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Catalan numbers and noncommutative Hilbert schemes∗

Valery Lunts, Špela Špenko, and Michel Van den Bergh

Abstract: We find an explicit Sn-equivariant bijection between
the integral points in a certain zonotope in Rn, combinatorially
equivalent to the permutahedron, and the set of m-parking func-
tions of length n. This bijection restricts to a bijection between
the regular Sn-orbits and (m,n)-Dyck paths, the number of which
is given by the Fuss-Catalan number An(m, 1). Our motivation
came from studying tilting bundles on noncommutative Hilbert
schemes. As a side result we use these tilting bundles to construct
a semi-orthogonal decomposition of the derived category of non-
commutative Hilbert schemes.

1. Introduction

1.1. Some combinatorial results

In this section we state some purely combinatorial results which give a new in-
terpretation of parking functions and Fuss-Catalan numbers [21, 22] in terms
of lattice points in a certain polytope related to the permutathedron. In the
next section we will give the motivation behind these results.

Let m,n ∈ N and let (ei)i=1,...,n be the standard basis for Zn ⊂ Rn. We
let the symmetric group Sn act on Zn and Rn by permutations. Let Δm,n be
the Sn-invariant zonotope which is the Minkowski sum of the intervals

[0, ei] , 1 ≤ i ≤ n,
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[
0, m2 (ei − ej)

]
, 1 ≤ i �= j ≤ n.

For ν :=
∑n

i=1 ei and τ ∈ R put Δm,n
τ = Δm,n + τν.

Definition 1.1. We say that τ is admissible if τ−m(n−1)/2 is not a rational
number with denominator ≤ n.

The significance of this condition is the following:

Lemma 1.2. (see §3.1) τ is admissible if and only if ∂(Δm,n
τ ) ∩ Zn = ∅.

In this note we prove the following result.

Proposition 1.3. (see §3.2) Assume τ is admissible. Let L = (mn+ 1)Zn +
Zν. Then

(1.1) Δm,n
τ ∩ Zn → Zn/L : a 
→ ā

is an Sn-equivariant bijection.

This result follows very quickly from the fact that Δm,n
τ is equivalent, in

a suitable sense, to the permutahedron and hence is space tiling, see Propo-
sition 3.1.

Proposition 1.3 allows one to relate the lattice points in Δm,n
τ for ad-

missible τ to parking functions. Recall that an (m,n)-parking function is a
sequence of natural numbers1 a = (a1, . . . , an) ∈ Nn such that its weakly
increasing rearrangement ai1 ≤ ai2 ≤ · · · ≤ ain satisfies aij ≤ m(j − 1). Note
that Sn acts on parking functions by permuting indices. Below we denote the
set of (m,n)-parking functions by Qm. According to [20, NOTE in §3] or [3,
§5.1] the map

(1.2) Qm → Zn/L : a 
→ ā

is an Sn-equivariant bijection. Combining Proposition 1.3 with (1.2) yields:

Corollary 1.4. If τ is admissible then there is an explicit Sn-equivariant
bijection between lattice points in Δm,n

τ and (m,n)-parking functions.

If a = (a1, . . . , an) ∈ Nn is weakly increasing then we say that a is an
(m,n)-Dyck path if aj ≤ (m− 1)(j − 1). The number of (m,n)-Dyck paths is

(1.3) An(m, 1) := 1
mn + 1

(
mn + 1

n

)
= 1

(m− 1)n + 1

(
mn

n

)

1We assume 0 ∈ N.
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and is called the (m,n)-Fuss-Catalan number. The following is clear:

Lemma 1.5. There is a bijection between regular orbits of (m,n)-parking
functions and (m,n)-Dyck paths which sends the orbit representative a =
(a1, . . . , an) ∈ Nn with a1 < . . . < an to (a1, a2 − 1, . . . , an − (n− 1)).

We thus obtain a new interpretation of the Fuss-Catalan numbers.

Corollary 1.6. If τ is admissible then there is an explicit Sn-equivariant
bijection between regular Sn-orbits in Δm,n

τ ∩ Zn and (m,n)-Dyck paths. In
particular the number of such regular orbits is An(m, 1).

The claim in Corollary 1.6 concerning An(m, 1) was first observed by us
as a consequence of the properties of the “noncommutative Hilbert scheme”.
This is explained in §1.2 below.

In an appendix we will also give a second combinatorial proof of the claim
about An(m, 1). The basic idea is that if τ is admissible then, since Δm,n

τ is
a zonotope such that ∂(Δm,n

τ ) ∩ Zn = ∅, we have |Δm,n
τ ∩ Zn| = Vol(Δm,n

τ )
by Proposition A.2 and moreover there is an explicit formula for Vol(Δm,n

τ )
in terms of spanning trees in a suitable graph (see §8). Using an appropriate
inclusion/exclusion argument we may upgrade this to a count of the regular
orbits in Δm,n

τ ∩ Zn.

1.2. The noncommutative Hilbert scheme

The Hilbert scheme of length n-sheaves on An may be viewed as the moduli
space of cyclic modules of dimension n over the polynomial algebra
C[x1, . . . , xm]. It is then natural to define the corresponding noncommuta-
tive Hilbert scheme Hm,n as the moduli space of cyclic modules of dimension
n over the free algebra C〈x1, . . . , xm〉. We recall:

Proposition 1.7 ([15, 23]). Hm,n has a stratification consisting of affine
spaces and the number of strata is given by the Fuss-Catalan number An(m, 1).

It is clear that Hm,n can be described as the moduli space of stable (or
equivalently semi-stable) representations with dimension vector (1, n) and
stability condition (−n, 1) [8, Definition 1.1] of the following quiver Qm,n:

• •

m

1
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It follows from loc. cit. that Hm,n can also be described as a GIT quotient
for the group (C∗ × GLn(C))/{center} ∼= GLn(C). More precisely we get
Hm,n = W ss,χ/G where G = GLn(C), W = End(Cn)⊕m⊕Cn and W ss,χ ⊂ W
is the semi-stable locus associated to the determinant character χ.

Using the GIT description Hm,n we will show using [7, 18] that Hm,n

admits a family of tilting bundles. Let Δm,n
τ ⊂ Rn be as in §1.1. We identify Zn

with the character group of the diagonal torus (C∗)n in GLn(C). Let (Zn)+ be
the “dominant” part of Zn, i.e. those (c1, . . . , cn) ∈ Zn such that c1 ≥ · · · ≥ cn.
For ξ ∈ (Zn)+ let V (ξ) be the irreducible GLn(C) representation with highest
weight ξ and let V(ξ) be the equivariant vector bundle on Hm,n corresponding
to the GLn(C)-equivariant vector bundle V (ξ) ⊗k OW ss,χ on OW ss,χ . Put

ρ̂ = 1
2
∑
i<j

(ei − ej) + 1
2(n− 1)ν = (n− 1, n− 2, . . . , 1, 0).

Proposition 1.8. (see §4) Let τ be admissible. Then

(1.4) Tτ :=
⊕

ξ∈(Zn)+∩(Δm,n
τ −ρ̂)

V(ξ)

is a tilting bundle on Hm,n.

We refer the reader to Appendix B for tables with tilting bundles on H2,2,
H3,2 and H4,2.

Comparing the ranks of K0(Hm,n) obtained from Propositions 1.7 and 1.8
yields the identity

(1.5) |(Zn)+ ∩ (Δm,n
τ − ρ̂)| = An(m, 1).

Sending a 
→ a + ρ̂ defines a bijection between (Zn)+ ∩ (Δm,n
τ − ρ̂) and the

regular orbits in Zn∩Δm,n
τ . This yields a “geometric” proof of the claim about

An(m, 1) in Corollary 1.6.

1.3. A semi-orthogonal decomposition of the non-commutative
Hilbert scheme

We will use the tilting bundles defined in (1.4) to obtain an interesting side
result on the structure of D(Hm,n) := DQch(Hm,n). Recall that if X is a
noetherian scheme and A is a sheaf of Azumaya algebras on X of rank n2

then the Brauer-Severi scheme Y = BS(A, X) is defined as the moduli space
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of left ideals of codimension n in A (using the opposite convention from [14,
§8.4]). The definition of the Brauer-Severi variety was extended to singular
schemes in [2] and in [23] (see also [10, 16]) it was shown that Hm,n is the
Brauer-Severi scheme of the so-called “trace ring of m generic n×n-matrices
Tm,n”.

Trace rings were studied by Artin [1] and Procesi [13], we refer the reader
to [18, §1.4.5] for a short introduction. Recall that the commutative trace ring
Zm,n of m generic n×n-matrices is equal to Γ(W0)G with W0 = Mn(C)⊕m and
G = GLn(C), acting by conjugation. The noncommutative trace ring Tm,n is
the Zm,n-algebra of covariants [18, §4.1] M(Mn(C)) := (Mn(C) ⊗ Γ(W0))G.
It follows from the definitions that Hm,n → SpecZm,n is a standard Brauer-
Severi scheme when restricted to the Azumaya locus of Tm,n. This locus is
non-empty and dense when m ≥ 2.

If ξ ∈ Zn is a weight for G then we define its color as c(ξ) =
∑

i ξi; i.e. it
is the weight of ξ when restricted to the center of G. For c ∈ Z we put

(1.6) Vτ (c) :=
⊕

ξ∈(Zn)+∩(Δm,n
τ −ρ̂),c(ξ)=c

V (ξ)

Proposition 1.9. Assume that τ is admissible and m ≥ 2. There is a semi-
orthogonal decomposition (depending on τ)

(1.7) D(Hm,n) = 〈D(Rτ,u), . . . , D(Rτ,u+n−1)〉

linear over Zm,n with u = �nτ� − n(n− 1)/2 such that

Rτ,c = M(End(Vτ (c))).

The restriction of Rτ,c to the Azumaya locus of Tm,n is Morita equivalent to
the restriction of T⊗c

m,n.

The proof is based on partitioning the tilting bundle Tτ into
semi-orthogonal parts.
Remark 1.10. The reader will guess that the restriction of (1.7) to the Azu-
maya locus of Tm,n is a rotation of the usual semi-orthogonal decomposition
of a Brauer-Severi scheme (see [5, Theorem 5.1]). One may show that this
guess is correct.
Remark 1.11. From (1.7) we get a τ -dependent decomposition

An(m, 1) = rkK0(Hm,n) =
u+n−1∑
c=u

rkK0(Rτ,c).



1438 Valery Lunts et al.

It would be interesting to see if this decomposition can be made concrete
using some of the many combinatorial interpretations of An(m, 1).

1.3.1. Related work In [12] the authors construct a semi-orthogonal de-
composition of D(H3,n). Their decomposition is more refined as it also involves
categories generated by suitable V(ξ) on approprate smaller noncommutative
Hilbert schemes. Moreover, they construct a semi-orthogonal decomposition
of the category of matrix factorisations on H3,n with a super-potential whose
critical locus is the Hilbert scheme of points.

2. Zonotopes

2.1. Generalities

A zonotope Z in a finite dimensional R-vector space V is a subset of the form
t +

∑u
i=1[βi, γi]. The vectors γi − βi are the defining vectors of the zonotope.

The faces of a zonotope are easy to compute (see e.g. [11, §2]). They are of
the form

(2.1) t +
∑

〈λ,γi−βi〉>0
γi +

∑
〈λ,γi−βi〉<0

βi +
∑

〈λ,γi−βi〉=0
[βi, γi]

for λ ∈ V ∗. In particular if Z is full dimensional then the facets correspond
to those λ such that the defining vectors in the kernel of λ span a hyperplane
in V . Note that the facets come in parallel pairs, and the companion to a
facet corresponding to λ is the one corresponding to −λ.
Remark 2.1. The defining vectors of a zonotope are of course not unique.
However if we restrict to the case that no two defining vectors are parallel
then the defining vectors are unique – up to sign. Indeed it follows from (2.1)
that they are given by the edges of the zonotope. We may always reduce to
the case that no two defining vectors are parallel by taking the sum of all
groups of parallel intervals.

For use below we define the tiling lattice as the subgroup of V spanned
by the vectors

(2.2) tλ =
∑

〈λ,γi−βi〉>0
(γi − βi) −

∑
〈λ,γi−βi〉<0

(γi − βi)

where λ runs through the λ ∈ V ∗ defining facets (as explained above).
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2.2. Space tiling zonotopes

Let Z ⊂ V be a full dimensional zonotope where dimV = n. We say that Z
is space tiling if there is a lattice L ⊂ V such that V =

⋃
l∈L(l +Z) and such

that Z ∩ (l +Z) for l ∈ L is a face in both Z and l +Z. It is easy to see that
L must be equal to the tiling lattice of Z.

The following result gives an easy way of recognizing space tiling zono-
topes.

Proposition 2.2 ([11, §2.II]). A full dimensional zonotope is space tiling if
and only if every n − 2-dimensional subspace of V spanned by the defining
vectors is contained in 2 or 3 (and not more) hyperplanes spanned by the
defining vectors.

Lemma 2.3. Assume that M ⊂ V is a lattice and that Z is a translation
of a zonotope with vertices in M such that in addition M ∩ ∂Z = ∅. Assume
furthermore that Z is space tiling with tiling lattice L (in particular L ⊂ M).
Then the map

Z ∩M 
→ M/L : m 
→ m̄

is a bijection.

Proof. By the definition of space tiling we have an L-equivariant decompos-
tion:

M =
∐
l∈L

(l + M ∩ Z).

Quotienting out the L-action on both sides yields the lemma.

3. The structure of Δm,n
τ

One may apply (2.1) to determine the facets of Δm,n
τ . One verifies using (2.1)

that the facets of Δm,n
τ are defined by ±wλk for w ∈ Sn, for k = 1, . . . , n,

λk = (1k, 0n−k). More precisely the facets associated to ±wλk are respectively
of the form

(3.1)

F+
w,k = τν + (1/2)m

∑
(wλk)i=1,(wλk)j=0

(ei − ej) +
∑

(wλk)i=1
ei

+ (1/2)m
∑

(wλk)i=(wλk)j

[0, ei − ej ] +
∑

(wλk)i=0
[0, ei],

F−
w,k = τν + (1/2)m

∑
(wλk)i=0,(wλk)j=1

(ei − ej)

+ (1/2)m
∑

(wλk)i=(wλk)j

[0, ei − ej ] +
∑

(wλk)i=0
[0, ei].
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Proposition 3.1. The zonotope Δm,n
τ is space tiling with tiling lattice (mn+

1)Zn + Z(1, . . . , 1).

Proof. We identify Rn with the hyperplane in Rn+1 given by x0+· · ·+xn = 0.
Then Δm,n

τ is a translation of the zonotope with the defining vectors ei − e0,
m(ej − ei), 1 ≤ i < j ≤ n. On the other hand, the permutahedron is the
Minkowski sum of [ei, ej ], 0 ≤ i < j ≤ n; i.e. it is a zonotope with the defining
vectors ej − ei, 0 ≤ i < j ≤ n (see e.g. [4, Theorem 9.4]). It is known that the
permutahedron is space tiling, see e.g. [4, Ex. 9.12]. By Proposition 2.2, the
space tiling property does not depend on the length of the defining vectors.
Thus, Δm,n

τ is also space tiling.
Now we compute the tiling lattice. As indicated above the facets of Δm,n

k

are determined by ±wλk. Furthermore in the formula (2.2) we have t−λ = −tλ
so it suffices to compute the lattice spanned by (twλk

)w,k Let S = {i | (wλk)i =
1} and hence Sc = {1, . . . , n} \ S = {i | (wλk)i = 0}. Note that |S| = k,
|Sc| = n− k. We write δiS for the characteristic function of S; i.e. δiS = 1 if
i ∈ S and δiS = 0 otherwise. With (δiS)1≤i≤n we denote (δ1S , . . . , δnS). Then

twλk
= (m/2)

∑
i∈S,j∈Sc

(ei − ej) − (m/2)
∑

i∈Sc,j∈S
(ei − ej) +

∑
i∈S

ei

= m
∑

i∈S,j∈Sc

(ei − ej) +
∑
i∈S

ei

= (m(n− k) + 1)(δiS)1≤i≤n −mk(δiSc)1≤i≤n

= (mn + 1)(δiS)1≤i≤n −mk(1, . . . , 1).

Setting k = n we obtain twλn = (1, . . . , 1). Adding a suitable multiple of
twλn to twλk

we then obtain that the lattice is generated by (1, . . . , 1), (mn+
1)(δiS)1≤i≤n for S ⊂ {1, . . . , n}, which easily implies our claim.

3.1. Proof of Lemma 1.2

Fix 1 ≤ k ≤ n. We have to understand when F±
w,k contains an integral point

for w ∈ Sn. Renumbering the (ei)i we may assume that w = id where id is the
identity in Sn. Moreover it follows from (3.1) that F−

id,k contains a rational
point if and only if F+

id,k does too. Hence we are reduced to understanding to
when Fk := F+

id,k contains an integral point.

Let Lk =
∑

i>k Zei +
∑

i,j≤k or i,j>k Z(ei − ej). Then (Lk)R is the hyper-
plane through the origin which is parallel to Fk. Sending ei to 1 for i ≤ k
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and to 0 for i > k identifies Zn/Lk with Z and Rn/(Lk)R with R. We regard
Zn/Lk as being contained in Rn/(Lk)R.

Let Fk be the image of Fk in Rn/(Lk)R. Note that Fk is a singleton.

Claim 1. Fk contains an integral point if and only if Fk ⊂ Zn/Lk.

One direction is obvious. To see the other direction assume x ∈ Zn is such
that (x + (Lk)R) ∩ Fk �= ∅. Then −x + Fk is a translation of

(3.2) (1/2)m
∑

i,j≤k or i,j>k

[0, ei − ej ] +
∑
i>k

[0, ei]

inside (Lk)R. Now (3.2) is itself a translation of a full dimensional lattice
polytope and any translation of a full dimensional lattice polytope contains
an integral point (e.g. by Proposition A.2). Hence there exists some y ∈ Zn

such that y ∈ −x + Fk. We conclude x + y ∈ Fk ∩ Zn.

Claim 2. Fk is contained in Zn/Lk if and only if τ −m(n− 1)/2 ∈ (1/k)Z,

To prove this we use the identifications Zn/Lk
∼= Z, Rn/(Lk)R ∼= R given

above. By (3.1) Fk is the singleton {kτ +mk(n−k)/2+k}. This is contained
in Z if and only if τ + m(n − k)/2 ∈ (1/k)Z which may be rewritten as
τ −m(n− 1)/2 ∈ −m(k − 1)/2 + (1/k)Z = (1/k)Z.

Combining Claims 1 and 2 finishes the proof.

3.2. Proof of Proposition 1.3

The fact that (1.1) is a bijection follows directly from Lemma 2.3 combined
with Proposition 3.1. The fact that (1.1) is Sn-equivariant is clear.

4. Proof of Proposition 1.8

Let the setting be as in §1.2 in the introduction. Our aim is to apply [7] but
the representation W is not “quasi-symmetric” (see [18]). So the theory of
[7] does not apply on the nose. We circumvent this by relating Hm,n to the
moduli space H̃m,n of stable (or equivalently semi-stable) representations with
dimension vector (1, n) and stability condition (−n, 1) of the quiver Q̃m,n:

• •

m

1



1442 Valery Lunts et al.

This quiver is symmetric so the corresponding GIT setting is symmetric.
Moreover it is easy to see that a representation of Q̃m,n is semi-stable if and
only if its restriction ot Qm,n is semi-stable. It then follows by a descent
argument that the map π : H̃m,n → Hm,n, obtained by forgetting the left
pointing arrow, is a vector bundle.

We now assume that τ is admissible. By Lemma 1.2, ∂(Δm,n
τ ) ∩ Zn = ∅.

For ξ ∈ Zn let T̃τ be defined as Tτ but using the quiver Q̃m,n. Then T̃τ is a
tilting bundle on H̃m,n by [7, Corollary 4.2].2

Lemma 4.1. Let π : X̃ → X be a morphism of quasi-compact quasi-separated
schemes with a section i : X → X̃. Let T ∈ Perf(X) such that Lπ∗T is a
tilting object in DQch(X̃). Then T is itself tilting.

Proof. We first need to prove that T is a generator of DQch(X), i.e. that
T ⊥ = 0. Let N ∈ DQch(X) be such that RHomX(T ,N ) = 0. We compute

RHomX(T ,N ) = RHomX(T , Rπ∗Ri∗N )
= RHomX̃(Lπ∗T , Ri∗N ).

Since (Lπ∗T )⊥ = 0 deduce Ri∗N = 0 and hence N = Rπ∗Ri∗N = 0. So
T ⊥ = 0. We also have

RHomX̃(Lπ∗T , Lπ∗T ) = RHomX(T , Rπ∗Lπ
∗T ).

Since X̃ → X is split, the unit map T → Rπ∗Lπ
∗T is also split. It follows

that RHomX(T , T ) is a direct summand of RHomX̃(Lπ∗T , Lπ∗T ). Hence if
Lπ∗T has no non-zero self-extensions then neither has T .

5. A semi-orthogonal decomposition for the
noncommutative Hilbert scheme

We use the same notations as in §4. Let W̃ be the GIT setting corresponding
to Q̃m,n, i.e. (W̃ ,G) with W̃ = Cn ⊕ (Cn)∗ ⊕Mn(C)⊕m. We will consider the
C∗-action on W̃ obtained by scaling the right pointing arrow in Q̃m,n. This

2The polytope used in [7] to construct tilting objects is denoted by (1/2)Σ̄−ρ+δ
in loc. cit., where ρ is half the sum of the positive roots and (in our setting) δ = τ ′ν
for suitable τ ′. See [7, Lemma 2.9, Corollary 4.2]. Using the definition of Σ in [7,
§2] one checks that Δm,n

τ − ρ̂ = (1/2)Σ̄ − ρ + τ ′ν where τ = τ ′ − 1 + n/2, so that
we may indeed use the results of [7]. Note that the exact relation between τ and τ ′

is not important here.
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action commutes with the G-action and we have W̃//C∗ = W , H̃m,n//C∗ =
Hm,n.

Below we will define some notions for the GIT setting (W,G). Similar
notion related to the GIT setting (W̃ ,G) will be decorated with a tilde.

Recall that Hm,n = W ss,χ/G. For τ ∈ R let Mτ ⊂ DQch(W/G) be the
smallest cocomplete subcategory of DQch(W/G) containing the G-equivariant
OW -modules V (ξ) ⊗OW for ξ ∈ (Δm,n

τ − ρ̂) ∩ (Zn)+.

Lemma 5.1. Assume that τ is admissible. The restriction map

res : DQch(W/G) → DQch(W ss,χ/G)

restricts to an equivalence Mτ
∼= DQch(W ss,χ/G).

Proof. Using the fact that Tτ (cfr Proposition 1.8) is a tilting bundle it suffices
to prove that when ξ, ξ′ ∈ (Zn)+ ∩ (Δm,n

τ − ρ̂) the restriction map defines an
isomorphism

HomW (V (ξ) ⊗OW , V (ξ′) ⊗OW )G → HomHm,n(V(ξ),V(ξ′)).

This follows by applying (−)C∗ to

HomW̃ (V (ξ) ⊗OW̃ , V (ξ′) ⊗OW̃ )G → HomH̃m,n
(Ṽ(ξ), Ṽ(ξ′))

together with [7, Theorem 3.2].

Put
Tτ,c :=

⊕
ξ∈(Zn)+∩(Δm,n

τ −ρ̂),c(ξ)=c

V(ξ)

Lemma 5.2. Assume τ that is admissible.

1. We have Tτ,c = 0 unless c ∈ {u, . . . , u+n−1} for u = �nτ�−n(n−1)/2.
2. Assume that m ≥ 2. Then Tτ,c �= 0 for c ∈ {u, . . . , u + n − 1} for

u = �nτ� − n(n− 1)/2.
3. We have HomHm,n(Tτ,c, Tτ,c′) = 0 if c > c′.
4. We have HomHm,n(Tτ,c, Tτ,c) = (End(Vτ (c)) ⊗ Γ(W0))Ḡ where Ḡ =

G/Z(G) = PGLn(C) and where Vτ (c) was defined in (1.6).

Proof. 1. If ξ ∈ Δm,n
τ − ρ̂ then it follows from the definition of Δm,n

τ that
c(ξ) =

∑
i ξi = v + nτ − c(ρ̂) = v + nτ − n(n− 1)/2 for v ∈ {0, . . . , n}.

By admissibility nτ is non-integral. It follows that c(ξ) can only be an
integer when it is as in the statement of the lemma.
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2. It suffices (by (1)) to find n points (ξi)ni=1 in (Zn)+ ∩ (Δm,n
τ − ρ̂) whose

c-values give all congruence classes modulo n. We will construct such
(ξi)i such that each ξ = ξi satisfies the following additional condition:
(I) ξ does not belong to any facet of Δm,n

τ ′ − ρ̂ for any τ ′ ∈ R except
for possibly the “extreme” facets F+

id,n − ρ̂, F−
id,n − ρ̂, cf. §3.

Assume that for a particular τ we have constructed (ξi)i, covering n
congruence classes, such that in addition (I) is satisfied for each ξ = ξi.
Then changing τ by crossing an non-admissible value τ0 to τ ′, we either
still have ξ ∈ Δm,n

τ ′ − ρ̂ or ξ �∈ Δm,n
τ ′ − ρ̂ and ξ lies on one of the two

extreme facets of Δm,n
τ0 − ρ̂. In this case ξ +

∑
i ei or ξ − ∑

i ei lies in
Δm,n

τ0 − ρ̂ on the opposite facet and hence belongs to (Zn)+∩ (Δm,n
τ ′ − ρ̂)

and its c-value is congruent to c(ξ) modulo n. Hence we keep n points
in (Zn)+∩ (Δm,n

τ ′ − ρ̂) whose c-values give all congruence classes modulo
n. Thus it is sufficient to construct the (ξi)i satisfying (I) and covering
n congruence classes under the assumption that 0 < τ < 1/n.
For 0 < τ < 1/n and 0 ≤ l ≤ n− 1 let

ξ = (n− 1, n− 3, . . . , n− 2l + 1, n− 2l, n− 2l − 2, . . . ,−n + 2) − ρ̂.

One verifies that ξ ∈ (Zn)+. We claim that ξ ∈ Δm,n
τ − ρ̂ and that ξ

satisfies (I). Since c(ξ) = n− l− c(ρ̂), the possible ξ cover n congruence
classes and hence we are done if we can prove this claim.
We will verify both parts of the claim simultaneously. To show that
ξ satisfies condition (I) we must understand the facets of Δm,n

τ ′ for all
τ ′ ∈ R. So as before let F±

w,k be the facets of Δm,n
τ ′ and let f± ∈ F±

w,k.
By (3.1) we obtain:

(5.1)
〈wλk, f

+〉 = τ ′k + (1/2)mk(n− k) + k,

〈−wλk, f
−〉 = −τ ′k + (1/2)mk(n− k).

These equations define the supporting hyperplanes of Δm,n
τ ′ . On the

other hand, direct verification using the definition of ξ yields:

〈wλk, ξ + ρ̂〉 ≤
{
k(n− k) if k ≤ l,

k(n− k) + k − l if k > l,

= k(n− k) + max{0, k − l}(5.2)

〈−wλk, ξ + ρ̂〉 ≤
{
k(n− k) − k if k ≤ n− l,

k(n− k) − (n− l) if k > n− l
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= k(n− k) − min{k, n− l}

with equalities only possible if w = id. Using our hypotheses m ≥ 2
and 0 < τ < 1/n, comparing (5.2) with (5.1) for τ ′ = τ we obtain
ξ + ρ̂ ∈ Δm,n

τ . It remains to show condition (I), i.e. that ξ + ρ̂ �∈ F±
w,k

for (w, k) �= (id, n). By applying c(−) to ξ + ρ̂, Δm,n
τ ′ we note that if

ξ+ρ̂ ∈ Δm,n
τ ′ then nτ ′ ≤ n−l ≤ nτ ′+n, or −l/n ≤ τ ′ ≤ (n−l)/n. If this

holds then we get from (5.1) and (5.2), together with the assumption
m ≥ 2:

〈wλk, f
+〉 ≥ − l

n
k + (1/2)mk(n− k) + k

≥ k(n− k) + max{0, k − l} ≥ 〈wλk, ξ + ρ̂〉,

〈−wλk, f
−〉 ≥ −n− l

n
k + (1/2)mk(n− k)

≥ k(n− k) − min{k, n− l} ≥ 〈−wλk, ξ + ρ̂〉.

If one of these chained inequalities is actually an equality (which would
be the case if ξ + ρ̂ ∈ F+

w,k ∪ F−
w,k) then it follows that (w, k) = (id, n).

Indeed in both equations the middle inequality can only be an equality
if k = n, while the last inequality can only be an equality if w = id, as
mentioned after (5.2). Hence the claim follows.

3. We need to prove that HomHm,n(V(ξ),V(ξ′)) = 0 when ξ, ξ′ ∈ (Zn)+ ∩
(Δm,n

τ − ρ̂) and c(ξ) > c(ξ′). By Lemma 5.1 we have

HomHm,n(V(ξ),V(ξ′)) = HomW (V (ξ) ⊗OW , V (ξ′) ⊗OW )G

= (Hom(V (ξ), V (ξ′)) ⊗ Γ(W ))G

⊂ (Hom(V (ξ), V (ξ′)) ⊗ Γ(W ))Z(G)

= 0

where in the fourth line we use that fact that the weights of Γ(W ) with
respect to Z(G) = C∗ are ≤ 0 and by hypothesis c(ξ) > c(ξ′).

4. This is proved by a similar computation. Assume c(ξ) = c(ξ′)

HomHm,n(V(ξ),V(ξ′)) = HomW (V (ξ) ⊗OW , V (ξ′) ⊗OW )G

= (Hom(V (ξ), V (ξ′)) ⊗ Γ(W ))G

= (Hom(V (ξ), V (ξ′)) ⊗ Γ(W )Z(G))Ḡ

= (Hom(V (ξ), V (ξ′)) ⊗ Γ(W0))Ḡ.
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Recall that if a reductive group acts on a variety X then the stable locus
Xs ⊂ X is the set of points with closed orbit and finite stabilizer.

Lemma 5.3. The inverse image in W0 of the Azumaya locus U of Tm,n in
SpecZm,n is equal to the Ḡ-stable locus W s

0 in W0. The stabilizer of every
point in W s

0 is trivial.

Proof. By Artin’s Theorem [1, Theorem (8.3)] the Azumaya locus of SpecZm,n

corresponds to the simple m-dimensional representations of the n-loop quiver.
It is well-known that this is precisely the stable locus [9]. If V is a represen-
tation of a quiver Q, considered as a point in the representation space of Q,
then its stabilizer is connected (see [6, Propositon 2.2.1]). It follows that a
stable representation has trivial stabilizer.

Remark 5.4. Note that Lemma 5.3 and the results below that depend on it,
only have content for m ≥ 2 since for m = 0, 1 we have U = ∅.

Let c ∈ Z. We say that a representation of G has color c if Z(G) acts with
character c. Note that if ξ ∈ (Zn)+ has color c then so does V (ξ).

Lemma 5.5. Let V , V ′ be two non-zero G-representations with the same
color. Then the restrictions to U of (End(V ) ⊗ Γ(W0))Ḡ and (End(V ′) ⊗
Γ(W0))Ḡ are Morita equivalent.

Proof. There is a Ḡ-equivariant nondegenerate Morita context between
End(V ) ⊗ Γ(W0) and End(V ′) ⊗ Γ(W0) given by Hom(V, V ′) ⊗ Γ(W0) and
Hom(V ′, V )⊗Γ(W0). When restricted to W s

0 this descends to a non-degenerate
Morita context between the restrictions of (End(V )⊗Γ(W0))Ḡ and (End(V ′)⊗
Γ(W0))Ḡ.

Corollary 5.6. Assume that V is a G-representation with color c. Then the
restriction of (End(V )⊗Γ(W0))Ḡ to U is Morita equivalent to the restriction
of T⊗c

m,n to U .

Proof. This follows from the fact that (Cn)⊗c has color c.

Proof of Proposition 1.9. The proof follows by combining Proposition 2.2,
Lemma 5.2 and Corollary 5.6.

Appendix A. A second proof of the numerical claim in
Corollary 1.6

We recall some results on the combinatorics of zonotopes.
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A.1. Volumes of zonotopes and lattice points

We first recall that any zonotope can be tiled by elementary (cubical) zono-
topes.

Proposition A.1. [17, §5] Assume Z is a full dimensional zonotope in V
of the form t +

∑
i∈H [0, βi] with t ∈ V and (βi)i ∈ V . Then Z can be tiled

by elementary zonotopes of the form t+
∑

i∈S βi +
∑

j∈B[0, βj ] for S,B ⊂ H,
with every B such that (βi)i∈B is a basis of V occurring exactly once and such
that moreover every facet of an elementary zonotope that appears in the tiling
is contained in the translation of a facet of Z by a composition of translations
by ±βk for k ∈ H.

From this we can deduce a formula for the number of lattice points of Z
in case there are no lattice points on the boundary.

Proposition A.2. Let M ⊂ V be a lattice and let Z ⊂ V be a translation of
a full dimensional zonotope with vertices in M . Then

|Z ∩M | ≥ VolM (Z)

with equality if ∂Z ∩M = ∅.
Proof. By shifting Z slightly (which does not increase |Z∩M |) we may ensure
that M does not intersect any facet of the tiling elementary zonotopes. Then
Proposition A.1 reduces us to the case that Z is an elementary zonotope
which is trivial.

Combining this with Stanley’s formula [19, Theorem 2.2] for VolM (Z) we
obtain a formula for |Z ∩M | in case ∂Z ∩M = ∅.
Corollary A.3. [19, Theorem 2.2] Let the setting be as in Proposition A.2.
Then |Z ∩M | =

∑
S h(S) where S ranges over all maximal linearly indepen-

dent subsets of {βi | i ∈ H} and h(S) is (the absolute value of) the volume
(with respect to M) of the parallelepiped spanned by βi ∈ S.

A.2. Group action on zonotopes

Lemma A.4. Let Z = t +
∑

i∈I [0, βi] be a zonotope in V . Let G be a finite
group of affine automorphisms of V which preserves Z and let G0 be the
underlying linear group. The invariant polytope ZG is the zonotope in V G

given by

(A.1) ZG = t̄ +
∑
i∈I

[0, β̂i]
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where ?̄, ?̂ denotes averaging for respectively G and G0; i.e. ū = (1/|G|)
×∑

σ∈G σ(u). û = (1/|G|)∑σ∈G0 σ(u).

Proof. Since Z is preserved by G and convex it is closed under averaging.
Hence

ZG = {ū | u ∈ Z}.
We now use the linearity properties of averaging to obtain (A.1).

Corollary A.5. Fix a lattice M in V and let Z be a translation of a lattice
zonotope in V . Let G be a finite group of affine automorphisms of V which
preserves Z. Then ZG is the translation of a lattice zonotope.

Proof. Let γi be the vectors corresponding to the edges of Z. By definition
γi ∈ M . The γi are only determined up to sign but they yield a canonical
multiset {βj | j ∈ J} := {±γi | i ∈ I} ⊂ M . It follows from Remark 2.1 that
Z may be written as:

Z = t +
∑
j∈J

[0, βj/2]

for suitable t. Note that {βj | j ∈ J} is preserved by G0 (since the set of
edges is preserved by G). It follows that t is preserved by G. By Lemma A.4
we have

(A.2) ZG = t +
∑
j∈J

[0, β̂j/2].

We consider G0 as acting on J . The right-hand side of (A.2) can be written
as

ZG = t +
∑

j∈J/G0

[0, β̃j/2]

where β̃j =
∑

βk∈G0(βj) βk ∈ M . We have (̃−βj) = −β̃j and if G0(−βj) =
G0(βj) then β̃j = 0. Thus we obtain

ZG = s +
∑

j∈(J/G0)/±
[0, β̃j ]

for suitable s. Hence ZG is indeed a translated lattice zonotope.
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A.3. The Möbius function of set partitions

Let S be a finite set. We consider the poset ΠS of partitions S = {S1, . . . , St}
of S, ordered by refinement (e.g. {S′, S \ S′} < {S} for S′ ⊂ S). Part of the
corresponding Möbius function [21, p.7] is given by

μ(S) := μ(
{
{1}, . . . , {n}

}
,S) =

∏
S∈S

μ(S)

with
μ(S) = (−1)|S|−1(|S| − 1)!.

Or summarizing
μ(S) = (−1)n−|S| ∏

S∈S
(|S| − 1)!.

A.4. Lattice points in Δm,n
τ and spanning trees

In this section and the next we assume that τ is admissible (see Definition 1.1).
Let V be the multiset {(ei − ej)m | 1 ≤ j < i ≤ n} ∪ {ei | 1 ≤ i ≤ n}
(i.e. each ei − ej , 1 ≤ j < i ≤ n in the multiset appears m times). Then
Δm,n

τ is a translation of the lattice zonotope
∑

f∈V [0, f ]. Hence we may appy
Corollary A.3 to compute |Δm,n

τ ∩ Zn|. Thus we need to find all subsets of n
linearly independents elements from V .

To this end we create an undirected graph G with vertices {0, . . . , n} with
an edge between i and j for each vector ei − ej in V and an edge between 0
and i for each vector ei in V .

Put [n]={1, . . . , n}. So summarizing G is the graph with vertices {0, . . . , n}
and edges

• m edges between i and j for every i �= j ∈ [n],
• 1 edge between 0 and i for every i ∈ [n].

We obtain the following correspondence that follows by construction and the
definition of spanning trees.

Lemma A.6. The above correspondence between the elements in V and edges
in G gives a bijective correspondence between the subsets of n linearly inde-
pendent elements from V and the set of spanning trees in G.

For a graph H we denote by τ(H) the set of its spanning trees.
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Corollary A.7. We have

|τ(G)| = |Δm,n
τ ∩ Zn|.

Proof. We apply Corollary A.3. We may do this since ∂(Δm,n
τ ) ∩ Zn = ∅.

Note that the volumes of the parallelepipeds (given by suitable minors) are
all equal to 1. Hence Lemma A.6 implies the equality.

For every set partition S of [n] we denote by G/S the contracted graph,
obtained by shrinking all subgraphs connecting vertices in the same S ∈ S to
a point (note the special role of the vertex 0, which is never contracted).

A.5. Regular orbits and spanning trees

Recall that Sn acts on Δm,n
τ . We extend Corollary A.7 to G/S. Denote by HS

the stabilizer of S, i.e. HS = {g ∈ Sn | gS = S, S ∈ S}. We write (−)S and
(−)S for respectively the invariants and the coinvariants under HS . Concretely
if LS =

∑
i,j∈S∈S Z(ei − ej) then Rn

S = Rn/(LS)R, Zn
S = Zn/LS . We denote

by (Δm,n
τ )S the image of Δm,n

τ in Rn
S . Finally we put S(Δm,n

τ ) = {x ∈ Δm,n
τ |

Stab(x) = HS}.

Lemma A.8. We have

|(Δm,n
τ )S ∩ (Zn)S | =

(∏
S∈S

|S|
)
|(Δm,n

τ )S ∩ (Zn)S |.

Proof. Since ∂((Δm,n
τ )S) ⊂ ∂(Δm,n

τ ) and τ is admissible we have ∂((Δm,n
τ )S)∩

(Zn)S = ∅. Likewise using the proof of Lemma 1.2 in §3.1 we see that
∂((Δm,n

τ )S) ∩ Zn
S = ∅ whenever τ − m(n − 1)/2 can be written as a frac-

tion whose denominator is not a sum of cardinalities of elements of S. Since
we have assumed that τ is admissible, this holds in our case.

We apply Corollary A.3 to conclude that |(Δm,n
τ )S ∩ (Zn)S | =

Vol(Zn)S ((Δm,n
τ )S). We note that (Δm,n

τ )S is a translate lattice polytope by
Corollary A.5. Hence by applying Corollary A.3 again we obtain |(Δm,n

τ )S ∩
(Zn)S | = Vol(Zn)S ((Δm,n

τ )S).
We note that (Δm,n

τ )S → (Δm,n
τ )S obtained from (Rn)S → (Rn)S is a

bijection, while the cokernel of (Zn)S ↪→ (Zn)S has order
∏

S∈S |S|. (Indeed,
the cokernel is isomorphically mapped to

∏
S∈S(Z/|S|Z) where the unit ei in

the i-th component maps to
∏

S∈S δiS .) Hence

|(Δm,n
τ )S ∩ (Zn)S | = Vol(Zn)S ((Δm,n

τ )S) =
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(∏
S∈S

|S|
)

Vol(Zn)S ((Δm,n
τ )S) =

(∏
S∈S

|S|
)
|(Δm,n

τ )S ∩ (Zn)S |.

Corollary A.9. We have

|τ(G/S)| =
(∏

S∈S
|S|

) ∑
S′≥S

|S′(Δm,n
τ ) ∩ Zn|.

Proof. During the proof of Lemma A.8 we have shown that ∂((Δm,n
τ )S)∩Zn

S =
∅. It then follows as in Corollary A.7 that τ(G/S) = |(Δm,n

τ )S ∩ (Zn)S | so
that we must prove

|(Δm,n
τ )S ∩ (Zn)S | =

(∏
S∈S

|S|
) ∑

S′≥S
|S′(Δm,n

τ ) ∩ Zn|.

This follows from Lemma A.8.

If X is a set with an Sn-action then we write reg(X) for the set of reg-
ular orbits. Applying Möbius inversion we obtain the following formula for
|reg(Δm,n

τ ∩ Zn)|.
Corollary A.10. We have

(A.3) |reg(Δm,n
τ ∩ Zn)| = 1

n!
∑

S∈Π[n]

1∏
S∈S |S|μ(S)|τ(G/S)|.

Proof. We have |reg(Δm,n
τ ∩ Zn)| = (1/n!)|S0(Δm,n

τ ) ∩ Zn| with S0 =
{{1}, . . . , {n}}. Now we apply Möbius inversion to

f, g : Π[n] → Q, f : S 
→ 1∏
S∈S |S| |τ(G/S)|, g : S 
→ |S(Δm,n

τ ) ∩ Zn|

using Corollary A.9.

A.6. Computing the sum over graphs

In this section we complete the numeric claim in Corollary 1.6 by computing
the sum on right-hand side of (A.3).

Theorem A.11. We have

(A.4) 1
n!

∑
S∈Π[n]

1∏
S∈S |S|μ(S)|τ(G/S)| = 1

(m− 1)n + 1

(
mn

n

)
.
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Proof. We use Kirchhoff’s theorem which says that the number of spanning
trees of a graph is the absolute value of an arbitrary cofactor in the Laplacian
matrix. The Laplacian matrix of G is the matrix of size (n+1)×(n+1) given
by

(A.5)

⎛
⎜⎜⎜⎜⎜⎜⎝

−n 1 1 · · · 1
1 −(n− 1)m− 1 m · · · m
1 m −(n− 1)m− 1 · · · m
...

...
...

...
1 m m · · · −(n− 1)m− 1

⎞
⎟⎟⎟⎟⎟⎟⎠

We will look at the cofactor consisting of the rows [1 : n] and columns [2 :
(n+ 1)]. By substracting m times the top row (1, . . . , 1) from the other rows
one finds that it is (up to sign) the determinant of the square submatrix with
rows [1 : n] in the following (rectangular) (n + 1) × n matrix.

(A.6)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
−nm− 1 0 · · · 0

0 −nm− 1 · · · 0
...

...
...

0 0 · · · −nm− 1

⎞
⎟⎟⎟⎟⎟⎟⎠

which is (up to sign)
(nm + 1)n−1.

Now we evaluate the corresponding cofactor for G/S where S is the set par-
tition

{{1, . . . , n1}, {n1 + 1, . . . , n1 + n2}, . . .}
(thus the sizes of the parts are n1, n2, . . . , nt). This amounts to replacing the
top row and leftmost column in (A.5) by

(−n, n1, . . . , nt).

In the lower left n× n-matrix, the ni × nj blocks are replaced by their sum.
We obtain the following matrix⎛
⎜⎜⎜⎜⎜⎜⎝

−n n1 n2 · · · nt

n1 −n1((n− n1)m + 1) n1n2m · · · n1ntm
n2 n2n1m −n2((n− n2)m + 1) · · · n2ntm
...

...
...

...
nt ntn1m ntn2m · · · −nt((n− nt)m + 1)

⎞
⎟⎟⎟⎟⎟⎟⎠
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The matrix corresponding to (A.6) becomes
⎛
⎜⎜⎜⎜⎜⎜⎝

n1 n2 · · · nt

−n1(nm + 1) 0 · · · 0
0 −n2(nm + 1) · · · 0
...

...
...

0 0 · · · −nt(nm + 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

and now we have to calculate the determinant of the top t rows. We find (up
to sign)

n1 · · ·nt(nm + 1)t−1.

Hence (A.4) becomes

1
n!

∑
S∈Π[n]

1∏
S∈S |S|μ(S)(mn + 1)|S|−1 ∏

S∈S
|S|

= (−1)n

n!
∑

S∈Π[n]

(−1)|S|(mn + 1)|S|−1 ∏
S∈S

(|S| − 1)!

= (−1)n

n!
∑

n1+...+nt=n

(−1)t 1
t!

(
n

n1 · · ·nt

)
(mn + 1)t−1 ∏

i

(ni − 1)!

= (−1)n
∑

n1+...+nt=n

(−1)t 1
t! (mn + 1)t−1

t∏
i=1

1
ni

(the factor 1/t! comes from the choice in enumerating the elements of S).
Putting X = mn+ 1 in the following lemma then finishes the proof of Theo-
rem A.11.

Lemma A.12. We have

(A.7) (−1)n
∑

n1+...+nt=n

(−1)t 1
t!X

t−1
t∏

i=1

1
ni

= 1
n! (X − (n− 1)) · · · (X − 1).

Proof. To compute the lefthand side we need the coefficient of un in the sum

∑
t≥1

∑
(ni)i∈Nt

>0

(−1)t(−u)
∑t

i=1 ni
1
t!X

t−1
t∏

i=1

1
ni

=
∑
t≥1

Xt−1

t!
∑

(ni)i∈Nt
>0

t∏
i=1

(
−(−u)ni

ni

)

=
∑
t≥1

Xt−1

t!

t∏
i=1

∑
n≥1

(
−(−u)n

n

)
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=
∑
t≥1

Xt−1

t! log(1 + u)t

= X−1(exp(X log(1 + u)) − 1)
= X−1((1 + u)X − 1)

=
∑
n≥1

un
(X − 1) · · · (X − (n− 1))

n! .

Hence the sought coefficient is precisely the righthand side of (A.7). This
finishes the proof.

A.7. Second proof of the numeric claim in Corollary 1.6

The claim that |reg(Δm,n
τ ∩ Zn)| = An(m, 1) follows by combining (1.3),

Corollary A.10 and Theorem A.11.

Appendix B. Tables of tilting bundles

If in (1.4) we replace τ by τ + u, u ∈ Z then this amounts to tensoring
Tτ with the line bundle V(u, . . . , u) which does not change its endomorphism
ring. Moreover if [τ, τ ′] does not intersect the inadmissible locus then Tτ = Tτ ′ .
Hence without loss of generality we may assume

τ = ε + t + m(n− 1).

with 0 < ε � 1 and

t = −p

k
1 ≤ k ≤ n, 0 ≤ p < k.

Below we list the weights ξ ∈ (Zn)+ ∩ (Δm,n
τ − ρ̂) that determine the tilting

bundle Tτ for varying t and n = 2, 3, 4, m = 2. They were computed with a
computer program.

B.1. Tilting bundles for (n,m) = (2, 2)

t = −0/1 [1, 0] [1, 1]
t = −1/2 [0, 0] [1, 0]
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B.2. Tilting bundles for (n,m) = (3, 2)

t = −0/1 [1, 1, 1] [2, 1, 0] [2, 1, 1] [2, 2, 0] [2, 2, 1]
t = −1/3 [1, 1, 0] [1, 1, 1] [2, 1, 0] [2, 1, 1] [2, 2, 0]
t = −1/2 [1, 1, 0] [2, 0, 0] [1, 1, 1] [2, 1, 0] [2, 1, 1]
t = −2/3 [1, 0, 0] [1, 1, 0] [2, 0, 0] [1, 1, 1] [2, 1, 0]

B.3. Tilting bundles for (n,m) = (4, 2)

t = −0/1
[3, 1, 1, 1] [2, 2, 1, 1] [3, 2, 1, 0] [2, 2, 2, 0] [3, 2, 1, 1] [2, 2, 2, 1] [3, 3, 1, 0]
[3, 2, 2, 0] [3, 3, 1, 1] [3, 2, 2, 1] [2, 2, 2, 2] [3, 3, 2, 0] [3, 3, 2, 1] [3, 2, 2, 2]

t = −1/4
[2, 1, 1, 1] [2, 2, 1, 0] [3, 1, 1, 1] [2, 2, 1, 1] [3, 2, 1, 0] [2, 2, 2, 0] [3, 2, 1, 1]
[2, 2, 2, 1] [3, 3, 1, 0] [3, 2, 2, 0] [3, 3, 1, 1] [3, 2, 2, 1] [2, 2, 2, 2] [3, 3, 2, 0]

t = −1/3
[2, 1, 1, 1] [3, 1, 1, 0] [2, 2, 1, 0] [3, 1, 1, 1] [2, 2, 1, 1] [3, 2, 1, 0] [2, 2, 2, 0]
[3, 2, 1, 1] [2, 2, 2, 1] [3, 3, 1, 0] [3, 2, 2, 0] [3, 3, 1, 1] [3, 2, 2, 1] [2, 2, 2, 2]

t = −1/2
[1, 1, 1, 1] [2, 1, 1, 0] [2, 2, 0, 0] [2, 1, 1, 1] [3, 1, 1, 0] [2, 2, 1, 0] [3, 2, 0, 0]
[3, 1, 1, 1] [2, 2, 1, 1] [3, 2, 1, 0] [2, 2, 2, 0] [3, 2, 1, 1] [2, 2, 2, 1] [3, 2, 2, 0]

t = −2/3
[1, 1, 1, 1] [2, 1, 1, 0] [3, 1, 0, 0] [2, 2, 0, 0] [2, 1, 1, 1] [3, 1, 1, 0] [2, 2, 1, 0]
[3, 2, 0, 0] [3, 1, 1, 1] [2, 2, 1, 1] [3, 2, 1, 0] [2, 2, 2, 0] [3, 2, 1, 1] [2, 2, 2, 1]

t = −3/4
[1, 1, 1, 0] [2, 1, 0, 0] [1, 1, 1, 1] [2, 1, 1, 0] [3, 1, 0, 0] [2, 2, 0, 0] [2, 1, 1, 1]
[3, 1, 1, 0] [2, 2, 1, 0] [3, 2, 0, 0] [3, 1, 1, 1] [2, 2, 1, 1] [3, 2, 1, 0] [2, 2, 2, 0]
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