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1. Introduction

Following Semenov-Tian-Shansky [STS83], one defines a (classical) R-matrix
over a Lie algebra g over a field F as an element R ∈ EndF(g) satisfying the
modified Yang-Baxter equation (a, b ∈ g)

(1.1) [R(a), R(b)] −R([R(a), b]) −R([a,R(b)]) + [a, b] = 0 .

The basic example is provided by a decomposition of g in a sum of two
subalgebras g+ and g−, such that g+ ∩ g− = 0, by letting

(1.2) R = Π+ − Π− , where Π± : g → g± are projections .

Oevel and Ragnisco [OR89] and independently Li and Parmentier [LP89]
used this R-matrix in the case when g is a unital finite dimensional associative
algebra, endowed with a non-degenerate trace form Tr : g → F, and viewed
as a Lie algebra with the bracket [a, b] = a ◦ b − b ◦ a, where a ◦ b is the
associative product in g. Namely, they construct a triple of Poisson brackets
{· , ·}Ri , i = 1, 2, 3, on S(g) as the coefficients in the expansion (a, b ∈ g)

{a, b}R,ε = 1
2

∑
i,j∈I

(ui+εTr(ui))(uj+εTr(uj))
(
[a,R(ui ◦ b ◦ uj)]

−[b, R(ui ◦ a ◦ uj)]
)

= {a, b}R3 + 2ε{a, b}R2 + ε2{a, b}R1 .

(1.3)

Here {ui}i∈I and {ui}i∈I are dual bases of g with respect to the trace form
〈a|b〉 = Tr(a ◦ b), and ε ∈ F. Identifying g and g∗ using the trace form, we
obtain the following expression for arbitrary f, g ∈ S(g):

(1.4)
{f, g}R,ε(L) = 1

2 Tr
(
L ◦ [dLf,R((L + ε1) ◦ dLg ◦ (L + ε1))]

)
− 1

2 Tr
(
L ◦ [dLg,R((L + ε1) ◦ dLf ◦ (L + ε1))]

)
,
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where L ∈ g∗ ∼= g and dLf =
∑

i∈I
∂f
∂ui

(L)ui.
Furthermore, they showed that the subalgebra of Casimirs S(g)adg is

commutative with respect to all three Poisson brackets. This leads to the
following family of compatible Hamiltonian ODE (C ∈ S(g)adg, i, j, h, k ∈ I):
(1.5)
duj
dt1

= 1
2
∑
i∈I

∂C

∂ui

(
[ui, R(uj)] − [uj , R(ui)]

)
,

duj
dt2

= 1
4

∑
i,h∈I

∂C

∂ui
uh

(
[ui, R(uh ◦ uj + uj ◦ uh)] − [uj , R(uh ◦ ui + ui ◦ uh)]

)
,

duj
dt3

= 1
2

∑
i,h,k∈I

∂C

∂ui
uhuk

(
[ui, R(uh ◦ uj ◦ uh)] − [uj , R(uh ◦ ui ◦ uk)]

)
.

Taking the Casimirs (k ∈ Z≥1)

(1.6) Ck = 1
k

∑
i1,...,ik

ui1 . . . uik Tr(ui1 ◦ · · · ◦ uik) ,

we obtain the following triple Lenard-Magri scheme for the time evolutions
tk,i, k ∈ Z≥1 and i ∈ I, of Hamiltonian ODE with respect to the Poisson
structure {· , ·}Rj , j = 1, 2, 3:

(1.7) duj
dtk+1,1

= duj
dtk,2

= duj
dtk−1,3

= 1
2

∑
i1,...,ik

ui1 . . . uik [R(ui1 ◦ · · · ◦ uik), uj ] .

In the present paper we start by giving a self-contained exposition of the
Oevel-Ragnisco (OR) theory (see Sections 2-3). In the subsequent Sections 4-
6 we extend this theory to the infinite-dimensional case of Hamiltonian PDE.
(Some authors applied the theory to the infinite-dimensional case without
any justification, see e.g. [BM94] and [KO93].)

We consider again a unital associative algebra A with a non-degenerate
trace form, but the relevant R-matrix is over the associative algebra g =
F((∂−1)) ⊗ A, where F is a differential algebra over F of “test functions”
and F((∂−1)) is the algebra of pseudodifferential operators with coefficient
in F . We require only the existence of a linear functional

∫
: F → F, which

vanishes on ∂F and such that the bilinear form
∫
fg is non-degenerate in F .

The three most important examples of R-matrices are special cases of (1.2)
(for an infinite-dimensional g). Namely, for k ∈ Z≥0 we consider the direct
sum decomposition as left F -modules

g =
(
F [∂]∂k ⊗ A

)
⊕

(
F [[∂−1]]∂k−1 ⊗ A

)
,
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and denote by Π+ and Π− the projections on the first and second summand
respectively. The first summand is always an associative subalgebra, but the
second summand is an associative subalgebra only for k = 0, 1, and a Lie
subalgebra for k = 2, provided that A is commutative. The corresponding
R-matrices are denoted by R(0), R(1) and R(2) respectively.

Fix dual bases {Eα}α∈I and {Eα}α∈I of A with respect to the trace form,
and let, for N ∈ Z, VN be the algebra over F of differential polynomials in
the indeterminates u

(n)
p,α, where n ∈ Z≥0, p ≥ −N − 1, α ∈ I, with derivation

∂ defined by ∂u
(n)
p,α = u

(n+1)
p,α . We denote by V∞̂ the inverse limit lim←−

N

VN for

the homomorphisms πN : VN → VN−1 defined by πN (u(n)
−N−1,α) = 0 and

πN (u(n)
p,α) = u

(n)
p,α for p > −N − 1.

In order to develop an infinite-dimensional version of the OR theory we
need to introduce the notion of a continuous Poisson vertex algebra (PVA)
structure on V∞̂. Besides the usual properties of a PVA λ-bracket {· λ ·} on
V∞̂ it should satisfy the continuity property: for every N ∈ Z there exists
sufficiently large M ∈ Z such that πM (f) = 0 or πM (g) = 0 imply that
πN{fλg} = 0 (the Jacobi identity makes sense only under the assumption of
continuity).

The differential algebra V∞̂ plays the same role in the “affine” OR theory
as S(g) plays in the finite-dimensional OR theory. By analogy with the latter
we write down formula (5.41) for the bracket on the space V∞̂/∂V∞̂, which
leads to formula (5.42), which defines the corresponding λ-bracket on V∞̂.

We encode all the differential variables up,α of V∞̂ in a generating series

L(z) =
∑

p∈Z,α∈I
up,αz

−p−1 ⊗ Eα ∈ V∞̂[[z, z−1]] ⊗ A ,

and deduce from (5.42) the following explicit formula for the λ-bracket
(cf. (5.47))
(1.8)
{L1(z)λL2(w)}R,ε

= 1
2Ω

(
(L1(w+λ+∂)+ε1)

(∣∣
ζ=z+∂

L1(z)
)
Rζ

(
δ(ζ−ξ)

)
(
∣∣
ξ=ζ−z+w+λ+∂L2(w)+ε1)

− (L1(w + λ + ∂) + ε1)Rz

(
δ(z − ξ)

)∣∣
ξ=w+λ+∂

L∗
2(λ− z)(L2(w) + ε1)

+ L1(w + λ + ∂)(L1(z) + ε1)Rw

(
δ(ζ − w)

)(∣∣
ζ=z−λ−∂

L∗
2(λ− z) + ε1

)
− (L1(z) + ε1)Rξ

(
δ(ζ − ξ)

)(∣∣
ζ=z−λ−∂

L∗
2(λ− z) + ε1

)∣∣
ξ=w+∂

L2(w)
)
,
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where Ω =
∑

α∈I E
α ⊗ Eα and, as usual, L1(z) = L(z) ⊗ 1 and L2(w) =

1⊗L(w). Also, by Rz(δ(z−w)) we denote the symbol of the pseudodifferential
operator R(δ(∂−w)). We call equation (1.8) the ε-Adler identity associated to
the R-matrix R since the coefficient of 2ε in {· λ }R,ε for R = R(0) and A = glN
coincides with the Adler identity for glN , which appeared in [DSKV16] and
[DSKV18].

We prove that, for R = R(0), R(1) and R(2), the ε-Adler identity defines
a continuous PVA λ-brackets on V∞̂ and, for R = R(0), it defines three
compatible continuous PVA λ-brackets on V∞̂ (see Theorem 5.10).

Due to the ε-Adler identities, h0 = 0 and hn = − 1
n Res TrLn(z)dz,

n ∈ Z≥1, are densities of Hamiltonian functionals in involution, defining a
compatible hierarchy of Hamiltonian PDE, satisfying the relations
(1.9)
dL(w)
dtn

= {
∫
hn, L(w)}R,ε = 1

2[R((L+ ε1)◦Ln−1 ◦ (L+ ε1)), L](w) , n ∈ Z≥0,

It follows that we have a triple Lenard-Magri relation

{
∫
hn−1, L(w)}R,3 = {

∫
hn, L(w)}R,2 = {

∫
hn+1, L(w)}R,1

= 1
2[R(Ln), L](w) , n ∈ Z≥1 .

(1.10)

Equation (1.10) is the affine analogue of equation (1.7).
In Sections 6-10 of the paper [DSKVW19] an analogue of the Adler-Oevel-

Ragnisco type operators for multiplicative PVA was introduced and applied
to the integrability of differential-difference equations.

Throughout the paper all vector spaces, Hom’s and tensor products are
over a base field F of characteristic zero.

2. Classical R-matrix over a Lie algebra

Definition 2.1 ([STS83]). A (classical) R-matrix over a Lie algebra g is an
endomorphism R ∈ End(g) satisfying the modified Yang-Baxter equation:

(2.1) [R(a), R(b)] −R([R(a), b]) −R([a,R(b)]) + [a, b] = 0 .

Example 2.2 ([STS83]). Suppose that we have a direct sum decomposition
(as vector spaces) g = g+ ⊕ g−, where g± ⊂ g are two subalgebras of the Lie
algebra g, and denote by Π± : g � g± the corresponding projections. Then,

(2.2) R := Π+ − Π− ,
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is an R-matrix over g. Indeed, denoting a± = Π±(a) and b± = Π±(b), we
have

[R(a), b] + [a,R(b)] = 2[a+, b+] − 2[a−, b−] ,

so that

(2.3) R([R(a), b] + [a,R(b)]) = 2[a+, b+] + 2[a−, b−] .

On the other hand,

(2.4) [R(a), R(b)] = [a+, b+] − [a+, b−] − [a−, b+] + [a−, b−] .

Equation (2.1) follows immediately from (2.3) and (2.4).

Lemma 2.3 ([STS83]). If R is an R-matrix over the Lie algebra g, then

(2.5) [a, b]R := [R(a), b] + [a,R(b)]

is a Lie algebra bracket on g.

Proof. The bracket (2.5) is obviously skewsymmetric, so we only need to prove
the Jacobi identity, i.e. that the sum over cyclic permutations of [a, [b, c]R]R
vanishes. By equation (2.1) we have

[a, [b, c]R]R
= [R(a), [R(b), c]] + [R(a), [b, R(c)]] +

(
[a,R([R(b), c]) + R([b, R(c)])]

)
= [R(a), [R(b), c]] + [R(a), [b, R(c)]] +

(
[a, [R(b), R(c)]] + [a, [b, c]]

)
,

and the sum over cyclic permutations of the above sum is zero due to the
Jacobi identity for the commutator in g.

For example, if R = 1g, we recover the original Lie bracket of g multiplied
by the factor 2.

Lemma 2.4. Let 〈· | ·〉 be a non-degenerate, symmetric, invariant bilinear
form on the Lie algebra g, let R ∈ End(g) be an R-matrix over g, and let R∗

the adjoint of R with respect to 〈· | ·〉.

(a) Each of the following identities is equivalent to the modified Yang-
Baxter equation (2.1) for R:

(2.6) [R(a), R∗(b)] −R∗([R(a), b]) + R∗([a,R∗(b)]) − [a, b] = 0 ,
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and

(2.7) [R∗(a), R(b)] + R∗([R∗(a), b]) −R∗([a,R(b)]) − [a, b] = 0 .

(b) The antisymmetric part 1
2(R − R∗) ∈ End(g) is also an R-matrix over

g if and only if the following equation holds:

(2.8) [R∗(a), R∗(b)] + R([R∗(a), b]) + R([a,R∗(b)]) + [a, b] = 0 .

(c) Equation (2.8) implies the following identity:

(2.9) 1
2
∑
σ

sign(σ)〈[R∗(a), R∗(b)]|c〉 = −〈[a, b]|c〉 ,

where the sum is over all permutations of a, b, c and sign(σ) is the sign
of the permutation.

In (2.9), and throughout the remainder of the paper, in order to simplify
notation, we write

(2.10)
∑
σ

sign(σ)f(a, b, c) ,

in place of
∑

σ sign(σ)f(σ(a), σ(b), σ(c)).

Proof. Pairing the modified Yang-Baxter equation (2.1) with c ∈ g, we get

(2.11) 〈[R(a), R(b)]|c〉 − 〈R([R(a), b])|c〉 − 〈R([a,R(b)])|c〉 + 〈[a, b]|c〉 = 0 .

By the definition of R∗ and the invariance of the bilinear form 〈· | ·〉, we have

〈[R(a), R(b)]|c〉 = 〈a|R∗([R(b), c])〉 ,
〈R([R(a), b])|c〉 = 〈a|R∗([b, R∗(c)])〉
〈R([a,R(b)])|c〉 = 〈a|[R(b), R∗(c)]〉
〈[a, b]|c〉 = 〈a|[b, c]〉 .

Hence, (2.11) gives

〈a|R∗([R(b), c])〉 − 〈a|R∗([b, R∗(c)])〉 − 〈a|[R(b), R∗(c)]〉 + 〈a|[b, c]〉 = 0 ,
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which is the same as (2.6), with b and c in place of a and b. Equation (2.7) is
obtained from (2.6) by exchanging the roles of a and b and using skewsym-
metry. This proves part (a). Let us prove part (b). Writing the modified
Yang-Baxter equation (2.1) for the operator 1

2(R−R∗), we get

(2.12)

[R(a), R(b)] − [R(a), R∗(b)] − [R∗(a), R(b)] + [R∗(a), R∗(b)]

−R([R(a), b]) + R∗([R(a), b]) −R∗([R∗(a), b]) + R([R∗(a), b])

−R([a,R(b)]) −R∗([a,R∗(b)]) + R∗([a,R(b)]) + R([a,R∗(b)])

+ 4[a, b] = 0 .

Hence, in view of equations (2.1), (2.6) and (2.7), equation (2.12) reduces
to (2.8), proving (b). Finally, we prove part (c). We have, by the definition of
R∗ and the invariance of the bilinear form 〈· | ·〉,

1
2
∑
σ

sign(σ)〈[R∗(a), R∗(b)]|c〉

= 〈[R∗(a), R∗(b)]|c〉 + 〈[R∗(b), R∗(c)]|a〉 + 〈[R∗(c), R∗(a)]|b〉
= 〈[R∗(a), R∗(b)]|c〉 + 〈R([a,R∗(b)])|c〉 + 〈R([R∗(a), b])|c〉
= −〈[a, b]|c〉 .

For the last equality we used (2.8).

3. Oevel-Ragnisco Poisson structures for finite dimensional
associative algebras

3.1. The O-R construction

Let g be a finite dimensional unital associative algebra, with unity 1, as-
sociative product ◦, and the Lie bracket [· , ·] given by the commutator:
[a, b] = a ◦ b − b ◦ a. Recall that a trace form on g is a linear function
Tr(·) : g → F, vanishing on commutators: Tr([a, b]) = 0 for all a, b ∈ g,
and non-degenerate, in the sense that Tr(a ◦ b) = 0 for all b ∈ g implies that
a = 0. Any trace form has the cyclic property:

(3.1) Tr(a1 ◦ a2 ◦ · · · ◦ ak) = Tr(ak ◦ a1 ◦ · · · ◦ ak−1) ,

hence the invariance property:

(3.2) Tr(a ◦ [b, c]) = Tr([a, b] ◦ c) .
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We have the corresponding non-degenerate, symmetric, invariant bilinear
form on g

(3.3) 〈a|b〉 = Tr(a ◦ b) .

The following construction is due independently to Oevel and Ragnisco
[OR89] and to Lie and Parmentier [LP89].

Theorem 3.1. Assume that R ∈ End(g) is an R-matrix on the algebra g.
Then, we have an ε-family (ε ∈ F) of Poisson brackets on S(g), defined by
the following Lie brackets on g with values in S(g), extended to S(g) by the
Leibniz rules (a, b, c ∈ g):
(3.4)
{a, b}R,ε= 1

2
∑
i,j∈I

(ui+εTr(ui))(uj+εTr(uj))
(
[a,R(ui◦b◦uj)]−[b, R(ui◦a◦uj)]

)
,

where {ui}i∈I , {ui}i∈I are bases of g dual with respect to the inner product
〈· | ·〉 in (3.3), i.e. such that Tr(ui◦uj) = δi,j. The ε-family of Poisson brackets
{· , ·}R,ε has the expansion

(3.5) {· , ·}R,ε = {· , ·}R3 + 2ε{· , ·}R2 + ε2{· , ·}R1 ,

where {· , ·}Ri , i = 1, 2, 3 are the following brackets on g with values in S(g)
(a, b, c ∈ g):

(3.6)

{a, b}R3 = 1
2

∑
i,j∈I

uiuj
(
[a,R(ui ◦ b ◦ uj)] − [b, R(ui ◦ a ◦ uj)]

)
,

{a, b}R2 = 1
4
∑
i∈I

ui
(
[a,R(ui ◦ b + b ◦ ui)] − [b, R(ui ◦ a + a ◦ ui)]

)
,

{a, b}R1 = 1
2
(
[a,R(b)] − [b, R(a)]

)
= 1

2[a, b]R .

The 1-st and 3-rd brackets {· , ·}R1 and {· , ·}R3 are Lie brackets, i.e. they
define Poisson algebra structures on S(g). If, moreover, 1

2(R−R∗) is also an
R-matrix on g, then the 2-nd bracket {· , ·}R2 is also a Lie bracket, and all
three brackets {· , ·}Ri , i = 1, 2, 3, are compatible, in the sense that any their
linear combination is also a Lie bracket.

For the proof of Theorem 3.1 we shall use the following elementary results:

Lemma 3.2. The following identities hold, for every a, b, c, x ∈ g,

(a) 1
2
∑
σ

sign(σ) Tr([x ◦ a ◦ x, x ◦ b ◦ x] ◦ [x, c]) = 0 ,
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(b) 1
2
∑
σ

sign(σ) Tr([x ◦ a + a ◦ x, x ◦ b + b ◦ x] ◦ [x, c])

= −Tr([[x, a], [x, b]] ◦ [x, c]) ,

where we are using the notation (2.10).

Proof. Both claims are straightforward. We provide here a proof for pedagog-
ical reasons. For claim (a), we have
(3.7)

1
2
∑
σ

sign(σ) Tr([x ◦ a ◦ x, x ◦ b ◦ x]◦[x, c]) = Tr([x ◦ a ◦ x, x ◦ b ◦ x]◦[x, c])

+ Tr([x ◦ b ◦ x, x ◦ c ◦ x] ◦ [x, a]) + Tr([x ◦ c ◦ x, x ◦ a ◦ x] ◦ [x, b]) .

By the invariance of the trace (3.2), the second term in the RHS of (3.7) is

(3.8) Tr([x ◦ b ◦ x, x ◦ c ◦ x] ◦ [x, a]) = Tr([[x, a], x ◦ b ◦ x] ◦ x ◦ c ◦ x) ,

while the third term in the RHS of (3.7) is

(3.9) Tr([x ◦ c ◦ x, x ◦ a ◦ x] ◦ [x, b]) = Tr([x ◦ a ◦ x, [x, b]] ◦ x ◦ c ◦ x) .

Combining (3.8) and (3.9), we get

(3.10)

Tr
((

[[x, a], x ◦ b ◦ x] + [x ◦ a ◦ x, [x, b]]
)
◦ x ◦ c ◦ x

)
= Tr

(
[x, a ◦ x ◦ x ◦ b− b ◦ x ◦ x ◦ a] ◦ x ◦ c ◦ x

)
= −Tr

(
(a ◦ x ◦ x ◦ b− b ◦ x ◦ x ◦ a) ◦ x ◦ [x, c] ◦ x

)
= −Tr

(
[x ◦ a ◦ x, x ◦ b ◦ x] ◦ [x, c]

)
.

Hence, the RHS of (3.7) vanishes, proving claim (a). Similarly, we have
(3.11)
1
2
∑
σ

sign(σ) Tr([x◦a + a◦x, x◦b + a◦x] ◦ [x, c])

= Tr([x◦a + a◦x, x◦b + b◦x] ◦ [x, c]) + Tr([x◦b + b◦x, x◦c + c◦x] ◦ [x, a])

+ Tr([x◦c + c◦x, x◦a + a◦x] ◦ [x, b]) .

By the invariance of the trace (3.2), the second term in the RHS of (3.11) is

(3.12) Tr([x◦b+ b◦x, x◦c+ c◦x]◦ [x, a]) = Tr([[x, a], x◦b+ b◦x]◦ (x◦c+ c◦x)) ,
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while the third term in the RHS of (3.11) is

(3.13) Tr([x◦c+ c◦x, x◦a+a◦x]◦ [x, b]) = Tr([x◦a+a◦x, [x, b]]◦ (x◦c+ c◦x)) .

Combining (3.12) and (3.13), we get, again by (3.2),
(3.14)

Tr
((

[[x, a], x◦b + b◦x] + [x◦a + a◦x, [x, b]]
)
◦ (x◦c + c◦x)

)
= 2 Tr

(
[x, a ◦ x ◦ b− b ◦ x ◦ a] ◦ (x◦c + c◦x)

)
= −2 Tr

(
(a ◦ x ◦ b− b ◦ x ◦ a) ◦ (x ◦ [x, c] + [x, c] ◦ x)

)
= −2 Tr

(
(x ◦ a ◦ x ◦ b + a ◦ x ◦ b ◦ x− x ◦ b ◦ x ◦ a− b ◦ x ◦ a ◦ x)◦[x, c]

)
.

Finally, combining the first term in the RHS of (3.11) and (3.14), we get

−Tr([[x, a], [x, b]] ◦ [x, c]) ,

proving claim (b).

Proof of Theorem 3.1. The bracket {· , ·}R,ε is defined on S(g) by its value
(3.4) on a, b ∈ g, and it is extended to S(g) by the left and right Leibniz rules.
It is well known that, in this case, in order to prove the Lie algebra axioms
for {· , ·}R,ε, it is enough to prove the skew-symmetry

(3.15) {a, b}R,ε = −{b, a}R,ε ,

and the Jacobi identity

(3.16) {a, {b, c}R,ε}R,ε + cycl. perm.’s = 0 ,

on elements a, b, c ∈ g. The skew-symmetry (3.15) is obvious by the defini-
tion (3.4). Let us prove the Jacobi identity (3.16). By (3.4) we have
(3.17)
{a, {b, c}R,ε}R,ε + cycl. perm.’s

= 1
2

∑
h,k∈I

{
a, (uh + εTr(uh))(uk + εTr(uk))

(
[b, R(uh ◦ c ◦ uk)]

− [c, R(uh ◦ b ◦ uk)]
)}R,ε

+ cycl. perm.’s

=
∑
σ

sign(σ)1
2

∑
h,k∈I

{
a, (uh+εTr(uh))(uk+εTr(uk))[b, R(uh ◦ c ◦ uk)]

}R,ε
.
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In the RHS of (3.17) we are using the notation (2.10). We compute the bracket
on the RHS of (3.17) applying the Leibniz rule and using (3.4). As a result
we get
(3.18)∑

σ

sign(σ)1
4

∑
i,j,h,k∈I

(ui + εTr(ui))(uj + εTr(uj))(
(uk + εTr(uk))[a,R(ui ◦ uh ◦ uj)][b, R(uh ◦ c ◦ uk)]

− (uk + εTr(uk))[uh, R(ui ◦ a ◦ uj)][b, R(uh ◦ c ◦ uk)]
+ (uh + εTr(uh))[a,R(ui ◦ uk ◦ uj)][b, R(uh ◦ c ◦ uk)]
− (uh + εTr(uh))[uk, R(ui ◦ a ◦ uj)][b, R(uh ◦ c ◦ uk)]
+ (uh + εTr(uh))(uk + εTr(uk))[a,R(ui ◦ [b, R(uh ◦ c ◦ uk)] ◦ uj)]

− (uh + εTr(uh))(uk + εTr(uk))[[b, R(uh ◦ c ◦ uk)], R(ui ◦ a ◦ uj)]
)
.

We need to prove that (3.18) vanishes. Since it lies in the symmetric algebra
S(g) 
 F[g∗], in order to prove that (3.18) vanishes, it suffices to prove that it
vanishes when evaluated at an arbitrary point Tr(x◦ · ) ∈ g∗. By completeness,
we have ∑

i∈I

(
Tr(ui ◦ x) + εTr(ui)

)
ui = x + ε1 .

Hence, the vanishing of (3.18) is equivalent to the vanishing of
(3.19)∑

σ

sign(σ)(∑
h∈I

Tr
(
x ◦ [a,R((x+ε1) ◦ uh ◦ (x+ε1))]

)
Tr

(
x ◦ [b, R(uh ◦ c ◦ (x+ε1))]

)
−

∑
h∈I

Tr
(
x ◦ [uh, R((x+ε1) ◦ a ◦ (x+ε1))]

)
Tr

(
x ◦ [b, R(uh ◦ c ◦ (x+ε1))]

)
+

∑
k∈I

Tr
(
x ◦ [a,R((x+ε1) ◦ uk ◦ (x+ε1))]

)
Tr

(
x ◦ [b, R((x+ε1) ◦ c ◦ uk)]

)
−

∑
k∈I

Tr
(
x ◦ [uk, R((x+ε1) ◦ a ◦ (x+ε1))]

)
Tr

(
x ◦ [b, R((x+ε1) ◦ c ◦ uk)]

)
+ Tr

(
x ◦ [a,R((x + ε1) ◦ [b, R((x + ε1) ◦ c ◦ (x + ε1))] ◦ (x + ε1))]

)
− Tr

(
x ◦ [[b, R((x + ε1) ◦ c ◦ (x + ε1))], R((x + ε1) ◦ a ◦ (x + ε1))]

))
,
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for every x ∈ g. Note that in terms of the type Tr(x ◦ [b, c]) we can replace
x by x + ε1, since Tr vanishes on [g, g]. In doing so, we can make all terms
of (3.19) depend on x + ε1, not on x and ε separately. Hence, in order to
prove the vanishing of (3.19) for every x ∈ g, we can set ε = 0, since 1 ∈ g.
Moreover, by the invariance of the trace (3.2), we have

Tr(x ◦ [a,R(x ◦ uh ◦ x)]) = Tr(uh ◦ x ◦R∗([x, a]) ◦ x) ,

and
Tr(x ◦ [uh, R(x ◦ a ◦ x)]) = −Tr(uh ◦ [x,R(x ◦ a ◦ x)]) .

Hence, by completeness, the vanishing of (3.19) is equivalent to the vanishing
of
(3.20)∑

σ

sign(σ)(
Tr

(
x◦[b, R(x◦R∗([x, a])◦x◦c◦x)]

)
+ Tr

(
x◦[b, R([x,R(x◦a◦x)]◦c◦x)]

)
+ Tr

(
x◦[b, R(x◦c◦x◦R∗([x, a])◦x)]

)
+ Tr

(
x◦[b, R(x◦c◦[x,R(x◦a◦x)])]

)
+ Tr

(
x◦[a,R(x◦[b, R(x◦c◦x)]◦x)]

)
− Tr

(
x◦[[b, R(x◦c◦x)], R(x◦a◦x)]

))
.

The first summand in (3.20) is, by the invariance of the trace (3.2),
(3.21)
Tr

(
x◦ [b, R(x◦R∗([x, a])◦x◦ c◦x)]

)
= Tr

(
[x, b]◦R(x◦R∗([x, a])◦x◦ c◦x)

)
,

while the third summand in (3.20) is

(3.22)

Tr
(
x ◦ [b, R(x ◦ c ◦ x ◦R∗([x, a]) ◦ x)]

)
= Tr

(
[x, b] ◦R(x ◦ c ◦ x ◦R∗([x, a]) ◦ x)

)
= Tr

(
x ◦R∗([x, b]) ◦ x ◦ c ◦ x ◦R∗([x, a])

)
= Tr

(
[x, a] ◦R(x ◦R∗([x, b]) ◦ x ◦ c ◦ x)

)
.

Since (3.21) and (3.22) are obtained one from another by exchanging a with
b, their sum vanishes under the alternating sum over permutations. Further-
more, the fifth summand in (3.20) can be replaced, under the sum over per-
mutation, by

Tr
(
x ◦ [b, R(x ◦ [c, R(x ◦ a ◦ x)] ◦ x)]

)
,
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and combining it with the second and fourth summands of (3.20), we get
(3.23)

Tr
(
[x, b] ◦R

(
[x,R(x◦a◦x)] ◦ c ◦ x + x ◦ c ◦ [x,R(x◦a◦x)]

+ x ◦ [c, R(x◦a◦x)] ◦ x
))

= Tr
(
[x, b] ◦R

(
[x ◦ c ◦ x,R(x ◦ a ◦ x)]

))
= Tr

(
x ◦

[
b, R

(
[x ◦ c ◦ x,R(x ◦ a ◦ x)]

)])
.

Under the alternating sum over permutations, the RHS of (3.23) can be re-
placed by

(3.24) 1
2 Tr

(
x◦

[
b,−R

(
[R(x◦a◦x), x◦ c◦x]

)
−R

(
[x◦a◦x,R(x◦ c◦x)]

)])
,

while the last summand in (3.20) can be replaced by
(3.25)
− 1

2 Tr
(
x◦[[b,R(x◦c◦x)],R(x◦a◦x)]

)
+ 1

2 Tr
(
x◦[[b,R(x◦a◦x)],R(x◦c◦x)]

)
= 1

2 Tr
(
x ◦ [b, [R(x ◦ a ◦ x), R(x ◦ c ◦ x)]]

)
,

by the Jacobi identity. Combining (3.24) and (3.25), we conclude that the
vanishing of (3.20) is equivalent to the vanishing of

(3.26)

1
2
∑
σ

sign(σ) Tr
(
x ◦

[
b, [R(x ◦ a ◦ x), R(x ◦ c ◦ x)]

−R([R(x ◦ a ◦ x), x ◦ c ◦ x]) −R([x ◦ a ◦ x,R(x ◦ c ◦ x)])
])

= −1
2
∑
σ

sign(σ) Tr
(
x ◦

[
b, [x ◦ a ◦ x, x ◦ c ◦ x]

])
= 1

2
∑
σ

sign(σ) Tr
(
[x ◦ a ◦ x, x ◦ b ◦ x] ◦ [x, c]

)
.

For the first equality we used the modified Yang-Baxter equation (2.1) on
R. By Lemma 3.2(a), the RHS of (3.26) vanishes, proving the first claim of
Theorem 3.1.

Equations (3.5) and (3.6) are immediately checked. Letting ε = 0 in the
Jacobi identity (3.16) we get

{a, {b, c}R3 }R3 + cycl. perm.’s = 0 ,

i.e. the 3-rd bracket {· , ·}R3 satisfies the Lie algebra axioms, while taking the
coefficient of ε4 in (3.16) we get

{a, {b, c}R1 }R1 + cycl. perm.’s = 0 ,
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i.e. the 1-st bracket {· , ·}R1 satisfies the Lie algebra axioms as well. Moreover,
taking the coefficient of ε and ε3 in the Jacobi identity (3.16), we get

{a, {b, c}R2 }R3 + {a, {b, c}R3 }R2 + cycl. perm.’s = 0 ,

and

{a, {b, c}R1 }R2 + {a, {b, c}R2 }R1 + cycl. perm.’s = 0 ,

i.e. the compatibility between the 2-nd and 3-rd brackets, and between the
1-st and 2-nd brackets respectively (provided that the 2-nd bracket is a Lie
algebra bracket). Taking the coefficient of ε2 in (3.16), we get

{a, {b, c}R1 }R3 + {a, {b, c}R3 }R1 + {a, {b, c}R2 }R2 + cycl. perm.’s = 0 ,

which shows that the 1-st and 3-rd Lie brackets are compatible if and only if
the 2-nd bracket satisfies the Jacobi identity.

To complete the proof of the Theorem, we are left to prove the last as-
sertion, i.e. that the 2-nd bracket satisfies the Jacobi identity

(3.27) {a, {b, c}R2 }R2 + cycl. perm.’s = 0 ,

provided that 1
2(R − R∗) is an R-matrix over the Lie algebra g. By the defi-

nition (3.6) of the second bracket {· , ·}R2 , and the Leibniz rules, we have
(3.28)

{a, {b, c}R2 }R2 + cycl. perm.’s

=
∑
σ

sign(σ)1
4
∑
j∈I

{a, uj [b, R(uj ◦ c + c ◦ uj)]}R2

=
∑
σ

sign(σ) 1
16

∑
i,j∈I

(
ui[a,R(ui ◦ uj + uj ◦ ui)][b, R(uj ◦ c + c ◦ uj)]

− ui[uj , R(ui ◦ a + a ◦ ui)][b, R(uj ◦ c + c ◦ uj)]
+ uiuj [a,R(ui ◦ [b, R(uj ◦ c + c ◦ uj)] + [b, R(uj ◦ c + c ◦ uj)] ◦ ui)]
− uiuj [[b, R(uj ◦ c + c ◦ uj)], R(ui ◦ a + a ◦ ui)]

)
,

where, as before, we use the notation (2.10) for the alternating sums over
permutations of a, b, c. As in (3.19), in order to prove that (3.28) vanishes we
evaluate it at a generic point Tr(x ◦ · ) ∈ g∗. As a result, we get that the
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Jacobi identity (3.27) is equivalent to the vanishing of
(3.29)∑

σ

sign(σ)
(∑
j∈I

Tr
(
x ◦ [a,R(x ◦ uj + uj ◦ x)]

)
Tr

(
x ◦ [b, R(uj ◦ c + c ◦ uj)]

)
−

∑
j∈I

Tr
(
x ◦ [uj , R(x ◦ a + a ◦ x)]

)
Tr

(
x ◦ [b, R(uj ◦ c + c ◦ uj)]

)
+ Tr

(
x ◦

[
a,R

(
x ◦ [b, R(x ◦ c + c ◦ x)] + [b, R(x ◦ c + c ◦ x)] ◦ x

)])
− Tr

(
x ◦

[
[b, R(x ◦ c + c ◦ x)], R(x ◦ a + a ◦ x)

]))
.

By the invariance of the trace (3.2) and the completeness of the dual bases
{ui}i∈I , {ui}i∈I , the first summand in (3.29) is

(3.30)

∑
j∈I

Tr
(
x ◦ [a,R(x ◦ uj + uj ◦ x)]

)
Tr

(
x ◦ [b, R(uj ◦ c + c ◦ uj)]

)
= Tr

(
R∗([x, b]) ◦

(
R∗([x, a]) ◦ x ◦ c + x ◦R∗([x, a]) ◦ c

+ c ◦R∗([x, a]) ◦ x + c ◦ x ◦R∗([x, a])
))
,

while the second summand in (3.29) is
(3.31)∑

j∈I
Tr

(
x ◦ [uj , R(x ◦ a + a ◦ x)]

)
Tr

(
x ◦ [b, R(uj ◦ c + c ◦ uj)]

)
= −Tr

(
R∗([x, b]) ◦

(
[x,R(x ◦ a + a ◦ x)] ◦ c + c ◦ [x,R(x ◦ a + a ◦ x)]

))
.

Moreover, under the alternating sum over permutations, we can replace the
third summand in (3.29) by

(3.32) Tr
(
R∗([x, b]) ◦

(
x ◦ [c, R(x ◦ a + a ◦ x)] + [c, R(x ◦ a + a ◦ x)] ◦ x

))
,

and the fourth summand in (3.29) by

(3.33) 1
2 Tr

(
[x, b] ◦ [R(x ◦ a + a ◦ x), R(x ◦ c + c ◦ x)]

)
.

(Here we used the Jacobi identity for the commutator [· , ·] on g.) Combin-
ing (3.29), (3.30), (3.31), (3.32) and (3.33), we get that the Jacobi iden-
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tity (3.27) is equivalent to the vanishing of
(3.34)∑

σ

sign(σ)
(

Tr
(
R∗([x, b])◦

◦
(
R∗([x, a])◦x◦c + x◦R∗([x, a])◦c + c◦R∗([x, a])◦x + c◦x◦R∗([x, a])

))
+ Tr

(
R∗([x, b]) ◦

(
[x,R(x ◦ a + a ◦ x)] ◦ c + c ◦ [x,R(x ◦ a + a ◦ x)]

))
+ Tr

(
R∗([x, b]) ◦

(
x ◦ [c, R(x ◦ a + a ◦ x)] + [c, R(x ◦ a + a ◦ x)] ◦ x

))
+ 1

2 Tr
(
[x, b] ◦ [R(x ◦ a + a ◦ x), R(x ◦ c + c ◦ x)]

))
.

Note that
(3.35)

Tr
(
R∗([x, b]) ◦

(
x ◦R∗([x, a]) ◦ c + c ◦R∗([x, a]) ◦ x

))
= Tr

(
R∗([x, b]) ◦ x ◦R∗([x, a]) ◦ c

)
+ Tr

(
R∗([x, a]) ◦ x ◦R∗([x, b]) ◦ c

)
,

and this expression is symmetric with respect to the exchange of a and b,
hence it vanishes under the alternating sum over permutations. Moreover, we
have

[x,R(x ◦ a + a ◦ x)] ◦ c + c ◦ [x,R(x ◦ a + a ◦ x)](3.36)

+ x ◦ [c, R(x ◦ a + a ◦ x)] + [c, R(x ◦ a + a ◦ x)] ◦ x

= [x ◦ c + c ◦ x,R(x ◦ a + a ◦ x)] .

Hence, by (3.35) and (3.36), we can rewrite (3.34) as

∑
σ

sign(σ)
(

Tr
(
R∗([x, b]) ◦

(
R∗([x, a])◦x◦c + c◦x◦R∗([x, a])

))
(3.37)

+ Tr
(
R∗([x, b]) ◦ [x ◦ c + c ◦ x,R(x ◦ a + a ◦ x)]

)
+ 1

2 Tr
(
[x, b] ◦ [R(x ◦ a + a ◦ x), R(x ◦ c + c ◦ x)]

))
.
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The first summand in (3.37) is

∑
σ

sign(σ)
(

Tr
(
R∗([x, b]) ◦R∗([x, a]) ◦ x ◦ c

)
(3.38)

+ Tr
(
R∗([x, b]) ◦ c ◦ x ◦R∗([x, a])

))
=

∑
σ

sign(σ)
(

Tr
(
R∗([x, b]) ◦R∗([x, a]) ◦ x ◦ c

)
− Tr

(
R∗([x, a]) ◦ c ◦ x ◦R∗([x, b])

))
=

∑
σ

sign(σ) Tr
(
R∗([x, b]) ◦R∗([x, a]) ◦ [x, c]

)
= −1

2
∑
σ

sign(σ) Tr
(
[R∗([x, a]), R∗([x, b])] ◦ [x, c]

)
= Tr

(
[[x, a], [x, b]] ◦ [x, c]

)
.

For the last equality we used Lemma 2.4(c) (here is the point where we use the
assumption that 1

2(R−R∗) is an R-matrix.) The second and third summands
in (3.37) combined give

∑
σ

sign(σ) Tr
(
[x, b] ◦

(
R([x ◦ c + c ◦ x,R(x ◦ a + a ◦ x)])(3.39)

+ 1
2[R(x ◦ a + a ◦ x), R(x ◦ c + c ◦ x)]

))
= 1

2
∑
σ

sign(σ) Tr
(
[x, b] ◦

(
[R(x ◦ a + a ◦ x), R(x ◦ c + c ◦ x)]

−R([R(x ◦ a + a ◦ x), x ◦ c + c ◦ x])

−R([x ◦ a + a ◦ x,R(x ◦ c + c ◦ x)])
))

= −1
2
∑
σ

sign(σ) Tr([x, b] ◦ [x ◦ a + a ◦ x, x ◦ c + c ◦ x])

= −Tr([[x, a], [x, b]] ◦ [x, c]) .

For the first equality we used the fact that, under the alternating sum over
permutations, the term R([R(x ◦ a + a ◦ x), x ◦ c + c ◦ x]) can be replaced
by R([x ◦ a + a ◦ x,R(x ◦ c + c ◦ x)]). For the second equality we used the
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assumption (2.1) on R, while for the third equality we used Lemma 3.2(b).
Combining (3.38) and (3.39) we get 0, proving the claim.

Remark 3.3. By (3.6), the 1-bracket {· , ·}R1 coincides (up to a factor 1
2) with

the Lie bracket [· , ·]R of g defined by Lemma 2.3, hence the associated Poisson
bracket of S(g) corresponds to the Kirillov-Kostant Poisson structure on g∗

with respect to Lie bracket [· , ·]R. In particular, this structure only uses the
Lie bracket of g and the R-matrix R, and not the associative product of g.
Remark 3.4. Identifying S(g) with the algebra of polynomial functions on g∗,
we can write down the ε-family of Poisson structures of g∗, corresponding to
the Poisson brackets (3.4) by (ε ∈ F):

(3.40) {f, g}R,ε(L) =
∑
i,j∈I

∂f

∂ui
(L) ∂g

∂uj
(L){ui, uj}R,ε(L) , L ∈ g∗ ,

where f and g are polynomial functions on g∗. They are given by

(3.41)
{f, g}R,ε(L) = 1

2 Tr
(
L ◦ [dLf,R((L + ε1) ◦ dLg ◦ (L + ε1))]

)
− 1

2 Tr
(
L ◦ [dLg,R((L + ε1) ◦ dLf ◦ (L + ε1))]

)
, ε ∈ F ,

where

(3.42) dLf =
∑
i∈I

∂f

∂ui
(L)ui .

These are the same Poisson structures which appeared in [OR89]. In order
to make sense of equation (3.41) we need to identify g∗ 
 g via the inner
product (3.3). Indeed, under this identification, L ∈ g∗ can be thought of as
an element of g, so it makes sense to take products L ◦ a or a ◦ L for a ∈ g.
Remark 3.5. Assuming that both R and 1

2(R−R∗) are R-matrices over g, by
Theorem 3.1 the second bracket {· , ·}R2 is a Poisson bracket on S(g), and it
is obtained as the coefficient of 2ε in (3.41):

{f, g}R2 (L) = 1
4 Tr

(
L ◦ [dLf,R(L ◦ dLg + dLg ◦ L)]

)
− 1

4 Tr
(
L ◦ [dLg,R(L ◦ dLf + dLf ◦ L)]

)
.

It has the following equivalent form:

{f, g}R2 (L) = 1
4 Tr

(
L ◦ [dLf, (R−R∗)(L ◦ dLg)]

)
(3.43)
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− 1
4 Tr

(
L ◦ [dLg, (R−R∗)(dLf ◦ L)]

)
+ 1

4 Tr
(
L ◦ dLf ◦ (R + R∗)(dLg ◦ L)

)
− 1

4 Tr
(
L ◦ dLg ◦ (R + R∗)(dLf ◦ L)

)
,

which, for a skewadjoint R-matrix R, reduces to [STS83, Eq.(22)].

3.2. Hamiltonian equations and the triple Lenard-Magri scheme

Recall that, given a Poisson structure on g∗, i.e. a Poisson bracket {· , ·} on the
algebra of polynomial functions on g∗, and a Hamiltonian function h on g∗,
the corresponding Hamiltonian equation is, in coordinates xj , the following
system of evolution equations

(3.44) dxj(t)
dt

= {h, uj}(L(t)) , j ∈ I .

It describes the time evolution of the point L(t) =
∑

i∈I xi(t)ui ∈ g∗. By
Leibniz rule we get the corresponding evolution equation for a function f(L)
on g∗: df(L(t))

dt = {h, f}(L). Using the identification of the symmetric alge-
bra S(g) with the algebra of polynomial functions on g∗, we thus get the
corresponding Hamiltonian equation on S(g):

(3.45) df

dt
= {h, f} , f ∈ S(g) .

In particular, if R and 1
2(R − R∗) are R-matrices over g, we have, by

Theorem 3.1, the three Poisson brackets {· , ·}Ri , i = 1, 2, 3, and therefore,
for every Hamiltonian function h ∈ S(g), we have the corresponding three
evolution equations:
(3.46)
duj
dt1

= 1
2
∑
i∈I

∂h

∂ui

(
[ui, R(uj)] − [uj , R(ui)]

)
,

duj
dt2

= 1
4

∑
i,h∈I

∂h

∂ui
uh

(
[ui, R(uh ◦ uj + uj ◦ uh)] − [uj , R(uh ◦ ui + ui ◦ uh)]

)
,

duj
dt3

= 1
2

∑
i,h,k∈I

∂h

∂ui
uhuk

(
[ui, R(uh ◦ uj ◦ uh)] − [uj , R(uh ◦ ui ◦ uk)]

)
.
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Recall that a Casimir of g is an element f ∈ S(g) invariant with respect
to the adjoint action of g, i.e. such that

(3.47) {x, f} := (ad(x))(f) =
∑
i∈I

∂f

∂ui
[x, ui] = 0 , for all x ∈ g .

Lemma 3.6 ([OR89]). If R ∈ End(g) is an R-matrix over the Lie algebra g,
and if f, g ∈ S(g) are Casimirs of g, then they Poisson commute with respect
to the whole ε-family of Poisson structures defined by (3.4): {f, g}R,ε = 0, for
every ε.

Proof. By (3.4) and (3.40), we have
(3.48)
{f, g}R,ε = 1

2
∑

j,h,k∈I

∂g

∂uj
(uh + εTr(uh))(uk + εTr(uk))

{
f,R(uh ◦ uj ◦ uk)

}
− 1

2
∑

i,h,k∈I

∂f

∂ui
(uh + εTr(uh))(uk + εTr(uk))

{
g,R(uh ◦ ui ◦ uk)

}
.

If f is a Casimir of g, the first term of the RHS of (3.48) vanishes by (3.47),
while if g is a Casimir of g, the second term of the RHS of (3.48) vanishes.

If we take the Hamiltonian function to be a Casimir element C ∈ S(g),
the three evolution equation (3.46) greatly simplify thanks to equation (3.47).
They become

(3.49)

duj
dt1

= 1
2
∑
i∈I

∂C

∂ui
[R(ui), uj ] ,

duj
dt2

= 1
2

∑
i,h∈I

∂C

∂ui
uh[R(ui ◦ uh), uj ] ,

duj
dt3

= 1
2

∑
i,j,h,k∈I

∂C

∂ui
uhuk[R(ui ◦ uh ◦ uk), uj ] .

An infinite collection of Casimirs is the following:

(3.50) Ck = 1
k

∑
i1,...,ik

ui1 . . . uik Tr(ui1 ◦ · · · ◦ uik) , k ≥ 1 .

Indeed, it is immediate to check that (3.47) holds for all elements Ck. More-
over, we have the following identity:

(3.51)
∑
i∈I

∂Ck

∂ui
⊗ ui =

∑
i1,...,ik−1

ui1 . . . uik−1 ⊗ (ui1 ◦ · · · ◦ uik−1) .
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Note that the functions on g∗ corresponding to the Casimirs of equation (3.50)
are Ck(L) = 1

k Tr(L◦k), and we have dLCk = L◦(k−1).
It immediately follows from (3.49) and (3.51), that the following “triple

Lenard-Magri scheme” holds: denoting tk,i the time evolution with respect to
the Poisson structure {· , ·}Ri and the Hamiltonian function Ck, we have

(3.52)

duj
dtk+1,1

= duj
dtk,2

= duj
dtk−1,3

= 1
2

∑
i1,...,ik

ui1 . . . uik [R(ui1 ◦ · · · ◦ uik), uj ] .

4. Algebraic setup: the algebra V∞̂ and continuous PVA
structures

4.1. The algebra A

Throughout the rest of the paper we let A be a finite dimensional associa-
tive algebra over F, with a unit 1, and with a non-degenerate trace form
Tr(·) : A → F (recall the definition at the beginning of Section 3). The
typical example is the algebra A = End(V ) of endomorphisms of a finite-
dimensional vector space V , with the usual trace form TrV (XY ). We fix dual
bases {Eα}α∈I , {Eα}α∈I of A:

(4.1) Tr(EαEβ) = δα,β .

4.2. The differential algebra V∞̂

Consider the infinite set of variables

(4.2) up,α for p ∈ Z, α ∈ I .

The reason for considering such set of variables will be clear from the dis-
cussion in Section 5, where we present the construction of the “affine” O-R
Poisson structures. Consider the increasing sequence of algebras of differential
polynomials (N ∈ Z)

(4.3) · · · ⊂ VN ⊂ VN+1 ⊂ · · · ⊂ V∞ ,

where

(4.4) VN = F

[
u(n)
p,α

∣∣∣ p≥−N−1
α∈I

n∈Z≥0

]
for N ∈ Z , and V∞ = F

[
u(n)
p,α

∣∣∣ p∈Z
α∈I

n∈Z≥0

]
.
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These are differential algebras, with derivation ∂ : VN → VN defined by
∂u

(n)
p,α = u

(n+1)
p,α . As usual, we denote up,α = u

(0)
p,α.

We have the corresponding sequence of projection maps

(4.5) . . . VN VN+1 . . . V∞ ,

πN+1

πN

where πN is the differential algebra homomorphism defined by setting up,α = 0
for p < −N − 1 and for all α ∈ I. We then have the corresponding inverse
limit algebra

(4.6) V∞̂ = lim←−
N

VN .

Its elements are infinite sums

(4.7) f =
∞∑
s=0

fs with fs ∈ V∞ ,

with the property that, for all N ∈ Z,

(4.8) πN (fs) = 0 for s >> 0 .

In other words, for every N ∈ Z, πN (f) becomes a finite sum of elements in
VN .

Proposition 4.1. V∞̂ is a differential algebra extension of V∞, with uniquely
defined derivations

∂

∂u
(n)
p,α

: V∞̂ → V∞̂ for p ∈ Z, α ∈ I, n ∈ Z≥0 ,

extending the usual partial derivatives on V∞ and such that

[ ∂

∂u
(n)
p,α

, ∂
]

= ∂

∂u
(n−1)
p,α

.

Moreover, we have uniquely defined maps

δ

δup,α
: V∞̂ → V∞̂ for p ∈ Z, α ∈ I ,
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extending the usual variational derivatives on V∞. These variational deriva-
tives δ

δup,α
vanish on total derivatives, so they induce linear maps on the quo-

tient space of “continuous” local functionals:

δ

δup,α
: V∞̂/∂V∞̂ → V∞̂ .

Proof. Clearly, V∞̂ is an algebra extension of V∞, and the derivation ∂ extends
uniquely to a derivation of V∞̂ defined by ∂f =

∑∞
s=0 ∂fs ∈ V∞̂, for f as

in (4.7).
Next, we show that the partial derivatives ∂

∂u
(n)
p,α

uniquely extend to well-

defined derivations ∂

∂u
(n)
p,α

: V∞̂ → V∞̂, defined, for f =
∑∞

s=0 fs as in (4.7)-
(4.8), by

(4.9) ∂f

∂u
(n)
p,α

=
∞∑
s=0

∂fs

∂u
(n)
p,α

∈ V∞̂ .

For this, we need to check that the RHS of (4.9) lies in V∞̂. By the definition
of the projection maps πN , we have, for f̄ ∈ V∞

(4.10) πN
( ∂f̄

∂u
(n)
p,α

)
= ∂

∂u
(n)
p,α

πN (f̄) if p ≥ −N − 1 .

For N ∈ Z, let Ñ = max{N,−p − 1}. By (4.8) there exists SÑ ∈ Z≥0 such
that πÑ (fs) = 0 for all s > SÑ . Since p ≥ −Ñ − 1, we have, for s > SÑ ,

πÑ
( ∂fs

∂u
(n)
p,α

)
= ∂

∂u
(n)
p,α

πÑ (fs) = 0 ,

which implies πN
( ∂fs

∂u
(n)
p,α

)
= 0, since N ≤ Ñ . Hence, applying πN to the RHS

of (4.9) we get a finite sum in VN :

SÑ∑
s=0

πN
( ∂fs

∂u
(n)
p,α

)
.

The facts that the maps ∂

∂u
(n)
p,α

are derivations of the commutative associative

product of V∞̂, and that they satisfy the usual commutation relations with
∂, follow by construction, since the same properties hold in V∞.
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In the same way one can prove that the variational derivatives in V∞

δf̄

δup,α
:=

∑
n∈Z≥0

(−∂)n ∂f̄

∂u
(n)
p,α

, f̄ ∈ V∞ ,

uniquely extend to linear maps δ
δup,α

: V∞̂ → V∞̂, given, for f as in (4.7)-(4.8),
by

(4.11) δf

δup,α
=

∞∑
s=0

δfs
δup,α

∈ V∞̂ .

The last assertion of the proposition is obvious.

4.3. Continuous differential and pseudodifferential operators

We have the corresponding increasing sequence of the algebras of differential
operators

(4.12) · · · ⊂ VN [∂] ⊂ VN+1[∂] ⊂ · · · ⊂ V∞[∂] ,

with the corresponding projection maps (commuting with ∂)

(4.13) πN : V∞[∂] � VN [∂] , N ∈ Z .

Hence, we can consider the inverse limit

(4.14) V∞[∂]̂ = lim←−
N

VN [∂] .

We will call an element P (∂) ∈ V∞[∂]̂ a continuous differential operator
over V∞. It is, by definition, an infinite sum

(4.15) P (∂) =
∞∑
s=0

Ps(∂) with Ps(∂) ∈ V∞[∂] ,

with the property that, for all N ∈ Z,

(4.16) πN (Ps(∂)) = 0 for s >> 0 .

Hence, for every N ∈ Z, πN (P (∂)) is a well-defined element of VN [∂]. Note
that V∞[∂]̂ is of course larger than V∞̂[∂], as P (∂) in (4.15) might have
unbounded powers of ∂.



1206 Alberto De Sole et al.

Clearly, V∞[∂]̂ is an algebra extension of V∞[∂]: given elements P (∂) =∑∞
s=0 Ps(∂) and Q(∂) =

∑∞
t=0 Qt(∂) as in (4.15)-(4.16), their ◦ product is

(4.17) P (∂) ◦Q(∂) =
∞∑

s,t=0
Ps(∂) ◦Qt(∂) ,

which lies in V∞[∂]̂ since, for N ∈ Z, we have that πN (Ps(∂) ◦ Qt(∂)) =
πN (Ps(∂))◦πN (Qt(∂)) = 0 for all but finitely many values of s and t. For the
same reason, we have a natural action of a continuous differential operator
P (∂) ∈ V∞[∂]̂ on an element f ∈ V∞̂ in the obvious way: if f is as in (4.7)-
(4.8) and P (∂) is as in (4.15)-(4.16), then P (∂)f =

∑∞
s,t=0 Ps(∂)ft, and this

sum becomes finite once we apply the projection map πN .
Passing from differential operators to symbols, we have the corresponding

sequence of projection maps πN : V∞[λ] � VN [λ], N ∈ Z, commuting with
λ, and the associated inverse limit

(4.18) V∞[λ]̂ = lim←−
N

VN [λ] .

It is an algebra extension of V∞[λ], and taking symbols summand by sum-
mand in (4.15) we have the corresponding symbol map V∞[∂]̂ ∼−→ V∞[λ]̂ .
Similarly, we denote by V∞[λ, μ]̂ the inverse limit of the sequence of projec-
tion maps of the algebras of polynomials in two variables, πN : V∞[λ, μ] �
VN [λ, μ]. Obviously, if P (λ) ∈ V∞[λ]̂ , then P (λ + μ) ∈ V∞[λ, μ]̂ .

In the same way as for polynomials, we can extend the projection maps
πN to the algebras of pseudodifferential operators, or Laurent series (i.e. the
symbols of pseudodifferential operators):

(4.19) πN : V∞((∂−1)) � VN ((∂−1)) or πN : V∞((z−1)) � VN ((z−1)) ,

letting πN commute with ∂ or z. We have the associated inverse limits

(4.20) V∞((∂−1))̂ = lim←−
N

VN ((∂−1)) and V∞((z−1))̂ = lim←−
N

VN ((z−1)) .

In particular, a continuous pseudodifferential operator over V∞ is an infinite
sum

(4.21) P (∂) =
∞∑
s=0

Ps(∂) ∈ V∞((∂−1))̂ ,
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with Ps(∂) ∈ V∞((∂−1)) such that, for every N ∈ Z, πN (Ps(∂)) = 0 for all
but finitely many values of s. As for differential operators, V∞((∂−1))̂ is an
algebra extension of V∞((∂−1)), with ◦ product defined as in (4.17).

We can define the adjoint P ∗(∂) of a continuous pseudodifferential oper-
ator P (∂) ∈ V∞((∂−1))̂ by taking the adjoint of each summand in (4.21).
Also, the residue of a continuous pseudodifferential operator P (∂) is defined
in the obvious way: if P (∂) ∈ V∞((∂−1))̂ is as in (4.21), then

(4.22) Res∂ P (∂) =
∞∑
s=0

Res∂(Ps(∂)) ∈ V∞̂ .

Throughout the paper, we will use the following standard notation: for
a continuous pseudodifferential operator P (∂) ∈ V∞((∂−1))̂ and elements
f, g ∈ V∞̂, we let

(4.23) P (z + x)
(∣∣

x=∂
f
)
g = gP (z + ∂)f .

In other words, if P (∂) =
∑∞

s=0
∑Ns

n=−∞ ps,n∂
n, f =

∑∞
t=0 ft and g =

∑∞
r=0 gr,

then

P (z + x)
(∣∣

x=∂
f
)
g =

∞∑
s,t,r=0

Ns∑
n=−∞

∑
k∈Z≥0

(
n

k

)
ps,nf

(k)
t grz

n−k ∈ V∞((z−1))̂ .

For an algebra V , we denote by V((z−1, w−1)) the algebra:

(4.24) V((z−1, w−1)) := V [[z−1, w−1]][z, w] .

As above, we consider the sequence of projections πN : V∞((z−1, w−1)) �
VN ((z−1, w−1)), and the corresponding inverse limit

(4.25) V∞((z−1, w−1))̂ = lim←−
N

VN ((z−1, w−1)) .

The key object in the forthcoming Sections will be the following Lax
operator :

(4.26) L(z) :=
∑

p∈Z,α∈I
up,αz

−p−1Eα ∈ V∞((z−1))̂ ⊗ A .
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It can be viewed as the generating series of all the variables up,α, p ∈ Z, α ∈ I.
Here and further we omit the tensor product sign between elements of V∞̂ (or
any its polynomial or Laurent series extension) and elements of the algebra
A.

4.4. Continuous PVA λ-brackets on V∞̂

Recall from [BDSK09] the definition of λ-bracket and PVA λ-bracket on a
differential algebra V . Here we introduce its continuous analogue on V∞̂.

Definition 4.2. A continuous λ-bracket on V∞̂ is a bilinear over F map

(4.27) {· λ ·} : V∞̂ × V∞̂ −→ V∞[λ]̂ ,

satisfying the following axioms:

(i) continuity: for every N ∈ Z, there exists M ∈ Z (sufficiently large) such
that (f, g ∈ V∞̂):

(4.28) πM (f) = 0 or πM (g) = 0 ⇒ πN{fλg} = 0 ;

(ii) sesquilinearity (f, g ∈ V∞̂):

(4.29) {∂fλg} = −λ{fλg} , {fλ∂g} = (λ + ∂){fλg} ;

(iii) Leibniz rules (f, g, h ∈ V∞̂):

(4.30) {fλgh} = {fλg}h + {fλh}g ;
{fgλh} = {fλ+xh}

∣∣
x=∂

g + {gλh}
∣∣
x=∂

f .

In the second Leibniz rule we use the notation introduced in (4.23).
A continuous Poisson vertex algebra (PVA) λ-bracket on V∞̂ is a contin-

uous λ-bracket satisfying the following two extra axioms:

(iv) skewsymmetry (f, g ∈ V∞̂):

(4.31) {fλg} = −
∣∣
x=∂

{g−λ−xf} ∈ V∞[λ]̂ ;

(v) Jacobi identity (f, g, h ∈ V∞̂):

(4.32) {fλ{gμh}} − {gμ{fλh}} = {{fλg}λ+μh} ∈ V∞[λ, μ]̂ .
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The Jacobi identity requires some explanation. By definition of V∞[λ]̂ ,
we have

{gμh} =
∞∑
t=0

Qt(μ) ,

where Qt(μ) ∈ V∞[μ] and, for every M ∈ Z, we have πM (Qt(μ)) = 0 for every
t > TM . Moreover, for every given t ∈ Z≥0, we have

{fλQt(μ)} =
∞∑
s=0

Ps,t(λ, μ) ,

where Ps,t(λ, μ) ∈ V∞[λ, μ] and, for every N ∈ Z, we have πN (Ps,t(λ, μ)) = 0
for all s > St,N . Then,

{fλ{gμh}} =
∞∑

s,t=0
Ps,t(λ, μ) ,

and we need to explain why this infinite sum lies in V∞[λ, μ]̂ . Fix N ∈ Z,
and, by the continuous assumption (i), let M ∈ Z be such that (4.28) holds.
Note that, for t > TM , we have by assumption that πM (Qt(μ)) = 0, and
therefore by the continuity axiom (4.28) πN ({fλQt(μ)}) = 0. Therefore,

πN
(
{fλ{gμh}}

)
=

TM∑
t=0

πN ({fλQt(μ)}) =
TM∑
t=0

St,N∑
s=0

πN (Ps,t(λ, μ)) ,

which is a finite sum, thus lying in VN [λ, μ], as needed. Similarly, all three
terms in the Jacobi identity (4.32) lie in V∞[λ, μ]̂ , so the Jacobi identity
makes sense.

We want to show that, as for the usual Poisson vertex algebra [BDSK09],
also a continuous PVA λ-bracket is uniquely defined by its values

(4.33) {up,αλuq,β} ∈ V∞[λ]̂ , p, q ∈ Z, α, β ∈ I ,

on the set of generators (4.2). Recall that, by the definition of the projection
maps πN in (4.5), πN (up,α) = 0 for all p < −N − 1. Hence, the continuity
condition (4.28) implies, on the λ-brackets (4.33), that, for every N ∈ Z,
there exists M ∈ Z such that

(4.34) πN
(
{up,αλuq,β}

)
= 0 if either p < −M − 1 or q < −M − 1 .
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We claim that if the continuity conditions on generators (4.34) hold, then
there is a unique way to extend the λ-bracket on generators (4.33) to a
continuous λ-bracket on V∞̂, by the following Master Formula [BDSK09]:
if f =

∑∞
s=0 fs, g =

∑∞
t=0 gt ∈ V∞̂ are as in (4.7)-(4.8), then

(4.35)

{fλg} =
∞∑

s,t=0

∑
p,q∈Z

∑
α,β∈I

∑
m,n∈Z≥0

∂gt

∂u
(n)
q,β

(λ+∂)n{up,αλ+∂uq,β}→(−λ−∂)m ∂fs

∂u
(m)
p,α

.

Indeed, let us check that the RHS of (4.35) lies in V∞[λ]̂ . In other words, we
fix N and we need to show that, after applying πN , the RHS of (4.35) becomes
a finite sum. Let M ∈ Z be such that (4.34) holds and let Ñ = max{M,N}.
By the definition of V∞̂, there exists S such that

(4.36) πÑ (fs) = 0 , πÑ (gt) = 0 for all s, t ≥ S.

Moreover, if either p < −Ñ−1 ≤ −M−1 or q < −Ñ−1, we have, by (4.34),

πN
(
{up,αλuq,β}

)
= 0 .

On the other hand, if p ≥ −Ñ − 1 and s > S, we have, by (4.10),

πÑ
( ∂fs
∂up,α

)
= ∂

∂up,α
πÑ (fs) = 0 which implies πN

( ∂fs
∂up,α

)
= 0 .

And analogously, if q ≥ −Ñ − 1 and t > S, we have πN
( ∂gt
∂uq,β

)
= 0. Hence,

applying πN to the RHS of (4.35), we are left with the finite sum in VN [λ]

S∑
s,t=0

∞∑
p,q=−Ñ−1

∑
α,β∈I

∑
m,n∈Z≥0

πN
( ∂gt

∂u
(n)
q,β

)
× (λ + ∂)nπN

(
{up,αλ+∂uq,β}

)
→(−λ− ∂)mπN

( ∂fs

∂u
(m)
p,α

)
.

(It is a finite sum since, for every s and t, fs, gt ∈ V∞ are polynomials in the
variables u

(n)
p,α.)

The proof that the Master Formula (4.35) satisfies the sesquilinearity ax-
ioms (4.29) and the Leibniz rules (4.30) is as in the usual PVA case [BDSK09].
Likewise one can show, as in the usual case, that the continuous λ-bracket
given by (4.35) is a continuous PVA λ-bracket, i.e. the skewsymmetry ax-
iom (4.31) and the Jacobi identity (4.32) hold, if and only if they hold on
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generators: skewsymmetry:

(4.37) {up,αλuq,β} = −
∣∣
x=∂

{uq,β−λ−xup,α} ∈ V∞[λ]̂ ,

and Jacobi identity:
(4.38)
{up,αλ{uq,βμur,γ}}−{uq,βμ{up,αλur,γ}} = {{up,αλuq,β}λ+μur,γ} ∈ V∞[λ, μ]̂ .

Summarizing the above observations, we have the following Theorem, whose
details of the proof are left to the reader:

Theorem 4.3. Every choice for the λ-brackets {up,αλuq,β} ∈ V∞[λ]̂ among
the generators up,α, p ∈ Z, α ∈ I, of V∞̂, satisfying the continuity condi-
tions (4.34), extends uniquely to a continuous λ-bracket on V∞̂, and it is given
by the Master Formula (4.35). Moreover, the continuous λ-bracket (4.35) is
a continuous PVA λ-bracket on V∞̂ if and only if skewsymmetry and Jacobi
identity hold on generators, i.e. (4.37) and (4.38) hold.

4.5. Continuous PVA λ-bracket on V∞̂ in terms of the generating
series L(z)

The generating series L(z) ∈ V∞((z−1))̂⊗A defined by (4.26) encodes all the
generators {up,α}p∈Z,α∈I of V∞̂. Hence, all the λ-brackets {up,αλuq,β} among
the generators can be encoded in

(4.39) {L1(z)λL2(w)} =
∑
p,q∈Z

∑
α,β∈I

{up,αλuq,β}z
−p−1w−q−1Eα ⊗ Eβ ,

where

(4.40) L1(z) = L(z) ⊗ 1 and L2(z) = 1⊗ L(z) in V∞((z−1))̂ ⊗ A⊗2 .

(As usual, we omit the tensor product sign for the factors in V∞((z−1)).) The
continuity conditions (4.34) translate into saying that, for every N ∈ Z, there
exists M ∈ Z such that

(4.41) πN
(
{L1(z)λL2(w)}) ∈ (VN [λ])[[z−1, w−1]]zMwM ⊗ A⊗2 .

In other words,

(4.42) {L1(z)λL2(w)} ∈ (V∞[λ])((z−1, w−1))̂ ⊗ A⊗2 ,



1212 Alberto De Sole et al.

Moreover, all the skewsymmetry conditions (4.37) are encoded in the single
identity

(4.43) {L1(z)λL2(w)} = −
∣∣
x=∂

{L2(w)−λ−xL1(z)} ,

in (V∞[λ])((z−1, w−1))̂⊗A⊗2, while the Jacobi identities (4.38) are encoded
in

{L1(z)λ{L2(w)μL3(v)}} − {L2(w)μ{L1(z)λL3(v)}}
= {{L1(z)λL2(w)}λ+μL3(v)} ,

(4.44)

in the space (V∞[λ, μ])((z−1, w−1, v−1))̂ ⊗A⊗3, where L1(z), L2(z), L3(z) ∈
V∞((z−1))̂⊗A⊗3 are defined as in (4.40). We can thus translate Theorem 4.3
in terms of generating series as follows:

Theorem 4.4. A continuous PVA λ-bracket on V∞̂ is uniquely determined
by an element

{L1(z)λL2(w)} ∈ (V∞[λ])((z−1, w−1))̂ ⊗ A⊗2 ,

satisfying the skewsymmetry condition (4.43) and the Jacobi identity (4.44).

4.6. Continuous local Poisson bracket on V∞̂/∂V∞̂

As in the usual PVA case, a continuous PVA λ-bracket on V∞̂ induces a Lie
algebra bracket on the space of local functionals

{· , ·} :
(
V∞̂/∂V∞̂

)
×

(
V∞̂/∂V∞̂

)
→

(
V∞̂/∂V∞̂

)
,

given by
{
∫
f,

∫
g} =

∫
{fλg}

∣∣
λ=0 .

This bracket is clearly a well-defined element of V∞̂, and, as in the usual PVA
case, the Lie algebra axioms are an immediate consequence of the skewsymme-
try and Jacobi identity axioms (4.31)-(4.32) of a continuous PVA λ-bracket.

By Theorem 4.3, any continuous λ-bracket on V∞̂ is given by the Master
Formula (4.35). It follows that the induced local Poisson bracket on the space
of local functionals is, for f, g ∈ V∞̂,

(4.45) {
∫
f,

∫
g} =

∑
p,q∈Z,α,β∈I

∫
δg

δuq,β
{up,α ∂ uq,β}→

δf

δup,α
∈ V∞̂/∂V∞̂ ,

where the arrow means that ∂ is moved to the right, and the variational
derivatives are defined in (4.11).



Adler-Oevel-Ragnisco type operators and Poisson vertex algebras 1213

5. Affinization of the O-R construction and the three
Adler-Oevel-Ragnisco (AOR) identites

We want to find the “infinite-dimensional analogue” of the Oevel-Ragnisco
(O-R) Poisson structures (3.4).

5.1. O-R construction in finite dimension: summary

Let us first summarize the finite-dimensional construction presented in Sec-
tion 3. The starting point is a finite dimensional associative algebra g over F,
with a non-degenerate trace form Tr(·) : g → F (recall the definition at the
beginning of Section 3), and an R-matrix R ∈ End(g). If we fix dual bases
{ui}Ni=1, {ui}Ni=1, and identify g∗ 
 g via the bilinear form (3.3), an arbitrary
element L ∈ g∗ is

(5.1) L =
N∑
i=1

xiu
i , xi ∈ F ,

and the pairing 〈· | ·〉 is, in coordinates,

(5.2) 〈L|a〉 = Tr(L ◦ a) =
N∑
i=1

xiαi , where a =
N∑
j=1

αjuj ∈ g .

The O-R construction provides a Poisson algebra structure on the algebra of
polynomial functions on g∗, which can be identified with S(g), the symmetric
algebra over g:

(5.3)
{
polyn. functions on g∗

}

 S(g) .

This identification is clear: an element f ∈ S(g), which can be expanded as

(5.4) f =
∑

coeff. uk1
1 . . . ukNN ∈ S(g) ,

corresponds to the polynomial function on g∗ given, in coordinates, by the
same polynomial of x1, . . . , xN :

(5.5) f(L) =
∑

coeff. xk1
1 . . . xkNN ∈ F ,

if L ∈ g∗ is as in (5.1). The differential of the function f at a point L ∈ g∗ is
defined as the element dLf ∈ g such that

(5.6) f(L + εY ) = f(L) + εTr(Y ◦ dLf) + O(ε2) .



1214 Alberto De Sole et al.

We can use Taylor’s formula and the equation (5.2), to get the following
explicit formula for the differential of f ∈ S(g):

(5.7) dLf =
N∑
i=1

∂f

∂ui
(L)ui ∈ g .

At this point, we consider the O-R Poisson bracket (3.41):

{f, g}R,ε(L) = 1
2 Tr(L ◦ [dLf,R((L + ε1) ◦ dLg ◦ (L + ε1))])

− 1
2 Tr(L ◦ [dLg,R((L + ε1) ◦ dLf ◦ (L + ε1))]) .

We expand L via (5.1), 1 =
∑N

i=1 Tr(ui)ui, and the differentials dLf and dLg
via (5.7). As a result, we get

{f, g}R,ε(L) = 1
2

N∑
i,j,h,k,
=1

∂f

∂ui
(L) ∂g

∂uj
(L)(xh + εTr(uh))(xk + εTr(uk))x
×

× Tr
(
u
 ◦

(
[ui, R(uh ◦ uj ◦ uk)] − [uj , R(uh ◦ ui ◦ uk)]

))
.

Identifying the polynomial functions on g∗ and the elements of S(g) as in (5.4)-
(5.5), this corresponds to the Poisson bracket on S(g) given by

{f, g}R,ε = 1
2

N∑
i,j,h,k=1

∂f

∂ui

∂g

∂uj
(uh + εTr(uh))(uk + εTr(uk))×

×
(
[ui, R(uh ◦ uj ◦ uk)] − [uj , R(uh ◦ ui ◦ uk)]

)
,

or, equivalently, to the Lie algebra bracket (3.4) on g.

5.2. Setup for the construction in the affine case

We now proceed to describe the “affine analogue” of the O-R construction,
which we shall call the Adler-Oevel-Ragnisco (AOR) construction. We let
F be an algebra over F of “test functions”. By this we mean an algebra
of functions f(x) in one (space) variable x ∈ M , which we can integrate:∫
Mf(x)dx ∈ F, and which we can differentiate: f ′(x) = ∂f(x)

∂x ∈ F . The only
assumptions on the linear map

∫
M dx : F → F, are the following. First, we

require the validity of the fundamental theorem of calculus, which has the
form

(5.8)
∫
M

f ′(x)dx = 0 for every f(x) ∈ F ,
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(we are assuming that the manifold M is compact with no boundary). In
particular we have the rule of integration by parts:

(5.9)
∫
M

f(x)g′(x)dx = −
∫
M

f ′(x)g(x)dx , for every f(x), g(x) ∈ F .

Moreover, we require the non-degeneracy condition:

(5.10)
∫
M

f(x)g(x)dx = 0 for all g(x) ∈ F implies f(x) = 0 .

A typical example of such an algebra of test functions is the algebra of smooth
functions on the circle S1.

The starting point of the AOR construction is the following associative
algebra:

(5.11) g = F((∂−1)) ⊗ A ,

where A is, as in Section 4, a finite dimensional associative algebra with a
trace form Tr, and F((∂−1)) is the associative algebra of pseudodifferential
operators over F . The associative product ◦ on it is defined by the rule

(5.12) ∂p ◦ f(x) =
∑

n∈Z≥0

(
p

n

)
f (n)(x)∂p−n , p ∈ Z, f(x) ∈ F ,

where f (n)(x) = ∂nf(x)
∂xn . For simplicity, when writing an element of g we drop

the tensor product sign: for P (x; ∂) ∈ F((∂−1)) and X ∈ A, we let P (x; ∂)X
be the corresponding element of g. The associative product of g, defined
componentwise, will be denoted by ◦:

(5.13) (P (x; ∂)X) ◦ (Q(x; ∂)Y ) := (P (x; ∂) ◦Q(x; ∂))(XY ) ,

for P (x; ∂), Q(x; ∂) ∈ F((∂−1)), X, Y ∈ A. We define the following trace form
〈 · 〉 : g → F on g (recall the definition at the beginning of Section 3):

(5.14) 〈P (x; ∂)X〉 :=
∫
M

Res∂ P (x; ∂)dx Tr(X) ,

where, as usual, the residue Res∂ P (x; ∂) of a pseudodifferential operator
P (x; ∂) =

∑
p<∞ fp(x)∂−p−1 denotes the coefficient f0(x) of ∂−1. It is easy to

check, using integration by parts (5.9), that the linear function 〈 · 〉 defined
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by (5.14) vanishes on commutators, and it is non-degenerate by (5.10), hence
it is indeed a trace form on g.

Using the pairing associated to this trace form (cf. (3.3)), we can identify
the associative algebra g with the (restricted) dual g∗. Namely, the generic
point L ∈ g∗ is written, in coordinates, as

(5.15) L =
∑

p∈Z, α∈I
xp,α(x)∂−p−1 Eα ∈ g∗ ,

where the coordinate functions xp,α(x) ∈ F are 0 for p << 0. We can also
write the pairing associated to (5.14) in coordinates, thus obtaining the “affine
analogue” of formula (5.2):

(5.16) 〈L ◦ a〉 =
∑

p∈Z, α∈I

∫
M

xp,α(x)yp,α(x)dx ,

where

(5.17) a =
∑

q∈Z,β∈I
∂q ◦ yq,β(x)Eβ ∈ g .

(Here the “dual” coordinate functions yq,β(x) ∈ F are 0 for q >> 0.)
Next, we want to describe the correct space of functions on g∗, on which we

will define the AOR Poisson bracket. We consider the space of local polynomial
functionals on g∗. These are functions F : g∗ → F which, for L ∈ g∗ as
in (5.15), have the form

(5.18) F (L) =
∫
M

f(L(x)) dx =
∫
M

f
({
x(n)
p,α(x)

}
p∈Z,α∈I,n∈Z≥0

)
dx ,

where the density function f is a differential polynomial in the variables xp,α,
p ∈ Z, α ∈ I (and L = L(x) is as in (5.15)). In fact, we only need f to be
a polynomial when it is computed at a given point L, i.e. when xp,α = 0 for
p << 0.

Here the inverse limit algebra V∞̂, defined by (4.6), comes into play. In-
deed, any f ∈ V∞̂, when evaluated at the point L(x) as in (5.15), i.e. at
u

(n)
p,α = ∂nxp,α(x)

∂xn ∈ F (= 0 for p << 0), becomes a finite sum, i.e. a well-
defined element of F . Hence F (L) =

∫
M f(L(x))dx ∈ F is well defined.

Clearly, when we evaluate f ∈ V∞̂ at the point L(x) ∈ g∗, i.e. at u
(n)
p,α =

∂nxp,α(x)
∂xn , the derivation ∂ corresponds to the derivative in x:

(5.19) (∂f)(L(x)) = ∂f(L(x))
∂x

∈ F .
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In particular, by (5.8) we have
∫
M (∂f)(L(x))dx = 0. Hence, we can identify

(5.20)
{
local polyn. functionals on g∗

}

 V∞̂/∂V∞̂ ,

by associating the element
∫
f ∈ V∞̂/∂V∞̂, where f ∈ V∞̂, with the local poly-

nomial functional F : g∗ → F given by (5.18). This is the “affine analogue”
of the identification (5.3).

Next, we need to find a formula for the differential dLF of a local func-
tional F =

∫
f ∈ V∞̂/∂V∞̂ at a point L ∈ g∗. Recalling (5.6), we let dLF ∈ g

be defined by

(5.21) F (L + εY ) = F (L) + ε〈Y ◦ dLF 〉 + O(ε2) .

Let L(x) ∈ g∗ be as in (5.15) and let Y (x) =
∑

p∈Z,α∈I yp,α(x)∂−p−1Eα, with
yp,α(x) ∈ F vanishing for p << 0. By Taylor’s formula and integration by
parts, we have

F (L + εY ) =
∫
M

f
(
L(x) + εY (x))dx



∫
M

(
f
(
L(x)) + ε

∑
p∈Z,α∈I,m∈Z≥0

∂f

∂u
(m)
p,α

(L(x))y(m)
p,α (x)

)
dx


 F (L) + ε
∑

p∈Z,α∈I

∫
M

yp,α(x)
∑

m∈Z≥0

(− ∂

∂x
)m ∂f

∂u
(m)
p,α

(L(x))dx .

Recalling (5.16)-(5.17), we are thus lead to define

(5.22) dLF =
∑

p∈Z,α∈I
∂p ◦ δF

δup,α
(L(x))Eα ∈ g ,

where the variational derivatives of F =
∫
f ∈ V∞̂/∂V∞̂ are defined by (4.11).

5.3. R-matrices over g

In order to introduce the affine analogue of the OR bracket, we need to fix
an R-matrix over g = F((∂−1))⊗A viewed as a Lie algebra, i.e. a linear map

(5.23) R : F((∂−1)) ⊗ A −→ F((∂−1)) ⊗ A ,

satisfying the modified Yang-Baxter equation (2.1).
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We construct R-matrices on the Lie algebra g = F((∂−1)) ⊗A as special
cases of Example 2.2. Note that F [∂]∂k ⊂ F((∂−1)) is an associative (hence
Lie) subalgebra of F((∂−1)) for every k ≥ 0, while F [[∂−1]]∂k ⊂ F((∂−1)) is
an associative (hence Lie) subalgebra of F((∂−1)) for every k ≤ 0, and it is a
Lie subalgebra of F((∂−1)) for k ≤ 1. For arbitrary k ∈ Z, we have the direct
sum decomposition as left F -modules

(5.24) F((∂−1)) = F [∂]∂k ⊕F [[∂−1]]∂k−1 ,

and we denote by Π≥k : F((∂−1)) � F [∂]∂k and Π<k : F((∂−1)) �
F [[∂−1]]∂k−1 the corresponding projection maps. Hence, according to Exam-
ple 2.2 we have the following R-matrices over the Lie algebra g = F((∂−1))⊗
A:

(i) R(0) = (Π≥0 − Π<0) ⊗ 1
(

= 1
2(R(0) − (R(0))∗)

)
;

(ii) R(1) = (Π≥1 − Π<1) ⊗ 1 ;
(iii) R(2) = Π≥2 − Π<2, for A = F .

(5.25)

Note that only the first of these three examples is such that 1
2(R−R∗) is an

R-matrix. These examples of R-matrices have been considered in [KO93].
Remark 5.1. For k = 1, 2, we could also replace the subalgebras F [∂]∂k and
F [[∂−1]]∂k−1, in the decomposition (5.24) with their adjoints ∂k ◦ F [∂] and
∂k−1 ◦ F [[∂−1]], to get two new R-matrices.

Throughout the remainder of Section 5 we shall assume that R is one of
the R-matrices R(0), R(1), R(2) listed above, and we will focus most of our
attention to the case R = R(0).

Note that in all examples (5.25)(i)-(iii) R acts as the identity on the A-
factor of g = F((∂−1)) ⊗A, and it is left F -linear (f ∈ F , P (∂) ∈ F((∂−1)),
X ∈ A):

(5.26) R(fP (∂)X) = fR(P (∂))X .

As a consequence, the dual R∗ (with respect to the pairing 〈· ◦ ·〉) is right
F -linear:

(5.27) R∗(P (∂) ◦ fX) = R∗(P (∂)) ◦ f X .

Moreover, we have

(5.28) R(∂n1) = rn∂
n1 ∈ F∂n ⊗ A , for n ∈ Z .
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(In fact, rn = ±1 for all n, in all examples (5.25)(i)-(iii).)
Clearly, the constants rn, n ∈ Z, uniquely determine R, and R can be

uniquely extended, by left V∞̂-linearity, to a map R : V∞((∂−1))̂ ⊗A −→
V∞((∂−1))̂ ⊗ A, or, in terms of symbols, to a map

(5.29) Rξ : V∞((ξ−1))̂ ⊗ A −→ V∞((ξ−1))̂ ⊗ A .

Let us introduce the formal δ-function

(5.30) δ(z − w) =
∑
n∈Z

znw−n−1 .

Recall that it is defined by the following properties

(5.31) a(z)δ(z − w) = a(w)δ(z − w) ,

and

(5.32) Resz a(z)δ(z − w) = a(w) .

In the sequel we consider the following generating series for the pseudodiffer-
ential operators in (5.28) (and their symbols):

(5.33) Rξ(δ(z − ξ)) =
∑
n∈Z

rnz
−n−11 ∈ F((ξ−1))[[z, z−1]] ⊗ A ,

and similarly for R∗
ξ(δ(z − ξ)). Using the property (5.31) of the δ-function,

the properties (5.26)-(5.27) of R and R∗, and denoting by λ the action of ∂
on Θ, we have, for P (∂), Q(∂) ∈ V∞((∂−1))̂ :

(5.34)

R
(
P (∂)δ(z − ∂) ◦ ΘQ(∂)

)
= R

(
P (z)

(∣∣
λ=∂

Θ
)(∣∣

ζ=∂
Q∗(λ− z)

)
δ(z − λ− ζ − ∂)

)
=

(∣∣
λ=∂

Θ
)
P (z)Rξ

(
δ(z − λ− ζ − ξ)

)(∣∣
ζ=∂

Q∗(λ− z)
)∣∣

ξ=∂
,

and

(5.35)

R∗(P (∂)δ(z − ∂) ◦ ΘQ(∂)
)

= R∗(δ(z + ζ − ∂) ◦
(∣∣

ζ=∂
P (z)

)(∣∣
λ=∂

Θ
)
Q∗(λ− z)

)
=

(∣∣
λ=∂

Θ
)(∣∣

ζ=∂
P (z)

)
R∗

ξ

(
δ(z + ζ − ξ)

)∣∣
ξ=ζ+λ+∂

◦Q∗(λ− z) .
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Here and further, when negative powers of a sum of variables appear, if we
do not specify how to expand, it means that there is a unique way to make
sense of it requiring that when ∂ acts on functions it can appear only in non-
negative powers; the same for the symbol λ in equations (5.47) and below, or
μ in Section 5.8 and below. For example, in the RHS of (5.34) when negative
powers of z−λ− ζ appear, they must be expanded in the region |z| > |λ+ζ|,
since λ acts as ∂ applied to Θ and ζ acts as ∂ applied to the coefficients of
Q∗(λ−z). Finally, in terms of generating series, we have the following relation
between R and R∗.

Lemma 5.2. Let R be one of the R-matrices R(0), R(1) or R(2) from (5.25).
Then

(5.36) Rw(δ(z − w)) = R∗
z(δ(z − w)) .

Proof. Of course, one can prove the claim by writing explicitly Rw(δ(z−w))
separately in the three cases R(0), R(1) and R(2). We provide here a unified
arguments which only uses the properties (5.26)-(5.28) of these R-matrices.
Let P (∂)X,Q(∂)Y ∈ V∞((∂−1))̂⊗A. Using the definition (5.14) of the trace
form 〈 · 〉 we have

〈R(P (∂)δ(z − ∂))X ◦Q(∂)δ(w − ∂)Y 〉

=
∫

Res∂ R(P (∂)δ(z − ∂)) ◦Q(∂)δ(w − ∂) Tr(XY )

=
∫

Res∂ P (z)Rξ(δ(z − ξ))
∣∣
ξ=∂

◦Q(∂)δ(w − ∂) Tr(XY )

=
∫

P (z)Rξ(δ(z − ξ))
∣∣
ξ=w+∂

Q(w) Tr(XY ) .

(5.37)

In the second identity we used equation (5.34) and in the last identity we
used equation (5.32). Moreover, using again the definition (5.14) of the trace
form 〈 · 〉, we also have

〈P (∂)δ(z − ∂)X ◦R∗(Q(∂)δ(w − ∂))Y 〉

=
∫

Res∂ P (∂)δ(z − ∂) ◦R∗(Q(∂)δ(w − ∂)) Tr(XY )

=
∫

Res∂ P (∂)δ(z − ∂) ◦ (
∣∣
ζ=∂

Q(w))R∗
ξ(δ(w + ζ − ξ))

∣∣
ξ=ζ+∂

Tr(XY )

=
∫

P (z)R∗
z(δ(z − w − ξ))

∣∣
ξ=∂

Q(w) Tr(XY ) .

(5.38)
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In the second identity we used equation (5.35) and in the last identity we
used equation (5.32) and the facts that δ(w + ξ − z) = δ(z − w − ξ) and
∂ (R∗

z(δ(z − w − ξ))) = 0. From equations (5.37) and (5.38), the definition of
adjoint operator and the non-degeneracy of the trace we get that, for every
P (∂), Q(∂) ∈ V∞((∂−1))̂ ,∫

P (z)
(
Rξ(δ(z − ξ))

∣∣
ξ=w+∂

−R∗
z(δ(z − w − ξ))

∣∣
ξ=∂

)
Q(w) = 0 .

Hence, equation (5.36) follows by [BDSK09, Lemma 1.36].

5.4. AOR Poisson brackets

Note that, if L is as in (5.15), then

(5.39) L + ε1 =
∑

p∈Z,α∈I
(xp,α(x) + ε ηp,α)∂−p−1Eα ,

where ηp,α“ = 1
Vol(M)〈∂pEα〉” is defined by the property

(5.40)
∑

p∈Z,α∈I
ηp,α∂

−p−1Eα = 1 ,

the unit element of g (given by the tensor product of the function 1 ∈
F((∂−1)) and the unit element 1 ∈ A). We next compute the O-R ε-Poisson
brackets {

∫
f,

∫
g}R,ε(L(x)), which can be viewed as the affine analogue of

the O-R brackets in (3.41), for one of the R-matrices (5.25)(i)-(iii). In order
to compute the RHS of (3.41) we use the definition (5.14) of the trace form
〈 · 〉 on F((∂−1)) ⊗ A, and dL

∫
f and dL

∫
g as in (5.22). As a result, we get

{
∫
f,

∫
g}R,ε(L(x)) = 1

2
〈
L ◦ [dL(

∫
f), R((L + ε1) ◦ dL(

∫
g) ◦ (L + ε1))]

〉
− 1

2
〈
L ◦ [dL(

∫
g), R((L + ε1) ◦ dL(

∫
f) ◦ (L + ε1))]

〉
= 1

2
〈
dL(

∫
g) ◦ (L + ε1) ◦R∗[L, dL(

∫
f)] ◦ (L + ε1)

〉
+ 1

2
〈
dL(

∫
g) ◦ [L,R((L + ε1) ◦ dL(

∫
f) ◦ (L + ε1))]

〉
,

(5.41)
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where we used the cyclic property of the trace form. By expanding dL(
∫
f)

and dL(
∫
g) as in (5.22), the RHS of (5.41) becomes

1
2

∑
p,q∈Z
α,β∈I

〈
∂q◦ δ

∫
g

δuq,β
(L(x))Eβ ◦

(
(L+ε1) ◦R∗

[
L, ∂p◦ δ

∫
f

δup,α
(L(x))Eα

]
◦ (L+ε1)

+
[
L,R

(
(L + ε1) ◦ ∂p ◦ δ

∫
f

δup,α
(L(x))Eα ◦ (L + ε1)

)])〉
.

Recall the general formula (4.45) relating the Poisson bracket on V∞̂/∂V∞̂ to
the PVA λ-bracket on V∞̂. Recall also that, in the identification (5.20) of local
functionals on g∗ with elements of V∞̂/∂V∞̂, we simply replace the coordinate
functions xp,α(x) ∈ F with the corresponding differential variables up,α ∈ V∞̂.
We therefore expand L + ε1 as in (5.39) and use the definition (5.14) of the
trace form, to deduce the following formula defining the λ-brackets on V∞̂
corresponding to the O-R Poisson brackets (3.41) (where Θ ∈ V∞̂):
(5.42)

{up,α∂uq,β}
R,ε
→ Θ = 1

2
∑

i,j,k∈Z
γ,δ,ζ∈I{

Res∂
(
uj,δ(ε)∂−j−1 ◦R∗

(
uk,ζ∂

−k−1+p ◦ Θ
)
◦ ui,γ(ε)∂−i−1+q

)
× Tr

(
EβE

δEζEαE
γ)

− Res∂
(
uj,δ(ε)∂−j−1 ◦R∗

(
∂p ◦ Θuk,ζ∂

−k−1
)
◦ ui,γ(ε)∂−i−1+q

)
× Tr

(
EβE

δEαE
ζEγ)

+ Res∂
(
uk,ζ∂

−k−1 ◦R
(
ui,γ(ε)∂−i−1+p ◦ Θ ◦ uj,δ(ε)∂−j−1

)
∂q

)
× Tr

(
EβE

ζEγEαE
δ)

− Res∂
(
R
(
ui,γ(ε)∂−i−1+p ◦ Θuj,δ(ε)∂−j−1

)
◦ uk,ζ∂−k−1+q

)
× Tr

(
EβE

γEαE
δEζ)}

where we introduced the notation ui,γ(ε) = ui,γ + εηi,γ . Here we used that R
acts as the identity on the second factor of g = F((∂−1)) ⊗ A, as remarked
before equation (5.26).
Remark 5.3. From equation (5.42) it is not clear how to check the continuity
condition (4.34) only using the properties (5.26)-(5.28). In fact, we will be
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able to check continuity only using the explicit expressions of Rz(δ(z − w)
for the three R-matrices R(0), R(1) and R(2) that we are considering in the
present section.

5.5. Generating series and ε-Adler identities

We encode all the variables up,α ∈ V∞̂ in a generating series as follows:

(5.43) L(z) =
∑

p∈Z,α∈I
up,αz

−p−1Eα ∈ V∞((z−1))̂ ⊗ A .

Then, all λ-brackets {up,αλuq,β} are encoded in

{L1(z)λL2(w)}R,ε ∈ (V∞̂[[λ]])[[z, z−1, w, w−1]] ⊗ A⊗2 ,

where we use the notation (4.40) for L1(z) and L2(w). In fact, multiplying
both sides of (5.42) by z−p−1w−q−1Eα ⊗ Eβ and summing over p, q ∈ Z and
α, β ∈ I, we get
(5.44)
{L1(z)∂L2(w)}R,ε

→ Θ =
∑

p,q∈Z,α,β∈I
{up,α∂uq,β}

R,ε
→ Θ z−p−1w−q−1Eα ⊗ Eβ

= 1
2Ω Res∂

(
(L1(∂) + ε1) ◦R∗(L1(∂)δ(z − ∂) ◦ Θ

)
◦ (L2(∂) + ε1)δ(w − ∂)

− (L1(∂) + ε1) ◦R∗
(
δ(z − ∂) ◦ ΘL2(∂)

)
◦ (L2(∂) + ε1)δ(w − ∂)

+ L1(∂) ◦R
(
(L1(∂) + ε1)δ(z − ∂) ◦ Θ ◦ (L2(∂) + ε1)

)
δ(w − ∂)

−R
(
(L1(∂) + ε1) ◦ δ(z − ∂) ◦ Θ(L2(∂) + ε1)

)
◦ L2(∂)δ(w − ∂)

)
.

Here, 1 stands for 1⊗ 1 ∈ A⊗ A, and we denote

(5.45) Ω =
∑
α∈I

Eα ⊗ Eα ∈ A⊗ A .

It satisfies the following basic property

(5.46) Ω(X ⊗ Y ) = (Y ⊗X)Ω for all X, Y ∈ A ,

which is easily checked by (4.1). Moreover, for a = A(∂)X, b = B(∂)Y ∈ V∞̂,
we are denoting a1 ◦ b2 = A(∂)B(∂)⊗X ⊗ Y . Using (5.34), (5.35) and (5.36)
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we can rewrite (5.44) as
(5.47)
{L1(z)λL2(w)}R,ε

= 1
2Ω

(
(L1(w+λ+∂)+ε1)

(∣∣
ζ=z+∂

L1(z)
)
Rζ

(
δ(ζ−ξ)

)
(
∣∣
ξ=ζ−z+w+λ+∂L2(w)+ε1)

− (L1(w + λ + ∂) + ε1)Rz

(
δ(z − ξ)

)∣∣
ξ=w+λ+∂

L∗
2(λ− z)(L2(w) + ε1)

+ L1(w + λ + ∂)(L1(z) + ε1)Rw

(
δ(ζ − w)

)(∣∣
ζ=z−λ−∂

L∗
2(λ− z) + ε1

)
− (L1(z) + ε1)Rξ

(
δ(ζ − ξ)

)(∣∣
ζ=z−λ−∂

L∗
2(λ− z) + ε1

)∣∣
ξ=w+∂

L2(w)
)
.

This formula, that we call the ε-Adler identity associated to the R-matrix R,
encodes the whole PVA structure of V∞̂ associated to the affine analogue of
the O-R Poisson brackets.

If we expand as in (3.5):

(5.48) {· λ ·}R,ε = {· λ ·}R3 + 2ε{· λ ·}R2 + ε2{· λ ·}R1 ,

we get the 3-Adler identity

{L1(z)λL2(w)}R3(5.49)

= 1
2Ω

(
L1(w+λ+∂)

(∣∣
ζ=z+∂

L1(z)
)
Rζ

(
δ(ζ − ξ)

)∣∣
ξ=ζ−z+w+λ+∂

L2(w)

− L1(w + λ + ∂)Rz

(
δ(z − ξ)

)∣∣
ξ=w+λ+∂

L∗
2(λ− z)L2(w)

+ L1(w + λ + ∂)L1(z)Rw

(
δ(ζ − w)

)∣∣
ζ=z−λ−∂

L∗
2(λ− z)

− L1(z)Rξ

(
δ(ζ − ξ)

)(∣∣
ζ=z−λ−∂

L∗
2(λ− z)

)∣∣
ξ=w+∂

L2(w)
)
.

the 2-Adler identity:

{L1(z)λL2(w)}R2(5.50)

= 1
4Ω

(
L1(w+λ+∂)

(∣∣
ζ=z+∂

L1(z)
)
Rζ

(
δ(ζ − ξ)

)∣∣
ξ=ζ−z+w+λ

+
(∣∣

ζ=z+∂
L1(z)

)
Rζ

(
δ(ζ − ξ)

)∣∣
ξ=ζ−z+w+λ+∂

L2(w)

− L1(w + λ + ∂)Rz

(
δ(z − ξ)

)∣∣
ξ=w+λ+∂

L∗
2(λ− z)

−Rz

(
δ(z − ξ)

)∣∣
ξ=w+λ+∂

L∗
2(λ− z)L2(w)
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+ L1(w + λ + ∂)L1(z)Rw

(
δ(ζ − w)

)∣∣
ζ=z−λ

+ L1(w + λ + ∂)Rw

(
δ(ζ − w)

)(∣∣
ζ=z−λ−∂

L∗
2(λ− z)

)
− L1(z)Rξ

(
δ(ζ − ξ)

)∣∣
ζ=z−λ

∣∣
ξ=w+∂

L2(w)

−Rξ

(
δ(ζ − ξ)

)(∣∣
ζ=z−λ−∂

L∗
2(λ− z)

)∣∣
ξ=w+∂

L2(w)
)
,

and the 1-Adler identity:

{L1(z)λL2(w)}R1 = 1
2Ω×

(5.51)

((∣∣
ζ=z+∂

L1(z)
)
Rζ

(
δ(ζ−ξ)

)∣∣
ξ=ζ−z+w+λ

−Rz

(
δ(z − ξ)

)∣∣
ξ=w+λ+∂

L∗
2(λ− z)

+ L1(w + λ + ∂)Rw

(
δ(ζ − w)

)∣∣
ζ=z−λ

−Rξ

(
δ(ζ − ξ)

)∣∣
ζ=z−λ

∣∣
ξ=w+∂

L2(w)
)
.

5.6. The Adler identities for the standard R-matrix R = R(0)

Next, we specialize the Adler identities (5.49)-(5.51) for the R-matrix R(0)

in (5.25)(i).
Recall that the δ-function (5.30) admits the decomposition

(5.52) δ(z − w) = ιz(z − w)−1 − ιw(z − w)−1 ,

where ιz denotes the geometric expansion in the domain |z| >> 0, i.e. ιz(z −
w)−1 =

∑
n≥0 z

−n−1wn, while ιw denotes the geometric expansion in the
domain |w| >> 0, i.e. ιw(z − w)−1 = −∑

n≥0 z
nw−n−1.

For R = R(0) = Π≥0 − Π<0, we have

(5.53) R(0) = −(R(0))∗ and R(0)
w (δ(z − w)) = ιz(z − w)−1 + ιw(z − w)−1 .

Hence, in this case the ε-Adler identity (5.47) becomes

{L1(z)λL2(w)}R(0),ε

(5.54)

= Ω
(

(L1(w + λ + ∂) + ε1)(z − w − λ− ∂)−1L∗
2(λ− z)(L2(w) + ε1)
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− (L1(w + λ + ∂) + ε1)L1(z)(z − w − λ− ∂)−1(L2(w) + ε1)

+ L1(w + λ + ∂)(L1(z) + ε1)(z − w − λ− ∂)−1(L∗
2(λ− z) + ε1)

− (L1(z) + ε1)(z − w − λ− ∂)−1(L∗
2(λ− z) + ε1)L2(w)

)
.

Here (z − w − λ − ∂)−1 can be interpreted as either its ιz expansion, or
its ιw expansion: both choices give the same answer. Indeed, if we replace
everywhere (z−w−λ−∂)−1 by δ(z−w−λ−∂), the RHS of (5.54) vanishes
by (5.31). More explicitly, the 3-Adler identity (5.49) becomes

(5.55)

{L1(z)λL2(w)}(0)
3

= Ω
(
L1(w+λ+∂)L1(z)(z − w − λ− ∂)−1(L∗

2(λ− z) − L2(w)
)

+
(
L1(w + λ + ∂) − L1(z)

)
(z − w − λ− ∂)−1L∗

2(λ− z)L2(w)
)
.

Similarly, the 2-Adler identity (5.50) becomes

(5.56)
{L1(z)λL2(w)}(0)

2 = Ω
(
L1(w+λ+∂)(z − w − λ− ∂)−1L∗

2(λ− z)

− L1(z)(z − w − λ− ∂)−1L2(w)
)
,

and the 1-Adler identity (5.51) becomes

(5.57)
{L1(z)λL2(w)}(0)

1 = Ω
((

L1(w + λ) − L1(z)
)
(z − w − λ)−1

+ (z − w − λ− ∂)−1(L∗
2(λ− z) − L2(w)

))
.

Equation (5.56) is the same as the Adler identity for glN which first appeared
in [DSKV16] and [DSKV18].

5.7. The Adler identities corresponding to R = R(1)

Next, we specialize the Adler identities (5.49)-(5.51) for the R-matrix R(1)

in (5.25)(ii). We have

(5.58) R(1) = Π≥1 − Π<1 = R(0) − 2Π0 ,
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where Π0 : F((z−1)) → F denotes the projection to the coefficient of z0, and

(R(1))∗ = −R(0) − 2Π−1 .

Applying (5.58),we can compute the 3-Adler identity (5.49) for R = R(1), to
get

(5.59)

{L1(z)λL2(w)}(1)
3 = {L1(z)λL2(w)}(0)

3

+ Ω
(
− L1(w + λ + ∂)ιw(w + λ + ∂)−1L1(z)L2(w)

+ L1(w + λ + ∂)ιw(w + λ + ∂)−1L∗
2(λ− z)L2(w)

− L1(w + λ + ∂)L1(z)ιz(z − λ− ∂)−1L∗
2(λ− z)

+ L1(z)
(
ιz(z − λ− ∂)−1L∗

2(λ− z)
)
L2(w)

)
.

Since 1
2(R(1) − (R(1))∗) does not satisfy the modified Yang-Baxter equa-

tion (2.1), the corresponding 2-Adler identity will not define a PVA structure
on V∞̂, while the 1-st Adler identity will. It is

(5.60)

{L1(z)λL2(w)}(1)
1 = {L1(z)λL2(w)}(0)

1

+ Ω
(
− ιw(w + λ + ∂)−1(L1(z) − L∗

2(λ− z)
)

+ ιz(z − λ)−1(L2(w) − L1(w + λ)
))

.

In a similar way one can compute the Adler identities corresponding to
the R-matrix R = R(2) from (5.25) (in the scalar case A = F). We leave this
exercise to the interested reader.

5.8. The ε-Adler identities and the corresponding continuous PVA
λ-brackets on V∞̂

As before, in this section we let R be one of the R-matrices R(0), R(1), R(2)

defined in (5.25). In fact, apart for the proof of the continuity of the λ-bracket
in Proposition 5.4 (where we use the explicit expression for Rz(δ(z−w))), all
other arguments only use properties (5.26)-(5.28).

Proposition 5.4. The ε-Adler identity (5.47) associated to R defines a con-
tinuous λ-bracket on V∞̂, for every ε ∈ F.
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Proof. We need to prove the continuity condition (4.42) (or, equivalently,
(4.41)). Fix N ∈ Z. Note that, by the definition of the projection maps
πN : V∞ → VN in (4.5),

πN (L(z)) =
∞∑

p=−N−1
up,αz

−p−1Eα ,

has powers z≤N . Applying πN to the RHS of (5.54), we get
(5.61)

Ω
(

(πN (L1(w+λ+∂))+ε1)(z−w−λ−∂)−1πN (L∗
2(λ−z))(πN (L2(w))+ε1)

)
− (πN (L1(w + λ + ∂)) + ε1)πN (L1(z))(z−w−λ−∂)−1(πN (L2(w)) + ε1)

)
+ πN (L1(w+λ+∂))(πN (L1(z))+ε1)(z−w−λ−∂)−1(πN (L∗

2(λ−z))+ε1)

− (πN (L1(z)) + ε1)(z−w−λ−∂)−1(πN (L∗
2(λ− z)) + ε1)πN (L2(w))

)
.

If we expand (z − w − λ − ∂)−1 in negative powers of z, we observe that
the powers of z in (5.61) are bounded above by M = 2N − 1. If instead
we expand (z − w − λ − ∂)−1 in negative powers of w, we get that also the
powers of w in (5.61) are bounded above by M = 2N − 1. Recall that, by
the observation after formula (5.54), the RHS of (5.54) is unchanged if we
expand (z − w − λ − ∂)−1 in either negative powers of z or negative powers
of w. Hence, the continuity condition (4.41) for the ε-Adler identity (5.54) of
R(0) holds. The proof for R(1) and R(2) is similar.

Proposition 5.5. The ε-Adler identity (5.47) associated to R implies the
skewsymmetry condition (4.43).

Proof. First, note that the skewsymmetry condition (4.43) can be rewritten
as

(5.62) {L1(z)λL2(w)} = −
∣∣
x=∂

{L1(w)−λ−xL2(z)}σ ,

where σ is the endomorphism of A⊗2 defined by (X ⊗ Y )σ = Y ⊗X. Using
the ε-Adler identity (5.47), by a straightforward computation we have

−
∣∣
x=∂

{L1(w)−λ−xL2(z)}R,ε

(5.63)

= 1
2Ω

(
− (

∣∣
ξ=z−λ−∂

L∗
1(λ−z)+ε1)(

∣∣
ζ=w+∂

L1(w))Rξ

(
δ(ζ−ξ)

)(
L2(z)+ε1

)
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+ (
∣∣
ζ=∂

L∗
1(λ−z)+ε1)Rw(δ(w−ξ))

∣∣
ξ=z−λ−ζ

L2(w+λ+ζ+∂)(L2(z)+ε1)

−
(∣∣

ξ=∂
L∗

1(λ−z)(L1(w) + ε1)
)
Rζ

(
δ(ζ − z)

)
(
∣∣
ζ=w+λ+ξ

(L2(w+λ+ξ)+ε1)

+ (
∣∣
ζ=w+λ+∂+z−ξ

L1(w) + ε1)Rξ

(
δ(ζ − ξ)

)
(L2(ζ) + ε1)

∣∣
ξ=z+∂

L2(z)
)
.

The skewsymmetry condition (5.62) follows by applying σ in both sides
of (5.63) and by using the facts that (XY )σ = XσY σ, for every X, Y ∈ A⊗2,
and that Ωσ = Ω.

Lemma 5.6. The modified Yang-Baxter equation (2.1) for R is equivalent to
the following identity

(
Rv(δ(w − v))Rξ(δ(z − ξ))

∣∣
ξ=v+μ

−Rv(δ(w − v))Rζ(δ(z − ζ))
∣∣
ζ=w+μ

−Rv(δ(z − μ− v))Rη(δ(w − η))
∣∣
η=z−μ

+ δ(z − v − μ)δ(w − v)
)
Ω12Ω23

−
(
Rv(δ(z − v))Rξ(δ(w − ξ))

∣∣
v+λ

−Rv(δ(z − v))Rζ(δ(w − ζ))
∣∣
ζ=z+λ

−Rv(δ(w − λ− v))Rη(δ(z − η))
∣∣
η=w−λ

+ δ(w − v − λ)δ(z − v)
)
Ω23Ω12 = 0.

(5.64)

Proof. Let us compute the modified Yang-Baxter equation (2.1) for a =
A(∂)δ(z − ∂)Eα and b = B(∂)δ(w − ∂)Eβ , for A(∂), B(∂) ∈ V∞̂((∂−1)) and
α, β ∈ I. Using equation (5.34), and recalling that ∂ (Rw(δ(z − w))) = 0, we
get the identity

A(z)
[
Rv(δ(w − v))Rξ(δ(z − ξ))

∣∣
ξ=v+μ

−Rv(δ(w − v))Rζ(δ(z − ζ))
∣∣
ζ=w+μ

−Rv(δ(z − μ− v))Rη(δ(w − η))
∣∣
η=z−μ

+ δ(z − v − μ)δ(w − v)
] (∣∣

μ=∂
B(w)

) ∣∣
v=∂

EαEβ

−B(w)
[
Rv(δ(z − v))Rξ(δ(w − ξ))

∣∣
ξ=v+λ

−Rv(δ(z − v))Rζ(δ(w − ζ))
∣∣
ζ=z+λ

−Rv(δ(w − λ− v))Rη(δ(z − η))
∣∣
η=w−λ

+ δ(w − v − λ)δ(z − v)
] (∣∣

λ=∂
A(z)

) ∣∣
v=∂

EβEα = 0 .

(5.65)

Tensoring both sides of identity (5.65) on the left by Eα⊗Eβ and taking the
sum over α, β ∈ I we get the identity
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A(z)
[
Rv(δ(w − v))Rξ(δ(z − ξ))

∣∣
ξ=v+μ

−Rv(δ(w − v))Rζ(δ(z − ζ))
∣∣
ζ=w+μ

−Rv(δ(z − μ− v))Rη(δ(w − η))
∣∣
η=z−μ

+ δ(z − v − μ)δ(w − v)
] (∣∣

μ=∂
B(w)

) ∣∣
v=∂

Ω12Ω23

−B(w)
[
Rv(δ(z − v))Rξ(δ(w − ξ))

∣∣
ξ=v+λ

−Rv(δ(z − v))Rζ(δ(w − ζ))
∣∣
ζ=z+λ

−Rv(δ(w − λ− v))Rη(δ(z − η))
∣∣
η=w−λ

+ δ(w − v − λ)δ(z − v)
] (∣∣

λ=∂
A(z)

) ∣∣
v=∂

Ω23Ω12 = 0 .

(5.66)

Since identity (5.66) holds for arbitrary A(∂), B(∂) ∈ V∞̂((∂−1)) it implies
identity (5.64).

Remark 5.7. If A is non commutative, the elements Ω12Ω23 and Ω23Ω12 are
linearly independent. Hence, by Lemma 5.6, it follows that the modified Yang-
Baxter equation (2.1) is equivalent to the identity

Rv(δ(z − v))Rξ(δ(w − ξ))
∣∣
ξ=v+λ

−Rv(δ(z − v))Rζ(δ(w − ζ))
∣∣
ζ=v+λ

−Rv(δ(w − λ− v))Rη(δ(z − η))
∣∣
η=w−λ

+ δ(w − v − λ)δ(z − v) = 0 .

(5.67)

Proposition 5.8. The ε-Adler identity (5.47) associated to R = R(0), R(1) or
R(2) implies the Jacobi identity (4.44) for every ε ∈ F. In particular, the 1-st
and 3-rd Adler identities (5.51) and (5.49) associated to R imply the Jacobi
identity. For R = R(0), then also the 2-nd Adler identity (5.50) associated
to R implies the Jacobi identity, and the corresponding continuous λ-brackets
defined by (5.55), (5.56) and (5.57) are compatible, in the sense that any their
linear combination satisfies the Jacobi identity.

Proof. The proof follows by a very long but straightforward computation. We
outline it in the case of the 1-st Adler identity (5.51).

Recall the generating series (5.33). Let us introduce the shorthand

R(z, w) := Rw(δ(z − w)) .

Using sesquilinearity (4.29), Leibniz rules (4.30) and the identity (5.36), the
Jacobi identity (4.44) for the λ-bracket {L(z)λL(w)}R1 given by the 1-st Adler
type identity (5.51) becomes
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[
Ω12Ω23R(w − μ, z)R(v + λ + ζ + μ,w)

(5.68)

− Ω13Ω23R(v + λ + ζ + μ, z)R(w − μ, v)
− Ω23Ω12R(v + λ + ζ + μ,w + λ + ζ)R(w + λ + ζ, z)
+ Ω23Ω13R(w − μ, v + λ + ζ)R(v + λ + ζ, z)
+ Ω12Ω13R(w − μ, z − λ− μ− ζ)R(v + μ + λ + ζ, z)

− Ω13Ω12R(v + λ + ζ + μ, z + μ)R(w − μ, z)
]∣∣

ζ=∂
L∗

1(λ− z)

+
[
− Ω12Ω23R(z − λ,w − λ− μ− ξ)R(v + λ + μ + ξ, w)

− Ω12Ω13R(z − λ,w)R(v + λ + μ + ξ, z)
+ Ω23Ω13R(v + λ + μ + ξ, w)R(z − λ, v)
+ Ω13Ω12R(v + λ + μ + ξ, z + μ + ξ)R(z + μ− +ξ, w)
− Ω13Ω23R(z − λ, v + μ + ξ)R(v + μ + ξ, w)

+ Ω23Ω12R(v + λ + μ + ξ, w + λ)R(z − λ,w)
]∣∣

ξ=∂
L∗

2(μ− w)

+
[
Ω13Ω23R(z − λ, v + μ)R(w − μ, v) − Ω23Ω13R(w − μ, v + λ)R(z − λ, v)

+ Ω13Ω12R(z − λ, v)R(w − μ, z) − Ω23Ω12R(w − μ, v)R(z − λ,w)
− Ω12Ω13R(w − μ, z − λ− μ)R(z − λ− μ, v)

+ Ω12Ω23R(z − λ,w − λ− μ)R(w − λ− μ, v)
]
L3(v + λ + μ)

+
[
−R(w − μ, z + ζ)R(v + λ + ζ + μ,w)Ω12Ω23

+ R(v + λ + ζ + μ, z + ζ)R(w − μ, v)Ω13Ω23

+ R(v + λ + ζ + μ,w + λ + ζ)R(w + λ + ζ, z + ζ)Ω23Ω12

−R(w − μ, v + λ + ζ)R(v + λ + ζ, z + ζ)Ω23Ω13

−R(w − μ, z − λ− μ)R(v + λ + ζ + μ, z + ζ)Ω12Ω13

+ R(v + λ + ζ + μ, z + μ + ζ)R(w − μ, z + ζ)Ω13Ω12
]∣∣

ζ=∂
L1(z)

+
[
R(z − λ,w − λ− μ)R(v + λ + μ + ξ, w + ξ)Ω12Ω23

+ R(z − λ,w + ξ)R(v + λ + μ + ξ, z)Ω12Ω13

−R(v + λ + μ + ξ, w + ξ)R(z − λ, v)Ω23Ω13

−R(v + λ + μ + ξ, z + μ + ξ)R(z + μ + ξ, w + ξ)Ω13Ω12

+ R(z − λ, v + μ + ξ)R(v + μ + ξ, w + ξ)Ω13Ω23
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−R(v + λ + μ + ξ, w + λ + ξ)R(z − λ,w + ξ)Ω23Ω12
]∣∣

ξ=∂
L2(w)

+
[
−R(z − λ, v + μ + ν)R(w − μ, v + ν)Ω13Ω23

+ R(w − μ, v + λ + ν)R(z − λ, v + ν)Ω23Ω13

−R(z − λ, v + ν)R(w − μ, z)Ω13Ω12 + R(w − μ, v + ν)R(z − λ,w)Ω23Ω12

+ R(w − μ, z − λ− μ)R(z − λ− μ, v + ν)Ω12Ω13

−R(z − λ,w − λ− μ)R(w − λ− μ, v + ν)Ω12Ω23
]∣∣

ν=∂
L3(v) = 0 .

Note that

(5.69) Ω12Ω23 = Ω13Ω12 = Ω23Ω13 , Ω23Ω12 = Ω13Ω23 = Ω12Ω13 .

Furthermore, let us rewrite the identity (5.64) as

Γ(z, w, v, λ, μ) = δ(w − v − λ)δ(z − v)Ω23Ω12 − δ(z − v − μ)δ(w − v)Ω12Ω23,

(5.70)

where

Γ(z, w, v, λ, μ) =
(
R(w, v)R(z, v + μ) −R(w, v)R(z, w + μ)

−R(z − μ, v)R(w, z − μ)
)
Ω12Ω23

−
(
R(z, v)R(w, v + λ) −R(z, v)R(w, z + λ)

−R(w − λ, v)R(z, w − λ)
)
Ω23Ω12 .

(5.71)

Using the identities (5.69) and equation (5.71) we can rewrite equation (5.68)
as follows

Γ(v + λ + ζ + μ,w − μ, z,−λ− ζ − μ, μ)
∣∣
ζ=∂

L∗
1(λ− z)

+ Γ(z − λ, v + λ + μ + ξ, w, λ,−λ− μ− ξ)
∣∣
ξ=∂

L∗
2(μ− w)

+ Γ(w − μ, z − λ, v, μ, λ)L3(v + λ + μ)
= Γ(v + λ + ζ + μ,w − μ, z + ζ,−λ− ζ − μ, μ)

∣∣
ζ=∂

L1(z)

+ Γ(z − λ, v + λ + μ + ξ, w + ξ, λ,−λ− μ− ξ)
∣∣
ξ=∂

L2(w)

+ Γ(w − μ, z − λ, v + ν, μ, λ)
∣∣
ν=∂

L3(v) .

(5.72)

For any X, Y, Z ∈ A we have
(5.73)

X1Y2Z3Ω23Ω12 = Ω23Ω12X2Y3Z1 , X1Y2Z3Ω12Ω23 = Ω12Ω23X3Y1Z2 .
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Hence, using equations (5.70), (5.73) and (5.31), we have

Γ(v + λ + ζ + μ,w − μ, z,−λ− ζ − μ, μ)
∣∣
ζ=∂

L∗
1(λ− z)

= δ(z − w − λ− ∂)δ(w − v − μ)Ω23Ω12L2(w)
− δ(z − v − λ− ∂)δ(w − z − μ)Ω12Ω23L3(v) ,
Γ(z − λ, v + λ + μ + ξ, w, λ,−λ− μ− ξ)

∣∣
ξ=∂

L∗
2(μ− w)

= δ(w − v − μ− ∂)δ(z − w − λ)Ω23Ω12L3(v)
− δ(z − v − λ)δ(w − z − μ− ∂)Ω12Ω23L1(z) ,
Γ(w − μ, z − λ, v, μ, λ)L3(v + λ + μ)
= δ(z − w − λ)δ(w − v − μ)Ω23Ω12L1(z)
− δ(w − z − μ)δ(z − v − λ)Ω12Ω23L2(w) .

(5.74)

By equations (5.74) and (5.70) we immediately get that both sides of (5.72)
coincide thus showing that the Jacobi identity (4.44) holds for the bracket
{· λ ·}R1 . Similar (but longer) computation shows that the Jacobi identity (4.44)
holds for the ε-Adler identity (5.47) and the 3-rd Adler identity (5.49). As in
the proof of Theorem 3.1, in order to show that any linear combination of the
3-rd, 2-nd and 1-st Adler identities satisfy Jacobi identity one has to check
that the 2-nd Adler type identity (5.50) satisfies (4.44). This is again similar
(but longer) to the analogous computation for the 1-st Adler type identity.
The interest reader can check that, in this case, the Jacobi identity (4.44)
holds for R(0).

Remark 5.9. If we apply Lemma 2.3(g)-(h) from [DSKV18] we have

{L−1(z)λL−1(w)}R3 =
(∣∣

x1=∂
(L−1

1 )∗(λ− z)
)
L−1

2 (w + λ + x1 + x2 + y2 + u)

×
(∣∣

u=∂
{L1(z + x2)λ+x1+x2L2(w + y2)}R3

)(∣∣
x2=∂

L−1
1 (z)

)(∣∣
y2=∂

L−1
2 (w)

)
.

(5.75)

By using the 3-Adler identity (5.49) we rewrite the RHS of (5.75) as

1
2Ω

(
R∗

ξ(δ(z − ξ))|ξ=w+λ+∂(L−1
2 )∗(λ− z)

−
∣∣
ζ=∂

L−1
1 (z)R∗

ξ(δ(z + ζ − ξ))
∣∣
ξ=ζ+w+λ

−Rw(δ(z − w − λ))L1(w + λ)

+ Rξ(δ(z − λ− ξ))
∣∣
ξ=w+∂

L2(w)
)
.

(5.76)
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Here, we used the fact that X1Y2Ω = ΩX2Y1 and the identities

L(z + x)
∣∣
x=∂

L−1(z) = 1 , L(w + λ + y)
∣∣
y=∂

L−1(w + λ) = 1 ,

L∗(λ + x− z)
∣∣
x=∂

(L−1)∗(λ− z) = 1 , L(w + y)
∣∣
y=∂

L−1(w) = 1 .

Note that equation (5.76) is the the RHS of (5.51) with opposite sign. This
shows that if L(∂) satisfies the 3-rd Adler type identity (5.49) for an R-matrix
R, then L−1(∂) satisfies the 1-st Adler type identity (5.51) for the R-matrix
−R. Moreover, using equation (3.5) in [DSK13], sesquilinearity and Leibniz
rules, it is straightforward to check that, in any PVA, we have the identity

{aλ{bμc} − {bμ{aλc} − {{aλb}λ+μc} =
(
{a−1

λ+x{b−1
μ+yc

−1}

− {b−1
μ+y{a−1

λ+xc
−1} − {{a−1

λ+xb
−1}λ+x+μ+yc

−1}
)(∣∣

x=∂
a2)(∣∣

y=∂
b2
)
c2 .

(5.77)

Jacobi identity (4.44) for the λ-bracket {L(z)λL(w)}R3 then follows by equa-
tion (5.77) and the fact that L−1(∂) satisfies the 1-st Adler type identity (5.51)
for the R-matrix −R.

Theorem 5.10. Let R = R(0), R(1) or R(2) from (5.25). Then the ε-Adler
identity (5.47) defines a continuous PVA λ-bracket on V∞̂, for every ε ∈ F.
In particular, for all three R-matrices, the 3rd and 1st Adler identities (5.49)
and (5.51) define continuous PVA λ-brackets on V∞̂, while for R = R(0) all
3rd, 2nd and 1st Adler identities (5.55)–(5.57) define compatible continuous
PVA λ-brackets on V∞̂.

Proof. It is an immediate consequence of Propositions 5.4, 5.5 and 5.8.

6. Hamiltonian equations and integrability

As in the usual PVA case, see [BDSK09], given a continuous λ-bracket on V∞̂,
the space of local functionals V∞̂/∂V∞̂ acts on V∞̂ by derivations, commuting
with ∂, as follows

{
∫
h, u} = {hλu}|λ=0 , h, u ∈ V∞̂ .

A Hamiltonian equation on V∞̂ associated to a Hamiltonian functional
∫
h ∈

V∞̂/∂V∞̂ is the evolution equation

(6.1) du

dt
= {

∫
h, u} , u ∈ V .
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An integral of motion for the Hamiltonian equation (6.1) is a local functional∫
f ∈ V∞̂/∂V∞̂ such that {

∫
h,

∫
f} = 0, and two integrals of motion

∫
f,

∫
g

are in involution if {
∫
f,

∫
g} = 0. Here, the Lie bracket in V∞̂/∂V∞̂ is the

one defined in Section 4.6. The minimal requirement for integrability is to
have an infinite collection

∫
h0 =

∫
h,

∫
h1,

∫
h2, . . . of linearly independent

integrals of motion in involution. In this case, we have the integrable hierarchy
of Hamiltonian equations

(6.2) du

dtn
= {

∫
hn, u} , n ∈ Z≥0 .

Theorem 6.1. Let R = R(0), R(1) or R(2) from (5.25). For n ∈ Z≥0, define
the elements hn ∈ V∞̂ by (Tr = 1 ⊗ Tr)

(6.3) hn = −1
n

Resz Tr(Ln(z)) for n �= 0 , h0 = 0 .

Then:

(a) All the elements
∫
hn are Hamiltonian functionals in involution, for

every ε ∈ F:

(6.4) {
∫
hm,

∫
hn}R,ε = 0 for all m,n ∈ Z≥0 .

(b) The corresponding compatible hierarchy of Hamiltonian equations sat-
isfies (n ∈ Z≥0)

(6.5) dL(w)
dtn

= {
∫
hn, L(w)}R,ε = 1

2[R((L+ε1)◦Ln−1◦(L+ε1)), L](w)

(in the RHS we are taking the symbol of the commutator of pseudod-
ifferential operators), and the Hamiltonian functionals

∫
hn, n ∈ Z≥0,

are integrals of motion of all these equations.

It follows immediately from part (b) and equation (5.48) that we have
the following triple Lenard-Magri relations (n ∈ Z≥1)

{
∫
hn−1, L(w)}R,3 = {

∫
hn, L(w)}R,2 = {

∫
hn+1, L(w)}R,1

= 1
2[R(Ln), L](w) .

(6.6)

Equation (6.6) is the affine analogue of equation (3.52).
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In the remainder of the section we will give a proof of Theorem 6.1. We
will use the following results for which we omit the proofs, see [DSKV18,
Lemmas 6.3, 6.4 and 6.5].

Lemma 6.2. Let X, Y be in A. Then

(a) (Tr⊗1)(Ω(X ⊗ Y )) = XY ∈ A;
(b) (Tr⊗Tr)(Ω(X ⊗ Y )) = Tr(XY ) ∈ F.

Lemma 6.3. Given two operators P (∂), Q(∂) ∈ V∞((∂−1))̂ ⊗ A, we have

(a) Resz P (z)Q∗(λ− z) = Resz P (z + λ + ∂)Q(z);
(b)

∫
Resz Tr(P (z + ∂)Q(z)) =

∫
Resz Tr(Q(z + ∂)P (z)).

Lemma 6.4. For n ∈ Z≥0, let hn ∈ V∞̂ be given by (6.3). Then, for a ∈ V∞̂,
we have

{hnλa}R,ε
∣∣
λ=0 = −Resz Tr{L(z + x)xa}R,ε(∣∣

x=∂
Ln−1(z)

)
,∫

{aλhn}R,ε
∣∣
λ=0 = −

∫
Resw Tr{aλL(w + x)}R,ε

∣∣
λ=0

(∣∣
x=∂

Ln−1(w)
)
.

(6.7)

Proof of Theorem 6.1. Applying the second equation in (6.7) first, and then
the first equation in (6.7), we get

{
∫
hm,

∫
hn} =

∫
Resz Resw(Tr⊗Tr){L(z + x)xL(w + y)}R,ε(6.8)

×
((∣∣

x=∂
Lm−1

1 (z)
)(∣∣

y=∂
Ln−1

2 (w)
))

.

We can now use the ε-Adler identity (5.47) associated to R to rewrite the
RHS of (6.8) as

1
2

∫
Resz Resw(Tr⊗Tr)Ω(L1(w + ∂) + ε1)

(∣∣
ζ=z+∂

Lm
1 (z)

)
(6.9)

×Rζ(δ(ζ − ξ))
∣∣
ξ=ζ−z+w+∂

(L2(w + ∂) + ε1)Ln−1
2 (w)

− 1
2

∫
Resz Resw(Tr⊗Tr)Ω(L1(w + ∂) + ε1)

(∣∣
x=z+∂

Lm−1
1 (z)

)
×Rx(δ(x− ξ))

∣∣
ξ=x−z+w+∂

L∗
2(−z)(L2(w + ∂) + ε1)Ln−1

2 (w)

+ 1
2

∫
Resz Resw(Tr⊗Tr)ΩL1(w + ∂)

(
(L1(z + ∂) + ε1)Lm−1

1 (z)
)

(6.10)

×Rξ(δ(z − ζ − ξ))
(∣∣

ζ=∂
L∗

2(−z) + ε1
)(∣∣

ξ=w+∂
Ln−1

2 (w)
)
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− 1
2

∫
Resz Resw(Tr⊗Tr)Ω

(
(L1(z + ∂) + ε1)Lm−1

1 (z)
)

×Rξ(δ(z − ζ − ξ))
(∣∣

ζ=∂
L∗

2(−z) + ε1
)(∣∣

ξ=w+∂
Ln

2 (w)
)
.

We can use Lemma 6.2(b), to rewrite the term (6.9) as
(6.11)

1
2

∫
Resz Resw Tr (L(w + ∂) + ε1)

((∣∣
ζ=z+∂

Lm(z)
)
Rζ(δ(ζ − ξ))|ξ=ζ−z+w+η

−
(∣∣

x=z+∂
Lm−1(z)

)
Rx(δ(x− ξ))

(∣∣
ζ=∂

L∗(−z)
)∣∣

ξ=x−z+w+ζ+η

)
×

(∣∣
η=∂

(L(w + ∂) + ε1)Ln−1(w)
)
.

By Lemma 6.3(a) and the fact that Lm(∂) = Lm−1(∂) ◦ L(∂) we have that

Resz
((∣∣

x=z+∂
Lm−1(z)

)
Rx(δ(x− ξ))

(∣∣
ζ=∂

L∗(−z)
)∣∣

ξ=x−z+w+ζ+η

)
= Resz

((∣∣
ζ=z+∂

Lm(z)
)
Rζ(δ(ζ − ξ))

∣∣
ξ=ζ−z+w+η

)
.

(6.12)

Hence, from equations (6.11) and (6.12) it follows that the term (6.9) vanishes.
Next, we can use Lemma 6.2(b) and Lemma 6.3(b) to rewrite the first

term in (6.10) as

+ 1
2

∫
Resz Resw Tr L(w + ∂)

(
(L(z + ∂) + ε1)Lm−1(z)

)
(6.13)

×Rξ(δ(z − ζ − ξ))
(∣∣

ζ=∂
L∗(−z) + ε1

)(∣∣
ξ=w+∂

Ln−1(w)
)

= 1
2

∫
Resz Resw Tr

(
(L(z + ∂) + ε1)Lm−1(z)

)
×Rξ(δ(z − ζ − ξ))

(∣∣
ζ=∂

L∗(−z) + ε1
)(∣∣

ξ=w+∂
Ln(w)

)
.

On the other hand, by Lemma 6.2(b) the second term in (6.10) is equal to

− 1
2

∫
Resz Resw(Tr⊗Tr)Ω

(
(L1(z + ∂) + ε1)Lm−1

1 (z)
)

(6.14)

×Rξ(δ(z − ζ − ξ))
(∣∣

ζ=∂
L∗

2(−z) + ε1
)(∣∣

ξ=w+∂
Ln

2 (w)
)

= −1
2

∫
Resz Resw Tr

(
(L(z + ∂) + ε1)Lm−1(z)

)
×Rξ(δ(z − ζ − ξ))

(∣∣
ζ=∂

L∗(−z) + ε1
)(∣∣

ξ=w+∂
Ln(w)

)
.
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From equations (6.13) and (6.14) we have that the term (6.10) vanishes thus
proving (a).

We are left to prove part (b). We have

{
∫
hn, L(w)}R,ε = {hnλL(w)}R,ε

∣∣
λ=0

(6.15)

= −Resz(Tr⊗1){L(z + x)xL(w)}
(∣∣

x=∂
Ln−1

1 (z)
)

= −1
2 Resz(Tr⊗1)Ω(L1(w + ∂) + ε1)(

∣∣
ζ=z+∂

Lm
1 (z))

×Rζ(δ(ζ − ξ))(
∣∣
ξ=ζ−z+w+∂

L2(w) + ε1)

+ 1
2 Resz(Tr⊗1)Ω(L1(w + ∂) + ε1)(

∣∣
x=z+∂

Lm−1
1 (z))

×Rz(δ(x− ξ))(
∣∣
ζ=∂

L∗
2(−z))(

∣∣
ξ=x−z+ζ+w+∂

L2(w) + ε1)

− 1
2 Resz(Tr⊗1)ΩL1(w + ∂)

(
(L1(z + ∂) + ε1)Ln−1

1 (z)
)

×Rw(δ(z − w − ζ))(
∣∣
ζ=∂

L∗
2(−z) + ε1)

+ 1
2 Resz(Tr⊗1)Ω

(
(L1(z + ∂) + ε1)Ln−1

1 (z)
)

×Rξ(δ(z − ζ − ξ))(
∣∣
ζ=∂

L∗
2(−z) + ε1)(

∣∣
ξ=w+∂

L2(w))

= −1
2(L(w + ∂) + ε1) Resz

(
(
∣∣
ζ=z+∂

Lm(z))Rζ(δ(ζ − ξ))
)

× (
∣∣
ξ=ζ−z+w+∂

L(w) + ε1)

+ 1
2(L(w + ∂) + ε1) Resz

(
(
∣∣
x=z+∂

Lm−1(z))Rz(δ(x− ξ))(
∣∣
ζ=∂

L∗(−z))
)

× (
∣∣
ξ=x−z+ζ+w+∂

L(w) + ε1)

− 1
2L(w + ∂) Resz

[(
(L(z + ∂) + ε1)Ln−1(z)

)
×Rw(δ(z − w − ζ))(

∣∣
ζ=∂

L∗(−z) + ε1)
]

+ 1
2 Resz

[(
(L(z + ∂) + ε1)Ln−1(z)

)
×Rξ(δ(z − ζ − ξ))(

∣∣
ζ=∂

L∗(−z) + ε1)
]
(
∣∣
ξ=w+∂

L(w))

= −1
2L(w + ∂) Resz(L(z + ∂) + ε1)Ln−1(z + ∂)(L(z) + ε1)Rw(δ(z − w))
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+ 1
2 Resz(L(z+∂)+ε1)Ln−1(z+∂)(L(z)+ε1)Rξ(δ(z − ξ))(

∣∣
ξ=w+∂

L(w))

= −1
2L(w + ∂)(L(w + ∂) + ε1)Ln−1(w + ∂)(L∗(−z) + ε1)

+ 1
2(L(w + ∂) + ε1)Ln−1(w + ∂)(L(w + ∂) + ε1)L(w) .

In the second equality we used the first equation in (6.7), in the third equality
we used the ε-Adler identity (5.47) associated to the R-matrix R, in the fourth
equality we used Lemma 6.2(a), in the fifth equality we used equation (6.12)
and Lemma 6.3(a), in the last equality we used the identity

Resz(P (z)Rw(δ(z − w))) = Rw(P (w)) ,

which can be easily verified for any P (z) ∈ V∞((z−1))̂ . This proves (6.5)
and completes the proof of the Theorem.

For k ∈ Z, recall the projection maps Π≥k defined in Section 5.3. For
P (∂) ∈ V∞((∂−1))̂ ⊗ A we clearly have

P (∂) = Π≥k(P (∂)) + Π<k(P (∂)) .

Moreover, we clearly have [Ln(∂), L(∂)] = 0 , for every n ∈ Z≥0. Hence, for
the R-matrices R(k), k = 0, 1, 2, defined in (5.25), the hierarchy (6.6) can be
rewritten as

dL(∂)
dtn

= [Π≥k(Ln(∂)), L(∂)] , n ∈ Z≥0 .

(The case k = 2 occurs only if A = F.)

7. Example: the KP hierarchy

In this section we employ the machinery developed in Section 5 to provide
a description of the tri-Hamiltonian structure of the A-valued Kadomtsev-
Petviashvili (KP) hierarchy, where, as before, A is a finite-dimensional unital
associative algebra over F with a non-degenerate trace form.

Let R = R(0), as defined in (5.25)(i). Throughout the section let us use
the shorthand {· λ ·}ε := {· λ ·}R

(0),ε to denote the λ-bracket on V∞̂ defined by
equation (5.54). We also simply denote by {· λ ·}i := {· λ ·}(0)

i , i = 1, 2, 3, the
compatible λ-brackets on V∞̂ defined by equations (5.57), (5.56) and (5.55)
respectively.

For N ∈ Z, recall the differential algebra homomorphism πN : V∞̂ → VN ,
defined in (4.5), sending u

(n)
p,α to zero if p < −N − 1. By construction we have
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VN
∼= V∞̂/Ker πN . Note that, in general KerπN is not a PVA ideal. Hence,

generally, we do not have an induced PVA structure on the quotient space
VN .

For p ∈ Z we denote

(7.1) Up =
∑
α∈I

up,αE
α ∈ V∞̂ ⊗ A ,

so that, from (4.26), we have

(7.2) L(z) =
∑
p∈Z

Upz
−p−1 .

Moreover, πN (Up) = 0 if p < −N−1. In fact, Ker πN is the differential algebra
ideal of V∞̂ generated by the coefficients of Up, p < −N − 1.

We have, from (5.54) and (7.2)
(7.3)

{(Up)1λL2(w)}ε = Resz zp{L1(z)λL2(w)}ε

= Ω
(

(L1(w + λ + ∂) + ε1)
(
(w + λ + ∂)pL2(w + ∂)

)
+(L2(w) + ε1)

)
− (L1(w + λ + ∂) + ε1)

(
L1(w + λ + ∂)(w + λ + ∂)p

)
+(L2(w) + ε1)

)
+ L1(w + λ + ∂)

(
(L1(w + λ + ∂) + ε1)(w + λ + ∂)p(L2(w) + ε1)

)
+

−
(
(L1(w + λ + ∂) + ε1)(w + λ + ∂)p(L2(w + ∂) + ε1)

)
+L2(w)

)
.

In the second equality of (7.3) we used the identity

(7.4) Resz a(z)iz(z − w)−1 = a(w)+ .

Proposition 7.1. (a) If N ≤ 1, then Ker πN is a PVA ideal for the con-
tinuous PVA structure on V∞̂ defined by the 3-Adler identity (5.55).

(b) For every N ∈ Z, Ker πN is a PVA ideal for the continuous PVA struc-
ture on V∞̂ defined by the 2-Adler identity (5.56).

(c) If N ≥ −1, then Ker πN is a PVA ideal for the continuous PVA struc-
ture on V∞̂ defined by the 1-Adler identity (5.57).

(d) The ε-Adler identity (5.54) defines a PVA structure on the differential
algebras VN for N = −1, 0, 1.

Proof. Recall that the coefficients of Up, p < −N − 1, generate KerπN as
a differential algebra ideal. Hence, if we show that πN{(Up)1λL2(w)}(0)

i = 0,
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i = 1, 2, 3, for every p < −N − 1, then Ker πN is a PVA ideal of V∞̂. Note
that, if p < −N − 1, then

πN (L(w + λ + ∂))(w + λ + ∂)p

has order p + N < −N − 1 + N = −1. Hence,

(7.5)
(
πN (L(w + λ + ∂))(w + λ + ∂)p

)
+ = 0 .

Similarly

(7.6)
(
(w + λ + ∂)pπN (L(w + ∂))

)
+ = 0 .

For p < −N − 1, we thus have, from equations (7.3), (7.5) and (7.6),
(7.7)

πN{(Up)1λL2(w)}ε

= Ω
(
πN (L1(w + λ + ∂))

(
πN (L1(w + λ + ∂))(w + λ + ∂)pπN (L2(w))

)
+

−
(
πN (L1(w + λ + ∂))(w + λ + ∂)pπN (L2(w + ∂))

)
+πN (L2(w))

)
+ ε2Ω

(
πN (L1(w + λ))

(
(w + λ)p

)
+ −

(
(w + λ + ∂)p

)
+πN (L2(w))

)
.

Recall the expansion (5.48). Since there is no coefficient of 2ε in (7.7) we have
that πN{(Up)1λL2(w)}2 = 0, for every N ∈ Z, proving part (b). Moreover,
πN (L(w + λ + ∂))(w + λ + ∂)pπN (L(w)) has order 2N + p. If p < −N −
1, then 2N + p < N − 1. Hence, if N ≤ 1, from equation (7.7) we have
πN{(Up)1λL2(w)}3 = 0 which proves part (a). Finally, if p < 0, which happens
when N > 1, from equation (7.7) we have πN{(Up)1λL2(w)}1 = 0 proving
part (c). Part (d) follows from parts (a),(b) and (c) and the fact that VN

∼=
V∞̂/Ker πN .

By an abuse of notation we simply denote

(7.8) L(∂) := π1(L(∂)) =
∑
p≤1

U−p−1∂
p ∈ V1((∂−1)) ⊗ A ,

where Up is as in (7.1). From Proposition 7.1(d) we have that the ε-Adler
identity (5.54), for L(∂) as in (7.8), defines a PVA structure on V1.

Lemma 7.2. In the PVA V1, we have the following λ-brackets relations:
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(a) {(U−2)1λL2(w)}ε = Ω
(
L1(w+λ+∂)(U−2⊗U−2)− (U−2⊗U−2)L2(w)

)
.

(b) {L1(z)λ(U−2)2}ε = Ω
(
(U−2 ⊗ U−2)L1(z) − L∗

2(λ− z)(U−2 ⊗ U−2)
)
.

(c) {(U−1)1λL2(w)}ε

= Ω
(
(L1(w + λ + ∂) + ε1)(1⊗ U−2 − U−2 ⊗ 1)(L2(w) + ε1)

+L1(w+λ+∂)
(
(U−2 ⊗ U−2)w + (U−1+ε1) ⊗ U−2 + U−2 ⊗ (U−1+ε1)

)
−

(
(U−2 ⊗ U−2)(w+∂)+(U−1+ε1) ⊗ U−2 + U−2 ⊗ (U−1+ε1)

)
L2(w)

)
.

(d) {L1(z)λ(U−1)2}ε

= Ω
(
(L∗

2(λ− z) + ε1)(1⊗ U−2 − U−2 ⊗ 1)(L1(z) + ε1)

+
(
(U−2 ⊗ U−2)(z + ∂) + (U−1 + ε1) ⊗ U−2 + U−2 ⊗ (U−1 + ε1)

)
L1(z)

− L∗
2(λ− z)

(
(U−2 ⊗ U−2)z + (U−1 + ε1) ⊗ U−2 + U−2 ⊗ (U−1 + ε1)

))
.

Furthermore, we have

{(U−2)1λ(U−2)2}ε = Ω
(
U2
−2 ⊗ U−2 − U−2 ⊗ U2

−2

)
,(7.9)

{(U−2)1λ(U−1)2}ε = Ω
(
U−2(λ + ∂)(U−2 ⊗ U−2) + U−1U−2 ⊗ U−2

− U−2 ⊗ U−2U−1
)
,

(7.10)

{(U−1)1λ(U−2)2}ε = Ω
(
U−2 ⊗

(
(λ + ∂)U−2

)
U−2) + U−2U−1 ⊗ U−2

− U−2 ⊗ U−1U−2
)
,

(7.11)

{(U−1)1λ(U−1)2}ε = Ω
(
U−2(λ + ∂)(U−1 ⊗ U−2)

− U−2 ⊗
(
(λ + ∂)U−2

)
U−1

+ U2
−1 ⊗ U−2 − U−2 ⊗ U2

−1

+ U0 ⊗ U2
−2 − U2

−2 ⊗ U0
)

+ 2εΩ
(
U−2 ⊗ (λ + ∂)U−2

+ U−1 ⊗ U−2 − U−2 ⊗ U−1
)

+ ε2 Ω
(
1⊗ U−2 − U−2 ⊗ 1

)
.

(7.12)

Proof. It follows by a straightforward λ-bracket computation from (7.3).
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Consider the differential algebra homomorphism

φ : V1 → V1

defined on generators by (p ≥ −2, α ∈ I, n ∈ Z≥0)

(7.13) φ(u(n)
p,α) =

⎧⎪⎨⎪⎩
δn0 Tr(Eα) , p = −2 ,
0 , p = −1 ,
u

(n)
p,α , p ≥ 0 ,

and extended using the Leibniz rule. Extending φ to a homomorphism φ :
V1 ⊗ A → V−1 ⊗ A acting as the identity on A, and using (7.1), we can
rewrite equations (7.13) in a more compact form as follows (n ∈ Z≥0):

φ(U (n)
−2 ) = δn01 , φ(U (n)

−1 ) = 0 , φ(U (n)
p ) = U (n)

p , p ≥ 0 .

We then get, from Lemma 7.2(a)-(c) the following identities

φ ({(U−2)1λL2(w)}ε) = Ω
(
φ(L1(w + λ)) − φ(L2(w))

)
φ ({(U−1)1λL2(w)}ε) = Ω

(
φ(L1(w + λ))(w + 2ε) − (w + ∂ + 2ε)φ(L2(w))

)
.

(7.14)

Note that in both equations in (7.14) there is no ε2 term. Hence, we have

φ ({(U−2)1λL2(w)}3) = 0 = {φ(U−2)1λφ(L2(w))}3

and
φ ({(U−1)1λL2(w)}3) = 0 = {φ(U−1)1λφ(L2(w))}3 ,

namely φ is a PVA homomorphism with respect to the PVA structure defined
by the 1-Adler identity (5.57). However, from equation (7.12) we have

φ ({(U−1)1λ(U−1)2}ε) = Ω
(
U0 ⊗ 1− 1⊗ U0 + 2ε(1⊗ 1)λ

)
,

which has non-zero terms in ε0 and ε. This implies that φ is not a PVA ho-
momorphism with respect to the 2-nd and 3-rd PVA structures on V1 defined
by the identities (5.56) and (5.55) respectively.

In order to make φ a PVA homomorphism we can consider on V1 the PVA
structure defined by the Dirac modification {L1(z)λL2(w)}ε,D (see [DSKV14]
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for details on the Dirac reduction for PVA) of the ε-Adler identity (5.54) with
respect to the constraints (α ∈ I)

θ1,α = u−2,α − Tr(Eα) θ2,α = u−1,α .

Letting θi =
∑

α∈I θi,αE
α, i = 1, 2, the constraints can be rewritten in com-

pact form as θ1 = U−2 − 1 and θ2 = U−1. Let C(λ) =
(
C(i,α),(j,β)(λ)

)
be the

matrix, with coefficients in V−1[λ], defined by

C(i,α),(j,β)(λ) = {θj,βλθi,α}
ε ,

and let C−1(λ) be its inverse. The Dirac modification {L1(z)λL2(w)}ε,D of
the ε-Adler identity (5.54) is defined by the formula

{L1(z)λL2(w)}ε,D = {L1(z)λL2(w)}ε

−
∑

i,j=1,2
α,β∈I

{θi,αλ+∂L2(w)}ε(C−1)(i,α),(j,β)(λ + ∂){L1(z)λθj,β}ε .(7.15)

The most important facts for us are that the modified ε-Adler identity (7.15)
defines a PVA structure on V1 and that kerφ is a PVA ideal for this structure
(proofs can be found in [DSKV14]). It is clear from (7.13) that Imφ = V−1.
Hence the modified Adler identity (7.15) induces a PVA structure on the
quotient space V−1 ∼= V1/Kerφ.

Using the identities (X, Y, Z ∈ A)

(7.16) (Tr(Z·)⊗1)(Ω(X⊗Y )) = XZY , (1⊗Tr(Z·))(Ω(X⊗Y )) = Y ZX ,

and noticing that {up,αλL2(w)}ε = (Tr(Eα·) ⊗ 1){(Up,α)1λL2(w)}, we get
from equations (7.14):

φ
(
{θ1,αλL2(w)}ε

)
= 1⊗ φ(L(w + λ))Eα − 1⊗ Eαφ(L(w)) ,

φ
(
{θ2,αλL2(w)}ε

)
= 1⊗ φ(L(w + λ))Eα(w + 2ε)
− 1⊗ Eα(w + ∂ + 2ε)φ(L(w)) ,

(7.17)

for every α ∈ I. By skewsymmetry (4.31) we also get

φ ({L1(z)λθ1,β}ε) = Eβφ(L(z)) ⊗ 1− φ(L∗(λ− z))Eβ ⊗ 1 ,
φ ({L1(z)λθ2,β}ε) = Eβ(z + ∂ + 2ε)φ(L(z)) ⊗ 1

− φ(L∗(λ− z))Eβ(z + 2ε) ⊗ 1 .
(7.18)
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Finally, using (7.16) and equations (7.9)-(7.12), we find the following explicit
expressions for the entries of the matrix φ(C(λ)) (α, β ∈ I):

φ
(
C(1,α),(1,β)(λ)

)
= 0 ,

φ
(
C(1,α),(2,β)(λ)

)
= φ

(
C(2,α),(1,β)(λ)

)
= Tr(EαEβ)λ ,

φ
(
C(2,α),(2,β)(λ)

)
= Tr([Eα, Eβ ]U0) + 2ε Tr(EαEβ)λ .

(7.19)

From (7.19) it is immediate to get the expression for the entries of the matrix
φ(C−1(λ)). We have (α, β ∈ I)

φ
(
(C)−1

(1,α),(1,β)(λ)
)

= −(λ + ∂)−1
(
Tr([Eα, Eβ]U0) + 2εTr(EαEβ)λ

)
λ−1 ,

φ
(
(C)−1

(1,α),(2,β)(λ)
)

= φ
(
(C)−1

(2,α),(1,β)(λ)
)

= Tr(EαEβ)λ−1 ,

φ
(
(C−1)(2,α),(2,β)(λ)

)
= 0 .

(7.20)

Applying φ to both sides of the Dirac modified ε Adler-identity and us-
ing (7.17), (7.18) and (7.20) we get the explicit form of the Dirac modified ε
Adler-identity defining the induced PVA structure on the quotient space. We
summarize this in the next result

Theorem 7.3. Let A be a finite dimensional unital associative algebra over
F with a non-degenerate trace form, and fix dual bases {Eα}α∈I and {Eα}α∈I
satisfying (4.1). Let V := V0 be the algebra of differential polynomials in
infinitely many variables up,α, p ≥ 0, α ∈ I. Let

L(∂) = 1∂ +
∑
p≥0

Up∂
−p−1 ∈ V((∂−1)) ⊗ A ,

where Up =
∑

α∈I up,αE
α ∈ V ⊗ A. The following identity

{L1(z)λL2(w)}ε
(7.21)

= Ω
(

(L1(w + λ + ∂) + ε1)(z − w − λ− ∂)−1L∗
2(λ− z)(L2(w) + ε1)

− (L1(w + λ + ∂) + ε1)L1(z)(z − w − λ− ∂)−1(L2(w) + ε1)

+ L1(w + λ + ∂)(L1(z) + ε1)(z − w − λ− ∂)−1(L∗
2(λ− z) + ε1)



1246 Alberto De Sole et al.

− (L1(z) + ε1)(z − w − λ− ∂)−1(L∗
2(λ− z) + ε1)L2(w)

)
+

∑
α,β∈I

(1⊗ L(w + λ + ∂)Eα − 1⊗ EαL(w)) (λ + ∂)−1×

× Tr([Eα, Eβ]U0)(λ + ∂−1) (EβL(z) ⊗ 1− L∗(λ− z)Eβ ⊗ 1)

−
∑
α∈I

(1⊗ L(w + λ + ∂)Eα − 1⊗ EαL(w)) (λ + ∂)−1×

× (Eα(z + ∂)L(z) ⊗ 1− L∗(λ− z)Eαz ⊗ 1)

−
∑
α∈I

(1⊗ L(w + λ + ∂)Eαw − 1⊗ Eα ((w + ∂)L2(w))) (λ + ∂)−1×

× (EαL(z) ⊗ 1− L∗(λ− z)Eα ⊗ 1)

− 2ε
∑
α∈I

(1⊗ L(w + λ + ∂)Eα − 1⊗ EαL(w)) (λ + ∂)−1×

× (EαL(z) ⊗ 1− L∗(λ− z)Eα ⊗ 1) ,

defines a PVA structure on V. Furthermore, expanding {· λ ·}ε = {· λ ·}3 +
2ε{· λ ·}2 + ε2{· λ ·}1, we get three compatible PVA λ-brackets on V.

Proof. The statement follows from the computations outlined in the present
section and the results in [DSKV14] about Dirac reduction for PVA.

As in Section 6 define the elements h0 = 0 and hn = −1
n Resz Tr(Ln(z)),

for n > 0, in V . Then, and the corresponding Hamiltonian equations (6.6) are

(7.22) dL(w)
dtn

= [(Ln)+, L](w) , n ≥ 0 .

These equations form the A-valued KP hierarchy and equation (7.21) gives
its tri-Hamiltonian structure.
Remark 7.4. When A = F, equation (7.21) reads

{L(z)λL(w)}ε = (L(w + λ + ∂) + ε)(z − w − λ− ∂)−1L∗(λ− z)(L(w) + ε)

(7.23)

− (L(w + λ + ∂) + ε)L(z)(z − w − λ− ∂)−1(L(w) + ε)
)

+ L(w + λ + ∂)(L(z) + ε)(z − w − λ− ∂)−1(L∗(λ− z) + ε)
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− (L(z) + ε)(z − w − λ− ∂)−1(L∗(λ− z) + ε)L(w)
)

− (L(w + λ + ∂) − L(w))(λ + ∂)−1((z + ∂)L(z) − L∗(λ− z)z)

− (L(w + λ + ∂)w − ((w + ∂)L(w)))(λ + ∂)−1(L(z) − L∗(λ− z))

− 2ε (L(w + λ + ∂) − L(w))(λ + ∂)−1(L(z) − L∗(λ− z)) .

The coefficient of 2ε and ε2 agree, up to an overall minus sign, with the Adler
type formulas used in [DSKV15] to define the bi-Hamiltonian structure of the
KP hierarchy. Moreover, note that the constant term in ε in (7.23) defines a
local PVA. Hence, the same computations as in [DSKV15] show that (7.22) is
a tri-Hamiltonian integrable hierarchy. We expect this to be true for arbitrary
associative algebras A.
Remark 7.5. Let V be a finite dimensional vector space and A = End(V ).
Then, the coefficient of 2ε and ε2 in (7.21) agree, up to an overall minus sign,
with the Adler type formulas used in [DSKV15] to define the bi-Hamiltonian
structure of the matrix KP hierarchy.
Remark 7.6. Replacing R(0) with R(1) similar computations as in the present
section lead to the Hamiltonian formalism for the modified KP hierarchy, see
[Kup85].
Remark 7.7. In [DSKV15], for every N ≥ 1, a compatible pair of λ-brackets
describing a bi-Hamiltonian structure for the KP hierarchy has been found.
These are obtained from Proposition 7.1(b) and (c). However Proposition 7.1
shows that it is not possible to get the third compatible λ-bracket if N > 1. To
overcome this problem one has to consider a (non-local) Dirac modification
of the ε-Adler identity (5.54) by the constraints θi = U−N−1−i, i ≥ 1.
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