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Deformations of Fano manifolds with weighted solitons
Akito Futaki

Abstract: We consider weighted solitons on Fano manifolds which
include Kähler-Ricci solitons, Mabuchi solitons and base metrics
inducing Calabi-Yau cone metrics outside the zero sections of the
canonical line bundles (Sasaki-Einstein metrics on the associated
U(1)-bundles). In this paper, we give a condition for a weighted
soliton on a Fano manifold M0 to extend to weighted solitons on
small deformations Mt of the Fano manifold M0. More precisely,
we show that all the members Mt of the Kuranishi family of a Fano
manifold M0 with a weighted soliton have weighted solitons if and
only if the dimensions of T -equivariant automorphism groups of Mt

are equal to that of M0, and also if and only if the T -equivariant
automorphism groups of Mt are all isomorphic to that of M0, where
the weight functions are defined on the moment polytope of the
Hamiltonian T -action. This generalizes a result of Cao-Sun-Yau-
Zhang for Kähler-Einstein metrics.
Keywords: Deformations of complex structures, Kähler mani-
folds.

1. Introduction

Let M be a Fano manifold, i.e. a compact complex manifold with positive
first Chern class, of complex dimension m. We regard 2πc1(M) as a Kähler
class. The Kähler form ω is expressed as

ω =
√
−1 gij dz

i ∧ dzj

and the Kähler metric gij is often identified with the Kähler form ω. Let T
be a real compact torus in the automorphism group Aut(M), and assume
that ω is T -invariant. Since M is Fano and simply connected the T -action
is Hamiltonian with respect to ω. Since the T -action naturally lifts to the
anti-canonical line bundle K−1

M we have a canonically normalized moment
map μω : M → t∗ where t is the Lie algebra of T and t∗ its dual space,
cf. Appendix in [19]. Let Δ := μω(M) be the moment polytope. Then Δ
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is independent of ω ∈ 2πc1(M). Let v be a positive smooth function on Δ.
Regarding μ as coordinates on Δ using the action angle coordinates, we may
sometimes write v(μ) instead of v. The pull-back μ∗

ωv is a smooth function
on M , and for this we write v(μω) = μ∗

ωv = v ◦ μω.
We say that a Kähler metric ω in 2πc1(M) a weighted v-soliton or simply

v-soliton if
Ric(ω) − ω =

√
−1∂∂ log v(μω)

where Ric(ω) = −i∂∂ logωm is the Ricci form. We also call ω simply a
weighted soliton when it is v-soliton for some v, or when v is obvious from
the context. Examples of weighted solitons are a Kähler-Ricci soliton when
v(μ) = e〈μ,ξ〉 for some ξ ∈ t, a Mabuchi solitons when v(μ) = 〈μ, ξ〉 + a for
some positive constant a, and a basic metric which which induces Calabi-
Yau cone metrics outside the zero sections of the canonical line bundle and
hence a Sasaki-Einstein metrics on the U(1)-bundle of K−1

M when v(μ) =
(〈μ, ξ〉 + a)−m−2, see [23, 30, 1, 2, 22, 34].

In this paper we consider the Kuranishi family � : M → B of defor-
mations of a Fano manifold M which is a complex analytic family of Fano
manifolds where B is an open set in Cn containing the origin 0 and we write
Mt := �−1(t) and require M0 = M , cf. [25, 26, 27, 38, 41, 18]. Note that
there is no obstruction for Fano manifolds since

H2(M0,Θ) ∼= Hm−2(M0,Ω1(KM0)) = 0

by Serre duality and Kodaira-Nakano vanishing. For a given Kähler form
ω ∈ 2πc1(M) let f ∈ C∞(M) satisfy

Ric(ω) − ω =
√
−1∂∂f.

The Kuranishi family we consider in this paper is described by a family of
vector valued 1-forms parametrized by t ∈ B

ϕ(t) =
k∑

i=1
tiϕi +

∑
|I|≥2

tIϕI ∈ A0,1(T ′M)

such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ϕ(t) = 1

2 [ϕ(t), ϕ(t)];
∂
∗
fϕ(t) = 0;

ϕ1, . . . , ϕk

form a basis of the space of all T ′M -valued Δf -harmonic (0, 1)-forms

(1)
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where Δf = ∂
∗
f∂ + ∂ ∂

∗
f is the weighted Hodge Laplacian with ∂

∗
f the formal

adjoint of ∂ with respect to the weighted L2-inner product
∫
M (·, ·)efωm. See

[18] for more detail about this Kuranishi family. We showed in [18] that the
Kähler form ω on M0 = M remains to be a Kähler form on Mt. The main
result of this paper is stated as follows.

Theorem 1.1. Suppose that M0 has a weighted v-soliton. Consider the Ku-
ranishi family (1) with f = log v(μω). Then, shrinking B if necessary, the
following statements are equivalent.

(1) Mt has a weighted v-soliton for all t ∈ B.
(2) T is included in Aut(Mt), and for the centralizer AutT (Mt) of T in

Aut(Mt), dim AutT (Mt) = dim AutT (M0) for all t ∈ B.
(3) T is included in Aut(Mt), and the identity component AutT0 (Mt) of

AutT (Mt) is isomorphic to AutT0 (M0) for all t ∈ B.

Although there are extensive studies on the existence of Kähler-Einstein
metrics on Fano manifolds, e.g. [4], currently, there are not many existence
results on weighted solitons on Fano manifolds. Because of this lack of ex-
amples of weighted solitons, it is not easy to find non-trivial applications of
Theorem 1.1.

As for the deformations of complex structures of polarized manifolds with
weighted cscK metrics, there is a result by Hallam [20] which states that a
small deformation of a polarized manifold with a weighted cscK metric has a
weighted cscK metric if and only if it is weighted K-polystable with respect
to smooth T -equivariant test configurations. The “only if” part follows from
a result of Apostolov-Jubert-Lahdili [2]. The result of Hallam extends the
results of Brönnle [7] and Szekelyhidi [40] for cscK metrics.

The outline of the proof of Theorem 1.1 is as follows. The proof of The-
orem 1.1 above is largely parallel to that of Theorem 1.1 of Cao-Sun-Yau-
Zhang [9]. Just as the notion of Kähler-Einstein metrics are generalized to
constant scalar curvature Kähler (cscK for short) metrics and further to ex-
tremal Kähler metrics [8], the notion of weighted solitons are generalized to
weighted cscK metrics and further to weighted extremal metrics [30, 23, 24].
In Section 2, we extend a result of Rollin-Simanca-Tipler [39] for extremal
Kähler metrics to show that a weighted extremal metric on M0 can be ex-
tended to weighted extremal metrics on small deformations Mt if the maximal
torus in the reduced automorphism group acts on B trivially. In Section 3
we review how weighted solitons are regarded as weighted cscK metrics. In
Section 4 we finish the proof of Theorem 1.1. We first review results in [18]
about the Kähler forms and their Ricci potentials for the Kuranishi family.
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Next, we show a lemma which implies that the action of the maximal torus
on B is trivial so that we can apply the result obtained in Section 2. We
then show using the formula of the Ricci potential obtained in [18] that the
weighted extremal metrics obtained in Section 2 are in fact weighted cscK
metrics which are in this case weighted solitons, proving (2) implies (1). That
(1) implies (3) is proved using the K-polystability characterization obtained
by the works of Han-Li [22], Li [34], Blum-Liu-Xu-Zhuang [6] and closely
following the arguments of [9]. That (3) implies (2) is trivial.

2. Weighted scalar curvature

In this section we review the weighted scalar curvature, which is also called
the (v, w)-scalar curvature, introduced by Lahdili [30], see also Inoue [23, 24]
for a similar idea.

Let M be a compact Kähler manifold and Ω its Kähler class. Recall that
the Lie algebra of Aut(M) is the Lie algebra h(M) of all holomorphic vector
fields. We denote by Autr(M) ⊂ Aut(M) the reduced automorphism group,
i.e. the Lie algebra hr(M) of Autr(M) consists of holomorphic vector fields
with non-empty zeros. They are obtained in the form grad′ u, i.e. the (1, 0)-
part of the gradient vector field, of some complex valued smooth functions u,
see e.g. [32].

Let T be a compact real torus in Autr(M). As in the Introduction
AutTr (M) denotes the centralizer of T in Autr(M), i.e. the subgroup consist-
ing of T -equivariant automorphisms. In the Fano case AutTr (M) = AutT (M).
Let ω ∈ Ω be a T -invariant Kähler form. Then T acts on (M,ω) in the Hamil-
tonian way. Let μω : M → t∗ be the moment map where t is the Lie algebra
of T and t∗ its dual space. Then Δ := μω(M) is a compact convex polytope.
This is independent of ω ∈ Ω up to translation, but the ambiguity of trans-
lation is fixed by giving a normalization of μω which specifies the average by
the integration. Let v be a positive smooth function on Δ.

As in Section 1, we also write v = v(μ) as a function on Δ by considering
μ to constitute the action-angle coordinates, and also write v(μω) := μ∗

ωv as
a positive smooth function on M . We define v-scalar curvature Sv(ω) of a
T -invariant Kähler form ω by

Sv(ω) := v(μω)S(ω) + 2Δωv(μω) + 〈gω, μ∗
ωHess(v)〉

where S(ω) denotes the Kähler geometers’ scalar curvature

S(ω) = −gij
∂2

∂zi∂zj
log det(gl�)
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of ω, Δω = ∂
∗
∂ the Hodge ∂-Laplacian on functions, and

〈gω, μ∗
ωHess(v)〉 = gijvαβμ

α
i μ

β

j

is the trace of the pull-back by μω of the Hessian Hess(v) of v on t∗ in which
we express the moment map μω : M → t∗ as μω(p) = (μ1(p), . . . , μ�(p)) with
dμα = i(Xα)ω for a basis X1, . . . , X� of t. Thus, our Sv is half of that in [30].

Let w be another positive smooth function on Δ. We define (v, w)-scalar
curvature Sv,w by

Sv,w = Sv

w(μω) .

The notion of Sv,w-scalar curvature was originally introduced as a generaliza-
tion of conformally Kähler, Einstein-Maxwell metrics after extensive studies
such as [31, 3, 16, 17, 28, 29]. Later it turned out that the (v, w)-cscK metrics
include much more unexpected examples as mentioned in Section 1 (hence if
g is a (v, w)-extremal metric then grad′ Sv,w ⊂ t̃). But we do not assume this
for the moment; see also Section 3.

We call g a weighted extremal metric or (v, w)-extremal metric if

grad′ Sv,w = gij
∂Sv,w

∂zj
∂

∂zi

is a holomorphic vector field.

Remark 2.1. In Section 3.2 of [30], Lahdili also defined (v, w)-extremal Käh-
ler metrics. But his definition is slightly different from ours in that the ex-
tremal vector field belongs to t in his case but does not in our case.

Define Lvϕ for complex valued smooth functions ϕ by

Lvϕ = ∇i∇j(v(μω)∇i∇jϕ),

and call Lv the v-twisted Lichnerowicz operator. Obviously, Lv is self-adjoint
elliptic operator; ∫

M
(Lvϕ)ψ ωm =

∫
M

ϕLvψ ωm

where m = dimM . L := L1 is the standard Lichnerowicz operator. The kernel
of Lv consists of complex valued smooth functions u such that grad′ u is a
holomorphic vector fields, an thus KerLv = hr(M) = Lie(Autr(M)). We also
define Lv,w by

Lv,w = 1
w(μω) Lv.
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Consider the one parameter family of metrics gtij = gij+tϕij . By straight-
forward computations one can show

d

dt

∣∣∣∣
t=0

Sv(gt) = −Lvϕ + Si
v ϕi,(2)

d

dt

∣∣∣∣
t=0

Sv,w(gt) = −Lv,wϕ + Si
v,w ϕi.(3)

It is also straightforward using (3) to show the following Proposition 2.2.

Proposition 2.2. A critical point of the weighted Calabi functional

g �→
∫
M

S2
v,w(g)w(μω)ωm

is a weighted extremal metric.

As in [13] we can define the following invariants.

Proposition 2.3. Let hX ∈ KerLv be the real Killing potential of X ∈ t, i.e.
i grad′ hX = X ′. Then Futv and Futv,w defined by

(4) Futv(X) =
∫
M

(Sv − cv)hX ωm,

and

(5) Futv,w(X) =
∫
M

(Sv,w − cv,w)hX w(μω)ωm

are independent of choice of ω ∈ Ω where cv,w =
∫
M Sv ω

m/
∫
M w(μω)ωm and

cv = cv,1 which are independent of ω ∈ Ω.

Proof. If hX(ω) is the real Killing potential as in the statement of the propo-
sition for ω ∈ Ω then, under the normalization

∫
M hX ωm = 0, we have

hX(ωt) = hX + thi
Xϕi where ωt is the Kähler form of gt which was defined

two lines above the equation (2). Hence

d

dt

∣∣∣∣
t=0

∫
M

Sv(ωt)hX(ωt)ωm
t

=
∫
M

((
−Lvϕ + Si

vϕi

)
hX + Svh

i
Xϕi + SvhXΔϕ

)
ωm

= −
∫
M

ϕLvhXωm = 0,
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and

d

dt

∣∣∣∣
t=0

∫
M

hX(ωt)ωm
t = 0.

Thus Futv is independent of ω ∈ Ω. Note however that the expression of (4)
does not depend on the normalization of hX . By a similar computation one
can show that Futv,w is independent of ω ∈ Ω.

Remark 2.4. In [30] Lahdili shows for smooth test configurations, the slope of
the weighted Mabuchi functional is the weighted Donaldson-Futaki invariant.
Applying this to the case of product test configurations also yields Proposi-
tion 2.2.

Remark 2.5. If g is a (v, w)-extremal metric with non-constant Sv,w then

Futv,w(J gradSv,w) =
∫
M

(Sv,w − cv,w)2 w(μω)ωm > 0.

Remark 2.6. A decomposition theorem similar to that proved by Calabi [8]
for extremal Kähler metrics holds for weighted extremal Kähler metrics, see
Theorem B.1 in [30], also [17, 28]. A consequence of this is that, if g is a
weighted extremal metric, then the centralizer of grad′ Sv,w in hTr (M) is the
complexification of the real Lie algebra of all T -equivariant Killing vector fields
with non-empty zeros. In particular, if g has constant (v, w)-scalar curvature,
then the identity component of AutTr (M) is the complexification of the identity
component of IsomT

r (M) consisting of isometries with non-empty fixed point
set.

Let (M, g) be a compact Kähler manifold of complex dimension m. Let T̃
be the maximal torus in Autr(M) including T . Let L2

k(M) be the k-th Sobolev
space with respect to the metric g with weight w(μω). Here the weight w(μω)
means that L2-inner product is given by

(φ, ψ) =
∫
M

φψ w(μω)ωm.

We take k sufficiently large so that L2
k(M)-functions form an algebra. Let

L2
k,T̃

(M) be the subspace of L2
k(M) consisting of T̃ -invariant functions.

Let Hg be the space of Killing potentials corresponding to t̃. Then the
functions in Hg are purely imaginary. As in Proposition 2.3 we call a function
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in iHg a real Killing potential. Let Wk,g be the orthogonal complement of
iHg in L2

k,T̃
:

L2
k,T̃

= iHg ⊕Wk,g

with L2-orthogonal projections

πH
g : L2

k,T̃
→ iHg, πW

g : L2
k,T̃

→ Wk,g.

Then πH
g (Sv,w(g)) is a smooth function independent of the choice of k, and

the gradient vector field grad′ πH
g (Sv,w(g)) is independent of the choice of

g in the same Kähler class, see Theorem 3.3.3 in [14], also [15], and also
Theorem 1.5 in [35] for conformally Kähler Einstein-Maxwell metrics. The
proof in the weighted (v, w)-case is identical to [35]. This vector field is called
the extremal Kähler vector field. If g is a weighted extremal metric then

πH
g (Sv,w(g)) = Sv,w(g).

Hence g is a weighted extremal metric if and only if

πW
g (Sv,w(g)) = 0.

Definition 2.7. We call Sred
v,w(g) := πW

g (Sv,w(g)) the reduced (v, w)-scalar
curvature, or simply reduced scalar curvature of g. Thus, g is a weighted
(v, w)-extremal metric if and only if Sred

v,w(g) = 0.

We can then modify (3) as

(6) d

dt

∣∣∣∣
t=0

Sred
v,w(gt) = −Lv,wϕ + Sred i

v,w ϕi.

Let � : M → B a complex analytic family of complex deformations with
M0 = M where B is an open set in Ck containing 0 and we put Mt := �−1(t).
We assume (M0, g0) = (M, g) is a compact (v, w)-extremal Kähler manifold.
By the rigidity theorem of Kodaira-Spencer, Mt is Kähler for all small t, see
e.g. [38]. Note that the dimension of the Dolbeault cohomology is only upper
semi-continuous on compact complex manifolds. But on a compact Kähler
manifold M with continuously varying integral complex structure Jt, we have
the Hodge decomposition

⊕p+q=rH
p,q(M,Jt) = Hr(M,C).
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Since the dimension of Hr(M,C) is a topological invariant and independent
of t then the upper semi-continuity of the dimension of each component of
the left hand side implies that the dimension of Hp,q(M,Jt) is independent
of t.

Let Ωt be a smooth family of Kähler classes of Mt, i.e. Ωt gives a smooth
section of the vector bundle {H2(Mt)}t∈B. Suppose that T̃ acts holomorphi-
cally on M → B and trivially on B. Thus T̃ acts on Mt holomorphically for
each t ∈ B. Taking the average over the T̃ -action we have a smooth family
gt of T̃ -invariant Kähler metrics such that the associated Kähler forms ωt

represent Ωt.
We denote by L2

k,T̃
(M) the space of T̃ -invariant real valued L2

k-functions
with respect to g = g0 with weight w(μω). We shall write the L2-inner product
with weight w(μω) by L2(w). We put

Ht(M) = H1,1(Mt, gt) ∩H2(M,R).

For φ ∈ L2
k+4,T̃

(M) and α ∈ Ht(M) we put

ωt,α,φ = ωt + α + i∂∂φ

which is a T̃ -invariant real closed (1, 1)-form on (M,Jt) and

[ωt,α,φ] = Ωt + [α].

Shrinking B if necessary H(M) = ∪t∈BHt(M) forms a trivial vector bundle
over B. Let h : B × H0(M) → H(M), (t, α) �→ ht(α), be an isomorphism
of vector bundles. Note that the Sobolev spaces L2

k,T̃
(M) is independent of

gt for all small t ∈ B. Thus we consider L2
k,T̃

as possessing varying norm
corresponding to gt. Let

L2
k,T̃

(M) = iHt,α,φ ⊕Wk,t,α,φ

be the splitting of L2
k,T̃

(M) into the space iHt,α,φ of real Killing potentials and
its orthogonal complement Wk,t,α,φ with respect to ωt,α,φ. Let P : L2

k,T̃
(M) →

Wk,0 be the projection with respect to g0. Thus P = πW
g0 in the previous

notation. Consider the map Φ : U → B × Wk,0 defined on a small open
neighborhood U of (0, 0, 0) in B ×H0(M) ×Wk+4,0 to B ×Wk,0 by

Φ(t, α, φ) = (t, P (Sred
v,w(gt,ht(α),φ))).
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Here gt,β,φ is the Kähler metric corresponding to the Kähler form ωt,β,φ, and
Sred
v,w(gt,β,φ) is the reduced (v, w)-scalar curvature, cf. Definition 2.7.

Proposition 2.8 (cf. [39]). Let g be a (v, w)-extremal metric where v and w
are defined on the image of the moment map μω : M → t∗. Let T̃ be a maximal
torus in Isom(M, g) containing T . Suppose that T̃ acts holomorphically on
M → B and trivially on B. Then, by shrinking B to a sufficiently small
neighborhood of the origin if necessary, for arbitrary small perturbations Ωt

of the Kähler class Ω = Ω0, there are weighted extremal metrics gt in Ωt.

Proof. We consider the map Φ above with g0,0,0 a (v, w)-extremal metric, and
thus Sred

v,w(g0,0,0) = 0. Using (6) one can show

dΦ(0,0,0)(1, α̇, φ̇) =
(

1 0
∗ −Lv,wφ̇ + P (dSred

v,w(α̇))

)
.

If ψ ∈ Wk,0 is in the cokernel of dΦ(0,0,0) then

Lv,wψ = 0 and (P (dSred
v,w(α̇)), ψ)L2(w) = 0.

But Lv,wψ = 0 implies that ψ is a T̃ -invariant real Killing potential. Since
T̃ is a maximal torus we have ψ ∈ iH0 and the second condition above is
automatically satisfied. Thus ψ ∈ iH0 ∩Wk,0 = {0}. By the implicit function
theorem the proposition follows.

Instead of the maximal torus T̃ , one could use a smaller torus T ′ such that
T ⊂ T ′ ⊂ T̃ , and argue as in [39]. Then a non-degeneracy condition considered
in [32] is required as in Theorem 1 in [39]. In fact, if we use a smaller torus
T ′ such that T ⊂ T ′ ⊂ T̃ , then we need to take Hg to be the space of Killing
potentials corresponding to t′, the Lie algebra of T ′. Then Lv,wψ = 0 implies
that ψ is a Killing potential but it does not imply that it belongs to Hg, so
ψ needs not be zero. Hence, in order to be able to use the implicit function
theorem we need the following condition: “If (P (dSred

v,w(α̇)), ψ)L2(w) = 0 for
any α̇ ∈ H0(M) then ψ = 0.” This is the non-degeneracy condition in [39]
and [32] where, in the case of [32], T = T ′ = {1} and P is the identity. See
also Lemma 6 in [39].

3. Weighted solitons on Fano manifolds

In this section we consider weighted solitons on Fano manifolds which form
a subclass of weighted cscK metrics. Let M be a Fano manifold, and ω ∈
2πc1(M) be a Kähler form.
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Definition 3.1. Let v be a positive smooth function on the image of the
moment map of a Hamiltonian T -action. We say that ω is a weighted v-
soliton (or simply weighted soliton, also v-soliton) if

Ric(ω) − ω = i∂∂ log v(μω).

Examples of v-solitons are

(i) Kähler-Ricci soliton for v(μ) = exp(〈μ, ξ〉) for ξ ∈ t where the linkage
with Sv,w-cscK metrics was first found by Inoue [23, 24],

(ii) Mabuchi soliton for v(μ) = 〈μ, ξ〉 + a a positive affine-linear function
[37], and

(iii) base metric which induce Calabi-Yau cone metrics outside the zero sec-
tions of the canonical line bundles (Sasaki-Einstein metrics on the as-
sociated U(1)-bundles) for v(μ) = (�(ξ))−(m+2) where �(ξ) = 〈μ, ξ〉 + a
is a positive affine-linear function (see Proposition 2 in [2]).

A T -invariant Kähler form ω ∈ 2πc1(M) is a v-soliton if and only if ω is
Sv,w = 1 metric with

(7) w(μ) = (m + 〈d log v, μ〉)v(μ).

This can be seen from the formula

(8) Sv − w(μω) = v(μω)Δv(log v(μω) − f)

where f ∈ C∞(M) is the Ricci potential of ω, i.e. S − m = Δf , and Δv =
v−1 ◦ ∂∗ ◦ v ◦ ∂ in which v and v−1 denote the multiplications by v(μω) and
v(μω)−1. By (8) we have ∫

M
(Sv − w(μω))ωm = 0,

and thus cv,w = 1 and

Futv,w(X) =
∫
M

(Sv − w(μω))hX ωm.

Using (8) this can be rewritten as

(9) Futv,w(X) =
∫
M

(JX)(log v(μω) − f) v(μω)ωm.
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A characterization of the existence of weighted solitons by Ding-poly-
stability and K-polystability was described by Li [34], Theorem 1.17 and
Theorem 1.21. The story to this result may be summarized as follows. After
the resolution of Yau-Tian-Donaldson conjecture by [10, 42, 12, 11] where the
Gromov-Hausdorff convergence was used, a variational proof without using
Gromov-Hausdorff convergence was given in [5] under the condition of uniform
K-stability. Further in [33], the existence was shown under the condition of G-
uniform stability. The work of [36] shows that when G contains the maximal
torus G-uniform stability is equivalent to K-polystability. Generalizing the
result of [33] for Kähler-Einstein metrics, Han-Li [22] proved the existence
of weighted solitons under the condition of G-uniform stability for weighted
case. In [6] and [34], the equivalence of G-uniform stability when G contains
the maximal torus and K-polystability for weighted case was shown.

4. Geometry of Kuranishi family

Let � : M → B be the Kuranishi family of a Fano manifold M satisfying (1)
as described in Section 1. Then the v-soliton ω on M0 = M remains to be
Kähler forms on Mt, t ∈ B, by Theorem 1.4 in [18]. Further, it was shown in
Theorem 1.5 in [18] that the Ricci form Ric(Mt, ω) of (Mt, ω) is given by

Ric(Mt, ω) = ω + ∂t∂t(f0 + log det(I − ϕ(t)ϕ(t))).(10)

But since we assume (M0, ω0) with ω0 = ω is a v-soliton we have

f0 = log v(μω0).(11)

Recall that ϕ(t) in (1) can be considered as

ϕ(t) ∈ A0,1(T ′M0) ∼= Γ(Hom(T ′∗M0, T
′′∗M0)) = Γ(T ′M0 ⊗ T ′′∗M0),

ϕ(t) = ϕi
j(t)

∂

∂zi
⊗ dzj .(12)

Here zi = zi0 are local holomorphic coordinates of M0, and we keep this
notation below. Then, T ′∗Mt is spanned by

ei := dzi + ϕi
j(t)dz

j , i = 1, . . . ,m,(13)

or equivalently, T ′′Mt is spanned by

Tj := ∂

∂zj
− ϕi

j(t)
∂

∂zi
, j = 1, . . . ,m.(14)
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Lemma 4.1. Suppose that (2) of Theorem 1.1 is satisfied. Then the identity
component AutT0 (M) of AutT (M) acts on H1(M0, T

′M0) ∼= T ′
0B trivially,

and hence on B trivially.

Proof. We closely follow the arguments in [9, p. 823]. But some missing
computations in [9] are supplemented, which are (15)–(19) below, for the
reader’s convenience. Since the Kuranishi family is a complex analytic fam-
ily (Proposition 2.6, 2.7 in Chapter 4 of [38], or Theorem 6.5, [25]), by the
assumption there are T -invariant holomorphic vector fields v1(t), . . . , v�(t)
which form a basis of H0(Mt, T

′Mt)T and holomorphic in t. We regard these
are vector fields on M0 ∼= M since all Mt are diffeomorphic to M0. Since
(I − ϕϕ)−1 − ϕ(I − ϕϕ)−1 is invertible for small t we may put

ṽp := ((I − ϕϕ)−1 − ϕ(I − ϕϕ)−1)−1vp.

Let z1, . . . , zm and w1, . . . , wm be local holomorphic coordinates for M0 and
Mt respectively defined on a common open set U of M . Note that (4.4) and
(4.5) in [18] imply

(15) ((I − ϕϕ)−1)ij = ∂zi

∂wα

∂wα

∂zj

and

(16) − ϕi
j ((I − ϕϕ)−1)j� = ∂zi

∂wα

∂wα

∂zj
.

Then we can see using (15) and (16) that

(17) vp = ṽjp
∂wα

∂zj
∂

∂wα
.

Since v is holomorphic on Mt, we have Tjv
α = 0, that is,

(18)
(

∂

∂zj
− ϕi

j(t)
∂

∂zi

)(
∂wα

∂zk
ṽkp

)
= 0.

On the other hand

(19)
(
Tj

(
∂wα

∂zk

))
ṽkp = (ṽpϕ)ij

∂wα

∂zi
.

From (18) and (19) we get

(20) ∂0 ṽp = −[ṽp, ϕ].
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Since ϕ(0) = 0 we obtain

(21) ∂0

(
∂

∂tk

∣∣∣∣
t=0

ṽp(t)
)

= −[ṽp, ϕk].

This implies the infinitesimal generators of AutT0 (M) acts on H1(M0, T
′M0)

trivially. This completes the proof.

Proof of Theorem 1.1. We first prove that (2) implies (1). Let G :=
IsomT

0 (M0, ω) be the identity component of the T -equivariant isometries of
(M0, ω) so that G preserves both ω and J0. Then since ω = ω0 is a weighted v-
soliton it is a (v, w)-cscK metric with w(μ) = (m+〈d log v, μ〉)v(μ) and GC =
AutT0 (M). By Lemma 4.1, G acts on H1(M0, T

′M0) trivially, which implies
that G preserves ϕ(t) since ϕ(t) is uniquely determined by

∑k
i=1 t

iϕi in Ku-
ranishi’s equation (1). Hence G also preserves Jt, and thus G ⊂ IsomT

0 (Mt, ω).
But since

dimGC = dim AutT (M) = dim AutT (Mt) ≥ dimR IsomT
0 (Mt, ω)

we have G = IsomT
0 (Mt, ω). This implies that the Hamiltonian vector fields

for (M0, ω) remain to be Hamiltonian vector fields of (Mt, ω), and the moment
map μωt is unchanged as t varies. Thus

(22) v(μωt) = v(μω)

for all t ∈ B.
Let T̃ be the maximal torus in G containing T . Then since T̃ ⊂ AutT0 (M)

Lemma 4.1 implies that T̃ acts on B trivially. By Proposition 2.8, shrinking
B if necessary, Mt admits a (v, w)-extremal metric for any t ∈ B. We wish
to show this (v, w)-extremal metric is a (v, w)-cscK metric so that it is a
v-soliton. To see this, by Remark 2.5, it is sufficient to show the invariant
Futv,w(t) in (9) for Mt vanishes. By (10) and (11), we need to take f in (9),
to be

ft := log v(μω0) + log det(I − ϕ(t)ϕ(t)).

Hence using (22) we have

(23) Futv,w(t)(X) = −
∫
M

(JX)(log det(I − ϕ(t)ϕ(t))) v(μω)ωm.

But since any automorphism of Mt preserves ϕ(t) the derivative by JX on the
right hand side of (23) vanishes. Thus Futv,w(t) vanishes, and by Remark 2.5
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the extremal (v, w)-extremal metric must be a v-soliton. This proves that (2)
implies (1).

Next we prove that (1) implies (3). We first show the action of G :=
IsomT

0 (M0, ω) and GC on B is trivial.
For this purpose we show that if this is not the case then there is a non-

product TC-equivariant test configuration {(Mt, K
−k
Mt

)} using arguments simi-
lar to [9, pp. 822–823]. Because of the construction of the Kuranishi family, the
nontrivial action of GC on B induces a one parameter subgroup λ : C∗ → GC

whose TC-equivariant action on T ′
0B

∼= H1(M0, T
′M0) is nontrivial. We can

choose a basis e1, . . . , e� of H1(M0, T
′M0) such that λ(s)ei = sκiei with

κi ∈ Z. Since this action is nontrivial some κi is non-zero, and we choose and
fix one of such i’s, and we may assume κi > 0 by replacing λ by λ−1. Con-
sider the one-dimensional subfamily {Mt | t = (0, . . . , 0, ti, 0, . . . , 0), |ti| < ε}
of M → B for small ε > 0. Then we have an action of {s | |s| < 1} cor-
responding to the λ-action expressed by Mt → Mst. All Mt with t �= 0 are
biholomorphic because of the action of {s | 0 < |s| < 1}. Then the Kodaira-
Spencer map T ′Bt → H1(Mt, T

′Mt) is only surjective (see e.g. Theorem 2.1,
(3) in [9]) but not isomorphic for t �= 0, while T ′B0 → H1(M0, T

′M0) is iso-
morphic. It follows that, for t �= 0, Mt is not biholomorphic to M0. Hence
after a suitable base change we obtain a non-product TC-equivariant test
configuration {(Mt, K

−k
Mt

)}.
But this is impossible since Mt has a v-soliton and K-polystable with

respect to TC-equivariant test configurations, the central fiber M0 also has a
v-soliton and the Donaldson-Futaki invariant is zero (see Theorem 1.17 and
1.21 in [34], or [2], or Theorem 1.0.7 in [20], or [21]). Thus the action of G on
B is trivial.

Then as we argued at the beginning of this proof, G preserves both ω
and ϕ(t), and thus we have an inclusion G ⊂ Isom0(Mt, ω). In particular
T ⊂ Isom0(Mt, ω) ⊂ Aut0(Mt) and G ⊂ IsomT

0 (Mt, ω), GC = AutT0 (M0) ⊂
AutT0 (Mt). But since dimH0(Mt, T

′Mt)T is upper semi-continuous we obtain
GC = AutT (Mt) for all t ∈ B. This proves that (1) implies (3). That (3)
implies (2) is trivial. This completes the proof of Theorem 1.1
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