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Actions of finite group schemes on curves
Michel Brion

Abstract: Every action of a finite group scheme G on a variety
admits a projective equivariant model, but not necessarily a nor-
mal one. As a remedy, we introduce and explore the notion of G-
normalization. In particular, every curve equipped with a G-action
has a unique projective G-normal model, characterized by the in-
vertibility of ideal sheaves of all orbits. Also, G-normal curves occur
naturally in some questions on surfaces in positive characteristics.

Keywords: Finite group scheme, curve, surface.

1 Introduction 1065

2 Preliminaries 1067

3 Rational actions 1073

4 G-normality 1079

5 Generically free actions on curves 1087

Acknowledgements 1093

References 1093

1. Introduction

Much is known about finite groups of automorphisms of algebraic varieties,
the case of curves being the most classical and well-understood. By contrast,
finite group schemes of automorphisms (in characteristic p > 0) seem to
have attracted little attention until very recent years, where they have been
determined for several natural classes of surfaces; see e.g. [23], [10], [15], [16].
One reason may be that key properties of finite group actions fail for a finite
group scheme G, for example:
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• If G acts faithfully on a variety X, then it may not act freely on a dense
open subset.

• The G-action on X may not lift to an action on the normalization.

When X is a normal projective curve, its group of birational automor-
phisms coincides with the automorphism group, and hence is the group of
rational points of an algebraic group. Moreover, every finite group is the
full automorphism group scheme of some smooth projective curve over an
algebraically closed field (see [14]). These results also do not extend to the
schematic setting, already for infinitesimal group schemes of height at most 1
(which are in bijective correspondence with finite-dimensional p-Lie algebras):

• Every curve admits p-Lie algebras of rational vector fields of any pre-
scribed dimension.

• But there are strong restrictions on the p-Lie algebras which can be real-
ized by rational vector fields on a curve, as follows from [20, Thm. 12.1].

In this paper, we propose remedies to some of these failures. As a substi-
tute for “generic freeness”, we show that every action of a finite group scheme
G on a variety X is “generically transitive” (Corollary 2.5; if G is infinitesimal
of height 1, this is [20, Prop. 5.2]).

As a substitute for the normalization, we introduce and explore the notion
of “G-normalization” in Section 4. In particular, we show that every rational
G-action on X admits a projective G-normal model, which is unique if X is
a curve (Corollary 4.4). We also obtain a version of Serre’s criterion for G-
normality (Theorem 4.12), which takes a more specific form in dimension 1:
a curve is G-normal if and only if the ideal sheaf of every G-orbit is invertible
(Corollary 4.14).

Let us emphasize that G-normal curves are generally singular. On the
positive side, they turn out to be geometrically unibranch (Corollary 4.6) and
local complete intersections (Corollary 4.18). Moreover, the tangent sheaf of
every generically free G-normal curve is invertible (Proposition 5.4).

Finally, G-normal curves are related to regular surfaces via the following
construction: let X be a curve equipped with a G-action, and assume that G is
a subgroup scheme of a smooth connected algebraic group G# of dimension 1.
Consider the diagonal action of G on G#×X; then the quotient S is a surface
equipped with a G#-action. Moreover, X is G-normal if and only if S is regular
(Proposition 4.17). The case where X is projective and G# is an elliptic curve
is of special interest, since S is projective; then the above construction goes
back to [3]. In this case, G-normal curves provide the missing ingredient in
the recent classification of maximal connected algebraic groups of birational
automorphisms of surfaces, see [12] and Proposition 5.6.



Actions of finite group schemes on curves 1067

This paper is organized as follows. Section 2 begins with preliminary
results on finite group scheme actions that we could not find in the literature;
we then show that such actions are generically transitive. In Section 3, we
investigate rational G-actions on a variety X; in particular, such rational
actions correspond bijectively to actions on the generic point. This is then
used to construct faithful rational actions of infinitesimal group schemes of
height 1. Section 4 makes the first steps in the study of G-normal varieties,
with applications to curves. The final Section 5 is devoted to generically free
actions on curves. We obtain in particular a local model for such an action
at a fixed point (Proposition 5.5).

We conclude this introduction with two open questions. For a curve
equipped with a generically free action of an infinitesimal group scheme G,
it is easy to see that the Lie algebra of G has dimension 1 (Lemma 5.3). Of
course, this holds if G is a subgroup scheme of a smooth connected algebraic
group of dimension 1. Are there any further examples? In particular, are these
group schemes commutative?

Also, every curve X as above may be viewed as a ramified G-cover of
the quotient Y = X/G; the latter is normal if X is G-normal. Can we then
determine X in terms of ramification data on Y , in analogy with the known
description of abelian covers (see e.g. [18], [1])?

2. Preliminaries

We fix a ground field k of characteristic p ≥ 0, and choose an algebraic
closure k̄. Given a field extension K/k and a k-scheme X, we denote by XK

the K-scheme X ×Spec(k) Spec(K), with projection π : XK → X.
A variety X is a separated, geometrically integral scheme of finite type

over k. A curve (resp. a surface) is a variety of dimension 1 (resp. 2).
The field of rational functions on a variety X is denoted by k(X). This

is a function field in n variables where n = dim(X), i.e., a separable, finitely
generated field extension K of k, such that k is algebraically closed in K. Con-
versely, every function field K in n variables is the field of rational functions
on some n-dimensional variety X, a model of K.

Throughout this paper, we denote by G a finite group scheme, and by
|G| its order, i.e., the dimension of the k-vector space O(G) = Γ(G,OG). If
p = 0 then G is étale by Cartier’s theorem (see [8, II.6.1.1]). This fails if
p > 0, where basic examples of non-étale finite group schemes are μp (the
multiplicative group scheme of pth roots of unity) and αp (the kernel of the
pth power map in the additive group).



1068 Michel Brion

The connected component of the neutral element e ∈ G(k) is denoted by
G0; this is an infinitesimal group scheme, i.e., a finite group scheme having a
unique point. Also, G0 is a normal subgroup scheme of G, and π0(G) = G/G0

is étale. If k is perfect, then the reduced subscheme Gred is the largest étale
subgroup scheme of G, and G = G0�Gred; in particular, Gred

∼−→ π0(G) (see
[8, II.5.1.1, II.5.2.4]).

Returning to an arbitrary ground field k, we denote by Lie(G) the Lie
algebra of G. Then Lie(G0) = Lie(G); in particular, Lie(G) = 0 if G is
étale (e.g., when p = 0). If p > 0 then Lie(G) has the structure of a finite-
dimensional p-Lie algebra, also called a restricted Lie algebra; see [8, II.7.3.4].

Still assuming p > 0, we denote by

FX : X −→ X(p)

the relative Frobenius morphism of a scheme X, and by

F n
X : X −→ X(pn)

its nth iterate, where n is a positive integer. Given G as above, each F n
G

is a homomorphism of group schemes, with kernel the nth Frobenius kernel
Gn. Moreover, G is infinitesimal if and only if Gn = G for n � 0; then the
smallest such n is the height ht(G). The assignment G �→ Lie(G) yields an
equivalence of categories between finite group schemes of height at most 1
and finite-dimensional p-Lie algebras; moreover, we have Lie(G1) = Lie(G)
(see [8, II.7.3.5, II.7.4.1]).

A G-scheme is a scheme X equipped with a G-action

α : G×X −→ X, (g, x) �−→ g · x.

Note that α is identified with the projection G×X → X via the automorphism
(pr1, α) of G × X. In particular, the morphism α is finite and locally free.
The G-action is said to be faithful if every non-trivial subgroup scheme acts
non-trivially.

A morphism of G-schemes f : X → Y is equivariant if f(g · x) = g · f(x)
identically on G×X.

Given a G-scheme X, the stabilizer StabG is the preimage of the diagonal
under the graph morphism

γ : G×X −→ X ×X, (g, x) �−→ (g · x, x).

Via the second projection, StabG is a closed subgroup scheme of the X-group
scheme G×X; in particular, the projection StabG → X is finite.
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We now consider a G-scheme X of finite type, and a closed subscheme
Y ⊂ X. The action α restricts to a finite morphism αY : G × Y → X, with
schematic image denoted by G · Y . We say that Y is G-stable if G · Y = Y ;
equivalently, αY factors through Y . For an arbitrary closed subscheme Y ,
note that G · Y is the smallest closed G-stable subscheme of X containing Y .

In particular, taking for Y a closed point x ∈ X, we obtain the G-orbit
G ·x. We say that x is G-fixed if it is G-stable and the induced action of G on
Spec(κ(x)) is trivial, where κ(x) denotes the residue field at x. Equivalently,
x lies in the fixed point subscheme XG (the largest G-stable closed subscheme
of X on which G acts trivially).

In the opposite direction, the G-action is said to be free at x ∈ X if the
stabilizer StabG(x) is trivial. We denote by Xfr the set of free points of X;
this is an open G-stable subset of X. For a faithful action of an étale group G,
it is easy to see that Xfr is non-empty. But this does not extend to arbitrary
faithful actions, as shown by the example of αp×αp acting on the affine plane
A2 via (u, v) · (x, y) = (x, y + u + xv).

Lemma 2.1. Let X be a G-scheme of finite type such that every G-orbit is
contained in an open affine subset. Then there is a categorical quotient by G,

q : X −→ Y = X/G,

where Y is a scheme of finite type. Moreover, q is finite and surjective, with
fibers at closed points being the G-orbits (as sets).

If in addition G acts freely on X, then q is faithfully flat and the graph
morphism γ induces an isomorphism G×X

∼−→ X ×Y X.

Equivalently, q is a G-torsor if the action is free.
Lemma 2.1 is obtained in [17, §12, Thm. 1] under the assumption that k

is algebraically closed; the proof extends unchanged to an arbitrary field (see
[8, III.2.6.1] for another proof).

The assumption that every G-orbit is contained in an open affine subset is
satisfied if X is quasi-projective (then every finite set of points is contained in
an open affine subset); in particular, if X is a curve. This assumption is also
satisfied if G is infinitesimal (then the G-orbits are just fat points); in that
case, the quotient morphism is radicial and bijective, see e.g. [4, Lem. 2.5].
But an example of Hironaka (see [13]) yields an action of the constant group
Z/2Z on a smooth proper threefold which admits no categorical quotient.

In the opposite direction, if the categorical quotient q : X → Y exists
and is finite, then X is covered by open affine G-stable subsets. Moreover, for
any open G-stable subset U of X, the image V = q(U) is open in Y and the
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restriction q|U : U → V is the categorical quotient. In particular, we have a
G-torsor Xfr → Xfr/G = Yfr.

Given a closed G-stable subset i : Z ⊂ X, the quotient Z → Z/G also
exists and hence comes with a morphism i/G : Z/G → X/G. If G is linearly
reductive, then i/G is a closed immersion; also, recall that the linearly reduc-
tive groups are exactly the extensions of finite étale groups of order prime to
p by groups of multiplicative type (see [8, IV.3.3.6]). For an arbitrary group
G, the morphism i/G is not necessarily a closed immersion, as shown by the
example of αp acting on A2 via u · (x, y) = (x, y + ux); then the quotient is
the morphism (x, y) �→ (x, yp). The zero subscheme Z of x is a G-fixed affine
line with coordinate y, and hence has quotient the morphism y �→ y.

Next, recall that the formation of the categorical quotient commutes
with flat base change on Y . As an easy consequence, for any normal sub-
group scheme N � G, we obtain an action of G/N on X/N such that the
quotient morphism X → X/N is equivariant, and the induced morphism
(X/N)/(G/N) → X/G is an isomorphism.

Lemma 2.2. Let X be a G-scheme of finite type, and U ⊂ X an open subset.
Then U contains a dense open affine G-stable subset.

Proof. The quotient morphism X → X/G0 exists and is finite, radicial and
G-equivariant, where G acts on X/G0 via its étale quotient G/G0 = π0(G).
Moreover, every open subset of X is G0-stable. Thus, it suffices to prove the
assertion for the π0(G)-scheme X/G0.

So we may assume that G is étale; then Gk′ is constant for some finite
Galois field extension k′/k. We may further assume that U is affine; then
Uk′ contains

⋂
g∈G(k′) g · Uk′ as a dense open affine subset, stable by G(k′)

and hence by Gk′ , and also by the action of the Galois group of k′/k. The
statement follows from this by Galois descent.

Lemma 2.3. Let X be a G-variety with function field K. Choose a dense
open affine G-stable subset U ⊂ X.

(i) The field of invariants L = KG is the fraction field of the ring of in-
variants O(U)G.

(ii) The scheme Spec(K) is the generic fiber of the quotient q : U → U/G.
(iii) There is a unique action of G on Spec(K) such that the morphism

Spec(K) → X is equivariant.
(iv) The extension K/L is finite. Moreover, K/KG0 is purely inseparable,

and KG0
/L is separable.
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Proof. We may replace X with U , and hence assume that X = Spec(R) where
R is a finitely generated algebra equipped with a G-action; moreover, R is a
domain with fraction field K.

(i) Given l ∈ L, the set of those r ∈ R such that rl ∈ R is a non-zero
G-stable ideal I of R. It suffices to show that IG �= 0. For this, we use a norm
argument from [17, §12, p. 112]. Observe that O(G ×X) = O(G) ⊗k R is a
finite free R-module via the co-action α∗. Denote by N : O(G) ⊗k R → R

the corresponding norm map. Then N(α∗(r)) ∈ RG for all r ∈ R, see loc. cit.
If r ∈ I then α∗(r) ∈ O(G) ⊗k I as I is G-stable. Using the covariance of
the norm (see e.g. [11, II.6.5.4]), it follows that N(α∗(r)) ∈ IG. If in addition
r �= 0, then α∗(r) �= 0 and hence N(α∗(r)) �= 0. This completes the proof
of (i).

Next, we prove (ii), (iii) and (iv) simultaneously. Note that R is a G-
module, and hence so is the subalgebra LR ⊂ K generated by L and R. Also,
R is a finite module over RG = O(X)G, and hence LR is a finite-dimensional
vector space over L. Since LR is an integral domain, it follows that it is a field;
thus, LR = K as the latter is the fraction field of R. This yields a G-algebra
structure on K extending that on R. Also, K is the localization of R at L\{0},
and hence the natural map L ⊗RG R → K is an isomorphism; equivalently,
Spec(K) is the generic fiber of q : X → X/G. It is also the generic fiber of
the quotient X → X/G0. Since the latter is radicial, the extension K/KG0

is purely inseparable. Finally, KG0
/KG is separable as X/G0 → X/G is the

quotient by the finite étale group π0(G).

If G is a constant group scheme acting faithfully on X, then G = AutL(K)
is uniquely determined by the invariant subfield L ⊂ K. This does not extend
to actions of (say) infinitesimal group schemes: for example, the pth power
map of A1 is the quotient by the actions of μp via t · x = tx, and of αp via
u · x = x + u.

Proposition 2.4. Let X be a G-variety. Then there exists a dense open affine
G-stable subset U ⊂ X such that the graph morphism

G× U −→ U ×U/G U, (g, x) �−→ (x, g · x)

is faithfully flat.

Proof. This is known in the setting of actions of smooth algebraic groups,
as a modern version of a result of Rosenlicht (see [21]). We will deduce the
desired statement from this version, after some first reductions.
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We may assume that X is affine; then there exists a quotient morphism
q : X → Y . Using generic flatness (see e.g. [11, IV2.6.9.1]), we may further
assume that q is faithfully flat.

Next, we may assume that G is a subgroup scheme of a smooth connected
affine algebraic group G# (for example, G# = GLn in which G is embedded
via the regular representation). Then G# × X is an affine variety equipped
with a free action of G via g · (g#, x) = (g#g−1, g ·x) and the quotient by this
action is an affine variety X# = G# ×GX on which G# acts via its action on
itself by left multiplication. (The formation of X# is functorial in X once an
embedding G → G# is fixed). Note that the open G#-stable subsets of X#

are exactly the subsets U# = G# ×G U , where U ⊂ X is open and G-stable;
moreover, U# is affine if and only if U is affine.

The projection G# × X → G# induces a morphism ψ : X# → G#/G,
which is G#-equivariant and has fiber X at the base point of G#/G. Also,
the projection G# × X → X induces a morphism q# : X# → Y which is
the categorical quotient by G#; we have O(Y ) = O(X)G ∼−→ O(X#)G# and
k(Y ) = k(X)G ∼−→ k(X#)G# . As a consequence, the algebra O(X#)G# is
finitely generated and its fraction field is k(X#)G# (Lemma 2.3). Moreover,
q# is faithfully flat, since so are the quotient morphism G# ×X → X# and
the composite morphism G# ×X

pr−→ X
q−→ Y (use [11, IV2.2.2.11]).

In view of [21, Satz 1.7], it follows that the fiber product X# ×Y X# is a
variety, and the graph morphism

ϕ# : G# ×X# −→ X# ×Y X#, (g, x) �−→ (g · x, x)

is dominant. Also, ϕ# is equivariant for the action of G# ×G# on G# ×X#

defined by (g1, g2) · (g, x) = (g1gg
−1
2 , g2 · x), and its action on X# ×Y X#

via (g1, g2) · (x1, x2) = (g1 · x1, g2 · x2). So the image of ϕ# contains a dense
open subset V of X# ×Y X#, stable by G# × G#. Thus, (ϕ#)−1(V ) is a
dense open subset of G# × X#, stable by G# × G# and hence of the form
G# × U# where U# ⊂ X# is open and G#-stable. Replacing X# with U#,
we may thus assume that ϕ# is surjective. Likewise, using generic flatness
and equivariance, we may further assume that ϕ# is flat.

The G#-equivariant morphism ψ : X# → G#/G yields a G# × G#-
equivariant morphism

ψ# : X# ×Y X# −→ G#/G×G#/G,

which is faithfully flat by equivariance. The composite morphism

ψ# ◦ ϕ# : G# ×X# −→ G#/G×G#/G
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is faithfully flat as well, and its fiber at the base point is G×X. Moreover, the
restriction of the graph morphism ϕ# to this fiber is the analogously defined
morphism ϕ : G×X → X ×Y X. By the fiberwise criterion for flatness (see
[11, IV3.11.3.11]), it follows that ϕ is faithfully flat.

As a direct consequence of the above proposition, the G-action on X is
generically transitive. Indeed, the generic fiber of the structure morphism
U ×U/G U → U/G is

Z = Spec(K ⊗L K) = Spec(K) ×Spec(L) Spec(K)

by Lemma 2.3. This is a K-scheme via the first projection, and has a canonical
K-point z (the diagonal) corresponding to the multiplication K ⊗L K → K.
Moreover, the G-action on Spec(K) yields a GK-action on Z, and Proposi-
tion 2.4 implies that the orbit map GK → Z, g �→ g · z is faithfully flat. Also,
H = StabGK (z) is the generic fiber of the projection StabG → X, i.e., the
generic stabilizer. This yields the following:

Corollary 2.5. With the above notation, we have a GK-equivariant isomor-
phism Z � GK/H.

Considering the lengths of the finite K-schemes Z and GK/H, it follows
that [K : L] = [GK : H]. This divides |G|, and equality holds if and only if
H is trivial; equivalently, GK acts freely on Z, i.e., G acts freely on Spec(K).
We have proved:

Corollary 2.6. With the above notation, [K : L] divides |G|. Moreover,
equality holds if and only if the G-action on X is generically free.

3. Rational actions

Definition 3.1. Let G be a finite group scheme, and X a variety. A rational
action of G on X is a rational map α : G × X ��� X which satisfies the
following two properties:

(i) The rational map (pr1, α) : G×X ��� G×X is birational.
(ii) The rational maps α ◦ (idG × α), α ◦ (μ× idX) : G×G×X ��� X are

equal, where μ : G×G → G denotes the multiplication.

In this definition (adapted from [7, §3]), a rational map f : Y ��� Z is an
equivalence class of pairs (U, ϕ), where U is a schematically dense open subset
of Y , and ϕ : U → Z a morphism; two pairs (U, ϕ), (V, ψ) are equivalent
if there exists a schematically dense open subset W ⊂ U ∩ V such that
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ϕ|W = ψ|W . Every rational map f : X ��� Y has a unique representative
(U, ϕ), where U is maximal; then U is the domain of definition dom(f). The
formation of the domain of definition commutes with base change by field
extensions (see [11, IV4.20.3.11])). The rational map f is birational if it admits
a representative (U, ϕ) such that ϕ is an isomorphism onto a schematically
dense open subset of Z.

Since X is reduced, every dense open subset U ⊂ X is schematically
dense. Also, we may replace X with any dense open subset in Definition 3.1,
and hence assume that X is smooth. Then G×X is Cohen-Macaulay (as G

is finite), and hence has no embedded component. As a consequence, we may
replace “schematically dense” with “dense” when dealing with the rational
maps in (i), (ii).

Let α : G×X ��� X be a rational map satisfying (i). Then α is dominant,
since it is the composition of the birational map (pr1, α) and the second
projection. Thus, the image of α contains a dense open subset W ⊂ X. So
the image of idG × α contains G×W . Denote by V the domain of definition
of α; then the composite rational map α ◦ (idG × α) is defined on the open
subset (idG × α)−1(V ∩ (G × W )). Moreover, the composite rational map
α ◦ (μ × idX) is defined as μ × idX is a morphism (see [11, IV1.20.3.1]). So
the two compositions of rational maps in (ii) make sense.

For any g ∈ G, the intersection Vg = pr−1
1 (g) ∩ Vκ(g) is identified with

a dense open subset of Xκ(g); moreover, g induces a birational morphism
αg : Vg → Xκ(g) (as follows from the condition (i) and the finiteness of
G). This motivates (i), while (ii) is a rational analogue of the associativity
property of actions.

Proposition 3.2. Let X be a variety equipped with a rational action α of G.
Then there exists a dense open subset U ⊂ X such that α is defined on G×U

and induces a G-action on U .

Proof. We first consider the case where k is algebraically closed; then we have
G = G0 �Gred and Gred is the constant group scheme associated with G(k).
For any g ∈ G(k) and x ∈ X, we denote α(g, x) by g ·x whenever it is defined,
i.e., x ∈ Vg. By (ii), given g, h ∈ G(k) and x ∈ X, if h · x and g · (h · x) are
defined, then gh · x is defined and equals g · (h · x). It follows easily that the
birational morphism αe : Ve → X is just the inclusion. Also,

W =
⋂

g∈G(k)
Vg
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is a dense open subset of X, as well as

U =
⋂

g∈G(k)
α−1
g (W ).

We check that U satisfies our assertions.
Since αe is the inclusion, we have U ⊂ W . Let g ∈ G(k) and x ∈ U ; then

g ·x is defined and lies in W . We claim that g ·x ∈ U . Otherwise, there exists
h ∈ G(k) such that h · (g · x) is defined and does not lie in W . Then hg · x is
defined and not in W , a contradiction. This proves the claim.

By this claim, we have G(k) × U ⊂ V . Since V is open in G × X, it
follows that G× U ⊂ V . Thus, α yields a morphism α0 : G× U → X, which
factors through U by the claim again. This completes the proof when k is
algebraically closed.

Next, we consider an arbitrary field k. Then Xk̄ is equipped with a rational
action of Gk̄. The above construction yields a dense open subset U ′ ⊂ Xk̄ on
which Gk̄ acts, and which is stable under all automorphisms of k̄/k. Thus,
U ′ is the preimage of a dense open subset U ⊂ X under the projection
π : Xk̄ → X. One may readily check that U satisfies our assertions, by using
the fact that the formation of the domain of definition commutes with field
extensions.

Corollary 3.3. Let X be a variety equipped with a rational action of G. Then
X is equivariantly birationally isomorphic to a projective G-variety.

Proof. Using Proposition 3.2, we may assume that X is a G-variety. In view
of Lemma 2.2, we may further assume that X is affine. Then the algebra
O(X) is generated by a finite-dimensional G-submodule V . This yields a
closed G-equivariant immersion of X in the corresponding affine space V(V ) =
Spec(Sym(V )), and hence in its projective completion P(V ⊕k) (where G acts
via its linear representation in V ⊕k). The schematic image of X in P(V ⊕k)
is the desired projective G-variety.

Corollary 3.4. Every rational action of G on X restricts to a G-action on
the spectrum of the function field K = k(X). Conversely, every G-action on
Spec(K) extends to a unique rational G-action on X.

Proof. The first assertion is a direct consequence of Lemma 2.3 together with
Proposition 3.2.

For the converse assertion, consider an action α : G×Spec(K) → Spec(K)
and the corresponding co-action

α∗ : K −→ O(G) ⊗K, xi �−→
∑

j

yij ⊗ zij (i = 1, . . . ,m),
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where x1, . . . , xm generate the field K over k. Let U (resp. V ) be a dense
open affine subset of X on which the xi (resp. zij) are defined; then α∗ yields
a homomorphism of algebras O(U) → O(G) ⊗O(V ), or equivalently, a mor-
phism G× V → U . As U is dense in X, and G× V is (schematically) dense
in G×X (e.g. by [11, IV4.20.3.5]), we get a rational map β : G×X ��� X.
It satisfies the properties (i) and (ii) in view of the “local determination of
morphisms” (see [11, I.6.5]), since these properties hold for the action of G
on Spec(K).

Remark 3.5. More generally, Corollary 3.3 holds in the setting of rational
actions of algebraic groups, by a refinement of Weil’s regularization theorem
(see [24], [19, Thm. 1] for the original version, and [6, Thm. 8] for the refine-
ment). But Proposition 3.2 and Corollary 3.4 do not extend to this setting.

We now assume that p > 0, and use Corollary 3.4 to construct exam-
ples of faithful rational actions of infinitesimal group schemes on any variety
X. Recall that the function field K = k(X) (a separable, finitely gener-
ated extension of k of transcendence degree n) admits a p-basis of length
n, i.e., a sequence (x1, . . . , xn) ∈ Kn such that the monomials xm1

1 . . . xmn
n ,

where 0 ≤ m1, . . . ,mn ≤ p − 1, form a basis of K over its subfield kKp

(the composite of k and Kp in K; this is a function field in n variables
as well). Equivalently, the differentials dx1, . . . , dxn form a basis of the K-
vector space of Kähler differentials Ω1

K/k = Ω1
K/kKp (see [11, IV1.21.4.2,

IV1.21.4.5]). We denote the dual basis of the K-vector space of derivations
by D1, . . . , Dn ∈ Derk(K) = DerkKp(K). Then the Di commute pairwise and
satisfy Dp

i = 0 for i = 1, . . . , n.
Next, recall the equivalence of categories between infinitesimal group

schemes G of height at most 1 and p-Lie algebras g = Lie(G) (see [8, II.7.4.1].
Under this equivalence, the G-actions on Spec(K) correspond to the homo-
morphisms of p-Lie algebras g → Derk(K) in view of [8, II.7.3.10]. Also,
recall that the p-Lie algebra k with trivial pth power map (resp. pth power
map t �→ tp) corresponds to the group scheme αp (resp. μp).

In particular, for any f1, . . . , fm ∈ kKp, the derivations f1D1, . . . , fmD1
commute pairwise and satisfy (fiD1)p = 0 for all i. Choosing f1, . . . , fm lin-
early independent over k, this yields:

Lemma 3.6. Every variety of positive dimension admits a faithful rational
action of αm

p for any m ≥ 1.

Here αm
p = αp× . . .×αp (m factors). Likewise, considering the derivations

x1D1, . . . , xnDn, we obtain a faithful action of μn
p on Spec(K), or equivalently,
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a faithful μn
p -action on K by algebra automorphisms (see e.g. [8, II.2.1.2]).

The latter action fixes kKp pointwise, and satisfies

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn)

for all (t1, . . . , tn) ∈ μn
p . We say that this action is standard in the p-basis

(x1, . . . , xn).

Lemma 3.7. Let X be a variety of dimension n. Then X admits a faithful
rational action of μn

p . Every such action α is generically free, and standard
in some p-basis (x1, . . . , xn) of K = k(X). Moreover, the xi are uniquely
determined by α, up to multiplication by non-zero elements of kKp. If α
extends to a faithful rational action of an infinitesimal group scheme H of
height 1 normalizing μn

p , then H = μn
p .

Proof. Let G = μn
p . The existence of a faithful rational G-action on X follows

from Corollary 3.4 together with the preceding construction.
Given such an action α, the corresponding G-action on K yields a grading

K =
⊕

γ∈Γ
Kγ ,

where Γ = (Z/pZ)n is the character group of the diagonalizable group G (see
[8, II.2.2.5]). Then K0 = KG is a subfield of K, and each Kγ is a K0-vector
space. Moreover, the group Γ is generated by the γ such that Kγ �= 0, since the
G-action is faithful. But these γ form a subgroup of Γ as K is a field. It follows
that Kγ �= 0 for all γ ∈ Γ. Since K0 ⊃ kKp and [K : kKp] = pn = |Γ|, we must
have K0 = kKp and dimK0(Kγ) = 1 for all such γ. Choosing xi ∈ Kγi where
γ1, . . . , γn form the standard basis of (Z/pZ)n, we see that the monomials
xm1

1 . . . xmn
n , where 0 ≤ m1, . . . ,mn ≤ p − 1, have pairwise distinct weights,

and hence are linearly independent over kKp. For dimension reasons, these
monomials form a p-basis. By construction, the action α is standard in this
basis, which is unique up to non-zero elements of kKp; moreover, the generic
stabilizer is trivial.

Let H be an infinitesimal group scheme of height 1 normalizing G, and
equipped with a faithful rational action on X extending α. Since the auto-
morphism group scheme of G is constant (see [8, III.5.3.3]), we see that H
centralizes G. Then h = Lie(H) centralizes g = Lie(G), and g ⊂ h ⊂ Derk(K).
But we have

Derk(K) =
n⊕

i=1
KDi =

⊕
kKpxm1

1 · · · xmn
n Di,



1078 Michel Brion

the latter sum being over i = 1, . . . , n and m1, . . . ,mn = 0, . . . , p − 1. Also,
xm1

1 · · · xmn
n Di is a G-eigenvector of weight (m1, . . . ,mi − 1, . . . ,mn) (viewed

in (Z/pZ)n). It follows that the centralizer of g in Derk(K) is the Lie algebra

kKpg =
{ n∑

i=1
tixiDi | t1, . . . , tn ∈ kKp}.

So h is a finite-dimensional subspace of the k-vector space kKpg, stable under
the pth power map. If

∑
i tixiDi ∈ h, then

∑
i t

p
i xiDi,

∑
i t

p2

i xiDi, . . . ∈ h. It
follows that ti, t

p
i , t

p2

i , . . . are linearly dependent over k for i = 1, . . . , n. In
particular, each ti is algebraic over k. Since k is algebraically closed in K,
this forces t1, . . . , tn ∈ k and h = g.

Remark 3.8. In particular, X admits many faithful rational actions of μn
p ,

but no faithful rational action of μn+1
p . The latter fact also follows from a

classical result in the theory of p-Lie algebras: choosing a p-basis (x1, . . . , xn)
of K/k yields an isomorphism of kKp-algebras

K � kKp[T1, . . . , Tn]/(T p
1 − xp1, . . . , T

p
n − xpn)

and hence an isomorphism of K-algebras

K ⊗kKp K � K[T1, . . . , Tn]/(T p
1 , . . . , T

p
n).

As a consequence, the kKp-algebra Derk(K) = DerkKp(K) is a form of the
K-algebra DerK(K[T1, . . . , Tn]/(T p

1 , . . . , T
p
n)). The latter is a p-Lie algebra

over K, known as the split Jacobson–Witt algebra Wn. Its maximal tori (i.e.,
the maximal p-Lie subalgebras having a basis D1, . . . , Dm such that the Di

commute pairwise and satisfy Dp
i = Di) have been determined in [9]; in

particular, they all have dimension n.
In another direction, the above construction of faithful rational actions of

μn
p via p-bases can be iterated to yield faithful rational actions of μn

ps for any
s ≥ 1. Indeed, taking pth powers in the equality

K =
⊕

0≤m1,...,mn≤p−1
kKpxm1

1 · · ·xmn
n ,

we obtain
kKp =

⊕

0≤m1,...,mn≤p−1
kKp2

xpm1
1 · · · xpmn

n ,
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and hence
K =

⊕

0≤m1,...,mn≤p2−1
kKp2

xm1
1 · · · xmn

n .

By induction, this yields

K =
⊕

0≤m1,...,mn≤ps−1
kKpsxm1

1 · · · xmn
n

for any s ≥ 1. We may thus define the desired action of μn
ps by the same

formula as the standard μn
p -action; its fixed subfield is kKps .

Since these μn
ps-actions are compatible with the standard embeddings

μn
ps → μn

ps+1 , where s ≥ 1, we get a faithful rational action of the ind-group
scheme μn

p∞ = lim−→s
μn
ps on X. Note that the family (μps , s ≥ 1) is schemat-

ically dense in the multiplicative group Gm, but X may admit no faithful
rational Gm-action (for example if X is not geometrically uniruled).

Likewise, X admits a faithful rational action of the ind-group scheme
αr
p∞ = lim−→s

αr
ps for any r ≥ 1. Also, the αps form a schematically dense family

in the additive group Ga, but X may admit no faithful rational Ga-action.

4. G-normality

Recall that G denotes a finite group scheme.

Definition 4.1. A G-variety X is G-normal if every finite birational mor-
phism of G-varieties f : Y → X is an isomorphism.

Proposition 4.2. Let X be a G-variety.

(i) There exists a finite birational morphism of G-varieties ϕ : X ′ → X,
where X ′ is G-normal.

(ii) For any morphism ϕ as in (i) and any finite birational morphism of
G-varieties f : Z → X, there exists a unique morphism of G-varieties
ψ : X ′ → Z such that ϕ = f ◦ ψ.

Proof. (i) Let f : Y → X be a finite birational morphism of G-varieties. Then
the normalization morphism η = ηX : X̃ → X factors uniquely through the
analogous morphism ηY : X̃ → Y . Thus, OX ⊂ f∗(OY ) ⊂ (ηX)∗(OX̃). Since
ηX is finite, we may choose f so that the subsheaf f∗(OY ) ⊂ (ηX)∗(OX̃) is
maximal among the direct images of structure sheaves of G-varieties equipped
with a finite birational morphism to X.

We claim that Y is G-normal (and hence f : Y → X is the desired
morphism). To check this, consider a finite birational morphism of G-varieties
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g : Z → Y . Then again, f ◦ g : Z → X factors through ηZ , and hence
we have f∗(OY ) ⊂ (f ◦ g)∗(OZ) ⊂ (ηX)∗(OX̃). By maximality, we obtain
f∗(OY ) = (f ◦ g)∗(OZ) and hence OY = g∗(OZ) as f is finite surjective. It
follows that g is an isomorphism, proving the claim.

(ii) There exists a dense open G-stable subset U ⊂ X such that the
induced morphisms f−1(U) → U and ϕ−1(U) → U are isomorphisms. Thus,
we may identify U with an open subset of the fiber product Z ×X X ′, stable
under the natural G-action. Let Y be the schematic closure of U in Z×X X ′;
then Y is a G-variety equipped with finite birational G-morphisms ψ : Y → Z,
g : Y → X ′ such that the square

Y
ψ

g

Z

f

X ′ ϕ
X

commutes. Since X ′ is G-normal, g is an isomorphism; this yields the desired
morphism X ′ → Z.

With the above notation, we say that ϕ : X ′ → X is the G-normalization;
it is unique up to unique G-isomorphism.

Remark 4.3. If a G-variety X is H-normal for some subgroup scheme H
of G, then clearly X is G-normal. In particular, every normal G-variety is
G-normal. The converse holds if G is étale, since the G-action lifts uniquely
to an action on the normalization (see e.g. [5, Prop. 2.5.1]). So the notion of
G-normalization is only relevant in characteristic p > 0.

Corollary 4.4. Let X be a variety equipped with a rational action of G. Then
X is equivariantly birationally isomorphic to a G-normal projective variety
Y . If X is a curve, then Y is unique.

Proof. The first assertion follows readily from Corollary 3.3 together with the
existence of the G-normalization.

Assume that X is a G-curve and consider two projective G-models Y1, Y2;
then we have a G-equivariant rational map f : Y1 ��� Y2. Using Lemma 2.2,
we may find dense open G-stable subsets Ui ⊂ Yi (i = 1, 2) such that f re-
stricts to an isomorphism U1

∼−→ U2. By a graph argument as in the proof of
Proposition 4.2 (ii), this yields a projective G-curve Y equipped with equiv-
ariant birational morphisms to Y1, Y2. The second assertion follows from this,
as every birational morphism of projective curves is finite.



Actions of finite group schemes on curves 1081

Lemma 4.5. Let X be a G-variety, and N �G a normal connected subgroup
scheme.

(i) If X is G-normal, then X/N is G/N-normal.
(ii) If X/N is G/N-normal and N acts freely on X, then X is G-normal.

Proof. (i) Let f : Y → X/N be a finite birational morphism of G/N -varieties.
Arguing again as in the proof of Proposition 4.2 (ii), we obtain a G-variety Z
equipped with finite birational morphisms ϕ : Z → X, ψ : Z → Y such that
the square

Z
ψ

ϕ

Y

f

X
q

X/N

commutes. Since X is G-normal, ϕ is an isomorphism. Then the resulting
morphism ψ ◦ ϕ−1 : X → Y is N -invariant over a dense open subset of Y ,
and hence everywhere. Since q is a categorical quotient, it follows that f has
a section. As f is a finite morphism of varieties, it is an isomorphism.

(ii) We argue similarly, and consider a finite birational morphism of G-
varieties f : Y → X. Since N acts freely on X, it also acts freely on Y . Thus,
the quotient morphisms qX : X → X/N , qY : Y → Y/N are N -torsors, and
fit in a cartesian square

Y
qY

f

Y/N

g

X
qX

X/N.

By fppf descent, it follows that g is finite. Also, g is birational as f restricts
to an isomorphism over a dense open N -stable subset of X. Thus, g is an
isomorphism, and hence so is f .

Corollary 4.6. Let X be a G-normal variety. Then X/G0 is normal. More-
over, the normalization η : X̃ → X is radicial and bijective.

Proof. The variety X/G0 is π0(G)-normal by Lemma 4.5; this yields the first
assertion in view of Remark 4.3.

Recall that the quotient morphism q : X → X/G0 is radicial and bijective.
Also, q ◦ η : X̃ → X/G0 is a finite morphism of normal varieties such that
the corresponding extension of function fields is purely inseparable. As a
consequence, q ◦ η is radicial and bijective as well (see e.g. [11, II.4.3.8]).
This implies the second assertion by using [11, I.3.5.6].
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Next, we relate the G-normalization of a G-variety X with the (usual)
normalization of a variety obtained from X by “induction”, as in the proof of
Proposition 2.4. More specifically, embed G as a closed subgroup scheme of
a smooth connected algebraic group G#. Then G# ×X is a variety equipped
with a G#×G-action via (a, g)·(b, x) = (abg−1, g ·x). Since G0 is infinitesimal,
the quotient variety X# = G# ×G0

X exists; it is equipped with an action
of G# × (G/G0) = G# × π0(G) together with a G# × (G/G0)-equivariant
morphism

ψ : X# −→ G#/G0.

Here G#/G0 is identified with the homogeneous space (G# × (G/G0))/G,
where G is embedded diagonally in G# × (G/G0). The fiber of ψ at the base
point of this homogeneous space is G-equivariantly isomorphic to X.

Now consider the normalization η# : X̃# → X#. Since G# × (G/G0) is
smooth, its action on X# lifts uniquely to an action on X̃# such that η#

is equivariant (see e.g. [5, Prop. 2.5.1]). Thus, ψ ◦ η# : X̃# → G#/G0 is
G# × (G/G0)-equivariant as well. So its fiber at the base point is a G-scheme
Y equipped with a G-equivariant morphism

μ : Y −→ X

Moreover, the morphism G# × Y → X̃#, (a, y) �→ a · y factors uniquely
through an isomorphism G# ×G0

Y
∼−→ X̃#.

Lemma 4.7. With the above notation, μ is the G-normalization, and the
G0-normalization as well.

Proof. By construction, we have a cartesian square

G# × Y
id×μ

G# ×X

X̃# η#

X#

where the vertical arrows are G0-torsors. As η# is finite and birational, the
same holds for id × μ, and hence for μ; in particular, Y is a variety.

Next, the G0-normalization ϕ : X ′ → X yields a G#-equivariant mor-
phism

G# ×G0
ϕ : G# ×G0

X ′ −→ G# ×G0
X = X#

which is finite and birational by the above argument. By the universal prop-
erty of the normalization, η# lifts to a unique morphism γ : X̃# → G#×G0

X ′
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which is finite and birational, and hence G#-equivariant. Moreover, γ is a
morphism of varieties over G#/G0, and hence restricts to a finite birational
G0-morphism δ : Y → X ′. Since X ′ is G0-normal, δ is an isomorphism. So Y

is G0-normal, and hence G-normal by Remark 4.15.

As a direct consequence of Lemma 4.7, we obtain:

Corollary 4.8. The following conditions are equivalent for a G-variety X:

(i) X is G-normal.
(ii) X is G0-normal.
(iii) X# is normal.

Proposition 4.9. Let X be a G-variety, and k′/k a field extension.

(i) If Xk′ is Gk′-normal, then X is G-normal.
(ii) If X is G-normal and k′ is separable over k, then Xk′ is Gk′-normal.

Proof. (i) Consider a finite birational morphism of G-varieties f : Y → X.
Then the base change fk′ : Yk′ → Xk′ is a finite birational morphism of
Gk′-varieties, and hence an isomorphism. By descent, f is an isomorphism as
well.

(ii) By Corollary 4.8, we may assume that G is connected. Then the
assertion follows from this corollary, since the formation of X# commutes with
field extensions, and normality is preserved under separable field extensions
(see [11, IV2.6.7.4] for the latter assertion).

Remark 4.10. It is well known that normality may not be preserved under
a non-trivial purely inseparable field extension k′/k (see e.g. [11, IV2.6.7.5]).
This also holds for G-normality, as shown by the following example where
G = αp. Choose a ∈ k such that a1/p ∈ k′ \ k and let G# be the affine plane
curve with equation yp = x+ axp. Then G# is a smooth connected algebraic
group via pointwise addition of coordinates, and its Frobenius kernel (the
zero subscheme of (xp, yp)) is isomorphic to G. Moreover, one may check
that the normal projective completion of G# is the projective plane curve
X with homogeneous equation yp = xzp−1 + axp. The G#-action on itself
by translation extends uniquely to an action on X. In particular, X is a
normal G-curve, and hence is G-normal. But Xk′ is non-normal, since it has
homogeneous equation (y − a1/px)p = xzp−1. As G#

k′ is smooth, its action
on Xk′ lifts to an action on the normalization of this curve, and hence to a
Gk′-action. It follows that Xk′ is not Gk′-normal.
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Remark 4.11. Consider an affine G-variety X; then the normalization X̃
and the G-normalization X ′ are affine as well, and we have inclusions of rings

R = O(X) ⊂ R′ = O(X ′) ⊂ R̃ = O(X̃) ⊂ K = k(X) = k(X ′) = k(X̃).

Also, recall that K is a G-module, and R, R′ are submodules (but R̃ is
generally not a submodule).

We say that f ∈ K is G-integral (over R) if the G-submodule of K
generated by f is contained in R̃. We now claim that R′ is the subset of K
consisting of G-integral elements.

Indeed, since the direct sum and tensor product of any two G-modules
are G-modules and the sum and product of integral elements are integral,
we see that the G-integral elements form a subalgebra S ⊂ K. Clearly, we
have R′ ⊂ S ⊂ R̃, and hence S is a finite R′-module. In particular, Spec(S)
is a G-variety equipped with a finite birational equivariant morphism to X ′.
Thus, S = R′, proving the claim.

As a direct consequence of this claim, the formation of R′ commutes with
localization by G-invariants of R.

Next, consider a G-variety X admitting a covering by open affine G-stable
subsets. Then the G-normalizations of these subsets may be glued to a G-
variety, which is readily seen to be the G-normalization. This provides an
algebraic construction of the G-normalization.

We now obtain an equivariant version of Serre’s criterion for normality
(see [11, IV2.5.8.6]). The latter can be stated as follows in our setting: a
variety X is normal if and only if it satisfies (S2) and the ideal sheaf of every
closed subvariety is invertible in codimension 1.

Theorem 4.12. Let X be a G-variety. Then X is G-normal if and only if
it satisfies (S2) and the ideal sheaf IZ is invertible in codimension 1 for any
closed G-stable subscheme Z � X.

Proof. We use the construction before Lemma 4.7. By Corollary 4.8, it suffices
to show the following two equivalences:

(i) X# satisfies (S2) if and only if X satisfies (S2).
(ii) X# satisfies (R1) if and only if IZ is invertible in codimension 1 for any

closed G-stable subscheme Z � X.

(i) This follows from the fact that ψ : X# → G#/G is a faithfully flat
morphism to a smooth variety, with fibers being obtained from X via base
change by field extensions (use [11, IV2.6.6.1]).
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For (ii), assume that X# satisfies (R1). Let Z � X be a closed G-stable
subscheme; then Z# = G# ×G0

Z is a closed subscheme of X#, and hence
IZ# is invertible in codimension 1. Since the quotient G# × X → X# is a
G0-torsor, it follows that IG#×Z ⊂ OG#×Z is invertible in codimension 1 as
well. This yields the desired assertion.

Conversely, assume that IZ is invertible in codimension 1 for any closed
G-stable subscheme Z � X. Recall that X# is equipped with an action of
the smooth algebraic group H = G# × π0(G); thus, the regular locus X#

reg is
H-stable. It follows that the singular locus X#

sing (equipped with its reduced
subscheme structure) is H-stable as well (indeed, the formation of X#

sing com-
mutes with separable field extensions, and hence we may assume k separably
closed. Then X#

sing is stable under H(k), and hence under its schematic closure
H). So X#

sing = H ×G Z for a unique closed G-stable subscheme Z � X. By
using the G-torsor H ×X → X# as above, it follows that IX#

sing
is invertible

in codimension 1. This forces codimX#(X#
sing) ≥ 2.

Example 4.13. Assume that k is algebraically closed. Consider the zero
subscheme X ⊂ An+1 of ypm −f(x1, . . . , xn), where m,n are positive integers,
x1, . . . , xn, y denote the coordinates on An+1, and f ∈ k[T1, . . . , Tn]. The
group scheme αpm acts freely on An+1 via u·(x1, . . . , xn, y) = (x1, . . . , xn, u+y)
and this action stabilizes X. The quotient is the morphism

An+1 −→ An+1, (x1, . . . , xn, y) �−→ (x1, . . . , xn, y
pm).

Its restriction to X is identified with the projection (x1, . . . , xn) : X → An. So
X is αpm-normal by Corollary 4.6. Also, X is generally singular in codimension
1, e.g., when f is divisible by the square of a non-constant polynomial; then
the singular locus is not stable under αpm .

Next, let μpm act on An+1 via t · (x1, . . . , xn, y) = (x1, . . . , xn, ty). Then
this action stabilizes X, and the quotient is as above. One may check by using
Theorem 4.12 that X is not μpm-normal when f is divisible by the square of
a non-constant polynomial.

Next, we obtain an equivariant version of a classical normality criterion
for curves:

Corollary 4.14. The following conditions are equivalent for a G-curve X:

(i) X is G-normal.
(ii) For any closed point x ∈ X, the ideal IG·x is invertible.
(iii) For any closed G-stable subscheme Z � X, the ideal IZ is invertible.
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Proof. (i) ⇒ (ii) Let x ∈ X be a closed point. Set Z = G ·x and consider the
blow-up f : BlZ(X) → X. Then BlZ(X) is a G-curve and f is equivariant.
Thus, f is an isomorphism. By the universal property of the blow-up, this
means that IZ is invertible.

(ii) ⇒ (iii) Let Z � X be a closed G-stable subscheme. We show that IZ
is invertible by induction on the length �(Z) = dimH0(X,OX/IZ). We may
assume that �(Z) ≥ 1, and hence choose a closed point x ∈ Z. Then G·x ⊂ Z;
thus, I = IZ is contained in IG·x = J and the latter is invertible. So J −1I
is a G-stable sheaf of ideals of OX . Denoting by W ⊂ X the corresponding
closed G-stable subscheme, we have

OX/IW = OX/J −1I � J /(J −1I ⊗OX J ) � J /I.

As a consequence, �(W ) = dimH0(X,J /I) < �(Z). By the induction as-
sumption, IW is invertible, and hence so is IZ .

(iii) ⇒ (i) This follows readily from Theorem 4.12.

Remark 4.15. Given a smooth closed point x of a G-curve X, the orbit G ·x
is contained in the smooth locus of X, and hence the ideal IG·x is invertible.
So to check the G-normality of X, it suffices to show that IG·x is invertible
for any non-smooth point x.

Likewise, if k is perfect then the G-normalization of X is obtained by
iterating the process of blowing up the G-orbits of non-smooth points.

Corollary 4.16. The following conditions are equivalent for a finite group
scheme G of order p and a G-curve X:

(i) X is G-normal.
(ii) X/G is normal and X is normal at every G-stable point.

Proof. (i) ⇒ (ii) The normality of X/G follows from Corollaries 4.6 and 4.8.
If x ∈ X is G-stable, then the ideal Ix is invertible by Corollary 4.14, hence
X is normal at x.

(ii) ⇒ (i) Let x ∈ X be a closed point. If x is G-stable, then IG·x = Ix is
invertible. Otherwise, we claim that StabG(x) is trivial. To check this, view
x as a κ(x)-point of the Gκ(x)-variety Xκ(x); then x is not Gκ(x)-stable, since
its orbit Gκ(x) · x has schematic image G · x under the projection Xκ(x) → X.
As Gκ(x) · x � Gκ(x)/ StabG(x), it follows that StabG(x) is strictly contained
in Gκ(x). This implies our claim, since G has order p.

By the claim, the quotient q : X → X/G is a G-torsor at x, and hence
IG·x = Iq(x)OX . Since the curve X/G is normal, Iq(x) is invertible; therefore,
so is IG·x. By Corollary 4.14 again, it follows that X is G-normal.
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Next, assume that G is a subgroup scheme of a smooth connected alge-
braic group G#. Then the quotient G# ×GX exists for any G-curve X, since
G# and X are quasi-projective.

Proposition 4.17. With the above notation and assumptions, X is G-normal
if and only if G# ×G X is regular.

Proof. Note that there is a canonical morphism X# = G#×G0
X → G#×GX,

which is a torsor under the finite étale group scheme G/G0 = π0(G).
If G#×GX is regular, then so is X# by [11, IV2.6.6.1]. So X is G-normal

in view of Corollary 4.8.
The converse is obtained by arguing as in the end of the proof of Theo-

rem 4.12: the singular locus of X# satisfies X#
sing = G# ×G Z for some closed

G-stable subscheme Z � X. Thus, codimZ(X) = codimX#(X#
sing). Since X#

is normal (by Corollary 4.8 again), this yields codimX(Z) ≥ 2 and hence
Z = ∅ = X#

sing. So X# is regular, and hence G# ×G X is regular as well (see
[11, IV2.6.6.1] again).

Corollary 4.18. Every G-normal curve is a local complete intersection.

Proof. Given a G-normal curve X, consider the natural morphism ψ : X# =
G# ×G X → G#/G with fiber X at the base point. Note that X# is regular,
G#/G is smooth, and ψ is faithfully flat (e.g., by G#-equivariance). So the
assertion follows from [11, IV4.19.3.2].

Remark 4.19. Assume that k is perfect. Then a G-curve X is G-normal if
and only if the quotient stack [X/G] is smooth. This follows from the above
proposition in view of the isomorphism of stacks [X/G] � [G# ×G X/G#],
which in turn is a direct consequence of the definitions of such stacks.

5. Generically free actions on curves

Throughout this section, we denote by G an infinitesimal group scheme of
order pn, with Lie algebra g.

Proposition 5.1. Let X be a curve equipped with a rational action of G; let
K = k(X) and L = KG. Then there exists a unique integer m = m(G) ≥ 0
such that L = kKpm . Moreover, m ≤ n and equality holds if and only if the
rational G-action on X is generically free.

Proof. Recall from Lemma 2.3 that the extension K/L is finite and purely
inseparable. Thus, [K : L] = pm for some m ≥ 0, and kKpm ⊂ L. Moreover,
we have [K : kKpm ] = pm, since K is a function field in one variable (indeed,
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using the tower of field extensions K = K0 ⊃ kKp = K1 ⊃ . . . ⊃ kKpm = Km

where Ki+1 = kKp
i for i = 0, . . . ,m−1, it suffices to show that [K : kKp] = p.

But this follows from the fact that every x ∈ K \ kKp forms a p-basis of K
over k, see e.g. [11, IV1.2.1.4]). So L = kKpm . The final assertion follows
readily from Corollary 2.6.

Remark 5.2. Let X be a generically free G-curve with quotient morphism
q : X → Y = X/G. Then the nth Frobenius morphism F n

X : X → X(pn)

is finite, surjective and G-invariant, and X(pn) is a curve with function field
kKpn . Thus, F n

X factors uniquely as

X
q−→ Y

r−→ X(pn),

where r is finite surjective as well; also, r is birational by Proposition 5.1.
If X is G-normal, then Y is normal (Lemma 4.5) and hence is isomorphic

to the normalization of X(pn). As a consequence, g(Yk̄) = g(Xk̄) where g
denotes the geometric genus.

Lemma 5.3. The following conditions are equivalent for a curve X equipped
with a faithful action of G:

(i) The G-action is generically free.
(ii) We have dim(g) = 1.
(iii) We have an isomorphism of algebras O(G) � k[T ]/(T pn).

Under these conditions, G is either unipotent or a form of μpn .

Proof. (i) ⇔ (ii) We may assume k algebraically closed. Then (i) is equivalent
to the existence of a smooth point x ∈ X(k) such that StabG(x) is trivial.
This is in turn equivalent to Lie(StabG(x)) = 0, since G is infinitesimal. But
Lie(StabG(x)) is the kernel of the natural map g → TxX (the differential at e
of the morphism G → X, g �→ g·x), see e.g. [8, III.2.2.6]. So Lie(StabG(x)) = 0
implies that dim(g) = 1.

Conversely, assume that dim(g) = 1. Choose a smooth point x ∈ X(k)
which is not fixed by g (identified with the Frobenius kernel G1). Then
StabG(X)1 is trivial, and hence so is StabG(x).

(ii) ⇔ (iii) This follows from the fact that O(G) is a local k-algebra of
dimension pn and residue field k.

To show the final assertion, we may again assume k algebraically closed.
If G contains no copy of αp, then G is diagonalizable by [8, IV.3.3.7]. Thus,
G � ∏r

i=1 μpmi in view of the structure of diagonalizable group schemes (see
e.g. [8, IV.1.1.2]). Using (ii), it follows that r = 1.
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So we may assume that αp ⊂ G. By (ii) again, we then have G1 = αp.
The relative Frobenius FG yields an exact sequence

1 −→ G1 −→ G
f−→ F (G) −→ 1,

where O(F (G)) = O(G)p = k[T ]/(T pn−1) in view of (iii). Arguing by induc-
tion on n, we may assume that F (G) is either unipotent or isomorphic to
μpn−1 . In the former case, G is unipotent. In the latter case, G is trigonaliz-
able (see [8, IV.2.3.1]) and hence G � αp � μpn−1 by loc. cit., IV.2.3.5. But
then dim(g) = 2, a contradiction.

Proposition 5.4. Let X a generically free G-normal curve.

(i) The quotient of Ω1
X/k by its torsion subsheaf is invertible.

(ii) The tangent sheaf TX is invertible and effective.

Proof. (i) Choose a non-zero element of g, which yields a morphism of OX -
modules D : Ω1

X/k → OX . Then D is an isomorphism at the generic point,
and hence its kernel is the torsion subsheaf. Also, Ω1

X/k is equipped with a
G-linearization, and D is G-equivariant (since the adjoint representation of
G in g is trivial by the final assertion of Lemma 5.3). Thus, the image of D is
a G-stable ideal. As every such ideal is invertible (Corollary 4.14), this yields
the assertion.

(ii) The sheaf TX is invertible by (i), and has non-zero global sections.

Proposition 5.5. Let X a generically free G-normal curve with quotient Y .
Let x ∈ X be a closed G-fixed point with image y ∈ Y . If k is perfect, then
there exists an isomorphism of OY,y-algebras

OX,x � OY,y[T ]/(T pn − w),

where w generates the maximal ideal of OY,y.

Proof. By Corollaries 4.6 and 4.8, Y is smooth at y; also, X is smooth at x in
view of Corollary 4.14. Since G is infinitesimal, the fiber Xy has a unique point
x and the extension κ(x)/κ(y) is purely inseparable. But κ(y) is perfect (since
so is k), and hence κ(x) = κ(y). Thus, OX,x and OY,y are discrete valuation
rings with the same residue field k′ = κ(x); moreover, OX,x is a finite free
module over OY,y. The rank of this module is pn, since [k(X) : k(Y )] = pn by
Proposition 5.1. Thus, Xy is a finite k′-subscheme of length pn of OX,x. As
a consequence, O(Xy) = OX,x/(zp

n), where z ∈ OX,x generates the maximal
ideal mx. On the other hand, O(Xy) = OX,x/(w), where w ∈ OY,y generates
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my. So zp
n = uw where u is a unit in OX,x. By Proposition 5.1 and the

normality of Y , we have zp
n ∈ OY,y. Thus, u is a unit in OY,y. Replacing w

with uw, we may thus assume that zpn = w. Consider the homomorphism of
OY,y-algebras

OY,y[T ]/(T pn − w) −→ OX,x, T �−→ z.

This is surjective by Nakayama’s lemma, and hence an isomorphism since
both sides are free OY,y-modules of rank pn.

Finally, we use the above results and methods to settle an issue in the
classification of maximal connected algebraic groups of birational automor-
phisms of surfaces. This classification (up to conjugation by birational au-
tomorphisms) was recently obtained by Fong for smooth projective surfaces
over an algebraically closed field, see [12]. One case was left unsettled in pos-
itive characteristics, see Proposition 3.25 and Remark 3.26 in loc. cit. This
case can be handled as follows:

Assume that k is algebraically closed and let S be a smooth projective
surface equipped with a faithful action of an elliptic curve E. By loc. cit.,
there is an E-equivariant isomorphism S � E ×G X, where G ⊂ E is a finite
subgroup scheme and X ⊂ S is a closed G-stable subscheme of pure dimen-
sion 1 (a priori, X is not necessarily reduced). This yields an E-equivariant
morphism ψ : S → E/G with fiber X at the origin of the elliptic curve E/G.
Using the Stein factorization, we may assume that ψ∗(OS) = OE/G; then X
is connected.

Proposition 5.6. With the above notation and assumptions, X is a G-
normal curve.

Proof. We begin with some observations. First, X is Cohen-Macaulay, as ψ
is flat.

Also, the categorical quotient X → X/G = Y exists, and the natural
morphism S = E ×G X → Y is the categorical quotient by E. It follows that
Y is a smooth projective curve.

Finally, G acts faithfully on X, since E is a commutative algebraic group
and acts faithfully on S.

We now reduce to the case where G is infinitesimal. For this, we consider
the natural morphism f : E ×G0

X → E ×G X = S, which is a torsor under
the finite étale group scheme π0(G). Thus, E×G0

X is smooth, projective and
of pure dimension 2. It is also connected (since so are E and X) and equipped
with a faithful action of E. This yields the desired reduction.

The scheme X is irreducible, as the quotient morphism E × X → S is
a homeomorphism. Also, since G is a subgroup scheme of E, its Lie algebra
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has dimension 1 and hence O(G) � k[T ]/(T pn) as algebras (Lemma 5.3). As
a consequence, the Frobenius kernel G1 has order p.

We now show that the G-action on X is generically free. Since the G1-
action is faithful, there exists x ∈ X(k) such that StabG1(x) is trivial
(Lemma 5.3 again). Then StabG(x) has a trivial Frobenius kernel, and hence
is trivial as well.

Next, we describe the local structure of X at x ∈ Xfr(k), by adapting
the argument of Proposition 5.5. Let y = q(x) ∈ Y (k). Then the quotient
q : X → Y is a G-torsor at y, and hence is finite free of rank pn at that point.
The fiber Xy satisfies O(Xy) � k[T ]/(T pn). Choose a lift z ∈ OX,x of the class
of T in O(Xy). Then zp

n ∈ OG
X,x, since the relative Frobenius morphism F n

X

is G-invariant. Thus, zpn = w where w ∈ OY,y. As z lifts T , we get w(y) = 0,
i.e., w ∈ my. So the homomorphism of OY,y-algebras

f : OY,y[T ]/(T pn − w) −→ OX,x, T �−→ z

induces an isomorphism modulo my. By Nakayama’s lemma, it follows that
f is an isomorphism.

Now consider the case where w /∈ k(Y )pn . Then OX,x is reduced. Since X
is Cohen-Macaulay, it is reduced as well. So X is a G-curve; it is G-normal
by Proposition 4.17.

It remains to treat the case where w ∈ k(Y )pn . Since Y is normal, we
then have w = tp

n where t ∈ OY,y. So OX,x � OY,y[U ]/(Upn) as an OY,y-
algebra. In geometric terms, there exists a dense open subset V ⊂ Y and
a section σ : V → Xfr of q above V . The schematic closure of σ(V ) in X
is a projective curve with smooth projective model Y . Thus, σ extends to a
section τ : Y → X of q. This yields a morphism

ϕ : E × Y −→ S, (e, y) �−→ e · τ(y)

which is E-equivariant, where E acts on E×Y by translation on itself. More-
over, ϕ restricts to an isomorphism G × V → q−1(V ), since q induces a
G-torsor q−1(V ) → V with section σ. Thus, ϕ restricts to an isomorphism
E ×G (G× V ) → E ×G q−1(V ), i.e., an isomorphism of E × V onto an open
subset of S. In particular, ϕ is birational. Also, the triangle

E × Y
ϕ

γ

S
ψ

E/G
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commutes, where γ is the composite of the projection E × Y → E with the
quotient map E → E/G. Moreover, γ and ψ have irreducible fibers. Thus, ϕ
is finite, and hence an isomorphism. Since ψ∗(OS) = OE/G, it follows that G
is trivial and X = Y .

Remark 5.7. Proposition 5.6 can be extended to a perfect ground field k.
But it fails over any imperfect field in view of the existence of non-trivial
pseudo-abelian surfaces, see [22, Sec. 6] and [4, Rem. 6.4 (ii)].

Remark 5.8. Conversely, given a G-normal curve X over an algebraically
closed field and an embedding of G into an elliptic curve E, we obtain a
smooth projective surface S = E ×G X by Proposition 4.17. Moreover, the
morphism f : S → X/G = Y (the categorical quotient by E) is an elliptic
fibration with general fiber E. The multiple fibers of f are exactly the fibers
Sy, where y = f(x) and x has a non-trivial stabilizer; the multiplicity of Sy

is the order of StabG(x). Also, one may check that R1f∗(OS) = OY when G
is diagonalizable.

If X is rational (or equivalently, Y is rational; see Remark 5.2), then the
natural morphism S → E/G is the Albanese morphism, since its fibers at
closed points are the translates of X. Moreover, these fibers are exactly the
rational curves on S. If in addition X is singular, then it follows that S is
minimal. Using the canonical bundle formula for the elliptic fibration f (see
[2]), one may check that S has Kodaira dimension 1 when p > 3 and f has at
least 3 multiple fibers. But S may well have Kodaira dimension 0, for example
when p ≤ 3 and S is a quasi-hyperelliptic surface (see [3]).

Example 5.9. Assume that k is algebraically closed and consider a projective
variant of Example 4.13: let X be the projective plane curve with equation
zp

n − f(x, y), where f is a homogeneous polynomial of degree pn and is not
a pth power. Assume in addition that pn ≥ 3; then X is singular.

Consider the action of αpn on P2 via g · (x, y, z) = (x, y, z + g(ax + by)),
where a, b ∈ k. Then X is stable under this action, and the quotient morphism
is the projection [x : y] : X → P1. So X is rational by Remark 5.2 or a direct
argument. Using Corollary 4.14 and the subsequent remark, one may check
that X is G-normal for general a, b.

Next, let μpn act on P2 via t · (x, y, z) = (x, y, tz). Then again, X is stable
under this action, with the same quotient. Moreover, X is μpn-normal if and
only if f is square-free.

Every elliptic curve E contains copies of μpn (if E is ordinary) or αpn (if
E is supersingular) for all n ≥ 1. Denote by G ⊂ E the resulting infinitesimal
subgroup scheme, and let X be a singular G-normal curve obtained by the
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above construction. In view of Remark 5.8, this yields a smooth projective
minimal surface S = E×GX, which is uniruled but not ruled. By the canonical
bundle formula for the elliptic fibration S → P1, the Kodaira dimension of S
is 1 if pn ≥ 4.
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