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Abstract: Let W be a finite Coxeter group. We give an algebraic
presentation of what we refer to as “the non-crossing algebra”,
which is associated to the hyperplane complement of W and to
the cohomology of its Milnor fibre. This is used to produce simpler
and more general chain (and cochain) complexes which compute
the integral homology and cohomology groups of the Milnor fibre
F of W . In the process we define a new, larger algebra Ã, which
seems to be “dual” to the Fomin-Kirillov algebra, and in low ranks
is linearly isomorphic to it. There is also a mysterious connection
between Ã and the Orlik-Solomon algebra, in analogy with the
fact that the Fomin-Kirillov algebra contains the coinvariant alge-
bra of W . This analysis is applied to compute the multiplicities
〈ρ,Hk(F,C)〉W and 〈ρ,Hk(M,C)〉W , where M and F are respec-
tively the hyperplane complement and Milnor fibre associated to
W and ρ is a representation of W .
Keywords: Milnor fibre, noncrossing partition lattice, hyperplane
arrangement.

1. Introduction

This work is an outgrowth of [Zha23], whose notation we follow, by and large.
In particular, W is a finite Coxeter group, M is its corresponding complexified
hyperplane complement and F is the corresponding (non-reduced) Milnor
fibre, as defined in [DL16, Def. 1] or [Zha23]. Our objective is to construct
tractable chain complexes which compute the homology of M (which is known
for all W ) and that of F (which is poorly understood, even in the case W =
Symn). Our approach will indicate a connection with the algebra of Fomin-
Kirillov [FK99].

In the first two sections, we recall two distinct definitions of the central
character in our development, the “non-crossing algebra” A, and prove their
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equivalence. This provides us with many properties of the algebra A. In ad-
dition, we discuss a number of preliminaries we shall require later. We then
introduce a duality theory, by defining a non-degenerate bilinear form on A,
and this is applied to study the integral cohomology of F .

Our main purpose here is to show how the algebra A and its relatives
play a crucial role in determining the cohomology of the Milnor fibre F . For
example, we give several results similar to the following (see Corollary 5.19
below). Let ω =

∑
t∈T at ∈ A, where T is the set of reflections of W ; then

ω2 = 0 in A, and we prove that both left and right multiplication by ω on A
have the same kernel and image. Moreover we have the following isomorphism
of graded abelian groups:

(1.1) H∗(F/W ;Z)[−1] ∼= Aω ∩ ωA
ωAω

,

where [−1] on the left means that the Z-grading is shifted by −1. This result
could be compared with those in [DPSS99], whose ultimate purpose is to
compute the left side of the equation (1.1). In principle, the stated result
reduces the question to a mechanical computation in A, although in practice,
this is not an easy computation.

2. Definitions, notation and preliminaries

2.1. The noncrossing partition lattice

Let (W,S) be a finite Coxeter system of rank n with a geometric representa-
tion on the Euclidean space V := Rn, and let T =

⋃
w∈W wSw−1 be the set

of reflections of W . Denote by �T (w) the number of reflections in a shortest
expression for w as a product of reflections, and define a partial order ≤ on
W by stipulating that u ≤ v if and only if �T (v) = �T (u) + �T (u−1v) for
u, v ∈ W . Then (W,≤) is a graded poset whose unique minimal element is
the identity e and whose maximal elements are those having no fixed points
in Rn, sometimes known as elliptic elements.

Let γ be any Coxeter element, i.e., product of all the simple reflections in
some order.

Definition 2.1. Denote by L the closed interval L := [e, γ] of the poset
(W,≤).

Brady and Watt proved that the closed interval L is a lattice, which
we call the noncrossing partition (NCP) lattice [BW08]. The isomorphism
type of the NCP lattice is independent of γ, as all Coxeter elements form
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a conjugacy class in W . Although all Coxeter elements of W are conjugate
in W , we now define a specific Coxeter element in terms of the root system,
which has properties we shall find useful later.

Associated with W we have a set Φ of vectors in V , which form a root
system (cf. [Bou02, Ch. VI, §1]), and S determines a simple subsystem of Φ,
as well as the corresponding set Φ+ of positive roots. Write Π = {αi | i ∈ [n]}
for the given simple system. Without loss of generality, we may assume that
W is irreducible. Then Π can be written as the disjoint union Π = Π1 ∪ Π2,
where Π1 = {αi1 , . . . , αil} and Π2 = {αil+1, . . . , αin} where the αik ∈ Π1 are
mutually orthogonal as also are the αik ∈ Π2 (see [Ste59]).

The set of positive roots of Φ is in bijection with the set of reflections
of W . Recall that W acts faithfully on the Euclidean space V := Rn whose
inner product we denote by (−,−). For any positive root α relative to Π, the
corresponding reflection is defined by tα(x) := x − 2 (α,x)

(α,α)α for any x ∈ Rn.
Throughout, we use the following Coxeter element

γ = (
∏

α∈Π1

tα)(
∏

α∈Π2

tα),

unless otherwise stated. Note that the simple reflections tα and tβ commute
whenever α, β ∈ Π1 or α, β ∈ Π2.

Now we define a total order on the set of positive roots. Let h be the
Coxeter number, i.e. the order of γ. Then the number of positive roots is
nh/2. It is proved in [Ste59, Theorem 6.3] that the positive roots ρk of Φ
relative to Π can be produced successively using the following formulae

(2.1) ρk =

⎧⎪⎪⎨⎪⎪⎩
αik , 1 ≤ k ≤ l,

−γ(αik), l + 1 ≤ k ≤ n,

γ(ρk−n), n + 1 ≤ k ≤ nh
2 .

This yields a total order 	 on the set T of reflections

(2.2) tρ1 ≺ tρ2 ≺ · · · ≺ tρnh/2 .

The total order 	 on T gives rise to an EL-labelling (see [ABW07]) of
L. Denote by E(L) the set of covering relations u� v of L, that is, relations
where there is no third element between u and v. Then we have a natural
edge labelling

λ : E(L) → T, u� v �→ u−1v.
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Let c : x = w0 < w1 < · · · < wk = y be a maximal chain of any closed
interval [x, y] of L. We may identify c with its labelling sequence λ(c) :=
(w−1

0 w1, . . . , w
−1
k−1wk), where w−1

i−1wi ∈ T for 1 ≤ i ≤ k. It has been proved
that λ is an EL-labelling [ABW07, Bjö80], which means that for every interval
[x, y] of L

1. there is a unique increasing maximal chain in [x, y], and
2. this chain is lexicographically smallest among all maximal chains in

[x, y].

As L has an EL-labelling, it is Cohen-Macaulay [Bjö80, Theorem 2.3], i.e. for
any u < v of L we have

H̃i(u, v) = 0, ∀i �= �T (v) − �T (u) − 2,

where H̃ denotes reduced homology of the order complex of (u, v).
If W is a finite Coxeter group, then L is a direct product of the NCP lat-

tices L(Wi) over the irreducible components Wi of W . It is a result of [Bjö80]
that the EL-labelling is preserved under the direct product. Moreover, any
closed interval [e, w] of L has an EL-labelling given by the natural labelling
λ restricted to [e, w].

For any w ∈ L, denote

RexT (w) := {(t1, t2, . . . , tk) |w = t1t2 · · · tk is T -reduced}.

With respect to the total order (2.2) on T , we define

(2.3) Dw := {(t1, . . . , tk) ∈ RexT (w) | t1 � t2 � · · · � tk}.

In words, Dw is the set of decreasing labelling sequences for the maximal
chains e < t1 < t1t2 < · · · < t1t2 · · · tk = w of [e, w]. Note that any interval
[u, v] of L is isomorphic to [e, u−1v] as posets. The following result can be
found in [Zha23, Proposition 2.4].

Proposition 2.2. For any w ∈ L with 1 ≤ �T (w) = k ≤ n, we have

rank H̃k−2(e, w) = (−1)kμ(w) = |Dw|,

where μ is the Möbius function of L.

Any interval [e, w] of L has the following important interpretation, due
to Bessis [Bes03, Lemma 1.4.3] (see also [Arm09, Proposition 2.6.11]).

Proposition 2.3. Let γ ∈ W be a Coxeter element and NC(W, γ) the non-
crossing partition lattice relative to γ. For any w ≤ γ, the interval [e, w] of
NC(W, γ) is isomorphic to NC(W ′, w) for some parabolic subgroup W ′ of W .
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2.2. The algebra A

We now give an algebraic definition of the noncrossing algebra in terms of
generators and relations.

Definition 2.4. Let L := [e, γ] be the noncrossing partition lattice associated
to a finite Coxeter group W and a Coxeter element γ ∈ W . We define the
noncrossing algebra A = A(W, γ) to be the graded algebra over Z generated
by homogeneous elements at, t ∈ T of degree 1, subject to the following
quadratic relations:

1. a2
t = at1at2 = 0 for any t ∈ T and t1, t2 ∈ T with t1t2 �≤ γ;

2.
∑

(t1,t2)∈RexT (w) at1at2 = 0 for any w ∈ L with �T (w) = 2.

Different choices of the Coxeter element produce isomorphic noncrossing
algebras, as the Coxeter elements are all conjugate to each other and absolute
length is invariant under the conjugation. More precisely, if γ′ = wγw−1 for
some w ∈ W , the map at �→ awtw−1 extends to an algebra isomorphism
between A(W, γ) and A(W, γ′).

Example 2.5. (Dihedral group) Let I2(m) be the diheral group defined by

I2(m) := 〈s1, s2 | s2
1 = s2

2 = (s2s1)m = 1〉, m ≥ 3.

Let γ = s1s2 be a Coxeter element and let ti = s1(s2s1)i−1 be the reflections,
1 ≤ i ≤ m. Then γ has m reduced reflection factorisations γ = t1tm =
t2t1 = · · · = tmtm−1. The noncrossing algebra A(I2(m), γ) is generated by
ati , 1 ≤ i ≤ m subject to the following relations

at1ati = 0, 1 ≤ i ≤ m− 1,
atiatj = 0, 2 ≤ i ≤ m, 1 ≤ j �= i− 1 ≤ m,

at1atm + at2at1 + · · · + atmatm−1 = 0.

Because it is relevant for the proof of Proposition 3.4, we set out how
the above constructions apply to this case. Note first that, using the relation
γtiγ

−1 = ti+2, where the index is taken modulo m, the construction (2.2)
leads to the following ordering on the reflections ti:

t1(= s1) ≺ t2 ≺ · · · ≺ tm(= s2).

It follows, taking into account the reduced reflection factorisations of γ given
above, that the unique increasing factorisation is γ = t1tm = s1s2, and all
other factorisations are decreasing.
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Example 2.6. (Type An) Let W = Symn+1 be the symmetric group gen-
erated by the elementary transpositions (i, i + 1), 1 ≤ i ≤ n. Let γ =
(1, 2, . . . , n + 1) be a Coxeter element. We write aij := a(i,j). Then A(W, γ)
of type A is the graded Z-algebra generated by aij , 1 ≤ i < j ≤ n+ 1 subject
to the following relations:

a2
ij = 0, 1 ≤ i < j ≤ n + 1,

aikajl = 0, 1 ≤ i < j < k < l ≤ n + 1,
aijaik = ajkaij = aikajk = 0, 1 ≤ i < j < k ≤ n + 1,

aijakl + aklaij = ailajk + ajkail = 0, 1 ≤ i < j < k < l ≤ n + 1,
aijajk + ajkaik + aikaij = 0, 1 ≤ i < j < k ≤ n + 1.

2.3. The algebra B

We next give what later will turn out to be a combinatorial definition of the
noncrossing algebra above, as introduced in [Zha23].

For each k = 0, . . . , n, let Lk := {w ∈ L | �T (w) = k}. Let Ck−1(w) be the
abelian group with basis all sequences of RexT (w), w ∈ Lk. Let Bk denote
the k-string braid group, with standard generators σi, 1 ≤ i ≤ k − 1 subject
to the relations σiσj = σjσi for |i − j| ≥ 2, and σiσi+1σi = σi+1σiσi+1 for
1 ≤ i ≤ k − 2. The Hurwitz action of Bk on Ck−1(w) is defined by

σi.(t1, . . . , ti−1, ti, ti+1, ti+2, . . . , tk) := (t1, . . . , ti−1, ti+1, t
ti+1
i , ti+2, . . . , tk)

for 1 ≤ i ≤ k − 1.
Let Symk be the symmetric group on k letters with standard generators

si = (i, i + 1), 1 ≤ i ≤ k − 1. There is a set-theoretic lifting map:

ϕ : Symk → Bk, π = si1 · · · sip �→ π := σi1 · · · σip ,

where π = si1 · · · sip ∈ Symk is a reduced expression in the standard gener-
ators. This is independent of the choice of reduced expression of π. For any
t = (t1, t2, . . . , tk) ∈ RexT (w), we define the following Z-linear map using the
above Hurwitz action:

β : Ck−1(w) → Ck−1(w), t �→ βt :=
∑

π∈Symk

sgn(π)π.(t1, t2, . . . , tk),

where sgn is the usual sign character of Symk. The element βt is viewed as an
alternating sum of maximal chains of the interval (e, w], with each sequence
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(t1, t2, . . . , tk) in the sum identified with the following chain

t1 < t1t2 < · · · < t1t2 · · · tk = w.

Definition 2.7. For each w ∈ Lk, we define Bw to be the abelian group
spanned by the elements βt of RexT (w), that is,

Bw := Im β =
∑

t∈RexT (w)
Zβt ⊆ Ck−1(w).

In particular Be := Z. Further, we write B :=
⊕

w∈L Bw.

We point out a close connection between B and the homology of L. For
any w ∈ Lk, let H̃k−2(e, w) be the top reduced homology group of the open
interval (e, w). Define Ck−1 to be the abelian group freely spanned by the
basis

⋃
w∈Lk

RexT (w). Then Ck−1 =
⊕

w∈Lk
Ck−1(w). For k ≥ 2, define the

linear truncation dk−1 by

(2.4) dk−1 : Ck−1 → Ck−2, (t1, t2, . . . , tk−1, tk) �→ (t1, t2, . . . , tk−1),

and d0(t) = 1,∀t ∈ T . We will write d = dk when there is no danger of
confusion. As Bw ⊆ Ck−1(w), we may restrict d to Bw and define

zt := d(βt), ∀t ∈ RexT (w).

Proposition 2.8. [Zha23, Proposition 3.4] Let w ∈ Lk with k ≥ 1. Then for
any t ∈ RexT (w), we have

zt =
k∑

i=1
(−1)k−iβt(̂i) ∈ H̃k−2(e, w),

where t(̂i) := (t1, . . . , t̂i, . . . , tk) is obtained by removing the i-th entry of t.

Theorem 2.9. [Zha23, Theorem 4.5] For any w ∈ L, let Bw and Dw be as
defined in Definition 2.7 and (2.3), respectively.

1. The elements βt, t ∈ Dw constitute a Z-basis for Bw;
2. The elements zt, t ∈ Dw are a Z-basis for H̃k−2(e, w), where k =

�T (w) ≥ 1;
3. The Z-linear map

d : Bw → H̃k−2(e, w), βt �→ zt, t ∈ RexT (w)

is an isomorphism of free abelian groups.
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We now define a multiplicative structure which makes B into a finite
dimensional algebra. For any βt ∈ Bw and βt, t ∈ T , define

βtβt :=
{
β(t,t), if wt ≤ γ and �T (wt) > �T (w),
0, otherwise,

where (t, t) denotes the concatenation of t and t. This multiplication is as-
sociative. Clearly, we have βt = βt1βt2 · · · βtk for any T -reduced expression
w = t1t2 · · · tk ∈ L. Therefore, B is a finite-dimensional Z-graded algebra
generated by homogeneous elements βt, t ∈ T of degree 1.

Proposition 2.10. [Zha23, Proposition 5.8] We have the following quadratic
relations in B:

1. β2
t = βt1βt2 = 0 for all t ∈ T and t1, t2 ∈ T with t1t2 �≤ γ.

2. For any w ∈ L2, we have ∑
(t1,t2)∈RexT (w)

βt1βt2 = 0.

3. An isomorphism between A and B

3.1. The isomorphism

The main theorem of this section is the following. We are grateful to the
referee for pointing out a gap in our original proof.

Theorem 3.1. Let W be a finite Coxeter group and let T be the set of reflec-
tions of W . The assignment at �→ βt for all t ∈ T extends to a graded algebra
isomorphism A ∼= B.

The remainder of this section is devoted to proving Theorem 3.1.
We begin with a sketch of the proof. By Proposition 2.10, the assignment

at �→ βt preserves the quadratic relations of A. Since B is a finite-dimensional
algebra generated by βt, we obtain a surjective algebra homomorphism

(3.1) φ : A → B, at �→ βt, t ∈ T

from A to B. To see that this is indeed an isomorphism, we will prove that A
is finite-dimensional and then show that rankA = rankB. It will follow that
A and B are isomorphic.

To show A is finite dimensional, it is crucial to find necessary and sufficient
conditions to ensure that at1at2 · · · atk = 0. We need the following key lemma.
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Lemma 3.2. (Vanishing property) Let ti ∈ T for 1 ≤ i ≤ k.

1. We have at1at2 · · · atk = 0 if t1t2 · · · tk is not T -reduced.
2. Let t1t2 · · · tk be a T -reduced expression. Then

at1at2 · · · atk = 0, if t1t2 · · · tk �≤ γ.

The proof of this lemma is postponed to Section 3.2.

Lemma 3.3. The element at1at2 · · · atk �= 0 if and only if t1t2 · · · tk is T -
reduced and t1t2 · · · tk ≤ γ.

Proof. The “only if” part is evident from Lemma 3.2. For the “if” part, note
that

φ(at1at2 · · · atk) = βt1βt2 · · · βtk = βt,

where t = (t1, . . . , tk) is the labelling sequence of the chain e < t1 < t1t2 <
· · · < t1t2 · · · tk of L. By construction βt �= 0 and hence at1at2 · · · atk �= 0.

Recall that the algebra A has a natural Z-grading with deg(at) = 1 for
any t ∈ T . Let Ak denote the k-th graded component of A. For any w ∈ Lk,
let Aw be the abelian subgroup of Ak given by

Aw := SpanZ{at := at1at2 · · · atk | t ∈ RexT (w)}

By convention we set Ae := Z. It follows from Lemma 3.3 that

Ak =
∑
w∈Lk

Aw, 0 ≤ k ≤ n.

Proposition 3.4. For any w ∈ L, let Dw be as in (2.3). Then the elements
at, t ∈ Dw form a Z-basis for Aw.

Proof. Since φ(at) = βt, the set {at | t ∈ Dw} is Z-linearly independent by
Theorem 2.9. By Proposition 2.3, without loss of generality, we may assume
w = γ. It remains to show that every element of Aγ is a Z-linear combination
of the decreasing elements at, t ∈ Dγ .

We use induction on �T (γ) = n. If n = 1, then there is nothing to prove.
Note that An−1 =

∑
w∈Ln−1 Aw. For n > 1, we may by induction assume that

any at1at2 · · · atn−1 ∈ An−1 can be expressed as a Z-linear combination of the
elements at for t ∈ ⋃

w∈Ln−1 Dw.
Consider the following filtration of An = Aγ . Recall that T is totally

ordered as in (2.2). For each reflection tρi ∈ T , define to be Vρi be the abelian
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subgroup of Aγ spanned by the elements at1 · · · atn−1atρi for all (t1, . . . , tn−1) ∈
RexT (γtρi). Then we have a filtration

0 ⊆ Vρ1 ⊆ · · · ⊆
s∑

i=1
Vρi ⊆ · · · ⊆

hn/2∑
i=1

Vρi = Aγ .

We use induction on s to show that for each s with 1 ≤ s ≤ hn
2 ,

∑s
i=1 Vρi

is spanned by the elements at, t ∈ Dγ . If s = 1, then by the minimality
of tρ1 in T and the induction hypothesis on n, any element in Vρ1 can be
written as a Z-linear combination of decreasing elements at1 · · · atn−1atρ1 for
all (t1, . . . , tn−1, tρ1) ∈ Dγ .

Now assume s > 1. For any a ∈ Vρs , by the induction hypothesis on n
there exist λt ∈ Z such that

a =
∑

t∈Dγtρs

λtatatρs =
∑

t∈D�
γtρs

λtatatρs +
∑

t∈D≺
γtρs

λtatatρs ,

where
D�

γtρs
= {(t1, . . . , tn−1) ∈ Dγtρs | tn−1 � tρs},

D≺
γtρs

= {(t1, . . . , tn−1) ∈ Dγtρs | tn−1 ≺ tρs}.

Note that atatρs is a decreasing element for any t ∈ D�
γtρs

. We claim that

(3.2) atatρs ∈ Vρ1 + Vρ2 + · · · + Vρs−1 , ∀t ∈ D≺
γtρs

.

Given (3.2), by the induction hypothesis on s, any element a ∈ Vρs is a Z-
linear combination of decreasing elements at, t ∈ Dγ . Therefore,

∑s
i=1 Vρi is

spanned by the elements at, t ∈ Dγ for any positive integer s. In particular,
Aγ =

∑hn/2
i=1 Vρi is spanned by the decreasing elements at, t ∈ Dγ .

It remains to prove (3.2). Take any t = (t1, . . . , tn−2, tn−1) ∈ D≺
γtρs

with
tn−1 ≺ tρs . Let u = tn−1tρs . Then there exists a poset isomorphism between
[e, u] and [t1 · · · tn−2, γ] which sends x ∈ [e, u] to t1 · · · tn−2x ∈ [t1 · · · tn−2, γ].
In particular, this isomorphism preserves the EL-labelling.

By Proposition 2.3, the interval [e, u] is the noncrossing partition lattice
of a dihedral group I2(m) for some integer m ≥ 2. Let tτ1 ≺ tτ2 ≺ · · · ≺ tτm
be the reflections of [e, u] with the total order inherited from (2.2). By the
discussion in Example 2.5 the unique increasing maximal chain of [e, u] is
labelled by (tn−1, tρs) and we have tτ1 = tn−1 and tτm = tρs . The other
maximal chains in [e, u] are all decreasing. Further, using the defining relation
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of A, we have

(3.3) atn−1atρs = atτ1atτm = −
∑

tτi�tτj

atτiatτj ,

where the sum is over all decreasing labelling sequences of maximal chains in
[e, u]. For any pair tτi � tτj we have

(3.4) tτj 	 tτm−1 	 tρs−1 ≺ tρs = tτm .

Combining (3.3) and (3.4), we obtain

atatρs = at1 · · · atn−2(atn−1atρs ) = −
∑

tτi�tτj

at1 · · · atn−2atτiatτj ∈
s−1∑
i=1

Vρi .

The statement (3.2) follows, and the proof of Proposition 3.4 is complete.

Lemma 3.5. We have the following.

1. Ak = 0 for k > n = �T (γ).
2. Ak =

⊕
w∈Lk

Aw for 0 ≤ k ≤ n = �T (γ).

Proof. As the maximal rank of the poset (W,≤) is n, any expression t1 · · · tk
with k > n is not T -reduced. It follows from Lemma 3.3 that Ak = 0 for
k > n. This proves part (1).

For part (2), recall that Ak =
∑

w∈Lk
Aw for 0 ≤ k ≤ n. For any u ∈

Lk, take an arbitrary element x ∈ Au ∩ ∑
u�=w∈Lk

Aw. Since φ restricts to a
surjective homomorphism φw : Aw → Bw for any w ∈ L, we have φ(x) ∈
Bu ∩

∑
u�=w∈Lk

Bw = 0. In particular, x ∈ Kerφu. On the other hand, for any
w ∈ L by Proposition 3.4 the subgroup Aw has a Z-basis {at | t ∈ Dw}.
Similarly, recall from Theorem 2.9 that Bw has a Z-basis {βt | t ∈ Dw}. It
follows that Aw is isomorphic to Bw, given by φw(at) = βt for any t ∈ Dw.
This forces x = 0 and hence Au∩

∑
u�=w∈Lk

Aw = 0 for any u ∈ Lk. Therefore,
the sum Ak =

∑
w∈Lk

Aw is direct.

The following is an immediate consequence of Proposition 3.4
and Lemma 3.5.

Corollary 3.6. The set {at | t ∈ ⋃
w∈L Dw, t decreasing} is a (Z)-basis of

A.

We are now in a position to prove Theorem 3.1.
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Proof of Theorem 3.1. The map φ : A → B defined by φ(at) = βt extends
to a surjective graded algebra homomorphism. By the algebra A has a ba-
sis consisting of decreasing elements at with t ∈ ⋃

w∈L Dw. It follows from
Theorem 2.9 that φ is injective and hence A is isomorphic to B.

Proposition 3.7. The algebra A enjoys the following properties.

1. Let L and L′ be two noncrossing partition lattices. Then as free abelian
groups,

A(L × L′) ∼= A(L) ⊗A(L′).
2. Let Lw = [e, w] be a closed interval in L. Then the inclusion i : Lw ↪→ L

of posets induces an injective homomorphism iA : A(Lw) → A(L) of
algebras. In particular,

A(Lw)u = A(L)u, ∀u ≤ w.

Proof. For part (a), let T and T ′ be the set of reflections of L and L′ respec-
tively. The algebra A(L × L′) is generated by at, t ∈ T ∪ T ′. By the defining
relation we have atat′ = −at′at for any t ∈ T and t′ ∈ T ′. We have two natural
embeddings i1 : A(L) → A(L × L′) and i2 : A(L′) → A(L × L′), inducing
the algebra isomorphism

f : A(L) ⊗A(L′) → A(L × L′),

such that f(at ⊗ at′) = i1(at)i2(at′) and i1(at)i2(at′) = −i2(at′)i1(at) for any
t ∈ T and t′ ∈ T .

We turn to the proof of part (b). The set Tw of reflections in Lw inherits
the total order from the totally ordered set T of reflections in L. Since Lw ⊂ L,
the induced map iA : A(Lw) → A(L) defined by at → at, t ∈ Tw preserves
the defining relations and hence is an algebraic homomorphism. Moreover,
the induced map iA preserves the decreasing basis elements and thus iA is
injective.

3.2. The vanishing lemma

In this subsection we prove the vanishing property stated in Lemma 3.2.

3.2.1. T -reduced expressions and root systems Consider the follow-
ing two sets:
(3.5)
T1 : = {(t1, t2, . . . , tk) | k ∈ N and t1t2 · · · tk is not T -reduced},
T2 : = {(t1, t2, . . . , tk) | k ∈ N and t1t2 · · · tk is T -reduced and t1t2 · · · tk �≤ γ}.
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Then Lemma 3.2 can be restated as:

(3.6) at = 0, for any t ∈ T1 ∪ T2.

To prove this, we provide a geometric characterisation for T1 ∪T2 in terms of
the root system.

Let � : W → GL(V ) be the geometric representation of W with V = Rn.
Denote by Φ+ the set of positive roots of W , as determined by S (see the
remarks preceding (2.1)). Define

Fix(w) := Ker (�(w) − Id) ⊆ V

to be the vector subspace fixed by w ∈ W . By [Car72, Lemma 2], we have

(3.7) �T (w) = codim Fix(w) = n− dim Fix(w), ∀w ∈ W.

Since the Coxeter element γ fixes no vector in V , the linear map γ − 1 is
an automorphism of V . We define the linear map

ϑ := (γ − 1)−1 : V → V.

This map satisfies the following properties which come from the proof of
[Car72, Lemma 2]; see also [BW08, Corollary 4.2].

Lemma 3.8. Let ρ ∈ Φ+ be a positive root and let ϑ be as defined above.

1. (ϑ(ρ), ρ) = −1
2(ρ, ρ);

2. ϑ(ρ) ∈ Fix(tργ).

Proof. We have (γ − 1)(ϑ(ρ)) = ρ, which implies that γ(ϑ(ρ)) = ϑ(ρ) +
ρ. Since Coxeter group action preserves the inner product of V , we have
(γ(ϑ(ρ)), γ(ϑ(ρ))) = (ϑ(ρ), ϑ(ρ)) and hence (ϑ(ρ), ρ) = −1

2(ρ, ρ). It follows
that tρ(ϑ(ρ)) = ϑ(ρ) + ρ and hence γ(ϑ(ρ)) = tρ(ϑ(ρ)). This leads to ϑ(ρ) ∈
Fix(tργ).

The following lemma characterises the reduced T -expressions.

Lemma 3.9. [Car72, Lemma 3] Let ρ1, ρ2, . . . , ρk ∈ Φ+. Then the expression
tρ1tρ2 · · · tρk is T -reduced if and only if ρ1, ρ2, . . . , ρk are linearly independent.

This follows directly from the fact that for w ∈ W , �T (w) = dim(Im(w−
1)) (cf. [HL99, (1.2)]). The following lemma characterises the T -reduced ex-
pressions of elements occurring in the lattice L.
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Lemma 3.10. [BW08, Lemma 4.8] Let tρ1tρ2 · · · tρk be a T -reduced expres-
sion. Then the following are equivalent:

1. tρ1tρ2 · · · tρk ≤ γ;
2. (ϑ(ρi), ρj) = 0 whenever 1 ≤ i < j ≤ k.

3.2.2. Proof of the vanishing lemma To prove the equivalent state-
ment (3.6) of Lemma 3.2, we need a description of the set T1 ∪T2 in terms of
positive roots.

Proposition 3.11. Let ρ1, ρ2, . . . , ρk ∈ Φ+, and let T1 and T2 be as in (3.5).
Then we have (tρ1 , tρ2 , . . . , tρk) ∈ T1∪T2 if and only if there exists a pair i < j
such that (ϑ(ρi), ρj) �= 0.

Proof. Let t = (tρ1 , tρ2 , . . . , tρk) ∈ T1 ∪ T2 and assume for contradiction that
we have (ϑ(ρi), ρj) = 0 for any 1 ≤ i < j ≤ k. Since the matrix ((ϑ(ρi), ρj))k×k

is non-singular by part (1) of Lemma 3.8, the positive roots ρi, 1 ≤ i ≤ k are
linearly independent. It follows from Lemma 3.9 that tρ1tρ2 · · · tρk is T -reduced
and hence t /∈ T1, which implies that t ∈ T2. However, if tρ1tρ2 · · · tρk is T -
reduced and (ϑ(ρi), ρj) = 0 for any 1 ≤ i < j ≤ k, then by Lemma 3.10 we
have tρ1tρ2 · · · tρk ≤ γ, which implies that t /∈ T2. This contradicts t ∈ T1∪T2.
This proves the “only if” part.

For the converse, assume that there exist i < j such that (ϑ(ρi), ρj) �=
0. If tρ1tρ2 · · · tρk is not T -reduced, then (tρ1 , tρ2 , . . . , tρk) ∈ T1. Otherwise,
by Lemma 3.10 tρ1tρ2 · · · tρk �	 γ, and hence (tρ1 , tρ2 , . . . , tρk) ∈ T2. This
completes the proof.

Definition 3.12. A sequence of positive roots (ρ1, ρ2, . . . , ρk) is called a van-
ishing sequence if the inner product (ϑ(ρi), ρj) = 0 for all 1 ≤ i < j ≤ k
except that (ϑ(ρ1), ρk) �= 0.

With this definition, we can refine Proposition 3.11 as follows.

Proposition 3.13. Let ρ1, ρ2, . . . , ρk ∈ Φ+. Then t = (tρ1 , tρ2 , . . . , tρk) ∈
T1 ∪ T2 if and only if there exists a pair i < j such that (ρi, ρi+1, . . . , ρj) is a
vanishing sequence.

Proof. By Proposition 3.11, we may choose a pair i < j for which j − i is
minimal such that (ϑ(ρi), ρj) �= 0. It follows from the minimality of j − i
that (ϑ(ρs), ρt) = 0 for all i ≤ s < t ≤ j except for s = i, t = j. Therefore,
(ρi, ρi+1, . . . , ρj) is a vanishing sequence.

Note that for any ρ ∈ Φ+, the sequence (ρ, ρ) is a vanishing sequence
as the inner product (ϑ(ρ), ρ) �= 0 by part (1) of Lemma 3.8. If tρ1tρ2 is T -
reduced and tρ1tρ2 �≤ γ, then by Lemma 3.10 the inner product (ϑ(ρ1), ρ2) �= 0
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and therefore the sequence (ρ1, ρ2) is a vanishing sequence. It follows from
the defining relations of A that atρ1atρ2 = a2

tρ = 0.
In general, we will prove that atρ1 · · · atρk = 0 for any vanishing sequence

(ρ1, ρ2, . . . , ρk). Before proving this, we need the following observations.

Lemma 3.14. Let (ρ1, ρ2, . . . , ρk) be a vanishing sequence with k > 2. Then

1. tρ1tρ2 · · · tρk−1 ≤ γ and tρ2tρ3 · · · tρk ≤ γ are both T -reduced;
2. tρitρj ≤ γ is T -reduced for all i < j, except i = 1, j = k;
3. Let w = tρ1tρ2 ≤ γ and let Φ+(w) = {τ1, τ2, . . . , τm} be the set of all

positive roots for which tτi ≤ w. Then (τi, ρ3, . . . , ρk) is a vanishing
sequence for any τi �= ρ2.

Proof. The matrix ((ϑ(ρi), ρj))(k−1)×(k−1) with 1 ≤ i, j ≤ k − 1 is lower
triangular with nonzero diagonal entries, thereby ρi, 1 ≤ i ≤ k−1 are linearly
independent. It follows from Lemma 3.9 and Lemma 3.10 that tρ1tρ2 · · · tρk−1 is
T -reduced and tρ1tρ2 · · · tρk−1 ≤ γ. Similarly, one can prove that tρ2tρ3 · · · tρk ≤
γ. This completes the proof of part (1), from which part (2) follows.

For part (3), let V1 = Fix(w) ⊆ V and let V ⊥
1 be the orthogonal subspace

such that V = V1 ⊕ V ⊥
1 . Then by (3.7) dimV1 = n− 2 and dimV ⊥

1 = 2. Since
w fixes every vector in V1, so does any expression tτitτj for w. Therefore, the
positive roots τi ∈ Φ+(w) are in V ⊥

1 . Since tρ1tρ2 is T -reduced, it follows from
Lemma 3.9 that ρ1, ρ2 ∈ V ⊥

1 are linearly independent and hence constitute a
basis for V ⊥

1 .
For any τi ∈ Φ+(w) ⊆ V ⊥

1 we have τi = λ1ρ1 + λ2ρ2 for some λ1, λ2 ∈ R.
Note that λ1 = 0 if and only if τi = ρ2. Then we have

(ϑ(τi), ρj) = λ1(ϑ(ρ1), ρj) + λ2(ϑ(ρ2), ρj) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1,
((ϑ(τi), ρk)) = λ1(ϑ(ρ1), ρk) + λ2(ϑ(ρ2), ρk) = λ1(ϑ(ρ1), ρk).

Since (ϑ(ρ1), ρk) �= 0, we have ((ϑ(τi), ρk)) �= 0 if and only if λ1 �= 0 if and
only if τi �= ρ2. Therefore the sequence (τi, ρ3, . . . , ρk) is a vanishing sequence
for any τi �= ρ2.

Lemma 3.15. Let (ρ1, ρ2, . . . , ρk) be a vanishing sequence with k ≥ 2. Then

atρ1atρ2 · · · atρk = 0.

Proof. We use induction on k. For the base case k = 2, since (ρ1, ρ2) is
a vanishing sequence we have (ϑ(ρ1), ρ2) �= 0. Then by Proposition 3.11,
(tρ1 , tρ2) ∈ T1∪T2. If (tρ1 , tρ2) ∈ T1, then tρ1tρ2 is not T -reduced. This implies
that ρ1 = ρ2 and hence a2

tρ1
= 0. If (tρ1 , tρ2) ∈ T2, then we have tρ1tρ2 �≤ γ

and hence atρ1atρ2 = 0.
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Now let (ρ1, ρ2, . . . , ρk) be a vanishing sequence with k > 2. Using part
(2) of Lemma 3.14 we have w = tρ1tρ2 ≤ γ. Then by Proposition 2.3 the
interval [e, w] is isomorphic to the noncrossing partition lattice of a dihedral
group I2(m) for some m ≥ 2. Suppose that Φ+(w) = {τ1, τ2, . . . , τm} is set of
all positive roots for which tτi ≤ w. By the defining relation, we have

atρ1atρ2 = −
∑

w=tτi tτj , τj �=ρ2

atτiatτj ,

where the sum is over all T -reduced expressions tτitτj of w with τj �= ρ2. Using
the above relation, we obtain

atρ1atρ2atρ3 · · · atρn = −
∑

w=tτi tτj , τj �=ρ2

atτiatτj atρ3 · · · atρn .

It follows from part (3) of Lemma 3.14 that (τj , ρ3, . . . , ρn) is a vanishing
sequence for any τj �= ρ2, and hence by induction hypothesis atτj atρ3 · · · atρn =
0. Therefore, we have atρ1atρ2 · · · atρn = 0

We are now in a position to prove Lemma 3.2.

Proof of Lemma 3.2. By Proposition 3.13, t = (tρ1 , tρ2 , . . . , tρk) ∈ T1 ∪ T2
if and only if there exists i < j such that (ρi, ρi+1, . . . , ρj) is a vanishing
sequence. Using Lemma 3.15, in this case we have

at = atρ1 · · · (atρiatρi+1
· · · atρj ) · · · atρk = 0.

4. Chain complexes for Milnor fibres and hyperplane
arrangements

We now begin our discussion of the chain complexes whose homology realise
that of the Milnor fibre and of the hyperplane complement associated with
W . For any u,w ∈ W , write uw := w−1uw.

4.1. Some acyclic chain complexes

Recall that B =
⊕n

k=0 Bk is a Z-graded algebra generated by the βt for
t ∈ T . For any t = (t1, t2, . . . , tk) ∈ RexT (w) with w ∈ L, i.e., such that
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w = t1t2 · · · tk ∈ L is a T -reduced expression, we have βt = βt1βt2 · · · βtk .
Recalling the Z-linear map d from (2.4) and Proposition 2.8, we have

(4.1) dk : Bk → Bk−1, βt �→ zt =
k∑

i=1
(−1)k−iβt(̂i),

In particular, d1(βt) = 1 for any t ∈ T . The following results can be found in
[Zha23, Lemma 5.11, Proposition 5.13].

Proposition 4.1. The following properties hold for (B, d).

1. We have d2 = 0, whence we have the following chain complex (B, d):

0 Bn
dn Bn−1

dn−1 · · · d1 B0 0.

2. The chain complex (B, d) is acyclic. More precisely, let L[k] := {w ∈
L|1 ≤ �T (w) ≤ k} be a rank-selected subposet of L. If 1 ≤ k ≤ n − 1,
then

Im dk = H̃k−2(L[k−1]), Ker dk = H̃k−1(L[k]).

Otherwise, Im dn = H̃n−2(L[n−1]) and Ker dn = 0.
3. (Leibniz rule) For each i = 1, 2, . . . , k − 1, we have

d(βt) = (−1)k−i(dβ(t1,...,ti))β(ti+1,...,tk) + β(t1...,ti)(dβ(ti+1,...,tk))

for any t = (t1, t2, . . . , tk) ∈ RexT (w), where w ∈ Lk with 2 ≤ k ≤ n.

In view of Theorem 3.1, the map φ : A−→B, given by φ(at1at2 · · · atk) =
βt1βt2 · · · βtk for any T -reduced expression w = t1t2 · · · tk ∈ L, is a graded
isomorphism from A to B. By abuse of notation, for each k = 1, . . . , n we
define the Z-linear map

(4.2) d : Ak → Ak−1, at1at2 · · · atk �→
k∑

i=1
(−1)k−iat1 · · · âti · · · atk .

Then the properties described in Proposition 4.1 for (B, d) hold mutatis mu-
tandem for (A, d). In particular, (A, d) is an acyclic complex.

We proceed next to give another acyclic complex induced by the “Krew-
eras complement” of the NCP lattice. Now the noncrossing partition lattice
L is self-dual, i.e., L ∼= Lop, where Lop is the set L with the reverse par-
tial order <op. This isomorphism may be realised explicitly by the Kreweras
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complement K, defined by

K : L −→ Lop, w �→ γw−1.

The Kreweras map induces an automorphism of A = A(L) as a graded
algebra. Recall from Lemma 3.3 that an element at1at2 · · · atk of A is nonzero
if and only if e < t1 < t1t2 < · · · < t1t2 · · · tk is a chain of L. The latter is
mapped by K to the chain γ <op γt1 <op γt2t1 <op · · · <op γtk · · · t1 of Lop,
and this corresponds to a nonzero element at1att12 · · · a

t
tk−1···t1
k

of A(Lop). Note
further that A(Lop) is isomorphic to the opposite algebra A(L)op. Therefore,
we have the following composite of linear maps:

κ : A(L) κ̄→ A(Lop) ∼= A(L)op θ→ A(L),

where κ̄ is induced as above by K, so that κ̄(at1at2 · · · atk) = at1att12
· · · a

t
tk−1···t1
k

and θ is the anti-isomorphism given by θ(at1at2 · · · atk) = atk · · · at2at1 . Hence
the linear automorphism κ of A is defined explicitly by

(4.3) κ(at1at2 · · · atk) = a
t
tk−1···t1
k

· · · a
t
t1
2
at1 .

It is clear that κ preserves the defining relations of A.
In addition to the differential (4.2), for each k = 1, . . . , n we define the

following Z-linear map

(4.4) δ : Ak → Ak−1, at1at2 · · · atk �→
k∑

i=1
(−1)i−1a

t
ti
1
· · · a

t
ti
i−1

âti · · · atk .

The properties of δ are summarised in the next result.

Proposition 4.2. Let δ and κ be as defined above.

1. (Leibniz rule) For each k = 2, . . . , n, we have

δ(at1at2 · · · atk) = δ(at1at2 · · · atk−1)atk + (−1)k−1a
t
tk
1
a
t
tk
2
· · · a

t
tk
k−1

.

for any t = (t1, t2, . . . , tk) ∈ RexT (w) with w ∈ Lk.
2. For each integer k = 1, . . . , n, the following diagram commutes:

Ak Ak−1

Ak Ak−1.

d

κ κ

δ
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Therefore, the complex (A, δ) is acyclic.
3. We have dδ = δd.

Proof. Part (1) follows directly from the definition (4.4). The diagram com-
mutes by straightforward calculation. As κ is an automorphism and (A, d) is
acyclic, the acyclicity of (A, δ) follows. It is easily verified directly that d and
δ commute with each other.

Remark 4.3. Note that d and δ do not preserve the defining relations of the
algebra A. For instance, we have at1at2 = 0 for any pair of reflections t1, t2
satisfying t1t2 �≤ γ. However, d(at1at2) = −at2 + at1 �= 0 and δ(at1at2) =
−at2 + at2t1t2 �= 0.
Remark 4.4. It follows from Lemma 3.3 that Ak is spanned by the nonzero
elements at1at2 · · · atk as a free abelian group, where t1t2 · · · tk = w ∈ L
is a T -reduced expression. By the defining relations of A, all linear rela-
tions among nonzero elements at1 · · · atk are generated by the quadratic re-
lation

∑
(t1,t2)∈RexT (w) at1at2 = 0 for any w ∈ L2. It is easily verified that

d(
∑

(t1,t2)∈RexT (w) at1at2) = 0 for any t ∈ T , and similarly this holds for δ.
Therefore, the linear maps d and δ are well-defined.

4.2. Complexes for the Milnor fibre and hyperplane complement

Let H be the set of (complexified) reflecting hyperplanes of W and write
M = MW := VC \∪H∈HH for the corresponding hyperplane complement. For
H ∈ H, let �H ∈ V ∗

C
be a corresponding linear form, so that H = ker(�H). Let

Q =
∏

H∈H �2H ; it is well known that the �H may be chosen so that Q is W -
invariant. The Milnor fibre F := Q−1(1) = {v ∈ VC | Q(v) = 1}. Evidently
W acts on both M and F , so that we may speak of the orbit spaces M/W
and F/W .

4.2.1. Chain complexes for M and F Recall from [Zha23] the follow-
ing chain complexes which compute the integral homology of the hyperplane
complement and of the Milnor fibre. We use the algebra A instead of B in
the original complexes.

Theorem 4.5. [Zha23, Theorem 7.2] The integral homology of the hyperplane
complement M is isomorphic to the homology of the following chain complex
of abelian groups:

(4.5) 0 −→ ZW ⊗An
∂n−→ · · · −→ ZW ⊗A1

∂1−→ ZW ⊗A0 −→ 0,
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where the boundary maps are given by

∂k(w ⊗ at1at2 · · · atk) =
k∑

i=1
(−1)i−1wti ⊗ a

t
ti
1
· · · a

t
ti
i−1

âti · · · atk

−
k∑

i=1
(−1)i−1w ⊗ at1 · · · âti · · · atk

for any w ∈ W and (t1, t2, . . . , tk) ∈
⋃

u∈Lk
RexT (u) with 1 ≤ k ≤ n.

Theorem 4.6. [Zha23, Theorem 6.3] The integral homology of the Milnor
fibre FQ = Q−1(1) is isomorphic to the homology of the following chain com-
plex

(4.6) 0 → ZW ⊗ d(An) ∂n−1−→ · · · −→ ZW ⊗ d(A2)
∂1−→ ZW ⊗ d(A1) → 0,

where the boundary maps are given by

∂k−1(w ⊗ d(at1at2 · · · atk)) =
k∑

i=1
(−1)i−1wti ⊗ d(a

t
ti
1
· · · a

t
ti
i−1

âti · · · atk)

for any w ∈ W and (t1, . . . , tk) ∈
⋃

u∈Lk
RexT (u) with 2 ≤ k ≤ n.

4.2.2. W -action on these complexes Note that W acts on the above
chain complexes as follows. For x ∈ W , x.w⊗at1at2 · · · atk=(xw)⊗at1at2 · · · atk
in the case of (4.5), while in the case of (4.6), x.w ⊗ d(at1at2 · · · atk) =
(xw)⊗d(at1at2 · · · atk). It is evident that this W -action respects the boundary
homomorphisms. Thus these chain complexes are both left W -modules.

Now it is well known that W acts freely on M and F . The quotient
spaces M/W and F/W are both K(π, 1)-spaces. In particular, the funda-
mental group π1(M/W ) = A(W ), the Artin group of W . Therefore, we have
Hk(A(W );Z) = Hk(M/W ;Z), and this may be computed using A as follows.

Theorem 4.7. [Zha23, Theorem 7.5] The integral homology of M/W or
the Artin group A(W ) is isomorphic to the homology of the following chain
complex:

0 An An−1 · · · A1 A0 0,∂n ∂1
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where the boundary maps are given by ∂k = δk + (−1)kdk, i.e.,
(4.7)

∂k(at1 · · · atk) =
k∑

i=1
(−1)i−1a

t
ti
1
· · · a

t
ti
i−1

âti · · · atk −
k∑

i=1
(−1)i−1at1 · · · âti · · · atk

for (t1, t2, . . . , tk) ∈
⋃

u∈Lk
RexT (u) with 1 ≤ k ≤ n.

Theorem 4.8. [Zha23, Theorem 6.8] The integral homology of F/W is iso-
morphic to the homology of the following chain complex:

0 d(An) ∂n−1
d(An−1) · · · d(A2)

∂1
d(A1) 0,

where the boundary maps are given by ∂k = δk, i.e.,

(4.8) ∂k−1(d(at1at2 · · · atk)) =
k∑

i=1
(−1)i−1d(a

t
ti
1
· · · a

t
ti
i−1

âti · · · atk)

for any (t1, . . . , tk) ∈
⋃

w∈Lk
RexT (w) with 2 ≤ k ≤ n. In particular, ∂1 = 0.

4.3. A new pair of complexes

Let us start with two new complexes defined over C. The first, denoted C, is

(4.9) C := 0−→CW ⊗An
∂n−→· · ·−→CW ⊗A1

∂1−→CW ⊗A0−→0,

with the boundary homomorphisms ∂i defined as in Theorem 4.5. The second,
denoted K, is

(4.10) K := 0−→CW ⊗d(An)
∂n−1−→· · ·−→CW ⊗d(A2)

∂1−→CW ⊗d(A1)−→0,

where the boundary homomorphisms are as defined in Theorem 4.6. Then by
Theorem 4.5 and Theorem 4.6, the homology of the complex C (resp. K) is
the homology of the corresponding hyperplane complement M = MW (resp.
Milnor fibre F ) with complex coefficients.

4.3.1. Left, right and bi-W -modules In the development below, we
shall need to distinguish between left and right CW -modules. Let ModR(CW )
(resp. ModL(CW )) be the category of finite dimensional right (resp. left)
CW -modules. We shall use the categorical isomorphism λRL : U �→ UL from
ModR(CW )−→ModL(CW ), and similarly the isomorphism λLR : X �→ XR
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from ModL(CW )−→ModR(CW ) (U ∈ ModR(CW ), X ∈ ModL(CW )) where,
for u ∈ UL and w ∈ W , w.u := u.w−1, and for x ∈ XR, x.w := w−1.x.

In addition to the above categories, we shall need the category
ModLR(CW ) of finite dimensional CW -bimodules. If Y ∈ ModLR(CW ),
then for w1, w2 ∈ W and y ∈ Y , we have (w1y)w2 = w1(yw2). Evidently if
U ∈ ModR(CW ), X ∈ ModL(CW ), then X ⊗C U is naturally a W -bimodule.
Using this, we have the following formulation of a standard decomposition of
a finite group algebra.

Lemma 4.9. Maintaining the above notation, we have the following isomor-
phism in the category of W -bimodules.

CW ∼= ⊕U∈Irr(ModR(CW ))(U∗
L ⊗C U).

Here the sum is over the simple modules U ∈ ModR(CW ) and U∗
L denotes

the contragredient of UL (defined above).

Proof. It is easily verified that for any right CW -module U , the left module
U∗
L has the same character as U . This is because UL � U as vector spaces,

and w ∈ W acts on UL as w−1 does on U . Thus they have complex conjugate
traces. But the character of w on U∗

L is the conjugate of its character on UL,
and hence coincides with its character on U . The stated decomposition is now
standard.

Note that each of the tensor factors in each summand is referred to as the
multiplicity module of the other factor in that summand.

Corollary 4.10. In the above notation, we have HomCW (U∗
L,CW ) ∼= U as

right W -module. Here the left side indicates homomorphisms of left CW -
modules.

Proof. By Lemma 4.9, we have

HomCW (U∗
L,CW ) ∼= ⊕U∈Irr(ModR(CW ))HomCW (U∗

L, U
∗
L ⊗C U).

But for fixed U , U∗
L ⊗C U is isomorphic to a sum of simple left modules U∗

L.
The result follows.

4.3.2. A new pair of complexes We next define “relative” versions of
the complexes (4.9) and (4.10).

Let U ∈ ModR(CW ). Define complexes C(U) and K(U) as follows.

C(U) := 0−→U ⊗An
∂n−→· · ·−→U ⊗A1

∂1−→U ⊗A0−→0,
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where the boundary maps are given (for u ∈ U) by

(4.11)
∂(u⊗ at1at2 · · · atk) =

k∑
i=1

(−1)i−1uti ⊗ a
t
ti
1
· · · a

t
ti
i−1

ati+1 · · · atk

−
k∑

i=1
(−1)i−1u⊗ at1 · · · âti · · · atk .

K(U) := 0−→U ⊗ d(An)∂n−1−→· · ·−→U ⊗ d(A2)
∂1−→U ⊗ d(A1)−→0,

where the boundary homomorphisms are defined for u ∈ U by

(4.12) ∂(u⊗ d(at1at2 · · · atk)) =
k∑

i=1
(−1)i−1uti ⊗ d(a

t
ti
1
· · · a

t
ti
i−1

ati+1 · · · atk).

Now as observed in 4.2.2, the complexes C and K admit a (left) W -action.
This is not generally the case for C(U) or K(U). Hence for each integer k,
Hk(C) and Hk(K) are left CW -modules. For left CW -modules U1, U2 we write
〈U1, U2〉W for the multiplicity dim HomCW (U1, U2) as usual.

Recall that for any simple module U ∈ ModR(CW ), we have a “corre-
sponding” module U∗

L ∈ ModL(CW ), whose character coincides with that of
U .

Theorem 4.11. For any right W -module U and for each integer k ≥ 0, we
have

(4.13) dimHk(C(U)) = 〈U∗
L, Hk(M)〉

and

(4.14) dimHk(K(U)) = 〈U∗
L, Hk(F )〉.

Proof. We prove the first equation (4.13); the second equation (4.14) has a
similar proof. Since Hk(M) = Hk(C), we have

〈U∗
L, Hk(M)〉 = 〈U,Hk(C)〉 = dim HomW (U∗

L, Hk(C))

By semisimplicity, U∗
L is a flat module, whence the functor HomC(U∗

L,−) is
exact. Moreover the kth homology functor commutes with any exact functor.
It follows that we have the following isomorphism of left W -modules.

(4.15) Hk(HomC(U∗
L, C)) ∼= HomC(U∗

L, Hk(C)).
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Further, the fixed point functor (−)W : M �→ MW from the left W -
module M to the C-module MW is representable. It is represented by the
trivial W -module C, so that (−)W is naturally isomorphic to the functor
HomW (C,−). Since CW is a semisimple algebra, the trivial W -module C is
projective. Therefore, HomW (C,−) ∼= (−)W is an exact functor. It follows
that, upon taking W -fixed points in (4.15), we obtain

Hk(HomC(U∗
L, C))W ∼=Hk((HomC(U∗

L, C))W )
∼=Hk(HomCW (U∗

L, C)) ∼= HomCW (U∗
L, Hk(C)).

It now remains only to relate the complex HomCW (U∗
L, C) to C(U). for

this, observe that

HomCW (U∗
L, C)k ∼= HomCW (U∗

L, Ck) ∼= HomCW (U∗
L,CW ⊗C Ak).

Moreover since W acts trivially on A, we have

HomCW (U∗
L, C)k ∼= HomCW (U∗

L,CW ) ⊗C Ak.

But by Corollary 4.10, the right side of the above equation is equal to C(U)k =
U ⊗C Ak, and the proof is complete.

4.4. Applications

We give some special cases and applications of Theorem 4.11.
First, consider the case U = 1W , the trivial CW -module. Then U∗

L = 1W
and we have

〈U∗
L, Hk(M)〉 = 〈1W , Hk(M)〉 = dimHk(M)W .

Moreover by the transfer theorem for homology with coefficients in C (cf.
[Bre72, Theorem III.2.4]), Hk(M)W ∼= Hk(M/W ). It follows from the first
statement in Theorem 4.11 that

Hk(M/W ) ∼= Hk(C(1W )).

It is readily checked that the complex C(1W ) coincides with the (com-
plexification of the) complex in Theorem 4.7, and in this way we recover that
theorem for complex homology. Note that Theorem 3.7 is stronger, in that it
computes the integral homology.
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Next, using precisely the same arguments, we deduce that if F is the
Milnor fibre as defined above, then

Hk(F/W ) ∼= Hk(K(1W )).

In this case, one again checks readily that K(1W ) may be identified with
the complexification of the complex in Theorem 4.8, whence in this case we
recover Theorem 4.8, again with coefficients in C, by applying Theorem 4.11
in the case of K(U) with U = 1W .

Consider next the case U = ε, the alternating representation of W . Then
U∗
L � ε and it follows from [Leh96, (1.2)] that

〈Hk(M), ε〉 = 0 for all k.

It follows immediately from the first part of Theorem 4.11 that

The complex C(ε) is acyclic.

Now we may think of C(U) = C(ε) as having chain groups with bases
{b⊗ at | t ∈

⋃
w∈L Dw}, where b is the basis element of ε. Using the fact that

bt = −b for all reflections t, it follows from (4.11) that C(ε) may be identified
with the chain complex

(4.16) 0−→An
Dn−→· · ·−→A1

D1−→A0−→0,

where the boundary homomorphism Dk : Ak−→Ak−1 is given by

Dk(b⊗ at1 · · · atk) =
k∑

i=1
(−1)i−1(−b) ⊗ a

t
ti
1
· · · a

t
ti
i−1

ati+1 · · · atk

−
k∑

i=1
(−1)i−1b⊗ at1 · · · âti · · · atk .

It follows that we may identify C(ε) with the complex (4.16), where

Dk = −δk + d̃k,

where δk is the restriction to Ak of δ, which is defined in (4.4) and d̃k =
(−1)kdk, where d = ⊕n

k=1dk is defined in (4.2).
It follows from Proposition 4.2 (3) that d̃δ = −δd̃, and hence that D is a

differential. The acyclicity of (A, D) is not evident from these arguments.
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Finally, observe that for any right W -module U we have

(4.17) Hk(K(U)) = Hk(K(U ⊗ ε)), 0 ≤ k ≤ n− 1,

as the boundary maps (4.12) of K(U) and K(U ⊗ ε) differ by −1.

5. Dual complexes

The principal purpose of this section is to obtain sharper results on the in-
tegral homology and cohomology of both M , the hyperplane complement,
and F , the non-reduced Milnor fibre. With this in mind we begin by defining
a Z-bilinear form on A, which will later become a tool for moving between
homology and cohomology.

5.1. A bilinear form on A

We will make frequent use of the following Z-linear maps in later sections.
For each t ∈ T , we define

dt : Ak → Ak−1, at1at2 · · · atk �→
k∑

i=1
(−1)k−iδ

t,t
ti+1···tk
i

at1 · · · âti · · · atk ,

δt : Ak → Ak−1, at1at2 · · · atk �→
k∑

i=1
(−1)i−1δt,tiatti1

· · · a
t
ti
i−1

âti · · · atk ,

where δt,ti = 1 if t = ti and 0 otherwise. It is clear that in the notation of (4.2)
and (4.4), d =

∑
t∈T dt and δ =

∑
t∈T δt. Note that δt and dt also satisfy the

Leibniz rule, i.e.

dt(at1at2 · · · atk) = −dttk (at1at2 · · · atk−1)atk + δt,tkat1at2 · · · atk−1 ,

δt(at1at2 · · · atk) = δt(at1at2 · · · atk−1)atk + (−1)k−1δt,tkattk1
a
t
tk
2
· · · a

t
tk
k−1

.

for any (t1, t2, . . . , tk) ∈ RexT (w) with w ∈ Lk. We call dt and δt skew deriva-
tions.

The linear maps dt and δt are well-defined, for the same reason as in
Remark 4.4.

Lemma 5.1. For any t, t′ ∈ T , we have dtδt′ = δt′dt.
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Proof. We evaluate both sides on at1 · · · atk ∈ A and use induction on k. For
any nonzero element at1 · · · atk ∈ A, we have

dtδt′(at1 · · · atk) =dt(δt′(at1 · · · atk−1)atk + (−1)k−1δt′,tkattk1
a
t
tk
2
· · · a

t
tk
k−1

)

= − dttk (δt′(at1 · · · atk−1)atk + δt,tkδt′(at1 · · · atk−1)
+ (−1)k−1δt′,tkdt(attk1 a

t
tk
2
· · · a

t
tk
k−1

),

while on the other hand,

δt′dt(at1 · · · atk) =δt′(−dttk (at1at2 · · · atk−1)atk + δt,tkat1at2 · · · atk−1)
= − δt′(dttk (at1 · · · atk−1))atk + (−1)k−1δt′,tkdt(attk1 · · · a

t
tk
k−1

)

+ δt,tkδt′(at1 · · · atk−1).

The result is trivial if k = 1. For k > 1, by the induction hypothesis and the
equations above we have dtδt′(at1 · · · atk) = δt′dt(at1 · · · atk). This proves that
dtδt′ = δt′dt.

Lemma 5.2. The skew derivations δt, t ∈ T satisfy the following relations:

δ2
t = δt2δt1 = 0, ∀t ∈ T, t1t2 �≤ γ,∑

(t1,t2)∈RexT (w)
δt2δt1 = 0, ∀w ∈ L2.

Therefore, they describe an action of the opposite algebra Aop on A.

Proof. For any reflections r1, r2 ∈ T , we have

δr2δr1(at1at2 · · · atk) =δr2(δr1(at1 · · · atk−1)atk + (−1)k−1δr1,tkattk1
a
t
tk
2
· · · a

t
tk
k−1

)

=δr2(δr1(at1 · · · atk−1))atk + (−1)k−2δr2,tkδrtk1
(a

t
tk
1
· · · a

t
tk
k−1

)

+ (−1)k−1δr1,tkδr2(attk1 a
t
tk
2
· · · a

t
tk
k−1

),

where (t1, t2, . . . , tk) ∈ RexT (w) for some w ∈ L. We use induction on k to
prove the stated relations among δt, t ∈ T by evaluating the relevant expres-
sions on at1 · · · atk . The base case k = 1 is obvious. For k > 1, we prove each
relation as follows.

By the induction hypothesis it is easy to see that δ2
t = 0 if t = r1 = r2.

If r1r2 �≤ γ, then there are two cases. Case 1: neither of r1, r2 is tk. By the
induction hypothesis, δr2δr1(at1at2 · · · atk) = δr2(δr1(at1at2 · · · atk−1))atk = 0.
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Case 2: exactly one of r1, r2 equals tk. If r1 = tk, then we have

δr2δr1(at1at2 · · · atk) = δr2(δr1(at1 · · · atk−1))atk + (−1)k−1δr2(attk1 a
t
tk
2
· · · a

t
tk
k−1

).

We claim that δr2(attk1 a
t
tk
2
· · · a

t
tk
k−1

) = 0. Otherwise, by the definition of δr2 , we
have r2 = ttki for some 1 ≤ i ≤ k−1. However, this leads to r1r2 = tkt

tk
i = titk,

which precedes γ by Lemma 3.10 and hence violates our assumption that
r1r2 �≤ γ. Therefore, δr2δr1(at1at2 · · · atk) = δr2(δr1(at1at2 · · · atk−1))atk = 0 by
the induction hypothesis. If r2 = tk, the proof is similar.

For the last relation, by the induction hypothesis this is equivalent to
showing that ∑

(r1,r2)∈RexT (w)
δr2,tkδrtk1

− δr1,tkδr2 = 0.

We may assume w = s1sm = s2s1 = · · · = smsm−1 has m T -reduced factori-
sations. If none of the si is equal to tk, then the above equation holds true.
Otherwise, tk = si for some i = 1, . . . ,m. In that case we have

∑
(r1,r2)∈RexT (w)

δr2,tkδrtk1
− δr1,tkδr2 =

m∑
j=1

(δsj−1,siδssij
− δsj ,siδsj−1)

= δssii+1
− δsi−1 = 0,

where s0 := sm for notational convenience. This completes the proof.

Definition 5.3. Define the bilinear pairing

〈−,−〉 : A×A −→ Z

by 〈1, 1〉 = 1 and

1. 〈Ak,A�〉 = 0 for any 0 ≤ k �= � ≤ n;
2. For any x ∈ Ak and ti ∈ T, i = 1, . . . , k,

〈at1at2 · · · atk , x〉 := δtk · · · δt1(x).

In view of Lemma 5.2, this bilinear form is well-defined.

Lemma 5.4. For any t ∈ T , and x, y ∈ A we have

〈atx, y〉 = 〈x, δt(y)〉, and 〈xat, y〉 = 〈x, dt(y)〉.

Thus with respect to the bilinear form the skew-derivations δt and dt are right
adjoint to left and right multiplication by at, respectively.
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Proof. We assume x ∈ Ak−1 and y ∈ Ak for 1 ≤ k ≤ n. The first adjunction
follows immediately from the definition. For the second one, we use induction
on k. If k = 1, then 〈λat, μat′〉 = λμδt,t′ = 〈λ, μdt(at′)〉 for any λ, μ ∈ Z. For
k > 1, we may assume x = at1 · · · atk−1 . Then

〈at1 · · · atk−1at, y〉 = 〈at2 · · · atk−1at, δt1(y)〉 = 〈at2 · · · atk−1 , dtδt1(y)〉
= 〈at2 · · · atk−1 , δt1dt(y)〉 = 〈at1at2 · · · atk−1 , dt(y)〉,

where the first and the last equation follow from the adjunction between δt
and left multiplication by at, the second equation follows from the induction
hypothesis, and the third equation follows from Lemma 5.1. The proof is
complete.

Proposition 5.5. The bilinear form 〈−,−〉 is unimodular, i.e., it induces an
isomorphism A ∼= A∗ = HomZ(A,Z), given by x �→ 〈x,−〉 for any x ∈ A.

Proof. We only need to show that the bilinear form induces an isomorphism
Ak

∼= A∗
k for 0 ≤ k ≤ n. Recall that Ak =

⊕
w∈Lk

Aw. It suffices to prove the
following claims:

1. 〈Av,Aw〉 = 0 for any two elements v �= w of Lk;
2. For any w ∈ L, the bilinear form induces an isomorphism Aw

∼= A∗
w.

To prove claim (1), we use induction on �T (v) = �T (w) = k. It is trivial
if k = 1. For k > 1, assume that x = x′at ∈ Av. Then for any y ∈ Aw with
w �= v we have

〈x, y〉 = 〈x′at, y〉 = 〈x′, dt(y)〉.
Suppose that y = at1at2 · · · atk with w = t1t2 · · · tk being a T -reduced expres-
sion. Then by the definition,

dt(y) =
k∑

i=1
(−1)k−iδt,riat1 · · · ati−1ati+1 · · · atk ,

where ri = t
ti+1···tk
i . If t �= ri for any i, then dt(y) = 0 and hence 〈x, y〉 = 0.

Otherwise, there exists a unique i0 such that t = ri0 . Assume that x′ =
at′1at′2 · · · at′k−1

with v = t′1t
′
2 · · · t′k−1t being a T -reduced expression. We have

〈x, y〉 = 〈x′, dt(y)〉 = (−1)k−i0〈at′1at′2 · · · at′k−1
, at1 · · · ati0−1ati0+1 · · · atk〉.

Assume with a view to obtaining a contradiction that 〈x, y〉 �= 0. By the
induction hypothesis we have t′1t

′
2 · · · t′k−1 = t1 · · · ti0−1ti0+1 · · · tk. It follows
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that

v = (t′1t′2 · · · t′k−1)t = t1 · · · ti0−1ti0+1 · · · tkri0 = t1t2 · · · tk = w,

which leads to a contradiction. Therefore, we have 〈x, y〉 = 0 for any x ∈ Av

and y ∈ Aw with w �= v.
We proceed next to prove claim (2). To this end, we need to introduce a

lexicographical order on the basis of Aw, and then show that the correspond-
ing matrix of the bilinear form is upper triangular with diagonal entries being
1.

Recall from Proposition 3.4 that Aw has a basis consisting of elements
at1at2 · · · atk , where w = t1t2 · · · tk is a T -reduced expression and t1 � t2 �
· · · � tk with respect to the total order of T . We define the lexicographical
order on the basis by

(5.1) at1at2 · · · atk < at′1at′2 · · · at′k ⇐⇒ ti ≺ t′i,

where i is the smallest index where the two monomials differ. Let {m1 <
m2 < · · · < mp} be the totally ordered set of the basis of Aw, and let M be
the matrix of the bilinear form with the (i, j)-th entry being 〈mi,mj〉. Next
we show that M is a upper-triangular matrix with all diagonal entires equal
to 1.

To show that M is upper-triangular, we need to prove that

(5.2) 〈at′1at′2 · · · at′k , at1at2 · · · atk〉 = 0

for any two basis elements at1at2 · · · atk < at′1at′2 · · · at′k of Aw. Note that t1 �
t2 � · · · � tk and t′1 � t′2 � · · · � t′k with respect to the total order on T .
Assuming that t1 = t′1, . . . , ti−1 = t′i−1 and ti ≺ t′i, we have

〈at′1at′2 · · · at′k , at1at2 · · · atk〉 = 〈at′2 · · · at′k , δt′1(at1at2 · · · atk)〉
= 〈at′2 · · · at′k , at2 · · · atk〉,
· · ·
= 〈at′iat′i+1

· · · at′
k
, atiati+1 · · · atk〉,

where in the first line we have used the adjoint property from Lemma 5.4,
and in the third line we repeat the process until we obtain the last equation.
Using the adjoint property again, we have

〈at′iat′i+1
· · · at′

k
, atiati+1 · · · atk〉 = 〈at′i+1

· · · at′
k
, δt′i(atiati+1 · · · atk)〉.
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Since t′i � ti � ti+1 � · · · � tk, by the definition of δt′i we have

δt′i(atiati+1at2 · · · atk) = 0.

Hence we have 〈at′1at′2 · · · at′k , at1at2 · · · atk〉 = 0.
Applying the adjunction between δt and left multiplication by at repeat-

edly, we have

(5.3)
〈at1at2 · · · atk , at1at2 · · · atk〉 = 〈at2 · · · atk , δt1(at1at2 · · · atk)〉

= 〈at2 · · · atk , at2 · · · atk〉
= · · · = 1

for any basis element at1at2 · · · atk of Aw. Hence the diagonal entries of M are
all equal to 1. Therefore, the bilinear form is unimodular on Aw. Combing
this with claim (1), we complete the proof.

5.2. Acyclic dual complexes

In this subsection, we introduce some acyclic cochain complexes which are
dual to the previous acyclic chain complexes with respect to suitable bilinear
forms.

We recall the universal coefficient theorem for cohomology, which will be
used later.

Theorem 5.6. [Hat02, Section 3.1] Let G be an abelian group, and C be the
following chain complex of free abelian groups

0−→Cn
∂−→Cn−1−→· · ·−→C1

∂−→C0−→0.

Let C∗
k = HomZ(Ck, G) be the dual of the chain group Ck and ∂∗ : C∗

k−1 → C∗
k

be the dual coboundary map for 1 ≤ k ≤ n. Then the cohomology groups
Hk(C;G) of the cochain complex

0−→C∗
0

∂∗
−→C∗

1−→· · ·−→C∗
n−1

∂∗
−→C∗

n−→0

are determined by split exact sequences

0 −→ Ext(Hk−1(C), G) −→ Hk(C;G) −→ HomZ(Hk(C), G) −→ 0.

We are only concerned with the case G = Z. If the homology groups Hk(C)
are finitely generated abelian groups with torsion subgroups Tk ⊆ Hk(C), then
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the homology of the chain complex (C, ∂) and the cohomology of the dualised
chain complex (C∗, ∂∗) are related by

Hk(C∗;Z) ∼= Hk(C)/Tk ⊕ Tk−1.

In particular, if (C, ∂) is acyclic then so is (C∗, ∂∗). If C consists of finitely
generated free abelian groups, then (C∗∗, ∂∗∗) ∼= (C, ∂).

5.2.1. A pair of acyclic complexes Using the bilinear form on A, we
define acyclic cochain complexes which are dual to the acyclic chain complexes
(A, d) and (A, δ).

Define the element
ω :=

∑
t∈T

at ∈ A1.

It is easily verified that ω2 = 0. Hence it gives rise to a cochain complex
whose coboundary maps are right multiplication by ω:

0−→A0
rω−→A1−→· · · rω−→An−→0.

We denote this complex by (A, rω). Similarly, we define the complex (A, �ω),
where �ω denotes left multiplication by ω.

Recall from Proposition 5.5 that the bilinear form induces an isomorphism
of graded free abelian groups:

(5.4) ψ : A → A∗, x �→ ψ(x) := 〈−, x〉,

where ψ(x)(x′) = 〈x′, x〉 for any x, x′ ∈ Ak. Therefore, for any linear form
λ ∈ A∗, there exists a unique x ∈ A such that λ = ψ(x). In what follows,
a linear map on A∗ will be defined by its action on elements of the form
ψ(x), x ∈ A.

Lemma 5.7. The linear map ψ induces an isomorphism between chain com-
plexes (A, d) and (A∗, r∗ω), where r∗ω is the adjoint map of rω defined by

r∗ω(ψ(y))(x) := ψ(y)(rω(x)) = 〈xω, y〉, ∀x ∈ Ak−1, y ∈ Ak.

Similarly, ψ induces an isomorphism between chain complexes (A, δ) and
(A∗, �∗ω)

Proof. For any integer k, it suffices to prove that the following diagram com-
mutes:
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Ak Ak−1

A∗
k A∗

k−1.

d

ψ ψ

r∗ω

We verify this directly. For any x ∈ Ak, y ∈ Ak−1, by the definition of r∗ω we
have

((r∗ωψ)(x))(y) = r∗ω(ψ(x))(y) = 〈yω, x〉.

On the other hand, we have

((ψd)(x))(y) = ψ(dx)(y) = 〈y, dx〉.

Using the adjointness property from Lemma 5.4, we have 〈yω, x〉 = 〈y, dx〉,
whence r∗ωψ = ψd. Therefore, ψ is a chain map between (A, d) and (A∗, r∗ω).
As ψ is a graded isomorphism, (A, d) and (A∗, r∗ω) are isomorphic. The iso-
morphism between (A, δ) and (A∗, �∗ω) can be proved similarly.

Proposition 5.8. The cochain complexes (A, rω) and (A, �ω) are both acyclic.

Proof. Recall from Proposition 4.1 that the chain complex (A, d) is acyclic.
It follows from Lemma 5.7 that the chain complex (A∗, r∗ω) is acyclic. Since
(A∗, r∗ω) is the dual complex of (A, rω) induced by the isomorphism ψ, the
cochain complex (A, rω) is acyclic by the universal coefficient theorem for co-
homology. Similarly, one can prove that (A, �ω) is acyclic, using the acyclicity
of (A, δ) from Proposition 4.2.

5.2.2. Another pair of acyclic complexes Recall from Theorem 4.5
that the boundary maps of the complex (ZW ⊗ Ak, ∂k) are given by ∂k =
∂′
k + (−1)k∂′′

k , where the linear maps ∂′, ∂′′ : ZW ⊗ Ak → ZW ⊗ Ak−1 are
defined by

(5.5)
∂′(w ⊗ at1at2 · · · atk) =

k∑
i=1

(−1)i−1wti ⊗ a
t
ti
1
· · · a

t
ti
i−1

âtiati+1 · · · atk ,

∂′′(w ⊗ at1at2 · · · atk) =
k∑

i=1
(−1)k−iw ⊗ at1 · · · âti · · · atk .

In what follows, whenever dealing with (co)boundary maps, ZW is viewed as
a right ZW -module while any t ∈ T acts on the right side.
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Lemma 5.9. Let ∂′, ∂′′ be as in (5.5). Then we have

∂′ =
∑
t∈T

t⊗ δt, ∂′′ =
∑
t∈T

1 ⊗ dt = 1 ⊗ d.

Therefore, ∂′, ∂′′ satisfy (∂′)2 = (∂′′)2 = 0 and ∂′∂′′ = ∂′′∂′.

Proof. For any nonzero element at1 · · · atk we have

∑
t∈T

t⊗ δt(w ⊗ at1at2 · · · atk)=
∑
t∈T

k∑
i=1

(−1)i−1wt⊗ δt,tiatti1
· · · a

t
ti
i−1

âtiati+1 · · · atk

=
k∑

i=1
(−1)i−1wti ⊗ a

t
ti
1
· · · a

t
ti
i−1

âtiati+1 · · · atk .

It follows that ∂′ =
∑

t∈T t⊗δt, and similarly, ∂′′ =
∑

t∈T 1⊗dt. Using the fact
that δ2

t = d2
t = 0 for any t ∈ T , we obtain (∂′)2 = (∂′′)2 = 0. By Lemma 5.1

dt and δt′ commute with each other, we have

∂′∂′′ =
∑
t,t′∈T

t⊗ δtdt′ =
∑
t,t′∈T

t⊗ dt′δt = ∂′′∂′.

By Lemma 5.9, we have a pair of chain complexes (ZW ⊗ A, ∂′) and
(ZW ⊗A, ∂′′). We proceed next to define a bilinear form on ZW ⊗A, which
enables us to dualise the chain complexes.

We will always denote by 〈−,−〉 the bilinear form on a linear space when-
ever no confusion arises. Recall that there is a standard Z-bilinear form on
ZW defined by

〈−,−〉 : ZW × ZW → Z, 〈v, w〉 := δv,w, ∀v, w ∈ W,

where δ is the Kronecker delta. This together with the bilinear form on A
which we have already defined, gives rise to a Z-bilinear form 〈−,−〉 on
ZW ⊗A, defined by

〈v ⊗ x,w ⊗ y〉 := 〈v, w〉 〈x, y〉, ∀v, w ∈ W,x, y ∈ A.

Note that ZW ⊗A is a Z-graded algebra, with the grading inherited from A
and multiplication given by (v⊗x)(w⊗ y) = vw⊗xy. By definition, we have
〈ZW ⊗Ak,ZW ⊗A�〉 = 0 for any integers k �= �.
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It follows from Proposition 5.5 that the bilinear form on ZW ⊗A is also
unimodular. Hence we have the following graded isomorphism of free abelian
groups:

(5.6) ψW : ZW ⊗A → (ZW ⊗A)∗, w ⊗ x �→ ψW (w ⊗ x) := 〈−, w ⊗ x〉,

where w ∈ W and x ∈ Ak for 0 ≤ k ≤ n.
We introduce the following elements:

σ =
∑
t∈T

t⊗ at, ς =
∑
t∈T

1 ⊗ at = 1 ⊗ ω.

It is easily verified that σ2 = ς2 = 0 in ZW⊗A. Hence σ and ς give rise to two
cochain complexes (ZW ⊗ A, �σ) and (ZW ⊗ A, rς), where the coboundary
maps are given by

�σ(w ⊗ x) =
∑
t∈T

wt⊗ atx, rς(w ⊗ x) =
∑
t∈T

w ⊗ xat.

for any w ⊗ x ∈ ZW ⊗Ak.

Lemma 5.10. For any v, w ∈ W and x, y ∈ A, we have

〈�σ(v ⊗ x), w ⊗ y〉 = 〈v ⊗ x, ∂′(w ⊗ y)〉,
〈rς(v ⊗ x), w ⊗ y〉 = 〈v ⊗ x, ∂′′(w ⊗ y)〉.

Therefore, with respect to the bilinear form on ZW ⊗A, ∂′ and ∂′′ are right
adjoint to the linear operators �σ and rς , respectively.

Proof. We only prove the first adjunction; the second one can be treated
similarly. Assume that x ∈ Ak−1 and y ∈ Ak for some k = 0, . . . , n. Then we
have

〈�σ(v ⊗ x), w〉 =
∑
t∈T

〈vt⊗ atx,w ⊗ y〉 =
∑
t∈T

〈vt, w〉 〈atx, y)

=
∑
t∈T

〈v, wt〉 〈x, δt(y)) =
∑
t∈T

〈v ⊗ x, (t⊗ δt)(w ⊗ y)〉

=〈v ⊗ x, ∂′(w ⊗ y)〉,

where the third equation follows from the adjoint property in Lemma 5.4,
and last equation is a consequence of Lemma 5.9.

Proposition 5.11. The chain complexes (ZW ⊗ A, ∂′) and (ZW ⊗ A, ∂′′)
are both acyclic.
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Proof. By Lemma 5.9, we have ∂′′ = 1 ⊗ d. As ZW is a flat Z-module,
the acyclicity of (ZW ⊗A, ∂′′) follows from that of (A, d), which is given in
Proposition 4.1.

It remains to prove that (ZW ⊗ A, ∂′) is acyclic. Recall from (4.3) the
Kereweras automorphism κ : A → A whose inverse is given by

κ−1(at1at2 · · · atk) = atka
tk
tk−1 · · · a

t2···tk
t1 .

Note that this is a graded automorphism. Applying 1 ⊗ κ−1 to the chain
complex (ZW ⊗A, ∂′), we obtain a new chain complex (ZW ⊗A, ∂̃′) whose
boundary map satisfies ∂̃′(1 ⊗ κ−1) = (1 ⊗ κ−1)∂′, defined explicitly by

(5.7) ∂̃′(w ⊗ at1at2 · · · atk) =
k∑

i=1
(−1)k−iwt

ti−1···t1
i ⊗ at1 · · · âti · · · atk

for any w ∈ W and nonzero element at1at2 · · · atk ∈ Ak. Hence we are reduced
to proving the acyclicity of (ZW ⊗A, ∂̃′).

For each k = 0, 1, . . . , n, we have the following split exact sequence

(5.8) 0 → Ker ∂̃′
k → ZW ⊗Ak → Im ∂̃′

k → 0.

To prove that the homology Hk = Ker ∂̃′
k/Im ∂̃′

k+1 is trivial, we shall de-
termine each image Im ∂̃′

k, and then use the exact sequence above to show
that Im ∂̃′

k+1 and Ker ∂̃′
k have equal ranks for all k. Finally, we show that the

homology is torsion free and hence is trivial.
Let us start with a combinatorial description of the chain group ZW⊗Ak.

As the chain complex (A, d) is acyclic, we have decompositions of free abelian
groups Ak = d(Ak) ⊕ d(Ak+1) for 0 ≤ k ≤ n − 1. It is proved in [Zha23,
Theorem 4.8] that d(Ak) has a Z-basis consisting of elements d(at1 · · · atk) for
1 ≤ k ≤ n, where (t1, . . . , tk) ∈ D[k−1] with D[k−1] defined by

D[k−1] :=
{
(t1, . . . , tk)

∣∣∣ γ = t1t2 · · · tn is T -reduced and
t1 � · · · � tk−1 � tk ≺ tk+1 ≺ · · · ≺ tn

}
.

Then we have

rank(ZW ⊗Ak) = |W |(D[k] + D[k−1]), 0 ≤ k ≤ n.

Moreover, recall from that Ak has a Z-basis {at = at1 · · · atk |t = (t1, . . . , tk) ∈⋃
u∈Lk

Du}, where Du is defined as in (2.3). Therefore, {w ⊗ at|w ∈ W, t ∈⋃
u∈Lk

Du} is a Z-basis for ZW ⊗Ak.
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Now we consider the image Im ∂̃′
k. Denote by Bk ⊆ ZW ⊗Ak−1 the free

abelian group spanned by the set S[k−1] := {∂̃′(w ⊗ at) | w ∈ W, t ∈ D[k−1]}.
Then we have Bk ⊆ Im ∂̃′

k. We shall prove that the set S[k−1] is Z-linearly
independent. To this end, we choose a total order on the basis of ZW ⊗ Ak

for each k such that

(5.9) w ⊗ at < v ⊗ at′ whenever at < at′ ,

for any v, w ∈ W and t, t′ ∈ ⋃
u∈Lk

Du, where at < at′ is the total order
defined in (5.1). Then it follows from (5.2) that for any pair of basis elements
w ⊗ at < v ⊗ at′

(5.10) 〈v ⊗ at′ , w ⊗ at〉 = 0.

Now assume that there exist nonzero λw0,t0 , λw,t ∈ Z such that

λw0,t0 ∂̃
′(w0 ⊗ at0) =

∑
w0⊗at0>w⊗at

λw,t∂̃
′(w ⊗ at),

for some elements ∂̃′(w⊗ at) and ∂̃′(w0 ⊗ at0) of the set S[k−1]. In view of the
definition (5.7), for any element w ⊗ at = w ⊗ at1 · · · atk with t1 � · · · � tk,
the element

w ⊗ at(k̂) := wt
tk−1···t1
k ⊗ at1 · · · atk−1

is the unique maximal term under the total order (5.9) in the expression
of ∂̃′(w ⊗ at1 · · · atk). Hence by (5.10) and (5.3) we have 〈w ⊗ at(k̂), ∂̃′(w ⊗
at)〉 = 1. Moreover, observe that if w0 ⊗ at0 > w ⊗ at for t, t0 ∈ D[k−1], then
w0 ⊗ at0(k̂) > w ⊗ at(k̂) (cf. [Zha23, Proposition 4.7]). This further implies
that 〈w0 ⊗ at0(k̂), ∂̃′(w ⊗ at)〉 = 0 by (5.10). Therefore, we obtain

λw0,t0 = 〈w0 ⊗ at0(k̂), λw0,t0 ∂̃
′(w0 ⊗ at0)〉

=
∑

w0⊗at0>w⊗at

〈w0 ⊗ at0(k̂), λw,t∂̃
′(w ⊗ at)〉

= 0,

which contradicts our assumption that λw,t0 �= 0. Therefore, S[k−1] is a Z-
linearly independent set, which spans the free abelian subgroup Bk ⊆ Im ∂̃′

k.
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Now by the exact sequence (5.8) we obtain

rank Ker ∂̃′
k = rankZW ⊗Ak − rank Im ∂̃′

k ≤ rankZW ⊗Ak − rankBk

= |W |(D[k] + D[k−1]) − |W ||D[k−1]|
= |W ||D[k]|.

On the other hand, since Bk+1 ⊆ Im ∂̃′
k+1 ⊆ Ker ∂̃′

k, we have

rank Ker ∂̃′
k ≥ rank Im ∂̃′

k+1 ≥ rankBk+1 = |W ||D[k]|.

Combing the above two inequalities, for each k we have rank Ker ∂̃′
k=|W ||D[k]|,

and
rank Im ∂̃′

k = rankZW ⊗Ak − rank Ker ∂̃′
k = |W ||D[k−1]|.

It follows that Im ∂̃′
k+1 and Ker ∂̃′

k have equal rank.
It remains to show that the homology Hk = Ker ∂̃′

k/Im ∂̃′
k+1 is trivial.

We aim to prove that Bk+1 = Ker ∂̃′
k = Im ∂̃′

k+1. By the above arguments on
ranks, Bk+1 ⊆ Ker ∂̃′

k is a free abelian subgroup of maximal rank. Therefore,
every element of the quotient group Ker ∂̃′

k/Bk+1 has finite order. For any
β ∈ Ker ∂̃′

k, there exists a nonzero integer m such that

(5.11) mβ =
∑

w∈W,t∈D[k]

λw,t∂̃
′
k+1(w ⊗ at) ∈ Bk+1, λw,t ∈ Z.

Suppose that w0 ⊗ t0 is the biggest element under the total order (5.9) such
that m � λw0,t0 . Then

mβ −
∑

w⊗t>w0⊗t0

λw,t∂̃
′
k+1(w ⊗ at)

= λw0,t0 ∂̃
′
k+1(w0 ⊗ at0) +

∑
w⊗t<w0⊗t0

λw,t∂̃
′
k+1(w ⊗ at).

Recalling that 〈w0 ⊗ at0(k̂), ∂̃′
k+1(w ⊗ at)〉 = 0 for any w ⊗ t < w0 ⊗ t0 with

t, t0 ∈ D[k] and 〈w0 ⊗ at0(k̂), ∂̃′
k+1(w0 ⊗ at0)〉 = 1, we have

〈w0 ⊗ at0(k̂),mβ −
∑

w⊗t>w0⊗t0

λw,t∂̃
′
k+1(w ⊗ at)〉 = λw0,t0 .

By the choice of w0 ⊗ t0, we have m|λw,t for any w ⊗ t > w0 ⊗ t0. Thus
the left hand side is divisible by m, so is λw0,t0 on the right hand side. This
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contradicts our assumption for λw0,t0 . Therefore, all coefficients λw,t in (5.11)
are divisible by m, and hence β ∈ Bk+1. This proves that Bk+1 = Ker ∂̃′

k.
Similarly, one can prove that Bk+1 = Im ∂̃′

k+1. Thus the homology group
Hk = Ker ∂̃′

k/Im ∂̃′
k+1 is trivial.

Proposition 5.12. The cochain complexes (ZW ⊗A, �σ) and (ZW ⊗A, rς)
are both acyclic.

Proof. By Lemma 5.10 ∂′ is right adjoint to �σ. Using the same method as
in Lemma 5.7, one can show that the isomorphism ψW given in (5.6) induces
an isomorphism between chain complexes (ZW ⊗A, ∂′) and ((ZW ⊗A)∗, �∗σ).
The former is acyclic by Proposition 5.11, so is the latter. Hence (ZW⊗A, �σ)
is acyclic by the universal coefficient theorem for cohomology. Similarly, one
can prove the acyclicity of (ZW ⊗A, rς).

5.3. Dual complexes for Milnor fibres and hyperplane
complements

In terms of the bilinear forms on A and ZW ⊗ A, we shall give complexes
which are dual to the chain complexes introduced in Section 4.2. These dual
complexes have the same integral cohomology as that of the Milnor fibres and
hyperplane complements.

5.3.1. Dual complexes for M and M/W Recall from Theorem 4.5
the chain complex which computes the integral homology of the hyperplane
complement M . The following gives a cochain complex dual to the chain
complex.

Theorem 5.13. The integral cohomology of the hyperplane complement M is
isomorphic to the cohomology of the following cochain complex of free abelian
groups:

0−→ZW ⊗A0
∂0
−→ZW ⊗A1

∂1
−→· · ·−→ZW ⊗An−→0,

where the coboundary maps are given by ∂k := �σ − (−1)krς for 0 ≤ k ≤ n,
i.e.

∂k(w ⊗ x) =
∑
t∈T

wt⊗ atx− (−1)k
∑
t∈T

w ⊗ xat, ∀x ∈ Ak, w ∈ W.

Proof. Recall that the chain complex given in Theorem 4.5 computes the
integral homology of M . We dualise this chain complex by replacing the kth
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chain group with (ZW ⊗Ak)∗ ∼= HomZ(ZW ⊗Ak,Z) and the kth boundary
map by its dual coboundary map ∂∗ : (ZW ⊗Ak−1)∗ → (ZW ⊗Ak)∗. Then
we obtain the following cochain complex:

C(W )∗ : 0−→(ZW ⊗A0)∗
∂∗0
−→(ZW ⊗A1)∗

∂∗1
−→· · ·−→(ZW ⊗An)∗−→0.

By the universal coefficient theorem for cohomology, we have Hk(C(W )∗) ∼=
Hk(M ;Z) for 0 ≤ k ≤ n. It remains to show that C(W )∗ and the complex
given in the theorem have the same cohomology.

Recall the the bilinear form 〈−,−〉 on ZW ⊗A is unimodular. This gives
rises to the isomorphism:

(5.12) ψ′
W : ZW ⊗A → (ZW ⊗A)∗, v ⊗ x �→ ψ′

W (v ⊗ x) := 〈v ⊗ x,−〉

for any v ∈ W and x ∈ A. Now consider the following diagram:

ZW ⊗Ak ZW ⊗Ak+1

(ZW ⊗Ak)∗ (ZW ⊗Ak+1)∗.

∂k

ψ′
W ψ′

W

∂∗k

For any v, w ∈ W , x ∈ Ak and y ∈ Ak+1, we have

ψ′
W (∂k(v ⊗ x))(w ⊗ y) = 〈∂k(v ⊗ x), w ⊗ y〉

= 〈�σ(v ⊗ x) − (−1)krς(v ⊗ x), w ⊗ y〉
= 〈v ⊗ x, (∂′

k + (−1)k+1∂′′
k )(w ⊗ y)〉,

= ∂∗k(ψ′
W (v ⊗ x))(w ⊗ y).

where the third equation follows from Lemma 5.10 and the last equation
follows from the fact that ∂k = ∂′

k + (−1)k+1∂′′
k . Therefore, ψ′

W is a chain
isomorphism between (ZW ⊗A, ∂k) and C(W )∗, and hence these two cochain
complexes have the same cohomology.

Theorem 5.14. The integral cohomology of M/W or the Artin group A(W )
is isomorphic to the cohomology of the following cochain complex of free
abelian groups:

0−→A0
∂0
−→A1

∂1
−→· · ·−→An−→0,

where ∂k = �ω − (−1)krω for 0 ≤ k ≤ n with ω =
∑

t∈T at, i.e.

∂k(x) = ωx− (−1)kxω, ∀x ∈ Ak.
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Proof. Recall from Theorem 4.7 the chain complex which computes the inte-
gral homology of M/W or A(W ). The theorem can be proved using the same
method as in the proof of Theorem 5.13.

5.3.2. Dual complexes for F and F/W Recall from Theorem 4.6 and
Theorem 4.8 the chain complexes which realise the integral homology of the
Milnor fibres F and F/W , respectively. Using the bilinear form on ZW⊗A, we
will construct the cochain complexes which are dual to these chain complexes.

We begin with the following proposition, which identifies d(Ak+1) with
Akω. The latter is the kth homogeneous component of the left ideal Aω of A
generated by ω.

Proposition 5.15. For each k = 0, . . . , n, the free abelian group Ak decom-
poses as

Ak = d(Ak+1) ⊕Ak−1ω.

Moreover, we have an isomorphism Ak−1ω ∼= d(Ak), given by the linear map
d.

Proof. First, we prove the isomorphism Ak−1ω ∼= d(Ak). Since the cochain
complex (A, rω) is acyclic, we have the following short exact sequences

0 → Ak−1ω → Ak → Akω → 0, 0 ≤ k ≤ n.

Then each short exact sequence splits since Akω is free, being a subgroup of
the free abelian group Ak+1. Therefore, we obtain that

Ak
∼= Ak−1ω ⊕Akω, 0 ≤ k ≤ n.

Similarly, using the acyclicity of (A, d) we have

Ak
∼= d(Ak) ⊕ d(Ak+1), 0 ≤ k ≤ n.

Note that An
∼= d(An) ∼= An−1ω. By comparing the isomorphisms above we

have Ak−1ω ∼= d(Ak) for 0 ≤ k ≤ n.
Using the adjoint property in Lemma 5.4, we have 〈xω, d(y)〉=〈x, d2(y)〉 =

0 for any x ∈ Ak−1 and y ∈ Ak+1. Hence Ak−1ω is orthogonal to d(Ak+1) as
subgroups of Ak. Moreover, using the above isomorphisms we obtain

rankAk = rank d(Ak) + rank d(Ak+1) = rankAk−1ω + rank d(Ak+1).

Therefore, we have the decomposition Ak = Ak−1ω ⊕ d(Ak+1) for all k.
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Theorem 5.16. The integral cohomology of the Milnor fibre F is isomorphic
to the cohomology of the following cochain complex of free abelian groups:

0−→ZW ⊗A0ω
�σ−→ZW ⊗A1ω

�σ−→· · ·−→ZW ⊗An−1ω−→0,

where ω =
∑

t∈T at and the coboundary maps are given by �σ, i.e.

�σ(w ⊗ xω) =
∑
t∈T

wt⊗ atxω, ∀x ∈ Ak, w ∈ W.

Proof. For each k = 0, 1, . . . , n−1, let (ZW ⊗Akω)∗ = HomZ(ZW ⊗Akω,Z).
Consider the following chain complex ((ZW ⊗Aω)∗, �∗σ):

0−→(ZW ⊗An−1ω)∗ �∗σ−→(ZW ⊗An−2ω)∗ �∗σ−→· · ·−→(ZW ⊗A0ω)∗−→0.

We will show that this chain complex is isomorphic to the chain complex
(ZW ⊗ d(Ak), ∂k−1) given in Theorem 4.6. Thus, these two chain complexes
both compute the integral homology of F . By the universal coefficient theorem
for cohomology (cf. Theorem 5.6), the cochain complex (ZW ⊗Aω, �σ) given
in the theorem, which is the dual complex of ((ZW ⊗ Aω)∗, �∗σ), has the
integral cohomology of F .

Now we only need to prove that (ZW⊗d(Ak), ∂k−1) and ((ZW⊗Aω)∗, �∗σ)
are isomorphic. We start by constructing an isomorphism between ZW ⊗
d(Ak) and (ZW ⊗ Ak−1ω)∗ for each k = 1, . . . , n. By Proposition 5.15, we
have

ZW ⊗Ak ω ∼= ZW ⊗ d(Ak+1), w ⊗ x �→ ∂′′(w ⊗ x) = u⊗ d(x)

for any w ∈ W and x ∈ Akω. Moreover, the linear map ψW defined in (5.6)
restricts to the following isomorphism:

ZW ⊗Ak ω ∼= (ZW ⊗Ak ω)∗, w ⊗ x �→ ψW (w ⊗ x) = 〈−, w ⊗ x〉.

Combining the above two isomorphisms, we obtain that

ξk : ZW ⊗ d(Ak+1) → (ZW ⊗Ak ω))∗

is an isomorphism given by

ξk(w ⊗ d(x)) := ψW (w ⊗ x) = 〈−, w ⊗ x〉
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for any w ∈ W and x ∈ Ak ω. This is well-defined, since if d(x) = d(y) for
some x, y ∈ Ak ω, then we have w ⊗ (x− y) ∈ Ker(1 ⊗ d) = Ker ∂′′ and

ξk(w⊗d(x−y))(v⊗zω) = 〈v⊗zω, w⊗(x−y)〉 = 〈v⊗z, ∂′′(w⊗(x−y))〉 = 0,

for any w, v ∈ W and z ∈ Ak, where the last equation follows from Lemma 5.10.
We now prove that ξk is an isomorphism between chain complexes. It

suffices to show that the following diagram commutes for each k:

ZW ⊗ d(Ak+1) ZW ⊗ d(Ak)

(ZW ⊗Akω)∗ (ZW ⊗Ak−1ω)∗.

∂k

ξk ξk−1

�∗σ

Recalling that in terms of notation (5.5), we have ∂k = ∂′
k and 1 ⊗ dk = ∂′′

k .
For any v, w ∈ W and y ∈ Ak−1 ω, we have

ξk−1∂k(v ⊗ d(x))(w ⊗ y) = ξk−1(∂′∂′′(v ⊗ x))(w ⊗ y)
= ξk−1(∂′′∂′(v ⊗ x))(w ⊗ y)
= 〈w ⊗ y, ∂′(v ⊗ x)〉,

where the second equation follows from Lemma 5.9. On the other hand,

�∗σξk(v ⊗ d(x))(w ⊗ y) = ξk(v ⊗ d(x))(�σ(w ⊗ y)) = 〈�σ(w ⊗ y), v ⊗ x〉.

By the adjoint property in Lemma 5.10, we have ξk−1∂k = �∗σξk. Therefore,
ξk is an isomorphism between the chain complexes (ZW ⊗ d(Ak), ∂k) and
((ZW ⊗Aω)∗, �∗σ). This completes the proof.

Corollary 5.17. Let A := ZW ⊗A be the tensor product equipped with the
usual multiplicative structure. Then we have the following Z-graded isomor-
phism of abelian groups:

H∗(F ;Z)[−1] = (A ς ∩ σA )/σA ς,

where σ =
∑

t∈T t ⊗ at and ς =
∑

t∈T 1 ⊗ at, and A[−1]n := An−1 for the
Z-graded abelian group A.

Proof. Recall from Proposition 5.12 that the complex (ZW⊗A, �σ) is acyclic.
Denote Ak := ZW ⊗ Ak for 0 ≤ k ≤ n. Then the coboundary map �σ :
Ak+1 → Ak+2 has the kernel σAk. Using Theorem 5.16, we obtain

Hk(F ;Z) ∼= Ker(Akς
�σ−→Ak+1ς)/σAk−1ς = (σAk ∩ Akς)/σAk−1ς.
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This completes the proof.

Theorem 5.18. The integral cohomology of the Milnor fibre F/W is iso-
morphic to the cohomology of the following cochain complex of free abelian
groups:

0−→A0ω
�ω−→A1ω

�ω−→· · · �ω−→An−1ω−→0,

where the coboundary maps are given by left multiplication by ω =
∑

t∈T at.

Proof. The proof is similar to that of Theorem 5.16. Recall from Theorem 4.8
the chain complex which computes the integral homology of F/W . Using the
bilinear form (5.4), one can identify d(Ak+1) and (Akω)∗ and prove that the
complexes (d(Ak+1), ∂k) and ((Aω)∗, �∗ω) are isomorphic. Thus the complex
(Aω, �ω) computes the integral cohomology of F/W .

Corollary 5.19. Let Aω (resp. ωA) be the left (resp. right) ideal of A gen-
erated by ω. Then we have the following Z-graded isomorphism of abelian
groups:

H∗(F/W ;Z)[−1] ∼= (Aω ∩ ωA)/ωAω,

where A[−1]n := An−1 for the Z-graded abelian group A.

Proof. By Proposition 5.8, the cochain complex (A, �ω) is acyclic. It follows
that the coboundary map �ω : Ak+1 → Ak+2 has the kernel ωAk. Using
Theorem 5.18, we have

Hk(F/W ;Z) ∼= Ker(Akω
�ω−→Ak+1ω)/ωAk−1ω = (ωAk ∩ Akω)/ωAk−1ω.

This completes the proof.

5.4. A pair of dual complexes with complex coefficients

We shall introduce a pair of cochain complexes which are dual to the com-
plexes C(U) and K(U). In this subsection, we work over C.

Let U be any finite dimensional right CW -module. We define the dual
complex of C(U) by

C∗(U) := 0−→U ⊗A0
∂∗
−→· · ·−→U ⊗An−1

∂∗
−→U ⊗An−→0,

where the coboundary maps are given by

∂∗(u⊗ x) =
∑
t∈T

ut⊗ atx− (−1)ku⊗ xω, ∀x ∈ Ak, u ∈ U.
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It is straightforward to verify that (∂∗)2 = 0. Similarly, define the dual com-
plex of K(U) by

K∗(U) := 0−→U ⊗A0 ω
∂∗
0−→· · ·−→U ⊗An−2 ω

∂∗
n−2−→U ⊗An−1 ω−→0,

where Ak ω is the subspace of Ak+1 linearly spanned by elements of the form
at1 · · · atkω, and the coboundary maps are defined by

∂∗(u⊗ xω) =
∑
t∈T

ut⊗ atxω, ∀x ∈ Ak, u ∈ U.

The following is a cohomology version of Theorem 4.11.

Theorem 5.20. For any right W -module U and for each integer k ≥ 0, we
have:

dimHk(C∗(U)) = 〈U∗
L, H

k(M)〉
and

dimHk(K∗(U)) = 〈U∗
L, H

k(F )〉.

Proof. Use Theorem 5.13 and Theorem 5.16. The proof is similar to that of
Theorem 4.11.

6. Complements on a covering algebra Ã of A

In this section we define an algebra Ã, whose presentation is simpler than that
of A, and which in fact has A as a homomorphic image. The algebra Ã has
some remarkable similarities to the Fomin-Kirillov algebra En (in type An−1)
(cf. [FK99], and we conjecture that the two algebras have the same Hilbert-
Poincaré series (always in type An). They are in some sense “dual” to each
other, but are not Koszul. Our purpose for including this discussion is that
both Ã and En have multiple connections to other branches of mathematics,
and have clear similarities to each other. Another motivation is that numerous
authors have observed analogies between the flag variety and the hyperplane
complement associated to a complex Lie group [AB02]. The two algebras could
provide a pathway to understanding this hitherto mysterious connection.

In Section 6.1 we define a braided Hopf algebra and show that there
exists a surjective algebra homomorphism from the braided Hopf algebra to
the noncrossing algebra. We show also that Ã has the structure of a W -graded
Hopf algebra, that it has a braiding, and more generally belongs to a category
of Yetter-Drinfeld modules over CW . In Section 6.2 we define some differential
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operators on the braided Hopf algebra, and determine some of their adjoint
properties, which are similar to those of A. We also prove that there is a
bilinear form on Ã, and that this form descends to the one we already have
on A. Throughout this section, we work over the complex field C.

6.1. A new braided Hopf algebra

We introduce a cover of the noncrossing algebra, which is analogous to the
Fomin-Kirillov algebra [FK99]. This new algebra is a Yetter-Drinfeld module
over the group algebra CW , and has a braided Hopf algebra structure. We
refer to [AS02] for background concerning Yetter-Drinfeld modules.

6.1.1. Definition and examples

Definition 6.1. Let W be any finite Coxeter group and T be the set of
reflections of W . Define Ã = Ã(W ) to be the associative algebra over C
generated by αt, t ∈ T , subject to the following quadratic relations:

α2
t = 0, for any t ∈ T ,(6.1) ∑

(t1,t2)∈RexT (w)
αt1αt2 = 0, for any w ∈ W with �T (w) = 2.(6.2)

The algebra Ã is a Z-graded algebra with the Z-grading deg(αt) = 1 for
all t ∈ T . In this section, we denote by A the noncrossing algebra over the
complex field C. Theses two algebras are related by the following lemma.

Lemma 6.2. We have a surjective algebra homomorphism π : Ã → A, given
by αt �→ at for all t ∈ T .

Proof. It suffices to check that the relations (6.2) are preserved in A. If w ≤ γ,
then relation (6.2) is sent to the defining relation of A under the map π. Oth-
erwise, for any two reflections t1, t2 such that t1t2 �≤ γ, we have π(αt1αt2) =
at1at2 = 0, and hence for any w �≤ γ we have

∑
(t1,t2)∈RexT (w) π(αt1αt2) =

0.

Example 6.3. The new algebra Ã(Symn) of type An−1 is generated by αij =
αji for 1 ≤ i < j ≤ n with the following relations:

(6.3)
α2
ij = 0,

αijαkl + αklαij = 0, for distinct i, j, k, l
αijαjk + αjkαki + αkiαij = 0, for distinct i, j, k
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In type A2, these relations read:

α2
12 = α2

13 = α2
23 = 0,

α12α23 + α23α13 + α13α12 = 0,
α23α12 + α12α13 + α13α23 = 0.

This algebra looks similar to the Fomin-Kirillov algebra En [FK99], which is
generated by xij = −xji for 1 ≤ i < j ≤ n with relations:

x2
ij = 0,

xijxkl − xklxij = 0, for distinct i, j, k, l

xijxjk + xjkxki + xkixij = 0, for distinct i, j, k.

For any Z-graded algebra A =
⊕

k∈ZAk, we denote by HA(t) =∑
k∈Z dimAk t

k the Hilbert-Poincaré series of A. Using computational soft-
ware, we have verified that Ã(Symn) and En have the same Hilbert-Poincaré
series for n ≤ 5:

n = 1 : HÃ(Symn)(t) = HEn(t) = 1,

n = 2 : HÃ(Symn)(t) = HEn(t) = [2] = 1 + t,

n = 3 : HÃ(Symn)(t) = HEn(t) = [2]2[3] = 1 + 3t + 4t2 + 3t3 + t4,

n = 4 : HÃ(Symn)(t) = HEn(t) = [2]2[3]2[4]2,

n = 5 : HÃ(Symn)(t) = HEn(t) = [4]4[5]2[6]4,

where we have used the notation [k] := 1+t+· · ·+tk−1. These Hilbert-Poincaré
series have symmetric coefficients. In particular, the top homogeneous com-
ponent has dimension 1. It is unknown whether En is finite-dimensional for
n ≥ 6.

Conjecture 6.4. The algebra Ã(Symn) and the Fomin-Kirillov algebra En
have the same Hilbert-Poincaré series.

Remark 6.5. Recall that the Orlik-Solomon algebra associated to the reflec-
tion arrangement of Symn is generated by elements eij = eji for 1 ≤ i < j ≤ n,
subject to the following relations:

eijekl = −ekleij , 1 ≤ i < j ≤ n, 1 ≤ k ≤ l ≤ n,

eijejk + ejkeki + ekieij = 0, 1 ≤ i, j, k ≤ n.
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This appears as a quotient of Ã(Symn) by imposing the anti-commutative
relations αijαkl = −αklαij for i < j and k < l, that is, we allow {i, j}∩{k, l} �=
∅ in the second relation of (6.3).

6.1.2. Braided Hopf algebra structure We now take a Hopf-theoretic
point of view to the covering algebra Ã [AG99, MS00, AS02].

Let us recall relevant definitions. The group algebra CW has a Hopf alge-
bra structure with the comultiplication Δ(w) = w ⊗ w, counit ε(w) = 1 and
antipode S(w) = w−1 for any w ∈ W . A Yetter-Drinfeld module A over CW

is a W -graded vector space A =
⊕

w∈W Aw, which is a W -module such that
w.Au ⊆ Awuw−1 for all u,w ∈ W .

The algebra Ã is a Yetter-Drinfeld module over CW , as we now describe.
In addition to the natural Z-grading, Ã has a grading with respect to W such
that the W -degree of the generator αt is t ∈ T and this is extended to all
monomials by multiplication. As the defining relations of Ã are homogeneous
with respect to the W -degree, this gives a W -grading of Ã =

⊕
w∈W Ãw,

where Ãw is spanned by monomials αt1 · · ·αtk such that t1t2 · · · tk = w. Note
that w = t1t2 · · · tk is not necessarily a reduced expression with respect to
reflections of T or simple reflections of S.

The W -module structure on Ã is defined by

(6.4) w.αt := (−1)�(w)αwtw−1 , ,∀w ∈ W,

where �(w) is the usual length of w with respect to the generating set S of
W . Clearly, this action preserves the defining relations (6.1) and (6.2) of Ã,
and is compatible with the W -grading, i.e. w.Ãu ⊆ Ãwuw−1 for all u,w ∈ W .
Therefore, Ã is a Yetter-Drinfeld module over CW .

We denote by W
WYD the category of Yetter-Drinfeld modules over CW . A

morphism f : A → B of the category W
WYD is a homomorphism of W -modules

which preserves the W -grading.
An important ingredient of the Yetter-Drinfeld category is the canonical

braiding. For any A,B ∈ W
WYD, the canonical braiding c : A ⊗ B → B ⊗ A

is defined by

(6.5) c(a⊗ b) = b⊗ (w−1.a), ∀a ∈ A, b ∈ Bw.

The tensor product A ⊗ B is an object of W
WYD, with the W -grading (A ⊗

B)w =
⊕

ab=w Aa ⊗ Bb and the W -action w.(a ⊗ b) = w.a ⊗ w.b for any
w ∈ W , a ∈ A and b ∈ B. In particular, we have Ã ⊗ Ã ∈ W

WYD. Moreover,
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the tensor product Ã ⊗ Ã is still an algebra, with multiplication defined via
the canonical braiding:

(6.6) (x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ (w−1.y1)y2, ∀x2 ∈ Ãw, x1, y1, y2 ∈ Ã.

More concisely, μÃ⊗Ã = (μÃ⊗μÃ)(1⊗ c⊗1), where μA : A⊗A → A denotes
the multiplication map of the algebra A.

Recall that a braided bialgebra A in W
WYD is a collection (A, μ, η,Δ, ε)

such that (A, μ, η) is an algebra in W
WYD, (A,Δ, ε) is a coalgebra in W

WYD
and Δ : A → A⊗A and ε : A → C are morphisms of algebras (here A⊗A is
an algebra in W

WYD with multiplication defined via the braiding c). We call A
a braided Hopf algebra if in addition there is an antipode S : A → A in W

WYD
such that (1 ⊗ S)Δ = (S ⊗ 1)Δ = ηε.

Proposition 6.6. The algebra Ã is a braided Hopf algebra in W
WYD with

the coproduct Δ, the counit ε and the antipode S defined on the generators
αt, t ∈ T by

(6.7)
Δ(αt) = αt ⊗ 1 + 1 ⊗ αt,

ε(αt) = 0, S(αt) = −αt.

Proof. We need to check that Δ, ε and S are well-defined, and then check that
they satisfy Hopf algebra axioms. Straightforward calculations show that:

Δ(α2
t ) = α2

t ⊗ 1 + 1 ⊗ α2
t , S(α2

t ) = α2
t , ε(α2

t ) = 0,
Δ(Rw) = Rw ⊗ 1 + 1 ⊗Rw,

S(Rw) = Rw, ε(Rw) = 0,

where we have used the notation Rw :=
∑

(t1,t2)∈RexT (w) αt1αt2 for any w ∈ W
with �T (w) = 2. Therefore, Δ, ε and S are all well-defined.

Next we check the Hopf algebra axioms on the generators of Ã: (1) Coas-
sociativity:

(Δ ⊗ 1)(Δ(αt)) = (Δ ⊗ 1)(αt ⊗ 1 + 1 ⊗ αt)
= αt ⊗ 1 ⊗ 1 + 1 ⊗ αt ⊗ 1 + 1 ⊗ 1 ⊗ αt

= (1 ⊗ Δ)(Δ(αt)).

(2) The counit axiom:

(ε⊗ 1)(Δ(αt)) = (ε⊗ 1)(αt ⊗ 1 + 1 ⊗ αt) = αt,

(1 ⊗ ε)(Δ(αt)) = (1 ⊗ ε)(αt ⊗ 1 + 1 ⊗ αt) = αt.
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(3) The antipode axiom:

μ(1 ⊗ S)(Δ(αt)) = μ(1 ⊗ S)(αt ⊗ 1 + 1 ⊗ αt) = αt − αt = 0 = ε(αt),
μ(S ⊗ 1)(Δ(αt)) = μ(S ⊗ 1)(αt ⊗ 1 + 1 ⊗ αt) = −αt + αt = 0 = ε(αt).

We can extend (6.7) to any monomials in the generators of Ã. Clearly,
ε(αt1 · · ·αtk) = 0 for k ≥ 1. We next give explicit formulas for S and Δ.

Proposition 6.7. The antipode S is given explicitly by

(6.8) S(αt1 · · ·αtk) = ε(t1, . . . , tk)αtkαt
tk
k−1

· · ·α
t
t2···tk
1

,

where ε(t1, . . . , tk) = (−1)k
∏k

i=2(−1)�(ti···tk).

Proof. Recall that in W
WYD we have Sμ = μ(S ⊗ S)c. This follows from the

fact that both Sμ and μ(S ⊗ S)c are the inverse of μ under the convolution
product in the algebra Hom(Ã ⊗ Ã, Ã); refer to [AG99, Lemma 1.2.2]. Using
this equation and induction on k, we have

S(αt1αt2 · · ·αtk) = S(αt2 · · ·αtk)S((tk · · · t2).αt1)
= −(−1)�(t2···tk)S(αt2 · · ·αtk)αt

t2···tk
1

.

The formula follows by induction hypothesis.

Proposition 6.8. The comultiplication of Ã is given explicitly by

Δ(αt1 · · ·αtk) =
k∑

j=0

∑
1≤i1<i2<···<ij≤k

αti1
· · ·αtij

⊗ Etij
· · ·Eti1

(αt1 · · ·αtk),

where Etri
(αtr1

· · ·αtrs ) := tri .(αtr1
· · ·αtri−1

)αtri+1
· · ·αtrs , for any monomial

αtr1
· · ·αtrs ∈ Ã and 1 ≤ i ≤ s.

Proof. Use induction on k. The formula is trivial if k = 1. For k > 1, by
induction hypothesis we have

Δ(αt1 · · ·αtk) = Δ(αt1 · · ·αtk−1)Δ(αtk)

=
k−1∑
j=0

∑
1≤i1<···<ij≤k−1

(αti1
· · ·αtij

⊗ Etij
· · ·Eti1

(αt1 · · ·αtk−1))(1 ⊗ αtk + αtk ⊗ 1)

=
k−1∑
j=0

∑
1≤i1<···<ij≤k−1

αti1
· · ·αtij

⊗ (Etij
· · ·Eti1

(αt1 · · ·αtk−1))αtk
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+
k−1∑
j=0

∑
1≤i1<···<ij≤k−1

αti1
· · ·αtij

αtk ⊗ tk.(Etij
· · ·Eti1

(αt1 · · ·αtk−1)).

Note that in the above equation, we have

(Etij
· · ·Eti1

(αt1 · · ·αtk−1))αtk = Etij
· · ·Eti1

(αt1 · · ·αtk−1αtk),
tk.(Etij

· · ·Eti1
(αt1 · · ·αtk−1)) = EtkEtij

· · ·Eti1
(αt1 · · ·αtk).

Then we obtain the formula of Δ(αt1 · · ·αtk) as desired.

Example 6.9. Using Proposition 6.8, we have

Δ(αt1αt2) =1 ⊗ αt1αt2 + αt1 ⊗ Et1(αt1αt2) + αt2 ⊗ Et2(αt1αt2)
+ αt1αt2 ⊗ Et2Et1(αt1αt2)

=1 ⊗ αt1αt2 + αt1 ⊗ αt2 − αt2 ⊗ αt2t1t2 + αt1αt2 ⊗ 1.

It follows that Ã is not cocommutative.

Proposition 6.10. The noncrossing algebra A is a subcoalgebra of Ã.

Proof. By Lemma 6.2 A can be lifted as a subspace of Ã. Note that if
at1 · · · atk is a nonzero element of A, that is, w = t1t2 · · · tk ∈ L is a T -
reduced expression, then Eti(at1 · · · atk) = (−1)i−1a

t
ti
1
· · · a

t
ti
i−1

ati+1 · · · atk is
still a nonzero element of A. In view of Proposition 6.8, A is closed under the
comultiplication Δ of Ã. In addition, A is clearly closed under the counit ε

of Ã. Therefore, A is a subcoalgebra of Ã.

6.2. Skew-derivations on Ã

Recall that the noncrossing algebra A has skew-derivations δt and dt for any
t ∈ T . We shall show that these skew-derivations can be lifted to the algebra
Ã with similar properties. The difference is that these skew-derivations are
defined using the braided Hopf algebra structure of Ã.

For any integer k ≥ 0 let πk : Ã → Ãk be the projection of Ã onto its
k-th homogeneous component Ãk. We denote by

Δi,j : Ãi+j
Δ−→ Ã ⊗ Ã πi⊗πj−→ Ãi ⊗ Ãj

the (i, j)-th component of the comultiplication Δ.
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For any t ∈ T , we define the linear map ∇t : Ã → Ã as follows: let
∇t(1) = 0, and for any x ∈ Ãk define ∇t(x) ∈ Ãk−1 by

(6.9) Δ1,n−1(x) =
∑
t∈T

αt ⊗∇t(x).

Similarly, we define Dt : Ã → Ã by Dt(1) = 0 and Δn−1,1(x) =
∑

t∈T Dt(x)⊗
αt. It is clear that ∇t1(αt2) = Dt1(αt2) = δt1,t2 (Kronecker delta).

Proposition 6.11. For any t ∈ T , let ∇t, Dt be as above.

1. For any x, y ∈ Ã, we have

∇t(xy) = ∇t(x)y + (t.x)∇t(y),
Dt(xy) = (|y|.Dt)(x)y + xDt(y),

where |y| ∈ W denotes the W -grading of y, i.e. y ∈ Ã|y|, and |y|.Dt :=
(−1)�(|y|)D|y|t|y|−1.

2. For any αt1αt2 · · ·αtk ∈ Ã, we have

∇t(αt1αt2 · · ·αtk) =
k∑

i=1
(−1)i−1δt,tiαt

ti
1
· · ·α

t
ti
i−1

αti+1 · · ·αtk ,

Dt(αt1αt2 · · ·αtk) =
k∑

i=1
(−1)k−iδt,riαt1 · · ·αti−1αti+1 · · ·αtk ,

where ri = t
ti+1···tk
i , and δ is the Kronecker delta.

3. The linear operators ∇t, Dt preserve the defining relations of Ã.

Proof. For part (1), note that

Δ(xy) = Δ(x)Δ(y)
= (1 ⊗ x +

∑
t∈T

αt ⊗∇t(x) + · · · )(1 ⊗ y +
∑
t∈T

αt ⊗∇t(y) + · · · )

= 1 ⊗ xy +
∑
t∈T

αt ⊗ (t.x)∇t(y) +
∑
t∈T

αt ⊗∇t(x)y + · · · .

It follows that ∇t(xy) = ∇t(x)y + (t.x)∇t(y). Similarly, using the expression
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Δ(x) = x⊗ 1 +
∑

t∈T Dt(x) ⊗ αt + · · · , we have

Δ(xy) = (x⊗ 1 +
∑
t∈T

Dt(x) ⊗ αt + · · · )(y ⊗ 1 +
∑
t∈T

Dt(y) ⊗ αt + · · · )

= xy ⊗ 1 +
∑
t∈T

xDt(y) ⊗ αt +
∑
t∈T

Dt(x)y ⊗ |y|−1.αt + · · · .

Note that ∑
t∈T

Dt(x)y ⊗ |y|−1.αt =
∑
t∈T

(−1)�(|y|)Dt(x)y ⊗ α|y|−1t|y|

=
∑
t∈T

(−1)�(|y|)D|y|t|y|−1(x)y ⊗ αt

Therefore, we have Dt(xy) = (|y|.Dt)(x)y+xDt(y). Part (2) is a consequence
of part (1), and part (3) follows immediately from the formulae in part (2).

Remark 6.12. The linear operators ∇t, Dt are called skew-derivations of the
braided Hopf algebra Ã [AG99, AS02].

Proposition 6.13. The skew-derivations ∇t, t ∈ T satisfy the following re-
lations:

∇2
t = 0, ∀t ∈ T ,∑

(t1,t2)∈RexT (w)
∇t1∇t2 = 0, ∀w ∈ W with �T (w) = 2,

Therefore, they describe an action of Ã on itself.

Proof. We evaluate these relations on x ∈ Ã and use induction on the Z-
degree of x. It is trivial if deg(x) = 1. In general, assume that x = αt1 · · ·αtk .
For any r1, r2 ∈ T , using the formula from part (1) of Proposition 6.11 we
have

∇r1∇r2(αt1 · · ·αtk)
=∇r1(∇r2(αt1αt2 · · ·αtk−1)αtk + (−1)k−1δr2,tkαt

tk
1
α
t
tk
2
· · ·α

t
tk
k−1

)

=∇r1(∇r2(αt1 · · ·αtk−1))αtk + (−1)k−2δr1,tk∇r
tk
2

(α
t
tk
1
· · ·α

t
tk
k−1

)

+ (−1)k−1δr2,tk∇r1(αt
tk
1
α
t
tk
2
· · ·α

t
tk
k−1

),

If r1 = r2 = t, then by the induction hypothesis we have ∇r1∇r2(αt1 · · ·αtk) =
0, proving the first relations.
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For the second relation, by the induction hypothesis it is equivalent to
proving that ∑

(r1,r2)∈RexT (w)
δr1,tk∇tkr2tk − δr2,tk∇r1 = 0

for any w ∈ W with �T (w) = 2. If tk �≺ w, then the above equation holds
trivially. Otherwise, we have two T -reduced expressions w = tkt = (tkttk)tk
for t = t−1

k w ∈ T , which leads to the above equation.

We do not know whether this action of Ã on itself faithful. Compare
[FK99, §9]. Next we define a bilinear form on Ã in terms of the skew-
derivations.

Definition 6.14. Define the bilinear pairing

〈−,−〉 : Ã × Ã −→ C

by 〈1, 1〉 = 1 and

1. 〈Ãk, Ã�〉 = 0 for any 0 ≤ k �= �;
2. For any x ∈ Ãk and ti ∈ T, i = 1, . . . , k,

〈αt1αt2 · · ·αtk , x〉 := ∇t1∇t2 · · · ∇tk(x).

The bilinear form on Ã is well-defined in view of Proposition 6.13. Note
that we do not reverse the order of ∇ti in the above definition. This is dif-
ferent from that in Definition 6.14. However, one can prove the following the
properties which are similar to those given for A.

Proposition 6.15. We have the following properties.

1. For any t ∈ T and x ∈ Ã, we have

∇t(x) =
∑
(x)

〈αt, x(1)〉x(2),

Dt(x) =
∑
(x)

x(1) 〈x(2), αt〉,

where we have used the Sweedler’s notation Δ(x) =
∑

(x) x(1) ⊗ x(2) for
the comultiplication of Ã.

2. For any t, t′ ∈ T , we have ∇tDt′ = Dt′∇t.
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3. For any x, y ∈ Ã, we have

〈xαt, y〉 = 〈x,∇t(y)〉, and 〈αtx, y〉 = 〈x,Dt(y)〉.

Therefore, with respect to the bilinear form the skew-derivations ∇t and
Dt are right adjoint to right and left multiplication by αt, respectively.

Proof. Part (1) follows from the definitions of ∇t, Dt (see (6.9)) and the
bilinear form. For part (2), for any x ∈ Ã we have

∇tDt′(x) = ∇t(
∑
(x)

x(1) 〈x(2), αt′〉) =
∑
(x)

〈αt, x(1)〉x(2)〈x(3), αt′〉.

Similarly, we can express Dt′∇t(x) and obtain that ∇tDt′ = Dt′∇t. The proof
of part (3) is similar to that of Lemma 5.4.

Remark 6.16. We do not know whether the bilinear form on Ã is non-
degenerate. Note that by Lemma 6.2 A and its opposite Aop can be lifted
to Ã as vector spaces. It follows from Proposition 5.5 that the restriction
〈−,−〉 : Aop ×A → C is non-degenerate.

We define
ω̃ :=

∑
t∈T

αt.

By the defining relations of Ã we have ω̃2 = 0. Hence (Ã, rω̃) (resp. (Ã, �ω̃))
is a cochain complex, where rω̃ (resp. �ω̃) is given by right (resp. left) multi-
plication by ω̃.

Proposition 6.17. We have the following:

1. Let ∇ =
∑

t∈T ∇t and D =
∑

t∈T Dt. Then we have

〈xω̃, y〉 = 〈x,∇(y)〉, and 〈ω̃x, y〉 = 〈x,D(y)〉.

2. The complexes (Ã, D) and (Ã, rω̃) are acyclic.
3. The complexes (Ã,∇) and (Ã, �ω̃) are acyclic.

Proof. Part (1) is a consequence of Proposition 6.15. For part (2), we have

Drω̃(x) = D(xω̃) =
∑
t∈T

D(xαt) =
∑
t∈T

(−D(x)αt + x) = −rω̃D(x) + Nx.

Therefore, we have Drω̃ + rω̃D = N id, which implies that (Ã, D) and (Ã, rω̃)
are acyclic and part (2) follows. Part (3) can be proved similarly.
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Appendix A. Computational results on the multiplicity

In this appendix, we tabulate some computational results on the cohomol-
ogy Hk(K∗(U)) for the simple CW -module U , which by Theorem 5.20 counts
the multiplicity of the contragredient U∗

L in the cohomology Hk(F ;C) of the
Milnor fibre. The homology Hk(K(U)) returns the same result; see Theo-
rem 4.11. All calculations have been done with the computational algebra
system Magma.

We only focus on the case of the symmetric group W = Symn+1. Then
the Milnor fibre F is an algebraic variety defined by

F := {(x1, . . . , xn+1) ∈ Cn+1 |
∏

1≤i<j≤n+1
(xi − xj)2 = 1}.

The reduced Milnor fibre F0 is defined by

F0 := {(x1, . . . , xn+1) ∈ Cn+1 |
∏

1≤i<j≤n+1
(xi − xj) = 1}.

The symmetric group Symn+1 acts on F by permuting coordinates. Hence it
induces a linear (left) action on the cohomology Hk(F ;C) for 0 ≤ k ≤ n− 1.
As vector spaces, Hk(F ;C) ∼= Hk(F0;C) ⊕Hk(F0;C); see [DL16].

The simple right modules Sλ of Symn+1 are indexed by partitions λ =
(λm1

1 , . . . , λ
mp
p ) of n + 1, where λmi

i means that λi repeats mi times and∑p
i=1 miλi = n + 1. Let λ′ be the conjugate partition of λ. Then we have

Sλ′ ∼= Sλ ⊗ ε, where ε is the alternating representation associated to (1n+1).
It follows from (4.17) that

Hk(K∗(Sλ)) ∼= Hk(K∗(Sλ′)), 0 ≤ k ≤ n− 1

for any conjugate pair λ, λ′ of partitions.
Let (Sλ)L denote the simple left module of Symn+1 associated to the

partition λ. It is well known that the contragredient (Sλ)∗L is isomorphic to
(Sλ)L as left Symn+1-module. Therefore, using Theorem 5.20 we have

(A.1) 〈(Sλ)L, Hk(F,C)〉 = dimHk(K∗(Sλ)).

The Poincaré polynomial P (t) of the Milnor fibre F can be computed by

(A.2) P (t) =
n−1∑
k=0

dimHk(F ;C)tk =
n−1∑
k=0

∑
λ�n+1

dimSλ〈(Sλ)L, Hk(F,C)〉tk.

Note that the Poincaré polynomial P0(t) of F0 is P0(t) = P (t)/2.
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We tabulate computational results on (A.1) and (A.2) for all simple mod-
ules of Symn+1 for 2 ≤ n ≤ 7 in Tables 1–6. Each conjugate pair of partitions
is listed in the same row as they produce the same cohomology.

Table 1: Sym3, P (t) = 2 + 8t
H0 H1

(3), (13) 1 2
(2,1) 0 2

Table 2: Sym4, P (t) = 2 + 14t + 36t2

H0 H1 H2

(4), (14) 1 2 2
(3, 1), (2, 1, 1) 0 1 4

(2, 2) 0 2 4

Table 3: Sym5, P (t) = 2 + 18t + 56t2 + 160t3

H0 H1 H2 H3

(5), (15) 1 0 2 4
(4, 1), (2, 13) 0 1 1 4
(3, 2), (22, 1) 0 1 2 6

(3, 1, 1) 0 0 4 10

Table 4: Sym6, P (t) = 2 + 28t + 146t2 + 412t3 + 1012t4

H0 H1 H2 H3 H4

(6), (16) 1 0 2 4 2
(5, 1), (2, 14) 0 1 1 3 8
(4, 2), (22, 12) 0 1 1 6 15
(3, 3), (2, 2, 2) 0 0 1 7 11
(4, 1, 1), (3, 13) 0 0 2 5 13

(3, 2, 1) 0 0 4 6 18

Table 5: Sym7, P (t) = 2 + 40t + 314t2 + 1240t3 + 2572t4 + 6648t5

H0 H1 H2 H3 H4 H5

(7), (17) 1 0 2 0 2 6
(6, 1), (2, 15) 0 1 1 3 3 6
(5, 2), (22, 13) 0 1 1 4 8 18
(5, 1, 1), (3, 14) 0 0 2 3 10 24
(4, 3), (23, 1) 0 0 1 4 7 18

(4, 2, 1), (3, 2, 12) 0 0 2 8 17 46
(3, 3, 1), (3, 22) 0 0 1 5 11 28

(4, 13) 0 0 0 6 8 22
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Table 6: Sym8, P (t) = 2+54t+590t2 +3330t3 +10212t4 +17744t5 +50644t6

H0 H1 H2 H3 H4 H5 H6

(8), (18) 1 0 0 0 2 6 4
(7, 1), (2, 16) 0 1 1 1 1 3 10
(6, 2), (22, 14) 0 1 1 2 4 10 28
(6, 12), (3, 15) 0 0 2 3 3 7 26
(5, 3), (23, 12) 0 0 1 3 6 10 34

(5, 2, 1), (3, 2, 13) 0 0 2 5 16 25 76
(5, 13), (4, 14) 0 0 0 3 10 22 50

(4, 4), (24) 0 0 0 1 4 19 30
(4, 3, 1), (3, 22, 1) 0 0 1 6 18 27 84
(4, 22), (32, 12) 0 0 0 3 16 31 74

(4, 2, 12) 0 0 0 8 22 36 112
(3, 3, 2) 0 0 0 4 10 16 52

Remark A.1. Note that the results tabulated here are consistent with those
appearing in [DL16], up to type A4, where W = Sym5. However the cases
computed in loc. cit. include the action of the monodromy group on the
cohomology, in the sense that the structure of H∗(F,C) is described as a
Γ-module, where Γ = Symn+1 × μn(n+1). In the present work, although the
original Brady-Falk-Watt model of F does come with an action of the mon-
odromy on the CW complex describing F (see [BFW18] or [Zha20, Section
3.4]), our analysis of the model has not been able to preserve the monodromy
action, except to the following extent. In general, the group 〈γ〉 acts (like any
subgroup of W ) on F , and hence on H∗(F ). But it is known that 〈γ〉 may be
identified with a quotient (or subgroup) of the monodromy μ, and this action
is easily identifiable in our model [Zha23, Remark 6.4].
Remark A.2. Settepanella computed the cohomology Hk(PBn+1,Q[q, q−1])
of the pure braid group PBn+1 with coefficients in the Laurent polynomial
ring Q[q, q−1] for n ≤ 7 [Set09, Table 2]. This is related to the Milnor fibre
F0 by

Hk+1(PBn+1,Q[q, q−1]) ∼= Hk(F0,Q).
Hence Settepanella’s results give rise to the Poincaré polynomials P0(t) in
type An for n ≤ 7. The Poincaré polynomials P0(t) = P (t)/2 given in the
tables below coincide with those of Settepanella up to type A6. However, for
type A7 our cohomology groups Hk(F0;Q) agree with Settepanella’s except
for k = 5, 6, but the Euler characteristic remains the same.
Remark A.3. Apart from the monodromy action, the major issue untouched
by our work is the mixed Hodge structure on each cohomology group H i(F,C).
We hope to return to this theme later.
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