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A bi-variant algebraic cobordism via correspondences
Shoji Yokura

Abstract: A bi-variant theory B(X,Y ) defined for a pair (X,Y )
is a theory satisfying properties similar to those of Fulton–Mac-
Pherson’s bivariant theory B(X f−→ Y ) defined for a morphism
f : X → Y . In this paper, using correspondences we construct a
bi-variant algebraic cobordism Ω∗,�(X,Y ) such that Ω∗,�(X, pt) is
isomorphic to Lee–Pandharipande’s algebraic cobordism of vector
bundles Ω−∗,�(X). In particular, Ω∗(X, pt) = Ω∗,0(X, pt) is iso-
morphic to Levine–Morel’s algebraic cobordism Ω−∗(X). Namely,
Ω∗,�(X,Y ) is a bi-variant version of Lee–Pandharipande’s algebraic
cobordism of bundles Ω∗,�(X).
Keywords: (Co)bordism, algebraic cobordism, algebraic cobor-
dism of bundles, correspondence.

1. Introduction

This is a continuation of our previous works [23] and [24] and also partially
motivated by a recent book [13] by D. Gaitsgory and N. Rozenblyum.

In [12] W. Fulton and R. MacPherson have introduced bivariant the-
ory B(X f−→ Y ) with an aim to deal with Riemann–Roch type theorems
for singular spaces and to unify them. B∗(X) := B−∗(X −→ pt) becomes a
covariant functor and B∗(X) := B∗(X idX−−→ X) a contravariant functor. In
this sense B(X f−→ Y ) is called a bivariant theory. In [21] (cf. [22] and [25])
the author introduced an oriented bivariant theory and a universal oriented
bivariant theory in order to eventually construct a bivariant algebraic cobor-
dism Ω∗(X f−→ Y ) which is supposed to be a bivariant-theoretic version of
Levine–Morel’s algebraic cobordism1 Ω∗(X) in such a way that the covariant
part Ω−∗(X −→ pt) becomes isomorphic to Levine–Morel’s algebraic cobor-
dism Ω∗(X), thus Ω∗(X idX−−→ X) would become really a new contravariant
“cobordism”.
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1It is called “cobordism”, but it is a theory of “bordism”.
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Our general universal bivariant theory MC
S(X f−→ Y ) defined on a cate-

gory C , equipped with a class C of confined morphisms, a class S of special-
ized morphisms and a class Ind of independent squares, is defined to be the
free abelian group generated by the set of isomorphism classes of confined
morphisms c : W → X such that the composite of c and f is a specialized
morphism:

(1.1) W
C� c f◦c ∈S

�
X

f
Y.

Here we note that confined and specialized morphisms are both closed under
composition and base change and the identity morphisms are defined to be
both confined and specialized. In the case of the category of complex algebraic
varieties, a proper morphism is confined and a smooth morphism is specialized
and in [21] we consider the universal bivariant theory Mprop

sm (X f−→ Y ) where
prop = C is the class of proper morphisms and sm = S the class of smooth
morphisms, in order to construct the above-mentioned bivariant algebraic
cobordism Ω∗(X f−→ Y ). If the coproduct � is well-defined in a category C ,
then we can consider the Grothendieck group MC

S(X f−→ Y )+, which is the
quotient group MC

S(X f−→ Y ) modulo the relations

[W h−→ X] + [V k−→ X] = [W � V
h�k−−→ X].

In [2] (also see his Ph.D. Thesis [4]) T. Annala considered the univer-
sal bivariant theory Mprop

qusm(X f−→ Y )+ ⊗ L where L is the Lazard ring and
qusm = S is the class of quasi-smooth morphisms in the category of derived
schemes, instead of considering the above Mpop

sm (X f−→ Y )+. A quasi-smooth
morphism is closed under composition and base change. Note that a local com-
plete intersection (abbr., �.c.i.) morphism is not necessarily closed under base
change in the classical category of algebraic schemes, but it is closed under
base change in the category of derived schemes since it is quasi-smooth. Then,
by considering some bivariant ideal 〈RLS〉(X f−→ Y ) of Mprop

qusm(X f−→ Y )+, he
defined the quotient group

(1.2)
Mprop

qusm(X f−→ Y )+ ⊗ L

〈RLS〉((X f−→ Y )
=: Ω∗(X f−→ Y ),
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which is his bivariant derived algebraic cobordism Ω∗(X f−→ Y ). It turns out
that Ω∗(X → pt) is isomorphic to the derived algebraic cobordism dΩ∗(X) of
Lowrey–Schürg [20], which is isomorphic to Levine–Morel’s algebraic cobor-
dism Ω∗(X). Thus T. Annala has succeeded in constructing a bivariant-
theoretic version of Levine–Morel’s algebraic cobordism.

A motivation of considering Mprop
sm (X f−→ Y ), i.e., the form (1.1) above

with prop = C and sm = S, is that cobordism cycles, which are key ingre-
dients of Levine–Morel’s algebraic cobordism Ω∗(X), are of the form [W p−→
X;L1, . . . , Lr] where p : W → X is a proper morphism, W is smooth and
Li’s are line bundles over W . Namely, putting aside line bundles Li’s, the
data of a proper morphism W

p−→ X with smooth W is the same as the above
commutative diagram (1.1) with Y = pt a point, f = aX : X → pt and
aW = aX ◦ p : W → pt, the morphisms to a point, such that c : W → X

is proper and aW : W → pt is smooth. Namely, it is the left commutative
diagram below:

(1.3) W
p aW

�
X aX

pt.

⇐⇒ W
p aW

X pt.

However, it is clear that the left commutative diagram is actually the same as
the right diagram (without making it commutative via the map aX : X → pt).
A general diagram X

p←− W
s−→ Y is called a correspondence. Then the free

abelian group generated by the isomorphism classes of such correspondences
X

p←− W
s−→ Y with proper p and smooth s is denoted by Mprop

sm (X, Y ),
similarly to Mprop

sm (X → Y ). When Y = pt is a point, we have the canonical
isomorphism Mprop

sm (X → pt) ∼= Mprop
sm (X, pt). In a general situation we have

“forgetting the morphism f”, F : Mprop
sm (X f−→ Y ) ↪→ Mprop

sm (X, Y ), which is an
embedding or a monomorphism, defined by F([W p−→ X]) := [X p←− W

f◦p−−→ Y ]:

(1.4) W
p f◦p

�
X

f
Y

forget the morphism f
> W

p f◦p

X Y

Here we note that if f : X → Y is not surjective, then there does not exist
a proper morphism p : W → X such that the composite f ◦ p : W → Y
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is smooth, thus Mprop
sm (X f−→ Y ) = 0, however Mprop

sm (X, Y ) �= 0. As ex-
plained above, in [2] Annala overcomes this kind of drawback Mprop

sm (X f−→
Y ) = 0 by considering quasi-smooth morphisms in the category of derived
schemes.

In [6] Annala and the author constructed a bivariant theory Ω∗,�(X f−→ Y ),
which is generated by the isomorphism classes of [W p−→ X;E] where p is
proper and the composite f ◦p is quasi-smooth and E is a vector bundle over
W . � refers to the rank of a vector bundle E. Ω∗,�(X → pt) is isomorphic
to Lee–Pandharipande’s algebraic cobordism of vector bundles Ω∗,�(X) [18].
Thus Ω∗,�(X f−→ Y ) is a bivariant-theoretic version of Ω∗,�(X).

In §4.3 we show that there is a bi-variant2 algebraic cobordism Ω∗,�(X, Y ),
using isomorphism classes of correspondences [X p←− W

s−→ Y ;E] with vector
bundles E over W , and we have the canonical homomorphism “forgetting the
morphism f”:

F : Ω∗,�(X f−→ Y ) → Ω∗,�(X, Y )

defined by F([W p−→ X;E]) := [X p←− W
f◦p−−→ Y ;E]. Ω∗,�(X, pt) is isomorphic

to Lee–Pandharipande’s algebraic cobordism Ω∗,�(X), hence Ω∗,�(X, Y ) is a
bi-variant version of Lee–Pandharipande’s algebraic cobordism Ω∗,�(X). In
the case when we consider E = 0 the zero bundles, Ω∗(X, Y ) = Ω∗,0(X, Y ) is
a bi-variant version of Levine–Morel’s algebraic cobordism Ω∗(X).

For considering the above bi-variant theory Ω(X, Y ), there are a few more
motivations other than the above very simple observation (1.3):

1. Speaking of a bivariant theory, there is another bivariant theory, which
is called a bivariant K-theory or KK-theory K(X, Y ) due to G. Kas-
parov [15]. This is well-known and has been studied very well in C∗-
algebra and operator theories. In [10] (cf. [8, 9]) H. Emerson and R.
Meyer described K(X, Y ), using correspondences. Hence it would be rea-
sonable or natural to consider such a KK-theory type “bivariant” theory
Ω(X, Y ), instead of Ω(X → Y ) in the sense of Fulton–MacPherson.

2. Since we have the natural homomorphism

F : Mprop
qusm(X f−→ Y )+ → Mprop

qusm(X, Y )+,

it would be quite natural to think that there must be some “bi-variant”
version Ω∗,�(X, Y ), using Mprop

qusm(X, Y )+, corresponding to Ω∗,�(X f−→ Y )
2In order not to be confused with a bivariant theory in the sense of Fulton–

MacPherson, we use “bi-variant” in [23].
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which is constructed by using Mprop
qusm(X f−→ Y )+:

Mprop
qusm(X f−→ Y )+ F

Mprop
qusm(X, Y )+

Ω∗,�(X f−→ Y ) F Ω∗,�(X, Y )

Ω∗,�(X → pt) ∼=
F Ω∗,�(X, pt).

The bottom isomorphism may be expected from (1.3) above.
3. Levine–Morel’s algebraic cobordism Ω∗(X) satisfies the following:

• For a proper morphism f : X → Y we have the pushforward
f∗ : Ω∗(X) → Ω∗(Y ), which is covariantly functorial,

• For a smooth morphism g : X → Y we have the pullback g∗ :
Ω∗(Y ) → Ω∗(X), which is contravariantly functorial,

• For a fiber square

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y,

where f is proper and g is smooth, thus so are f ′ and g′, respec-
tively, we have

f ′
∗ ◦ (g′)∗ = g∗ ◦ f∗ : Ω∗(X) → Ω∗(Y ′)

which is called base change isomorphism or Beck–Chevalley con-
dition.

Such a functor is called is a “bi-variant” functor, e.g., see [13, Part III
Categories of Correspondences, §1.1, p. 271 and §0.1.1., p. 285]. In or-
der to encode such a bi-variant functor, in [13] D. Gaitsgory and N.
Rozenblyum consider a category C (with finite limits) equipped with
two classes of morphisms vert and horiz (both closed under compo-
sition and base change) and consider correspondences written as fol-
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lows:

(1.5) c0,1

f

g
c0

c1

where f is vert and g is horiz. For such a correspondence they consider
a pushforward Φ(f) : Φ(c0,1) → Φ(c1) and a pullback Φ!(g) : Φ(c0) →
Φ(c0,1) for some bi-variant functor Φ. Using these, they consider the
composition Φ(f) ◦ Φ!(g) : Φ(c0) → Φ(c1), which is considered as a
functor defined on the category of correspondences, i.e., a morphism
from c0 to c1 is this correspondence. They use such correspondences
in order to encode a bi-variant functor with values in a ∞-category
and furthermore to encode Grothendieck six-functor formalism. As the
above diagram (1.5) indicates, vert and horiz clearly come from “ver-
tical” and “horizontal”, respectively, however their real roles or prop-
erties are exactly the same as those of confined and specialized, respec-
tively. Hence, it would be reasonable or natural to consider some the-
ories similar to a bivariant theory in the sense of Fulton–MacPherson
and/or our bi-variant theory in Gaitsgory-Rozenblyum’s study of corre-
spondences. For example, in [1] T. Abe introduces a kind of bivariant
theory (in the sense of Fulton–MacPherson, but missing the structure
of bivariant product) with values in an ∞-category, using correspon-
dences.

In §2 we make a quick review of Fulton–MacPherson’s bivariant theory
[12] and the author’s universal bivariant theory [21] (cf. [22]). In §3 we recall
cobordism bicycles of vector bundles [X p←− W

s−→ Y ;E] and their properties,
which are key ingredients for our bi-variant theory Ω∗,�(X, Y ). In §4 we define
our bi-variant theory

Ω∗,�(X, Y ) := M∗,�(X, Y )+

〈RLS〉(X, Y ) ,

after defining a bi-variant ideal 〈RLS〉(X, Y ), such that Ω∗,�(X, pt) ∼= Ω−∗,�(X)
which is Lee–Pandharipande’s algebraic cobordism of vector bundles [18]. In
the final section §5 we discuss a bit some possible generalized versions of An-
nala’s bivariant algebraic cobordism Ω∗(X → Y ) and our bi-variant theory
Ω∗(X, Y ).
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2. Fulton–MacPherson’s bivariant theory and a universal
bivariant theory

We make a quick review of Fulton–MacPherson’s bivariant theory [12] (also
see [11]) and the author’s universal bivariant theory [21] (also see [22]).

2.1. Fulton–MacPherson’s bivariant theory

Let C be a category which has a final object pt and on which the fiber product
or fiber square is well-defined. Also we consider a class of morphisms, called
“confined morphisms” (e.g., proper morphisms, projective morphisms, in al-
gebraic geometry), which are closed under composition and base change and
contain all the identity morphisms, and a class of fiber squares, called “inde-
pendent squares” (or “confined squares”, e.g., “Tor-independent” in algebraic
geometry, a fiber square with some extra conditions required on morphisms
of the square), which satisfy the following:

(i) if the two inside squares in

X ′′ h′
−−−−→ X ′ g′−−−−→ X⏐⏐�f ′′

⏐⏐�f ′
⏐⏐�f

Y ′′ −−−−→
h

Y ′ −−−−→
g

Y

or

X ′ −−−−→
h′′

X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
h′

Y

g′
⏐⏐� ⏐⏐�g

Z ′ −−−−→
h

Z

are independent, then the outside square is also independent,
(ii) any square of the following forms are independent:

X

f

idX
X

f

X

idX

f
Y

idY

Y
idX

Y X
f

Y

where f : X → Y is any morphism.

Remark 2.1. Given an independent square, its transpose is not necessar-
ily independent. For example, let us consider the category of topological
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spaces and continuous maps. Let any map be confined, and we allow a fiber
square

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y

to be independent only if g is proper (hence g′ is also proper). Then its trans-
pose is not independent unless f is proper. (Note that the pullback of a proper
map by any continuous map is proper, because “proper” is equivalent to “uni-
versally closed”, i.e., the pullback by any map is closed.)

A bivariant theory B on a category C with values in the category of
graded abelian groups is an assignment to each morphism X

f−→ Y in the
category C a graded abelian group (in most cases we ignore the grading)
B(X f−→ Y ) which is equipped with the following three basic operations. The
i-th component of B(X f−→ Y ), i ∈ Z, is denoted by Bi(X f−→ Y ).

1. Product: For morphisms f : X → Y and g : Y → Z, the product
operation

• : Bi(X f−→ Y ) ⊗ Bj(Y g−→ Z) → Bi+j(X gf−→ Z)

is defined.
2. Pushforward: For morphisms f : X → Y and g : Y → Z with f

confined, the pushforward operation

f∗ : Bi(X gf−→ Z) → Bi(Y g−→ Z)

is defined.
3. Pullback: For an independent square

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y,

the pullback operation

g∗ : Bi(X f−→ Y ) → Bi(X ′ f ′
−→ Y ′)

is defined.
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An element α ∈ B(X f−→ Y ) is sometimes expressed as follows:

X
f

α©
Y

These three operations are required to satisfy the following seven compatibil-
ity axioms ([12, Part I, §2.2]):

(A1) Product is associative: for X
f−→ Y

g−→ Z
h−→ W with

α ∈ B(X f−→ Y ), β ∈ B(Y g−→ Z), γ ∈ B(Z h−→ W ),

(α • β) • γ = α • (β • γ).

(A2) Pushforward is functorial: for X
f−→ Y

g−→ Z
h−→ W with f and g

confined and α ∈ B(X h◦g◦f−−−→ W )

(g ◦ f)∗(α) = g∗(f∗(α)).

(A3) Pullback is functorial: given independent squares

X ′′ h′
−−−−→ X ′ g′−−−−→ X⏐⏐�f ′′

⏐⏐�f ′
⏐⏐�f

Y ′′ −−−−→
h

Y ′ −−−−→
g

Y

(g ◦ h)∗ = h∗ ◦ g∗.

(A12) Product and pushforward commute: for X
f−→ Y

g−→ Z
h−→ W

with f confined and α ∈ B(X g◦f−−→ Z), β ∈ B(Z h−→ W ),

f∗(α • β) = f∗(α) • β.

(A13) Product and pullback commute: given independent squares

X ′ h′′
−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ h′
−−−−→ Y

g′
⏐⏐� ⏐⏐�g

Z ′ −−−−→
h

Z
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with α ∈ B(X f−→ Y ), β ∈ B(Y g−→ Z),

h∗(α • β) = h′∗(α) • h∗(β).

(A23) Pushforward and pullback commute: given independent squares

X ′ h′′
−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ h′
−−−−→ Y

g′
⏐⏐� ⏐⏐�g

Z ′ −−−−→
h

Z

with f confined and α ∈ B(X g◦f−−→ Z),

f ′
∗(h∗(α)) = h∗(f∗(α)).

(A123) Projection formula: given an independent square with g confined
and α ∈ B(X f−→ Y ), β ∈ B(Y ′ h◦g−−→ Z)

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y −−−−→
h

Z

and α ∈ B(X f−→ Y ), β ∈ B(Y ′ h◦g−−→ Z),

g′∗(g∗(α) • β) = α • g∗(β).

We also assume that B has units:

Units: B has units, i.e., there is an element 1X ∈ B0(X idX−−→ X) such that
α • 1X = α for all morphisms W → X and all α ∈ B(W → X), such that
1X • β = β for all morphisms X → Y and all β ∈ B(X → Y ), and such that
g∗1X = 1X′ for all g : X ′ → X.
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Commutativity: B is called commutative if whenever both

W
g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y −−−−→
g

Z

and

W
f ′

−−−−→ Y

g′
⏐⏐� ⏐⏐�g

X −−−−→
g

Z

are independent squares with α ∈ B(X f−→ Z) and β ∈ B(Y g−→ Z),

g∗(α) • β = f∗(β) • α.

Let B,B′ be two bivariant theories on a category C . A Grothendieck trans-
formation from B to B′, γ : B → B′ is a collection of homomorphisms
B(X → Y ) → B′(X → Y ) for a morphism X → Y in the category C ,
which preserves the above three basic operations:

1. γ(α •B β) = γ(α) •B′ γ(β),
2. γ(f∗α) = f∗γ(α), and
3. γ(g∗α) = g∗γ(α).

A bivariant theory unifies both a covariant theory and a contravariant theory
in the following sense:

B∗(X) := B−∗(X → pt) becomes a covariant functor for confined mor-
phisms and

B∗(X) := B∗(X id−→ X) becomes a contravariant functor for any mor-
phisms. A Grothendieck transformation γ : B → B′ induces natural transfor-
mations γ∗ : B∗ → B′

∗ and γ∗ : B∗ → B′∗.

Definition 2.1. As to the grading, Bi(X) := B−i(X → pt) and Bj(X) :=
Bj(X id−→ X).

Definition 2.2 ([12, Part I, §2.6.2 Definition]). Let S ′ be a class of maps
in V , closed under composition3 and containing all identity maps. Suppose
that to each f : X → Y in S ′ there is assigned an element θ(f) ∈ B(X f−→ Y )
satisfying that

3In the case of confined maps, we require that the pullback of a confined map is
confined. For this class S ′ we do not require the stability of pullback. For example,
in [12] the class of local complete intersection (abbr. �.c.i) morphisms is considered
as such a class, and the pullback of an �.c.i. morphism is not necessarily a �.c.i.
morphism.
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(i) θ(g ◦ f) = θ(f) • θ(g) for all f : X → Y , g : Y → Z ∈ S ′ and
(ii) θ(idX) = 1X for all X with 1X ∈ B∗(X) := B∗(X idX−−→ X) the unit

element.

Then θ(f) is called an canonical orientation of f .

Gysin homomorphisms Note that such a canonical orientation makes
the covariant functor B∗(X) a contravariant functor for morphisms in S ′, and
also makes the contravariant functor B∗ a covariant functor for morphisms in
C ∩ S ′: Indeed,

1. As to the covariant functor B∗(X): For a morphism f : X → Y ∈
S ′ and a canonical orientation θ on S ′, the following Gysin (pullback)
homomorphism

f ! : B∗(Y ) → B∗(X) defined by f !(α) := θ(f) • α

is contravariantly functorial.
2. As to contravariant functor B∗: For a fiber square (which is an indepen-

dent square by hypothesis)

X
f−−−−→ Y

idX

⏐⏐� ⏐⏐�idY

X −−−−→
f

Y,

where f ∈ C ∩ S ′, the following Gysin (pushforward) homomorphism

f! : B∗(X) → B∗(Y ) defined by f!(α) := f∗(α • θ(f))

is covariantly functorial.

The above Gysin homomorphisms are sometimes denoted by f !
θ and f θ

!
respectively in order to make it clear that the canonical orientation θ is used.

2.2. A universal bivariant theory

(i) Let S be another class of morphisms called “specialized morphisms” (e.g.,
smooth morphisms in algebraic geometry) in C , which is closed under com-
position and base change and contains all identity morphisms.
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(ii) Let S be as in (i). Furthermore, if the orientation θ on S satisfies that
for an independent square with f ∈ S

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y

θ(f ′) = g∗θ(f), i.e., the orientation θ preserves the pullback operation, then
we call θ a nice canonical orientation of B. We also assume that our category
V satisfies that any fiber square

P ′ −−−−→ P

f ′
⏐⏐� ⏐⏐�f

Q′ −−−−→ Q

with f being confined, i.e., f ∈ C, is an independent square. In [21] this
condition is called “C-independence”.

Theorem 2.1 ([21, Theorem 3.1]). Let C be a category with a class C of
confined morphisms, a class Ind of independent squares and a class S of
specialized morphisms. We define MC

S(X f−→ Y ) to be the free abelian group
generated by the set of isomorphism classes of confined morphisms h : W → X
such that the composite of h and f is a specialized morphism: h ∈ C and
f ◦ h : W → Y ∈ S.

1. The association MC
S is a bivariant theory if the three bivariant operations

are defined as follows:
(a) Product: For morphisms f : X → Y and g : Y → Z, the product

• : MC
S(X f−→ Y ) ⊗MC

S(Y g−→ Z) → MC
S(X gf−→ Z)

is defined by [V h−→ X] • [W k−→ Y ] := [V ′ h◦k′′
−−−→ X] and extended

linearly, where we consider the following fiber squares

V ′ h′
−−−−→ X ′ f ′

−−−−→ W

k′′
⏐⏐� k′

⏐⏐� k

⏐⏐�
V −−−−→

h
X −−−−→

f
Y −−−−→

g
Z.
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(b) Pushforward: For morphisms f : X → Y and g : Y → Z with f
confined, the pushforward

f∗ : MC
S(X gf−→ Z) → MC

S(Y g−→ Z)

is defined by f∗
(
[V h−→ X]

)
:= [V f◦h−−→ Y ] and extended linearly.

(c) Pullback: For an independent square

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y,

the pullback

g∗ : MC
S(X f−→ Y ) → MC

S(X ′ f ′
−→ Y ′)

is defined by g∗
(
[V h−→ X]

)
:= [V ′ h′

−→ X ′] and extended linearly,
where we consider the following fiber squares:

V ′ g′′−−−−→ V

h′
⏐⏐� ⏐⏐�h

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y.

2. For a specialized morphism f : X → Y ∈ S,

θMC
S
(f) = [X idX−−→ X] ∈ MC

S(X f−→ Y )

is a nice canonical orientation of MC
S for S.

3. (A universality of MC
S) Let B be a bivariant theory on the same category

C with the same class C of confined morphisms, the same class Ind of
independent squares and the same class S of specialized morphisms,
and let θ be a nice canonical orientation of B for S. Then there exists
a unique Grothendieck transformation γB : MC

S → B such that for a
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specialized morphism f : X → Y , γB : MC
S(X f−→ Y ) → B(X f−→ Y )

satisfies the normalization condition that γB(θMC
S
(f)) = θB(f).

Proposition 2.1 (Commutativity4). The universal bivariant theory MC
S is

commutative in the sense that g∗(α) • β = f∗(β) • α for a fiber square

X ′ g′

f ′

X

f α©
Z ′

g

β©
Z

Remark 2.2. Here we note that

1. for a confined morphism f : X → X ′ we have the pushforward f∗ :
(MC

S)∗(X) → (MC
S)∗(X ′),

2. for a specialized morphism g : Y → Y ′ we have the (Gysin) pullback g∗ :
(MC

S)∗(Y ′) → (MC
S)∗(Y ), where we use the above canonical orientation

θMC
S
(g),

3. for a fiber square

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y,

where f is confined and g is specialized, thus so are f ′ and g′, respec-
tively. Then we have

f ′
∗ ◦ (g′)∗ = g∗ ◦ f∗ : (MC

S)∗(X) → (MC
S)∗(Y ′)

which is called base change isomorphism or Beck–Chevalley condition.

Hence the functor (MC
S)∗ is a bi-variant functor (e.g., see [13, Part III Cate-

gories of Correspondences, §1.1, p. 271 and §0.1.1., p. 285]) from the category
C equipped with two classes of morphisms confined and specialized to the cat-
egory of abelian groups.

Remark 2.3. Suppose that the coproduct � (like the disjoint union in the
category of sets, the category of topological spaces, etc.) is well-defined5 in the

4If g∗(α)•β = (−1)deg(α) deg(β)f∗(β)•α holds, then it is called skew-commutative
(see [12, Part I: Bivariant Theories, §2.2]).

5Note that there is a category in which the coproduct is not defined, e.g., the
category of finite groups.
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category C and f : X1�X2 → Y is defined to be confined (resp., specialized)
if and only if the restrictions f |Xi : Xi → Y is confined (resp., specialized).
Here f |Xi := f ◦ ιi : Xi → Y where ιi : Xi → X1 �X2 is the inclusion. If we
consider the following relations on MC

S(X → Y )

[V1 � V2
h−→ X] = [V1

h|V1−−→ X] + [V2
h|V2−−→ X]

where we note that (h1�h2)|Vi = (h1�h2)◦ ιi = hi : Vi → X, then we get the
Grothendieck group, denoted by MC

S(X → Y )+. Or the set of isomorphism
classes of [V → X] becomes a commutative monoid by the coproduct

[V1
h1−→ X] + [V2

h2−→ X] := [V1 � V2
h1�h2−−−→ X].

Then the Grothendieck group MC
S(X → Y )+ is the group completion of this

monoid.

3. Cobordism bicycles of vector bundles

In [23] we considered extending the notion of algebraic cobordism of vector
bundles due to Y.-P. Lee and R. Pandharipande [16] (cf. [19]) to “correspon-
dences”. For later use, we give a quick recall of them.

3.1. Cobordism bicycles of vector bundles

Definition 3.1. Let X p←− V
s−→ Y be a correspondence such that p is proper

and and s is smooth, and let E be a complex vector bundle over V . Then
(X p←− V

s−→ Y ;E) is called a cobordism bicycle of a vector bundle.

Definition 3.2. Let (X p←− V
s−→ Y ;E) and (X p′←− V ′ s′−→ Y ;E′) be two

cobordism bicycles of vector bundles of the same rank. If there exists an
isomorphism h : V ∼= V ′ such that

1. (X p←− V
s−→ Y ) ∼= (X p′←− V ′ s′−→ Y ) as correspondences, i.e., the

following diagrams commute:

V
p s

hX Y

V ′
p′ s′
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2. E ∼= h∗E′,

then they are called isomorphic and denoted by

(X p←− V
s−→ Y ;E) ∼= (X p′←− V ′ s′−→ Y ;E′).

The isomorphism class of (X p←− V
s−→ Y ;E) is denoted by [X p←− V

s−→
Y ;E], which is still called a cobordism bicycle of a vector bundle. For a fixed
rank r for vector bundles, the set of isomorphism classes of cobordism bicycles
of vector bundles for a pair (X, Y ) becomes a commutative monoid by the
disjoint sum:

[X p1←− V1
s1−→ Y ;E1] + [X p2←−V2

s2−→ Y ;E2]

:= [X p1+p2←−−− V1 � V2
s1+s2−−−→ Y ;E1 � E2].

This monoid is denoted by M r(X, Y ) and another grading of [X p←− V
s−→

Y ;E] is defined by the relative dimension of the smooth morphism s, denoted
by dim s, thus by double grading, [X p←− V

s−→ Y ;E] ∈ M n,r(X, Y ), where we
set −n = dim s and r = rankE. The group completion of this monoid, i.e.,
the Grothendieck group, is denoted by M n,r(X, Y )+. Using similar notations
as in §2.2, M n,r(X, Y )+ could or should be denoted by (Mprop

sm )n,r(X, Y )+
where prop = C is the class of proper morphisms and sm = S is the class
of smooth morphisms. But, in order to avoid some messy notation, we use
M n,r(X, Y )+, mimicking the notation used in [17].

Remark 3.1. The reason for why we set −n = dim s in the above grading
is requiring that M−n,r(X, pt) := M n,r(X, pt) in the case when Y = pt and
M−n,r(X, pt) is supposed to be the same as M−n,r(X)+ considered in Lee–
Pandharipande [18], where −n = dim s is nothing but the dimension of the
source variety V . This is just like setting Bi(X) := B−i(X → pt).

Definition 3.3. For three varieties X, Y, Z, by using Whitney sum ⊕ we
define the following product6

• : Mm,r(X, Y )+ ⊗ M n,k(Y, Z)+ → Mm+n,r+k(X,Z)+

[X p←− V
s−→ Y ;E] • [Y q←− W

t−→ Z;F ]

:= [(X p←− V
s−→ Y ) ◦ (Y q←− W

s−→ Z); (q′)∗E ⊕ (s′)∗F ]
6In [23] we consider another product •⊗ using tensor product ⊗. In this paper

we do not consider •⊗.



972 Shoji Yokura

Here we consider the following diagrams:

(q′)∗E ⊕ (s′)∗F

E V ×Y W
q′ s′

F

V
p s

W
q t

X Y Z

The middle diamond square is the fiber product and (X p←− V
s−→ Y ) ◦ (Y q←−

W
s−→ Z) is the composition of correspondences, defined by (X p←− V

s−→
Y ) ◦ (Y q←− W

s−→ Z) := (X p◦q′←−− V ×Y W
t◦s′−−→ Z) in the above diagram.

For later use, we define the following special cobordism bicycles:

Definition 3.4.

1. For a smooth morphism g : Y → Y ′, we define

1g := [Y idY←−− Y
g−→ Y ′;0] (∈ M−dim g,0(Y, Y ′)+),

2. For a proper morphism g : Y → Y ′, we define

g1 := [Y ′ g←− Y
idY−−→ Y ;0] (∈ M 0,0(Y ′, Y )+),

3. For any variety Y , 1Y := [Y idY←−− Y
idY−−→ Y ;0] (∈ M 0,0(Y, Y )+). Here

0 is the zero bundle over Y .
4. For a vector bundle E over Y we define

[[E]] := [Y idY←−− Y
idY−−→ Y ;E].

If we need to emphasize the base Y of the bundle E, then we denote it
by [[E]]Y . Otherwise we omit the suffix Y unless there is some possible
confusion on which is the base space of the bundle. Hence for the 0-
bundle over Y we have [[0]] = 1Y .

5. For two vector bundles E and F over the same base Y , we have

[[E]] • [[F ]] = [[E ⊕ F ]].
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From now on we identify [X p←− V
s−→ Y ] = [X p←− V

s−→ Y ;0]. Hence we
have

1g = [Y idY←−− Y
g−→ Y ′] = [Y idY←−− Y

g−→ Y ′;0],

g1 = [Y ′ g←− Y
idY−−→ Y ] = [Y ′ g←− Y

idY−−→ Y ;0],

1Y = [Y idY←−− Y
idY−−→ Y ] = [Y idY←−− Y

idY−−→ Y ;0].

Remark 3.2. We note that by Definitions 3.4 and 3.3 we have

(3.1) [X p←− V
s−→ Y ] = p1 • 1s.

In general, we can see

(3.2) [X p←− V
s−→ Y ;E] = p1 • [[E]] • 1s.

So, we have that [X p←− V
s−→ Y ;0] = p1 • [[0]] • 1s = p1 • 1Y • 1s = p1 • 1s.

Now we define pushforward and pullback of cobordism bicycles of vector
bundles:

Definition 3.5.

1. (Pushforward)
(a) For a proper morphism f : X → X ′, the (proper) pushforward

acting on the first factor X p←− V , denoted by f∗ : Mm,r(X, Y )+ →
Mm,r(X ′, Y )+, is defined by

f∗([X
p←− V

s−→ Y ;E]) := [X ′ f◦p←−− V
s−→ Y ;E].

Note that f∗(−) = f1 • (−).
(b) For a smooth morphism g : Y → Y ′, the (smooth) pushforward act-

ing on the second factor V
s−→ Y , denoted by ∗g : Mm,r(X, Y )+ →

Mm−dim g,r(X, Y ′)+,7 is defined by

([X p←− V
s−→ Y ;E]) ∗g := [X p←− V

g◦s−−→ Y ′;E].

Here we emphasize that ∗g is written on the right side of ([X p←−
V

s−→ Y ;E]) not on the left side. Note that (−)∗g = (−) • 1g.
7In [23] we have Mm+dim g,r(X,Y ′)+, instead of Mm−dim g,r(X,Y ′)+, because

in [23] we set n = dim s, not −n = dim s, for the first grading n of M n,r(X,Y )+
(cf. Remark 3.1 above). This sign change is applied to the other situations below,
as long as the relative dimensions of smooth morphisms are involved.
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(Note also that −m = dim s and dim(g ◦ s) = dim s + dim g =
−m + dim g = −(m− dim g).)

2. (Pullback)
(a) For a smooth morphism f : X ′ → X, the (smooth) pullback acting

on the first factor X
p←− V , denoted by f∗ : Mm,r(X, Y )+ →

Mm−dim f,r(X ′, Y )+ is defined by

f∗([X p←− V
s−→ Y ;E]) := [X ′ p′←− X ′ ×X V

s◦f ′
−−→ Y ; (f ′)∗E].

Here we consider the following commutative diagram:

(f ′)∗E E

X ′ ×X V
p′

f ′
V

p
s

X ′
f

X Y

Note that f∗(−) = 1f • (−).
(Note also that the left diamond is a fiber square, thus f ′ : X ′ ×X

V → V is smooth and p′ : X ′ ×X V → X ′ is proper. Note that
dim f ′ = dim f and dim(s ◦ f ′) = dim s+ dim f ′ = −m+ dim f =
−(m− dim f).)

(b) For a proper morphism g : Y ′ → Y , the (proper) pullback acting
on the second factor V

s−→ Y , denoted by ∗g : Mm,r(X, Y )+ →
Mm,r(X, Y ′)+, is defined by

([X p←− V
s−→ Y ;E]) ∗g := [X p◦g′←−− V ×Y Y ′ s′−→ Y ′; (g′)∗E].

Here we consider the following commutative diagram:

E (g′)∗E

V

p s

V ×Y Y ′g′

s′

X Y Y ′
g
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Note that (−)∗g = (−) • g1.
(Note that the right diamond is a fiber square, thus s′ : V ×Y Y ′ →
Y ′ is smooth and g′ : V ×Y Y ′ → V is proper, and dim s = dim s′.)

Remark 3.3. Since we refer to the formulas noted in the above Definition 3.5
later, we list them here again:

f∗(−) = f1 • (−),(3.3)
(−)∗g = (−) • 1g,(3.4)
f∗(−) = 1f • (−),(3.5)
(−)∗g = (−) • g1.(3.6)

Proposition 3.1. The above three operations of product, pushforward and
pullback satisfy the following properties.

(A1) Product is associative: For three varieties X, Y, Z,W we have

(α • β) • γ = α • (β • γ)

where α ∈ Mm,r(X, Y )+, β ∈ M n,k(Y, Z)+ and β ∈ M �,e(Z,W )+.
(A2) Pushforward is functorial:

(a) For two proper morphisms f1 : X → X ′, f2 : X ′ → X ′′, we have

(f2 ◦ f1)∗ = (f2)∗ ◦ (f1)∗

where (f1)∗ : Mm,r(X, Y )+ → Mm,r(X ′, Y )+ and (f2)∗ :
Mm,r(X ′, Y )+ → Mm,r(X ′′, Y )+.

(b) For two smooth morphisms g1 : Y → Y ′, g2 : Y ′ → Y ′′ we have

∗(g2 ◦ g1) = ∗(g1) ◦ ∗(g2) i.e., α ∗(g2 ◦ g1) = (α ∗(g1)) ∗(g2)

where ∗(g1) : Mm,r(X, Y ) → Mm−dim g1,r(X, Y ′) and ∗(g2) :
Mm−dim g1,r(X, Y ′) → Mm−dim g1−dim g2,r(X, Y ′′).

(A2)’ Proper pushforward and smooth pushforward commute: For
a proper morphism f : X → X ′ and a smooth morphism g : Y → Y ′

we have

∗g ◦ f∗ = f∗ ◦ ∗g, i.e., (f∗α) ∗g = f∗(α ∗g).

(A3) Pullback is functorial:
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(a) For two smooth morphisms f1 : X → X ′, f2 : X ′ → X ′′ we have

(f2 ◦ f1)∗ = (f1)∗ ◦ (f2)∗

where (f2)∗ : Mm,r(X ′′, Y )+ → Mm−dim f2,r(X ′, Y )+ and (f1)∗ :
Mm−dim f2,r(X ′, Y )+ → Mm−dim f2−dim f1,r(X, Y )+.

(b) For two proper morphisms g1 : Y → Y ′, g2 : Y ′ → Y ′′ we have

∗(g2 ◦ g1) = ∗(g2) ◦ ∗(g1) i.e., α ∗(g2 ◦ g1) = (α ∗(g2)) ∗(g1)

where ∗(g1) : Mm,r(X, Y ′)+ → Mm,r(X, Y )+ and ∗(g2) :
Mm,r(X, Y ′′)+ → Mm,r(X, Y ′)+.

(A3)’ Proper pullback and smooth pullback commute: For a smooth
morphism g : X ′ → X and a proper morphism f : Y ′ → Y we have

g∗ ◦ ∗f = ∗f ◦ g∗, i.e., g∗(α ∗f) = (g∗α) ∗f.

(A12) Product and pushforward commute: Let α ∈ Mm,r(X, Y )+ and
β ∈ M n,k(Y, Z)+.

(a) For a proper morphism f : X → X ′,

f∗(α • β) = (f∗α) • β (∈ Mm+n,r+k(X ′, Z)+).

(b) For a smooth morphism g : Z → Z ′,

(α • β) ∗g = α • (β ∗g) (∈ Mm+n−dim g,r+k(X,Z ′)+).

(A13) Product and pullback commute: Let α ∈ Mm,r(X, Y )+ and β ∈
M n,k(Y, Z)+.

(a) For a smooth morphism f : X ′ → X,

f∗(α • β) = (f∗α) • β (∈ Mm+n−dim f,r+k(X ′, Z)+).

(b) For a proper morphism g : Z ′ → Z,

(α • β) ∗g = α • (β ∗g) (∈ Mm+n,r+k(X,Z ′)+).

(A23) Pushforward and pullback commute: For α ∈ Mm,r(X, Y )+
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(a) (proper pushforward and proper pullback commute) For proper
morphisms f : X → X ′ and g : Y ′ → Y and for α ∈
Mm,r(X, Y )+

(f∗α) ∗g = f∗(α ∗g) (∈ Mm,r(X ′, Y ′)+).

(b) (smooth pushforward and smooth pullback commute) For smooth
morphisms f : X ′→X and g : Y →Y ′ and for α∈Mm,r(X, Y )+

f∗(α ∗g) = (f∗α) ∗g (∈ Mm−dim f−dim g,r(X ′, Y ′)+).

(c) (proper pushforward and smooth pullback “commute” in the fol-
lowing sense) For the following fiber square

X̃
f̃−−−−→ X ′′

g̃

⏐⏐� ⏐⏐�g

X ′ −−−−→
f

X

with f proper and g smooth, we have

g∗f∗ = f̃∗g̃
∗.

(d) (smooth pushforward and proper pullback “commute” in the fol-
lowing sense) For the following fiber square

Ỹ
f̃−−−−→ Y ′′

g̃

⏐⏐� ⏐⏐�g

Y ′ −−−−→
f

Y

with f proper and g smooth, for α ∈ Mm,r(X, Y ′′)+ we have

(α ∗g) ∗f = (α ∗f̃) ∗g̃.

(A123) “Projection formula”:
(a) For a smooth morphism g : Y → Y ′ and α ∈ Mm,r(X, Y )+ and

β ∈ M n,k(Y ′, Z)+,

(α ∗g) • β = α • g∗β (∈ Mm+n−dim g,r+k(X,Z)+).
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(b) For a proper morphism g : Y ′ → Y , α ∈ Mm,r(X, Y )+ and
β ∈ M n,k(Y ′, Z)+,

(α ∗g) • β = α • g∗β (∈ Mm+n,r+k(X,Z)+).

(Units) 1X = [X idX←−− X
idX−−→ X;0] ∈ M 0,0(X,X)+ satisfies that 1X • α = α

for any element α ∈ Mm,r(X, Y )+ and β • 1X = β for any element
β ∈ Mm,r(Y,X)+.

Remark 3.4. We note that by Definition 3.5 (1) we have

f1 • p1 = f◦p1 for proper maps f and p,(3.7)
1s • 1g = 1g◦s for smooth maps s and g,(3.8)
idX

1 = 1idX
= 1X is the unit.(3.9)

This reflects also the symmetry between the classes of proper and smooth mor-
phisms, coming from the transposition of correspondences, given by switching
the two sides of a correspondence. Namely, transposition of f1 • p1 = f◦p1
is 1p • 1f = 1f◦p, thus transposition of (3.7) is (3.8) and vice versa, putting
aside properness and smoothness of maps. We also see by (3.8) that 1s for
a smooth map s is exactly a canonical orientation in Definition 2.2. And by
Definition 3.5 (2), it follows from both (a) and (b) that for the following fiber
square

X̃
g̃

s̃

X ′′

s

X ′
g X

with s (hence s̃ as well) being smooth and g (hence g̃ as well) being proper,
we have the following

(3.10) 1s • g1 = g̃1 • 1s̃.

By Definition 3.5 (2) we have the following:

1f • [[E]] = [[f∗E]] • 1f ,(3.11)
[[E]] • g1 = g1 • [[g∗E]],(3.12)
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which are kind of “projection formula”. Hence, using these properties and the
associativity of the product •, for example, we can do the following compu-
tation:

[X p←− V
s−→ Y ;E] • [Y g←−W

t−→ Z;F ]
= (p1 • [[E]] • 1s) • (g1 • [[F ]] • 1t)
= p1 • [[E]] • (1s • g1) • [[F ]] • 1t

= p1 • [[E]] • (g̃1 • 1s̃) • [[F ]] • 1t

= p1 • ([[E]] • g̃1) • (1s̃ • [[F ]]) • 1t

= p1 • (g̃1 • [[(g̃)∗E]]) • ([[(s̃)∗F ]] • 1s̃) • 1t

= (p1 • g̃1) • ([[(g̃)∗E]] • [[(s̃)∗F ]]) • (1s̃ • 1t)
= p◦g̃1 • [[(g̃)∗E ⊕ (s̃)∗F ]] • 1t◦s̃

The above proposition follows directly from the definitions. We also note
that all the properties except for (A1) also follow from the property (A1), i.e.,
the associativity of product •, and the formulas listed in the above Remark 3.3
and Remark 3.4. Indeed, for example,

• (A2) (a) follows from (3.3), (A1) and (3.7).
• (A2) (b) follows from (3.4), (A1) and (3.8).
• (A23) (c) follows from (3.3), (3.5), (A1) and (3.10).
• (A23) (d) follows from (3.4), (3.6), (A1) and (3.10).

The following fact (which also follows from the above (3.10)) is emphasized
for a later use.

Proposition 3.2 (Pushforward-Product Property for Units (abbr. PPPU)).
For the following fiber square

V ×Y W
p̃ s̃

V

s

W

p

Y

with s : V → Y smooth and p : W → Y proper, we have

(1V ∗s) • p∗1W = (p̃∗1V×Y W ) ∗s̃ = p̃∗(1V×Y W ∗s̃) ∈ M ∗,0(V,W )+.
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Remark 3.5. We note that for the free abelian group M ∗,�(X, Y ) Defini-
tions 3.3 and 3.5 are also well-defined and Propositions 3.1 and 3.2 hold as
well.

Here we recall that
M i,r(X f−→ Y )+

is generated by the isomorphism classes of cobordism cycles of the form

[V p−→ X;E]

such that p : V → X is proper and the composite f ◦ p : V → Y is smooth
of relative dimension −i and r = rank(E). We have the “forgetting the mor-
phism f”:

F : M i,r(X f−→ Y )+ → M i,r(X, Y )+.

Lemma 3.1. The “forgetting the morphism f” F : M i,r(X f−→ Y )+ →
M i,r(X, Y )+ commutes with product • and the pushforward and satisfies the
following simple formulas for the canonical orientation and the element [[E]]
for a vector bundle:

1. F(α • β) = F(α) • F(β).
2. F ◦ f∗ = f∗ ◦ F.
3. For a smooth morphism s : X → Y we have

(a) F(θ(s)) = 1s, i.e., F([X idX−−→ X]) = [X idX←−− X
s−→ Y ], where

θ(s) = [X idX−−→ X] is the canonical orientation (see Definition 2.2
and Theorem 2.1 (2)).

(b) F ◦ s! = s∗ ◦ F, where s! = θ(s)• is the Gysin homomorphism.

4. For a vector bundle E over X, we let [E] := [X idX−−→ X;E]. Then for
the “forgetting" homomorphism F : M i,r(X idX−−→ X)+ → M i,r(X,X)+
we have

F([E]) = [[E]].

Proof. (3) (a) and (4) are obvious. For the sake of convenience, we write down
proofs for (1), (2) and (3)(b).

1. For [V h−→ X;E] ∈ M∗,�(X f−→ Y )+ and [W k−→ Y ;F ] ∈ M∗,�(Y g−→ Z)+,
we have

F([V h−→ X;E]•[W k−→ Y ;F ])
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= F([V ′ h◦k′′
−−−→ X; k′′∗E ⊕ (f ′ ◦ h′)∗F ]

= [X h◦k′′
←−−− V ′ (g◦f)◦(h◦k′′)−−−−−−−−→ Z; k′′∗E ⊕ (f ′ ◦ h′)∗F ]

= [X h◦k′′
←−−− V ′ (g◦k)◦(f ′◦f ′)−−−−−−−−→ Z; k′′∗E ⊕ (f ′ ◦ h′)∗F ].

Here we use the following fiber squares

V ′ h′
−−−−→ X ′ f ′

−−−−→ W

k′′
⏐⏐� k′

⏐⏐� k

⏐⏐�
V −−−−→

h
X −−−−→

f
Y −−−−→

g
Z.

On the other hand, we have

F([V h−→ X;E]) • F([W k−→ Y ;F ])

= [X h←− V
f◦h−−→ Y ;E] • [Y k←− W

g◦k−−→ Z;F ]

= [X h◦k′′
←−−− V ′ (g◦k)◦(f ′◦f ′)−−−−−−−−→ Z; k′′∗E ⊕ (f ′ ◦ h′)∗F ].

Here we use the following diagram (reusing the above diagram):

V ′

k′′ f ′◦h′

V
h f◦h

W
k g◦k

X Y Z.

Therefore we do have

F([V h−→ X;E] • [W k−→ Y ;F ]) = F([V h−→ X;E]) • F([W k−→ Y ;F ]).

2. For [V h−→ X;E] ∈ M∗,�(X g◦f−−→ Z)+, we have

F(f∗[V
h−→ X;E])) = F([V f◦h−−→ Y ;E])

= [Y f◦h←−− V
g◦f◦h−−−→ Z;E]

= f∗[X
h←− V

g◦f◦h−−−→ Z;E]

= f∗(F([V h−→ X;E]))
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3. (b)

F(s!(α)) = F(θ(s) • α)
= F(θ(s)) • F(α) (by (1)
= 1s • F(α) (by (3)(a))
= s∗(F(α)).

Hence we have F ◦ s! = s∗ ◦ F.

Remark 3.6. We emphasize that the “forgetting” homomorphism F is not
compatible with pullback. One simple reason is that “pullback” of the bi-
variant theory M ∗,�(− → −)+ and four kinds of “pullback” of the present
bi-variant theory M ∗,�(−,−)+ are quite different. Thus F(g∗s) cannot be
expressed as g∗F(s). This is a crucial problem and how to circumvent this
problem is an issue later.

Remark 3.7. Lemma 3.1 (3) and (4) are obvious, but will play roles as a
trick later.

3.2. C–S-correspondences

The cobordism bicycle of the zero bundle [X p←− V
s−→ Y ;0] is the same as

the isomorphism class [X p←− V
s−→ Y ] of a correspondence with a proper

morphism p : V → X and a smooth morphism s : V → Y . So this shall be
called a proper-smooth correspondence. Then the above Grothendieck group
M ∗(X, Y )+ = M ∗,0(X, Y )+ with the second degree r = 0 is nothing but the
Grothendieck group of proper-smooth correspondences.

In general, for the class C of confined morphisms and the class S of spe-
cialized morphisms, the isomorphism class [X p←− V

s−→ Y ] of a correspondence
with p ∈ C and s ∈ S shall be called a C–S-correspondence. Then the free
abelian group generated by C–S-correspondences is denoted by MC

S(X, Y ).
If we assume the conditions as in Remark 2.3, then the Grothendieck group
generated by C–S-correspondences is denoted by MC

S(X, Y )+. Then for both
MC

S(X, Y ) and MC
S(X, Y )+ Definitions 3.3 and 3.5 with the data of vector

bundles deleted are also well-defined and Propositions 3.1 and 3.2 with the
data of vector bundles deleted hold as well.

Remark 3.8. As we know, correspondences make a category, usually called
“a category of correspondences”, i.e., a morphism from X to Y is a correspon-
dence X

f←− V
g−→ Y and the composition of two morphisms X f←− V

g−→ Y and
Y

h←− W
k−→ Z is nothing but the composition of these correspondences. In
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[24] MC
S(X, Y ) and MC

S(X, Y )+ are both called an enriched category of corre-
spondences, because MC

S(X, Y ) and MC
S(X, Y )+ are abelian groups, whereas

in the usual category of correspondences hom(X, Y ) is a set. MC
S(X, Y ) and

MC
S(X, Y )+ can be generalized as follows: Let B(X, Y ) be abelian groups for

pairs (X, Y ) which satisfy the following:

1. they are equipped with a product •′ : B(X, Y ) ⊗B(Y, Z) → B(X,Z)
which is associative with the unit 1 = 1X ∈ B(X,X),

2. For confined maps f : Y → X there exists distinguished elements f1 ∈
B(X, Y ) such that for two confined maps f : Y → X and g : Y → Z
we have f1 •′ p1 = f◦p1.

3. For specialized maps s : X → Y there exist distinguished elements
1s ∈ B(X, Y ) such that for two specialized maps s : X → Y and
g : Y → Z we have 1s •′ 1g = 1g◦s.

4. idX1 = 1 = 1idX is the unit for the identity map idX : X → X,
5. 1s •′ g1 = g̃1 •′ 1s̃ for the fiber square

X̃
g̃

s̃

X ′′

s

X ′
g X

with s (hence s̃ as well) being specialized and g (hence g̃ as well) being
confined.

Then as in Remark 3.3, we can define the following two pushforwards and
two pullbacks:

g∗(−) := g1 •′ (−), ∗g(−) := (−) •′ g1 for confined maps g,
s∗(−) := 1s •′ (−), ∗s(−) := (−) •′ 1s for specialized maps s.

Then we can see that B(X, Y ) gives rise to a theory satisfying those properties
in the above Proposition 3.1. Furthermore, we suppose that

1. there is a well-defined element [[E]]′ for each vector bundle over a space
and

2. an abelian group B(X, Y ) is generated by elements of the forms p1 •′
[[E]]′ •′ 1s for confined maps g and specialized maps s and

3. they satisfy the following properties

1f •′ [[E]]′ = [[f∗E]] •′ 1f .(3.13)
[[E]]′ •′ g1 = g1 •′ [[g∗E]]′.(3.14)
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Then p1 •′ 1s and p1 •′ [[E]]′ •′ 1s shall be respectively called an “abstract”
correspondence and an “abstract” cobordism bicycle of vector bundle. Then
B(X, Y ) is respectively a more enriched category of abstract correspondences
and a more enriched category of abstract cobordism bicycles of vector bundles,
compared with the geometric cobordism bicycle of vector bundle [X p←− V

s−→
Y ;E] = p1• [[E]]•1s. For such a theory we do have a canonical Grothendieck
transformation, e.g.,

γ : MC
S(X, Y ) → B(X, Y )

defined by
γ(p1 • [[E]] • 1s) := p1 •′ [[E]]′ •′ 1s.

Which, in particular, implies that γ(p1) = p1 by considering the special case
when [[E]] = [[0]] = 1V and 1s = 1V for the identity map s = idV , similarly
γ([[E]]) = [[E]]′ and γ(1s) = 1s by considering the corresponding special
cases. Here we emphasize that a theory satisfying those properties in the
above Proposition 3.1 does not necessarily come from a certain more enriched
category B(X, Y ) of abstract correspondences or abstract cobordism bicycles
of vector bundles.

We also have the following “forgetting the morphism f” defined by F([V p−→
X]) := [X p←− V

f◦p−−→ Y ]:

F : MC
S(X f−→ Y ) → MC

S(X, Y ),

F : MC
S(X f−→ Y )+ → MC

S(X, Y )+,

which are both embeddings or monomorphisms.

4. A bi-variant algebraic cobordism with bundles Ω∗.�(X,Y )

In this section we consider the “correspondence” version of Annala’s bivariant
derived algebraic cobordism Ω∗(X → Y ) [2] and furthermore that of Annala–
Yokura’s bivariant algebraic cobordism with vector bundles Ω∗,�(X → Y ) [6]
(also see [3, 5]).

From now on, as in [2] and [6], we work in derived algebraic geometry, thus
we work in the context of quasi-projective derived schemes over a base field
of characteristic zero. These are not categories in the classical sense, but ∞-
categories, so that one needs some small modifications. One can work either
directly with an ∞-category with homotopy fiber squares (instead of fiber
squares), and equivalence classes of arrows (instead of isomorphism classes)
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and a final object unique up to equivalence, e.g., as in Annala’s thesis [4]. Or
one works in the underlying homotopy category, which is a usual category so
that equivalence classes map to isomorphism classes and final objects map to
a usual final object unique up to isomorphism. And instead of fiber products
one works with the commutative diagrams induced from the homotopy fiber
squares, e.g., as in [2]. So one has to be aware that these are usually not fiber
squares in the underlying homotopy category as used before. For simplicity we
work in the underlying homotopy category. Then the notion of a “homotopy
(or derived) fiber square” in the homotopy category is preserved by isomor-
phisms of commutative squares, so that all the constructions for universal
bivariant theories, or those defined via correspondences, work as before, e.g.,
any two arrows

Y

X Z

can be completed to a “homotopy (or derived) fiber square” unique up to
isomorphism. Also in this context one can speak of vector bundles E (of con-
stant rank), proper as the confined morphisms and quasi-smooth (of constant
(virtual) fiber dimension) as the specialized morphisms (as discussed in more
detail in [6]).

4.1. A slight modification of M ∗,�(X,Y )+

In order to construct our bi-variant algebraic cobordism Ω∗,�(X, Y ), we modify
our previous abelian groups M ∗,�(X, Y )+ as follows.

Definition 4.1. Let X p←− V
s−→ Y be a correspondence such that p : V → X

is proper and s : V → Y is quasi-smooth, and let E be a complex vector
bundle over V . Then (X p←− V

s−→ Y ;E) is still called a cobordism bicycle of a
vector bundle.

Then we define M i,r(X, Y )+ (using the same symbol as before) to be an
abelian group generated by the isomorphism classes of cobordism bicycles of
the form [X p←− V

s−→ Y ;E] such that s : V → Y is a quasi-smooth morphism
of virtual relative dimension −i and r = rank(E).

Here we note that in the case of the bivariant algebraic cobordism with
vector bundles Ω∗,�(X → Y ) we consider

Mi,r(X → Y )+ := L⊗ M i,r(X → Y )+
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where M i,r(X f−→ Y )+ is generated by the isomorphism classes of cobordism
cycles of the form

[V p−→ X;E]

such that p : V → X is proper and the composite f ◦ p : V → Y is quasi-
smooth of virtual relative dimension −i and r = rank(E).

Remark 4.1. If we consider the case when E is the zero bundle 0, i.e.,
[V p−→ X;0], or equivalently we consider [V p−→ X], then we have M i,0(X f−→
Y )+, which is nothing but M i(X f−→ Y )+ used in [2]. If we use the notation in
Remark 2.3, M i(X f−→ Y )+ is denoted by (Mprop

qusm)i(X f−→ Y )+ where prop = C
is the class of proper morphisms and qusm = S is the class of quasi-smooth
morphisms.

Therefore we have the canonical homomorphism, “forgetting the mor-
phism f”:

F : M i,r(X f−→ Y )+ → M i,r(X, Y )+

defined by

F([V p−→ X;E]) := [X p←− V
f◦p−−→ Y ;E].

Then we get the same results for M i,r(−,−)+ as Proposition 3.1 and
Proposition 3.2 as in §3, so omitted for the sake of simplicity.

We recall the following definition of the top Chern class of a vector bundle
[6, Definition 5.5]:

Definition 4.2 ([6, Definition 5.5]). Given a vector bundle E of rank n on
X, we define its top Chern class as

cn(E) = s∗s!(1X) ∈ M n,0(X idX−−→ X)+

where s : X → E is the zero section.

We note (see [6, Remark 5.6]) that the above cn(E) can be expressed
explicitly as follows:

(4.1) cn(E) = [V (s)
iV (s)−−−→ X;0]

where V (s) is the derived vanishing locus of the zero section and iV (s) is the
inclusion. Hence, it is quite natural to define the “correspondence” version of
the Chern class, still called the top Chern class of the vector bundle E and
denoted by cn(E) ∈ M n,0(X,X)+, as follows:
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Definition 4.3.

cn(E) := [X
iV (s)←−−− V (s)

iV (s)−−−→ X;0] ∈ CalMn,0(X,X)+.

Lemma 4.1. Let E be a vector bundle of rank n over X.

1. For a proper morphism f : X ′ → X, f∗cn(f∗E) = cn(E)∗f , i.e., f1 •
cn(f∗E) = cn(E) • f1.

2. For a quasi-smooth morphism f : X ′ → X, cn(f∗E)∗f = f∗cn(E), i.e.,
cn(f∗E) • f1 = f1 • cn(E).

Proof. We prove only the first one, since that of the second one is similar.
By definition we have cn(E) = [X

iV (s)←−−− V (s)
iV (s)−−−→ X], where we drop the

zero bundle 0 for the sake of simplicity. Hence, using the following diagram
in which the right diamond is a fiber square:

V (s)
iV (s)

iV (s)

V̂ (s)f̂

îV (s)

X X X ′
f

we have

cn(E)∗f = [X
iV (s)◦f̂←−−−− V̂ (s)

îV (s)−−−→ X ′]

= [X
f◦îV (s)←−−−− V̂ (s)

îV (s)−−−→ X ′]

= f∗[X ′ îV (s)←−−− V̂ (s)
îV (s)−−−→ X ′]

Since V̂ (s) is the pullback of the vanishing locus V (s) of the zero section
s by the morphism f : X → X ′, V̂ (s) is equal to the vanishing locus of
the pullbacked zero section f∗s of the pullbacked vector bundle f∗E, i.e., we

have cn(f∗E) = [X ′ îV (s)←−−− V̂ (s)
îV (s)−−−→ X ′]. Hence we have f∗cn(f∗E) =

cn(E)∗f .

For a vector bundle L of rank � over X or a vector bundle M of rank m
over Y , the homomorphisms

c�(L)• : M i,r(X, Y )+ → M i+�,r(X, Y )+,
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cm(M) : M i,r(X, Y )+ → M i+m,r(X, Y )+

defined respectively by c�(L) • α and β • cm(M), are called the “Chern class
operators”.

Proposition 4.1. The Chern class operators of line bundles satisfy the fol-
lowing properties.

1. (identity): If L and L′ are line bundles over X and isomorphic and if
M and M ′ are line bundles over Y and isomorphic, then

c1(L)• = c1(L′)• : M i,r(X, Y )+ → M i+1,r(X, Y )+,
• c1(M) = • c1(M ′) : M i,r(X, Y )+ → M i+1,r(X, Y )+.

2. (commutativity): If L and L′ are line bundles over X and if M and M ′

are line bundles over Y , then

c1(L) • c1(L′)• = c1(L′) • c1(L)• : M i,r(X, Y )+ → M i+2,r(X, Y )+,
•c1(M) • c1(M ′) = •c1(M ′) • c1(M) : M i,r(X, Y )+ → M i+2,r(X, Y )+.

3. (compatibility with product) Let L be a line bundle over X and N be a
line bundle over Z. For α ∈ M i,r(X, Y )+ and β ∈ M j,k(Y, Z)+, then

c1(L) • (α • β) =
(
c1(L) • α

)
• β, (α • β) • c1(N) = α •

(
β • c1(N)

)
.

4. (compatibility with pushforward = “projection formula”) For a proper
morphism f : X → X ′ and a line bundle L over X ′ and for a quasi-
smooth morphism g : Y → Y ′ and a line bundle M over Y ′ we have
that for α ∈ M i,r(X, Y )+

f∗
(
c1(f∗L) • α

)
= c1(L) • f∗α,

(
α • c1(g∗M)

)
∗g = α ∗g • c1(M).

5. (compatibility with pullback =“pullback formula”) For a quasi-smooth
morphism f : X ′ → X and a line bundle L over X and for a proper
morphism g : Y ′ → Y and a line bundle M over Y we have that for
α ∈ M i,r(X, Y )+

f∗(c1(L) • α
)

= c1(f∗L) • f∗α,
(
α • c1(M)

) ∗g = α ∗g • c1(g∗M).

6. (Pullback Property for Unit (abbr. PPU)) For a quasi-smooth mor-
phism f : X ′ → X and a line bundle L over X and for a proper
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morphism g : Y ′ → Y and a line bundle M over Y we have that for
1X ∈ M 0,0(X,X)+ and 1Y ∈ M 0,0(Y, Y )+

c1(f∗L) • f∗1X = f∗1X • c1(L) ∈ M dim f+1,0(X ′, X)+,
1Y

∗g • c1(g∗M) = c1(M) • 1Y
∗g ∈ M 1,0(Y, Y ′)+.

In particular
7. (Commutativity of the unit and Chern class) Let L be a line bundle over

X. Then we have
c1(L) • 1X = 1X • c1(L).

Proof. It suffices to show (2), since (1), (3) and (7) are clear and (4), (5) and
(6) follow from the above Lemma 4.1 and the associativity of product •.

We just show the first one. Let s : X → L and s′ : X → L′ be the
zero sections. It follows from the fact that the derived fiber product V (s)×X

V (s′) = V ((s, s′)) where (s, s′) : X → L ⊕ L′ is the zero section. Hence by
the definition of the product • we have

c1(L) • c1(L′) = [X
iV (s)←−−− V (s)

iV (s)−−−→ X;0] • [X
iV (s′)←−−− V (s′)

iV (s′)−−−→ X;0]

= [X
iV ((s,s′))←−−−−− V ((s, s′))

iV ((s,s′))−−−−−→ X;0]
= c2(L⊕ L′) = c2(L′ ⊕ L) = c1(L′) • c1(L).

Here we recall the definition of a bi-variant theory [23], which is defined as
one similar to the definition of Fulton–MacPherson’s bivariant theory. In this
sense, it could be called “a bi-variant theory of Fulton–MacPherson-type”.

Definition 4.4 (Bi-variant theory). An association B assigning to a pair
(X, Y ) a graded abelian group B∗(X, Y ) is called a bi-variant theory provided
that

(1) it is equipped with the following three operations

1. (Product) • : Bi(X, Y ) × Bj(Y, Z) → Bi+j(X,Z)
2. (Pushforward)

(a) For a proper morphism f : X → X ′, f∗ : Bi(X, Y ) → Bi(X ′, Y ).
(b) For a smooth morphism g : Y → Y ′,

∗g : Bi(X, Y ) → Bi−dim g(X, Y ′).

3. (Pullback)
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(a) For a smooth morphism f : X ′ → X,

f∗ : Bi(X, Y ) → Bi−dim f (X ′, Y ).

(b) For a proper morphism g : Y ′ → Y , ∗g : Bi(X, Y ) → Bi(X, Y ′).

(2) the three operations satisfy the following nine properties as in Proposi-
tion 3.1:

(A1) Product is associative.
(A2) Pushforward is functorial. ((a), (b))
(A2)’ Proper pushforward and smooth pushforward commute.
(A3) Pullback is functorial. ((a), (b))
(A3)’ Proper pullback and smooth pullback commute.
(A12) Product and pushforward commute. ((a), (b))
(A13) Product and pullback commute. ((a), (b))
(A23) Pushforward and pullback commute. ((a), (b), (c), (d))

(A123) Projection formula. ((a), (b))

(3) B has units, i.e., there is an element 1X ∈ B0(X,X) such that 1X •α = α

for any element α ∈ B(X, Y ) and β • 1X = β for any element β ∈ B(Y,X).

(4) B satisfies PPPU (as in Proposition 3.2).

(5) B is equipped with the Chern class operators satisfying the properties in
Proposition 4.1.

Corollary 4.1. M ∗,�(X, Y )+ is a bi-variant theory (with respect the grad-
ing ∗, or ignoring the grading �.).

4.2. Grothendieck transformation and a bi-variant ideal

Definition 4.5. Let B,B′ be two bi-variant theories on a category V . A
Grothendieck transformation from B to B′, γ : B → B′ is a collection of
homomorphisms B(X, Y ) → B′(X, Y ) for a pair (X, Y ) in the category V ,
which preserves the above three basic operations and the Chern class operator:

1. γ(α •B β) = γ(α) •B′ γ(β),
2. γ(f∗α) = f∗γ(α) and γ(α ∗g) = γ(α) ∗g,
3. γ(g∗α) = g∗γ(α) and γ(α ∗f) = γ(α) ∗f ,
4. γ(c1(L) • α) = c1(L) •B γ(α) and γ(α • c1(M)) = γ(α) •B c1(M).
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Motivated by the definition of the bivariant ideal considered in [2] and
[6], in an analogous manner we can define a “bi-variant” ideal as follows: Let
B be a bi-variant theory. A bi-variant ideal I ⊂ B is defined to consist of
(graded) subgroups I (X, Y ) ⊂ B(X, Y ) for each pair (X, Y ) such that the
following hold: Let α ∈ I (X, Y ).

1. (pushforward)

(a) f∗α ∈ I (X ′, Y ) for a proper morphism f : X → X ′, i.e.,
f∗ : I (X, Y ) → I (X ′, Y ),

(b) α∗g ∈ I (X, Y ′) for a quasi-smooth morphism g : Y → Y ′, i.e.,
∗g : I (X, Y ) → I (X, Y ′),

2. (pullback)

(a) f∗α ∈ I (X ′, Y ) for a quasi-smooth morphism f : X ′ → X, i.e.,
f∗ : I (X, Y ) → I (X ′, Y ),

(b) α∗g ∈ I (X, Y ′) for a proper morphism g : Y → Y ′, i.e.,
∗g : I (X, Y ) → I (X, Y ′),

3. (product)

(a) β • α ∈ I (X ′, Y ) for any β ∈ B(X ′, X), i.e.,
• : B(X ′, X) ⊗ I (X, Y ) → I (X ′, Y ),

(b) α • δ ∈ I (X, Y ′) for any δ ∈ B(Y, Y ′), i.e.,
• : I (X, Y ) ⊗ B(Y, Y ′) → I (X, Y ′),

4. (Chern class operator)

(a) c1(L) • α ∈ I (X, Y ) for any line bundle L over X, i.e.,
c1(L) • : I (X, Y ) → I (X, Y ),

(b) α • c1(M) ∈ I (X, Y ) for any line bundle M over Y , i.e.,
• c1(M) : I (X, Y ) → I (X, Y ).

Remark 4.2. We note that in the case of “bi-variant” ideal of M ∗,�(X, Y )+,
thanks to the formulas listed in Remark 3.3, the above (1) (pushforward) and
(2) (pullback) are special cases of (3) product, and it is also the case for (4)
(Chern class operator). Therefore, any “bi-variant ideal” of M ∗,�(X, Y )+ is
simply defined just as (3) (product). This simplicity will be used later.

It is easy to see the following:

Proposition 4.2.
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1. The (object-wise) kernel of a Grothendieck transformation γ : B → B′

is a bi-variant ideal, i.e., the kernel γ−1(X, Y ) of the homomorphism
γ : B(X, Y ) → B′(X, Y ) gives rise to a bi-variant ideal, denoted by
γ−1, of the bi-variant theory B.

2. Given a bi-variant ideal I ⊂ B, the following quotient B/I becomes
a bi-variant theory by setting

(B/I )(X, Y ) := B(X, Y )/I (X, Y )

and by taking the bi-variant operations to be the ones induced by B.
Namely, they are defined as follows:
(a) (product): the product operation

• : (B/I )∗(X, Y ) ⊗ (B/I )∗(Y, Z) → (B/I )∗(X,Z)

is defined by [α] • [β] := [α • β].
(b) (pushforward):

i. for a proper morphism f : X → X ′, the pushforward

f∗ : (B/I )(X, Y ) → (B/I )(X ′, Y )

is defined by f∗[α] := [f∗α].
ii. for a quasi-smooth morphism g : Y → Y ′, the pushforward

∗g : (B/I )(X, Y ) → (B/I )(X, Y ′)

is defined by [α]∗g := [α∗g].
(c) (pullback)

i. for a quasi-smooth morphism f : X ′ → X, the pullback

f∗ : (B/I )(X, Y ) → (B/I )(X ′, Y )

is defined by f∗[α] := [f∗α].
ii. for a proper morphism g : Y → Y ′, the pull

∗g : (B/I )(X, Y ) → (B/I )(X, Y ′)

is defined by [α]∗g := [α∗g].
(d) (Chern class operator)
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i. for any line bundle L over X the Chern class operator

c1(L)• : (B/I )(X, Y ) → (B/I )(X, Y )

is defined by c1(L) • [α] := [c1(L) • α].
(To be more precise, c1(L)• should be written as [c1(L)]•.)

ii. for any line bundle M over Y the Chern class operator

• c1(M) : (B/I )(X, Y ) → (B/I )(X, Y )

is defined by [α] • c1(M) := [α • c1(M)].
(As above, •c1(M) should be written as •[c1(M)].)

Remark 4.3. Proposition 4.2 (2) means, in other words, that the quotient
morphism

Θ : B → B/I

is a Grothendieck transformation of bi-variant theories.

4.3. A bi-variant algebraic cobordism with bundles Ω∗,�(X,Y )

First we recall the definition of the bivariant algebraic cobordism with vector
bundles Ω∗,�(X f−→ Y ) [6, Definition 5.7]. First we set

Mi,r(X, Y )+ := L⊗ M i,r(X, Y )+

where L is the Lazard ring.

Definition 4.6 (The bivariant algebraic cobordism with vector bundles).

Ω∗,�(X f−→ Y ) := M∗,�(X f−→ Y )+

〈RLS〉(X f−→ Y )

where 〈RLS〉(X f−→ Y ) is the bivariant ideal generated by the bivariant subset
RLS(X f−→ Y ), which is defined as follows:

RLS(X f−→ Y ) :=
{
RLS(X → pt), Y = pt,

∅, Y �= pt.

Here RLS(X → pt) is defined to be the kernel of the (surjective) morphism

M−∗,0(X → pt)+ = L⊗ M−∗,0(X → pt)+ → dΩ∗(X) = Ω∗(X → pt).
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which is the L-linear map, induced from a group homomorphism M−∗,0(X →
pt)+ → dΩ∗(X) together with the ring homomorphism L → dΩ∗(pt) classi-
fying the formal group law for the first Chern class of the tensor product of
line bundles.

Here is an explicit description of the bivariant ideal 〈RLS〉(X f−→ Y ) [6,
Proposition 5.12], which is a “vector bundle” version of [2, Lemma 3.8]:

Proposition 4.3. The bivariant ideal 〈RLS〉 satisfies that 〈RLS〉(X f−→ Y )
consists of linear combinations of elements of the form

(4.2) h∗
(
[E] • α0 • g∗s • β0

)
where h : A′′ → X, g : B′ → pt, α0 ∈ M∗,0(A′′ → A′)+, β0 ∈ M∗,0(B′ → Y )+
and s ∈ RLS(A → pt) are as in the following diagram

X f

A′′ α0©
h

A′ g∗s©
B′

g

β0©
Y

A
s©

pt

E a vector bundle on A′′ and h : A′′ → X is a proper morphism. Here note
that [E] := [A′′ idA′′−−−→ A′′;E] ∈ M∗,∗(A′′ idA′′−−−→ A′′)+.

Remark 4.4. Here we emphasize that if we let E be the 0 bundle in (4.2)
or equivalently if we delete [E]• from (4.2), the above proposition is nothing
but [2, Lemma 3.8].

The linear extension of the “forgetting” homomorphism F : M i,r(X f−→
Y )+ → M i,r(X, Y )+ by the Lazard ring L shall be denoted by the same
symbol F : Mi,r(X f−→ Y )+ → Mi,r(X, Y )+, which is L-linear.

In order to define a “correspondence” version 〈RLS〉(X, Y ) of 〈RLS〉(X f−→
Y ), one might be tempted to simply define it as the image of 〈RLS〉(X f−→ Y )
by F : Mi,r(X f−→ Y )+ → Mi,r(X, Y )+:

F

(
〈RLS〉(X f−→ Y )

)
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which consists of linear combinations of the form F
(
h∗

(
[E] • α0 • g∗s • β0

))
by Proposition 4.3. It follows from Lemma 3.1 that we have

(4.3) F
(
h∗

(
[E] • α0 • g∗s • β0

))
= h∗

(
F([E]) • F(α0) • F(g∗s) • F(β0)

)
.

Now we state our theorem:

Theorem 4.1. There exists a bi-variant ideal 〈RLS〉(−,−) ⊂ M∗,�(−,−)+
which is invariant under the L-module structure such that the following hold:

1. F(〈RLS〉(X f−→ Y )) ⊂ 〈RLS〉(X, Y ).
2. We set

Ω∗,�(X, Y ) := M∗,�(X, Y )+

〈RLS〉(X, Y ) .

Then the “forgetting” homomorphism F : M∗,�(X f−→ Y )+→M∗,�(X, Y )+
descends to

F̃ : Ω∗,�(X f−→ Y ) → Ω∗,�(X, Y )

defined by F̃([α]) := [F(α)], where on the left-hand side
[α] := α + 〈RLS〉(X f−→ Y ) and on the right-hand side [−] is
[β] := β + 〈RLS〉(X, Y ), i.e., we have the following commutative dia-
gram:

(4.4)

M∗,�(X f−→ Y )+ F−−−−→ M∗,�(X, Y )+

π

⏐⏐� ⏐⏐�π

Ω∗,�(X f−→ Y ) −−−−→
F̃

Ω∗,�(X, Y )

where both π’s are the quotient maps.
3. When Y = pt is a point, we have the isomorphism:

F̃ : Ω∗,�(X → pt)
∼=−→ Ω∗,�(X, pt),

thus we have Ω∗,�(X, pt) ∼= Ω∗,�(X → pt) = Ω−∗,�(X) ∼= ω−∗,�(X).

Proof. In order to see how to define a reasonable “correspondence” version
〈RLS〉(X, Y ), we express the right hand side of (4.3) simply as follows:

h∗
(
F([E]) • F(α0) • F(g∗s) • F(β0)

)
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= h∗F([E]) • F(α0) • F(g∗s) • F(β0) (by A12)

=
(
h∗F([E]) • F(α0)

)
• F(g∗s) • F(β0).

Here clearly we have

h∗F([E]) • F(α0) ∈ M∗,�(X,A′)+, F(g∗s) ∈ M∗,�(A′, B)+,
F(β0) ∈ M∗,�(B, Y )+.

Instead of giving an explicit form for an “correspondence” version 〈RLS〉(X, Y )
just like (4.3), we define the following less explicit one: 〈RLS〉(X, Y ) is defined
to be generated (as an abelian group) by elements of the form

(4.5) α′
0 • F(g∗s) • β′

0,

where α′
0 ∈ M∗,�(X,A′)+, β′

0 ∈ M∗,�(B, Y )+, and g and s are as in (4.3).
Then clearly it follows from (4.3) that we do have

F

(
〈RLS〉(X f−→ Y )

)
⊂ 〈RLS〉(X, Y ).

Furthermore it follows from (4.5) that the following product property holds:
for α ∈ 〈RLS〉(X, Y )

1. β • α ∈ 〈RLS〉(X ′, Y ) for any β ∈ M∗,�(X ′, X)+,
2. α • δ ∈ 〈RLS〉(X, Y ′) for any δ ∈ M∗,�(Y, Y ′)+.

Therefore 〈RLS〉(−,−) is a bi-variant ideal in M∗,�(−,−)+. Moreover
〈RLS〉(X, Y ) is automatically invariant under the L-module structure,

i.e., stable under the L-action coming from the ring homomorphism L →
M∗,�(Z,Z)+ : � → � ⊗ 1Z for Z = X, Y . Clearly we obtain the above com-
mutative diagram (4.4).

Next we observe that the “forgetting” homomorphism

F : M∗,�(X → pt)+ → M∗,�(X, pt)+

is an isomorphism because F([V h−→ X;E]) = [X h←− V −→ pt;E] and the
inverse of F

F−1 : M∗,�(X, pt)+ → M∗,�(X → pt)+

defined by F−1([X h←− V −→ pt;E]) := [V h−→ X;E] is well-defined. As observed
above, we have

F(〈RLS〉(X → pt)) ⊂ 〈RLS〉(X, pt).
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Now we want to show the following reverse inclusion in the case of X → pt:

(4.6) F(〈RLS〉(X → pt)) ⊃ 〈RLS〉(X, pt).

First, we note that, as defined above, 〈RLS〉(X, pt) is an abelian group gen-
erated by elements of the form

α′
0 • F(g∗s) • β′

0

where α′
0 ∈ M∗,�(X,A′)+, β′

0 ∈ M∗,�(B, pt)+, and g and s are the same as
above. Then clearly we do have that β′

0 = F(β0) for some β0 ∈ M∗,�(B →
pt)+, which is the tautological inverse of β0, as observed above. Since F is
L-linear, it is enough to assume that α′

0 = [X p←− A′′ s′−→ A′;E] (where p is
proper, s′ is quasi-smooth and E is a vector bundle over A′′), which can be
expressed as

α′
0 = [X p←− A′′ s′−→ A′;E]

= p1 • [[E]] • 1s′

= p1 • F([E]) • F(θ(s′))
(by Lemma 3.1, where “smooth” is replaced by “quasi-smooth”)

= p∗(F([E])) • F(θ(s′))
= F(h∗[E]) • F(θ(s′)) (by Lemma 3.1 (2))
= F(h∗[E] • θ(s′)) (by Lemma 3.1 (1))

Therefore we have

α′
0 • F(g∗s) • β′

0 = F(h∗[E] • θ(s′)) • F(g∗s) • F(β0)

= F
(
h∗[E] • θ(s′) • g∗s • β0

)
= F

(
h∗([E] • θ(s′) • g∗s • β0)

)
∈ F(〈RLS〉(X → pt)),

which implies the above inclusion (4.6). Hence we have F(〈RLS〉(X → pt)) =
〈RLS〉(X, pt). Therefore we see that the above isomorphism F : M∗,�(X →
pt)+ → M∗,�(X, pt)+ implies the isomorphism

Ω∗,�(X → pt) ∼= Ω∗,�(X, pt).
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Problem 4.1. Would it be possible to give some conditions on f : X → Y ,
X and Y so that we have an isomorphism Ω∗,�(X f−→ Y ) ∼= Ω∗,�(X, Y )?

Remark 4.5. The “forgetting” homomorphism F̃ : Ω∗,�(X f−→ Y ) → Ω∗,�(X, Y )
satisfies the following:

1. F̃ is commutative with the product •.
2. F̃ is commutative with the pushforward, i.e., F̃ ◦ f∗ = f∗ ◦ F̃.
3. F̃ is commutative the Chern class operators, which are special cases

of (1).
4. As to the pullback, we cannot expect that the following diagram is

commutative:

(4.7) Ω∗,�(X f−→ Y ) g∗

F

Ω∗,�(X ′ f ′
−→ Y ′)

F

Ω∗,�(X, Y )
(g′)∗◦( ∗g)

Ω∗,�(X ′, Y ′)

since the definitions of pullback are different. For the sake of simplicity,
we show it. Here we consider the following fiber square

V ′ g′′−−−−→ V

h′
⏐⏐� ⏐⏐�h

X ′ g′−−−−→ X

f ′
⏐⏐� ⏐⏐�f

Y ′ −−−−→
g

Y

for the pullback g∗ : Ω∗,�(X f−→ Y ) → Ω∗,�(X ′ f ′
−→ Y ′).

(F ◦ g∗)([V h−→ X;E]) = F([V ′ h−→
′
X ′; (g′′)∗E])

= [X ′ h←−
′
V ′ f ′◦h′

−−−→ Y ′; (g′′)∗E]).

((
(g′)∗ ◦ ( ∗g)

)
◦ F

)
([V h−→ X;E])

=
(
(g′)∗ ◦ ( ∗g)

)
([X h←− V

f◦h−−→ Y ;E])
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= (g′)∗([X h←− V
f◦h−−→ Y ;E]) ∗g

= [X ′ h′◦g̃′′←−−− V ′ ×V V ′ f ′◦h′◦g̃′′−−−−−→ Y ′; (g̃′′)∗(g′′)∗E]).

Here we consider the following fiber square:

V ′ ×V V ′ g̃′′−−−−→ V ′

g̃′′

⏐⏐� ⏐⏐�g′′

V ′ −−−−→
g′′

V.

Thus in general we have that F ◦ g∗ �=
(
(g′)∗ ◦ ( ∗g)

)
◦ F in the above

diagram (4.7).

5. Generalizations

In this section we discuss briefly some possible generalized versions of Annala’s
bivariant derived algebraic cobordism and our bi-variant algebraic cobordism
treated in the previous section.

5.1. A “generalized” bivariant derived algebraic cobordism
Ω∗

S
(X → Y ) associated to a system S of subgroups s(A) of

M∗(A)

For Annala’s bivariant derived algebraic cobordism

Ω∗(X → Y ) := M∗(X → Y )
〈RLS〉(X → Y ) ,

the bivariant ideal 〈RLS〉(X → Y ) of M∗(X → Y ) is constructed by using the
kernels Ker ηA of the morphisms ηA : M∗(A → pt) = M∗(A) → dΩ(A). The
kernel Ker ηA is a very special subgroup of M∗(A → pt). So, instead of taking
this very special subgroup, we can consider an arbitrary subgroup, putting
aside the issue of what its geometric or algebraic or topological meaning is.
Namely, if we let S be a family or system of subgroups s(A) ⊂ M∗(A → pt)
where A ∈ Obj(C ). Then the bivariant ideal 〈RS〉(X → Y ) associated to
the system S is defined to consist of linear combinations of elements of the
following form, as in [2, Lemma 3.8] (also see Proposition 4.3 and Remark 4.4),

(5.1) h∗
(
α0 • g∗s • β0

)
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where h : A′′ → X, g : B′ → pt, α0 ∈ M∗(A′′ → A′)+, β0 ∈ M∗(B′ → Y )+
and s ∈ s(A) ⊂ M∗(A → pt) are as in the following diagram

X f

A′′ α0©
h

A′ g∗s©
B′

g

β0©
Y

A
s©

pt

h : A′′ → X is a proper morphism. Then a “generalized” bivariant derived
algebraic cobordism Ω∗

S(X → Y ) associated to a system S of subgroups s(A)
of M∗(A) is defined to be the following quotient

(5.2) Ω∗
S(X → Y ) := M∗(X → Y )

〈RS〉(X → Y ) .

If each M∗(A → pt) contains the kernel Ker ηA, then we have the surjection
Ω∗(X → Y ) � Ω∗

S(X → Y ). If each M∗(A → pt) is contained in the kernel
Ker ηA, then we have the other-way surjection Ω∗

S(X → Y ) � Ω∗(X → Y ).

5.2. A naive “algebraic cobordism” Ωprop-sm(X → Y ) using
proper and smooth morphisms

Let us replace the class of quasi-smooth morphisms by the class of smooth
morphisms in Annala’s bivariant theory M∗(X → Y ) and denote the replaced
one by M∗

prop-sm(X → Y ). Of course, if f : X → Y is not surjective, then
M∗

prop-sm(X → Y ) = 0 the trivial group. Note that this kind of thing does
happen in bivariant theory as pointed out in [12, Remarks, p. 62]. Then we
have the following natural inclusion, since a smooth morphism is a quasi-
smooth morphism:

ι : M∗
prop-sm(X → Y ) ↪→ M∗(X → Y )

Then the kernel of the following composite morphism

M∗
prop-sm(X → pt) ι−→ M∗(X → pt) = M∗(X) → dΩ(X)

is denoted by RLS
prop-sm(X → pt). Then, in the same way as the construction

of Annala’s bivariant derived algebraic cobordism Ω∗(X → Y ), we define
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Ω∗
prop-sm(X → Y ) as follows: The bivariant ideal 〈RLS

prop-sm〉(X
f−→ Y ) is

defined to consist of linear combinations of elements of the above form (5.1)
where s ∈ RLS

prop-sm(X → pt). Then we define

Ω∗
prop-sm(X → Y ) :=

M∗
prop-sm(X → Y )

〈RLS
prop-sm〉(X → Y ) .

Here we emphasize that the category considered in this case is the classical
category, not the category of derived schemes. Hence the explicit description
(4.1) is not well-defined as an element Ω∗

prop-sm(X idX−−→ X) in the classical
category, thus the Chern class operator c1(L)• is not available8 in this case.
Thus Ω∗

prop-sm(X → Y ) is a bivariant theory without the data of the Chern
class operator of line bundles. It is easy to see that there is an embedding

ι̃ : Ω∗
prop-sm(X → Y ) ↪→ Ω∗(X → Y )

since we have ι
(
〈RLS

prop-sm〉(X → Y )
)
⊂ 〈RLS〉(X → Y ).

Here we note that, as in the above section §5.1, we can consider the
following:

(5.3) Ω∗
prop-sm,S(X → Y ) :=

M∗
prop-sm(X → Y )

〈RS
prop-sm〉(X → Y ) .

5.3. In the general case of confined morphisms and specialized
morphisms or vert morphisms and horiz morphisms

Let conf and spe be the classes of confined morphisms and specialized mor-
phisms, respectively and also vert and horiz be the classes of vert morphisms
and horiz morphisms. Then, in the above (5.3) prop-sm can be replaced by
conf -spe and vert-horiz:

(5.4) Ω∗
conf-spe,S(X → Y ), Ω∗

vert-horiz,S(X → Y ).

Note that in a general case when there is no notion of line bundles or vector
bundles available, we cannot consider the Chern class operators c1(L)• of line
bundles. Thus the above are bivariant theories without Chern class operators
c1(L)•. However, here we emphasize that in the category of derived schemes,
if we let confined and specialized morphisms or vert and horiz morphisms

8If we consider the universal oriented bivariant theory OM
prop
sm (X → Y ) [21],

then the Chern class operator c1(L)• is available.
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be proper morphisms and quasi-smooth morphisms, respectively, and let S

be the system consisting of the kernel Ker ηA of the morphism ηA : M∗(A →
pt) → dΩ∗(A) for A ∈ C , then Ω∗

conf-spe,S(X → Y ) = Ω∗
vert-horiz,S(X → Y )

is nothing but Annala’s bivariant derived algebraic cobordism Ω∗(X → Y ),
which is equipped with the Chern class operators c1(L)• of line bundles.
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