9 and
*U) =-U.

Definition 2.8. Given £, 1 € s1, we denote
g 1= 5AB§AUB?

§ A n = EAB§A7]B7
(En)ap = Eanp + Epna — daBE 1.

Given & € 51, U € 84, we denote
(& U)a:=0"“¢pUac.
Given U,V € so, we denote
(UAV)ap =€ UpcVip.

Definition 2.9. For a given £ € s1, we define the following differential op-
erators:

div € := 648V 45,
curl € := €2BV 4¢3,
(V&E)ap = Valp + Viéa — dap(dive).

Definition 2.10. We define the following Hodge type operators, as introduced
in section 2.2 in [5]:

e d; takes s1 into so and is given by:

di& = (div &, curl§),
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e dy takes sy into s1 and is given by:
(doU)a := VPUyp,
o dj takes sy into 51 and is given by:

&i(f, f)a = =Vaf+ €ap Vi,

o d5 takes 51 into 5o and is given by:
* I~

We have the following identities:

did; = —A1 + K, dyd} = —Ay,

(2.23)

1
dydy = —3 Ao + K, dody = —= (A1 + K).

1

2
where K denotes the Gauss curvature on S. See for example (2.2.2) in [5] for
a proof of (2.23).

Definition 2.11. We define the weighted angular derivatives  as follows:

QSU = rdyU, YU € s9,
i‘g = rdlé—? \V/f S 51,
Bf =rdif, Vf € 5.

We denote for any tensor h € s, k=0,1,2,
KO =n, Y= (h,n).
2.4. Elliptic estimates for Hodge systems

Definition 2.12. For a tensor field f on a 2-sphere S, we denote its LP-
norm:

(221 s = ([ 10)

Proposition 2.13 (L? estimates for Hodge systems). Assume that S is an
arbitrary compact 2-surface with positive bounded Gauss curvature. Then the
following statements hold for all p € (1,+00):
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1. Let ¢ € s¢ be a solution of A¢ = f. Then we have

IV20lps + 7 HVGlps + 7720 — dlps S | flps-

2. Let £ € 51 be a solution of di§ = (f, f«). Then we have

(VElp.s + T_1|5|p,5 S fo)lp,s-

3. Let U € 85 be a solution of doU = f. Then we have
IVUlps + Tﬁl’U‘p,S S| flps-

Proof. See Corollary 2.3.1.1 of [5]. O
2.5. Schematic notation I'y, I', and T’

We introduce the following schematic notations for the Ricci coefficients.

Definition 2.14. We divide the Ricci coefficients into three parts:

r,:= {77, n, ¢, X, Qtry, Qtry, @, VlogQ} ,
Fb = {Xa Q}a

2 2
Iy =Jw, w, try ——, trx+—.
r. = r
We also denote:

LY = (rV)='Ty U {rp,rp,ra},
r{Y = (rV)='Ty U {rB},
V.= (»v)s'0, U {rp}.

Remark 2.15. The justification of Definition 2.14 has to do with the expected
decay properties of the Ricci coefficients, see Lemma 4.1.

Remark 2.16. In the sequel, we choose the following conventions:

e [For a quantity h satisfying the same or even better decay as I';, for
t=g,b,a, we write

hel;,, t1=g,ba.
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e For a sum of schematic notations, we ignore the terms which have same
or even better decay. For example, we write

Iy +Ty =1y, Iy+T, =T,
since I'y has better decay than I'y and I'q throughout this paper.
2.6. Null structure equations

We recall the null structure equations for a double null foliation, see for ex-
ample (3.1)-(3.5) of [17].

Proposition 2.17. We have the null structure equations:
Van=—=x-(n—mn) =5,

Vn=—x-(n—n)+5,
ViX + (trx)X = —2wX — «a,

1 -
Vatrx + 5 (trx)?* = =[x]* — 2wtry,

V3X + (trx)X = —2wX — a,
1 ~
(2.25) Viatry + 5(1@)2 = —|x* - 2wtry,
~ 1 - ~ N o~
Vax + §(tr><)x = V&n + 2wx — - (trx)X + n®1,

N DN

-1 . ~ N o~
VX + 5 (tr )X = V& + 2wy — 5 (trx)X +n@n,

1 ~ ~ .
V4trx+§(trx)trxzZwtrx—i-Qp—X‘X+2dlvg+2m|2,
1 ~ -~ .
Vgtrx+§(trx)trx:2gtrx+2p—x-z+2d1v77+2[77|2.

We have the Codazzi equations:

1 1
divy ==Vtrxy—(- (5{— —trx> -0,
2 2
(2.26) 1 )
divy = EVtrXJrC- (2— §trx) + 3,
the torsion equation:
I
(2.27) curlp = —curlp =0 + X A X,

2
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and the Gauss equation:

1 1
(2.28) K:—ZUXUX‘F§X'X—P~
Moreover,
3 1 1 1
Vaw = 2ww + 20 —nl* = 2 —n) - (n+1) = ZIn+nl* + 5 p,
4 4 8 2
(2.29)
3 , 1 1 , 1
Viw =2ww + Z[n=n"+ (n=n)- (n+n) = cln+nl"+ 5p.
4 4 8 2
Proof. See Section 7.4 of [5]. O

2.7. Bianchi equations

We recall the Bianchi equations in double null foliation, see Proposition 3.2.4
of [14].

Proposition 2.18. In a double null frame, the Bianchi equations take the
form

1 -
Vaa+ 5 trya = —V&pB + hlay],

—

hlau] = dwa = 3(Xp — "Xo) + (¢ — 4n)®P,
V3B +2trxB = —diva + h[ﬁg],
hiB,) = —2wB + (2¢ = 1) - a,
VuB+trxf=—-Vp+*Vo+h[b],
h[ﬁd =2wB+2X-5—=3np—"no),

3
Vsp + itrxp: —div 8 + h[ps],

R S

3
Vap + 5 trxp = div § + hlpd],

pi] = —5R -+ B+ 205,

3
Vo + 5 trxo = —div*J + h[os],

—_

hlog] = X -"a— (- " +2n-"p,

\)



Stability of Minkowski spacetime in exterior regions 779

Vo + gtrxa = —div*f + hlo4],

o) = 3% "0 = C-"p— 25,
V3B +trxB = Vp+"Vo+h[Bs],
h[Bs] = 2wB +2X - B+ 3(np + "no),
Vb +2trxfB = diva + h[B4],
h[Bs] = —2wp + (2¢ + n)a,
Via + %trla = V&B + hlas),

hlas] = dwa = 3(Xp + *Xo) + (¢ + 4n)&P.
We also derive equations for p and p.
Lemma 2.19. We have the following equations:
Vap+trxB=-Vp+*"Vo+h[B,],
V3B +trxB = Vp+ Vo + h[Bs],
Vsp + gtrxﬁ: —div 3 + h[ps],
hps] := Ty - B+ hlps] — hlps],
Vsp+ gtr@ = h[ps,
hlps] =T 'ﬁ+m,
Va4 e = div 5+ )
h[pa] := Ty - p+ hlpa] — hlpa],

3
Vap+ S trxp = h{pal,

hlps] =Ty - p+ hlpal,

where h[B,], h[Bs], hlps| and h|ps] are defined in Proposition 2.18.

Proof. Note that Vg = Vp, hence the first two equations follow directly from
Proposition 2.18. On the other hand, applying Corollary 2.5, we infer

QOV3p=Qtrxp+ QVsp

3 -
= —§Qtrxp—f2divﬁ+h[p3] +T,-p
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Qtrxp+hlps] +5-VQ+Ty-p,

Qtrxp+hlps] + 1y - B.

So, we have

V3p + Ly B+ hlps],

3.
— Ur
g TAP

which implies the fourth equation. Combining with the equation of Vgp in
Proposition 2.18, we infer

trxp=—divB+Ty- B+ hlps] — hps],

DN W

Vsp+

which implies the third equation. The proof of the fifth and sixth equations
are similar. This concludes the proof of Lemma 2.19. O

We rewrite the Bianchi equations of Proposition 2.18 and Lemma 2.19 in
the following Corollary.

Corollary 2.20.

1 -
Via+ 5 trya = —V@p§ + hlay]
Vs +2trxB = —divg+h[§3]

Vi +trx8=-Vp+ Vo +h[s],

)
)

. 9 - . -
Vs3p + S trxp = —div 8 + hps],

2
S D -
Vap + 5 trxp =div s + h{pal,
_ 3, _
Vap + 5 trxp = h[ps),

B
Vap + 5 trxp = h{pa],

V3o + ;trxa = —div*3 + h[o3],

3
Vo + §trxa = —div "5 + hlod],

V3B +trxB = Vp+"Vo + h[Bs],
Vaf +2trxf8 = diva + h[B4),
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1 —~
Via + 3 tr xya = V73 + hlas],
where hlay], h[B,], ..., hlas] are defined in Proposition 2.18 and Lemma 2.19.

2.8. Commutation identities

We recall the following commutation identities for scalar functions, see Propo-
sition 4.8.1 in [14].
Proposition 2.21. For any scalar function f, we have:
Vi, VIf = =x- V[ + (Vg Q)V.f,
[Vs,VIf==x V[ + (Vg Vsf,
Va4, Vi3] f =20wV3f — 2wV, f —4(- V.
The following corollary is a direct consequence of Proposition 2.21.

Corollary 2.22. For any scalar function f, we have:

[QVy, V]f = —Qx -V,
[QV3, V]f = —Qx -V,
QVy,rV]f =T, -rVf,
]

[QVs3,rV]f =Ty -rVf.

We also need the commutation identities for more general tensor fields.
For this, we record the following commutation lemma.

Lemma 2.23. Let Uy, a, be an S-tangent k-covariant tensor on (M, g).
Then

Va4, VBlUa,..a, = — xBcVcUa, . a, + Fipa,.. a,,
Fipa,..a, =(Cs +15)VaUa,
k
+ > (Xanle — xBel, + €ac Bp)Uar.c..ar
=1

[Vs3,VBlUa,..a, = = XpoVeUa,..a, + F3a;...ay,

k

+D (X4 510 = Xpe 4t €a,c "Bp)Ua, 0. Ay
=1
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Vs, ValUa, .., =F344,..4,
Fs4a,..4, = —2wV3U 4+ 2wV, U + 4(gV U4, . 4,

k
+2 Z(QA,- no —ny, net €ac 0)Ua,.c.. A
i=1 '
Proof. 1t is a direct consequence of Lemma 7.3.3 in [5]. O

Notice that Lemma 2.23 implies the following proposition.

Proposition 2.24. We have the following simple schematic consequences of
the commutator identities

[PV, QVy] =Ty - rV + T,
[rV,QVs] =T} rV + TV,
[V, QVs] =Ty -V +r'T.

2.9. Teukolsky equations
We state the following Teukolsky equations first derived by Teukolsky in the
linearized setting in [28].
Proposition 2.25. We have the following Teukolsky equations for o and a:
(2.30)
2Q

QV3(QV4(rQ2a)) + 2r02dydy (2%a) = —7V3(7“an) +(Ty - (8,a) D,

202
OV4(QV5(r2a)) + 2rQd5dy (QPa) = ~=Va(rQ%a) + (I - (a, ).

Proof. See for example Propositions 3.4.6 and 3.4.7 in [6].* O

Lemma 2.26. We define the following quantities:

1
&= —4V4(T5a) € 59, ¢ = rdya € 51,

(2.31) 7“1
@ = T—4V3(7‘5g) € 59, % = rdyc € 51.

*Remark that Q =1+ O(e) in [6] while © = 3 + O(e) in this paper.



Stability of Minkowski spacetime in exterior regions 783

Then, we have the following equations:

4
Vid = —2d3+ — + Ty (8,0) 0 + T - (8,0),

(2.32) 5
Vagh+ 5 trx g = dade + T - (B,0)V +Ty - & +T( - (8.a),
and
. ., da
Vid = =2d3h + — + To - (8,0)") + (T - (8,0),
(2.33) "

)
Vagh + 5 tr g = dad + Lo - (B,2) + Ty &+ (T - (8,2) M.
Proof. We have from (2.30)
4
V3(Vy(ra)) + 2rdydsa = —;V3(T06) +T,-(B,0)M + F(gl) (B, ).

Hence, we have

Vsd = V3(r—'Va(r’a))
= Vs(r~(4rdes(r)ra + r4V4(mz))
= Vs(da + Va(ra)) + Ta - (5,0)V + TV (5,0)

)
4
= —rVsa+ V5Va(ra) + Iy - (8,0)M +TM - (8,a)
4 4
= ;Vg(roz) - 463(7‘)% — 2rdydac — ;Vg(ra)
+ T (8,0) M +TM - (8,0)

4oy
= — =2 +Ta (B,0)V + TV - (8, 0),

which implies the first equation in (2.32). Applying Proposition 2.24, we have

QOVad = QVy (r*5(rd2(r5a)))
= —5r 7 5Qey(r)r° (rda) o + rPQV yrds (1°0)
= —?rdga + 1 rdyr ™ (QV4(rPa)) + To - (B, )M + T - (8, )
:—gﬂux¢+9@&+F (B,0)M + Ty &+ T - (8, 0),

which implies the second equation in (2.32). The proof of (2.33) is similar.
This concludes the proof of Lemma 2.26. O
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2.10. Sobolev inequalities

Definition 2.27. For a tensor field h on a null cone C, we define its L?-fluz:

(2.34) Il = ( | W)%.

We recall the following Sobolev inequalities.

Proposition 2.28. Let F' be a tensor field, tangent to S := S(u,u) at every
point. We have the following estimates:

rFlas S I Fl2.cunvw + 1TV Ell2,000v i + 17VaEll2,conv ww)
1 1
[r2|ul? Flas S IFll2.c v + 1PV Fl2.c avw + [ulIV3Ellzc aviw)-

—u —u —u

Proof. See Corollary 3.2.1.1 in [5] and Corollary 4.1.1 in [14]. O
We also recall the following standard Sobolev inequalities.

Proposition 2.29. Let F be a tensor field on a 2-sphere S. Then, we have

1
suprz|F| S |Flas + [rVF|ys.
5
Proof. See Lemma 4.1.3 of [14]. O

2.11. Evolution lemma

We recall the following evolution lemma, which will be used repeatedly in
Sections 5 and 6.3.

Lemma 2.30 (Evolution lemma). Consider the spacetime K foliated by a
double null foliation (u,u). Assume that, for e > 0 small enough, we have

€
(2.35) Tyl < ot
Then, the following holds:

1. Let U, F be k-covariant S-tangent tensor fields satisfying the outgoing
evolution equation

(2.36) ViU + XtrxU = F,
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where Ao > 0. Denoting \y = 2(X\g — %), we have along C,,
(2'37) ’TAIULD,S(MM) S/ |TA1U‘P,S(U7Q*) + /7* ‘TAlF‘pvs(u7Q/)dﬂ/'
u

Here u, is the value that the function u(p) assumes on C.,.
2. Let V, F be k-covariant and S-tangent tensor fields satisfying the incom-
ing evolution equation

(2.38) V3V+)\0trXV :E.

Denoting A\ = 2(\g — %), we have along C,,

u
(2.39) V] s(u, 1) S 1MV s o) w) + / ( )I?"ME\p,s(U’,u)dU’,
uolu

where S(ug(u), u) = Cyuyu) NC, and uo(w) is the unique value of u such
that S(u,u) is in the future of ¥o and touches .

Proof. See Lemma 4.1.5 in [14]. O
3. Main theorem
3.1. Fundamental norms

Our result holds for s-asymptotically flat initial data sets in the sense of
Definition 1.2 with s > 3. We will focus on the case s € [4,6] in Sections 3
to 6, and we postpone the necessary adaptations to the case s € (3,4) and
s > 6 to Appendices B and C. The norms in Sections 3.1.1-3.1.4 are defined
with respect to the foliation (u,u) in K while the norms in Section 3.1.5 are
defined with respect to the foliation (u(g),u) in K.

3.1.1. R norms (curvature) We define the norms of Ricci coefficients in
the bootstrap region K. We denote

Ry =TR[]+ R3[Bl, R =R{[Bl+ R[5 o] + RSB+ Ri [a] + R5 (7,

where

S s+3
Ry [a] :==sup sup |r 2
K pel24]

2
P lp,S(uu),
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ROS[/B] ‘= Sup Ssup |T2 p|u| ﬁ|p,5’(uu)a
K pel2,4]

Rg[ﬁ] ;= sup sup ]7'5;2
K pe(2,4]

1
‘u’ 2/B|p,5(u,g)>

~ -2, 523 O
R[5, 0] :=sup sup [r°7|ul> (5,0)|p.50uw);
K pel2,4]

Eg[é] ‘= sup Sup |7” |’LL| B|p S(u,u)>
K pel2,4]

s+1

2 Ay S(uw):

RS L 1-2
Rila) :==sup sup |r rlu
K pel2,4]

E%W=%W%,

where the LP-norms are defined in Definition 2.12. Then we define the norms
of flux of curvature components. We denote

R =Ry + Ry,
where
Ru=Ro+Ri +Ri, Ry =Ro+Ri+Ry,

with

Ro = (Rola]® + RolB] + Rol(7,0)]> + RolB)?,

Ro = (RolB2 + Rol(5. o) + RolB]? + Rola?)? |

Ri = (Ralal® + Ra[B + Ru[(5,0)]* + Ra[B)? + Rafaa]?)?

Ry = (Ry[B] + Ryl(5, 0))2 + Ry[B) + Rylal? + Rylas?)?,
and

Roq[w] == Sl}ép Ro1[w](u, w),
Roq[w] = s%pKOJ[w](mg).
It remains to define R,[w](u,u) and R, [w](u,u) for ¢ = 0, 1:

Rq[a}(uaﬂ) = ||T%(TV)QQHZC NV (u,u)»
RalB)(u, u) = [[r?[ul = (Tv)qﬁHzcmwuu),

S
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Ryl(7. )] () = [|r]u] = (rV) (5, 0)|l2.007 ()
Ry[B)(u, 1) = ||[uf2 (V) Bll2,c v ()

R, 6] (u,u) = | ﬁ(rv)qﬁHQ,QiﬁV(u,g)v

Ry [(7,0))(w, 1) := [u] = [ (V)1 (5, 0) |2, v )
Ry [8)(u, ) = [u] F I (rV)Blla.c o wa»
R, [a](u, u) = [ul* | (rV) alloc oviuw-

Rulo] (u, 1) = |5 Vaalo.conv o
Rylas)(u, ) = [ul = | Vaallzo,ov -

787

3.1.2. O norms (Ricci coefficients) We define the norms of Ricci coef-

ficients in the bootstrap region X. Denoting
(3.1) O =0+ Opys

where

Opj := O1 + Og + Op(Qw) + sup
K

|\ trxy —— ]|+ sup
r K

ol (wy+2)|

)

Opy = 01 + O + O (Qw) + Sl}ép

We define O, and Qq as follows:

Oy = Oy(tr x) + Oy (R) + Oy (1) + Of(Qw) + O, (), g=0,1,
O, = Oy(Qtr x) + Oy(X) + Oy(n) + Of(Qw), q=0,1,
where
Oy(T) := sup sup OP5(T)(u, u).

pe(2,4] K

It remains to define O{I”S(F)(u,g) for g =0,1:

OB (1t ) (u, 1) = |72 [ul T VIt X 50,
OpS(Qtr ) (u, 1) = [ |ul T VI tr X, 50,
OFS (%) (1) = [r** 5 [u] = VIR, 50,
OB () (u, ) = [ [u] = VIZ 50,
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025 () (u, u) = [P0 [ul = VOl 500
025 (i) (u, ) = [+ [u] Z° VOl 50

OB (2w) (u, 1) = 1275wl 50,

08 () (u, 1) = | Ul 50

0P8 () (u, ) = [P 5 7 |u] 5 (1Y) 10l (0

025 (Qw) (u, 1) = [r' ™ [ul = (V)10 50,
085 () (u,u) = r' 7 |ul T (1Y), (0.

We also define

0— =

z::( (Qtr ) + O, (n )+Oq(§))+s%pr :

|

— 1
Qtry — —|,
”

+ sup r?
K
which appears in Sections 5 and 6.2.

3.1.3. O(¥p\ K)-norms and Rg-norms (initial data on the foliation
of IC) Notice that for every u, there exists a unique leaf S(ug(u),u) of C,,
which located in the future of ¥\ K and touches ¥\ K. Moreover, we have

S(ug(u),u) C K
The following norms are defined on the union of spheres S(ug(u), u). We define

O\ K) :=0, (30 \ K) 4+ Oy(X0 \ K) 4+ Oy(X0 \ K)(Cw)

1
+ sup |r? (Qtrx—i— —) ,
u - T
where
Qq(EO\K) = Z Qq(ZO\K>(F)’ qZO,].,
FE{Q—ltrz,ﬂ,ﬁ;}
with

Qq(ZO \ K)(I') := sup sup 05’5(20 \ K)(I)(w).

pe[2,4] U
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It remains to define Q’;’S(ZO \ K)(T')(uw):

OF(80 \ K)(Q7 tr ) (u) =
05 (80 \ K) (1) (u) :=
)(w) =
)(w) =

TP (rV)IQT X S (uo(u) )

w ’tslw

P (rV) .5 (uo () )
05 (S0 \ K)(Qw
OPS(5) \ K)(Qw

| pQw|p S (uo(w),u)
| 9+1

2
(TV)qulp,s<u0<m>~

We also define

1

OB\ K) =" (Qy(Z0 \ K)(Q - try) + O, (5 \ K)(Sw))

q=0
+0o(%0 \ K)(Qw),

which appears in Sections 5 and 6.2.

We can extend the foliation (u,u) to a neighborhood of 3¢\ K in J~ (g \
K)® such that it is well defined on g \ K. The curvature flux on 3¢ \ K is
defined by:

1
=[S (Rl RS o) + R + Rl
(3.2) Zo\K =g
+ sup [rpf*,
So\K
with
= (rV,rVs,rVy).

3.1.4. O*(C,) norms (Ricci coefficients on the last slice) We define
the following norms on the last slice C', in the foliation (u,u) of . We denote

o*(C,) =07 + O + sup
Q*

- 2 —
7 (trx - 7")' + O5(tr x),
where

O = O;(trx) + O}(X) + O} (trx) + OL(X) + 01 (Q),

®Recall that J~ (3¢ \ K) denotes the causal past of ¥g \ K.
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with

0:(I) :

It remains to define OZP’S(F):

O3 (R) =
O3 (X) =
05 (trx) =
O*ps(trx)
OP5(¢) =

3.1.5. O(g) and R(g) norms (initial data on the foliation of KC())
this section, all the norms are defined by the initial layer foliation (u (),

K(0)- We define

Ow) =Y _ O
Lo

+ sup

2
2 tr
@ ( Yo F 7"(0))

Dawei Shen

sup sup (’);p’s(f‘).
pef24] C,

|7" vV X|p,S(u72*)’

P75 [l (V) R ()

= (rv)"
(rv)?
270 Jul 2 ()T X ()
r? __|U\_(7”V)qtr>(’p5(uu )s
(rV)

|T ‘U‘_ rV qC|p,S(uu )

In
u) in

2
2 | trx) — —
(0) ( () T(O))‘

(0)) + sup
Ko

+ sup

TOWU)‘
Keo) (0)

1
() (9 - 5)

+ sup r(o)w 0)‘ + sup ,
Koy Koy
where
s+1 2
O (') Z Sup sup 7"(0) " (roy V)T (o) ,
q=0 K0 P€[2,4] P,5(0) (w(0),2t)
with

F(0) € {tr X(O)7 tr X(O)’ ?(O) ) X(O)’ 77(0) ) Q(O)

(0, D(0) }-

We define the curvature flux on the initial hypersurface:

2
K2 = /
© ; o\
where

(3.3)

20) == {r(0) V3,70

2 )
) ‘DI(O) (Oé(o),ﬂ(o), P(0)> 0(0)7@0)7@(0))‘ + SU\I;{ |T?O)P(0)|,
0

)V47’F(0)V}.
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3.1.6. Osc-norms (oscillation control) We have two foliations (u,u)
and (u(),u) in the initial layer Ky which will be compared using Osc-
norms. We denote (f,\) the change of frame from (u,u) to (u(y,u), defined
in Lemma 6.1 in Section 6.1.1. We define

Osc := Osc(f) + Osc(A) + Osc(r),

where
Osc(f) :=sup r%bglf , Osc(A) :=supr|Al,
Ko Ko
Osc(r) := sup|r@y —r|,
Koy
with

Ai=A—1, 0:={rVs,rVy,rV}
See Definition 6.9 in Section 6.4 for a generalized definition of Osc-norms.
3.2. Main theorem

The goal of this paper is to prove the following theorem, which provides a
new proof of the seminal result obtained by Klainerman and Nicolo in [14].

Theorem 3.1 (Main Theorem). Consider an initial data set (Xo,9,k) s-
asymptotically flat in the sense of Definition 1.2 with s > 3. Assume that
we have the following control of the initial layer region Ky defined in Sec-
tion 2.1.2

(3.4) O0) < €o, R < eo,

where O gy, R(o) are defined in Section 3.1.5 and eg > 0 is small enough.
Then, the initial layer Ky has a unique development (M, g) in its future
domain of dependence with the following properties:

1. (M,g) can be foliated by a double null foliation (u,w). Moreover, the
outgoing cones Cy, are complete for all u < ug.

2. The norms O and R defined in Section 3.1 for s € [4,6], and in Sec-
tions B.1 and C.1 respectively for s € (3,4) and s > 6 satisfy

(35) @ S €0, R ,S €0-
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Remark 3.2. Theorem 3.1 contains also a number of important conclusions
following from (3.5): peeling properties, complete future infinity, Bondi mass
formula and so on, see Chapter 8 in [14].

Remark 3.3. Theorem 3.1 is proved in Section 3./ for s € [4,6], and ex-
tended to s € (3,4) and s > 6 in Appendices B and C.

The proof of Theorem 3.1 is given in Section 3.4. It hinges on a sequence
of basic theorems stated in Section 3.3, concerning estimates for @ and R
norms.

We choose ¢y and € small enough such that

2
€< g <1, €:1=¢€j,

where we recall that 0y is the height of the initial layer, see (2.14). Here,
A < B means that CA < B where C' is the largest universal constant among
all the constants involved in the proof via <.

3.3. Main intermediate results

The following lemma provides comparisons between r), r, w, Uy, &, u.

Lemma 3.4. Under the assumptions

(3.6) Oy < €0, O <e, Osc < e,

we have in the initial layer region K ()

(3.7) 7o) —wl S €ologr),  [u) —ul S €logr),
and in the bootstrap region K

u—u

(3.8)

r— < celogr.

Proof. See Appendix A. O

Remark 3.5. Recall that we have |u| < u, and v < 0 in K. Together
with (3.8), this yields

(3.9) lu| <u~r inkK.

In the sequel, we will use (3.7), (3.8) and (3.9) frequently without explicitly
mentioning them.
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The following theorems are important intermediate steps in the proof of
Theorem 3.1.

Theorem MO. Under the assumptions

O(0) < €0, R() < <o, O <e, Osc <,
we have
(3.10) Ro S, O\ K) Seo
If in addition we assume that
O 5 e,
then, we have
(311) OSCSG(), Q(Eo\K) S,EO-

Theorem MO is proved in Section 6.2. The proof is based on null frame
transformation formulae introduced by Klainerman and Szeftel in [19], see
Proposition 6.2 in Section 6.1.1.

Remark 3.6. The second part of Theorem MO implies that we need an es-
timate for O to control Osc. To this end, we first estimate the quantities in
Q(ZO \ K), which are nonlinearly dependent on Osc. Next, we apply them
as initial data to estimate part of the Ricci coefficients, i.e. (5, see (3.17)
in Theorem MS3. Then, we obtain the oscillation control, which allows us to
estimate all the initial data, i.e. the control (3.11) for O(% \ K).

Theorem M1. Assume that
(3.12) O0) < €o, O <kg, Ry <e.
Then, we have

(3.13) R < Ro.

Theorem M1 is proved in Section 4. The proof is based on the rP-weighted
method introduced by Dafermos and Rodnianski in [7].

Theorem M2. Assume that

(3.14) O*(C,) <, Ry < Ay, Oy (XoNnC,) < Iy,
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Then, we have
(3.15) O*(C,) S Ao+ Ty + €%

Theorem M2 is proved in Section 6.3. The proof is done by integrating
the transport equations along the null generator L of the last slice C, and
applying elliptic estimates on 2-spheres of the geodesic foliation of C,.

Theorem M3. Assume that

(3.16) O<e, R{+R; <Ay, O(C,) <L, O(%\K)<I,
then, we have

(3.17) O <Ty+ T, + Ao+ €

If we assume in addition that

(3.18) O(%0 \ K) <y,

then, we have

(3.19) O<Ty+T,+ Ny + €.

Theorem M3 is proved in Section 5. The proof is done by integrating the
transport equations along the outgoing and incoming null cones and applying
elliptic estimate on 2-spheres of the double null foliation of the spacetime K.

Theorem M4. We consider the spacetime K and its double null foliation
(u,u), which satisfy the hypotheses

(320) O S €0, R 5 €0, Osc S.; €0-

Then, we can extend the spacetime IKC = V (ug, w,) and the double null foliation
(u,u) to a new spacetime K= ?(uo, u, +v), where v is sufficiently small, and
an associated double null foliation (u,w). Moreover, the new foliation (u,w)
is geodesic on the new last slice C,, = C,, 1, and the new norms satisfy

(3.21) O0<e, R<e,  Osc<e.

Theorem M4 is proved in Section 6.4. The proof is based on local existence,
and the null frame transformation formulas of Proposition 6.2. We also need
to reapply Theorems M1, M2 and M3 in the extended spacetime region /.
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Remark 3.7. When compared to [14], we have the following similarities and
differences:

1. We treat the general decay s > 3 in Theorem 3.1 while the main result
of [14]° correspond to the particular case s = 4 in Theorem 5.1.

2. In [14], third order derivatives of Ricci coefficients and second order
derivatives of curvature are estimated. In this paper, we only estimate
first order derivative of both Ricci coefficients and curvature respectively
in Theorems MO-M2-M3 and M1.

3. To estimate the curvature components in Theorem M1, instead of using
vectorfield method as in [1]], we use the rP-weighted estimates intro-
duced by Dafermos and Rodnianski in [7].

4. On the last slice C, a canonical foliation is used in [14] while we use
a geodesic foliation in Theorem M2.

5. The estimates of Ricci coefficients and the extension argument, i.e. the
proof of Theorems M3 and M4, are similar to [14].

3.4. Proof of the main theorem

We now use Theorems M0-M4 to prove Theorem 3.1.

Definition 3.8. Let X(u,) the set of spacetimes K associated with a double
null foliation (u,w) which satisfy the following properties:

1. K= V(UO,Q*).
2. The foliation on C, is geodesic.
3. We have the following bootstrap bounds:

(3.22) O <k, R <, Osc < e.

Definition 3.9. We denote U the set of values u, such that N(u,) # 0.

Applying the local existence result of Theorem 10.2.1 in [5] and the as-
sumption O < €p, we deduce that (3.22) holds if w, is sufficiently small. So,
we have U # ().

Define u, to be the supremum of the set &/. We want to prove u, = +o00.
We assume by contradiction that u, is finite. In particular we may assume
u, € U. We consider the region K = V(ug, u,). Recall that we have

(3.23) Opy <€, R < <o,

6We also reobtain the strong peeling properties of [15] that correspond to s > 7.
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according to the assumptions of Theorem 3.1. Applying Theorems M0 and
M1, we obtain

(3.24) R<%oSe,  O\K)Se
Then, applying Theorem M2 and the hypothesis O < ¢, we obtain”
0" (C,) < co-

In view of the above, the quantities in Theorem M3 satisfy the following
conditions:

Z. < eo, Ag S eo, Zy < €.

~

Applying the first part of Theorem M3, we obtain

(3.25) O <e.

Then, we can apply the second part of Theorem MO to deduce
(3.26) Osc < €, O(Xo\ K) S eo.

Note that (3.26) implies Zy < ¢y where Zy is defined in Theorem M3. Thus,
we may apply the second part of Theorem M3 to obtain

(327) O S €0.

Notice that (3. 24) (3. 26) and (3.27) implies that we can apply Theorem M4
to extend K to K = V(uo, u, + v) for a v sufficiently small. We denote o
and R the norms associated to the new foliation (w,u). We have

O 5 e, R < eo, Osc < €,

as a consequence of Theorem M4. We deduce that V(ug, u, + v) with the
double null foliation (u,u) satisfies all the properties in Definition 3.8, and
so N(u, + v) # ), which is a contradiction. Thus, we have u, = +o00, which
implies property 1 of Theorem 3.1. Moreover, we have

(328) O S €0, R S €0,

in the whole exterior region, which implies property 2 of Theorem 3.1. This
concludes the proof of Theorem 3.1.

"By definition, O < € implies O*(C,) < e.
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Figure 2: Domain of integration V' (u, u).

4. Curvature estimates (Theorem M1)

In this section, we prove Theorem M1 by the rP-weighted estimate method
introduced in [7] and applied to Bianchi equations in [11] and [18]. For con-
venience, we recall the statement below.

Theorem M1. Assume that
(4.1) O0) < €o, O <k, Eg <, Osc < e.
Then, we have

(4.2) R < Ro.

Lemma 4.1. We have the following estimates:

€ € €
(43) [Tl S =, [N Tl S =,
r2|u| = rul = r
and
@4) PP TWLsSe T T s Se pel2.4).

Proof. Tt follows directly from the assumption O < ¢, Definition 2.14 and the
Sobolev inequality of Proposition 2.29. O
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4.1. Estimates for general Bianchi pairs

The following lemma provides the general structure of Bianchi pairs. It will be
used repeatedly in this section. See Lemma 8.24 in [18] for an analog version
under the assumption of axial polarization.

Lemma 4.2. Let k = 1,2 and a, ag) real numbers. Then, we have the
following properties.

1. [f 'Lb(l), h(l) € 5 and ’(/1(2)7 h(g) € Sk satisfyz’ng

Vs(va)) + aq) trx vay = —kdp(Ye) + b,

(4.5)
Va(hay) + a@) tr x @) = di(¥a)) + h)-
Then, the pair (11, Y (2)) satisfies for any real number p

(4.6)
Div(r?|¢)|Pes) + k Div(r? |1 |*es)
p
+ (2(1(1) —1- 5) rP trz|w(1)\2
+ k <2a(2) —-1- g) rP tr XW)(Q)|2
= 2krP div(w(l) . w(g)) + QT‘pw(l) . h(l) + 2/€Tp¢(2) . h(g)
— 2rPw|)|? — 2krPw| )|

7 (eslr) = S e x) [ P+ ko (ear) = S ) 1

2. If ¥y, hy € sg—1 and Py, hoy € si satisfying

V(1) + aqy trx Yoy = de(¥2)) + h,

(4.7) )
Va(¥) +ap) trx o) = —kdi(Ya)) + he).
Then, the pair (1 (1), ¥(2)) satisfies for any real number p

(4.8)
kDiv (rP [y *es) + Div(r?|g o [Pes)

p p
+ k (20,(1) —1- 5) rP U"XW(I)’Q + (2a(2) —1- 5) rP trx|¢(2)\2

=2rP diV(l/J(l) . w(g)) + 2]67“101/1(1) . h(l) + 27“p¢(2) : h(2)
— 2krPwly|® — 2wl

+ kpr ! (ea(r) = S trx) W2+ ! (ealr) = S trx) Wi
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Remark 4.3. Note that the Bianchi equations can be written as systems of
equations of the type (4.5) and (4.7). In particular

e the Bianchi pair (o, B) satisfies (4.5) with k =2, aq) = %, agp) = 2,

e the Bianchi pair (B,(p,—0)) satisfies (4.5) with k = 1, agy = 1,
ae) = 3,

e the Bianchi pair ((p,0), 3) satisfies (4.7) with k =1, a1y = %, a@y =1,

o the Bianchi pair (3,a) satisfies (4.7) with k =2, aqy =2, a@) = 3.
Proof. By a direct computation, we have

: — g
Dives = D¢y

1

1
= _§g(D4€4’ e3) — §g(D3€4, e1) + g*Pg(Daeq, ep)

= 2w+ try,
and similarly
Dives = —2w + tr x.
For 1(1) and 19y satisfying (4.5), we compute

Div (r? || ?es) + k Div(r? [y *es)
:V3(7"p|1/1(1)\2) + Div(eg)rp\w(l)IQ + kV4(rp\w(2)]2) + kDiV(e4)rp|z/J(2)\2
=pr?Les(r) [y ® + 2Py - Vv + P (trx — 2w) [yl

+ kprea(r) || ? + 2krPd) - Vath) + krP(try — 2w)| )
:prp’leg(r)\w(l)IQ + 2rPy - (—aqy tr xta) — kdge) + hay)

+rP e x [ |? = 2wl [P + kprP T ea(r) [

+ 2krPygy - (—a(g) tr X2y + dpb) + h(g)) + krP tr x| 2 — 2k7‘pw|¢(2)\2
—pr# ™ (ea(r) = 5 trx) e | + 27wy - (—kdiadis) + i)

+ (1= 200+ g) x|+ kort ™ (ea(r) - 3 ) W
+ 2krP ) - (k) + h)) + (1 —2a¢) + g) kr? tr x|t
— 2rPwlypy P = 2krPwlie))?

=2k div(Y) - Y2)) +pr* (63(7“) - gtrX> Yl

-~ r
+ kpr? ™ (64(7“) -t x) [l + 270 - hay + 2k - hey)
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(1200 + B) e + (1= 20 + 2) b tr v
— 2krPwlipgy? — 2rPwly .

Then, we obtain

Div(1?[i) *e3) + kDiv(r? i) [*es)

+ (2a(1) —-1- g) P tr x| |® + (20,(2) —1- g) krP tr x|t
= 2k div(th) - Pa) + 27y - hay + 2k - he

e (ea(r) = 5 trx) o 2+ k! (ea(r) = S ) [

— 2rfwlyy|* — 2krPwli) |,

which implies (4.6). The proof of (4.8) is similar and left to the reader. This
concludes the proof of Lemma 4.2. O

Proposition 4.4. We denote
(4.9) V= V(u,u), Cy=C,nV, Cyp:=C,NV.

For ¥y, Y@ and hqy, hey satisfying (4.5) or (4.7), we have the following
properties for ¢ = 0,1 and all (u,u) € K.

e In the case of 2+ p —dagy > 0 and 4ai) — 2 —p > 0, we have

L, i+ / PR + [ R + g
(4.10)
S PG + [ @I+ I
e In the case of 2+ p —dagy > 0 and 4aip) — 2 — p =0, we have
R M e [

N/ rp!w((§1§!2+v"”lw(q)\ +/ 2@ |RD] + 20|
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e In the case of 2+ p —4ay) <0 and 4aip) —2 —p > 0, we have

(9)2 (9) 2
rP +/ rP
/. R [ 1)
(2) (9)
125 [ e v
—1,,(@) (@15 (@) (@152
+/‘/Tp 1|¢(i1)|2 + TpW(g)Hh((fﬂ + Tp\¢(g)"h(g)|-

o In the case of 2+ p —4aqy > 0 and dap) — 2 — p < 0, we have

(a)2 (@2 —1y,,(a)2
rP +/ rP —|—/ rP
L, i) [ e [l
(4.13) </ D2 4 o lp)2
~ oV W)(1)| |'¢(2)|
+ [+ I+ g

Remark 4.5. In the sequel, for a sum of terms of the form T'- R | we ignore
the terms have same or even better decay. For example, we write

-8V 41, -aM =1, 80,

since oY) decays better than SO,

Proof. Recall that w, w € I'y. Applying Lemma 2.4, we obtain

r _Qtrx

e3(r) — stry

; T
r——-try=——=
B X

r
29 2 % 20

(Qtrx — Qtry) € rl'y,
and similarly
r
eq(r) — 3 try € rly.

Applying (4.3), we infer
(4.14)

/‘/Tp\Fa| (lowl? + )

S 6/‘/7"1’72 (lwl? + e ?)
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scf (= [l dure [0 (W / rw@)\?) du
uo(w) cy [uol cy
< p 2) [* —2 P 2\ [* =2
< esup [ |ul""du + esup 1Y) u|""du
w \Jey wo(w) w \Jey fuol
. 2 2
S esup </CV )] ) +esup (/cv )] ) :

Integrating (4.6) or (4.8), reminding that try — % €y, trx+ % eIy, and
that I'y decays better than I',, we obtain

p 2 p 2
/CVT 1Y)l +/QXT 1Y)l

u

+ /\/(2 +p— 4@(1))Tp_1|¢(1)|2 + (4(1(2) -2 - p)’r’p_lhb(g)|2
5/ Pl [* + rPlie))? +/ Py lhayl + P eyl )
YoNV 14

+ [ PTallon? + 17 Tl

Taking the supremum of u and u and applying (4.14), we obtain for e small
enough

D 2 D 2
sgp/cxr 1Y)l +Slip/0‘/7‘ P2l

(415) 4 /V(Q +p — da) " o [P + (dag) — 2 — p)r? o

S Ll + el + [ vl + e ko)
YoNV \4

which implies (4.10)—(4.13) hold in correspond cases when ¢ = 0.
Next, we consider the case ¢ = 1. Assume that (¢(1),1(2)) satisfies (4.5).8
We multiply (4.5) by Q and differentiate it by @ to obtain

@, QVghﬁ(l) + QVg(ﬁﬂ)(l)) +aqyrV(Qtrx) - ¥ay + a2 trxﬁw(l)
== k(rVQ)d;(Yz)) — kQd(#)a) + (rVQ)hay + QBhq),

3, QV4]t2) + QV4(B(2) + a@rV(Qtr x) - o) + a@Qtr x B
=(rVQ)di (Y1) + QdrB)) + (rVQ) - higy + QBha).

8The case of (Y1), Y(2)) satisfies (4.7) is similar.
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Applying Proposition 2.24, we infer

Va(Be) + aq) try Ba) = — kdi (B) + hiy)
(4.16) + (T Y)W + (T - )Y,
Va(@BY2) + ag@) tr x 9o =di(@va)) + hg; + (Tg - (Yy, 1/1(2)))(1) :

Integrating (4.16), and proceeding similarly as in (4.14), we deduce

Sup/ TP\WQ)\QJFSHP/ P[Pz |
u Joy u JCV

=u

4.17) 4+ /V (2+p—dag)r" Iy + (dag) — 2 — p)rP B
1 1 1.1 1,01
S L R+ + [ DI + k).
0
Combining (4.15) and (4.17), this concludes the proof of Proposition 4.4. [

The following lemma allows us to obtain |u|-decay of curvature along
YoNV(u,u,).

Lemma 4.6. We have the following estimate for p < s:

%%

jul>=?"

Lo (Ja®R + VR (0, 0D + BV + V) S
SoNV (u,u) - -
Proof. For fixed u and u, we have from Lemma 3.4

/ rP (|D(1)|2 |3(1)|2 ’(\p/(l)vg(l))|2+ |ﬁ(1)|2 ’Oé(l)P)

BNV (u,u) +

S/ PP (|a(1)|2 ’3(1)‘2 |(ﬁ(1), 0(1))|2 + ’ﬂ(l)‘2 | (1)|2)
Son{2|u/ |>|ul} a

5/ |u”p—s7~/s (|j(1)’2 ‘3(1)‘2 |(ﬁ(1),0(1))|2 i ’5(1)‘2 ‘a(1)|2>
Ton{2|w|>|ul} +

Sl | 7 (JaD 4 18O + | (0, 6 )2 + BV + |a D)
Son{2(u’|>[ul} -

2
<£R0

~lufr

This concludes the proof of Lemma 4.6. ]
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4.2. Estimates for the Bianchi pair («, 3)

Proposition 4.7. We have the following estimate:
(4.18) Rola)? + Ro[A)? + Rila]® + Ry [B]* < M2 + €R2.
Proof. We recall the following equations of Corollary 2.20:

V4ﬂ + 2tr X,B = dyox + h[ﬁzl],
(4.19)

1
Vsa + 5 tra = ~2d56 + hlag],

which correspond to ¥y = a, Y@ = B, aqy = %, a@) = 2, hgy = hlasg],
hey = h[fs] and k = 2 in (4.5). Taking p = s and recalling that s € [4,6], we
have

(4.20) 2+p—4aq)=s>0, dag —2—-p=6—-52>0.

We apply (4.10) to obtain

/ 7“S|Oz(1)|2+/ r5|6(1)|2+/ 70571|O[(1)|2
cy cy v

S [ a®P 4802 + [ rla®hlag] V] + 4|80 85 O)
YoNV |4

It remains to estimate |aM||k[asz] | and |3V |h[B4)M]. Recalling from Corol-
lary 2.20 that?

(4.21) hlas] = 4w +Tg-p, h[Bs] = (Ta, Ty) - B,

we have!?

@D Ir[as) ]+ 18Y]|A[5] D]
S T a®a] + [Tal 8D + [Tyl [a[oD] + [T la ol

9We used the fact that o, 3 decay better than p.
10We ignore the terms which decay better.
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Applying (4.3) to estimate Fl()l), we have

S 1
[ I la®a
1%
< [0 (L ra®r) ([ eI Pial) du
uo (u) cy cy
1
<7?,/ (/ </ TS|I’I()1)|2|Q\2>dQ) du
lul NJS(u,u)
<R[ ([l #
up(u) Nyl

1
S ERZ/ (/_r_3|u\l_sdu) du
uo(u) Jul

u —S
S ERQ/ |u|_1|u|leu < €R2.
uo(u)

(4.22)

Applying (4.3) to estimate 'y, we infer

(4.23)

805

=

du

[ rrd s s e [ e 2802 S e [ jul ( / rsw”r?) S 2
1% %4 ol cy

Applying (4.3) to estimate I'y, we infer
/ Pyl oY)
(4.24) / ( / e 8du / !TQp(l)\2> du
uo(w) \u\ Jul s
2 u 3
GR (/ rsgdg> du
=l |U|

——du < eR2.

2

(/ 7“8’@(1)‘2> 2 </ 7"84|p(1)\2> ? du
cY cy
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We also have

[ I lisllal
|4

<0 () ([, rreeie) a
uo(u) \JCY cy

u

SR </_ (/ 7’3|T§1)\2!p!2> du>2 du
uo(u) N|ul N S(uu)

< “ L8l B=s| B [SS3(1))2 (.3 12 2
<R /| PSP | TR gl gdu ) du

uo(w) N\ lul

< ERQ/ </_r88]ul3sdg> " du
uo(w) N\ lul

u — 3—s
S 6732/ lu T ]ul%du < €R?.
u

o(u

(4.25)

Thus, we obtain
(4.26) /vrsyamy? +/V7~8\5<1>\2+/ r* oM SR+ R,
cy cy 1%

This concludes the proof of Proposition 4.7.
4.3. Estimates for the Bianchi pair (8, (p, —0))
Proposition 4.8. We have the following estimate:
(4.27) RolB]* + Rol(P, o)) + Ra[B* + Rul(7, ) < RG + €R™.
Proof. We recall the following Bianchi equations
Vi + 5 e = div 5+ )

Vo + gtrxa = —div* 3 + hloy],
V3B +trxB = Vp+ Vo + h[Bs],

which can be written in the form

g 3 5
(4.28) Va(p,—0) + 5 trx(p, —0) = dif + hp, 04];

V3B +trxB = —di(p, —0o) + hB3],
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where h[py, 4] = (h[pa], h[o4]). Applying (4.11) with ¢y = B, ¢ = (7, 0),
aqy = 1, ap) = %, hay = h[Bs], hey = hlps,04] and p = 4, we obtain from
Lemma 4.6

/ 4802 +/ o)2
S L8O o))
(4.29) oV
+ [ 80 hig O+ [ GO, i, o)
St + [ 480 b))+ [ G0, 00) -l o).
Recall from Corollary 2.20 that
h[Bs] =T, -B+Ty- B, hips,04]) =Ty -a+Tg4- p.
Hence, we have

h(Bs) M =T, - gV + 1y - g +1“§1) B,
hips, 04V =Ty oM + Ty - 5D + Fz()l) ca+ Fél) P

Hence, we infer

[ B0+ 15 ) Ol Al 7))
(4.30) v
S [ PTalIBOE + I I8V + 4Ol 181 )

For the first term in (4.30) we have

[ B se [ ([ H50P) S eR?ul
v o (u) ay

For the second term in (4.30), we infer

1 3 1
gz g [, )’ ()
uo(uw o v

U 2
<€/ du RR<6R

otw) [ul T Ju T fulz "~ fulsmt
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For the third term in (4.30), we have

| HArousis
1%
€ s=1 _
S =2l A B M VALl
174 ’u 2
u d
Se/ “/ 8% + du/
wo(w) |u| 7 Jey Jul
<6/” e LT
uo(u> |u|— IUI Jul
—1 ERQ
e / w [
| | |u|8 - uow |5~

u ]
< + /
~ |’LL|S —4 |U|2 5 Iul T2

€R?

~ |u|s—4'

T rP|s)2

%671“"5%1)\Z,S|7"5ﬁ|421,sdu

Injecting all the estimates above into (4.30), we deduce
[ BRI+ GO, 0 D) bl o V] S Rl

Combining with (4.29), we obtain (4.27). This concludes the proof of Propo-
sition 4.8. O

4.4. Estimates for the Bianchi pair ((p, o), 8)
Proposition 4.9. We have the following estimates:
(431)  Rol(5. o) + RolB)? + Ral(5. o)) + R[] < 0 + eR2,
Proof. We recall the following Bianchi equations:
Vaf +trxp =di(p,0) + hiB],
Val.0) + 3 rx(7,0) =~ + hls, 03]

where

(4.32) hlps, 03] := (h|ps), hlos]) =Tg-a, R3] =Ta-p.
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809

We apply (4.12) with vy = (5,0), Y@ = B, aqy = 1, a@) = 3, hay =
hlps, a3], h) = h[B,] and p = 2, we obtain from Lemma 4.6 and Proposi-

tion 4.8 that

(4.33)

L, G0+ [ a0
cy cy

S (RE. 0D sV R) + [

YoNV

_|_/ (7D, W) - h[ps, 03]V | + 7«2@(1) h

Shuf*~9% + / S [

—u

+/ 7V, 0 D) - i, 03] @] + 1250 -

S[uf*9R2 + (982 + eR?) /| =l

u

+ / (7D, WY - h[ps, 03]V | + 742’@(1) .

<Jul* (B2 + €R?) +/

Applying (4.32) we obtain
(4.34)

For the first term in (4.34), we infer

o)

U(l))|2

AR

AN

AN

Lo W) - hlps, a5)V| + 72|80 - B3

|10, 00) - i, 5]+ 1218 - b3
\%4

S [ 72 la®F ]+ 20l 3O + T 8

[l S ¢ [ du [ a0
\% Jul cv

/ ‘&(1)’2 ?
ay

1

41%(1))2 ’
(/er\p \)

= S RPu

AR

1
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For the second term in (4.34), we have

LR s e [l [ a0
1% [u cv

—u

U
S €R*|ul*™ | |Iul_Qdu
U

< €R?|ul**.
For the third term in (4.34), we infer

2 2 “ 21a2 ) 211(1) (2] 212 >
forroria s [ [, 1o0) ([, eineee)

—u

u R v du ., s 3 2
s [ ([0 Aptrpg g )

o |ul T \Muo(w Jult

1
U 1 u d 2 7?,2 b
SR du—= </ —u4 %T)
- Jul T Muow) [ul* [ul*7? uf

u 1 1 1
S 67?,2/ d < eR|ul**.
|

U — —
W Jul T uf? |3

I=

Thus, we obtain
[ 7RG 0D) - Wi )]+ 280 3O S eRPuf

Combining with (4.33), we obtain (4.31). This concludes the proof of Propo-
sition 4.9. 0

4.5. Estimates for the Bianchi pair (3, )

Proposition 4.10. We have the following estimates:

(4.35) RolB]? + Rola* + Ru[B]* + Ry [a]* < 9RG + R

Proof. We recall the following Bianchi equations:

1 —~
V4Q+ itr *V@é‘i’h[gd,

X
V3B +2trx = —divg+h[§3],

(e

(4.36)
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where

(4.37) hlayl =Ty - o, h[ﬁg] =0, -+T,-a

811

Applying (4.12) with ¥y = f, @) = a, aq) = 2, a@) = 3, ha) = hlB,],

hey = hlay] and p = 0, we obtain from Lemma 4.6

[ 1808+ [ amp
cy — ay
S [ BOR 4R+ [ o
sy - v
+ [ 1BOIAB Y+ ) nla )

Shu=gg+ [ [ g0
|uol [cHA
(4.38) r
+ [ 1BOIAE Y+ b))

<|ul ]2 + (82 + eR2) / B dufuf?e

ol

+ [ 1BOIAB Y+ e )
AERE

Shul =@+ eR?) + [ 18O1B[3) Y1+ o Ibla V).

Applying (4.37), we infer!?

@39) [ 18N, + ol e U1 S [ Ialla + 0ol

For the first term in (4.39), we have

u
[IrallaVE s e [ lulde [ o S R¥ul
v Jul oy

u

For the second term in (4.39), we infer

1

F(l)a2</udu / al? 2 / M 2|a)? 2
J el s [ au( [ e ) (L, 108 Pla

—u

HRecall that the ', before a only contains w.
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u s 4 du o3 1
S R dﬂ|u| 2 (/ ’U’4 |T2F‘(gl)|421,5|rzg‘42i,5)
u,

|l o(u) |U

u L/t d 3
Sl T M
[ uo(w) |l

S eR? [ dulul~Hul 2l F S R¥ul
|
Thus, we obtain
[ 1BOIABIO1+ 1o |hlaa] V] S Rl

Combining with (4.38), we obtain (4.35). This concludes the proof of Propo-
sition 4.10. 0

4.6. Estimate for V,
Proposition 4.11. We have the following estimates:
(4.40) Rilo]? SR3 + R
Proof. We recall from (2.32)
Vs = —2dd + 470‘ + T, Y +TM . 8,
Vagh + gtrw =dyé + T, - Y + T . 5.

Applying (410) with ¢(1) = q, ¢(2) = ¢(7 agy = 0, agg) = %7 h(l) = 470‘ + T, -
BO LT B higy =Ty - 8O +T - 8, k =2 and p = s, we obtain

Lot [rla [ ool 1)
Cu c, 1%

(4.41) 2
SHG + /VTS’II&HOA +1°|(& )| [Tal B + 72| (&, @) 15015,

First, we have for all 6 > 0

1
/rs*muay gé/ 7'5’1|0°z\2+—/ 2.
% v 40 Jv
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Combining with (4.26), we deduce from (4.41), for ¢ small enough
LVl g e (an )
SRG + eR? + /V?“S\(O"é#@)\IFaW D]+l (é, @ITSV181-
We have

[ 1@ dIraism s e [ 2.5
|4 |4

o Lot ([, ) ([, )
ol g

u 2

< R
—u |u| 2

< eR%

We also have

i@ @nrsis [ rlaiedisi+ | rlaids
1 1
< sie 27 sIT(1) (2 2)2
N/udu(/cuvrmm) (f, e

s [ [faur [rRse)
—u [u| S

<R du( Cdur®” 10|7"2F(1)|4S|7"2ﬁ|48)2
—u |

< GRQ/ du (/_,r310|u|82sdu>2
—u Jul
< eR? / du

< €R?.

= uft

Combining the above estimates, we obtain

Jug I R [ AP ) S 9 R
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Recalling that
& =17V 4(r’a) = rVia + bey(r)a,

we deduce from Proposition 4.7

/ 7“5+2]V4a|2 < 9‘{% + eR2.
C’V

u

This concludes the proof of Proposition 4.11. O
4.7. Estimate for Vza
Proposition 4.12. We have the following estimates:
(4.42) Rifas)? < R(R2 + eR?)2 + RE + R
Proof. We recall from (2.33)
Vad = —2d3¢h + 4% +(Ta,Ty) -a® + TV - g,

5 . .
Vadh + 5 trx = dad + (T, T3) - oV +T,-a+T

Applying (4.12) with ¢4y = ¢, 2y = &, agy = 3, ay = 0, hay = I§" - +

Ty &+ (Cay Tp) - 0, hgy = 24TV -0+ (00, Ty) - 0, k=2 and p = -2,
we obtain

—2) 12 —2) 22
JLyr et [l
S LR 1A+ [ e+ i al(a) + ).
LNV - 1% - -
First, we have from Lemma 4.6

[ g v lam s 8
D

Notice that we have from Proposition 4.10

(2 RZ + eR?
—3) 112 < / 34 / 2 ~ 7Y
T T u 5
/v 14 % - Jay 12"~ |ufst2
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and

1 1
m 2 2
[ ralle® < [ ( / r-2|@r2> ( / |g<1>|2) du
v ol cy cy

</£r_2( R2 )§<5Rg+e7z2>5du
™ ) |u|s+2 |ul® .

- /u R(M2 + €R?)z
I (i

U

ul

1

_ R(%3 + €R?):
~ ‘u’s+2

We also have

[ lalal +16) s o2 [ (al+ il
4 - Jul cy

S /d_(/ |@|2+rg<”\2> (/ |g12\r§,”\2)
Jul cy cv

1

R [v u :

< /TSdQ</ du\r%glis!réfé”lis)z
| | ’ ’

~ s
[ul2 Syl ul
1
R (v A 2R2\ 2
L[
5 S
lul2 Jyul |l
eR2
|u‘T

Combining the above estimates, we deduce

2 2\ 2 2
/ T_2|¢|2+/ r2af? < R(RG+ €R)2 + R; + €R .
cy = oy |uf*+2

U

Combining with Proposition 4.10, we infer

L1 S [ roWa0t e +r-2al

<)
o
_ R(R + €R?)% + R + eR?
~ "LL‘5+2 '

U
7”_2|é|2 + 7"_2|Q|2
1%

u

This concludes the proof of Proposition 4.12. O
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4.8. Estimate for p
Proposition 4.13. We have the following estimate for p € [2,4]:
(4.43) 172500, (1, ) < Ro + €R.

Proof. We recall the Bianchi equation

3
Vsp+ 5 trxp = h[ps).

Applying Lemma 2.30, we infer for p € [2,4]

P B SR+ [ hip s
Uo (U

SR+ [ [P0, () lp.sdu

o (u)
u R R
5 9%0 + / 6573 s+1 + ‘ s—3 du
ww \|ul=z |ul=  r?lulz
,S Ro + €R.

Since p is constant on S(u, u), this concludes the proof of Proposition 4.13.

4.9. End of the proof of Theorem M1
Proposition 4.14. We have the following estimate:
(4.44) Ry +R; SRo+Ri+Ry+ Ry
Proof. 1t is sufficient to prove that
R SRo+Ri,  R§SRy+Ry,

which is a direct consequence of Propositions 2.20 and 2.28.

Finally, we deduce from Proposition 4.7-4.14 that
R2 < R(R2 + €R2)2 + R2 + R
Applying Cauchy-Schwarz inequality, we obtain for e small enough,
R < Ro,

this concludes the proof of Theorem MI.

O
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5. Ricci coefficients estimates (Theorem M3)

The goal of this section is to prove Theorem M3, which we recall below for
convenience.

Theorem M3. Assume that
(5.1) O<e  R+RI<NDo, O(C)<IL, O%\K)<I
then, we have
(5.2) O<STy+T,+ Ao+ €.
If we assume in addition that
(5.3) 0%\ K) <y,
then, we have
(5.4) O<Ty+T,+ Ao+ €

In this section, we always assume p € [2,4].

5.1. Estimates for Op(Qw) and Oy (Qw)

Proposition 5.1. We have the following estimates:

(5.5) P Qs () £ To 4+ Ao + €
| 277 Qwlps(u, 1) S T+ Ag + €2,

Proof. By the null structure equations (2.29), we have

~ 1 ~ 1
(5.6) Dy(Qw) = F+50p,  Dy(Qw) = E+ 0p,
where
~ 1 1 )
Fim =300 0+ 1) = 590 1= 2) =T, T,

[~
Il

1 1
§QC'(T7+Q)7 §Q<ﬂ'77*2<2) =TIy Ty
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Apply Lemma 2.30, we obtain

_2 _2 e _2~ _2
[r» Qwlp,s(u,u) S |r PQQIp,s(u,u*)Jr/ [r=» Elps +[r»Qplps,
u

(A

7 Qs ) S P sl (o). )+ |

uo(u

2 _2
| |7 pF|p7S + |r pr|p,S'

Notice that we have

€2 _2 g, 3.2 Ay
lps S T P2 Oplps ST R pls S

r7# (F.E)
Hence, we obtain

5wl s (u,w) S P27 Qwlps(u,w,) + € + Mg S To+ Ag + €,
P Qlps(u,u) S 7 r Qulps(uo(w),u) + € + Ag S Ty + Ag + €2,

which concludes the proof. O
5.2. Estimates for 00,1(5:}) and 00,1((3;)

Proposition 5.2. We have the following estimates:

T | 5 (r V)16 STy + Ao+ ¢ =0,1
s T OV Es SH+ Ak g=01
]7’1_127|u = (rV)qﬁ/g\p,s(u,g) ST+ Ao+ €, g=0,1.

Proof. First, we derive an evolution equation for V(Qw). Applying (2.29) and
Corollary 2.22, we obtain

QV3V(Qw) = [QV3, V](Qw) + V(QV3(Qw))
= —Qx - V(Quw) + V(QV3(Qw))

1
=—Qx-V(Qw) +V <§Q2p +Ty- Fg>
1 1
= —§Q tr xV(Qw) + EQZV/) + ([, T) - VI,

which implies

1 1
(5.8) VsV (Qw) + 5 trxV(w) = SV (Qp) + r~H (T, Ty) - T,
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Since we cannot control Vp in LP(S), we use a renormalization method. We
define w! by

(5.9) Vawl = %Qo in IC, wh =0 on S(up(u),u).
Applying Corollary 2.22, we have

QV;3*Vu! = *V(QVsw') + [QV3, *V]w! = %*V(QQJ) - Qy -V,
which implies
(5.10) ViVl + %trx(*VwT) _ %*V(Qa) +Ty- (0, V).
We recall the following Bianchi equation from Proposition 2.18:

V3B +trxB=Vp+"Vo+2wpB+2X- B+ 3(np+"no)
=Vp+*Vo+T,-+T,-5,

which implies'?

(5.11) V3(Q8) +tr x(28) = V() +*V(Q0) + 17T, - TW + 7711, - T}V,
We introduce a new quantity:

(5.12) = V(Qw) +*Vw' — 595'

Thus, we have the following equation:

1
Vi =V3V(Qw) + V3*Vw! — 5 Va(25)

1 1 1
= — — _ * -'- -
(5.13) 5 XV (Qw) = S trx (V) + SQtry 8

+r (T, Ty) - T + Ty - Vo

1 1
= — EtrX%—i— ZQtrxﬂ—Fr*l(Fa,Fb) . Fél) + T - *Vuwl.

12Notice that SV3Q = —2QwB =T, - B and (p,0)VQ =T, - VI', decay better
than the R.H.S. of (5.11).
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Denoting (w) := (—Qw,w'), then'?
N 1
(5.14) dj(w) = s+ EQﬂ
Applying Proposition 2.13 to (5.14), we obtain
1—2 1—2 T 1—2 1—-2
(5.15) [r pV(Qw)p,s + [r »Vwllps S v xps + [ 7 Blps.
Also, applying Lemma 2.30 to (5.13), we have

_z2
[t s, )

_2 v _2
S I sy stuo(w).w) + [ 1l

uo (u

Yo () =2 gt
+ [r e (L, T) - T |ps + [r 7Ly - "V | 5
uo(u)

To+ A u A €2 €2
SJ 0 s+1 0 +/ 7 0574 + s—3 + 3 s—2
r uo(w) 72 |u| 2 rilulz 3ul
w € 1—2 4 1
+ o (VW) s
uo(w) 7|u| 2
<j'0+A0+62 /u € | 1—2 ‘
- —r " ra
~ r2+s63|u\% o () 7’|u|321 P

where at the last step we used for all s > 3

(5.16) 2+Sg3§min{3,sgl}.

Applying Gronwall inequality, we infer

|r3+55372

?|u sg_gz\p,g(u,g) <To+ Ao+ €2

Injecting it into (5.15) and recall that

Q1 s=3_ 2 5—3 r_2 s—4
[P ]S Blys S el E Blps S Ao,

we infer

(5.17) 5 u) TV (Qw) s (1, w) < Do + Ag + €2,

13Recall that di(f,g9) = -V f +*Vg.
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Applying Poincaré inequality, we conclude the first estimate of (5.7). The
second estimate is similar and left to the reader. This concludes the proof of
Proposition 5.2. ]

5.3. Estimates for O () and 7|Q — %

Proposition 5.3. We have the following estimates:

s—3

(5.18) rlf%\u 2 (rV)‘K)’ S(u,g)gfo + T+ Ao + €, q=0,1,
p7

(5.19) supr

1] .
Q—J§%+L+A0H?

Proof. We recall that
OV.0 = OV, log 2 = —20%0.
Differentiating by rV and applying Proposition 2.24, we deduce

OV (rVQ) = [QVy,rV]Q = 2QrV(Qw) — 2rVQ(Qw)
=O0(rV(Qw))+rly - Ty.

Applying Lemma 2.30 and Proposition 5.2, we infer

_2 _2 Uy _2 €2
P TV s(u,u) < [t pvmpys(u,y,ﬂw/ (yrl pV(Qw)\p,s—l—W)
<%+L+m+8
~ s—3 Y

rlul "z

2

where we used the fact that ) = % on C,. Combining with Poincaré inequality,
we deduce (5.18). On the other hand, we have

1
QV4<Q——2>::—QQ%L

Recall that Propositions 5.1, 5.2 and 2.29 implies

To+T.+ Mo+ €

[Qwloo,s S 5

r
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Applying Lemma 2.30, we obtain

1 u, To+ T, + Ay + €2
'Q——‘g/ Qulos < 0o+ T+ o—|—6’

2 T

which implies (5.19). This concludes the proof of Proposition 5.3. O
5.4. Estimate for Og 1 (2 tr x)

Proposition 5.4. We have the following estimate:

(5.20) P2 ]u|%(rV)qQ trx s (u,u) STy + T + Ao + €2, q=0,1.

Proof. We recall the following equation from Proposition 2.17:

(5.21) OV, (Qtry) + %Q fr(Qtr ) = —4Q tr () — Q2[R

We derive an evolution equation for 7V (Qtr x). Differentiating (5.21) by rV
and applying Proposition 2.24 to obtain

QV4(rV(Qtrx)) + Qtr x(rVQtr x)
(5.22)  =[QV4,7V](Qtrx) — 4rV(Qtr ) Qw — 4Q tr x rV(Qw) + Ty - TV
=T, - TV + O(V(Qw)).

Applying Lemma 2.30 and Proposition 5.2, we obtain

_2 _2
P2V (Qtr X)) |ps(u,u) S [P P V(Qtr x) |p.s(u, w,)
+ / TPV () s + 2T Tl s

< I. /y* A0+.'Z-0+62
~ |u s;3 u T1+sg3 |u 553
DT+ D+ €

s—3
2

~

|u

Applying Poincaré inequality, we obtain (5.20). This concludes the proof of
Proposition 5.4. O
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5.5. Estimate for |r2(Qtrx — %)|
Proposition 5.5. We have the following estimate:

(5.23) sup

— 1
r? (Qtrx— —)‘ STo+ T, + A + €.
r

Proof. Applying Lemma 2.4, we obtain

d
.24 —— =
(5.24) dur

Recalling (5.21) and denoting

1
(5.25) W:=Qtrxy— -,
T
we deduce
d 1
(5.26)

1 | E—
= §W(Q trx) + §(Qtrx)2 — 40 tr x(Qw) + Q2|]?
= —A4QtrxQw+W - Ty + T, -T.
Applying Proposition 5.1 and W € I',, we infer

To+T.+ Ay + €

_2
|7’1 P Qtr x Qulps(u,u) S 3

1—2

To+Te+ Do + €2

2
e W Fg‘p,s(uvﬂ) + |7’1_;F9 ) Fg|p,S(uaﬂ) S 3
r3lul 2

Using Lemma 2.30, we have

<IQ+I*+A0+62

~

_2
P W s (0, w) )

Recalling that VW = 0, applying Proposition 2.29, we deduce
’T2W‘oo,S S To+Ti + Ao+ 62.

In view of (5.25), this concludes the proof of Proposition 5.5.

823
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5.6. Estimate for Og (2 tr x)
Proposition 5.6. We have the following estimate:
(5.27) r27%\u\%(rV)qQ tr x s (u,u) S Lo+ T + Do + €2, q=0,1.
Proof. We recall the following equation from Proposition 2.17:
(5.28) OV4(Qtry) + %Q frx(Qtr x) = —4Qtr x(Qw) — [R]2.

As in (5.22), we derive an evolution equation for rV(Qtry). Differentiat-
ing (5.28) by rV and applying Proposition 2.24 to obtain

QV3(rV(Qtry)) + Qtr x(rVQtr x)
(5.29)  =[QV3,rV](Qtrx) — 4rV(Qtr x)Qw — 4Q tr x 1V (Qw) + Ty - T3V
=T, - TV 4T, - Ty + O(V(Qw)).
Applying Lemma 2.30, we obtain

PV () ()
_2
S IV ) s(uo(w), v)
(P @s + 17T T T T )

S pV(Q 1t X) s (uo(w), w) + [r* 77 Vs

u 9_2 62 62
+ ) r" P V(Qw)|p,s + =3 T

uo(u r2lu)z |l

<io+I*+A0+62

s—3 Y
2

~

lu

where we used Propositions 5.2 and 5.3 and the fact that Q < fo at the

last step. Combining with Poincaré inequality, this concludes the proof of

Proposition 5.6. U
5.7. Estimates for Og 1(n) and Og (1)

The following proposition plays an essential role in Section 5.
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Proposition 5.7. We have the following estimates:

2 s—3 v
(5.30) 2T T (V) Il s(uw) STo+ T+ Ao+ €%, g=0,1,
\rQi%\u = (rV)nlps(u,u) S To+Zs + Ao + €, g=0,1.

Proof. We recall the following null structure equations from Proposition 2.17:

Van=—-x-n+x-n-0,
Van=—-x-n+x-n+p.

We introduce the mass aspect functions

[<)

pi=—divp+ XX —p,

(5.31)

N =N
=)

|

)

pi=—divp+ =X -

By a direct computation, we obtain'*

1
V4,u+trxu:G+§trXE,
(5.32)

1
V3ﬂ+trxﬂzg+§trx,u,

where
G=trxp+1Iy VI, Q:trxp—ka-VFb.

We introduce the following modifications of p and pu:

1 1
(5.33) (1] == p+ Ztrx trx, (] = p + ZUX try.

We also define

— - 1 1

1] :[u]—[u]:—dlvn+§(x-x X - x)+4trxtrx D
(5.34) . b

(1] = [p] — [¢] —divn+§(>< Y-XX X)+4trxtrx P

14See Lemma 4.3.1 of [14].
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~

and remark that [u], [\,u/] € r‘ngl). To simplify the notations, we denote

1 o~ o~ —~ ~ 1
I:= 5(x-x—x-x)+ztrxtrx.

By the torsion equation (2.27) and (5.34), we obtain

~

(5.35) 1.
curln =0 + 5&/\){,
and
divy = —[\H/H—I—ﬁ,
(5.36) 1
curlp = —o — X AX.

2
According to (5.31) and applying Proposition 2.17, we infer

1
Valu] = Vy (,u—i— 1trxtrx>
1 1
= Vypu + ZQ_l tr xVa(Qtrx) + ZV4(Q_1 trx)Qtr x
1 1.0 . .
= —trxu—i—G—i—§trx(§x-x—p—de>

1 1 ~ ~ :
+ —try {—gtrxtrx—x'X+2d1vQ+2|m2+2p}

4
1 1
bty |5 r? = [P

1 1 ~
= —trx[pl+G+ 5 trx|g|2 ~ 1 trx]x|2.
Thus, we obtain
(5.37) Valpu] +trx[p] =trxp+ T - VI,

By Corollary 2.5, we infer

J— ~—

QVy[p] = Qtr x[p] + QVa[p] = =Qtr x[p] + Qtrx p+ Ty - VI,

Then, we obtain

~ ~

(5.38) Valu] + trx[p] =77 rO(p) + Ty - VI,
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Applying Lemma 2.30, we deduce

~

17275 (1] (11, 0)

227 U, 1-2 U, 9_2
S st ) + [ s + [T IT s

5.30 T+Ay (= Ay  [un &
(5.39) N = +/ — +/ a2
u u  7ul

~orlulT r2|u| "z

2

<I*+A0+€2-

5—3
rlul™="

Applying Proposition 2.13 to (5.35), recalling that
1 T~ —~——
I= Ztrxtrx—i— Ly Ty =r"'0(try) +r'O(try) + Ty - Ty,
we have for ¢ = 0,1

_2 _2~ 2~ —~
272 (rV) Ul () S P2 [l (o, ) o+ 777 (60 00X |, ()
_2 —2 O
72Ty Tolps (u,11) + 77 (5, 0) s (u, )
<j-0+z*+A0+62

s—3 ?
2

~

|u

where we used Propositions 5.3, 5.4 and 5.6. This concludes the first estimate
of (5.30). The second estimate is similar and left to the reader. This concludes
the proof of Proposition 5.7. O

Remark that Propositions 5.4 and 5.7 implies (5.2), which concludes the
first part of Theorem M3. In the sequel, we focus on the second part and
hence we assume O(3g \ K) < 7.

5.8. Estimates for O ;(X) and Op,1(X)
Proposition 5.8. We have the following estimate:

(5.40) P20 ] T (V) R, w) S To+ T+ Ao+ €2, g =0,1,
| [P ] T (V) s () STo+ T+ Ao+, g=0,1.

Proof. We recall the following Codazzi equations from Proposition 2.17

1 1
divy = §Vtrx—C- ()?— §trx> - B,
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1 1
divy = EVtrXJrC- (X—QUX) + B.

n—n

Applying Propositions 5.3, 5.4, 5.7 and the fact that ( = —=, we obtain

3-2 div ™ < 3,2Vt 22 3—2 3,2F r
rr divXlp,s S Virxlps + r #Clps + |r7 2 Blps + 17 2Ly - Tglys
cDo+ L+ Ao+ ¢€ €2

T rluf=3
c Do+ T+ Ao+ €
~ ‘u‘ 553 bl

and respectively

2-2 divs < Q,EV 1-2 9-2 2721—‘ r
[r e divXlps S rVitrxlps + [ 7 Clps + 117 7 Blps + |r™ 7Ty - Tolps
<I()—|—I*+A0+62 €

~ jul 7 rluf*=?
<%+L+Amu2
~ |u s;l N

Combining with Proposition 2.13, these conclude the proof of Proposition 5.8.
|
5.9. Estimate for Oy()

Proposition 5.9. We have the following estimate for ¢ =0,1,2:

s—3

(5.41) | ) 2 VI s (u, 1) < To + T + Ag + €2,

Proof. Recall that n +n = 2V 1og ), which implies

1
Alog ) = 5 div(n +n).

Applying Propositions 2.13 and 5.7, we obtain for ¢ =0, 1,2

To+ T, + Ag + €2
(5.42) |5 (rV) (og Qlps < [r¥F div(y + s < T 0T

s—3
2

|u

Combining with (5.18), this concludes the proof of Proposition 5.9. O
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5.10. Estimate for |r?(Qtrx + %)|
Proposition 5.10. We have the following estimate:

(5.43) sup

— 1
r? (Qtrx—l——)’ <To+ T+ Ay + €
- T

Proof. We introduce the following notation:

W= Qtry +

S | =

As in (5.26), we have

1 .
(5.44) QVsW + §Qtrxwz —4Qtr x(Qw) + Ty - W 4T - Ty,
Using Lemma 2.30 and W € I',, we have

W] ) S| (o), w)
p,

v To+ T+ Do+ €2 Lo+ T+ Ao+ €
+/ X +

uo (u) r
<Io+I*+A0+62

~

T’U’S_l

r

Noticing that VW = 0, taking p = 4 and applying Proposition 2.29, we
conclude the proof of Proposition 5.10. O

In view of Propositions 5.1-5.10, we obtain (5.4). This concludes the proof
of Theorem M3.

6. Initialization and extension (Theorems M0, M2 and M4)
6.1. Preliminaries

6.1.1. Null frame transformations

Lemma 6.1. Let two null frames (es, e, €1, e2) and (e, €}, €}, €4) associated
to double null foliations (u,u) and (u',w), and assume that they have the same
generator L for the incoming direction. Then, a null frame transformation
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from the null frame (es, eq, €1, €2) to (€4, €}, €}, eh) can be written in the form:

1
€=\ <€4 + feep + Z\f|2€3> ;
(61) eg = )\_163,

1
614 = €A + §fAe37

where

Q

is a scalar function and f is a 1-form. Moreover, the inverse transform
of (6.1) is given by
s =A""e} 6A+_|f’2637

(63) €3 = )\63,

A
/ /
eq4 =€y — 5]”,463.

Proof. Applying Lemma 3.1 in [19] with f = 0, we obtain (6.1). Notice
that (6.3) is a direct consequence of (6.1). Recalling

es =20'L, es = 2001,

we obtain (6.2) immediately. O

Proposition 6.2. Under the null frame transform (6.1), some of the Ricci
coefficients transform as follows:

Mltry =try +div' f+ Lot
0=curl f+1lo.t.,

X =X,
1
n = +§)\V’f wf+lot.,
1
n'=g+itrxf+lot,

1
AT =¢+ vw,f+ trxy f+wf+lot.,
A —w+lot
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where the terms denoted by l.o.t. have the following schematic structure
lot. :=rtO(f*) +Ty- f.
The curvature components transform as follows:

A2 = a+O(f)B+O(f))p+O(f*) (o, 8) + O(fH)a,

AT =8+ 0(f)(p.0) + O(f*) B+ O(f*)e,
P =p+0(f)B+0(f)a,
o' =0+ 0(f)B+O0(f)a,
A8 =B+ O0(f)a,
Ao = a.

Proof. We only prove the transform formula of w since the others are direct
consequences of Proposition 3.3 in [19] for f = 0. Applying (3.13) in [19], we
have

1
Al =w— 5/\*leﬁl(log A) + Err,

where
Err = r'O(f*) + Ty - f.
Applying (6.2), we infer

1
M =w— =) (logQ —log ') 4 Err

2\
_ 1(e+fBe —|—1f|26>loQ L 9w
=w 5 \ & BTy 3 ) 1og N\ w
= 2w — A\l + Err,
which implies the transformation formula of w. O

6.1.2. Deformations of spheres

Lemma 6.3. Given two double null foliations (u,u) and (v',u) and we denote
their leaves

S = S(u,u), S = S8"(u ).
Assume that SN S’ # () and the oscillation of u on S’ satisfies

1
(6.4) sup |u — | < 4y, = — [ u
S/ |S | S’
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Let V' be a tensor field satisfying

(6.5) Vo,V =F,

where for all S

(6.6) P75 Flsy <6, pe[l,o0].
Then, we have

(6.7) 5V sy S PPV | Legs) + 616

Proof. The proof is largely analogous to Lemma 4.1.7 in [14].
Notice from (6.5) that

0V =V - (Va,F)| < VI F],

which implies
|0uV][ < |F].
Taking p € SN .S’, we have from (6.4) that

(6.8) sup |u — u(p)| < sup |u — | + |u(p) —@'| < 26;.
S’ S’
In a sphere coordinates ¢ = (¢!, ¢?), we have
1
(6.9) VI, 1,0) ~ IVI(0,0) = [ OVt 0 ), ,6)(0" )
0
Hence, we infer
P Ve = [, VI 0)y det(g)]s do'ds?
< [ VPG 0)dsts?
SQ
< [ VP u 0)do!dg?
SQ
1 P
[ 1P o = gl — i) dotas?
s> \Jo

S [ vy det(g)ls do'as?
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1 P
w0 [ ([ 1P+ o = )00t ) dotas?
s2 \Jo
S ’T_;VV}J;»(S) + 511)|F(U + t(ul —u),u, ¢)|§p(g2)Lg(o,1)
SV + Ol F
S Lo(s) T 01 LHO0,1) P (S(u-+t(w/—u),))
S| e V) + 0707,
where we used (6.6), (6.8), (6.9) and General Minkowski inequality. This

concludes the proof of Lemma 6.3. O

Remark 6.4. In the remainder of this paper, for any quantity X, we denote
the quantity X o)y associated to the initial data layer region K by

X' = X(0),
to simplify the notations. For example:
o= U (o), n = 1(0)5 O = O0), R = R0 S = S(0); K = Koy
6.2. The initial hypersurface (Theorem MO0)

The goal of this section is to prove Theorem MO which we recall below for
convenience.

Theorem MO. Under the assumptions

(6.10) O < e, R < e, O <, Osc < ¢,
we have
(6.11) Ro<e, O\ K)<e.

If in addition we assume that

(6.12)

o
A
3

then, we have

(6.13) Osc S €o, O(Z0 \ K) 5 e
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Recall that we denoted by (f, A) the frame transformation from (u,w) to
(v/,u), and let (f’, \) its inverse transformation. Notice from (6.1) and (6.3)
that we have

(6.14) N=X1 =)\

Remark 6.5. In K, we have |u| ~ r. Hence, Ty has the same decay as 'y
in K'. The assumption Osc < e implies that r ~ 1" and f € rT.
We first prove (6.11) under the assumptions in (6.10).

Lemma 6.6. Under the assumptions
O < ¢, R < e, O <k, Osc <,

we have
9%0 SJ €0-

Proof. Recall that

1
W= [ St (Rl + RGP + 7o) + '8 + olal?)
Lo\ K 1=0

+ sup [r*p]%,
So\K

Applying Proposition 6.2 with (6.14), we infer!®

/ 7“5\05104\2
o\ K

S / PO A2 2 40 oS AT - B[P et oSt (12 )| + Lot
Lo\K

S %/2 Jr/ TS|D§1(f2)p/|2 + Ts|f20§1p/|2
So\K

3 (2

€

< /2 S
SRKRT+ r 2

To\K

A
o

€

Similarly, we have

LRSS [ PRSI R +rps (o)
So\K 3o\ K

15Recall that 9=!f = O(e)r_% and p' = O(e)r=3.
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e |?

s+5
r2

< w2 4 / r®
Do\ K

€

A
o

By the same method, we obtain:
L R 4 o 4 S B 4 o0l S e
So\K -
Finally, we estimate
‘T3p| S |T39|oo N |T3P/‘oo + |T4Fg 'ﬁ/|oo Seo
This concludes the proof of Lemma 6.6. O
Lemma 6.7. Under the assumptions
O < ¢, O <e, Osc < e,

we have
Q(Eo \ K) < eo.

Proof. We recall from Proposition 6.2 that!®

O ey = Q ey Ty - Ty,
Q' =Quw+rTy - Ty

Hence, we obtain

2—29 < Q—QQ/ / 3—21:1 F
r™ P Qwlp sow) S 177 P QW ps@o@ w + 177 7Ty Tglp,suo)w

62

2
S YW oo, S0 T 573

S €0-
Notice from (6.1) and Proposition 2.17 that

A
res(Qw) = re/y(Yw') — §rfAeé(Q’w’) +7rly - Fél)
=rey(Uw') + O(rp') f + 1Ty - Fgl).

16Recall that ', =T, in Ky and f € rTy.
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We deduce

1-2 1—2 9.2
P72V (Qw) |, suo ) S 177 VY b s + 17T Talp suow.w

62

S IV e stuowa

€
< 0
~ s+1 *
r2
Similarly, we have
1-2 €0

r pV(Q_lUX”IJﬂ(Uo(E)&) S E

Applying Poincaré inequality and recalling the definition of Q(EO \ K), we
obtain

1

O\ K) =3 (0,(%0 \ K} trx) + 0,80 \ K)(6))

+O(X0 \ £)(Qw)
Sj €0.

This concludes the proof of Lemma 6.7. O

Remark that Lemmas 6.6 and 6.7 imply (6.11), which concludes the first
part of Theorem M0. We now focus on the second part of Theorem MO under
the additional assumption (6.12).

Lemma 6.8 (Oscillation lemma). Under the assumptions:

(6.15) O < €0, O <k, Osc < e, O < ¢,
we have
(6.16) Osc < €.

Proof. Step 1. Estimate for Osc(f).
We have from Proposition 6.2 and Remark 6.5
A hry = trxy +div f+ f - (Dy, 77 f),
0=curl' f+ f-(Ty,r tf),
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which implies from (6.2) and the fact that f € 7I','7

Qtrx' =Qtrxy+Qdivf+ f Ty,

(6.17) O=curlf+f-Ty.

Differentiating it by e4 and applying (6.1), we obtain

A
e (Q trx) — §fAeg(Q'trX/) =ea(Qtry) + Qea(div f) + Ty - Fgl).

Recall that we have from Proposition 2.17
1
es(Qtry) = _QQ/ try'trx +r 'To + r_lFél) +T,- Ty
1
= 7’_2 + 7“711_‘@ + Fg . Fg.
Hence, we have
i 1
Qea(div f) + ﬁfA =, (Vtry) —ea(Qtry) + Ty - TV,
which implies
1
ealdiv f) + 5 fa= Q7 W@ trx) = ea(@trx) + o - TE.
We also have from (6.17)
ealcurl f) =T - Fgl).

Hence, we infer

1 1
didy — ) = -—Vdi *Veul f — =
(6.18) ( 1di— 5 f ivf+*Veurl f r2f

= - Q'V(Qtry) + QI (Qtrx) + Ty, - Fél).

Recall from (2.23) and Corollary 2.20 that

§ 1 1
dldl_T_QZ_Al—’_K_ﬁ

1

1
:—Al—ZtTXtTX—FFg'Fb— — 2

837

1"We have from (6.1) and Proposition 6.2 that V/f —Vf = O(f)-Vsf = f-T,.
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= A+, + r_ngl).
Injecting it into (6.18), we deduce
—ALf = =TIV Q) + QT V(Qtr ) + T - T,

We have from Proposition 2.13

1

T V) s S (VY ey, VQtr x|y + [rF 9T, - T

S €0.
Applying Proposition 2.29, we deduce
(6.19) T (rV) S flos.s < €o.

We have from Proposition 6.2 that

€0 € €0
sup |v3f’ N bup |77 - ’r]| + sup |f F ’ S st1 + s+3 S s+l
(6.20) M rEorE e
€0 € €0
sup ’V4f’ < sup ‘7" f’ + sup ‘f Iy ’ S =T T =5 N 541
K’ K’ r2 r2 r2

Combining (6.19) and (6.20), we deduce

€
sup(|f| + 0f]) S —=r
K’ r2

which implies

(6.21) Osc(f) < eo.

Step 2. Estimate for Osc(\).
We recall from (6.2) that

A = [r(h = 1) S — Q| S r

1 1
V—=-+--0|Z
273 ‘ ~ 0
where we used (6.15) in the last step. Hence, we obtain
(6.22) Osc(N) S eo.

Step 3. Estimate for Osc(r).

|p,S
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We have
1 1

T T

(6.23) =Q'try — % —Qtrx+ % + (Qtry — Q' try)
= try — Qtry + Qtry — % +Qtry — % + (Qtry — Qtry).
Applying (6.17) and (6.19), we deduce
(6.24) |qugwwuxq5\mvﬂ+¢ng.nJ§;§§.
Moreover, we have from (6.15) that

(6.25) rE (|Q’trx’| + \Qtrx\) +7? (

— 1 — 1
Q' try’ — —,‘ + ’Qtrx——’) < €.
r r

Hence, we obtain from (6.23), (6.24) and (6.25) that

1 1lioa
roor| ™2’
which implies
(6.26) Osc(r) < €.

Combining (6.21), (6.22) and (6.26), we infer
(6.27) Osc < €.

This concludes the proof of Lemma 6.8. O
Proof of Theorem M(Q. We have from Lemma 6.8 that

(6.28) Osc < €.

We recall from Proposition 6.2 that

trxf+rly Ty

=~ =

n=n+

Applying (6.1), we have

V'y' = Vn+ rrO(Vf) +1Ty - Fél).
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Thus, we obtain from (6.10) and (6.28) that

(6.29) sup nl < sup |y'| +sup|r /] + sup Ty - Ty| €
[ K’ K re

and for p € [2,4]

_2
p.S@ow) T 11 2V flp,s(uo(w ,w

1—2 1—2
PVl s@oww S PV

2_2
+r vl - P§1)|p75(uo(2)7ﬁ)

(6.30) S &2
SV e s(wotww) + 1V floo.stuown) + 5=

€
< 0
~ s+1
r2

QQ
Qtrxzﬁtrx
Hence, we infer
1 Q2 1
Ot —=—trx 4+ -
rx%—r 94 r&%—r
0?2 , o, , 111
_<1_W>UX+QUX+F+;_;'

Thus, we have from (6.10) and (6.28)

(6.31) 7

1
Qtrx+‘ <r?
=

1 o
ey + 4N+ = vl S o

Combining (6.29), (6.30), (6.31) and Lemma 6.7 and recalling the definition
of O(%¢ \ K), we obtain

(6.32) O(Xo \ K) < €o.
This concludes the proof of Theorem MO. O
6.3. The last slice (Theorem M2)

We now assume that the last slice C', is endowed with a geodesic foliation.

Notice that Q = % and w = 0 on C,. We write the null structure equations
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along the last slice in the following form:

Vi +trx¢+2x-¢=—p,
1

Vstry + §(trK)2 + \X!Q =0,

1 1 - —~ —~
VgXJritrXXJr§trxx—V®C—C®C=O,

1 ~ :
Vgtrx—l—§trxtrx+x-x—2d1v§—2\g|2:2p_

(6.33)

We also have the Codazzi equations:

1 1

divy = —Vtrx—((f{— —trx> -0,
2 2

(6.34) ) ;

divy = 2Vtrx+(<i 2trx) + B.

For convenience, we recall the statement of Theorem M2.

Theorem M2. Let C, endowed with a geodesic foliation. We assume that
(6.35) O (C,) <e, RI<AN,, O <I

Then, we have

(6.36) O*(C,) S Ao +TIo + €.

In the remainder of this section, we always assume p € [2,4] and we
denote

(6.37) S = S(u,u,), S :=C, NXo.

Proof of Theorem M2. Notice that the assumption O’ < Z; controls the ini-
tial data on the last sphere S, := C,N3. The idea of the proof is to transport
the estimates in the direction of V3 along C, using (6.33). The proof is similar
to Section 5, and in fact easier since €2 = % on C,. We only provide a sketch.

Step 1. Estimate for (’)371’2(‘5\1"&).

The estimates for Of(tr x) and Of(tr x) follow directly from the results

of Section 5.6 in the particular case 2 = % and w = 0.
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We then estimate V?tr x. According to the assumption O*(C,) < €, we
have on C,:

(6.38) rViryely,  (rV)*try e IV,

We recall from (6.33) that

Vstryx + %(trx)Q = —12]2.
Differentiating it by r2A and applying Proposition 2.24, we deduce
(6.39) Vi(r?Atrx) + trx(r*Atry) = —r*AX)* + T - I‘l()l).

We recall from (6.34) that

1 1
(6.40) disz§Vtrx—itrXCJrﬁJng-Fb:ﬁJrr_lF

Applying Proposition 2.13, we obtain'®
vy =89 +r7'1,.
Hence, we have
~ _ 1
IVx2 =@ . g0 42, iy,
Moreover, we have from (2.23) and (6.40)

209X - X = 4((K — d5d2)X) - X
= —4d;d22 . X + 7‘721—‘1, . Fl()l)
— —4(d3B) - X +r 72T, - TV,

We then compute

AR =2V ((Vex 5"
=2(A%) - X + 2| Vx/?

)X +8Y 50+ I,

18Here, 8 ©) denotes a quantity which has same or even better decay and regu-
larity than £3.
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Injecting it into (6.39), we deduce
(6.41) V(r?Atry) +trx(r*Atry) = 4r2(d38) - X + 28 - 8O 4+ T, - I‘I()l).
Applying Proposition 2.13, we have

|d25lp,s < |d1flp.s,

which implies that there exists a bounded elliptic operator A : LP(S) — LP(S)
of order 0 such that

dyff = A(dr ).
We have from Proposition 2.23
[QV3, A] = [QV3,rds o (rdi) "]
= [QVs,rd5] o (rdy) ™" +rd5 0 [QV3, (rdy) ]
=Ty rdyo (rd) ™ + 15 (rdy)~!
— T‘d; (¢] (le)_l (¢] [QVg,T‘dl] ©) (le)_l
=Ty A+ 789 (rdy) ™ = Ao (Ty - rdy + 78 o (rdy) !
=T+ rﬁ(o) - (rdy)

(6.42)

We recall from Corollary 2.20 and Lemma 2.5 that

V(5. 5) + gt%(@ 5)= S +T, a.
Combining with (6.42), we deduce
Vi(r?A(p,5)) = r(5,5) 0 — A(r?di ) + B0 - (5,5)© + 17T, - a.
Hence, we have
4% - (Pd3f) = —4V3(PA(P,5)R) + 2@ - (50, 5©) + T, - TV,
Injecting it into (6.41), we infer!?
Vs (rP’Atry 4+ 4r*A(p, 5)X) + trx (rPAtr y + 4r°A(p, 5)X)

6.43
(6.43) =280 . O 1, TV,

YNote that a(? - (7,5)® has the same decay as ﬁ(o) ~ﬁ(0).
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Applying Lemma 2.30, we have

F T (Atry +4A(p, 5)@] < \r‘**% (Atry +4A(7,5)X)

p>S - ‘p7s*

Y Am2 50 50) 2-2p  p)
+ ( )’T B B lpstr" 2L - Ty s
uo (u,

To+ Ag w 2 €
S [ RO
ug (u

|u| 2 u, Jul*~!
To+ N + €2 u _2
u 2 uo H*
< To + Ao + €
~ ‘U‘SEC’» ’

where we used the Sobolev inequality
|7’_§ﬁ(0)|8,s S \T_%ﬁ(1)|27s~
Hence, we obtain from Proposition 2.13
1-2 2 4-2
rpVitry| S|rrAtry
—Ip,S —Ip,S

o+ Ao + €2 —2
S AR

(6.44)

‘u 2 —Ip,S
< Lo+ Ao+ €
~ ‘u s;3 .
Hence, we obtain
(6.45) Oy(trx) + O5(trx) + O3(trx) < Zo + Ag + €%,

~

Step 2. Estimate for [u].

We introduce the mass aspect function p as in (5.31):

(6.46) po=divi+ XX — p.

N —

We recall from Lemma 4.3.1 in [14] that

—_

Vap+tryxp =G+ - trxp,

\)
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where
R (V&) —C-B+Ty-Viry +r Ty - Ty,
Applying (6.38), we have

G=trxyp— %X (VR() —C-BHrTy - T

As in (5.33), we define

1
(6.47) (] == p+ 1 trx trx,

and deduce the following analog of (5.37):

X (VR = ¢ B+7r7'Ty - Ty

N —

(6.48) Valp] +trx [p] = trxp —

Differentiating (6.48) by rV and applying Corollary 2.22, we obtain

Va(rVlu) + trx(rViu) = rx (1Vp) ~ 3% (rVVEC) ~ ¢ (+TP)

(6.49)
+ 1T, - T i, - Y,

Recall from (6.33) and Corollary 2.20 that, we have

[y

~ 1 - . A
Vgx+5trxx+§trXX:V®C+Fg~Fg,

VS(ﬁv U) + _tI‘X(ﬁa U) = _dlﬁ_‘_ Fg s Q.

N

We apply a renormalization method similar to the one in (6.43), and leave
the details to the reader. We obtain

(6.50) ViS4 trxE = O(Vp) +7 Ty - TV 41711y - T3V,
where

_ 1. ~ .
(6.51) E:=rVp + SX- (rvx)+r¢-p.

Next, we use a renormalization method similar to the one in Section 5.2. We
define HT by:

(6.52) V3HT —I—trXHT =trxyoc onC,, pf=0 ons,.



846 Dawei Shen

We assume that
(6.53) pter 'y,

which will be improved in (6.58) and (6.59). Differentiating (6.52) by r*V
and applying Corollary 2.22, we infer

(6.54) V(' V') + trx(r*Vu') = rtrx* Vo + r T, - Fél).
Recall from Corollary 2.20 that

Vi +trxf=Vp+"Vo+Ty-B+T,-5,
which implies

Vs(rtrx3) + tr x(rtrx 3)

6.55
(6.35) =Vs(rtr )8+ trx(rVp+r*Vo) +r'T, - Fgl) +r7i, - I‘l()l).

Combining (6.50), (6.54) and (6.55), we obtain

Vs3(E+ T*VHT —rtrxB) +tr x(E+ T*VHT —rtrxf)

6.56
(0:50) =rLO(B) + 7'y - T 4+ 7711y, - TV,

Applying Lemma 2.30, we deduce

“2im s To+ Ao + €
(6.57) |7“2 P(E+r VHT —rtrxB)lps S %.

T|ul

Recall from (6.51) that

E—rV[u =T T,

we obtain
2 O L 2 _z2 To+ Ao + €2
P27 (V[ + 7V ps S P77 Blps + PP 0y T |5 + =——p—
rul 2
< IOLO_TEQ

r|ul
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Then, we have from Proposition 2.13 that

2

(6.59) Y )], S =

Finally, applying Lemma 2.30 to (6.52), we obtain

_2 _2 w _2 To+ Ao
(6.59) |7”2 ”HT|p,S S |7’2 ”HT|p,S* + |7“1 Z"<7|p,S S ——-
uo(u,) r|ul

Remark that (6.58) and (6.59) improves (6.53).

Step 3. Estimates for Of(try) and OF(().
We recall from (6.33) that

1
Vstry + Etrztrx —2div(=2p+1-Ty.
Applying (6.46) and (6.47), we obtain

1
Vatrx +trxtrxy =2div{+2p + §trxtrX+Fb-Fg

1
:2H+4p+§trxtrx+Fb-Fg
=2[pl +4p+Tp-Ty.

Differentiating it by rV, we deduce

V3(rViry) +trx(rVitry) = —trx(rVitrx) +2rVip +4rVp 4T - Fgl).
We use a renormalization argument as in Step 2. For this, we define x' by:
(6.60) Vx| + trxxT =40, on(C,, xf'=0, ons,.
We add the bootstrap assumption
(6.61) X' ery,

which will be improved by (6.62) and (6.63). Differentiating it by r*V and
applying Corollary 2.22, we infer

Va(r*Vx') = 4r*Vo + Ty - TV,
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We recall from Corollary 2.20 that
V3B +trxB=Vp+*Vo+T,-+Ty-5,
which implies
Vs(rB) +trx (rB) = —e3(r)3 +rVp+1r"Vo + T - F(gl) +Ty- Fgl).
Hence, we obtain the following analog of (6.56):

Vi(rVitry +r*Vx! — 4r8) + trx(rVitrx + VT — 4rp)
=—e3(r)B—trx(rVitry) + 2rViu + T - Fgl) +7T, - I‘gl).

Applying Lemma 2.30, (6.45) and (6.58), we deduce

]7“27% (rVitry + r*VXT —A4rf)|ps

2 u 2 2
< ]7“275 (rVitry + VvVl — 4rB)|p.s. + / |r276|p,5 + ]7‘275Vtrx|p’s

uo (u,
[ Pl + 1P T+ P27 T T, s
uo(u,,) -

Ty + Ag v Ty 4 Ag A+ € ¢ ¢

S 5-3 / 5—3 s—2 + 5=3
|u‘ 2 uo(u,) r]u]T 7"|u| 7“2"&’ 2

< w
~ |u 553 :

Hence, we obtain from Proposition 2.13 that

I()+A0+62 <Io+A0+62
s=3 ~ s=3 .

3_2 _2
(6.62) 1" 2V (trx, X Nps S 177 Blps + |
2 U

2

lu
Applying Lemma 2.30 to (6.60), we easily obtain

2 2 u 2 Ty + A
6.63) 1 xlos < P2 T, + / 2 S ol S 220
uo(w,) lu

2

which improved (6.61). By Poincaré inequality, we infer

(6.64) O (trx) + OF(try) < To + Ao + €.
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Next, we recall from (5.36) that

1
div(¢ = []+p+4trxtrx+Fb Ly,
curl( = o + I - T'.

Hence, we have from Proposition 2.13 that

2-2 <1 < 1327 3-2 1-2 ~— ~—
r e (rV)= s SIr 2 pllps + 77 7 (7, 0) [ps + [ 7 (tr x, tr X)[p,s
10+A0+62
<

~ s—3 Y

u]

where we used (6.45), (6.58) and (6.64) in the last step. Hence, we obtain
(6.65) O3(C) + O7(Q) S To+ Do+ €2

Step 4. Estimates for Og ;(X) and Og ;(X)-
Applying Proposition 2.13 to (6. 34) and recalling (6.45), (6.64) and (6.65),
we obtain

2 2 — 2 2 2
1 9) < Rls S IV + 1175 Clps + 17381+ 1273T, Tyl
To + Ag + €2
< T=0TE
~ s—3 Y

u]

2 2 —~— 2 2 2
[P (V)= R s S 1PV X ps 177 Clps [T Bl Ty Tyl

SIQ+A0+€2.
Hence, we have
(6.66) O5(X) + 07 (X) + O5(X) + OF(X) S To + Ao + €.

Step 5. Estimate for r? |[tr x — %|
We have from Corollary 2.5 and (6.33) that?°

- — == 1
Vs(trx) = Vs(trx) +trxtry = —Etrx trx +2p+ Ty - T
Notice that

2
V3 (—) = —;trx.

r

20Recall that Q = 5 on C,.
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Hence, we infer from Lemma 2.3 that

2 1 2
V3 trx—; —l—§trX trx—;

1 — 2 11— 1
= trx(trx— ) ——trxtrx+-trx+2p+1y-T%
2 = r 2 = r =

11—/ 2 11— 1
= §trx (trx— —) — §trxtrx+ —trx+ 20+, (I'q,Ts)
X , XX

=2p+ Pg ’ (Faarb)'

Applying Lemma 2.30, we obtain

2
r(trx——)’ <
,

00,5
<Io+/“Ao+Io+62
~ oy o r2
< A0+Io+62.
T

_ 2 u
r (trx — ;)' +/ [7P] 005 + |7“Fg (e, Tp)|oo,s
00,54 u

o(u,

Hence, we deduce

(6.67) sup
Q*

2
r? <trx——>‘ < Ao+ + €
r

In view of (6.45), (6.64)—(6.67), we obtain
O*(C,) STo+ Ao+ €
This concludes the proof of Theorem M2. O
6.4. Extension argument (Theorem M4)

In this section, we prove Theorem M4, which we recall below for convenience.

Theorem M4. We consider the spacetime K and its double null foliation
(u,u), which satisfy the assumptions:

(668) O S €0, R 5 €0, Osc S €0-

Then, we can extend the spacetime K = V (ug, w,) and the double null foliation
(u,u) to a new spacetime KK =V (ug, u, +v), where v is sufficiently small, and
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an associated double null foliation (u,u). Moreover, the new foliation (u,w)
is geodesic on the new last slice C,, = C, ,, and the new norms satisfy

=

(6.69) O0<e¢, TR<e, Osc<e.

Recall that we have introduced three different double null foliations in
different regions:

e (u,u) in the bootstrap region K;
e (u/,u) in the initial layer region K';
e (u,u) in the extended bootstrap region K.

We introduce the following definition.

Definition 6.9. For the change of frame (f,\) from a double null foliation
(uV),u) to another double null foliation (u'?,u) in their common domain M,
we define the following norms:

Osc[u®, uP)(M) := Osc[u™, u@](M)(f) + Osclu™, u@)(M)(N)
+ Osc[u, uP (M) (r),

where
Oselu®, u](f) = sup [r O] 505" |,
M
Osclut), ul?](X) = sup RO )
M
Oselu®, u?](r) = sup [ — +2)|.
M

Remark 6.10. Definition 6.9 immediately implies

(6.70)
Osc[u™, u® (M) < Osclul, u®)(M) + Osc[u®, u®](M),
Osc[u™, u®] (M U My) < Osc[u, u®P)(My) + Osclu™), uP](My).

To simplify the notations, we ignore the domain M and the optical functions
[u(l),u(Q)] when they are clear in the context. For example, we denoted

Osc = Osclu, v'|(K N K'), Osc = Oscla, «/)(K N K),

in the statements of Theorems MO and M4.
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C; /\.\ Q/‘,;(llzfl/)
7 K5 N\

2o Ao

P e - e — — — — —— —— — —

Figure 3: Extension argument.

Proof of Theorem MJ. Step 1. Extension of the domain.
We define the region

Ao = {p € Yo/ w(p) € [u,,u, +v]}.

For v small enough, we consider the future dependence domain Kf of Ay,
with
Ky ==V (us,u, +v) C K.

The boundary of K contain

(1) the part Ay;
(2) a part of an incoming cone denoted by

Q**(u* - V) = Qy*—ﬁ—l/ N {U* —v< ul < U*},
which is a part of the new last slice C',, := C,, ,,, where

u

R o ,
Us —V = ‘Qu L,NZ0’ * = U }gu NS’
Uy Ly

(3) a part of the outgoing cone emanating from So(u,) = C,, N g and in
V' (uy, u, + v), denoted by C%, see Figure 3.

For the double null foliation (u/, ) in Kf, we have:

(6.71) O'(Kg) < eo R'(Kg) < «o,
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for v small enough by local existence. By the local existence theorem of the
characteristic Cauchy problem introduced in [25], we can extend the spacetime
K UK to the future domain of dependence of C} U C,, denoted by K.
Moreover, we extend the outgoing cones of K to this new domain, construct
the incoming cones from C} and denote (u,u) the global foliation in IC :=
KUKy UKg. As a consequence of Theorem 1 of [25], we have

6.72)  OKY) Se, RIKY Se,  Oscli,o](KENK) < e

Combining (6.68), (6.71) and (6.72), we obtain

(6.73) OK)<e, RK) e, Oscla,u|(KNK) < e.

Step 2. Estimates on C,,.

Notice that the double null foliation (u,u) is in general not geodesic on
C,. and only continuous across C. Next, we construct from S’ (u, — v, u, +v)
as in Section 2.1.3 another new double null foliation (u,w) which is a geodesic
foliation on C',,. We add the following bootstrap assumptions on C',, which
will be improved at the end of this step:

(6.74) Oscli, @(C.) S, O°(Cu) <.

Applying (6.74) and Proposition 6.2 and recalling that two foliations have
the same incoming cones, we deduce by proceeding similarly to the proof of
Lemma 6.6 that?!

(6.75) Ry)(C) S Rpyy(Ch) < o

As a direct consequence of Theorem M2, we obtain

(6.76) 0*(C..) < <.

Then, by proceeding similarly to the proof of Lemma 6.8, we obtain

(6.77) Osclu, u](C,,) < €o,

which improves (6.74).

Step 3. Estimates in K.

21The estimate for p can be done similarly as in Proposition 4.13.
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Let U; the set of |ug| < wu; < wu,, + v such that the following holds:

(6.78) OVi)<e,  Oscli,a)(Vy) < %
where
(6.79) Vi = V(ug,u, +v) N {wy < u<u, +v}

Notice that (6.76) and (6.77) imply that U; # (). We apply Proposition 6.2
and proceed similarly to the proof of Lemma 6.6 to deduce??

S ~S

Next, we estimate ﬁg []. For this, recall that

P Vel s = TPl s S

For any sphere S = g(ﬁ, u), we take a sphere S = g(ﬁ, u) satisfying snS # .
The assumption (6.78) implies

Applying Proposition 6.2 and Lemma 6.3, we deduce

_2~ Rs[ﬁ] €2 €0
g+lot. < 0 + .

Hence, we deduce
~¢ =5
Combining (6.78) and (6.73) and applying (6.70), we infer

Osclu, u’](ﬁ NK' < g + Ce¢y < e.

22Recall that the incoming cones are invariant and that 7 can be estimated as
in Proposition 4.13.
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We now apply Theorems M0 and M3 to conclude?
(6.82) Osc[@, W]VinK) < e,  OW) < co.
Proceeding similarly to the proof of Lemma 6.8, we obtain
Osc[a, a](V1) 5 e,
which improves (6.78). Thus, we have inf U; = |ug| and hence,
(6.83) Osc[a, #(K) S e, OK) < .
Notice that (6.73) and (6.83) implies
(6.84) Osc[@, v|(K N K') < eo.
Finally, we apply Theorem M1 with (6.81), (6.83) and (6.84) to conclude
(6.85) R < e

Combining (6.83), (6.84) and (6.85), this concludes the proof of Theorem M4.
L

Appendix A. Proof of Lemma 3.4

In this appendix, we use the notations introduced in Remark 6.4.
First, we compare r’ and w. By construction, we have

r=w=wy, on K.
We add the bootstrap assumption:
(A.1) | —w| <elogr’, on X\ K,

to ensure the equivalence ' ~ w. Applying (6.1) and Lemma 2.4, we deduce

Q' tr v/ Q' try/ 2
;Xr’— QXT'—l—i-%:TT’a—i—O(]&).

(e — Qeb)(r' —w) =

23Remark that Theorem M3 also applied in the region Vl
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Integrating from wy along (e} — 'e}) and using Osc(f) < €, we infer

r' 2
(A2 -l Ser [ (S D) dr' S cologr’
T T

wo

which improves (A.1).
Next, we compare u and «’. By construction, we have

v =ug on K,

and u = up at a point p € 0K. Hence, we have from (6.1) and Osc(f) < e
that

sup o/ — ul S |90 ) o+ [0~ ul(p)

< rV(u) + %e;;(u)f

~

00,0K
S ‘f|oo,3K
< €
Applying (6.1), we obtain
QO Q 2

Y

Q'ey(u) — ey (u) 1

2 L 2
7Pes(u) = 165 = =17 — o
On the other hand, we have

(Qey —Qey)(u) = —1.
Then, we obtain

Q Q”°
(e — el (u—u') = Z’N +1-— o
Integrating it along (e — Q'¢ef), we infer from Osc < e that

r’ 2
€ €
<m—|—;>dr’§elogr’, OHE()\K.
r

(A.3) |u' — ul §e+/

wo

Notice that

(A.4) ey(u—u') = P =0 < ¢ ) .
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Integrating (A.4) from ¥y \ K to K’ and recalling that the height of X’ is
finite?* we obtain immediately from (A.3) that

(A.5) W' —ul Selogr’, in K.
Finally, we compare r and £5*. Recalling that w = %“l and applying (A.5),
we obtain

u—u

5 S| —ul Selogr’,  in K.

Then, we have, using also (A.2) and Osc(r) <'e,

‘w_

T_ugu'§\T’—r|+!r’—w|+‘w—g%u‘Sdogr' in K.

Next, we have from Lemma 2.4

i (= 257) =5 (7)o

We integrate it along C, from a sphere (u,v) € Ky to obtain on K

r(u,u) — g_;u' < elogr'(u,v) + €logr(u,u) < elogr(u,u).

This concludes the proof of Lemma 3.4.
Appendix B. Proof of the case s € (3,4)

In Sections 3-6, we have provided the proof of Theorem 3.1 in the case of
s € [4,6]. In this appendix, we outline the proof in the case s € (3,4), which
is similar to the case of s € [4,6].

B.1. Fundamental norms

The definitions of some of the norms are different from Section 3.1. In the
sequel, we only mention the norms that differ from the ones in Section 3.1.
We define RS[A] and R [p, o] as follows:

S s+3_ 2
Ry 6] :=sup sup |[r= "#f|,s,
K p€[2’4]

2Recall that we defined K := {p/ 0 < u/(p) + u(p) < 250} and &y < 1.
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- sk2_ 2 1
RE®[5,0] == sup sup [r= #[ul>(F,0)|ps-
K pel2,4]

The following flux of curvature components are different from the case s €
[4,6] for ¢ =0, 1:

||7”§ (T’V)qﬁnz,qya

Rq[B](u, u)
o) ||7‘%(7‘V)q(5, U)HQ,QZ'

Ryl (P, 0)](u, u)

The definition of OP5(Qw)(u,w) is different from the case s € [4,6]:
.S s_2 4—s
Op” (Qw) (u, u) == |r2" v |u| 2 C—"|p75(u,g)'
The other O norms are the same as in the case s € [4, 6].
B.2. Estimates for Ricci coefficients and curvature components

We discuss the curvature estimates of Section 4 in this case. Recall that we
have four Bianchi pairs: («, 3), (8, (p, —0)), ((p,0), 5) and (3, ). In Section 4,
we took respectively p = s,4,2,0 to estimate the Bianchi pairs. In the case
s € (3,4), we take respectively p = s,5,2,0 to estimate the Bianchi pairs.
The method is then exactly the same as in Section 4.

Concerning the control of Ricci coefficients, we can proceed by the same
method as in Section 5. Recall that Proposition 5.2 used the fact that there
exists a constant & > 0 such that

3452
sup 1”778 8,5 S Ao.
PE(2,4]

This still holds true since we have % > 3 for s > 3. The other propositions

still hold true since we only used s > 3 in their proofs.
B.3. Conclusion

The proof of Theorems M0, M2, M4 and Lemma 3.4 remain exactly the same
since all the arguments also applied to the case s > 3. Consequently, we have
Theorem 3.1 in this case. Hence, we deduce that Theorem 3.1 holds true for
s € (3,6].

Appendix C. Proof of the case s > 6

In this appendix, we prove Theorem 3.1 in the case s > 6. Then, we compare
the result to the peeling decay for curvature components obtained in [15].



Stability of Minkowski spacetime in exterior regions 859

C.1. Fundamental norms

The definitions of R-norms for o and g are different from Section 3.1. We
denote

(C.1) S0 := min {8, 24—9} :

We define for ¢ = 0, 1:

s—6

R[] = [|Ir’ful (rV) 820
(C.2) Rala] := [Ir*|u] 7 (rV)7al|y. v,
Rafoa] = |ul =" [|r % éflo 0y
We also define:
(C.3) RS16) = sup sup [r*"7[u] 7" Bl,.s.
K pe[2,4]

The norms R§[a] are defined as follows:

s+1

Rila] :=sup|r™> alys, s € (6,7),
K
(C.4) Rila] :=sup |rt(logr) Zals,  s=T,
K
Ry o] := s;ép \7‘4]ul%a\2,5, s> 1.

All the other norms are defined as in Section 3.1.

C.2. Optimal constant for Poincaré inequality
Proposition C.1. For any « € s9, we have the following Poincaré inequality:
rdaal3 g > colals .
for sphere S = S(u,u), where co is a constant satisfying:

(C.5) ca =2—0Oe).

Proof. See for example Proposition 9.3.2 in [6]. O
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C.3. Curvature estimates

In Section 4, we took respectively p = s,4,2,0 to estimate the Bianchi pairs
(a, B), (B, (p,0)), ((p,0), ) and (B, ). In the case s > 6, we take respectively
p = 6,4,2,0 for the Bianchi pairs. Proceeding as in Section 4, we deduce from
Propositions 4.7-4.13 and 2.28

1

S (Ryla] + Ry[8) + Ry [8] + Ryl5, o] + Ry [ 0]
C. =0
o RylB) + Ryl8) + Rylal) + Rlas] + RS(5) + RS

+Rs[ﬁ o] + R§[B] + Rile] + R5 7] < <o

It remains to estimate a and &. To this end, we prove the following divergence
identity.

Lemma C.2. We have the following identity for any real number p:
Div(r?|&[%e3) + 2 Div(rP|d|%eq) + (p + 2) TP H&)?
(C.7) +2(8 —p)rP )2 - 8Pt - a
= 4rPdy (& - ) + rP(c ) - (Da - 8O + T - 8) + 07T - (|61, ).

Proof. We recall from (2.32)
4
Vad = —2djd + 70‘ +T,- A0 4T . g
Vagh + gtrw@ = dyi+ T, Y +T . 5.

Applying Lemma 4.2 with 1ﬁ(1) = (34, 1/1(2) = ¢z, a(l) = 0 a(g) = 2, h(l)

470‘ +T,-8W 4+ Fél) B, higy =Tq- pI + Fél) - and k = 2, we obtain (C.7)
as stated. O

Next, we prove the following analog of Proposition 4.11.
Proposition C.3. We have the following estimate:

Rifau] S €.

Proof. Integrating (C.7) with p = sg and proceeding as in Proposition 4.7,
we obtain

/ r80|5z|2+/ r50\¢|2+/ P01 (30 + 2|17 + 2(8 — s0) % — 86 - )
c c, %

u
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S LR+ g + [ i@ @ ina s
O
[ OIS+ Ll + 4,
First, we proceed as in Lemma 4.6 to obtain

2

o — €
Lo roal ) s e [l + ) S
SonV SonV Jufs=s0”

0

Next, we have

G oIallB S € [ ro2ial 50+ € [ -2l
|4 \%4 1%
“ 1 S0 2|2 % 4 )12 1
Sef du—sg ([ rla / 180
—u ]u| 2 cy
1 1
+e udu—l 75| gh|? 2 0182 2
ot \Jey cy

U 63
S d 8—sg 5— 30 s—4
“u fu 7 a7
U 63
+ du 10— 30 s— SO
-u lu| 2 2

U 63

3
: /—y et ), S e
&

~ ’u|1+sfso’

where we used sy < 8. Then, we compute

L@ s s [ el s + / alVIIE
< [al [ rer) ([ empse)
+ Hdﬂ / 50| |2 / roo (12152
’ <Qz \¢> <Qz alEh)
s f < ([Faurn [rppiae)’
—u |u| 72 Jul
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We also have
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Jre/_(jsgs()( durso/ |F£(,1)|2|5|2>2
lul |u| ™2 —u s

1
u u 3
Y e e R

Jul

u

1
v du u 10, 3 7 2
+€/| ﬁ( du ™ 10\“%”!15\“@3,3)

ul |u| 2 ~u

1
u du U _ _ 2
SGB/ — (/ ’I”SO 10|u|8 ZSdﬂ)
—u |u| "z Jul
1
u u 3
+63/ ESO </ rs°10|u\825du>
lul Ju| 72 \—u

u 50— u 8,
S 63/ du r 029|U|4_S+63/ d@ 7”70_5|u|%_8
- |

u |ul| 72 ul |u| 2
&3 &3
S s—sQ _5 9—sp + 4_5_0 s—sq 25—9
|u| 72 Juls=5|u| 2 2 |72 |ul e

2
€

< __ 0

~ |u S;1+$780.

| Tal(al? +1602) S € | ro2ial? + ).

Moreover, applying Proposition C.1, we infer

/Vrso—l((so+2)|&\2+2(8—80)I¢I2 —8d-a)

8 — 7
> [ (G0 = )lal + 200 + (18- s0)ea —2) P
v 4 4

+ 8|&12 — 84 - o + 2|a|2>

19

3
> 801< _6 012 _ 2 2 2 _20 2>
> [ 1071 (50 = 016 + Teldl? + 55la + 2o — 24

2 [ e (G 162+ Jal)
\%4

where we used 6 < sg < % and ¢y > % for € small enough. Combining the
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above estimates, we obtain

[orelal+ [ rolgl+ [ romt (62 + g + Jaf)
cv cy 1%
2

6 —_ o
ST e [ e+ g

For e small enough, we deduce

2
S0l 22 sol 412 so—1 (1212 2 2y « _ € .
Ly e el s [ (a8 4 g ) S it

This concludes the proof of Proposition C.3. O

Proposition C.4. We have the following estimate:
ROS[()[} g €0-

Proof. We have from Lemma 2.4 that

Qey (/S ]7“4042) = /SQQV4(T404) - (r*a) + Qtrx|rtal?
= /5297"404 (Va(rta) +13a) + Q (trx - %) Irtal?
= /5297"404 (Va(rPa)r™ + eg(r"Hr%a + r3a) + Ty|rial?
= /5297"404 (Va(rPa)r™) + Ty|rtal?
= /5297"404 3G+ Tglrtal?.

Hence, we obtain

()

which implies

2,5 + €lriala slrialss,

< |7“4a|275]7’3d

64(|r4a|275) < |r3o°z]275 + 6‘7“20(‘2,5.
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Integrating along C,, applying initial assumption and Proposition C.3, we
infer
A u
|7’ Oz|275 <€+ ]T3&\27Sdg + E|7’2Oz|275
|

Ju
N

w0 s u
§60+/ 7’3_70|r70&|275dg+/ i3|r%oz|27gdg
| [ul 72

ul ul 72

u o 3 Lo g 3 u (2
<€+ </ T _Sodg> </ |r?&|2’sdg) +/ —du
[ul [ul lul 72
1
€ u 2
Seg+ 5(150 (/ TSSOdQ>
lu| 2 Jul

Notice that we have

(C.8)

0
/_TG_sod@ = log <£) , so =1,
Jul |ul

— 7(]u]7*5° —u %), 5o > T.
Hence, we obtain from (C.8)
7—s

€r 2 , EAS (677),
(C.9) rtalys $ < eollogr)z, s=71,

60|u|%7 s> 77
which implies from (C.4) that
(C.10) Ria] < eo.
This concludes the proof of Proposition C.4. O

Combining Propositions C.4 with (C.6), this concludes the proof of Theo-
rem M1 in the case of s > 6. Notice that Theorems M0, M2, M3, M4 also hold
true in the case s > 6 since we only used s > 3 in their proofs?*. Combining
with Section B.3, this concludes the proof of Theorem 3.1 for s > 3 as stated.

25See the discussion in Section B.2.
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C.4. Peeling decay for curvature components

As a consequence of Theorem M1 in the case s > 7, the curvature components
satisfy the following decay:

2

-7
P77 [u] 7 alpmas S €,

4-—2 s=5
sup |77 |ul 2 Blps S €o,
pE(2,4]
57|
sup |r° rlu
(Cll) pE[2,4]

_2 s—1
sup [r*77 [ul 7 Bl,s < €o,
p€[2,4}

s—3

2 (b/ﬂ 0-)|Pys rS €0,

s+1

sup |r1_%|u| T alps S €.

pE(2,4]
Remark C.5. Assume s > 7 and that the initial data in K has suffi-
ctent regularity properties. Then, commuting rV with the Bianchi equations

in Corollary 2.20 and the Teukolsky equation (2.30), proceeding as in Sec-
tion C.3, we deduce the following strong peeling properties:

€0 €0

T |u 2 r |u 2
- €0 < €0
(C.12) |p, U’oo,S(u,y) S 5-3 ’ﬁ|oo,5(u,g) ~ S—19
r3|u| r2|ul "z
€0

‘Q’oo,s(u,y) 5 T st
r|u|

which recovers the results obtained in [15] by the vectorfield method.
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