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Coassociative submanifolds in Joyce’s generalised
Kummer constructions

Dominik Gutwein

Abstract: This article constructs coassociative submanifolds in
G2-manifolds arising from Joyce’s generalised Kummer construc-
tion. The novelty compared to previous constructions is that these
submanifolds all lie within the critical region of the G2-manifold in
which the metric degenerates. This forces the volume of the coas-
sociatives to shrink to zero when the orbifold-limit is approached.
Keywords: Coassociative submanifolds, G2-manifolds, Gener-
alised Kummer constructions.

1. Introduction

Associative and coassociative submanifolds are the natural subobjects in 7-
dimensional G2-manifolds. Besides having minimal volume among all sub-
manifolds realising a fixed homology class (and therefore being minimal,
cf. [10, Sections 2.4 and 4.1.A-B]), they play a prominent role in the exten-
sively studied gauge theory on G2-manifolds (see for example [26] and [4]).
Moreover, Halverson and Morrison proposed that associative and coassocia-
tive submanifolds might play a role in characterising the period domain of
a G2-manifold [9, Section 3] (see also the formulation in [5, Introduction]).
More precisely, assume that Y is a simply-connected and compact 7-manifold
that admits torsion-free G2-structures. In analogy to the Kähler cone of a
Calabi–Yau 3-fold, Halverson and Morrison [9, Section 3] proposed that (the
G2-period domain)

Q(Y ) :=
{
([φ], [∗φφ]) ∈ H3(Y ) ⊕ H4(Y ) | φ ∈ Ω3(Y ) is a

torsion-free G2-structure
}

might be fully characterised by the following inequalities:1
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1Where we ignore for the moment the issue that the notions of G2-instantons,

associative-, and coassociative submanifolds themselves depend on φ. Furthermore,
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1. A topological condition:
∫
Y α∧α∧φ < 0 for every nonzero [α] ∈ H2(Y ).

2. A characteristic class condition:
∫
Y p1(E)∧φ < 0 for any vector bundle

E over Y admitting a non-flat G2-instanton.
3. Two calibrated submanifold conditions:

•
∫
P φ > 0 for any associative submanifold P .

•
∫
M ∗φ > 0 for any coassociative submanifold M .

If Halverson and Morrison’s proposal is indeed true, then certain degen-
erations of G2-structures would be detectable by the vanishing of one of
the above integrals. As a step towards this proposal, Dwivedi, Platt, and
Walpuski constructed therefore in [5] associative submanifolds in families of
G2-manifolds arising from Joyce’s generalised Kummer construction [11, 12].
These associative submanifolds have the property that their volume shrinks
to zero as the G2-manifold approaches its (singular) orbifold-limit. (This is
equivalent to

∫
P φt → 0 where P denotes the mentioned associative and φt

corresponds to the degenerating path of G2-structures.) The purpose of the
article at hand is to augment their work by the analogous construction of
coassociative submanifolds. We hereby proceed as follows:

In Section 2 we review the necessary background on the generalised Kum-
mer construction and asymptotically locally Euclidean (ALE) hyperkähler
4-manifolds. Section 3 is devoted to the analysis of our construction. In The-
orem 3.7 we prove a perturbation result for coassociative submanifolds whose
spirit is well-known from gluing constructions in gauge theory. It roughly
states that whenever two closed G2-structures φ and φ0 on a 7-manifold Y
are ‘close’ (in a quantified sense) to one another, then a φ0-coassociative sub-
manifold can be perturbed to a φ-coassociative. In Proposition 4.2 we prove
that this theorem is applicable to a certain class of submanifolds that occur
very frequently in generalised Kummer constructions. These submanifolds are
modelled on (or covered by) the product of a 2-torus and a holomorphic sphere
where the latter lies in the exceptional divisor of the glued-in ALE hyper-
kähler 4-manifold appearing in the Kummer construction (cf. Example 3.2).
Subsequently, we find in Section 4 numerous examples of coassociative sub-
manifolds in various resolutions of G2-orbifolds constructed in [12] and [24].
Our construction leaves the freedom of choosing a ‘basepoint’ of the 2-torus
and we mention in Remark 4.3 that moving this basepoint produces the full
deformation family of the coassociatives constructed in Proposition 4.2. In
our examples, this family is either homeomorphic to S1 or a closed interval.

note that the integration is carried out with respect to the orientation determined
by 1

7 [φ] ∪ [∗φφ] ∈ H7(Y ).
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The coassocative submanifolds in the latter case are embedded for the in-
ner values of the interval and factor at the endpoints through a double-cover
over an (embedded) rigid coassociative submanifold. Ultimately, we give in
Appendix B all choices of ALE hyperkähler 4-manifold that can be used to
resolve the G2-orbifolds of [24] that were treated in Section 4.

There already exists a vast literature on the construction of coassociative
submanifolds (see [15, Chapter 12] and [21, Section 6] for an overview). Here
we only mention that Joyce [12, Section 4.2] constructed coassociative sub-
manifolds inside his generalised Kummer constructions as fixed-point sets of
anti G2-involutions. At least one part of their support lies outside the critical
region of the ambient manifold in which the orbifold singularities develop. In
contrast, the coassociatives in the article at hand are all constructed to lie
completely within this region. This is ultimately the reason why their volume
shrinks to zero.

2. Background

2.1. Joyce’s generalised Kummer construction

The generalised Kummer construction, as developed (and extended) by Joyce
in [11, 12, 14], produces compact manifolds with holonomy contained in G2
as desingularisations of certain G2-orbifolds. This section follows the presen-
tation in [5] very closely. The following class of examples serve as models for
the singularities considered in this article:

Example 2.1. Let (X,ω) be a hyperkähler 4-orbifold with hyperkähler struc-
ture ω ∈ Ω2(X, ImH

∗). Denote by Vol ∈ Ω3(ImH) and σ ∈ Ω1(ImH, ImH)
the volume form and the canonical isomorphism T ImH → ImH × ImH,
respectively. In the following we denote by 〈σ ∧ ω〉 the 3-form on ImH ×X
obtained by wedging and pairing ImH⊗ ImH

∗ → R.

1. The product ImH×X carries a torsion-free G2-structure defined by

(1) φ := Vol − 〈σ ∧ ω〉 ∈ Ω3(ImH×X).

2. Assume there is a group action ρ : G → Isom(X) by G < SO(ImH) �
ImH that preserves the hyperkähler structure in the sense that for any
(R, v) ∈ G

(2) (ρ(R, v)∗ ⊗R∗)ω = ω.
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The 3-form φ is invariant under the product action on ImH × X and
descends to a torsion-free G2-structure on the quotient Y := (ImH ×
X)/G. We denote the corresponding 3-form on Y by φ as well. Note
that whenever G is Bieberbach (i.e. discrete, cocompact, and torsion-
free) then the action is free and taking the quotient does not introduce
additional singularities in Y .

Let now (Y0, φ0) be a compact and flat G2-orbifold such that its singu-
larities are locally modelled on R

3 ×H/Γ for a finite group Γ < Sp(1). More
precisely, we demand:

Assumption 2.2. Denote by S the set of connected components of the sin-
gular set of Y0. We assume that for every S ∈ S there exist

1. A finite subgroup ΓS < Sp(1), a Bieberbach group GS < SO(ImH) �
ImH, and a group action ρ : GS → NSO(H)(ΓS) ⊂ Isom(H/ΓS). Denote
by

(YS := (ImH×H/ΓS)/GS , φS)

the corresponding G2-orbifold from Example 2.1.
2. An open set

US := (ImH×B2RS (0)/ΓS)/GS ⊂ YS

for RS > 0 and an open embedding JS : US → Y0 with S ⊂ JS(US) and
J∗Sφ0 = φS . The RS are chosen such that JS1(US1) ∩ JS2(US2) = ∅ for
any two S1 �= S2 ∈ S.

Remark 2.3. All (non-trivial) finite subgroups Γ < Sp(1) were classified by
Klein [17]. These are isomorphic to:

(Ak) The cyclic group Ck+1 for k ≥ 1
(Dk) The dicyclic group Dick−2 for k ≥ 3
(E6) The binary tetrahedral group 2T
(E7) The binary octahedral group 2O
(E8) The binary icosahedral group 2I

(See also [24, Section 2] for a description on how these groups lie inside Sp(1).)

Definition 2.4. Let (Y0, φ0) be a flat G2-orbifold satisfying Assumption 2.2.
A set of resolution data consists for every S ∈ S of the following:
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1. An asymptotically locally Euclidean (ALE) hyperkähler manifold which
is asymptotic to H/ΓS . That is, a hyperkähler 4-manifold (X̂S , ω̂S) to-
gether with a diffeomorphism τS : X̂S \ K̂S → (H \BRS (0))/ΓS outside
a compact set K̂S ⊂ X̂S that satisfies

|∇k(τS∗ω̂S − ω
)
| = O(r−4−k).

The norm and covariant derivatives are hereby taken with respect to
the flat metric on (H \ {0})/ΓS .

2. A group action ρS : GS → Isom(X̂S) which leaves K̂S and ω̂S invariant
(in the sense of (2)) and makes τS equivariant.

For a given orbifold Y0, a set of resolution data, and a positive parameter
t > 0 we define the following sets:

V :=
⊔
S∈S

VS for VS := (ImH×BRS (0)/ΓS)/GS ⊂ (ImH×H/ΓS)/GS

U :=
⊔
S∈S

US for US := (ImH×B2RS (0)/ΓS)/GS ⊂ (ImH×H/ΓS)/GS

V̂ :=
⊔
S∈S

V̂S for V̂S := (ImH× K̂S)/GS ⊂ (ImH× X̂S)/GS

Ût :=
⊔
S∈S

Û t
S for Û t

S :=(ImH×(tτS)−1(B2RS (0)/ΓS))/GS⊂(ImH×X̂S)/GS

Denote by J : U → Y0 and tτ : Ût → U the maps induced by all {JS}S∈S
and {tτS}S∈S , respectively.

Definition 2.5 ([12, proof of Theorem 2.2.1]). Given a flat G2-orbifold
(Y0, φ0) and a set of resolution data, Joyce defines a 1-parameter family of
smooth manifolds by

Ŷt :=
(
Y0 \ J(V )

)
∪
(
Ût ∪ V̂

)
/ ∼

where Ût � x ∼ J(tτ(x)) ∈ J(U \ V ).
Furthermore, Joyce equips each Ŷt with a closed G2-structure φ̃t that has

the following property: On any V̂S ⊂ Ŷt, φ̃t agrees with the Model Struc-
ture (1) associated to the (rescaled) hyperkähler structure t2ω̂S on K̂S .

Remark 2.6. Instead of working with φ̃t we follow [5] and work with the
rescaled G2-structure t−3φ̃t.

The following existence theorem was first proven by Joyce in [11] and later
reproven with improved estimates by Platt in [23]. The following formulation
is taken from [5, Theorem 2.19].
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Theorem 2.7 ([23, Theorem 4.58]). Let (Y0, φ0) be a compact and flat G2-
orbifold satisfying Assumption 2.2 and let R be a set of resolution data. Fur-
thermore, let α ∈ (0, 1/16) be a chosen Hölder exponent. Then there are
T0 = T0(R) and c = c(R, α) > 0 such that for any t ∈ (0, T0) there exists a
torsion-free G2-structure φt on Ŷt with [φt] = [φ̃t] ∈ H3(Ŷt) and

∥∥t−3(φt − φ̃t)
∥∥
C1,α < ct5/2.

The C1,α-norm above is taken with respect to the metric t−2g̃t (induced by
t−3φ̃t).

Remark 2.8. Note that the formulation of Theorem 2.7 in [23, Theorem 4.58]
bounds the C1,α-norm of φt − φ̃t only by t3/2−α. However, if one uses the
C1,α-norm with respect to t−2g̃t (instead of g̃t) one obtains the estimate in
Theorem 2.7 as a direct consequence of the estimate with respect to the
weighted norm given in [23, Theorem 4.58].

Remark 2.9. The formulation of Theorem 2.7 in [23] only considers G2-
orbifolds whose singularities are resolved via Eguchi–Hanson spaces. Its proof
relies on the property that the set

{
ω ∈ Ω2(XEH) | Δω = 0 and |∇�ω| = O(rβ−�) for each � ∈ N0

}
is independent of β ∈ [−4, 0). It was explained to us by Thomas Walpuski that
this property holds for every ALE 4-manifold. One way to prove this is as [28,
Proposition 5.10] using the improved Kato inequality for harmonic 2-forms
in [25, Theorem 1]. The proof of Theorem 2.7 given in [23] adapts therefore
to resolutions of G2-orbifolds by arbitrary ALE hyperkähler 4-manifolds.

2.2. Asymptotically locally Euclidean hyperkähler 4-manifolds

Recall from Definition 2.4 that a resolution of a flat G2-orbifold requires the
choice of an ALE hyperkähler 4-manifold together with a lift of the action
of the Bieberbach group. In the following section we review how these can
be constructed. All these spaces contain holomorphic spheres which are the
main ingredient in our construction of coassociative submanifolds later in this
article.

Note that Section 2.2.2 is only relevant for Example 4.9 and may be
skipped at the reader’s preference.
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2.2.1. The Gibbons–Hawking Ansatz For N ∈ N let CN < Sp(1) be
the cyclic subgroup generated by right-multiplication with e2πi/N . Concrete
models of ALE spaces asymptotic to H/CN were first constructed for N = 2
by Eguchi and Hanson [6] and then by Gibbons and Hawking [7] for general N .
A detailed treatment of the following material can be found in [27, Section 59]
(see also [5, Remark 2.12] and [8, Section 3.5]):

1. For any

ζ ∈ Δ := {[ζ1, . . . , ζN ] ∈ (ImH)N/SN | ζ1 + · · · + ζN = 0}

define Zζ := {ζ1, . . . , ζN} ⊂ ImH, Bζ := ImH \ Zζ , and fζ ∈ C∞(Bζ)
by

fζ(q) :=
N∑
a=1

1
2|q − ζa|

.

The function fζ is a sum of harmonic functions and one can furthermore
check that the cohomology class [∗3 dfζ ] lies inside the image of the
canonical inclusion H2(Bζ , 2πZ) ↪→ H2(Bζ ,R). This implies that there
exists a (up to isomorphism) unique principal U(1)-bundle πζ : X◦

ζ →
Bζ together with a connection 1-form iθ ∈ Ω1(X◦

ζ , iR) that satisfies
dθ = π∗

ζ (∗3 dfζ).
For ζi ∈ ζ denote by Nζi the number of entries of ζ equal to ζi. Around
any sphere S2 ⊂ Bζ whose inner ball only contains ζi ∈ Zζ , the restric-
tion (X◦

ζ )|S2 is isomorphic to the quotient of the Hopf-fibration by CNζi
.

2. The Gibbons–Hawking Ansatz defines a hyperkähler structure on the
total space X◦

ζ as follows: The connection induces a horizontal distribu-
tion X◦

ζ × ImH ⊂ TX◦
ζ . Furthermore, we identify the vertical tangent

bundle X◦
ζ × iR with X◦

ζ ×ReH via (x, it) �→ (x, t/fζ(x)). This induces
a canonical hypercomplex structure Iζ on TX◦

ζ
∼= X◦

ζ × H which is
compatible with the metric defined by

g◦ζ := f−1
ζ · θ ⊗ θ + fζ · π∗

ζ (g ImH).

The corresponding hyperhermitian form ωζ is closed and therefore hy-
perkähler.

3. It turns out that (X◦
ζ , ωζ) can be extended to a complete hyperkähler

orbifold (Xζ , ωζ) by adding #Zζ points, one over each element in Zζ .
In fact, whenever

ζ ∈ Δ◦ := {[ζ1, . . . , ζN ] ∈ Δ | ζi �= ζj for i �= j},
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then Xζ is a manifold.
Outside a ball BR2(0) containing all of Zζ , the bundle (Xζ)| ImH\BR2 (0)
has Chern class −N ∈ Z ∼= H2(ImH\BR2(0)). It is therefore isomorphic
to the principal U(1)-bundle

π0 : (H \BR(0))/CN → ImH \BR2(0)
[q] �→ qiq̄.

With the right choice of such an isomorphism τζ (e.g. using parallel
transport in radial direction and ‘matching’ the connections θζ and θ0
at the sphere at infinity) one can show that ωζ approaches the stan-
dard hyperkähler structure on H/CN as in Definition 2.4, Point 1. The
Gibbons–Hawking spaces are therefore ALE asymptotic to H/CN .

4. Let R ∈ NSO(H)(CN ). Identify2 the space of self-dual 2-vectors Λ2
+H

with ImH and denote by Λ2
+R ∈ SO(ImH) the induced map. Further-

more, define

αR :=
{

1, if R ∈ ZSO(H)(CN )
−1, else

where ZSO(H)(CN ) denotes the centralizer of CN in SO(H). If ζ ∈ Δ
satisfies Λ2

+Rζ = αRζ, then there exists an R̂ ∈ Isom(Xζ) satisfying

(R̂∗ ⊗ Λ2
+R

∗)ωζ = ωζ and τζ ◦ R̂ = R ◦ τζ

where R acts on H/CN in the obvious way. This is explained in more
detail in Section 2.2.2, Point 3. However, note that whenever R ∈
NSO(H)(CN ) for N ≥ 3 (which holds in all examples of Section 4),
then R̂ acts as a bundle (anti-) isomorphism. In this case it can be
uniquely characterised by the lift of R along τζ and demanding that the
connection iθζ gets mapped onto itself.

5. Let ζ0 �= ζ1 ∈ Zζ and assume that the line segment

� := {tζ1 + (1 − t)ζ0 | t ∈ [0, 1]} ⊂ ImH

intersect Zζ only in its endpoints. The preimage Σ� := π−1
ζ (�) ⊂ Xζ is

a smoothly embedded sphere, which is holomorphic with respect to the
complex structure Iζ,ξ̂ := 〈Iζ , ξ̂〉 for ξ̂ := ζ1−ζ0

|ζ1−ζ0| ∈ ImH.

2Via ImH � ξ �→ 〈ω, ξ〉 ∈ Ω2(H) where ω = dq ∧ dq̄ ∈ Ω2(H, (ImH)∗) is the
standard hyperkähler structure on H.
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Let now R ∈ NSO(H)(CN ) satisfy Λ2
+Rζ = αRζ and denote by R̂ its lift

to Xζ (as described in Point 4 above). Then R̂(Σ�) = ΣαRΛ2
+R(�), where

αRΛ2
+R(�) denotes the line segment coming from applying αRΛ2

+R ∈
O(ImH) to �.

2.2.2. Kronheimer’s construction of ALE spaces All ALE hyperkäh-
ler 4-manifolds asymptotic to H/Γ for any finite subgroup Γ < Sp(1) were
constructed and classified by Kronheimer in [18] and [19]. The following sum-
mary follows the one given in [5, Remark 2.15]. Note also that for Γ = CN

this treatment is equivalent to Section 2.2.1.

1. Let C[Γ] := Maps(Γ,C) denote the regular representation equipped
with its standard hermitian inner product. Furthermore, define

S := (H⊗R u(C[Γ]))Γ and G := PU(C[Γ])Γ

and equip S with the canonical flat hyperkähler structure. The adjoint
action of G on S has a distinguished hyperkähler moment map

μ : S → (ImH)∗ ⊗ g∗.

Let z∗ ⊂ g∗ be the annihilator of [g, g], i.e. all elements in g∗ fixed by the
coadjoint action of G. For any value ζ ∈ (ImH)∗ ⊗ z∗, the hyperkähler
quotient Xζ := μ−1(ζ)/G is a hyperkähler orbifold asymptotic to H/Γ
[18, Lemma 3.3 and Proposition 3.14].

2. Remark 2.3 associates a root system Φ to Γ. Kronheimer [18, Proposi-
tion 4.1] defines an isomorphism between z∗ and the associated Cartan
algebra h := (RΦ)∗. For any root θ ∈ Φ let Dθ := ker θ ⊂ h be the
associated wall of the Weyl chambers. If

ζ ∈ Δ̃◦ := ((ImH)∗ ⊗ h) \ ∪θ∈Φ((ImH)∗ ⊗Dθ),

then Xζ is a manifold [18, Proposition 2.8].
3. Any R ∈ NSO(H)(Γ) acts on Γ by conjugation. We extend this to a

complex linear map CR ∈ U(C[Γ]). The standard representation of R
on H tensored with the Adjoint action of CR on u(C[Γ]) induces an
action on S. The hyperkähler moment map satisfies

μ ◦ (R⊗ AdCR) = (Λ2
+R⊗ Ad∗

CR
) ◦ μ

where Λ2
+R is as in Section 2.2.1, Point 4 and Ad∗

CR
denotes the coad-

joint representation of CR on h ∼= z∗ ⊂ g∗. (See also [13, Section 3] where
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Joyce interprets Ad∗
CR

: h → h as being induced by an automorphism
of the underlying Dynkin diagram.) Thus, if

(Λ2
+R⊗ Ad∗

CR
)ζ = ζ,

we obtain an induced isometry R̂ ∈ Isom(Xζ) satisfying

(R̂∗ ⊗ Λ2
+R

∗)ωζ = ωζ and τζ ◦ R̂ = R ◦ τζ .

4. Let ζ ∈ Δ̃◦ be fixed and θ ∈ Φ be a root. Define ξ ∈ ImH by

〈ξ, ·〉 = ζ(θ) ∈ (ImH)∗

and let ξ̂ := ξ/|ξ|. Inside Xζ lies a nodal Riemann surface Σθ which is
holomorphic with respect to the complex structure Iζ,ξ̂ := 〈Iζ , ξ̂〉.
If θ1, θ2 ∈ Φ are two roots such that θ = θ1 + θ2 and |ζ(θ)| = |ζ(θ1)| +
|ζ(θ2)|, then Σθ is the union of the (nodal) Iξ̂-holomorphic curves Σθ1

and Σθ2 attached along one new pair of nodes. If no decomposition with
this property exists, then Σθ is itself an embedded 2-sphere.
Let now R ∈ NSO(H)(Γ) satisfy (Λ2

+R ⊗ Ad∗
CR

)ζ = ζ and denote by R̂
its lift as described in Point 3. This isometry maps Σθ to the surface
R̂(Σθ) = ΣAd∗

CR
(θ).

5. Denote by W the Weyl group of Φ. If two elements ζ1, ζ2 ∈ Δ◦ are
related by an element in W , then Xζ1 and Xζ2 are isomorphic as hy-
perkähler ALE spaces (cf. [19, Section 3] and [1, Section 3]). This iso-
morphism identifies the holomorphic spheres Σθ ⊂ Xζ1 and Σwθ ⊂ Xζ2

where w ∈ W satisfies ζ2 = wζ1. Furthermore, one can arrange for this
isomorphism to intertwine the asymptotic coordinates τζ1 and τζ2 . We
can therefore replace ζ ∈ Δ̃◦ in the previous discussion by

[ζ] ∈ Δ◦ := Δ̃◦/W.

3. Perturbing coassociative submanifolds

Throughout this section, (Y, φ) denotes a 7-manifold equipped with a closed
G2-structure.

Definition 3.1 ([10, Corollary IV.1.20]). A 4-dimensional immersed subman-
ifold ι : M → Y is called coassociative if ι∗φ = 0. If we want to emphasize
the underlying G2-structure we will write φ-coassociative.
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Example 3.2. Let (X,ω) be a hyperkähler 4-manifold together with an ac-
tion ρ : G → Isom(X) by a Bieberbach group G. We denote the corresponding
G2-manifold from Example 2.1 by (Y, φ). Furthermore, note that the normal
subgroup Λ := G ∩ ImH < ImH is a lattice. An immersed coassociative
submanifold inside of Y can now be constructed from the following data:

1. An embedded Riemann surface ιΣ : Σ → X which is holomorphic with
respect to Iξ̂1 = 〈I, ξ̂1〉 for ξ̂1 ∈ S2 ⊂ ImH.

2. Two linearly independent ξ2, ξ3∈
{
ξ̂1
}⊥∩Λ⊂ ImH such that ρ(ξ2)(Σ) =

Σ = ρ(ξ3)(Σ).

Furthermore, we require the choice of basepoint q ∈ ImH. We then define

M := ((Rξ2 + Rξ3) × Σ)/〈ξ2, ξ3〉Z

and ιq : M → Y as ιq
(
[y, z]

)
:= [q + y, ιΣ(z)]. It immediately follows from (1)

that ιq is a coassociative immersion. Next, we discuss conditions under which
ιq is an embedding or factors through a covering map over an embedding. For
this we assume that

3. ξ2, ξ3 ∈ Λ are primitive and ρ(Λ) = {1}.

We can then regard T 2
q := [q] + (Rξ2 + Rξ3)/〈ξ2, ξ3〉Z ⊂ (ImH)/Λ as an

embedded submanifold. Assume further that

4. G/Λ ∼= H1 ×H2 where H1, H2 are (possibly trivial) groups that satisfy
the following:
(a) The only element h ∈ H1 with ρ(h)(Σ)∩Σ �= ∅ and h ·Tq ∩Tq �= ∅

is h = 1. Note here and below that G/Λ canonically acts on X as
ρ(Λ) = {1}.

(b) Every h ∈ H2 satisfies ρ(h)(Σ) = Σ and h · Tq = Tq.

In this case, the (free) H2 action lifts to M and ιq descends to an embedding
ιq : M/H2 → Y . Note that the conditions in Point 4 (and the groups H1, H2)
depend on the choice of q.

Remark 3.3. By varying the chosen basepoint q ∈ ImH in the construction of
ιq in the previous example as well as the Iξ̂1-holomorphic embedding ιΣ : Σ →
X, one produces a (up to reparametrisation) (1 + b1(Σ))-dimensional family
of coassociative immersions (one dimension comes from varying q and b1(Σ)
from varying ιΣ). This is of course in accordance with [22, Theorem 4.5] which
implies that the moduli space of coassociative immersions ι : M → Y is itself
an orbifold of dimension b2+(M) = 1 + b1(Σ).
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It is well-known (cf. [22, Proposition 4.2]) that for a coassociative immer-
sion ι : M → Y , the mapping

ι∗TY � v �→ ι∗(ivφ) ∈ Λ2T ∗M

descends to an isomorphism between the normal bundle and Λ2
+T

∗M (the
bundle of self-dual 2-forms).

Definition 3.4. A tubular neighbourhood of the coassociative immersion
ι : M → Y is a convex open neighbourhood U ⊂ Λ2

+T
∗M of the zero sec-

tion together with an open immersion J : U → Y which restricts to ι at
the zero section. Additionally, we demand that for any u ∈ U the image of
∂t(J(tu))|t=0 ∈ ι∗TY in Λ2

+T
∗M under the isomorphism described above is

again u.

Remark 3.5. Subsequently, we may simply use the tubular neighbourhood
induced by the Levi–Civita connection of the ambient manifold Y .

Let now J : U → Y be a tubular neighbourhood. For any ω ∈ Γ(U) we
denote by Jω : M → Y the immersion x �→ J(ωx). Furthermore, we define
FJ : Γ(U) → Ω3(M) by FJ(ω) = J∗ωφ. By definition, the immersed submani-
fold Jω : M → Y for ω ∈ Γ(U) is coassociative if and only if FJ(ω) = 0.

Proposition 3.6 ([22, Theorem 4.5]). Let J : U ⊂ Λ2
+M → Y be a tubular

neighbourhood of a coassociative immersion ι : M → Y . Then the map FJ
has image contained in dΩ2(M). Furthermore, there exists a smooth map
NJ ∈ C∞(Γ(U), dΩ2(M)) that satisfies

FJ(ω) = dω + NJ(ω)

and such that for each k ∈ N0 and α ∈ (0, 1) there is a constant c =
c(J, k, α) > 0 with

‖NJ(ω) −NJ(η)‖Ck,α ≤ c(‖ω‖Ck+1,α + ‖η‖Ck+1,α)‖ω − η‖Ck+1,α

for any ω, η ∈ Γ(U).

The proof of this proposition except the estimate on NJ can be found
in [22, proof of Theorem 4.5]. As the arguments are short, we have included
them here for the reader’s convenience.

Proof. Since FJ(0) = 0 and the cohomology class doesn’t change under ho-
motopies, we have that [FJ(tω)] = 0 ∈ H3(M) for every t ∈ [0, 1]. This proves
the first point.
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For the second point we observe that the Fundamental Theorem of Cal-
culus and FJ(0) = 0 imply

FJ(ω) = D0FJ(ω) +
∫ 1

0
∂tFJ(tω) −D0FJ(ω) dt

where D0FJ denotes the linearisation of FJ at the zero section. It therefore
remains to check that D0FJ(ω) equals dω and

NJ(ω) :=
∫ 1

0
∂tFJ(tω) −D0FJ(ω) dt

satisfies the quadratic estimate.
For every point x ∈ M there exists a vector field v ∈ Γ(TY ) such that

in an open neighbourhood around x we have ω = ι∗(ivφ) and ϕv
t ◦ ι = Jtω

for t ∈ (−ε, ε) where ϕv denotes the flow of v. Since φ is closed, we obtain
around x:

D0FJ(ω) = ∂t(ι∗(ϕv
t )∗φ)|t=0 = ι∗ d(ivφ) = dω.

The estimate for NJ is standard but rather lengthy and can be found in
Appendix A.

Theorem 3.7. Let α ∈ (0, 1) be a fixed Hölder-exponent and β, γ, c, R > 0 be
constants with β > 2γ. Then there are T, cv > 0 depending only on β, γ, c, R
with the following significance: Let φ, φ0 be two closed G2-structures on Y
and ι : M → Y be an immersed φ0-coassociative submanifold with tubular
neighbourhood J : U ⊂ Λ2

+M → Y that satisfy

1. BR(0) ⊂ U
2. ι∗[φ] = 0 ∈ H3(M)
3. ‖J∗(φ− φ0)‖C1,α ≤ ctβ

4. d: (H2
+)⊥ ⊂ Ω2

+(M) → Ω3(M) satisfies ‖ω‖C2,α ≤ ct−γ‖ dω‖C1,α ,
where (H2

+)⊥ denotes the L2-orthogonal complement of the space of har-
monic self-dual 2-forms

5. ‖NJ(ω) −NJ(η)‖C1,α ≤ c(‖ω‖C2,α + ‖η‖C2,α)‖ω − η‖C2,α

for some t ∈ (0, T ). Then there is a unique section ω ∈ Γ(U) ∩ (H2
+)⊥ with

‖ω‖C2,α ≤ cvt
β−γ (where cv > 0 is determined in the proof) such that Jω is

φ-coassociative.

The analogue statement for associative submanifolds can be found in [5,
Proposition 3.19] and its proof carries over with only minor adaptations. We
have included it here for the convenience of the reader.
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Proof. To ease notation we drop the subscript J and instead write F(0)(ω) :=
J∗ωφ(0). Since d|Ω2

+(M) : Ω2
+(M) → dΩ2(M) is surjective and image(F(0)) ⊂

dΩ2(M) by Proposition 3.6 and the second assumption, we can define

E(ω) := d−1
|(H2

+)⊥∩Ω2
+(M)(F0(ω) − F (ω) −N0(ω)).

By our assumptions there is a positive constant cE = cE(c, R) such that for
every r ∈ (0, R) and ω, η ∈ Br(0) ⊂ C2,αΓ(U) the following two inequalities
hold:

‖E(0)‖C2,α ≤ cEt
β−γ

‖E(ω) − E(η)‖C2,α ≤ cE(r + tβ)t−γ‖ω − η‖C2,α .

Therefore, E restricts to a contraction on Br(0) provided that

cE(r + tβ)t−γ < 1 and cEt
β−γ + cE(r + tβ)t−γr ≤ r.

This holds if we choose T = T (β, γ, c, R) sufficiently small and for t ∈ (0, T )
the radius r := 2cEtβ−γ .

Let now ω ∈ Br(0) be the unique fixpoint of E. By definition, this satisfies

0 = dω + N0(ω) − F0(ω) + F (ω) = F (ω)

and gives therefore rise to a φ-coassociative submanifold (of regularity C2,α).
For sufficiently small T this section and the corresponding submanifold are
smooth by elliptic regularity (cf. [20, Proposition 7.16]).

Remark 3.8. If M in the previous theorem is compact and ι : M → Y an
embedding, then Jω will also be an embedding once t is sufficiently small.

3.1. The linear estimate for surface fibrations over tori

The following subsection establishes Point 4 of Theorem 3.7 in the case
of Example 3.2. We quickly review the relevant set-up: Let Σ be a closed
Riemann surface equipped with a Riemannian metric gΣ and ξ2, ξ3 ∈ R

2

be linearly independent. Furthermore, assume that there is a group action
ρ : 〈ξ2, ξ3〉Z → Isom(Σ). Our coassociative submanifold in Example 3.2 was
then defined as

M = (R2 × Σ)/〈ξ2, ξ3〉Z
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equipped with the induced metric coming from gΣ and gR2 . We will also need
the following rescaled version:

Mt := (R2 × Σ)/〈t−1ξ2, t
−1ξ3〉Z

for t > 0 where ρt : 〈t−1ξ2, t
−1ξ3〉Z → Isom(Σ) is given by ρ(t·). The induced

metric on Mt is denoted by gt.
Observe that the natural projection pt : Mt → T 2

t := R
2/〈t−1ξ2, t

−1ξ3〉Z
gives rise to a fiber bundle. The orthogonal complement Ht := V ⊥

t of its
vertical tangent bundle Vt = ker(Dpt) defines a flat Ehresmann connection.
This induces a decomposition Ω�(Mt) = ⊕p+q=�Ωp,q with Ωp,q := Γ(ΛpH∗ ⊗
ΛqV ∗). Furthermore, the operator d + d∗ : Ωk(Mt) → Ωk+1(Mt) ⊕ Ωk−1(Mt)
splits into

dH + d∗
H : Ωp,q → Ωp+1,q ⊕ Ωp−1,q and dV + d∗

V : Ωp,q → Ωp,q+1 ⊕ Ωp,q−1.

Definition 3.9. We define the following operators acting on Ω�(Mt):

1. Denote by Πt ∈ End(Ω�(Mt)) the L2-projection onto ker(d + d∗).
2. For any y ∈ T 2

t , let resy : Ωp,q(Mt) → ΛpT ∗
y T

2
t ⊗ Ωq(p−1

t (y)) be the
composition

Ωp,q(Mt) → Γ(p−1
t (y),ΛpH∗ ⊗ ΛqV ∗) ∼= ΛpT ∗

y T
2
t ⊗ Ωq(p−1

t (y)).

3. The operator dV + d∗
V restricts for every y ∈ T 2

t to an elliptic operator
on ΛpT ∗

y T
2
t ⊗ Ωq(p−1

t (y)). Denote by πy the L2-orthogonal projection
onto its kernel.

4. Finally, denote by π̂ ∈ End(Ω�(Mt)) the operator which maps ω ∈
Ω�(Mt) to the unique π̂(ω) ∈ Ω�(Mt) with resy π̂(ω) := πy(resy ω) for
every y ∈ T 2

t .

Remark 3.10. In all examples of Section 4 the fiber bundle Mt = T 2
t × Σ is

trivial. In this case Ωp,q ∼= Ωp(T 2
t ,Ωq(Σ)) and dV +d∗

V becomes dΣ+d∗
Σ acting

upon Ωq(Σ). The operator π̂ : Ωp,q → Ωp,q is then simply the L2-projection
onto ker(dΣ + d∗

Σ). Furthermore, dH + d∗
H = dT 2

t
+ d∗

T 2
t
.

The main result of this section is the following Fredholm estimate:

Proposition 3.11. For every α ∈ (0, 1), k ≥ 1 there is a constant c =
c(k, α,M1, g1) such that for every t ∈ R

+ and ω ∈ Ω�(Mt),

‖ω‖Ck,α ≤ c((1 + t−1)‖ dω + d∗ω‖Ck−1,α + ‖Πtω‖Ck,α).
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For this we use the following results on harmonic forms on R
2 × Σ and

Mt which are an immediate consequence of [28, Lemma A.1].

Lemma 3.12 ([23, Corollary 4.13]). Every harmonic ω ∈ Ω�(R2 × Σ) with
‖ω‖C0 < ∞ is a sum of terms of the form η1 ⊗ η2, where η1 ∈ Ωp(R2) is
constant and η2 ∈ Ωq(Σ) is harmonic. Identifying the space of constant forms
on R

2 with Λ∗
R

2 we therefore have

H�(R2 × Σ) ∩ C0Ω�(R2 × Σ) =
⊕
p+q

Λp
R

2 ⊗Hq(Σ).

Corollary 3.13. The pull-back of the quotient map qt : R
2×Σ → Mt induces

an isomorphism

H�(Mt) ∼=
⊕

p+q=�

Λp
R

2 ⊗Hq(Σ)〈ξ2,ξ3〉Z ,

where H∗(Σ)〈ξ2,ξ3〉Z denotes the space of harmonic forms on Σ invariant under
the action of 〈ξ2, ξ3〉Z by the pull-back of ρ.

The next two lemmas prove Proposition 3.11 for elements which respec-
tively lie inside and orthogonal to the kernel of dV + d∗

V .

Lemma 3.14. For every ω ∈ Ω�(Mt)

‖(1 − π̂)ω‖Ck,α ≤ c2‖(d + d∗)(1 − π̂)ω‖Ck−1,α

holds independently of t. It even holds on R
2 × Σ.

Proof. We prove the estimate on R
2 ×Σ. Since the quotient maps are isome-

tries, this implies the lemma.
Suppose the estimate does not hold on R

2×Σ to produce a contradiction.
Then we find a sequence (ωn)n∈N ⊂ Ω�(R2 × Σ) with

‖(1 − π̂)ωn‖Ck,α = 1 and ‖(d + d∗)(1 − π̂)ωn‖Ck−1,α → 0.

Since both expressions are invariant under translations, we can assume that

‖(1 − π̂)ωn‖Ck,α(B1(0)×Σ) ≥
1

4(k + 1) for every n ∈ N.(3)

By the Arzelà-Ascoli Theorem we find a subsequence (again denoted by
(ωn)n∈N) such that ((1−π̂)ωn)n∈N converges in Ck−1

loc to ω∞ ∈ Ck−1Ω�(R2×Σ).
This limit satisfies dω∞ + d∗ω∞ = 0 (for k = 1 in the distributional sense)
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and is therefore smooth by elliptic regularity. As ‖ω∞‖Ck−1 ≤ 1, Lemma 3.12
implies that ω∞ is a sum of terms of the form η1 ⊗ η2 where η1 ∈ Ωp(R2)
is parallel and η2 ∈ Ωq(Σ) is harmonic. Therefore, ω∞ = π̂ω∞ and since
π̂(1 − π̂)ωn = 0 for every n ∈ N, we obtain further ω∞ = π̂ω∞ = 0. How-
ever, bootstrapping improves the convergence inside B1(0) × Σ to Ck,α and
therefore ‖ω∞‖Ck,α(B1(0)×Σ) ≥ 1/(4(k+1)) holds by (3). This gives the sought
contradiction.

Lemma 3.15. For every t ∈ R
+ and ω ∈ Ω�(Mt) we have

‖π̂ω‖C0 ≤ c3t
−1‖(d + d∗)π̂ω‖C0 + ‖Πω‖C0 ,

where c3 is independent of t.

Proof. We first prove the estimate for t = 1 and then for arbitrary t by
scaling.

The estimate for t = 1 follows from Morrey’s inequality and Fredholm
theory.

The estimate for general t ∈ R
+: Denote by Φt : M1 → Mt the map

[(y, z)] �→ [(t−1y, z)]. One can check that for any ω ∈ Ω�(Mt) we have

|Φ∗
tω|g1 =

∑
p+q=�

t−p(|ωp,q|gt ◦ Φt

)
,

(d + d∗
1)Φ∗

tω = Φ∗
t

(
dω + t−2 d∗

Ht
ω + d∗

Vt
ω
)
,

Π1Φ∗
t = Φ∗

tΠt,

where ωp,q denotes the projection onto ΛpH∗ ⊗ ΛqV ∗ and where the last
equality uses Corollary 3.13. The following estimate uses ‖·‖C0

t
and ‖·‖C0

1

to denote the C0-norms with respect to the metrics gt and g1. Since the
decomposition Λ�T ∗Mt = ⊕p+q=�ΛpH∗ ⊗ ΛqV ∗ is orthogonal, the previous
step implies that for any ω ∈ im π̂:

‖ω‖C0
t

=
∥∥∥ ∑
p+q=�

ωp,q
∥∥∥
C0

t

=
∥∥∥ ∑
p+q=�

tpΦ∗
tω

p,q
∥∥∥
C0

1

≤ c3

(∥∥∥(d + d∗
1)

∑
p+q=�

tpΦ∗
tω

p,q
∥∥∥
C0

1

+
∥∥∥ ∑
p+q=�

tpΠ1Φ∗
tω

p,q
∥∥∥
C0

1

)

= c3

(∥∥∥ ∑
p+q=�

tpΦ∗
t dHtω

p,q
∥∥∥
C0

1

+
∥∥∥ ∑
p+q=�

tp−2Φ∗
t d∗

Ht
ωp,q

∥∥∥
C0

1

+
∥∥∥Πtω

∥∥∥
C0

t

)



940 Dominik Gutwein

= c3

(∥∥∥ ∑
p+q=�

t−1 dHtω
p,q

∥∥∥
C0

t

+
∥∥∥ ∑
p+q=�

t−1 d∗
Ht
ωp,q

∥∥∥
C0

t

+
∥∥∥Πtω

∥∥∥
C0

t

)
= c3

(
t−1‖(d + d∗)ω‖C0

t
+ ‖Πtω‖C0

t

)
.

Proof of Proposition 3.11. The Schauder estimate

‖ω‖Ck,α ≤ c4
(
‖(d + d∗)ω‖Ck−1,α + ‖ω‖C0

)
and Lemmas 3.14 and 3.15 imply

‖ω‖Ck,α ≤ c5(1 + t−1)
(
‖(d + d∗)ω‖Ck−1,α + ‖(d + d∗)π̂ω‖Ck−1,α + ‖Πω‖C0

)
.

The observation (d + d∗)π̂ = π̂(d + d∗) finishes the proof.

4. Examples

Let (Y0, φ0) be a flat G2-orbifold together with a chosen set of resolution data.
Denote by φ̃t the closed G2-structure from Definition 2.5 on the resolution Ŷt

and by φt the torsion-free G2-structure of Theorem 2.7.

Assumption 4.1. Assume that for some element
(
(X̂S , ω̂S , τS), (ρS : GS →

Isom(X̂S))
)

of the resolution data we have

1. An embedded closed surface ιΣ : Σ → X̂S which is holomorphic with
respect to Iξ̂1 = 〈I, ξ̂1〉 for ξ̂1 ∈ S2 ⊂ ImH.

2. Two linearly independent ξ2, ξ3 ∈
{
ξ̂1
}⊥ ∩ ΛS ⊂ ImH such that

ρ(ξ2)(Σ) = Σ = ρ(ξ3)(Σ). Here ΛS is the lattice GS ∩ ImH < ImH.

Proposition 4.2. For every triple (Σ, ξ2, ξ3) as in Assumption 4.1 and for
every choice of basepoint q ∈ ImH there exists a T > 0 (independent of
q) such that there is an immersed φt-coassociative submanifold ιt : M → Ŷt

for t ∈ (0, T ). As t approaches 0, the induced volume on M shrinks to 0.
Furthermore, if (GS , ρS), (Σ, ξ2, ξ3), and q satisfy Points 3 and 4 listed at the
end of Example 3.2, then there exists a free group action of H2 < GS/ΛS

(as specified in Example 3.2) such that ιt descends to an embedding of M/H2
once t is sufficiently small.

Proof. Throughout the proof we work with the rescaled G2-structures t−3φ̃t

and t−3φt. Example 3.2 gives rise to an immersed (t−3φ̃t)-coassociative sub-
manifold ι̃t : M → Ŷt. Let J : U → Ŷt be its tubular neighbourhood induced
by the Levi–Civita connection associated to t−2g̃t. Without loss of generality
we may assume that J(U) ⊂ V̂ where V̂ is as in Definition 2.5.
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The compactness of M , Theorem 2.7, and Proposition 3.11 imply that
there exist t- and q-independent constants c > 0, R > 0, β := 5/2, and γ := 1
such that the first three points in Theorem 3.7 are satisfied. (All Ck,α-norms
are hereby taken with respect to t−2g̃t and we tacitly assume α < 1/16.)
Furthermore, one can check that in our set-up the estimates in Lemma A.2
are independent of t. Thus, by enlarging c if necessary we may assume that
the fourth point is also satisfied. We therefore, obtain a (t−3φt)-coassociative
submanifold (or analogously, a φt-coassociative submanifold) ιt : M → Ŷt

contained in V̂ that satisfies

‖ιt − ι̃t‖C2,α
t−2 g̃t

≤ cvt
3/2 and ‖ιt − ι̃t‖C2,α

g̃t

≤ cvt
1/2−α.

Direct inspection reveals that with respect to the family of metrics g̃t (and
therefore also with respect to gt) the fibers of M collapse to points as t tends
to 0.

If (GS , ρS), (Σ, ξ2, ξ3), and q satisfy the conditions given in Points 3 and 4,
then there exists a free H2-action on M under which ι̃t and the tubular neigh-
bourhood chosen above are invariant (cf. Example 3.2). By the uniqueness
of the section in Theorem 3.7, ιt is also invariant under H2 and descends
therefore to ιt : M/H2 → Ŷt. This is just a perturbation of the embedding
ι̃t : M/H2 → Ŷt (cf. Example 3.2) and therefore also an embedding once t is
sufficiently small.

Remark 4.3. The previous proposition produces coassociative submanifolds
by perturbing the model-immersion from Example 3.2. This requires the
choice of a basepoint q ∈ ImH. By varying this basepoint Proposition 4.2
produces a (up to reparametrization) 1-dimensional family of coassociative
immersions.3 Since b2+(M) = 1 (as b1(Σ) = 0 for all immersed (holomor-
phic) Riemann surfaces in ALE hyperkähler 4-manifolds), all coassociative
deformations of ιt : M → Ŷt are obtained this way (cf. Remark 3.3).

Example 4.4. Joyce [12, Examples 7–14] constructs seven examples of flat
G2-orbifolds whose respective singular strata are all given by tori: S = T 3.
More precisely, neighbourhoods of the singularities in all these orbifolds are
described by Example 2.1 with X = H/ΓS for ΓS = C2. The corresponding
Bieberbach groups are given by lattices GS = ΛS

∼= Z
3 (whose exact form

are irrelevant for our purpose) and the group actions ρS : GS → Isom(H/ΓS)
are trivial.

3To make this statement rigorous one could use a family version of Theorem 3.7
as in [5, Proposition 3.19].
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All these singularities can be resolved via Gibbons–Hawking spaces. This
requires a choice of ζ ∈ Δ◦ (cf. Section 2.2.1). To simply find some resolution
data, any such choice suffices.

In order to construct coassociative submanifolds, we pick for every sin-
gular stratum S two primitive elements ξ2, ξ3 ∈ ΛS . Furthermore, we choose
ζ := [−ζ1, ζ1] ∈ Δ◦ with 0 �= ζ1 ∈ {ξ2, ξ3}⊥. The corresponding Gibbons–
Hawking space Xζ contains a holomorphic sphere Σ such that (Σ, ξ2, ξ3) and
any choice of q ∈ ImH satisfy the conditions of Proposition 4.2. Furthermore,
Points 3 and 4 of Example 3.2 are satisfied with H2 = {1} (as G/Λ = {1}).
We therefore obtain embedded coassociative submanifolds in all the critical
loci.

Remark 4.5. Joyce [12, Examples 3, 4, 5, 6, 15, 16] constructs further examples
of flat G2-orbifolds whose transverse singularities are modelled upon H/ΓS

for ΓS ∈ {C2, C3}. [5, Examples 4.3, 4.4, 4.9] describes possible choices for the
resolution data and points out holomorphic spheres inside the corresponding
Gibbons–Hawking spaces. It is not difficult to check that every singular stra-
tum of these orbifolds admits at least one choice of resolution data such that
Proposition 4.2 gives rise to an embedded coassociative submanifold in the
resolution.

The following examples all treat G2-orbifolds constructed in [24, Sec-
tion 5.4.3]. A neighbourhood of the singular strata in all these orbifolds can
be described by Example 2.1 together with the data in Table 1. For this we
list:

• The diffeomorphism type of the singular strata S.
• The orbifold group ΓS such that the transverse singularity is modelled

upon XS := H/ΓS .
• The generators of the Bieberbach group GS as follows: Every GS is

generated by the lattice ΛS = 〈i, j, k〉 ⊂ ImH. Furthermore, we indicate
whether the following two additional generators appear (✓ = appears,
✗ = does not appear):(

R+,
i + k

2

)
and

(
R−,

j

2

)
where R± ∈ GL(ΛS) ∼= GL3(Z) are given by

R± :=

⎛⎜⎝±1 0 0
0 ∓1 0
0 0 −1

⎞⎟⎠ .(4)
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Table 1: Description of those singular strata appearing in [24, Section 5.3.4]
which were not treated in [5, Section 4]. For each stratum the Bieberbach
group GS is generated by ΛS = 〈i, j, k〉 ⊂ ImH. Whether the two additional
generators (R+,

i+k
2 ) and (R−,

j
2) (for R± as in (4)) appear is indicated (✓ =

appears, ✗ = does not appear). The homomorphism ρS : GS → Isom(H/ΓS)
maps ΛS to Id and the other generators as indicated. A neighbourhood of
any singular stratum is then described by Example 2.1 together with the
respective data of this table

GS and ρS : GS → Isom(H/ΓS)

# S ΓS
(R+,

i+k
2 ) with

ρS(R+,
i+k
2 )[q] = [iqi]

(R−,
j
2 ) with

ρS(R−,
j
2 )[q] = [jqj]

1. T 3/C2
2 C2 ✓ ✓

2. T 3/C2 C3 ✗ ✓

3. T 3/C2
2 C3 ✓ ✓

4. T 3/C2
2 C4 ✓ ✓

5. T 3/C2
2 C6 ✓ ✓

6. T 3/C2
2 Dic3 ✓ ✓

• The action ρS : GS → Isom(H/ΓS) of the generators of GS as follows:
The lattice ΛS acts trivially in all examples. Furthermore, (R+,

i+k
2 ) and

(R−,
j
2) act (whenever they appear as generators) via ρS(R+,

i+k
2 )[q] =

[iqi] and ρS(R−,
j
2)[q] = [jqj] for [q] ∈ H/ΓS , respectively.

Example 4.6. Reidegeld [24, Section 5.3.4] constructs an example of a flat
G2-orbifold whose singular strata split into two types. Both types can be
described via Example 2.1 together with the data of rows 2 and 3 in Table 1,
respectively.

These singularities can be resolved by Gibbons–Hawking spaces. This
requires a choice of parameter ζ ∈ Δ◦ (cf. Section 2.2). All parameters such
that the GS-action lifts to the Gibbons–Hawking space Xζ can be found in
Appendix B.

The parameter ζ := [−i, 0, i] works for both types of singularities. The
corresponding Gibbons–Hawking space contains two Ii-holomorphic spheres
which together with ξ2 := j, ξ3 := k, and any choice of q ∈ ImH satisfy
the conditions of Proposition 4.2. Thus, the resolution admits coassociative
submanifolds in all the critical regions.

The conditions stated in Points 3 and 4 of Example 3.2 are satisfied by
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the above choices. However, the group H2 in Point 4 depends on the value
of the basepoint q which we set as q := si with s ∈ R in the following. For
the resolution of the singularities described by row 2 we then have H2 =
C2 if and only if s ∈ 1

2Z and for all other values H2 = {1}. Note further
that the coassociatives for q = si, q = (s + 1)i, and q = −si all agree (up
to reparametrisation) in Ŷt. The family of coassociative submanifolds that
we obtain by varying q (cf. Remark 4.3) is therefore parametrised by the
interval [0, 1/2] (more precisely, by S1/Z2 where Z2 acts via reflection). For
all inner points s ∈ (0, 1/2) the corresponding submanifolds are embedded
and for s ∈ {0, 1/2} they factor through double cover over embedded rigid
coassociatives.

Similarly, the coassociatives inside the resolution of the singularities de-
scribed by row 3 are embedded for q := si with s /∈ 1

4Z and factor through
a double cover over an embedded submanifold for these critical values. Fur-
thermore, coassociatives for q = si, q = (s + 1/2)i, and q = −si are (up to
reparametrisation) identified in Ŷt. As before, we therefore obtain that the de-
formation family is given by the interval [0, 1/4] with embedded coassociatives
for s ∈ (0, 1/4) and double covers for s ∈ {0, 1/4}.

Example 4.7. Reidegeld [24, Section 5.3.4] constructs an example of a flat
G2-orbifold whose singular strata split into two types. Both types can be
described via Example 2.1 together with the data of rows 1 and 4 in Table 1,
respectively.

We choose a set of resolution data by a collection of certain Gibbons–
Hawking spaces. This requires choices of the parameter ζ ∈ Δ◦ (cf. Sec-
tion 2.2). All parameters such that the GS-action lifts to the corresponding
Gibbons–Hawking space Xζ can be found in Appendix B.

As an example, we pick the following:

1. ζ = [−i, i] for strata of type described by row 1. The corresponding
Gibbons–Hawking space contains one Ii-holomorphic sphere which to-
gether with ξ2 := j, ξ3 := k, and any basepoint q ∈ ImH satisfies the
conditions of Proposition 4.2. As in Example 4.6, these are embedded
for generic choices of q ∈ ImH and otherwise factor through a double-
cover over an embedded rigid coassociative.

4. ζ = [−2i,−i, i, 2i] for strata of type described by row 4. The associ-
ated Gibbons–Hawking space contains 3 Ii-holomorphic spheres which
together with ξ2 := j, ξ3 := k, and any q ∈ ImH satisfy the conditions
of Proposition 4.2. The resulting submanifolds are again embedded for
generic q and factor otherwise through double-cover over embedded
coassociatives.
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Example 4.8. Reidegeld [24, Section 5.3.4] constructs an example of a flat
G2-orbifold whose singular strata split into four types. All types can be de-
scribed via Example 2.1 together with the data of rows 1, 2, 3, and 5 in
Table 1, respectively.

All singularities can be resolved by certain Gibbons–Hawking spaces. This
requires choices of the parameter ζ ∈ Δ◦ (cf. Section 2.2). All parameters such
that the GS-action lifts to the Gibbons–Hawking space Xζ can be found in
Appendix B.

The singular strata described by rows 1-3 have been treated in the pre-
vious examples. For the strata of type 5 we may exemplary pick the ele-
ment ζ := [−3i,−2i,−i, i, 2i, 3i]. The corresponding Gibbons–Hawking space
contains five Ii-holomorphic spheres. Each one of these together with ξ2 :=
j, ξ3 := k, and any q ∈ ImH satisfies the conditions of Proposition 4.2. As
in Example 4.6, these are generically embedded and factor otherwise through
double-cover over embedded coassociatives.

Example 4.9. Reidegeld [24, Section 5.3.4] constructs an example of a flat
G2-orbifold whose singular strata split into four types. All types can be de-
scribed via Example 2.1 together with the data of rows 1, 3, 4, and 6 in
Table 1, respectively.

Singularities of types described by rows 1, 3, and 4 have been treated in
the previous examples. We therefore focus on the strata determined by row
6. A resolving ALE space can be constructed via Kronheimer’s method and
requires a choice of parameter ζ ∈ Δ◦ (cf. Section 2.2.2). All parameters such
that the GS-action lifts to the ALE space Xζ can be found in Appendix B.

For example, ζ := [0, i, 2i, 3i, 4i] works and the corresponding ALE space
contains 5 Ii-holomorphic spheres (cf. Section 2.2.2). Each one together with
ξ2 := j, ξ3 := k, and any choice of q ∈ ImH satisfies the conditions of Propo-
sition 4.2 and gives rise to a coassociative submanifold. The lift of the action
of ρ(R−,

j
2) to Xζ fixes four of these spheres and maps the fifth sphere to one

that does not intersect the original sphere. One of the resulting coassociative
submanifolds is therefore embedded for every q ∈ ImH and the other four
behave as in Example 4.6.

Remark 4.10. Reidegeld [24, Section 5.3.4] constructs two further examples
of orbifolds whose transverse singularities are modelled on H/ΓS for ΓS ∈
{C2, C4,Dic2}. These are treated in [5, Examples 4.5 and 4.6] and we remark
that Proposition 4.2 produces coassociative submanifolds in all critical loci.
Remark 4.11. In [16] Joyce and Karigiannis extended the generalised Kum-
mer construction to certain non-flat G2-orbifolds. If similar estimates as in
Theorem 2.7 continue to hold, then it seems plausible that the construction
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method for coassociative submanifolds presented in the current article can be
extended to these new manifolds.
Remark 4.12. Assume for simplicity the following situation: Let (Y0, φ0) be a
flat G2-orbifold whose singularities are all modelled upon T 3 × H/C2 where
T 3 = ImH/Z3 (this is for example the case in [12, Example 3]). These sin-
gularities can be resolved by Gibbons–Hawking spaces Xζ for any choice of
parameter ζ := [−x, x] ∈ (ImH \ {0})2/{±1}. However, in order to apply
Proposition 4.2, we need the line � := Rx to intersect Z

3 ⊂ ImH (this is
precisely the second condition of Assumption 4.1). The following regards the
situation where this condition fails:

Assume that x ∈ ImH\{0} is such that the line Rx ⊂ ImH is ‘irrational’
(i.e. does not intersect Z

3). Then one could approximate x by a sequence
(xn)n∈N ⊂ ImH\{0} such that all corresponding lines Rxn are rational (i.e. do
intersect Z3). For each resolution by T 3×Xζn with ζn := [−xn, xn] we obtain a
φt-coassociative submanifold Mn ⊂ Ŷt for t < Tn by Proposition 4.2. However,
as n → ∞ we have that Tn → 0. Thus (after rescaling) these coassociatives
only converge to a (non-compact) coassociative inside the limiting R

3×Xζ for
ζ = [−x, x]. One might however hope that once xn → x converges sufficiently
faster than Tn → 0,4 then some instance of this limiting coassociative is
already visible inside the resolution by the irrational T 3 ×Xζ shortly before
the orbifold limit is reached.

Unfortunately, Theorem 3.7 seems to be of little help when addressing
this question. This is because the two G2-structures φt(ζn) and φt(ζ) on Ŷt

constructed by resolving respectively with a rational ζn and the irrational
ζ lie in different cohomology classes. The φt(ζn)-coassociatives constructed
in Proposition 4.2 can then not be perturbed further to φt(ζ)-coassociatives
because the second condition of Theorem 3.7 is violated.

Appendix A. The quadratic estimate

This section establishes the quadratic estimate for the map NJ in Proposi-
tion 3.6.

Lemma A.1. Let v, w ∈ Γ(TM) be vector fields and η ∈ Ω�(M) be an �-form.
Then the following identities hold for any torsion free connection ∇:

£wη = ∇wη + 〈∇w ∧ η〉
4See [2] for an overview on the measure-theoretic properties of irrational numbers

that are approximable by rationals with a given rate.
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£v£wη = ∇v∇wη + 〈∇w ∧∇vη〉 + 〈∇2
v,·w ∧ η〉

+ 〈∇v ∧∇wη〉 + 〈∇v ∧ 〈∇w ∧ η〉〉

where 〈 · ∧ · 〉 : T ∗M ⊗ TM ⊗ ΛkT ∗M → ΛkT ∗M contracts the second and
third TM⊗T ∗M ∼= R component and takes the the wedge product afterwards.
Furthermore, ∇2

v,w = ∇v∇w −∇∇vw denotes the second covariant derivative.

Proof. Since ∇ is torsion-free, the equality

(£wη)(u1, . . . , uk) = (∇wη)(u1, . . . , uk)
+

∑
i

(−1)i+1η(∇uiw, u1, . . . ûi, . . . , uk)

holds. This is the first identity and the second is proven similarly.

Recall from Section 3 that ι : M → Y is a coassociative immersion
equipped with a tubular neighbourhood J : U → Y . Furthermore, let FJ

and NJ be defined as in Proposition 3.6.

Lemma A.2. Let u, v, w ∈ Γ(U). The second derivative of FJ can be esti-
mated by

‖(DuDFJ)(v)(w)‖Ck,α ≤ c(1 + ‖u‖Ck+1,α)‖v‖Ck+1,α‖w‖Ck+1,α

where the differential is a map DFJ : Γ(U) → Hom(Ω2
+(M),Ω3(M)) and

accordingly, (DuDFJ)(v) ∈ Hom(Ω2
+(M),Ω3(M)).

Proof. Lift the sections v, w ∈ ΓM (U) to vector fields v̂, ŵ ∈ ΓU (TU) via
v̂(um) := d

dtum + tv(m)|t=0 where m ∈ M denotes the basepoint of um (and
analogously for ŵ). Denote their respective flows by ϕv̂, and ϕŵ. Then

(DuDFJ)(v)(w) = ∂t∂sFJ(u + tv + sw) = ∂t∂su
∗(ϕv̂

t )∗(ϕŵ
s )∗(J∗φ)

= u∗£v̂£ŵ(J∗φ).

Thus, ‖DuDFJ(v)(w)‖Ck,α ≤ c1‖Du‖Ck,α‖£ŵ£v̂(J∗φ)‖Ck,α .
The connection on Λ2

+T
∗M induces a decomposition of the tangent bundle

TU into vertical V and horizontal component H. The vertical part of the
differential Du ∈ Γ(Hom(TM, u∗TU)) is given (up to the identification of u∗V
with Λ2

+T
∗M) by ∇u and the horizontal component is up to the identification

u∗H ∼= TM given by the identity map. Therefore, ‖DuDFJ(v)(w)‖Ck,α ≤
c2(1 + ‖∇u‖Ck,α)‖£ŵ£v̂(J∗φ)‖Ck,α .
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To estimate the Lie derivative, we invoke the previous lemma. The only
two terms that might require an explanation are ∇v̂∇ŵ(J∗φ) and 〈∇2

v̂,·ŵ ∧
(J∗φ)〉. The first can be estimated by

‖∇v̂∇ŵ(J∗φ)‖Ck,α ≤ ‖iŵ(∇v̂∇(J∗φ))‖Ck,α + ‖∇∇v̂ŵ(J∗φ))‖Ck,α

≤ c3‖w‖Ck,α‖v‖Ck,α(‖∇∇(J∗φ)‖Ck,α + ‖∇(J∗φ)‖Ck,α).

Note that in the second line there is no additional derivative of ŵ coming
from ∇v̂ŵ. This is because (∇v̂ŵ)(um) only depends on v(m) and w(m). (In
fact, one can define a map Φ: U ×M U → TU by (u1, u2) �→ ∇û1 û2.)

Similarly,

‖〈∇2
v,·w ∧ (J∗φ)〉‖Ck,α ≤ c4(‖v‖Ck,α‖w‖Ck,α + ‖v‖Ck+1,α‖w‖Ck+1,α)‖J∗φ‖Ck,α

which together with with the observation that ‖J∗φ‖Ck+2,α is bounded finishes
the proof.

Proposition A.3. The quadratic estimate

‖NJ(v) −NJ(w)‖Ck,α ≤ c(1 + ‖v‖Ck+1,α + ‖w‖Ck+1,α + ‖v − w‖Ck+1,α)
× ‖v − w‖Ck+1,α(‖v‖Ck+1,α + ‖w‖Ck+1,α)

holds.

Proof. This follows immediately from the previous lemma and

NJ(v) −NJ(w) =
∫ 1

0
DtvFJ(v − w) −D0FJ(v − w)

+ (DtvFJ −DtwFJ)(w) dt

=
∫ 1

0

∫ t

0
(DsvDFJ)(v)(v − w)

+ (Dtw+s(v−w)DFJ)(v − w)(w) ds dt.

Appendix B. Resolution data for Reidegeld’s orbifolds

In this section we describe how to construct resolution data for the G2-
orbifolds of [24, Section 5.3.4] that were used in Section 4. A neighbourhood
of the singular strata in all these orbifolds can be described by Example 2.1
using the data from Table 1 (cf. Section 4).

The resolution data for singular strata which are described in rows 1.-5.
of Table 1 can be constructed via the Gibbons–Hawking Ansatz (cf. Sec-
tion 2.2.1) or, equivalently, via Kronheimer’s construction (cf. Section 2.2.2).
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Recall that in order to obtain a smooth manifold we need to choose for either
method a parameter ζ from

Δ◦ := {[ζ1, . . . , ζN ] ∈ (ImH)N/SN | ζ1 + · · · + ζN = 0 and ζi �= ζj for i �= j}.

To lift the action of GS we need to restrict further to the following sets:

1. (Δ◦)R+,(−R−) ={[ζ1, R+ζ1] ∈ Δ◦ | ζ1 ∈
(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri}∪

{[−ζ1, ζ1] ∈ Δ◦ | ζ1 ∈ Ri}
2. (Δ◦)(−R−) ={[ζ1, ζ2,−R−ζ2] ∈ Δ◦ | ζ1 ∈ (Rj)⊥, ζ2 /∈ (Rj)⊥}∪

{[ζ1, ζ2, ζ3] ∈ Δ◦ | ζ1, ζ2, ζ3 ∈ (Rj)⊥}
3. (Δ◦)R+,(−R−) ={[ζ1, ζ2, R+ζ2] ∈ Δ◦ | ζ1 ∈ Ri,

ζ2 ∈
(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri}∪

{[ζ1, ζ2, ζ3] ∈ Δ◦ | ζ1, ζ2, ζ3 ∈ Ri}
4. (Δ◦)R+,(−R−) ={[ζ1, R+ζ1,−R−ζ1,−R+R−ζ1] ∈ Δ◦ |

ζ1 /∈ (Rj)⊥ ∪ (Rk)⊥}∪
{[ζ1, R+ζ1, ζ2, R+ζ2] ∈ Δ◦ |

ζ1, ζ2 ∈
(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri}∪

{[ζ1, ζ2, ζ3, R+ζ3] ∈ Δ◦ |
ζ1, ζ2 ∈ Ri, ζ3 ∈

(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri}∪

{[ζ1, ζ2, ζ3, ζ4] ∈ Δ◦ | ζ1, ζ2, ζ3, ζ4 ∈ Ri}
5. (Δ◦)R+,(−R−) ={[ζ1, R+ζ1, ζ2, R+ζ2,−R−ζ2,−R+R−ζ2] ∈ Δ◦ |

ζ1 ∈
(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri,

ζ2 /∈ (Rj)⊥ ∪ (Rk)⊥}∪
{[ζ1, ζ2, ζ3, R+ζ3,−R−ζ3,−R+R−ζ3] ∈ Δ◦ |

ζ1, ζ2 ∈ Ri, ζ2 /∈ (Rj)⊥ ∪ (Rk)⊥}∪
{[ζ1, R+ζ1, ζ2, R+ζ2, ζ3, R+ζ3] ∈ Δ◦ |

ζ1, ζ2, ζ3 ∈
(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri}∪

{[ζ1, ζ2, ζ3, R+ζ3, ζ4, R+ζ4] ∈ Δ◦ |
ζ1, ζ2 ∈ Ri, ζ3, ζ4 ∈

(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri}∪

{[ζ1, ζ2, ζ3, ζ4, ζ5, R+ζ5] ∈ Δ◦ |
ζ1, ζ2, ζ3, ζ4 ∈ Ri,

ζ5 ∈
(
(Rj)⊥ ∪ (Rk)⊥

)
\ Ri}∪

{[ζ1, ζ2, ζ3, ζ4, ζ5, ζ6] ∈ Δ◦ | ζ1, ζ2, ζ3, ζ4, ζ5, ζ6 ∈ Ri}.
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To resolve singular strata described in row 6. of Table 1 we need Kron-
heimer’s construction as reviewed in Section 2.2.2.

The root system of D5 is given by (cf. [3, Chapter VI.4.8])

Φ = {±ei ± ej ∈ R
5 | i �= j ∈ {1, . . . , 5}}

and one possible choice of simple roots consists of

αi := ei − ei+1 for i = 1, . . . , 4 and α5 := e5 + e4.

Its Weyl group W = C4
2 � S5 acts on R

5 by permuting and changing the
signs of an even number of coordinates. Thus, in order to obtain a smooth
manifold, we must choose the value of the moment map from

Δ◦ = {[ζ1, . . . , ζ5] ∈ ((ImH)∗ ⊗ R
5)/W | ζi �= ±ζj for i �= j}.

In order to lift the action of GS , we need to restrict further to a value
which is invariant under the Λ2

+ρS(g) ⊗ Ad∗
CρS(g)

for any g ∈ GS . Here is
how one can understand the action Ad∗

CρS(g)
: h → h (under the identification

h ∼= RΦ via the inner product): Let (R1, ρ1), . . . , (R5, ρ5) be irreducible (non-
trivial, complex) representations of Dic3 which are pairwise non-isomorphic.
Identify the set {(R1, ρ1), . . . , (R5, ρ5)} with {α1, . . . , α5} as in [18, Section 2].
Then Ad∗

CρS(g)
acts on {α1, . . . , α5} ∼= {(R1, ρ1), . . . , (R5, ρ5)} by mapping

(Ri, ρi) to the irreducible representation Rj
∼= (Ri, ρi ◦ CρS(g)) (where we

precompose the representation with conjugation by ρS(g) ∈ NSO(H)(Dic3)).
The map Ad∗

CρS(g)
: h → h is the linear extension of this action.5

One can then check that Ad∗
C

ρS(R−,
j
2 )

= 1 and Ad∗
C

ρS(R+, i+k
2 )

= σ5, where

σ5 : R
5 → R

5 is the reflection (x1, . . . , x5) �→ (x1, . . . , x4,−x5). In order to lift
the action of GS , we therefore need to choose a parameter from the following
set:

6. (Δ◦)(R+σ5),R− ={[ζ1, R+ζ1, R−ζ1, R+R−ζ1, ζ2] ∈ Δ◦ |
ζ1 /∈ (Ri)⊥ ∪ (Rj)⊥ ∪ (Rk)⊥ and ζ2 ∈ Rj} ∪

{[ζ1, Raζ1, ζ2, Rbζ2, ζ3] ∈ Δ◦ |
ζ1, ζ2 ∈ ((Ri)⊥ ∪ (Rj)⊥ ∪ (Rk)⊥)

\ (Ri ∪ Rj ∪ Rk),
5This can be seen when using the isomorphism τ : z∗ → h in [18, Equation (2.7)].

Note further, that [18, Proposition 4.1] implies that τ and the isomorphism in [18,
Section 4] only differ by a conformal transformation.
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Ra, Rb ∈ {R+, R−, R+R−}, and ζ3 ∈ Rj} ∪
{[ζ1, Raζ1, ζ2, tζ2, ζ3] ∈ Δ◦ |

ζ1 ∈ ((Ri)⊥ ∪ (Rj)⊥ ∪ (Rk)⊥)
\ (Ri ∪ Rj ∪ Rk),

Ra ∈ {R+, R−, R+R−},
ζ2 ∈ Ri ∪ Rj ∪ Rk, t ∈ R \ {−1},
and ζ3 ∈ Rj} ∪

{[ζ1, Raζ1, ζ2, ζ3, 0] ∈ Δ◦ |
ζ1 ∈ ((Ri)⊥ ∪ (Rj)⊥ ∪ (Rk)⊥)

\ (Ri ∪ Rj ∪ Rk),
Ra ∈ {R+, R−, R+R−}, ζ2 ∈ Ri,

and ζ3 ∈ Rk} ∪
{[ζ1, t1ζ1, ζ2, t2ζ2, ζ3] ∈ Δ◦ | ζ1, ζ2 ∈ Ri ∪ Rj ∪ Rk,

t1, t2 ∈ R \ {−1}, and ζ3 ∈ Rj} ∪
{[ζ1, tζ1, ζ2, ζ3, 0] ∈ Δ◦ | ζ1 ∈ Ri ∪ Rj ∪ Rk,

t ∈ R \ {−1}, ζ2 ∈ Ri, and ζ3 ∈ Rk}.
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