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Fibonacci polynomials
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∗

Abstract: The Fibonacci polynomials
{
Fn(x)

}
n≥0 have been stud-

ied in multiple ways, [1, 6, 7, 9]. In this paper we study them by
means of the theory of heaps of Viennot [11, 12]. In this setting our
polynomials form a basis

{
Pn(x)

}
n≥0 with Pn(x) monic of degree

n. This given, we are forced to set Pn(x) = Fn+1(x). The heaps
setting extends the Flajolet view [4] of the classical theory of or-
thogonal polynomials given by a three term recursion [3, 10]. Thus
with heaps most of the identities for the polynomials Pn(x)’s can
be derived by combinatorial arguments. Using the present setting
we derive a variety of new identities. We must mention that the
theory of heaps is presented here without restrictions. This is much
more than needed to deal with the Fibonacci polynomials. We do
this to convey a flavor of the power of heaps. In [5] there is a chap-
ter dedicated to heaps where most of its contents are dedicated
to applications of the theory. In this paper we improve upon the
developments in [5] by adding details that were omitted there.

Introduction

The sequence
{
Pn(x)

}
n≥0 is defined by the recursion

(I.1) Pn+1(x) = xPn(x) + Pn−1(x)

and initial conditions

(I.2) 1) P−1(x) = 0, 2) P0(x) = 1.

Calling F (x; t) =
∑

n≥0 t
n Pn(x) the generating function of these polynomials,

we see that (I.1) and (I.2) are equivalent to
∑
n≥0

tn+1Pn+1(x) = xt
(∑

n≥0
tnPn(x)

)
+ t2

∑
n≥1

tn−1Pn−1(x)(I.3)
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→ F (x; t) = 1
1 − x t − t2

To give a flavor of the identities we will prove by means of this setting,
we need to define the following sequence of “moments” (see [8])
(I.4)

νn =

⎧⎨⎩ (−1)m
m+1

(2m
m

)
= (−1)m 4m+1

∫ 1
0
xm

√
1−x
x

dx

2π if n=2m,

0 otherwise, (for all n ≥ 0).

This given, we will prove that

(I.5)

Pn(x) = 1
dn−1

det

⎛⎜⎜⎜⎜⎜⎝
ν0 ν1 · · · νn
ν1 ν2 · · · νn+1
· · · · · · · · · · · ·
νn−1 νn · · · ν2n−1

1 x · · · xn

⎞⎟⎟⎟⎟⎟⎠ ,

dn = det

⎛⎜⎜⎜⎜⎜⎝
ν0 ν1 · · · νn
ν1 ν2 · · · νn+1
· · · · · · · · · · · ·
νn−1 νn · · · ν2n−1
νn νn+1 · · · ν2n

⎞⎟⎟⎟⎟⎟⎠ = (−1)�n/2�.

We will also prove the identity

(I.6) J(x, 0,−1) = 1 +
1

1 +
x2

1 +
x2

· · ·

=
∑
m≥0

(−1)m

m + 1

(
2m
m

)
x2m

In the classical theory of polynomial bases
{
Qn(x)

}
satisfying a three term

recursion the moments are non negative numbers (see for instance Favard
[3]). This is obviously not always true in (I.4). So to prove these identities
we need to apply the theory to a suitable substitute. We will eventually
need to do so, but first we must give a detailed presentation of the setting
of Viennot’s “monomer-dimer” view of continued fractions and derive the
tools that we need to prove the validity of our construction of the Fibonacci
polynomials.

We develop here the general classical theory of orthogonal polynomials
generated by a three term recursion in the Heap setting of Viennot [11, 12].
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This is much more than we need to achieve our goal. However, it would be
a disservice to the Algebraic Combinatorial audience not to expose them to
the general theory of heaps. A collection of lecture notes (see [5]) has recently
been published by Springer, this includes a chapter on heaps that contains
some of the most beautiful applications of the theory. What we show here is
that the classical theory can be extended to the case where the scalar product
is still definite but not necessarily positive definite.

The contents are divided into five sections.

In section 1. The “moment” scalar product,
we define the scalar product of two polynomials with real coefficients using
“moments” and present some results of the classical theory of orthogonal
polynomials. The characterization of these polynomials and their “three
term recursion” is the high point of this section.

In section 2. Heaps of monomers and dimers,
we introduce the Viennot theory of heaps of “monomers” and “dimers”
and terminate with a theorem characterizing Motzkin and Dyck paths as
pyramids of heaps of monomers and dimers.

In section 3. Moments and Motzkin paths,
the most important section of the paper, we show how the theory of
heaps is related to the Flajolet “continued fraction” setting of the classi-
cal theory of orthogonal polynomials defined by a three term recursion.
In Theorems 3.1, 3.2, 3.3 and 3.4 we prove mostly by combinatorial ar-
guments the basic identities of the classical theory that we need to val-
idate our construction of the Fibonacci polynomials. The section ends
with two theorems of the classical theory that are of general interest.
Their proofs have been omitted since their results are not used in the
sequel.

In section 4. Heap identities for the Catalan polynomials,
we use here a basis

{
Qn(x)

}
n≥0 defined by the two term recursion

Qn+1(x) = xQn(x) − Qn−1(x), we use them as the closest substitute
to the Fibonacci polynomials that can be found in the classical theory.
This section applies some of the results of section 3 to obtain identities
for the basis

{
Qn(x)

}
n≥0.

In section 5. Proofs of Fibonacci polynomials identities,
we use here a basis

{
Qn(x;λ)

}
n≥0 as a substitute for the Fibonacci

polynomials. These polynomials contain the extra parameter sequence{
λi

}
i≥1 and they are generated by the two terms recursion Qn+1(x;λ) =

xQn(x;λ) − λnQn−1(x;λ) . Our first goal here is to apply the results of
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section 3 to obtain the identities satisfied by the polynomials Qn(x;λ)
and all their closely related facts. This done, we transfer by means of the
specialization λi→ − 1 for all i ≥ 1 to obtain identities satisfied by the
Fibonacci polynomials.
An important fact that needs to be mentioned here is that, in the classi-

cal theory, the moments are given numerically. In particular the parameters
λi and ci occurring in the three term recursion are real numbers and the λi

are actually positive (see Proposition 5.2 for the reason why this is true).
In the Flajolet setting the parameters λ1, λ2, λ3, . . . and c0, c1, c2, . . . can be
commutative indeterminates. To introduce the initial Viennot setting we are
forced to view λ1, λ2, λ3, . . . and c0, c1, c2, . . . as non-commutative indetermi-
nates. When Viennot passes from his original setting to the Flajolet continued
fraction setting the coefficients λi and ci occurring in the recursion must be
allowed to commute.

In this writing we found that it is more convenient to permit this flexi-
bility of point of view with the proviso to make clear the point of view that
is being adopted at the very least from the context. Basically, if we start
with the moments then each parameter λn and cn has a formula in terms
of the scalar product of elements of the orthogonal basis. The flexibility we
adopted permits stating and proving that the moments and the coefficients
of the orthogonal basis are polynomials in the variables λ1, λ2, λ3, . . . and
c0, c1, c2, . . . . This flexibility allows even the Rogers-Ramanujan continued
fraction to be an application of the theory of heaps. This is one of the exam-
ples treated in the chapter on heaps in [5].

1. The “moment” scalar product

In the classical theory (see [3, 9]) the scalar product of two polynomials with
real coefficients A(x) =

∑da
r=0 arx

r and B(x) =
∑db

s=0 bsx
s is defined by set-

ting

(1.1)
〈
A,B

〉
α

=
∫ +∞

0
A(x)B(x) dα =

da∑
r=0

db∑
s=0

ar bs μα
r+s ,

where α(x) is a weekly increasing function increasing from 0 to 1 in a finite
interval. The scalar product in (1.1) is well defined since the matrix An =
‖μi+j‖ni,j=1 has positive eigenvalue for every n ≥ 0 (see section 5 for a proof).
The definition in (1.1) also shows that all we need are the “moments”

(1.2) μα
n =

∫ +∞

0
xn dα.
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The existence of a measure giving dα and μα
n by integration is classically

referred to as the moment problem and it may be of considerable analytical
difficulty depending on what properties the measure is required to satisfy.
Our interest here lies on the nature of the relations between the sequence
of orthogonal polynomials {Qn}n≥0, with respect to the scalar product in
1.1, the sequence of moments {μα

n}n≥0 and two additional sequences {cn}n≥0,
{λn}n≥1. It develops that these relations may be beautifully expressed by
means of the theory of continued fractions. What is remarkable about Fla-
jolet’s contribution to this subject is to have noticed that many identities of
the classical theory can be established by combinatorial methods. The cor-
responding identities are the contents of the following sequence of theorems
which combine classical results of Jacobi, Rogers, Stieltjes and others. We
start with a result that shows that each μα

n may actually be expressed as a
polynomial in the c ′s and the λ ′s.

We develop here the classical theory by showing that a basis of monic
polynomials

{
Qn(x)

}
n≥0 is orthogonal with respect to the scalar product in

(1.1), that is

(1.3)
1) Qn(x) = xn +

n−1∑
k=0

an,k x
k,

2) 〈 Qn , Qm 〉α = 0 when n �= m.

if and only if it satisfies the following “three-term recursion” (see for instance
Favard [3])

(1.4) Qn+1 = (x− cn)Qn − λn Qn−1,

with initial conditions

(1.5) 1) Q−1(x) = 0 , 2) Q0(x) = 1.

It is easy to show that (1.3) and (1.4) imply that 〈xm, Qn〉 = 0 for all 0 ≤
m ≤ n, moreover we have

(1.6) λn =
〈
Qn−1, xQn

〉
α〈

Qn−1, Qn−1
〉
α

, cn =
〈
Qn, xQn

〉
α〈

Qn, Qn

〉
α

.

The reason for this is very simple, the orthogonality of the basis
{
Qn(x)

}
n≥0
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implies that every polynomial P (x) of degree d has an expansion of the form

(1.7) P (x) =
d∑

i=0

〈 P , Qi 〉α
〈 Qi , Qi 〉α

Qi(x).

Since, by the previous observation

(1.8)
〈
xQn, Qi

〉
α

=
〈
Qn, xQi

〉
α

= 0
(
for all i ≤ n− 2

)
,

it follows that

xQn(x) = 〈 xQn , Qn−1 〉α
〈 Qn−1 , Qn−1 〉α

Qn−1(x) + 〈 xQn , Qn 〉α
〈 Qn , Qn 〉α

Qn(x)(1.9)

+ 〈 xQn , Qn+1 〉α
〈 Qn+1 , Qn+1 〉α

Qn+1(x).

Since from (1.3) we derive that
〈
xQn, Qn+1

〉
α

=
〈
xn+1, Qn+1

〉
α

we can write

xQn(x) = λnQn−1(x) + cnQn(x) + Qn+1(x).

or better
Qn+1(x) = (x− cn)Qn(x) − λn Qn−1(x).

Since from the definition in (1.1) of the scalar product
〈
,
〉
α

it follows from
(1.6) that each λn is a positive real number, we can clearly see by compar-
ing (I.1) to (1.4) that our Fibonacci polynomials cannot be automatically
absorbed into the theory of heaps. So to prove identities for Fibonacci poly-
nomials we need first to see what comes out of the classical theory for poly-
nomials constructed from the recursion (1.4) when all cn = 0 and all λn = 1.
That is

(1.10) Qn+1 = xQn − Qn−1.

In the rest of this paper we will omit the dependence on α and simply use μn

to represent the moments.

2. Heaps of monomers and dimers

The monomer-dimer setting of Viennot makes the classical theory even more
combinatorial. But before making definitions it is best to start with an ex-
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ample. In the figure below we have an instance of a monomer-dimer heap

(2.1)

Let us imagine that the vertical lines represent needles and that there are two
basic pieces:

1. A monomer, which is a billiard ball pierced along a diameter for thread-
ing by the needles.

2. A dimer which consists of two billiard balls joined by a metal bar.

To put together a heap we simply pick a bunch of monomers and dimers and
stack them on top of each other, threading them by the needles, as indicated
in Figure (2.1). As it is depicted there the needles are perpendicular to the
ground line at the points of coordinates 0, 1, 2, 3 . . .. Heaps of monomers and
dimers will be represented by words in the alphabet

A = {m0,m1,m2, . . . ; d1, d2, d3, . . . },

replacing each monomer of ground coordinate i by the letter mi and each
dimer projecting onto the interval [i−1, i] by the letter di. The corresponding
word is obtained by processing in this manner the successive pieces of the heap
from left to right within a row, starting from the bottom row and proceeding
upwards. For instance, this procedure applied to the heap of Figure (2.1)
yields the word

w = d2m6m7d1d3m4d6m0d2d4m5m2 .

Conversely, given any word w ∈ A∗ we can construct a heap by reversing
the process above. That is we read the letters of w from left to right and
replace each mi by a monomer of ground coordinate i and each di by a
dimer spanning [i − 1, i]. Of course we must also thread the corresponding
monomers and dimers down the needles in the precise succession they are
encountered as we read w. The final configuration is obtained by letting the
pieces settle as far down as they can. This procedure applied to the word
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w1 = m0d2m2d1m1d2m3m3 produces the heap

(2.2)

Now it is easy to see that the word w2 = m3d2m0d1m3m1m2d2 produces the
same heap. At the same time the word which corresponds to this heap by the
construction given above should be w = m0d2m3d1m2m3m1d2. Mathemat-
ically speaking a “heap” should represent an equivalence class of A-words.
Two words being equivalent if and only if they yield the same heap. Thus our
procedure of constructing the word corresponding to a heap is just one of the
ways of selecting a representative from each equivalence class of words.

Imagine now that the needles of Figure (2.1) are set into a top and bottom
bar as in an abacus and we push down the monomer m2. This will result in
the configuration

(2.3)

We can see that there are heaps that are brought down by pushing on a single
piece. Such is also the case for the heap obtained by removing the monomers
m0 and m7 from the heap in Figure (2.3) and adding on top the dimer d5.
Such a heap will be called a pyramid and the top piece the summit of the
pyramid.

There is a very simple way of transforming Motzkin paths into heaps [5]
which, as we shall see, has remarkable mathematical consequences. This trans-
formation is obtained by replacing each East step in the path by a monomer
and each North-East step by a dimer. We only need one example here to get
across what we have in mind. For instance, carrying out these replacements
(from left to right) on the path on the left yields the configuration in the mid-
dle. The latter is then rotated 90o clockwise so that the pieces settle down to
the ground. This results in the heap given on the right of our display.
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The transformation is even simpler at the word level. In fact, the a, b, c-
word corresponding to the Motzkin path is w = a0c1a1b2c1a1a2b3b2b1c0a0b1
(here we label the a, b, c letters by the height of the starting point).
The sequence of monomers and dimers depicted in the middle of the
display is d1,m1, d2,m1, d2, d3,m0, d1. The word of the final heap is w′ =
d1d3m0d2m1d2m1d1. We see that to go from the word w of the path to the
word w′ of the corresponding heap, we simply read the letters of w from right
to left, replace each a by a d, each c by an m and remove all b ′s. From our
example we can easily extract the following

Theorem 2.1. Our construction yields a bijection between Motzkin paths and
heaps of monomers and dimers with the following properties.

1. The image heap is always a pyramid with summit a monomer m0 or a
dimer d1.

2. Paths whose maximum height does not exceed n correspond to pyramids
whose projection is in the interval [0, n].

3. Dyck paths (no East steps) are sent into pyramids of dimers with sum-
mit d1.

4. If the image pyramid has d dimers and m monomers then the corre-
sponding path has 2d + m steps.

3. Moments and Motzkin paths

Our goal in this section is to derive from the theory of heaps all the identities of
the classical theory that are needed to prove the validity of our construction of
the Fibonacci polynomials. We will see that using heaps, the needed classical
identities will become visually self evident.

To this end we will deal here with a more general class of Motzkin paths.
These are lattice paths that proceed by North-East, East and South-East
steps and remain throughout weakly above the x-axis without restrictions on
the heights of the starting or ending points. For instance we give below a
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Motzkin path that starts at level 5 and ends at level 2

(3.1)

Here and after the collection of Motzkin paths that start at level r and end
at level s will be denoted by Πr,s. To such a path π we shall associate a word
w(π) by replacing (from left to right) each North-East edge by an ai, each
East edge by a ci and each South-East edge by a bi, the subscript i giving the
starting height of the edge. For instance, carrying this out on the path π in
(3.1) yields the word

w(π) = c5b5b4c3a3c4b4c3c3a3b4b3b2a1c2a2b3c2.

Clearly, we can recover a path from its word. In this context it is important to
regard ai, bi and ci as sequences of non commuting variables, sometimes using
“word” should be the clue. Nevertheless, in other contexts it simplifies our
notation to allow these letters to commute. We will do so in these contexts
as long as there is no loss. We will adhere to the convention, established by
the definition of n!, that the word of an empty path is 1.
Proposition 3.1. Let

(3.2) h̃n,k =
∑

π∈Π=n
0,k

w(π)
∣∣

ai−1→λi,

ci→ci,bi→1
,

where Π=n
0,k denotes the collection of Motzkin paths that go from height 0 to

height k in n steps. Then the h̃n,k satisfy the following recursion and initial
conditions

a) h̃n,k = λkh̃n−1,k−1 + ckh̃n−1,k + h̃n−1,k+1 for 1 ≤ k ≤ n,

b) h̃0,0 = 1 with h̃n,k = 0 for n < k

Proof. Note that every non empty path in Π=n
0,k must come either from height

k − 1 by a North-East step or from height k by an East step or from height
k + 1 by a South-East step. This observation yields the recursion

h̃n,k = λk h̃n−1,k−1 + ck h̃n−1,k + h̃n−1,k+1
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this proves a) of (3.3).

Note further that every path that starts at level 0 and has n steps cannot
reach level k > n. Thus h̃n,k = 0 when k > n. When n = k = 0, the word of
the path is 1, thus the sum contains 1, and we will set h̃0,0 = 1. This proves
b) of (3.3) and completes our proof.

Let now L be the formal power series given by the following summation

(3.4) L =
∑

π∈Π0,0

xn(π) w(π),

where π is a Motzkin path and n(π) denotes the number of edges of π.
This given, a moment’s reflection should reveal that this formal power

series must satisfy the following identity

(3.5) L = 1 + c0 x L + x2a0 (SL) b1 L ,

where S denotes the “shift” operator that replaces a letter indexed by i by
the same letter indexed by i + 1.

Passing to commutative variables we get

(3.6) L = 1 + L
(
c0x + x2a0 b1(SL)

)
,

equivalently
L − L( c0x + x2a0b1SL) = 1.

This gives
L
(
1 − c0x − x2a0b1SL

)
= 1

or better

(3.7) L = 1
1 − c0x − x2a0b1SL

Successive iterations of (3.7) then yield that L must be given by the continued
fraction

(3.8) L = L(x; a, b, c) = 1

1 − c0x−
a0b1x

2

1 − c1x−
a1b2x

2

1 − c2x−
a2b3x

2

1 − c3x− · · ·
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From (3.4) it follows that we have

(3.9) L =
∑
n≥0

xn
∑

π∈Π=n
0,0

w(π),

provided it is understood that “w(π)” means that it is only a rearrangement
of the non commutative letters of the word of π. Here Π0,0(n) denotes the
collection of paths with n edges from levels 0 to 0.

We can easily see that any specialization of the sequences {ai}, {bi} that
makes ai−1bi = λi reduces L(x; a, b, c) to the continued fraction

(3.10) J(x; c, λ) = 1

1 − c0x−
λ1x

2

1 − c1x−
λ2x

2

1 − c2x−
λ3x

2

1 − c3x− · · ·

Here and after we shall assume that the equality L(x; a, b, c) = J(x; c, λ) holds
true.

This given, with the same understanding about the meaning of “w(π)”,
we also have

(3.11) J(x; c, λ) =
∑
n≥0

xn
∑

π∈Π0,0(n)
w(π).

Finally we are able to prove the following basic facts.
Theorem 3.1. Let hn,k =

〈
xn, Qk

〉
then

(3.12) hn,k = λk hn−1,k−1 + ck hn−1,k + hn−1,k+1,

with the following initial conditions

(3.13) a) h0,0 = 1 b) hn,k = 0 for n < k .

Then

(3.14) hn,k = J(x; c, λ)Q∗
k

∣∣∣
xn+k

,

where

(3.15) Q∗
k(x) = xkQk(1/x) .



Fibonacci polynomials 1297

In particular, the moment μn of 1.2 is given by the identity

(3.16) μn = hn,0

Proof. We begin with the recursion in 1.4 written in the form

(3.17) xQk = λkQk−1 + ckQk + Qk+1.

This given, we derive that

hn,k =
〈
xn−1, xQk

〉
= λk

〈
xn−1, Qk−1

〉
+ ck

〈
xn−1, Qk

〉
+
〈
xn−1, Qk+1

〉
or better

hn,k = λk hn−1,k−1 + ck hn−1,k + hn−1,k+1,

this proves (3.12). Since we have h0,0 =
〈
x0, Q0

〉
= 1 because of 1) of (1.3) and

we also have
〈
xn, Qk

〉
= 0 when k > n, we see that the conditions in (3.13)

are also satisfied. We also see that since Q0 = 1 then hn,0 =
〈
xn
〉

= μn, this
proves (3.16) as well. The proof of (3.12) and (3.13) shows that the sequence{
h̃n,k

}
n≥k

of Proposition 3.1 satisfies the same recursion and the same initial
conditions as the sequence

{
hn,k

}
n≥k

. Thus we must have the equality

(3.18) h̃n,k = hn,k (for all n ≥ k)

Combining (3.16) with (3.2) for k = 0 we derive that

μn = h̃n,0 =
∑

π∈Π=n
0,0

w(π)
∣∣

ai−1→λi,

ci→ci,bi→1

and (3.11) becomes

(3.19) J(x; c, λ) =
∑
n≥0

xnμn.

Now since Q0 = 1 then by (3.13) we also have Q∗
0 = 1. Thus for k = 0

the identity in (3.14) reduces to hn,0 = J(x; c, λ)
∣∣∣
xn

, which is true by (3.16)
and (3.19). This not only shows the expansion in (3.19) but also proves the
identity

(3.20) μn =
∑

π∈Π=n
0,0

w(π),
(
for all n ≥ 0

)
.
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In particular, we derive that each μn is a polynomial in the variables ci and
λi. For instance the computer gives

μ4 = c40 + 3 c20 λ1 + 2 c0 c1 λ1 + c21 λ1 + λ2
1 + λ1 λ2.

It remains to verify (3.14) for 0 < k ≤ n. Using (3.19), 1) of (1.3) and (3.15)
the identity in (3.14) becomes

hn,k =
(∑

r≥0
μrx

r
)(

xn +
k−1∑
s=1

ak,sx
k−s

)∣∣∣
xn+k

= μn+k +
k−1∑
s=1

ak,s μn+s =
〈
xn, Qk

〉
.

(3.21)

This completes our proof of the theorem.
This shows that the three term recurrence uniquely determines the scalar

product with respect to which the polynomials Qk have to be orthogonal.
The essential part of Theorem 3.1 is given by the equality in (3.14), which,
in particular, states that the moment sequence μn is given by (3.19).

According to the original definition (1.1) and (1.2) we have for two poly-
nomials A(x) =

∑da
i=0 aix

i and B(x) =
∑db

j=0 bjx
j with real coefficients

(3.22)
〈
xn
〉

= μn →
〈
A(x), B(x)

〉
=

da∑
i=0

db∑
j=0

aibj μi+j .

From (1.3) we have an orthogonal basis of monic polynomials
{
Qn(x)

}
n≥0

generated by the three term recursion

(3.23) Qn+1 = (x− cn)Qn − λnQn−1,

with initial conditions Q−1 = 0 and Q0 = 1. The orthogonality together with
the monic condition implies

(3.24)

Qn(x) = 1
dn−1

det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1

1 x · · · xn

⎞⎟⎟⎟⎟⎟⎠ with

dn = det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn μn+1 · · · μ2n

⎞⎟⎟⎟⎟⎟⎠ .
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This given, we have
Theorem 3.2.

(3.25) a) dn
dn−1

= λ1λ2 · · ·λn, b) cn = χn

dn
− χn−1

dn−1

with

(3.26)

a) dn = det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn μn+1 · · · μ2n

⎞⎟⎟⎟⎟⎟⎠ ,

b) χn = det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn+1 μn+2 · · · μ2n+1

⎞⎟⎟⎟⎟⎟⎠ .

Proof. Since there is only one way for a Motzkin path to reach height n from
height 0 in n steps (North-East all the way), formula (3.20) for k = n reduces
to (here we use (3.2) and (3.18))

(3.27)
〈
Qn, Qn

〉
=
〈
Qn, x

n〉 = a0a1 · · · an−1 |ai=λi+1 = λ1λ2 · · ·λn .

On the other hand, using (3.24) we get

(3.28) 〈Qn , xn〉 = 1
dn−1

det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn μn+1 · · · μ2n

⎞⎟⎟⎟⎟⎟⎠ = dn
dn−1

.

Combining (3.27) and (3.28) we deduce that

(3.29) dn
dn−1

= λ1λ2 · · ·λn,

this proves (3.25) a). To prove (3.25) b) we will proceed purely combinatori-
ally.

We start by observing that a Motzkin path can reach height n from height
0 in n + 1 steps if and only if it takes i successive North-East steps followed
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by a single East step and then finish up with n − i successive North-East
steps (for i = 0, 1, . . . , n). By summing all these possibilities (removing non-
commutativity) and using the identity in (3.2) (for k = n and n→n + 1) we
obtain

(3.30) hn+1,n =
∑

π∈Π=n+1
0,n

w(π)
∣∣∣
ai=λi+1

bi=1

=
(
c0 + c1 + · · · + cn

)
λ1λ2 · · ·λn.

Now (3.24) and (3.26) b) give

(3.31)
〈
xn+1, Qn

〉
= χn

dn−1

and by combining (3.30) with (3.31) we get

(3.32)
(
c0 + c1 + · · · + cn

)
λ1λ2 · · ·λn = χn

dn−1
.

Finally a use of (3.25) a) yields

c0 + c1 + · · · + cn = χn

dn
,

proving (3.25) b) and completing our proof of Theorem 3.2.
Theorem 3.3. The matrix ‖hn,k/(λ1 · · ·λk)‖ is the inverse of the matrix
‖an,k‖ of the coefficients of the polynomials Qn.
Proof. Since

{
Qn(x)

}
n≥0 is an orthogonal basis, we have

(3.33)
n∑

k=0

〈
yn, Qk(y)

〉〈
Qk, Qk

〉 Qk(x) = xn.

Expanding the polynomial Qk(x) we get

n∑
k=0

〈
yn, Qk(y)

〉〈
Qk, Qk

〉 k∑
s=0

ak,s x
s = xn.

Equating the coefficients of xs on both sides of this identity we obtain

n∑
k=0

〈
yn, Qk(y)

〉〈
Qk, Qk

〉 ak,s = χ(s = n).
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In view of the definition of hn,k and (3.27), this identity is none other than

(3.35)
n∑

k=0

hn,k

λ1λ2 · · ·λk
ak,s = χ(s = n),

but that is exactly what the theorem states.
This proves the desired result the hard way. The simpler but equivalent

way is to prove instead
n∑

k=0
an,k hk,s = χ(s = n)λ1λ2 · · ·λs.

This was proved purely combinatorially for s = n, (see the proof of (3.27)).
But for s < n, using the definition of hk,s given in Theorem 3.1, we have

n∑
k=0

an,k hk,s =
〈 n∑
k=0

an,k x
k, Qs

〉
=
〈
Qn, Qs

〉
= 0.

This completes our derivation of the heaps identities we need to complete
our work on Fibonacci polynomials. However, we will include in this section
some additional identities since they might be of interest. Proofs of these
identities can be found in the heaps lecture notes [5].

The finite continued fraction

(3.36) J (n)(x; c, λ) = 1

1 − c0x−
λ1x

2

1 − c1x−
λ2x

2

1 − c2x−
· · ·

· · ·
λnx

2

1 − cnx

is usually referred to as the nth convergent of J(x; c, λ).
The next result relates J (n)(x; c, λ) to the polynomials Qn

′s. To state it
we need further notation. Given a polynomial φ(x; c0, c1, . . . ;λ1, λ2, . . .), let
Sφ denote the polynomial obtained by replacing in φ each ci by ci+1 and each
λi by λi+1.

This given we have:
Theorem 3.4.

(3.37) J (n)(x; c, λ) = SQ∗
n(x)

Q∗
n+1(x)
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where

(3.38) 1) Q∗
n(x) = xnQn(1/x), 2) Q∗

n+1(x) = xn+1Qn+1(1/x).

Theorem 3.5.

(3.39) J (n)(x; c, λ) − J (n−1)(x; c, λ) = λ1λ2 · · ·λn x2n

Q∗
n(x)Q∗

n+1(x)

An immediate corollary of (3.39) is that the rational function J (n)(x; c, λ)
does converge to J(x; c, λ) at least in the formal power series sense. In fact we
see that the coefficient of xn in the Taylor series expansion of J (m)(x; c, λ) is
the same as that of J(x; c, λ) itself as soon as 2m > n. This shows that μn may
be directly computed from J (n−1

2 )(x; c, λ) if n is odd and from J (n
2 )(x; c, λ)

if n is even. In any case, we see that (3.36) defines it to be a polynomial
in c0, c1, . . . , cm and λ1, λ2, . . . , λm where m is the largest integer in n/2.
Nevertheless, the computation of μn by means of one of the convergents
J (m)(x; c, λ), requires (in view of (3.17)) the calculation of the Taylor se-
ries of the rational inverse of Q∗

m+1. To avoid this step Stieltjes devised an
algorithm for the recursive computation of the moments μn. Stieltjes’ result
is a proof of the identity (3.16). We proved this identity together with other
identities in Theorem 3.1.

We are now ready to apply our results to two classical substitutes for the
Fibonacci polynomials.

4. Heap identities for the Catalan polynomials

The simplest substitute is the basis
{
Qn(x)

}
n≥0 constructed by the recursion

(4.1) Qn+1 = xQn −Qn−1,

and initial conditions

(4.2) 1) Q−2(x) = 0 , 2) Q−1(x) = 1.

Firstly, by comparison with the general case in (2.23) which is

(4.3) Qn+1 = (x− cn)Qn − λnQn−1,

we see that in (4.1) we have

(4.4) 1) λn = 1 (for all n ≥ 1), and 2) cn = 0 (for all n ≥ 0).
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Combining the definition hn.k =
〈
xn , Qk

〉
with the result in (3.14) we next

obtain

(4.5) μn =
〈
xn , Q0

〉
=
〈
xn, 1

〉
.

But the identity in (3.2) specialized for k = 0 gives

(4.6) μn =
∑

π∈Π=n
0,0

w(π)
∣∣∣
ai=λi+1=1
ci=0, bi=1

where Π=n
0,0 denotes the collection of Dyck paths that go from height 0 to

height 0 in n steps.
Since in (4.6) we are reduced to counting Dyck paths of length n we derive

that

(4.7) μn =

⎧⎨⎩
1

m+1
(2m
m

)
if n=2m,

0 otherwise.

For the same reason identity a) of (3.25) forces dn = dn−1 for all n ≥ 1. But
the second of (3.24) gives d0 = μ0 = 1. Thus (3.24) yields the following two
identities

(4.8)

a) Qn(x) = det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1

1 x · · · xn

⎞⎟⎟⎟⎟⎟⎠ ,

b) det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn μn+1 · · · μ2n

⎞⎟⎟⎟⎟⎟⎠ = 1.

Likewise an easy induction, based on b) of (3.25) yields

(4.9) det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn+1 μn+2 · · · μ2n+1

⎞⎟⎟⎟⎟⎟⎠ = det
(

1 0
1 0

)
= 0.
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Finally we obtain that, in view of (4.7), (3.10) reduces to

L(x; a, b, c)
∣∣∣
aibi+1=1

ci=0

= J(x, 0, 1) = 1

1 −
x2

1 −
x2

1 −
x2

· · ·

=
∑
m≥0

x2m 1
m+1

(2m
m

)(4.10)

Due to this identity we will call this basis
{
Qn(x)

}
n≥0 the “Catalan Polyno-

mials”.

5. Proofs of Fibonacci polynomials identities

The substitute we use here is the basis
{
Qn(x)

}
n≥0 which satisfies the recur-

sion

(5.1) Qn+1(x) = xQn(x) − λnQn−1(x),

and initial conditions

(5.2) 1) Q−2(x) = 0 , 2) Q−1(x) = 1.

Comparing with the general recursion

(5.3) Qn+1(x) = (x− cn)Qn(x) − λnQn−1(x),

we see that the only difference is that

(5.4) cn = 0,
(
for all n ≥ 0

)
.

Here we start by applying to the basis
{
Qn(x)

}
n≥0 all the identities of the

general theory. In particular, the corresponding moment sequence will be
given by the formula (3.20) for k = 0 and all cn = 0. This is the language of
all Dyck paths of length n and we obtain

(5.5) μn =

⎧⎪⎪⎨⎪⎪⎩
∑

π∈Π=n
0,0

w(π)
∣∣∣

ai=λi+1
bi=1,ci=0

if n=2m,

0 otherwise.
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To make sure that the meaning of (5.5) is well understood we will illustrate
below the case n = 6

(5.6) μ6 = λ1λ2λ3 + λ1λ2λ2 + λ1λ1λ2 + λ1λ2λ1 + λ1λ1λ1.

Passing to commutative variables from (3.10), (5.4) and (5.5) we get

(5.7) J(x; 0, λ) = 1

1 −
λ1x

2

1 −
λ2x

2

1 −
λ3x

2

· · ·

=
∑
m≥0

μ2m x2m .

In fact, we can use (5.7) for μn and specialize all the identities given by (3.24),
(3.25) and (3.26).

Carrying this out yields

(5.8)

Qn(x) = 1
dn−1

det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1

1 x · · · xn

⎞⎟⎟⎟⎟⎟⎠ with

dn = det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn μn+1 · · · μ2n

⎞⎟⎟⎟⎟⎟⎠ .

(5.9) a) dn
dn−1

= λ1λ2 · · ·λn, b) χn

dn
= χn−1

dn−1

where we have as in (4.9)

(5.10) χn = det

⎛⎜⎜⎜⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
· · · · · · · · · · · ·
μn−1 μn · · · μ2n−1
μn+1 μn+2 · · · μ2n+1

⎞⎟⎟⎟⎟⎟⎠ = 0.
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Let us now recall that the Fibonacci basis
{
Pn(x)

}
n≥0 satisfies the recur-

sion

(5.11) Pn+1(x) = xPn(x) + Pn−1(x)

and initial conditions

(5.12) 1) P−1(x) = 0, 2) P0(x) = 1,

Comparing (5.11), (5.12) with (5.1), (5.2) we see that to obtain the Fibonacci
basis from our present substitute basis we have to make the replacements
λi→ − 1 for all i ≥ 1. Thus all the identities we have established from the
classical theory for our substitute basis must remain valid for the Fibonacci
basis after this substitution.

Now the first identity is (5.5), under this substitution (see also (5.6))
becomes

μn =

⎧⎪⎪⎨⎪⎪⎩
∑

π∈Π=n
0,0

w(π)
∣∣∣

ai=λi+1
bi=1,ci=0

if n=2m,

0 otherwise,
→ νn =

⎧⎪⎨⎪⎩
(−1)m
m+1

(2m
m

)
if n=2m,

0 otherwise.

(5.13)

This proves (I.4). Making the same substitutions on (5.7) gives

J(x; 0, λ) = 1

1 −
λ1x

2

1 −
λ2x

2

1 −
λ3x

2

· · ·

=
∑
m≥0

μ2m x2m →

J(x, 0,−1) = 1 + 1

1 +
x2

1 +
x2

1 +
x2

· · ·

=
∑
m≥0

(−1)m
m+1

(2m
m

)
x2m

This proves (I.6).
Since μ0 = 1 and (5.9) a) gives the recursion

(5.14) dn = (−1)n × dn−1,
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which is easily seen to be periodic with period 2 (after d0 = 1) thus (5.9) a)
becomes

(5.15) dn = det

⎛⎜⎜⎜⎜⎜⎝
ν0 ν1 · · · νn
ν1 ν2 · · · νn+1
· · · · · · · · · · · ·
νn−1 νn · · · ν2n−1
νn νn+1 · · · ν2n

⎞⎟⎟⎟⎟⎟⎠ = (−1)�n/2�;

this proves the second of (I.5). From (5.15) and (5.8) we derive that

(5.16) Pn(x) = (−1)�
n−1

2 � det

⎛⎜⎜⎜⎜⎜⎝
ν0 ν1 · · · νn
ν1 ν2 · · · νn+1
· · · · · · · · · · · ·
νn−1 νn · · · ν2n−1

1 x · · · xn

⎞⎟⎟⎟⎟⎟⎠ ;

this proves the first equality of (I.5).
Moreover, using (5.13) the identity in (5.10) becomes

(5.17) det

⎛⎜⎜⎜⎜⎜⎝
ν0 ν1 · · · νn
ν1 ν2 · · · νn+1
· · · · · · · · · · · ·
νn−1 νn · · · ν2n−1
νn+1 νn+2 · · · ν2n+1

⎞⎟⎟⎟⎟⎟⎠ = 0.

We terminate with an expansion result in terms of Fibonacci polynomials
which can be stated as a separate

Proposition 5.1. For any polynomial P (x) of degree d we have

(5.18) P (x) =
d∑

k=0
(−1)k 〈P , Pk〉Pk(x) ,

with a non degenerate scalar product.

Proof. Since
{
Pk(x)

}
k≥0 is a basis we can certainly have the expansion

(5.19) P (x) =
d∑

k=0

〈P , Pk〉
〈Pk , Pk〉

Pk(x).
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However from (3.27) we derive that

〈Pk , Pk〉 = (−1)k,

this proves (5.18). To show that the quadratic form is non-degenerate, the
(n + 1) × (n + 1) relevant matrix is

An =
∥∥νr+s

∥∥n
r,s=0 .

Since addition is commutative this is a symmetric matrix, thus diagonalizable.
In particular its determinant gives the product of the eigenvalues. But we
have seen in (5.15) that det(An) = (−1)�n/2�, so none of these eigenvalues
can vanish. This completes our proof of the proposition.

We purposely programmed on the computer the expansion in (5.18) to
obtain xn. What came out is a rather challenging problem. For instance we
got

(5.20)
x7 = 1 − 14P1 + 14P3 − 6P5 + P7 and
x8 = 1 + 14P0 − 28P2 + 20P4 − 7P6 + P8 .

We will leave it as a challenge to prove a general formula giving these computer
generated identities.

We terminate this section with a list of what is known and what may be
new.

Of course it is well known that the Fibonacci polynomials satisfy the
recurrence

(5.21) Pn+1(x) = xPn(x) + Pn−1(x) .

The generating function identity

(5.22)
∑
n≥0

tnPn(x) = 1
1 − xt− t2

,

(as we have already seen in the introduction) is an immediate consequence of
(5.21).

The formula

(5.23) Pn(x) =
(x+

√
x2+4
2 )n+1 − (x−

√
x2+4
2 )n+1

x+
√
x2+4
2 − x−

√
x2+4
2
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follows from (5.22) by the following identities

(5.24) 1 − xt− t2 = (1 − at)(1 − bt) = 1 − (a + b)t + abt2,

thus a + b = x and ab = −1. Solving these two identities for a and b yields

(5.25) 1) a = x +
√
x2 + 4
2 , 2) b = x−

√
x2 + 4
2 .

On the other hand from (5.22) and (5.24) we also have

(5.26) 1
1 − xt− t2

=
∑
r≥0

tr
∑

n+m=r

anbr−n =
∑
r≥0

tr
ar+1 − br+1

a− b
.

This proves (5.23).
Now from what Qi and Guo show in [8] we can derive that

(5.27) 1
n + 1

(
2n
n

)
= 4n+1

∫ 1
0 xn

√
1−x
x dx

2π .

This amazing identity proves that if we set

(5.28) α(u) =

⎧⎪⎪⎨⎪⎪⎩
2
π

∫ u

0

√
1 − x

x
dx if u ≥ 0

0 if u < 0,

then the unit measure dα(x) has the density 2
π

√
1−x
x and (4.7) becomes (using

the notation of section 1)

(5.29) μα
n =

⎧⎪⎪⎨⎪⎪⎩
4n+1

∫ 1
0
xn
√

1−x
x

dx

2π =
∫ +∞

−∞
xn dα if n=2m,

0 otherwise.

and the right hand side of (5.13) becomes

(5.30) νn =

⎧⎪⎨⎪⎩(−1)m4n+1
∫ 1

0
xn
√

1−x
x

dx

2π if n=2m,

0 otherwise.
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This should be a new identity. Likewise all the identities (except (I.5) [2])
related to the Fibonacci basis

{
Pn(x)

}
n≥0 stated in the introduction, along

with (5.17), should be new. The expansion result stated in Proposition 5.1
should also be new as well as the non degeneracy of the scalar product.

We should give at least an idea of what was known to the mathematicians
who developed the classical theory, such as Jacobi, Rogers, and Stieltjes, to
base their definition of the scalar product by means of moments. To simplify
our arguments we will work in a very special setting.
Proposition 5.2. Suppose that f(x) ≥ 0 is a continuous function in the
interval [0, 1] such that

(5.31)
∫ 1

0
f(x) dx = 1.

Set

(5.32) μr =
∫ 1

0
xr f(x) dx, (for all r ≥ 0).

Let for each n ≥ 0

(5.33) An =
∥∥∥μi+j

∥∥∥n
i,j=0

,

then An has only positive eigenvalues.
Proof. It will be sufficient to carry out our argument in the 3 × 3 case.

Let u = [u1, u2, u3]T be an eigenvector of A3 with eigenvalue λ, then

(5.34) A3

⎡⎢⎣u1
u2
u3

⎤⎥⎦ =

⎡⎢⎣ 1 μ1 μ2
μ1 μ2 μ3
μ2 μ3 μ4

⎤⎥⎦
⎡⎢⎣u1
u2
u3

⎤⎥⎦ =

⎡⎢⎣ u1 + μ1u2 + μ2u3
μ1u1 + μ2u2 + μ3u3
μ2u1 + μ3u2 + μ4u3

⎤⎥⎦ = λ

⎡⎢⎣u1
u2
u3

⎤⎥⎦
thus

(5.35) [u1, u2, u3]T A3

⎡⎢⎣u1
u2
u3

⎤⎥⎦ = λ (u2
1 + u2

2 + u2
3) = λ ‖u‖2

and

λ||u||2 =
∫ 1

0

(
x0u1(x0u1 + x1u2 + x2u3) + x1u2(x0u1 + x1u2 + x2u3)

(5.36)
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+ x2u3(x0u1 + x1u2 + x2u3)
)
f(x)dα

=
∫ 1

0
(x0u1 + x1u2 + x2u3)2f(x)dα > 0.

This completes our proof.
Another result, shown in section 4, is that the Catalan polynomials are

close to the Fibonacci polynomials. We find this fact as well as (I.4), namely
the identity

νn =

⎧⎪⎨⎪⎩
(−1)m
m+1

(2m
m

)
= (−1)m 4m+1

∫ 1
0
xm

√
1−x
x

dx

2π if n=2m,

0 otherwise
(for all n ≥ 0).

(5.37)

as somewhat unexpected.
The expansion result and the non degeneracy of the scalar product of

Fibonacci polynomials suggests that the classical theory can be extended to
include arbitrary real values for the parameters {ci}i≥0 and {λi}i≥1.

The non-vanishing of the determinants of all the Hankel matrices of the
corresponding moments should remain valid even in this extended case.
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