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On normal Seshadri stratifications
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A Claudio, che ci mostra la via

Abstract: The existence of a Seshadri stratification on an embed-
ded projective variety provides a flat degeneration of the variety
to a union of projective toric varieties, called a semi-toric variety.
Such a stratification is said to be normal when each irreducible
component of the semi-toric variety is a normal toric variety. In
this case, we show that a Gröbner basis of the defining ideal of
the semi-toric variety can be lifted to define the embedded pro-
jective variety. Applications to Koszul and Gorenstein properties
are discussed. Relations between LS-algebras and certain Seshadri
stratifications are studied.
Keywords: Seshadri stratification, standard monomial theory,
semitoric degeneration, normal toric varieties.

1. Introduction

Seshadri stratifications on an embedded projective variety X ⊆ P(V ) have
been introduced in [7] as a far reaching generalization of the construction
in [16]. One of the aims is to provide a geometric framework of standard
monomial theories such as Hodge algebras [13], LS-algebras [4], etc.

A Seshadri stratification consists of certain projective subvarieties Xp ⊆
X and homogeneous functions fp ∈ Sym(V ∗) indexed by a finite set A. The set
A inherits a partially ordered set (poset) structure from the inclusion relation
between the subvarieties Xp. These data, i.e. the collection of subvarieties Xp

and of homogeneous functions fp, p ∈ A, and the poset structure on A should
satisfy the regularity and compatibility conditions in Definition 2.1.

Out of a Seshadri stratification we construct in [7] a quasi-valuation V on
the homogeneous coordinate ring R := K[X̂] taking values in the vector space
QA, where X̂ is the affine cone of X. The quasi-valuation has one-dimensional
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leaves, hence its image in QA, denoted by Γ, parametrizes a vector space basis
of the homogeneous coordinate ring R. The set Γ, called a fan of monoids,
carries fruitful structures: it is a finite union of finitely generated monoids in
QA, each monoid corresponds to a maximal chain in A. Geometrically, this
quasi-valuation provides a flat degeneration of X into a union of projective
toric varieties1 whose irreducible components arise from the monoids in Γ.
Such a flat family is called a semi-toric degeneration of X. In general, the
degeneration constructed in this way is different from the degeneration in
Gröbner theory using a monomial order: the ideal defining the semi-toric
variety is radical. Roughly speaking, it is the deepest degeneration without
introducing any nilpotent elements.

We associate in [7] a Newton-Okounkov simplicial complex to a Seshadri
stratification, and introduce an integral structure on it to establish a connec-
tion between the volume of the simplicial complex and the degree of X with
respect to the embedding.

When all toric varieties appearing in the semi-toric degeneration are nor-
mal, or equivalently, all monoids in the fan of monoids Γ are saturated, such
a Seshadri stratification is called normal. From such stratifications, we are
able to derive a standard monomial theory in loc.cit.

As an application, the Lakshmibai-Seshadri path model [20, 21] for a
Schubert variety is recovered from the Seshadri stratification consisting of
Schubert subvarieties contained in it (see [8], [9] for details).

In this article, we study certain properties and applications of normal
Seshadri stratifications and establish a connection between certain Seshadri
stratifications and LS-algebras.

First we will show (Theorem 3.2) that for such a stratification, the sub-
duction algorithm lifts a reduced Gröbner basis of the defining ideal of the
semi-toric variety to a reduced Gröbner basis of the defining ideal of X with
respect to an embedding. The example of the flag variety SL3/B in P(V (ρ)),
with the Seshadri stratification given by its Schubert varieties, is discussed in
Section 6. As an application, we study how to determine the Koszul property
of the homogeneous coordinate ring R from properties of the stratification.
For this we introduce Seshadri stratifications of LS-type (Definition 2.9), and
prove (Theorem 3.3): if the stratification is of LS-type and the functions fp are
linear, then the algebra R is Koszul. We also show that the Gorenstein prop-
erty of the semi-toric variety can be lifted to R. As an application we show
(Proposition 4.4) that the irreducible components of the semi-toric variety
are not necessarily weighted projective spaces.

1In the article, toric varieties are reduced and irreducible, but not necessarily
normal.
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The Gröbner basis and the Koszul property have already been addressed
for Schubert varieties in [19], and for LS-algebras in [3, 5]. Our approach in
this article is different. For example, the Gröbner basis of the defining ideal of
X is obtained in an algorithmic way by lifting the semi-toric relations; more-
over, instead of being assumptions, weaker versions of quadratic straightening
relations in the definition of LS-algebras become now consequences.

In [6] we provided constructions of quasi-valuations and Newton-Okounkov
complexes on certain LS-algebras. In Section 5 we show that if an embedded
projective variety admits a balanced Seshadri stratification of LS-type, then
its homogeneous coordinate ring is endowed with an LS-algebra structure, and
the quasi-valuation arising from the Seshadri stratification coincides with the
one coming from the LS-algebra structure in loc.cit. On the other hand, if an
LS-algebra has the regular quotient property (Definition 5.3), then the asso-
ciated embedded projective variety admits a balanced Seshadri stratification
of LS-type whose associated fan of monoids coincides with the set of LS-paths
in the LS-algebra.

This article is organized as follows. In Section 2 we give a recollection
on normal Seshadri stratifications and several constructions around them.
Lifting Gröbner bases from the semi-toric varieties to the original variety
is discussed in Section 3, which is then used to study the Koszul property.
The Gorenstein property is discussed in Section 4; it is then applied to an-
swer the question whether all irreducible components in the semi-toric variety
are weighted projective spaces. In Section 5 we study the relation between
Seshadri stratifications and LS-algebras. Section 6 is devoted to an explicit
example, when X is the flag variety SL3/B, to illustrate the lifting procedure
of Gröbner bases.

2. Seshadri stratifications

Throughout the paper we fix K to be an algebraically closed field and V to be
a finite dimensional vector space over K. Except for the semi-toric varieties,
varieties and subvarieties in this paper are always assumed to be irreducible
and reduced. The semi-toric varieties are always assumed to be reduced, but
they are in general reducible. The vanishing set of a homogeneous function
f ∈ Sym(V ∗) will be denoted by Hf := {[v] ∈ P(V ) | f(v) = 0}. For a
projective subvariety X ⊆ P(V ), we let X̂ denote its affine cone in V .

In this section we briefly recall the definition of a Seshadri stratification
on an embedded projective variety. We quickly outline the construction of
associated quasi-valuations and their associated fan of monoids.

Certain special classes, such as normal Seshadri stratifications and Se-
shadri stratifications of LS-type will be discussed. Details can be found in [7].
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2.1. Definition

Let X ⊆ P(V ) be an embedded projective variety, Xp, p ∈ A, be a finite
collection of projective subvarieties of X and fp ∈ Sym(V ∗), p ∈ A, be ho-
mogeneous functions of positive degrees. The index set A inherits a poset
structure by requiring: for p, q ∈ A, p ≥ q if Xp ⊇ Xq. We say that p > q is a
covering relation if p > r ≥ q for some r ∈ A implies r = q. We assume that
there exists a unique maximal element pmax ∈ A with Xpmax = X.

Definition 2.1 ([7]). The collection of subvarieties Xp and functions fp for
p ∈ A is called a Seshadri stratification on X, if the following conditions are
fulfilled:

(S1) the projective subvarieties Xp, p ∈ A, are smooth in codimension one;
if q < p is a covering relation in A, then Xq is a codimension one
subvariety in Xp;

(S2) for p, q ∈ A with q �≤ p, the function fq vanishes on Xp;
(S3) for p ∈ A, it holds set-theoretically

Hfp ∩Xp =
⋃

q covered by p

Xq.

The functions fp will be called extremal functions.

It is proved in [7, Lemma 2.2] that if Xp and fp, p ∈ A, form a Seshadri
stratification on X, then all maximal chains in A share the same length dimX.
This allows us to define the length �(p) of p ∈ A to be the length of a (hence
any) maximal chain joining p with a minimal element in A. With this defini-
tion, �(p) = dimXp.

The set of all maximal chains in A will be denoted by C.
To such a Seshadri stratification, we associate an edge-colored directed

graph GA: as a graph it is the Hasse diagram of the poset A; the edges, which
correspond to covering relations in A, point to the larger element.

For a covering relation p > q in A, the affine cone X̂q is a prime divisor
in X̂p. According to (S1), the local ring OX̂p,X̂q

is a discrete valuation ring
(DVR). Let νp,q : OX̂p,X̂q

\ {0} → Z be the associated discrete valuation. It
extends to the field of rational functions K(X̂p) = Frac(OX̂p,X̂q

), also denoted
by νp,q, by requiring

νp,q

(
f

g

)
:= νp,q(f) − νp,q(g), for f, g ∈ OX̂p,X̂q

\ {0}.
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The edge q → p in the directed graph GA is colored by the integer bp,q :=
νp,q(fp), called the bond between p and q. According to (S3), the bonds
bp,q ≥ 1.

Since we will mainly work with the affine cones later in the article, it is
helpful to extend the construction one step further. If p ∈ A is a minimal
element, the affine cone X̂p is an affine line A1 hence 0 ∈ V is contained in
X̂p. We set Â := A∪{p−1} with X̂p−1 := {0}. The set Â is endowed with the
structure of a poset by requiring p−1 to be the unique minimal element. This
partial order is compatible with the inclusion of affine cones X̂p with p ∈ Â.

We associate to the extended poset Â the directed graph GÂ, an edge
between a minimal element p in A and p−1 is colored by bp,p−1 , the vanishing
order of fp at X̂p−1 = {0}: it is nothing but the degree of fp.

2.2. A family of higher rank valuations

From now on we fix a Seshadri stratification on X ⊆ P(V ). Let Rp := K[X̂p]
denote the homogeneous coordinate ring of Xp and K(X̂p) the field of rational
functions on Xp.

Let N be the least common multiple of all bonds appearing in GÂ.
To a fixed maximal chain C : pmax = pr > pr−1 > . . . > p1 > p0 in A, we

associate a higher rank valuation VC : K[X̂] \ {0} → QC as follows.
First choose a non-zero rational function gr := g ∈ K(X̂) and denote by

ar its vanishing order in the divisor X̂pr−1 ⊂ X̂pr . We consider the following
rational function

h := gNr

f
N ar

br
pr

∈ K(X̂pr),

where br := bpr ,pr−1 is the bond between pr and pr−1. By [7, Lemma 4.1],
the restriction of h to X̂pr−1 is a well-defined non-zero rational function on
X̂pr−1 . Let gr−1 denote this rational function. This procedure can be iterated
by restarting with the non-zero rational function gr−1 on X̂pr−1 . The output
is a sequence of rational functions

gC := (gr, gr−1, . . . , g1, g0)

with gk ∈ K(X̂pk) \ {0}.
Collecting the vanishing orders together, we define a map

VC : K[X̂] \ {0} → QC,
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g �→ νr(gr)
br

epr + 1
N

νr−1(gr−1)
br−1

epr−1 + . . . + 1
N r

ν0(g0)
b0

ep0 ,

where νk := νpk,pk−1 is the discrete valuation on the local ring OX̂pk
,X̂pk−1

,
extended to the fraction field, and epk is the coordinate function in QC cor-
responding to pk ∈ C. Such a map defines a valuation [7, Proposition 6.10]
having at most one-dimensional leaves [7, Theorem 6.16].

2.3. A higher rank quasi-valuation

A quasi-valuation on a K-algebra R with values in a totally ordered abelian
group A is a map V : R \ {0} → A satisfying the following conditions:

(a) V(x + y) ≥ min{V(x),V(y)} for all x, y ∈ R \ {0} with x + y �= 0;
(b) V(λx) = V(x) for all x ∈ R \ {0} and λ ∈ K∗;
(c) V(xy) ≥ V(x) + V(y) for all x, y ∈ R \ {0} with xy �= 0.

The map is actually a valuation if the inequality in (c) can be replaced by an
equality.

For a fixed maximal chain C ∈ C, the image of the valuations VC is not
necessarily finitely generated. To overcome this problem we introduce a quasi-
valuation by minimizing this family of valuations. We refer to [7, Section 3.1]
and [9, Section 2.6] for the basic properties of quasi-valuations.

A linearization “>t” of a given partial order “>” is a choice of a total
order that refines the given partial order, i.e. p > q implies p >t q. We fix a
linearization >t of the partial order on A and enumerate elements in A as

qM >t qM−1 >t . . . >t q1 >t q0

to identify QA with QM+1 by sending

a = aMeqM + aM−1eqM−1 + . . . + a0eq0 ∈ QA

to (aM , aM−1, . . . , a1, a0). We will consider the lexicographic ordering on QM+1

defined by: for a, b ∈ QM+1, a > b if the first non-zero coordinate of a− b is
positive. We will write a ≥ b if either a = b or a > b. The vector space QA

is then endowed with a total order which is clearly compatible with vector
addition.

We define a map

V : K[X̂] \ {0} → QA, g �→ min{VC(g) | C ∈ C},
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where QC is naturally embedded into QA and the minimum is taken with
respect to the total order defined above. By [7, Lemma 3.4], V is a quasi-
valuation.

Of course the quasi-valuation V does depend on the chosen linearization
≤t; when we need to stress such dependence we will write V≤t . However there
is one case where the value of V is independent of the linearization; this case
is crucial for the whole construction.

Lemma 2.2 ([9, Lemma 2.10]). For each extremal function fq, q ∈ A, we
have V(fq) = eq.

Note that the previous lemma is proved also in [7] (see [7, Lemma 8.3])
but only for linearizations ≤t preserving length, i.e. such that p <t q whenever
�(p) < �(q). However, all the other results of that paper regarding the quasi-
valuation V hold true for an arbitrary linearization ≤t with the same proofs
once the previous lemma has been established.

Let Γ := {V(g) | g ∈ K[X̂] \ {0}} ⊆ QA be the image of the quasi-
valuation. For a fixed maximal chain C ∈ C, we define a subset ΓC := {a ∈
Γ | supp a ⊆ C} of Γ where for a =

∑
p∈A apep ∈ QA, supp a := {p ∈ A | ap �=

0}. More generally, if C is a chain in A (not necessarily maximal), then set
ΓC := {a ∈ Γ | supp a ⊆ C}.

The following theorem is a consequence of [7, Proposition 8.6, Corol-
lary 9.1, Lemma 9.6] for length preserving linearizations; however, as recalled
above (see Lemma 2.2), the proofs of these results in [7] hold for an arbitrary
linearization.

Theorem 2.3. The following hold:

1. The quasi-valuation V takes values in QA
≥0.

2. For every maximal chain C, the subset ΓC is a finitely generated monoid.
3. The set Γ is a finite union of the finitely generated monoids ΓC. More

precisely, the union of the ΓC , C a chain in A, cover Γ and endow
it with the structure of a fan of monoids; that means if C,C1, C2 are
chains in A and C = C1 ∩ C2, then ΓC = ΓC1 ∩ ΓC2 .

For a homogeneous element g ∈ R \ {0}, we can recover its degree from
its quasi-valuation [7, Corollary 7.5, Proposition 8.7]: we denote a := V(g)
with a = (ap)p∈A, then deg(g) =

∑
p∈A deg(fp)ap ([7, Corollary 7.5]). This

suggests to define the degree of a =
∑

p∈A apep ∈ QA to be

(1) deg(a) :=
∑
p∈A

deg(fp)ap.
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2.4. Fan of monoids, semi-toric degenerations

We define a fan algebra K[Γ] as the quotient of the polynomial ring K[xa |
a ∈ Γ] by an ideal I(Γ) generated by the following elements: (1) xaxb − xa+b

if there exists a chain C ⊆ A containing both supp a and supp b; (2) xaxb if
there is no such a chain.

The quasi-valuation V defines a filtration on R := K[X̂] as follows: for
a ∈ Γ we define

R≥a := {g ∈ R \ {0} | V(g) ≥ a} ∪ {0}

and similarly R>a by replacing the inequality ≥ with >. By Theorem 2.3, R≥a

and R>a are ideals. The successive quotients R≥a/R>a is one-dimensional [7,
Lemma 10.2], and the associated graded algebra

grVR :=
⊕
a∈Γ

R≥a/R>a

is isomorphic to the algebra K[Γ] [7, Theorem 11.1].
Geometrically, it means that there exists a flat family π : X → A1 with

the generic fibre isomorphic to X and the special fibre Proj(grVR) a (reduced)
union of toric varieties [7, Theorem 12.2]. The (in general) reducible projective
variety Proj(grVR) is called a semi-toric variety, and we say X admits a semi-
toric degeneration to it.

2.5. Normal Seshadri stratifications

So far we have associated to a Seshadri stratification on X ⊆ P(V ) a fan of
monoids Γ, which is a finite union of finitely generated monoids ΓC.

A non-zero element a ∈ ΓC is called indecomposable if there does not
exist non-zero elements a1, a2 ∈ ΓC with min supp a1 ≥ max supp a2 such
that a = a1 + a2.

Proposition 2.4 ([7, Proposition 15.3]). Every element a ∈ ΓC admits a
decomposition into a sum

a = a1 + . . . + as

of indecomposable elements in ΓC satisfying min supp ai ≥ max supp ai+1 for
i = 1, 2, . . . , s − 1. If ΓC is saturated, such a decomposition is unique, which
is called the standard decomposition of a.
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Proposition 2.5. Assume that the monoid ΓC is saturated. Let a ∈ ΓC with
standard decomposition a = a1 + a2 + . . .+ as. Then a1 is the maximal inde-
composable element (with respect to the lexicographic order on QC) such that
a− a1 ∈ ΓC.

Proof. If a is indecomposable then there is nothing to prove. Assume that a

is not indecomposable and there exists an indecomposable element a′1 ∈ ΓC

such that a′1 > a1 and a− a′1 ∈ ΓC.
Let p ∈ C be maximal such that a′1 and a1 differ at the coordinate cor-

responding to p. From a′1 > a1, a′1 has larger coordinate at p than a1. If
p < min supp a1, then the coordinate of a1 at p is zero and the coordinates of
a′1 and a1 at any q > p are the same. It then follows a′1−a1 ∈ LC∩QC

≥0 = ΓC

with max supp (a′1 − a1) < min supp a1. This contradicts to the assumption
that a′1 is indecomposable. Therefore p ≥ min supp a1 ≥ max supp a2. From
a− a′1 ∈ ΓC it follows that a− a1 has positive coordinate at p, which means
p = max supp a2 and therefore p = min supp a1. It then follows a′1 − a1 ∈
LC ∩ QC

≥0 = ΓC, with max supp (a′1 − a1) ≤ min supp a1, contradicting the
assumption that a′1 is indecomposable.

This proposition provides an algorithm to find the standard decompo-
sition. First notice that for a fixed degree, there are only finitely many in-
decomposable elements of that degree since they are linearly independent.
Therefore for a fixed element a ∈ ΓC, the set of indecomposable elements,
from which we choose a1, is a finite set. Once such an indecomposable ele-
ment a1 is chosen, we can proceed inductively with a−a1. Such an algorithm
will terminate since deg(a− a1) < deg(a).

Definition 2.6. A Seshadri stratification is called normal if for any maximal
chain C ∈ C, the monoid ΓC is saturated, that is to say, LC ∩ QC

≥0 = ΓC,
where LC is the group generated by ΓC.

When a Seshadri stratification is normal, we can characterize a nice gen-
erating set of the fan algebra K[Γ].

Let G be the set of indecomposable elements in Γ ⊆ QA. If the Seshadri
stratification is normal, any a ∈ Γ admits a unique decomposition as above
into a sum of elements in G, called its standard decomposition.

The set G of indecomposable elements is not necessarily finite. In this
article we will concentrate on the case when G is finite.

Definition 2.7. A normal Seshadri stratification is called of finite type if G
is a finite set.
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2.6. Balanced Seshadri stratification

The quasi-valuation V depends on the choice of a linearization ≤t of the
partial order ≤ on A. In particular the fan of monoids Γ depends on ≤t;
to emphasize this dependence we write Γ≤t . Now denote by F a family of
linearizations of ≤. We say that a Seshadri stratification is F–balanced if
Γ≤t

1
= Γ≤t

2
for each pair of linearizations ≤t

1,≤t
2∈ F ; we will call this common

fan of monoids the fan of monoids (with respect to F).
We stress that in [7] the notion of a balanced stratification is introduced

with respect to the family of all length preserving linearizations (see the
discussion after Lemma 2.2). Moreover the definition in [7] (see [7, Definition
15.7]) seems stronger since it requires the existence of a common leaf basis
for each quasi-valuation defined in terms of a length preserving linearization.
Note however that such a basis exists always, indeed we have;

Theorem 2.8 ([9, Theorem 2.17]). Suppose that the Seshadri stratification
is F–balanced and let Γ be the fan of monoids with respect to F , then for each
a ∈ Γ there exists a function fa such that V≤t(fa) = a for each ≤t∈ F .

In particular, we will simply say that a Seshadri stratification is balanced
if it is F–balanced with respect to the family F of all linearizations of the
partial order on A.

2.7. Seshadri stratification of LS-type

In certain applications it is needed that the monoid ΓC is not only saturated,
but also of some special form. We recall the LS-lattice and the LS-monoid
associated to a maximal chain.

For a maximal chain C : pr > pr−1 > . . . > p1 > p0 in A, we abbreviate
bk := bpk,pk−1 the bond between pk and pk−1. The LS-lattice LSC associated
to C is defined as follows

LSC :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u =

⎛⎜⎜⎜⎜⎝
ur
ur−1

...
u0

⎞⎟⎟⎟⎟⎠ ∈ QC

∣∣∣∣∣∣∣∣∣∣∣

brur ∈ Z

br−1(ur + ur−1) ∈ Z

. . .
b1(ur + ur−1 + . . . + u1) ∈ Z

u0 + u1 + . . . + ur ∈ Z

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

The LS-monoid is its intersection with the positive orthant:

LS+
C := LSC ∩QC

≥0.
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Being an intersection of a lattice and an orthant, the monoid LS+
C is saturated.

As before, we consider QC ⊆ QA as a subspace of QA and thus view the LS-
monoid LS+

C as being embedded in QA.

Definition 2.9. A Seshadri stratification is called of LS-type, if

1. the extremal functions fp, p ∈ A, are all of degree one;
2. for every maximal chain C ∈ C, ΓC = LS+

C .

If (2) is true, then it is quite natural to ask that all extremal functions fp
have degree 1. Indeed,

deg(u) =
r∑

i=0
deg(fpi)ui

is surely an integer. Moreover, in general the monoids ΓC do depend on the
fixed linearization >t of the partial order ≥ in A. Hence also being of LS-type
depends of the linearization.

By definition of LS+
C , a Seshadri stratification of LS-type is normal.

For an indecomposable element u ∈ G, we fix a homogeneous element
gu ∈ R with V(gu) = u.

Lemma 2.10. In a Seshadri stratification of LS-type, the degree of any in-
decomposable element u ∈ G is one, hence deg(gu) = 1. In particular, a
Seshadri stratification of LS-type is of finite type.

Proof. Let u ∈ Γ be an indecomposable element and let C : pr > pr−1 >
. . . > p0 be a maximal chain in A such that suppu ⊆ C. We will look at u as
an element in QC and abbreviate its coordinate upk to be uk for 0 ≤ k ≤ r.
Assume that deg(u) > 1 (the degree is defined in (1)). There exists a maximal
index j such that

ur + ur−1 + . . . + uj ≥ 1.

We consider u′ ∈ QA with supp u′ ⊆ C defined by:

u′k :=

⎧⎪⎪⎨⎪⎪⎩
uk, if k > j;
1 − (ur + . . . + uj+1), if k = j;
0, if k < j;

where we wrote u′k := u′pk for short.
We show that u′ ∈ ΓC. From the assumption ΓC = LS+

C , it suffices to
show that for any 1 ≤ k ≤ r, bk(u′r + . . . + u′k) ∈ N. When k > j, it follows
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from the corresponding property of u; when k ≤ j, it suffices to notice that
u′r + . . . + u′k = 1 and bk ∈ N.

The difference u− u′ lies in the lattice LSC, and by construction its coor-
dinates are non-negative. Since the LS-monoid is saturated,

u− u′ ∈ LSC ∩QA
≥0 = LS+

C .

By comparing the degree, u− u′ �= 0, contradicts to the assumption that u is
indecomposable. The other statement deg(gu) = 1 follows from [7, Corollary
7.5].

Having different quasi-valuations, the elements gu, with u indecompos-
able, are linearly independent, and there could only be finitely many of
them.

Example 2.11. Let X(τ) ⊆ P(V (λ)) be a Schubert variety in a partial flag
variety G/Q where G is a semi-simple simply connected algebraic group, Q
is a parabolic subgroup in G and V (λ) is the irreducible representation of G
with a regular highest weight λ with respect to Q. We consider the Seshadri
stratification on X(τ) defined in [8] consisting of all Schubert subvarieties in
X(τ) and the extremal weight functions (see also Section 6). In loc.cit. it is
shown that this Seshadri stratification is of LS-type.

For a fixed maximal chain C : pr > pr−1 > . . . > p0 in C as above, a
monomial basis of the algebra generated by the monoid LS+

C can be described
in the following way as in [5]. We set br+1 and b0 to be 1 and for k = 0, 1, . . . , r,
Mk to be the l.c.m of bk and bk+1. We consider the following map

ιC : LS+
C → K[x0, x1, . . . , xr],

(ur, ur−1, . . . , u0) �→ xM0u0
0 xM1u1

1 · · · xMrur
r .

We need to verify that for any k = 0, 1, . . . , r, Mkuk ∈ N. Indeed, from
bk(ur + . . . + uk) ∈ N it follows Mk(ur + . . . + uk+1) + Mkuk ∈ N. Since bk+1
divides Mk, Mk(ur + . . . + uk+1) ∈ N and hence Mkuk ∈ N.

It is then straightforward to show as in loc.cit that the map is injec-
tive and extends to an injective K-algebra homomorphism ιC : K[LS+

C ] →
K[x0, x1, . . . , xr].

3. Gröbner bases and applications

3.1. Lifting defining ideals

We assume that the Seshadri stratification is normal and keep the notation
as in previous sections.



On normal Seshadri stratifications 1109

Let G = {ui | i ∈ J} be the set of indecomposable elements in Γ ⊆ QA,
indexed by the (possibly infinite) set J . Let S := K[yui

| i ∈ J ] be the
polynomial ring with variables indexed by G. For each ui ∈ G we fix a ho-
mogeneous element gui

∈ R such that V(gui
) = ui. Again we will sometimes

use the abbreviation yi := yui
and gi := gui

. According to [7, Proposition
15.6], {gi | i ∈ J} forms a generating set of the algebra R. A monomial
ga1

· · · gan in these generators is called standard, if (up to permuting the vari-
ables) min supp ak ≥ max supp ak+1 for any 1 ≤ k ≤ n − 1. Moreover, for
i ∈ J let gi be the class of gi in grVR. It is shown in loc.cit that {gi | i ∈ J}
generates grVR as an algebra.

We consider two algebra morphisms:

ψ : S → R, yi �→ gi,

ϕ : S → grVR, yi �→ gi.

The corresponding defining ideals of R and grVR are denoted by I := kerψ
and IV := kerϕ.

We recall the subduction algorithm from [7, Algorithm 15.15]. The input
of the algorithm is a non-zero homogeneous element f ∈ R, and the out-
put

∑
ca1,...,an

ga1
· · · gan is a linear combination of standard monomials which

coincides with f in R.
Algorithm:

(1). Compute a := V(f).
(2). Decompose a into a sum of indecomposable elements a = a1 + . . . + as

such that min supp ai ≥ max supp ai+1.
(3). Compute f and ga1

· · · gas in grVR to find λ ∈ K∗ such that f =
λga1

· · · gas .
(4). Print λga1

· · · gas and set f1 := f − λga1
· · · gas . When f1 �= 0 return to

Step (1) with f replaced by f1.
(5). Done.

We take r ∈ IV . To emphasize that it is a polynomial in yi, we write it
as r(yi). Let g := r(gi) ∈ R be its value at yi = gi (i.e. its image under ψ).
Applying the subduction algorithm to g returns the output h ∈ R, which is a
linear combination of standard monomials in R. This allows us to write down
the polynomial h(yi) ∈ S such that h(gi) = h. We set

r̃(yi) := r(yi) − h(yi) ∈ S.

The element r̃(gi) = g−h is contained in I. It has been shown in [7, Corollary
15.17] that the ideal I is generated by {r̃(gi) | r ∈ IV}.



1110 Rocco Chirivì et al.

3.2. Lifting Gröbner bases

In this paragraph we assume that the fixed normal Seshadri stratification is
of finite type.

The ideal IV is radical and generated by monomials and binomials. A
Gröbner basis of such an ideal is not hard to describe. In this section we will
lift a Gröbner basis of IV to a Gröbner basis of the ideal I. Later in Section 6,
we will work out as an example a Gröbner basis of the defining ideal of the
complete flag varieties SL3/B, embedded as a highest weight orbit.

Let G := {u1, . . . , um} be the set of indecomposable elements in Γ (the
stratification is assumed to be of finite type). Since the set G, as a subset of
Γ, is totally ordered by the lexicographic order > on QA, we assume without
loss of generality that

u1 > u2 > · · · > um.

We define a grading on S = K[yu1
, . . . , yum

] by requiring the degree of the
monomial yk1

u1
. . . ykmum

to be deg(yk1
u1
. . . ykmum

) := k1deg(u1) + . . . + kmdeg(um).
To be coherent with respect to the standard convention in Gröbner theory
[11], we consider the following total order  on monomials in S defined by:
for two monomials yk1

u1
. . . ykmum

and y�1u1
. . . y�mum

with k1, . . . , km, �1, . . . , �m ≥ 0,
we declare

yk1
u1
. . . ykmum

 y�1u1
. . . y�mum

if deg(yk1
u1
. . . ykmum

) > deg(y�1u1
. . . y�mum

), or deg(yk1
u1
. . . ykmum

) = deg(y�1u1
. . . y�mum

)
and the first non-zero coordinate in the vector (k1 − �1, . . . , km − �m) is neg-
ative. The total order  is a monomial order.

Identifying the monomials in S with NG, the above monomial order gives
a monomial order on NG. The fan of monoids Γ, being a subset of QA, can
be embedded into NG as follows: for a ∈ Γ with standard decomposition
a = ui1 + . . . + uis , we define its image in NG to be ei1 + . . . + eis where
eik ∈ NG is the characteristic function of uik ∈ G. Therefore Γ is endowed
with two orders: > and .

Notice that if a = a1 + . . . + at is the standard decomposition of a, then
it follows from min supp ak ≥ max supp ak+1 that a ≥ a1 ≥ · · · ≥ at.

Lemma 3.1. For a, a′ ∈ Γ with deg a = deg a′, the following holds: if a >a′,
then a ≺ a′.

Proof. Set supp a = {q1, . . . , qs} with q1 >t . . . >t qs and supp a′={q′1, . . . , q′s′}
with q′1 >t . . . >t q′s′ . We can write as elements in QA

a =
s∑

i=1
λieqi and a′ =

s′∑
i=1

λ′
ieq′i .
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Let a = a1 + . . . + at and a′ = a′1 + . . . + a′t′ be the standard decompositions
of a and a′ respectively.

If a is indecomposable, then a >a′ implies a >a′1 and hence a ≺ a′. We
assume that t ≥ 2. There are two cases to consider:

1. q1 = q′1, λ1 = λ′
1, . . ., qk−1 = q′k−1, λk−1 = λ′

k−1 but qk >t q′k.
2. q1 = q′1, λ1 = λ′

1, . . ., qk−1 = q′k−1, λk−1 = λ′
k−1, qk = q′k but λk > λ′

k.

In the first case, we start from the situation when qk ∈ supp a1. This
implies that for any 1 ≤ i ≤ k − 1, the coordinates of a and a1 at qi are
λi. If q′k /∈ supp a′1, then supp a′1 ⊆ {q′1, . . . , q′k−1} = {q1, . . . , qk−1}. It follows
a1 >a′1 and hence a ≺ a′. If q′k ∈ supp a′1, then the coordinates of a′1 at
q′1, . . . , q

′
k−1 are λ1, . . . , λk−1; it follows from the assumption that a1 >a′1, and

hence a ≺ a′.
If qk /∈ supp a1, we claim that q′k /∈ supp a′1. Once this is proved, it

follows that both supp a1 and supp a′1 are contained in {q1, . . . , qk−1} =
{q′1, . . . , q′k−1}. Now both a−a1 and a−a′1 are contained in ΓC for a maximal
chain C containing supp a. From Proposition 2.5, a1 ≥ a′1. Switching the role
of a and a′, we get a1 = a′1. We can thus repeat the argument in replacing a
by a − a1 and a′ by a′ − a′1. Eventually we will fall into the situation when
qk ∈ supp a1, and this case is settled since ≺ is a monomial order.

It remains to show the claim. From qk /∈ supp a1 it follows supp a1 ⊆
{q1, . . . , qk−1} = {q′1, . . . , q′k−1}. If q′k ∈ supp a′1 then by assumption a′1 −
a1 ∈ LC ∩ QC

≥0 = ΓC. From max supp (a′1 − a1) ≤ min supp a1 it follows
a′1 = a1 + (a′1 − a1) is not indecomposable, a contradiction.

We deal with the second case. Again we start from the situation when
qk ∈ supp a1: if q′k /∈ supp a′1, the same argument as in the first case shows
that a ≺ a′. Now assume that q′k ∈ supp a′1, the coordinates of a1 and a′1 at
q1 = q′1, . . . , qk−1 = q′k−1 are the same. If the coordinate of a1 at qk is larger
than that at q′k = qk for a′1 then we are done. Otherwise the same argument as
in the first case shows that min supp a1 = max supp a2 = qk, and hence a′1 =
a1 +(a′1−a1) is a decomposition of a′1 with min supp a1 ≥ max supp (a′1−a1),
contradicts to the assumption that a′1 is indecomposable.

If qk /∈ supp a1, with the same argument as in the first case, we can reduce
it to the case qk ∈ supp a1.

For a polynomial f ∈ S (resp. an ideal J ⊆ S), let in�(f) (resp. in�(J))
be the initial term of f (resp. initial ideal of J). Let Gred(IV ,) denote the
reduced Gröbner basis of IV with respect to .

Theorem 3.2. The set {r̃ | r ∈ Gred(IV ,)} forms a reduced Gröbner basis
of I with respect to .
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Proof. In the proof we will slightly abuse the notation: for f ∈ S, we will
write V(f) for V(ψ(f)), the quasi-valuation of the value of f at gi.

We first show that {r̃ | r ∈ Gred(IV ,)} forms a Gröbner basis. Let
Gred(IV ,) = {r1, · · · , rp}. According to [7, Theorem 11.1], grVR is isomor-
phic to K[Γ] as K-algebra, hence the ideal IV is generated by homogeneous
binomials and monomials. By the Buchberger algorithm [11, Chapter 2, Sec-
tion 7], for each 1 ≤ i ≤ p, if ri is not a monomial, then it has the form
in�(ri) − si, where si /∈ in�(IV) is a monomial in S. In this case we have
V(in�(ri)) = V(si), hence V(ri) ≥ V(in�(ri)).

We claim that r̃i = in�(ri) + ti where 1 ≤ i ≤ p and ti is a linear
combination of monomials which are strictly smaller than in�(ri) with respect
to . Indeed, the monomials appearing in ti are either si, or, according to
the subduction algorithm, those strictly larger than V(ri) with respect to >,
hence they are strictly larger than V(in�(ri)) with respect to >. Since the
homogeneity is preserved in the subduction algorithm, by Lemma 3.1, all
monomials appearing in ti are strictly smaller than in�(ri) with respect to .

Since {r1, . . . , rp} is a Gröbner basis of IV with respect to , we have:

in�(IV) = (in�(r1), . . . , in�(rp))
= (in�(r̃1), . . . , in�(r̃p))
⊆ in�((r̃1, . . . , r̃p))
⊆ in�(I).

As grVR is the associated graded algebra of R, the above inclusion implies
in�(IV) = in�(I). This shows that {r̃1, . . . , r̃p} is a Gröbner basis of I with
respect to the monomial order .

For the reducedness, it suffices to notice that monomials appearing in ti
are not contained in the initial ideal in�(I).

3.3. Koszul property

In this paragraph we fix a Seshadri stratification of LS-type on X. Let R be a
positively graded K-algebra R =

⊕
i≥0 Ri with R0 = K and finitely generated

in degree 1. The ground field K gets a natural graded R-module structure
by identifying K with the residue field of R. The algebra R is called Koszul
if K admits a graded free resolution as R-module, such that the matrices
describing the differentials have non-zero entries only of degree 1:

· · · → R(−i)bi → · · · → R(−1)b1 → R → K → 0.
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Or, equivalently, for all i ≥ 0, TorRi (K,K) is concentrated in degree i. A
positively graded K-algebra which is Koszul is automatically quadradic, that
means the algebra is generated by degree one elements, with defining relations
of degree 2. For this and other formulations and applications see [10, 17, 18].

We apply Theorem 3.2 to study the Koszul property of the homogeneous
coordinate ring R. In the case of Schubert varieties, the Koszul property is
sketched in [19, Remark 7.6] from a standard monomial theoretic point of
view. For LS-algebras, such a property is proved in [3, 5].

As an application of the lifting of Gröbner basis, we prove the following

Theorem 3.3. If X admits a Seshadri stratification of LS-type, then the
homogeneous coordinate ring R := K[X̂] is a Koszul algebra.

Proof. The algebra R is generated by {gu | u ∈ G}. We prove that R admits
a quadratic Gröbner basis, hence by [1, Page 654], R is Koszul. According to
Theorem 3.2 and the fact that the lifting preserves the degree, it suffices to
show the following lemma. Recall that the degree function was defined in (1)
in Section 2.3.

Lemma 3.4. The fan algebra K[Γ] is generated by degree 2 elements.

Proof. We first define an ideal J ⊆ K[yu1
, . . . , yum

] generated by J(ui, uj) for
ui, uj ∈ G with 1 ≤ i, j ≤ m. These elements J(ui, uj) are defined as follows:

1. If supp ui ∪ supp uj is not contained in a maximal chain in A, then

J(ui, uj) := yui
yuj

.

2. Otherwise ui +uj ∈ Γ: if min supp ui �≥ max supp uj and min suppuj �≥
max supp ui, then by [7, Proposition 15.3], we can write

ui + uj = u�1 + . . . + u�s

with min supp u�k ≥ max suppu�k+1 for 1 ≤ k ≤ s − 1. Comparing
the degree using Lemma 2.10, we have s = 2. By assumption we have
min supp u�1 ≥ max suppu�2 , then define

J(ui, uj) := yui
yuj

− yu�1
yu�2

.

We single out a property which will be used later in the proof: in the
case (2), if ui > uj then from the proof of Lemma 2.10, u�1 > ui.

We consider an algebra homomorphism

ϕ : K[yu1
, . . . , yum

] → K[Γ], yui
�→ xui

.
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Recall that for a1, . . . , ak ∈ G, the monomial xa1
· · ·xak is called standard if

for any i = 1, . . . , k−1, min supp ai ≥ max supp ai+1. This notion is similarly
defined for monomials in K[yu1

, . . . , yum
]. The standard monomials form a

linear basis of K[Γ]. This implies that the map ϕ is surjective.
From the definition of the defining ideal I(Γ) of K[Γ], ϕ sends the ideal

J to zero. The map ϕ induces a surjective algebra homomorphism

ϕ : K[yu1
, . . . , yum

]/J → K[Γ].

We show that modulo the ideal J , we can write any non-zero monomial in
yu1

, . . . , yum
as a standard monomial, hence standard monomials generate

K[yu1
, . . . , yum

]/J , implying that ϕ is an isomorphism.
Indeed, we consider a non-zero monomial ya1

· · · yas where a1, . . . , as ∈
G and proceed by induction on s. We assume that this monomial is not
standard because otherwise there is nothing to prove. When s = 2, we can
use J(a1, a2) ∈ J to write it as a standard monomial. For general s > 2,
without loss of generality we can assume that

a1 ≥ a2 ≥ . . . ≥ as

with respect to the total order > on QA, and their supports are contained in
a maximal chain C in A. There are two cases to consider:

(Case 1). If ya1
ya2

is standard, then apply induction hypothesis to write
ya2

· · · yas into a standard monomial yb2 · · · ybs with b2, . . . , bs ∈
G. Since a2 is the largest element among a2, . . . , as with respect
to >, we have max supp b2 = max supp a2, hence min supp a1 ≥
max supp b2 and we conclude that the monomial ya1

yb2 · · · ybs is
standard.

(Case 2). If ya1
ya2

is not standard, we use the s = 2 case to write it into a
standard monomial ya�1ya�2 : we have furthermore a�1 > a1. If the
monomial ya�2ya3

· · · yas is standard, then we are done. Otherwise
we apply the induction hypothesis to write it into a standard mono-
mial yb2 · · · ybs . Denote b1 := a�1 , we obtain a monomial yb1 · · · ybs
with b1 > a1. If yb1yb2 is standard then we are done, otherwise re-
peat the above procedure. Such a process will eventually terminate
because there are only finitely many elements in G.

The lemma is proved.

The proof of the theorem is then complete.
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Remark 3.5. One may also argue as in [3, 5]: By [7, Theorem 12.1], there
exists a flat family over A1 with special fibre Spec(grVR) and generic fibre
Spec(R). By [18, Theorem 1], if grVR is Koszul, so is R. Then one uses [17]
and Lemma 3.4.

Example 3.6. We consider the Seshadri stratification of G/Q given by all
its Schubert varieties as in Example 2.11. Theorem 3.3 implies that the ho-
mogeneous coordinate ring K[X̂(τ)] is a Koszul algebra (see also [19]).

4. Gorenstein property

Following [3, 5], we study the Gorenstein property of R from the viewpoint of
Seshadri stratifications. As an application, we will show that the irreducible
components of the semi-toric variety Proj(grVR) are not necessarily weighted
projective spaces.

We assume that the collection Xp and fp, p ∈ A defines a Seshadri
stratification on the embedded projective variety X ⊆ P(V ), and denote by
R := K[X̂] the homogeneous coordinate ring.

4.1. Gorenstein property

We start from the following

Proposition 4.1. If the fan algebra K[Γ] is Gorenstein, then R is Gorenstein.

Proof. By [7, Theorem 11.1], K[Γ] is isomorphic to grVR as an algebra. The
latter is the special fibre in a flat family where the generic fiber is R [7,
Theorem 12.1], the proposition follows from the fact that being Gorenstein is
an open property.

Remark 4.2. For LS-algebras, under certain assumptions, the above propo-
sition is proved in [3, 5].

When the poset A is linearly ordered, the Gorenstein property of R can
be determined effectively.

Let the poset A = {p0, . . . , pr} in the Seshadri stratification be linearly
ordered with pr > pr−1 > . . . > p0. The bond between pk and pk−1 will be
denoted by bk. Let Mk be the l.c.m of bk and bk+1 where b0 and br+1 are set
to be 1. Assume furthermore that the Seshadri stratification is of LS-type
(Definition 2.9).
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Theorem 4.3 ([5, Theorem 7.3]). Under the above assumptions, the algebra
R is Gorenstein if and only if for any k = 0, 1, . . . , r,

bk

( 1
Mr

+ 1
Mr−1

. . . + 1
Mk

)
∈ N.

The proof of the theorem realizes R as an invariant algebra of a finite
abelian group acting on a polynomial ring. Such a group can be chosen to
contain no pseudo-reflections, then the Gorenstein criterion in [23] can be
applied. In the proof, to show that R is indeed the invariant algebra, one
makes use of the homomorphism ιC after Definition 2.9: this is the reason
why the Seshadri stratification is assumed to be of LS-type.

4.2. An example where the components are not weighted
projective spaces

If all bonds appearing in the extended graph GÂ are 1, such a Seshadri strat-
ification is called of Hodge type [7, Section 16.1]. In this case the irreducible
components appearing in the semi-toric variety are all projective spaces. It
is natural to ask whether in general the irreducible components are weighted
projective spaces. In this section we give a Seshadri stratification of LS-type
on a toric variety, which is not a weighted projective space, such that the
semi-toric variety associated to the stratification is the toric variety itself.

We consider the graded C-algebra

R := C[x1, x2, . . . , x6]/(x2
2 − x1x3, x

2
5 − x4x6).

Let X := Proj(R) ⊆ P5 be the associated projective variety where the
embedding comes from the canonical surjection C[x1, x2, . . . , x6] → R.

We consider the following subvarieties in X: Xp3 := X,

Xp2 := Xp3 ∩ {[0 : 0 : a : b : c : d] ∈ P5 | a, b, c, d ∈ C},

Xp1 := Xp2 ∩ {[0 : 0 : 0 : b : c : d] ∈ P5 | b, c, d ∈ C},

Xp0 := Xp1 ∩ {[0 : 0 : 0 : 0 : 0 : d] ∈ P5 | d ∈ C};

they are projective subvarieties by taking the reduced structure. Let

fp3 := x1, fp2 := x3, fp1 := x4, fp0 := x6.
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We leave it to the reader to verify that these data define indeed a Seshadri
stratification on X with the following colored Hasse graph

p3 p2
2�� p1

1�� p0.
2��

The index set A is a linear poset.
This Seshadri stratification is of LS-type. Indeed, we need to show that

Γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩u =

⎛⎜⎜⎜⎝
u3
u2
u1
u0

⎞⎟⎟⎟⎠ ∈ Q4

∣∣∣∣∣∣∣∣∣
2u3 ∈ N

u3 + u2 ∈ N

2(u3 + u2 + u1) ∈ N

u3 + u2 + u1 + u0 ∈ N

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Since there exists only one maximal chain, the quasi-valuation V is in fact a
valuation. It is straightforward to verify that for a monomial xa1

1 · · · xa6
6 ,

V(xa1
1 · · ·xa6

6 ) =

⎛⎜⎜⎜⎝
a1
a3
a4
a6

⎞⎟⎟⎟⎠ + 1
2

⎛⎜⎜⎜⎝
a2
a2
a5
a5

⎞⎟⎟⎟⎠ .

The monomials

{xa1
1 · · · xa6

6 | a1, a5 ∈ {0, 1}, a2, a3, a4, a6 ∈ N}

generate the ring R, and they have different valuations. As a consequence,
Γ is contained in the LS-monoid LS+

A. To show the other inclusion, for u :=
(u3, u2, u1, u0) ∈ LS+

A, the monomial with exponent

([u3], 2(u3 − [u3]), u2 − (u3 − [u3]), [u1], 2(u1 − [u1]), u0 − (u1 − [u1]))

has u as valuation, where [u] is the integral part of u.
The associated graded algebra grVR is isomorphic to R, and the flat

family over A1 is trivial. So X itself appears as the irreducible component in
the degenerate variety.

Proposition 4.4. The projective variety X is not isomorphic to a weighted
projective space.

Proof. Since dimX = 3, we consider the weighted projective spaces P(a) with
a = (a0, a1, a2, a3) where a0 ≤ a1 ≤ a2 ≤ a3. Without loss of generality, we
assume that the weights a are normalized, that is to say,

g.c.d(a1, a2, a3) = g.c.d(a0, a2, a3) = g.c.d(a0, a1, a3) = g.c.d(a0, a1, a2) = 1.
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The algebra R is Gorenstein because it is a local complete intersection al-
gebra, note that the ideal is generated by a regular sequence. (Alternatively,
one can also refer to Theorem 4.3). It suffices to consider those weighted
projective spaces which are Gorenstein. For weighted projective spaces with
normalized weights, being Gorenstein and being Gorenstein-Fano are equiv-
alent, hence by [12, Example 8.3.3, Exercise 8.3.2], P(a) is Gorenstein if and
only if

ai | a0 + a1 + a2 + a3 for i = 0, 1, 2, 3.

It is not hard to see that there are only 14 of them (see also [14, Table 1])
with

a = (1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 4, 6), (1, 2, 2, 5),
(1, 2, 3, 6), (1, 2, 6, 9), (1, 3, 4, 4), (1, 3, 8, 12), (1, 4, 5, 10),
(1, 6, 14, 21), (2, 3, 3, 4), (2, 3, 10, 15).

We compare the singular loci of X and P(a) with the weights a from the
above list. The singular locus of X is a disjoint union of two P1. To determine
the singular locus of P(a), we use the criterion from [15, Section 1]. For a
prime number p, denote

Pp(a) := {x ∈ P(a) | p | ai for those i with xi �= 0}.

Then the singular locus of P(a) is given by the union of all Pp(a).
From this description, it is clear that only P(2, 3, 3, 4) has as singular locus

a disjoint union of two copies of P1.
It remains to show that X is not isomorphic to P(2, 3, 3, 4). We argue

by contradiction: assume that they are isomorphic as abstract varieties. By
[2, Theorem 4.1], such an isomorphism can be chosen to be toric. The toric
variety X has 4 two-dimensional torus orbit closures which are all isomorphic.
However, P(2, 3, 3, 4) has P(2, 3, 4) ∼= P(1, 2, 3) and P(2, 3, 3) ∼= P(1, 1, 2) as
two-dimensional torus orbit closures; they are not isomorphic by looking at
the singularities. This contradiction completes the proof.

The above proof, although being not straightforward, is an application of
the Gorenstein property. We present below a direct proof of Proposition 4.4,
which was suggested to us by one of the referees.

Proof of Proposition 4.4. Consider the polytope P in the lattice M = Z3

with vertices

p1 := (1, 0, 0), p3 := (−1, 0, 0), p4 := (0, 1, 1), p6 := (0,−1, 1).
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The lattice polytope P has exactly 6 lattice points: the extra two such points
are p2 := (0, 0, 0) and p5 := (0, 0, 1). Consider the cone

τ = R≥0(P × {1}) ⊆ R4

obtained by placing P at height 1. The semigroup algebra of the monoid τ∩Z4

is exactly the C-algebra R: the 6 lattice points p1, . . . , p6 of the polytope P
correspond to the generators x̄1, . . . , x̄6 in R. So one can view P as the moment
polytope of the toric variety X = Proj(R) ⊆ P5, polarised by the line bundle
OX(1). It follows that X is the toric variety associated to the normal fan of
P , which is the complete fan in N = HomZ(M,Z) = Z3 with rays spanned
by (0,−1, 1), (0, 1, 1), (−1, 0,−1), (1, 0,−1).

The sublattice of N spanned by these vectors has index 2; it follows that
the divisor class group of X has 2-torsion. But the divisor class group of a
weighted projective space has no torsion [12, Exercise 4.1.5].

Remark 4.5. If X admits a Seshadri stratification of LS-type, the proof
of [5, Theorem 6.1] can be applied verbatim to show that the irreducible
components appearing in the semi-toric variety (see Section 2.4) are quotients
of a projective space by a finite abelian subgroup in a general linear group.
Moreover, such a subgroup can be chosen to contain no pseudo-reflections.

5. Relations to LS-algebras

In this section we discuss in detail the relation between Seshadri stratifications
of LS-type and LS-algebras [4, 6].

5.1. LS-algebras

We start with the definition of an LS-algebra, for further details we refer to
[3, 4, 5]. Let A be a finite graded poset with a unique minimal element and
a unique maximal element. Suppose that we have an edge-colouring of the
Hasse diagram of A by positive integers: if p covers q in A we denote the
colour of the edge p > q by bp,q and call it the bond from p to q. Such a
colouring is a system of bonds if for any two maximal chains

p = pt,i > pt−1,i > . . . > p1,i = q, i = 1, 2

from p to q in A we have

gcd{bpj,1,pj−1,1 | 2 ≤ j ≤ t} = gcd{bpj,2,pj−1,2 | 2 ≤ j ≤ t}
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Given a maximal chain C in A, we consider the set LS+
C as defined in Sec-

tion 2.7 with respect to the given set of bonds of A as introduced above.
Further the elements of the fan of monoids

LS+
A :=

⋃
C∈C

LS+
C ⊆ QA

are called LS-paths. As proved in [4] any LS-path u can be decomposed
as a sum u = u1 + · · · + un of LS-paths of degree 1 with min suppuj ≥
max suppuj+1 for all j = 1, . . . , n− 1; moreover all LS-paths of degree 1 are
indecomposable (compare with Lemma 2.10 above, this the standard decom-
position of u).

Let >t be a linearization of the partial order of A and denote by > the
lexicographic order on QA associated to this total order. The set of LS-paths
LS+

A can be totally ordered by this lexicographic order. Furthermore, we define
another (stronger but in general not total) order � on the set QA (which
contains LS+

A) in the following way:

u � u′ if u > u′ for any linearization >t.

Let R be a commutative K–algebra and fix an injection u �−→ xu ∈ R of
the set of LS-paths of degree 1 in R. A monomial xu1

· · ·xun
is said to be

standard if min supp uj ≥ max suppuj+1 for all j = 1, . . . , n − 1. Note that,
by the definition of LS-paths, if two LS-paths u1 and u2 have comparable
supports, i.e. supp u1 ∪ supp u2 is contained in a maximal chain of A, then
u1 + u2 is an LS-path too.

Using the standard decomposition of LS-paths, we extend the given injec-
tion to LS+

A: if u = u1 + · · ·+un is the standard decomposition of an LS-path
u, then we set xu = xu1

· · · xun
∈ R; note that this is a standard monomial.

We can now give the definition of LS-algebra.

Definition 5.1. [7, Definition 3.1] The algebra R is an LS-algebra over the
poset with bonds A if

(LS1) the set xu, u ∈ Γ, is a K–vector space basis of R and the degree of
LS-paths induces a grading for R,

(LS2) if a monomial xu1
xu2

is non-standard monomial of degree 2 and

xu1
xu2

=
∑
j

cjxuj,1
xuj,2

is the unique relation, called a straightening relation, expressing xu1
xu2

as a K–linear combination of standard monomials, as guaranteed by
(LS1), then uj,1 + uj,2 � u1 + u2 for any j such that cj �= 0,
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(LS3) if the two LS-paths of degree 1 in (LS2) have comparable supports and
u1 + u2 = u′1 + u′2 is the standard decomposition of u1 + u2 then the
monomial xu′

1
xu′

2
does appear in the straightening relation for xu1

xu2

with a non-zero coefficient.

Moreover if for any pair u1, u2 of LS-paths of degree 1 with comparable
supports the non-zero coefficient in (LS3) is 1, we say that the LS-algebra R
is special.

Finally, the LS-algebra R is discrete if the straightening relations are:

(i) for LS-paths u1, u2 of degree 1 with comparable supports

xu1
xu2

= cxu′
1
xu′

2
, c �= 0

where u1 + u2 = u′1 + u′2 is the standard decomposition of u1 + u2,
(ii) for LS-paths u1, u2 of degree 1 with non-comparable supports

xu1
xu2

= 0.

For an arbitrary LS-algebra one can define quasi-valuations with values
the set of LS-paths; let us see in details this construction. Let R be an LS-
algebra over the poset with bonds A, fix a linearization >t of the partial order
of A and consider the following map

R \ {0} �
n∑

j=1
cjxuj

Ṽ�−→ min uj ∈ QA

where the minimum runs over all 1 ≤ j ≤ n such that cj �= 0 and is with
respect to the lexicographic order induced by >t on QA.

Proposition 5.2. The map Ṽ is a quasi-valuation on R.

Proof. Let x =
∑r

j=1 ajxuj
and y =

∑r′

k=1 bkxu′
k

be two non-zero elements of
R with a1, . . . , ar, b1, . . . , br′ �= 0. Suppose that uj ≥ u1 for all j = 1, . . . , r
and u′k ≥ u′1 for all k = 1, . . . , r′; in particular Ṽ(x) = u1 and Ṽ(y) = u′1. If
x + y �= 0 then one of the uj , u′k does appear in this sum and Ṽ(x + y) ≥
min{u1, u

′
1}.

Now we consider the product xy =
∑

j,k ajbkxuj
xu′

k
and assume that it

is non-zero. If a monomial xuj
xu′

k
in this sum is non-standard then, using

(LS2), we replace it by a sum of standard monomials xu with u � uj + u′k; in
particular u ≥ uj + u′k. It is then clear that Ṽ(xy) ≥ u1 + u′1.
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Now let R be an LS-algebra and, for a fixed p ∈ A, consider the vector
subspace Ip of R spanned by all xu with u ∈ Γ such that max suppu �≤ p. It
is easy to prove that Ip is an ideal by (LS2).

We want to study the relation between Seshadri stratifications and LS-
algebras. Given the definition of a Seshadri stratification is natural to consider
the following special class of LS-algebras.

Definition 5.3. An LS-algebra R has the regular quotient property if for each
p ∈ A the quotient R/Ip is a regular in codimension 1 domain.

5.2. From Seshadri stratifications to LS-algebras

As a first relation between Seshadri stratifications and LS-algebras we see that
balanced Seshadri stratifications of LS-type give rise to LS-algebras with the
regular quotient property.

Theorem 5.4. If the embedded variety X ⊆ P(V ) has a balanced Seshadri
stratification of LS-type, then

(1) the colouring of the edge p > q of the Hasse diagram of A by the bond bp,q
of the stratification is a system of bonds for the poset A; in particular
LS+

A = Γ;
(2) the coordinate ring R of the affine cone of X in V is an LS-algebra over

the poset with bonds A;
(3) for any p ∈ A, the quotient R/Ip is the coordinate ring of the affine cone

over the stratum Xp and, in particular, it is a regular in codimension 1
domain; so the LS-algebra R has the regular quotient property;

(4) let V be a quasi-valuation defined by the Seshadri stratification of X and
a choice of a linearization of the partial order on A, then the associated
graded algebra grVR is a discrete LS-algebra over the poset with bonds A;
in particular it is isomorphic to the (unique) special discrete LS-algebra
over A;

(5) the quasi-valuation V of (4) is equal to the (algebraically defined) quasi-
valuation Ṽ with respect to the same linearization >t.

Proof. Let Xp, fp, p ∈ A, be the strata and the extremal functions for a
balanced Seshadri stratification of LS-type of X.

First of all the bonds bp,q, p covering q in A, fullfill the gcd conditions
on chains as is proved in [9, Corollary 4.8] (the proof of Corollary 4.8 in [9]
is for the application to Schubert varieties, however the same proof holds for
arbitrary stratification of LS-type). So (1) is proved.
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Now, by [9, Theorem 2.17], there exist homogeneous xu, u ∈ Γ of degree
1, such that V(u) = u for any quasi-valuation V defined via the stratification.
Our aim is to prove that R is an LS-algebra with respect to the injection
u �−→ xu.

Let us fix a quasi-valuation V defined in terms of a fixed linearization >t

of the partial order on A.
Since the stratification is normal, we extend this injection to Γ by setting

xu = xu1
xu2

· · · xun
if u = u1 +u2 + · · ·+un is the standard decomposition of

the LS-path u ∈ Γ of degree n. Note that we have V(xu) = u for each u ∈ Γ
since V is additive for values with comparable supports by [7, Proposition 8.9].

By [7, Lemma 10.2], the leaves of V over the elements in Γ are one-
dimensional; it is then clear that the collection of functions xu, u ∈ Γ, is a
K–vector space basis for R. This proves (LS1).

We know V(xu) = u for each u ∈ Γ, so the quasi-valuation takes pairwise
different values on the elements of the basis. If one expresses a function f =∑

j cjxuj
as a linear combination of these basis elements, then by the standard

properties of quasi valuations we have:

V(
∑
j

cjxuj
) = min{uj | cj �= 0}.

Suppose that u1, u2 are LS-paths of degree 1 and that the monomial xu1
xu2

is non-standard. Let

xu1
xu2

=
k∑

j=1
cjxuj,1

xuj,2

be the expression of the left-hand side as a linear combination of standard
monomials guaranteed by (LS1) and assume also that cj �= 0 for each j. Being
V a quasi-valuation we have

min{uj,1 + uj,2 | 1 ≤ j ≤ k} = V(
∑k

j=1 cjxuj,1
xuj,2

)
= V(xu1

xu2
)

≥ V(xu1
) + V(xu2

)
= u1 + u2.

So we have proved that uj,1 + uj,2 ≥ u1 + u2 for any 1 ≤ j ≤ k. But the
quasi-valuation V is arbitrary, i.e. the linearization >t is arbitrary, hence we
get uj,1 + uj,2 � u1 + u2 for any 1 ≤ j ≤ k and (LS2) is proved.

Now we assume further that u1 and u2 have comparable supports. Then
V(xu1

xu2
) = u1 + u2, again by [7, Proposition 8.9]; so we get u1 + u2 =

min{uj,1 + uj,2 | 1 ≤ j ≤ n}. In particular there exists 1 ≤ j0 ≤ n such that
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uj0,1 + uj0,2 = u1 + u2 and, being xuj0,1
xuj0,2

standard, this expression is the
standard decomposition of the LS-path u1 + u2. Hence we have proved (LS3)
and the proof of (2) is complete. The last point (5) is a direct consequence of
(1) and (2).

The point (3) is clear since the ideal Ip is the vanishing ideal of Xp by
(vi) of [7, Theorem 15.12], in particular R/Ip is a regular in codimension 1
domain since Xp is an irreducible variety smooth in codimension 1.

Finally (4) follows at once by [7, Theorem 11.1] since the fan algebra K[Γ]
is isomorphic to the unique special discrete algebra over the poset with bonds
A.

5.3. From LS-algebras to Seshadri stratifications

Given an LS-algebra R having regular quotient property, we define in this
paragraph a balanced Seshadri stratification of LS-type on Proj(R).

We need a combinatorial result about LS-paths.

Lemma 5.5. Let u, v′, v′′ ∈ LS+
A be LS-paths of degree k, 1 and k − 1, re-

spectively, and suppose that min supp v′ ≥ max supp v′′. If u � v′ + v′′ then
there exists u′, u′′ ∈ LS+

A such that: (1) u′ has degree 1, u′′ has degree k − 1,
(2) min supp u′ ≥ max supp u′′ and (3) u′ � v′.

Proof. Let u = u1 + u2 + · · · + uk be the standard decomposition of u (in
LS-paths of degree 1). Note that

u1 + u2 + · · · + uk = u � v′ + v′′

implies u1 � v′ since min supp v′ ≥ max supp v′′. Hence it is enough to set
u′ := u1, u′′ := u2 + · · · + uk.

In what follows, for an LS-algebra R, we will always denote by xu the
element corresponding to the LS-path u via the injection LS+

A −→ R. In
particular, xp ∈ R correspond to the LS-path p for p ∈ A.

In the verification of (S3) of the definition of a Seshadri stratification in
the next theorem we will need the following result.

Lemma 5.6. Let R be an LS-algebra on the poset with bonds A whose max-
imal element is p = pmax. Then the radical

√
R · xp is spanned by the set

{xu | p ∈ supp u} as a vector space, hence it is equal to the intersection⋂
p→q Iq.
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Proof. Let u ∈ LS+
A be such that p ∈ supp u. We want to show that xu ∈√

R · xp. Let N ∈ N be such that n := Nu(p) is a (positive) integer. If
supp u = {p} then the claim is trivial; so we suppose that suppu has at least
two elements. The monomial xNu is non-standard and in its straightening
relation

xNu =
∑

cixui

we have ui � Nu. Hence ui = np + u′i, with u′i ∈ LS+
A and we can write

xui
= xnpxu′

i
. So we have

xNu = xnp (
∑

cixu′
i
) ∈ R · xp

and we have proved that xu is in the radical of R · xp.
On the other hand let

x =
h∑

i=1
cixui

be an element of R such that xn ∈ R · xp written as a linear combination
of basis vector with ci �= 0. Let p′ be an element appearing in the set of
max suppui, i = 1, . . . , h, and suppose, by contradiction, that p′ �= p.

Consider the projection R � y �−→ y = y + Ip′ ∈ R/Ip′ and recall that by
[6, Proposition 3.5] R/Ip′ is an LS-algebra on the subset Ap′ = {q ∈ A | q ≤ p′}
with basis xu, u ∈ LS+

A such that max suppu ≤ p′.
We have

x =
∑

max suppui≤p′
cixui

;

so x �= 0. On the other hand xn ∈ R · xp and we find xn = 0 since p′ < p;
we have thus proved that x is a non-zero nilpotent element in the LS-algebra
R/Ip′ . But by [4, Proposition 27] the LS-algebra R/Ip is reduced and we have
a contradiction.

We isolate in the following lemma the proof that in a suitable localization
of the LS-algebra R, the ideal Iq, with q covered by the maximal element in the
poset A, is principal. This will be used in the next theorem in the computation
of the geometrically defined bond of the stratification associated to R.

This lemma is also proved in [6] with a restrictive hypothesis on the LS-
algebra R (see the proof of [6, Theorem 5.1]). Since this result is the key point
in the construction of that paper, it would be interesting to generalize all the
results in [6] to the less restrictive hypothesis of an LS-algebra R such that
each quotient R/It, t ∈ A, is a domain.
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Lemma 5.7. Let R be an LS-algebra on the poset with bonds A. Let p = pmax
be the maximal element in A and let q ∈ A be covered by p. Denote by b the
bond from p to q in A and let u := p/b + (1 − 1/b)q ∈ LS+

A.
If Iq is a prime ideal, then there exists a finitely generated multiplicative

set M ⊆ R such that: M ∩ Iq = ∅ and M−1Iq = M−1R · xu.

Proof. Denote by Gq the set of LS-paths u′ of degree 1 such that
max suppu′ �≤ q.

For 0 ≤ k ≤ b let

uk := k

b
p + (1 − k

b
)q ∈ LS+

A;

these are LS-paths of degree 1 and, in particular, u0 = q and u1 = u. For each
1 ≤ k ≤ b, we have uk ∈ Gq and, moreover, xuk

xq is a standard monomial;
note that these are all the LS-paths u′ in Gq such that xu′xq is standard.

Now set x := xu and, for 1 ≤ k ≤ b, xk := xuk
. Consider the straightening

relation for the non-standard monomial xk with k ≥ 2:

(SRk) xk = cxkx
k−1
q +

∑
i

cixuk,i

For each i we have uk,i � uk + (k − 1)q. By Lemma 5.5 we can write uk,i =
u′k,i + u′′k,i with u′k,i of degree 1, min suppu′k,i ≥ max supp u′′k,i and u′k,i � uk.
So xuk,i

= xu′
k,i
xu′′

k,i
and, either u′k,i = uk, hence xu′

k,i
= xk, or u′k,i � uk. If we

set
yk := cxk−1

q +
∑

i, u′
k,i

=uk

cixu′′
k,i

we can rewrite (SRk) as

(SR′
k) xk = ykxk +

∑
i, u′

k,i
�uk

cixu′
k,i
xu′′

k,i

moreover we have also yk �∈ Iq since c �= 0 and xk−1
q is linearly independent of,

i.e. different from, the other monomials since otherwise uk,i = uk + (k − 1)q.
We set y1 := xq and we define M as the multiplicative subset of R gener-

ated by y1, y2, . . . , yb. Being Iq a prime ideal and yk �∈ Iq for each 1 ≤ k ≤ b,
we have M ∩ Iq = ∅.

The ideal Iq is clearly generated, as an ideal of R, by Gq. Now we claim
that xu′ is a multiple of x in M−1R for each u′ ∈ Gq; once this is proved we
clearly get M−1Iq = M−1R · x.
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In order to prove our claim about xu′ , for u′ ∈ Gq, we proceed by (inverse)
induction on �; we consider two cases: (A) xu′xq is standard and (B) xu′xq is
non-standard.

Case (A). If xu′xq is standard then, as already noted above, u′ = uk for
some 1 ≤ k ≤ b. The claim is clearly true if k = 1, so suppose that k ≥ 2. By
(SR′

k) we have

xk = 1
yk

(xk −
∑

i, u′
k,i

�uk

cixu′
k,i
xu′′

k,i
)

and the right hand side is in M−1R ·x by induction. Note that the case k = b
(for which we never have u′k,i � uk gives the basic step for the induction).

Case (B). Let u′ ∈ Gq be such that xu′xq is non-standard and let

(SRu′) xu′xq =
∑
i

cixu′′
i,1
xu′′

i,2

be the corresponding straightening relation in R where both xu′′
i,1

and xu′′
i,2

are
of degree one. We want to show that u′′i,1�u′. Note that u′′i,1+u′′i,2 �= u′+q since
only in the left hand side we have an LS-path. So, by LS2, u′′i,1 + u′′i,2 � u

′ + q,
hence u′′i,1 � u′ and if u′′i,1 = u′ then u′′i,2 � q by [6, Lemma 2.10]. In this
last case we had max suppu′′i,2 = p, but min supp u′′i,1 ≥ max supp u′′i,2 and
we got min supp u′′i,1 = p; so u′ = u′′i,1 = p that is impossible since xu′xq is
non-standard.

So in the sum in the right hand side of (SRu′) we have u′′i,1 � u′ and,
in particular, max suppu′′i,1 ≥ max suppu′, so u′′i,1 ∈ Gq and, by induction
xu′′

i,1
∈ M−1R · x. We conclude that also xu′ is a multiple of x in M−1R since

xq = y1 ∈ M . The lemma is proved.

We are now ready to see how an LS-algebra with the regular quotient
property induces a Seshadri stratification of LS-type.

Theorem 5.8. Let R be an LS-algebra with the regular quotient property.
Denote by V ⊆ R the K–vector subspace of elements of degree 1 and let
X := Proj(R) ⊆ P(V ). For p ∈ A, let Xp be the subvariety of X defined by
Ip and denote by xp the element of R corresponding to the LS-path p in the
embedding LS+

A −→ R. Then

(1) the collection of subvarieties Xp and extremal functions xp for p ∈ A,
defines a Seshadri stratification on the projective variety X;

(2) the bonds of the stratification in (1) coincide with the (abstract) system
of bonds defined on A;
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(3) the stratification in (1) is balanced and of LS-type. Fix a linearization
>t of the partial order on A. The quasi-valuation V associated to the
Seshadri stratification in (1) has as set of values the set of LS-paths on
A. In particular, the quasi-valuation V coincides with the (algebraically
defined) quasi-valuation Ṽ in proposition 5.2.

Proof. First we prove that we have a Seshadri stratification. For each p ∈ A,
the quotient R/Ip is an LS-algebra over the poset with bonds Ap = {q ∈
A | q ≤ p} by [6, Proposition 3.5]. In particular it is a finitely generated
domain (hence reduced).

First of all, this applies to R as well (take p = pmax): so X := Proj(R) is
a projective (irreducible) variety in P(V ). Now let Xp := Proj(Xp) for p ∈ A.
Then Xq ⊆ Xp if and only if Ip ⊆ Iq, which is equivalent to q ≤ p.

Moreover dimXp = dimR/Ip is the length of the poset Ap by [4, Theo-
rem 22], i.e. dimXp is the length of p in A. So, if p covers q in A, the subvariety
Xq is of codimension one in Xp. Furthermore all the Xp’s are smooth in codi-
mension one since R has the regular quotient property and so the quotient
R/Ip are regular in codimension one. All this proves (S1) in the definition of
a Seshadri stratification.

Note that xp ∈ Iq if and only p �≤ q, so xp vanishes on Xq if and only if
p �≤ q. This proves (S2).

The last condition (S3) is local with respect to the strata and, moreover,
the coordinate ring of the cone over the stratum Xp, p ∈ A, is R/Ip, still
an LS-algebra. So it is enough to prove that the zero-locus of xp, p = pmax,
is set-theoretically the union of the strata Xq’s with q covered by p. Let us
denote by I(Y ) the ideal in R of the functions vanishing on Y ⊆ X. We have

I(
⋃
p→q

Xq) =
⋂
p→q

I(Xq) =
⋂
p→q

Iq =
√
R · xp

where in the last equality we have used Lemma 5.6. Thus (S3) and (1) are
proved.

We stress that in the remaining part of the proof we will not use that the
quotients A/Ip, p ∈ A, are regular in codimension one domains but only that
they are domains.

Now we prove (2) for a special covering p = pmax > q in A. The bond
bp→q is by definition the vanishing order νp,q(xp) of xp on Xq. The LS-algebra
R has the regular quotient property, in particular the ideal Iq is prime, hence,
Lemma 5.7, there exists a multiplicative set M = 〈y1, y2, · · · , yb〉 (using the
same notation of Lemma 5.7) of R such that M ∩ Iq = ∅ and M−1Iq =
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M−1R · x, where x := xu, u = p/b+ (1− 1/b)q ∈ LS+
A and b is the (abstract)

bond in A from p to q.
Consider the open set U of X defined by y1, y2, . . . , yb �= 0. The inter-

section U ′ := Xq ∩ U is a non-empty (hence dense) open set of Xq since
M ∩ Iq = ∅ and Xq is defined by Iq in X. The ideal M−1Iq is generated
by x in M−1R, so U ′ is defined by the single equation x = 0 in U . Hence
νp,q(x) = 1. From the proof of Lemma 5.7 we have the equation (SR′

b):

xb = ybxb = ybxp

hence νp,q(xp) = bνp,q(x) = b as claimed.
The next step is to consider any covering p′ > q′ in A. By [6, Proposi-

tion 3.5] the ring R/Ip′ is an LS-algebra over the poset with bonds Ap′ with
injection Ap′ � u �−→ xu + Ip′ ∈ R/Ip′ . It is also clear that Iq′ + Ip′ is a prime
ideal in R/Ip′ being Iq′ a prime ideal in R.

Note that the geometric bond bp′,q′ of the Seshadri stratification can be
computed locally in the subvariety Xp′ as well. Hence we can apply what
already proved for the cover p > q to the LS-algebra R/Ip′ that is the co-
ordinate ring of the subvariety Xp′ and conclude that bp′,q′ is equal to the
(abstract) bond in A from p′ to q′. We have thus completed the proof of (2).

Fix a linearization >t of the partial order of A and let V be the quasi-
valuation of the Seshadri stratification defined in terms of this linearization.
Now we want to prove that V(xu) = u for any u ∈ LS+

A. We can clearly
suppose that suppu has at least two elements, otherwise u = p for some
p ∈ A and V(xp) = p. Fix u = urpr + · · · u0p0 with ur, ur−1, . . . , u0 rational
numbers, let N ∈ N be such that nj := Nuj ∈ N for each 0 ≤ j ≤ r and let
x := xu for short.

Fix C : pr > pr−1 > · · · > p0 a maximal chain in A such that supp u ⊆ C;
our first aim is to prove that if VC(x) = arpr+ · · ·+a0p0 then aj = uj for each
j. Since supp u has at least two elements, the monomial xN is non-standard;
its straightening relation is:

xN = cxnr
pr x

nr−1
pr−1 · · · x

n0
p0 +

∑
i

cixui

where c �= 0 and ui �Nu = nrpr + · · ·+n0p0 for each i. This inequality implies
that ui = nrpr + u′i for certain u′i ∈ LS+

A; in particular xui
= xnr

pr xu′
i

and we
get

xN

xnr
pr

= cxnr−1
pr−1 · · · x

n0
p0 +

∑
i

cixu′
i
.
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Note that xnr−1
pr−1 · · · xn0

p0 does not vanish identically on Xpr−1 and xu′
i
vanishes

on Xpr−1 if and only if pr ∈ supp u′i since Xpr−1 is defined by the ideal Ipr−1 .
So we can write(

xN

xnr
pr

)
|Xpr−1

= cxnr−1
pr−1 · · ·x

n0
p0 |Xpr−1

+
′∑
i

cixu′
i |Xpr−1

where the sum
∑′ is only over those i such that pr �∈ supp u′i.

The right hand side of this equation is a linear combination of different
standard monomials in the LS-algebra R/Ipr−1 . These monomials are lin-
early independent, hence (xN/xnr

pr )|Xpr−1
is not identically zero. Thus we have

proved that ar = ur. Repeating the same reasoning as above for the variety
Xpr−1 (and corresponding LS-algebra R/Ipr−1) we find ar−1 = ur−1 and, go-
ing on this way, we get aj = uj for 0 ≤ j ≤ r in r + 1 steps proving that
VC(x) = u.

Now let C′ : p′r = pr > p′r−1 > · · · > p′0 a maximal chain such that
supp u �⊆ C′ and let VC′(x) = u′rp

′
r + · · · u′0p′0; we claim that VC′(x) > u. Let

j be maximal such that p′j �= pj . We will proceed by induction on j.
Let h < j be maximal such that ph < p′j , note that such an h exists since

in A we have the unique minimal element p0 = p′0. Let moreover C0 : pr >

· · · > pj+1 > p′j > p′′j−1 > · · · > p′′h+1 > ph > · · · > p0 be a maximal chain. If
uj = uj−1 = · · · = uh+1 = 0 then VC0(x) = VC(x) by [7, Proposition 8.7] and
we can conclude by induction on j since the chains C0 and C′ have (at least)
one more common element in their initial segment.

So we assume that there exists k, with j ≥ k ≥ h + 1, such that uk �= 0.
Note that any LS-path u′′ with ps ∈ supp u′′ and j ≥ s ≥ h + 1 vanishes on
Xp′j

since ps �≤ p′j , hence xu′′ ∈ Ip′j , and Xp′j
is defined by Ip′j in X.

We clearly have u′r = ur, . . . , u
′
j+2 = uj+2 since the chains C′ and C have

the same initial segment pr > · · · > pj+1. Moreover, from the straightening
relation of xN we derive as above that

y :=
(

xN

xnr
pr · · · x

nj+2
pj+2

)
|Xpj+1

is a non-zero function and

y = cxnj+1
pj+1 · · · x

n0
p0 |Xpj+1

+
∑
i

cixũi
|Xpj+1

.
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For the LS-paths ũi ∈ LS+
Apj+1

appearing in this equation we have ũi �

nj+1pj+1 + njpj + · · · + n0p0. So, in particular, ũi = nj+1pj+1 + ũ′i with
ũ′i � njpj + · · · + n0p0.

Let b′ be the bond νpj+1,p′j
(xpj+1) from pj+1 to p′j in A. Since xpk appears

with a non-zero exponent in x
nj+1
pj+1 · · · xn0

p0 we have

νpj+1,p′j
(xnj+1

pj+1 · · · x
n0
p0 ) > νpj+1,p′j

(xnj+1
pj+1 ) = nj+1b

′

Also, xũi
= x

nj+1
pj+1xũ′

i
and max supp ũ′i ≥ pk since nk �= 0. We get

νpj+1,p′j
(xũi

) > nj+1b
′.

So νpj+1,p′j
(y) > nj+1b

′ and u′j+1 > nj+1b
′/(Nb′) = uj+1. Hence VC′(x) >

VC(x).
This completes the proof that V(x) = u and, in turn, that V = Ṽ since

these two quasi-valuations have the same values on the vector space basis xu,
u ∈ LS+

A, of R whose values are all pairwise distinct. So (3) is proved.

Note that the geometric results deduced from the algebraic structure of
an LS-algebra hold hence also for an embedded variety X with a balanced
Seshadri stratification of LS-type. On the other hand, these particular type of
Seshadri stratifications give a geometric interpretation of the combinatorial
definition of LS-paths on a poset with bonds and of the straightening relations:
the LS-paths are the values of a quasi-valuation (i.e. they encode vanishing
multiplicity data along the strata) and the straightening relations with their
order structure are just a reflection of the multiplicative property of the quasi-
valuation.

6. Example

In this last section, we illustrate the lifting procedure in Theorem 3.2 in an
example related to flag varieties. To avoid technical assumptions we fix in this
section C as the base field.

6.1. Setup

Let G = SL3, B ⊆ G be a fixed Borel subgroup and T be the maximal torus
contained in B. The set of positive roots with respect to the above choice is
denoted by Δ+ = {α1, β := α1 + α2, α2} where α1 and α2 are simple roots.
The fundamental weights �1 and �2 generate the weight lattice Λ. For a
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positive root γ ∈ Δ+, U±γ are the root subgroups in G associated to ±γ. Let
W := NG(T )/T ∼= S3 be the Weyl group of G, looked as a Coxeter group
generated by the simple reflections s1 and s2. The longest element in W will
be denoted by w0 = s1s2s1. For τ ∈ W , we denote Δτ := {γ ∈ Δ+ | τ−1(γ) /∈
Δ+} and Uτ :=

∏
γ∈Δτ

Uγ for any chosen ordering of elements in Δ+.
Let g := sl3 be the Lie algebra of G with the Cartan decomposition

g = n+ ⊕ h ⊕ n− such that n+ ⊕ h is the Lie algebra of B. For a positive
root γ ∈ Δ+ we fix root vectors X±γ ∈ n± of weights ±γ. We abbreviate
X±1 := X±α1 and X±2 := X±α2 . For k ∈ N and i = 1, 2, the k-th divided
power of X±i is denoted by X

(k)
±i . For a dominant integral weight λ ∈ Λ,

we denote V (λ) the finite dimensional irreducible representation of g: it is
a highest weight representation and we choose a highest weight vector vλ ∈
V (λ). We associate to a fixed element τ ∈ W with reduced decomposition
τ = si1 · · · si� an extremal weight vector vτ := X

(m1)
−i1 · · ·X(m�)

−i�
vλ ∈ V (λ) with

mk the maximal natural number such that X(mk)
−ik

· · ·X(m�)
−i�

vλ �= 0. By Verma
relations, vτ is independent of the choice of the reduced decomposition of τ .
The dual vector of vτ is denoted by pτ ∈ V (λ)∗.

Let X := SL3/B be the complete flag variety embedded into P(V (ρ)),
where ρ = �1 +�2, as the highest weight orbit SL3 · [vρ] through the chosen
highest weight line [vρ] ∈ P(V (ρ)). The homogeneous coordinate ring will be
denoted by R := C[X̂], where the degree k component is V (kρ)∗.

We consider the Seshadri stratification on SL3/B as in [8] given by the
Schubert varieties X(τ) and the extremal weight functions pτ for τ ∈ W .

The Hasse diagram with bonds associated to this Seshadri stratification
is depicted as follows:

s2s1 �� 2
��

1

��
��
��
��
��
��
��
� s1 ��

1
��

��
��

�

w0
��

1
��������

��

1 ��
��

��
��

id

s1s2 ��
2

��

1

���������������
s2

��
1

��������

We choose N := 2 to be the l.c.m of all bonds appearing in the above diagram.
By [8, Theorem 7.1, Theorem 7.3], for any maximal chain C ∈ C, the

monoid ΓC coincides with the LS-monoid LS+
C , the Seshadri stratification is

therefore normal. Moreover, the fan of monoid Γ is independent of the choice
of the linearization of the partial order on A. So, without loss of generality,
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we choose the following linearization of the Bruhat order on W :

w0 >t s1s2 >t s2s1 >t s1 >t s2 >t id.

With this total order one identifies QW with Q6.
The indecomposable elements in G are e1, . . . , e6 in Q6 and the following

two extra elements:

π1 :=
(

0, 0, 1
2 ,

1
2 , 0, 0

)
,

π2 :=
(

0, 1
2 , 0, 0,

1
2 , 0

)
.

For each element a ∈ G, in [22] and [8, Lemma 13.3] with � = 2 we
have introduced the path vector associated to a and �, denoted by pa,�. More
precisely, for τ ∈ W , the path vector associated to the coordinate function
eτ ∈ QW is the extremal functions pτ . For π1, π2 ∈ G, we denote the associ-
ated path vector by pπ1 and pπ2 . By [8, Theorem 7.1], for τ ∈ W , V(pτ ) = eτ ;
V(pπ1) = π1 and V(pπ2) = π2.

On the polynomial ring

S := C[yw0 , ys1s2 , yπ2 , ys2s1 , yπ1 , ys1 , ys2 , yid].

we consider the following monomial order . The generators of S are enu-
merated with respect to >t:

yw0 >
t ys1s2 >

t yπ2 >
t ys2s1 >

t yπ1 >
t ys1 >

t ys2 >
t yid,

then the monomial order  is the one defined in Section 3.2
The associated graded algebra grVR is generated by

pid, ps1 , ps2 , ps1s2 , ps2s1 , pw0 , pπ1 , pπ2

subject to the following relations:

ps2s1ps1s2 = 0, ps2ps1 = 0, pπ1ps1s2 = 0, pπ1ps2 = 0, pπ2ps2s1 = 0,
pπ2ps1 = 0, p2

π1 − ps2s1ps1 = 0, p2
π2 − ps1s2ps2 = 0, pπ2pπ1 = 0.

(2)

They form a reduced Gröbner basis of the defining ideal of grVR in S with
respect to the monomial order .
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6.2. Birational charts

There are four maximal chains in W :

C1 : w0 > s2s1 > s1 > id, C2 : w0 > s1s2 > s2 > id,

C3 : w0 > s1s2 > s1 > id, C4 : w0 > s2s1 > s2 > id.
For i = 1, 2, 3, 4, we let VCi denote the valuation associated to the maximal
chain Ci in Section 2.2. We will introduce birational charts of SL3/B and its
Schubert varieties to calculate these valuations.

We will work out VC1(pπ2) and the method can be applied in a straight-
forward way to determine other valuations. We will freely use the notations
in [8, Section 12, 13].

First consider the following birational chart of SL3/B introduced in [8,
Lemma 3.2]: we write β = α1 + α2,

Uβ × Uα2 × U−α1 → SL3/B → P(V (ρ))(3)

(exp(t1Xβ), exp(t2Xα2), exp(yX−α1))
�→ exp(t1Xβ) exp(t2Xα2) exp(yX−α1) · [vs2s1 ].

The vanishing order of the path vector g := pπ2 ∈ V (ρ)∗ along the Schu-
bert variety X(s2s1) is the lowest degree of y in the polynomial

(4) pπ2 (exp(t1Xβ) exp(t2Xα2) exp(yX−α1) · vs2s1) ∈ C[t1, t2][y].

To compute this polynomial we work in the tensor product of Weyl module
M(ρ) ⊗ M(ρ) as in [8, Section 12.4, Lemma 13.3], where the embedding of
V (ρ) into M(ρ) ⊗M(ρ) is uniquely determined by vρ �→ mρ ⊗mρ. The path
vector pπ2 is defined as the restriction of xs1s2⊗xs2 ∈ M(ρ)∗⊗M(ρ)∗ to V (ρ)∗
(notation in [8, Section 13]). Direct computation shows that the polynomial
in (4) equals to −t1y, hence the vanishing order of pπ2 along X(s2s1) is 1.

The rational function p2
π2

p2
w0

coincides with p2
s2

p2
s2s1

on the birational chart (3)
because both of them evaluate to the polynomial t21 on the above chart. The
function g2 := p2

s2
p2
s2s1

is a rational function on X(s2s1).
In order to determine the vanishing order of g2 along the Schubert variety

X(s1), we make use of the following birational chart

Uα1 × U−α2 → X(s2s1) → P(V (ρ)s2s1),

(exp(t1Xα1), exp(yX−α2)) �→ exp(t1Xα1) exp(yX−α2) · [vs1 ]
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where V (ρ)s2s1 is the Demazure module associated to s2s1 ∈ W . From similar
computation as above, p2

s2 (resp. p2
s2s1) evaluates to the polynomial t21y2 (resp.

y4), hence g2 has a pole of order 2 along X(s1).
Continue this computation, we obtain

gC1 =
(
pπ2 ,

p2
s2

p2
s2s1

,
p4
id

p2
s1

, p8
id

)
,

and the valuation is hence

VC1(pπ2) =
(

1,−1
2 ,−

1
2 , 1

)
.

6.3. Lift semi-toric relations

As an example, we lift the relation ps2s1ps1s2 = 0 to R. Other relations can
be dealt with similarly.

In order to determine V(ps2s1ps1s2), we need to work out the above four
valuations on ps2s1 and ps1s2 . By [7, Example 6.8], the valuation VC1(ps2s1) =
(0, 1, 0, 0).

Similar computation as in the previous paragraph, one has:

VC1(ps1s2) =
(

1,−1
2 ,

1
2 , 0

)
.

Summing them up we obtain:

VC1(ps2s1ps1s2) =
(

1, 1
2 ,

1
2 , 0

)
.

In the same way we have:

VC2(ps2s1ps1s2) =
(

1, 1
2 ,

1
2 , 0

)
, VC3(ps2s1ps1s2) =

(
1, 1,−1

2 ,
1
2

)
.

VC4(ps2s1ps1s2) = (1, 1,−1, 1).

Taking the minimum with respect to the total order defined above, we
obtain

V(ps2s1ps1s2) =
(

1, 0, 1
2 ,

1
2 , 0, 0

)
.
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It decomposes into indecomposable elements in G as follows:(
1, 0, 1

2 ,
1
2 , 0, 0

)
= (1, 0, 0, 0, 0, 0) +

(
0, 0, 1

2 ,
1
2 , 0, 0

)
.

The standard monomial having this quasi-valuation is hence pw0pπ1 .
In the next step we consider the function ps2s1ps1s2 − pw0pπ1 . The coeffi-

cient −1 is uniquely determined by the property

V(ps2s1ps1s2) < V(ps2s1ps1s2 + λpw0pπ1)

for λ ∈ C, where both sides can be computed using the birational chart (3).
Along the maximal chains C2 and C3, the valuations of ps2s1ps1s2 and

pw0pπ1 are different. It follows:

VC2(ps2s1ps1s2 − pw0pπ1) =
(

1, 1
2 ,

1
2 , 0

)
,

VC3(ps2s1ps1s2 − pw0pπ1) =
(

1, 1,−1
2 ,

1
2

)
.

Along both maximal chains C1 and C4, both valuations VC1 and VC4 on
ps2s1ps1s2 − pw0pπ1 have the first coordinate 2. Since this element is homo-
geneous of degree 2, from [7, Corollary 7.5], in both of the valuations there
exist at least one negative coordinate. According to the non-negativity of the
quasi-valuation [7, Proposition 8.6], neither of them can be the minimum.

As a summary, we have shown that

V(ps2s1ps1s2 − pw0pπ1) =
(

1, 1
2 , 0, 0,

1
2 , 0

)
.

Again decompose it into indecomposable elements(
1, 1

2 , 0, 0,
1
2 , 0

)
= (1, 0, 0, 0, 0, 0) +

(
0, 1

2 , 0, 0,
1
2 , 0

)
,

we obtain the next standard monomial pw0pπ2 .
On the birational chart (3) we have used before, the function ps2s1ps1s2 −

pw0pπ2 − pw0pπ1 is zero, giving out the lifted relation

ps2s1ps1s2 − pw0pπ2 − pw0pπ1 = 0.
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By lifting all relations in (2), the reduced Gröbner basis of the defining
ideal of SL3/B in P(V (ρ)) with respect to  is given by:

ps1ps2 = pidpπ1 + pidpπ2 , ps1pπ2 = ps1s2pid,

p2
π1 = ps2s1ps1 − pidpw0 , pπ1ps2 = ps2s1pid,

pπ1pπ2 = pw0pid, pπ1ps1s2 = pw0ps1 , ps2s1pπ2 = pw0ps2 ,

ps2s1ps1s2 = pw0pπ1 + pw0pπ2 , p2
π2 = ps1s2ps2 − pidpw0 .

These relations coincide with those given in [3], although the bases are defined
in a different way.

Remark 6.1. The Seshadri stratification on SL3/B ⊆ P(V (ρ)) consisting of
Schubert varieties is normal and balanced (see Section 2.6 for the definition
and [8, Theorem 7.3] for details on the balanced condition). This property
can be used to determine a Gröbner basis of the defining ideal of a Schubert
variety in SL3/B.
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