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Null Penrose inequality in a perturbed Schwarzschild
spacetime
Pengyu Le

Abstract: In this paper, we review the proof of the null Penrose
inequality in a perturbed Schwarzschild spacetime. The null Pen-
rose inequality conjectures that, on an incoming null hypersurface,
the Hawking mass of the outmost marginally trapped surface is
not greater than the Bondi mass at past null infinity. An approach
to prove the null Penrose inequality is to construct a foliation on
the null hypersurface starting from the marginally trapped surface
to past null infinity, on which the Hawking mass is monotonically
nondecreasing. However to achieve a proof, there arises an obstacle
on the asymptotic geometry of the foliation at past null infinity.
In order to overcome this obstacle, Christodoulou and Sauter pro-
posed a strategy by varying the hypersurface to search for another
null hypersurface where asymptotic geometry of the foliation be-
comes round. This strategy leads us to study the perturbation of
null hypersurfaces systematically. Applying the perturbation the-
ory of null hypersurfaces in a perturbed Schwarzschild spacetime,
we carry out the strategy of Christodoulou and Sauter successfully.
We find a one-parameter family of null hypersurfaces on which the
null Penrose inequality holds. This paper gives a overview of our
proof.
Keywords: Black hole, Schwarzschild spacetime, Penrose inequal-
ity, Null hypersurface.

1. A brief review of the Penrose inequality

1.1. Schwarzschild black hole spacetime

Soon after Einstein’s discovery of his field equations [E1] [E2], Schwarzschild
found the spherically symmetric static vacuum solution of the Einstein equa-
tions in 1916 [Sc]. The Schwarzschild black hole spacetime is named after him.
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Its metric reads as follows:

ds2 = −(1 − 2m/r)dt2 + (1 − 2m/r)−1dr2 + r2(dθ2 + sin2 θdφ2).

The parameter m in the metric has the physical meaning of the mass of the
black hole. When m = 0, the metric becomes the flat Minkowski metric. At
first sight, r = 0 and r = 2m look like values for which the metric is singular.
It was realised by Lemaître 1933 [Le] that only r = 0 is a true singularity
but r = 2m is merely a coordinate singularity, which can be removed by
coordinate transformations. Such a coordinate transformation was already
found by Eddington 1924 [Ed] but without realising the removal of r = 2m
coordinate singularity, and then rediscovered by Finkelstein 1958 [Fi]. In the
Eddington-Finkelstein coordinates {υ, r, θ, φ}, the Schwarzschild metric takes
the form

ds2 = −(1 − 2m/r)dυ2 + 2dυdr + r2(dθ2 + sin2 θdφ2).

Synge 1950 [Sy], Kruskal 1960 [Kr] and Szekeres 1960 [Sz] provided coordinate
systems that cover the maximal analytic extension of the Schwarzschild met-
ric. In the Kruskal-Szekeres coordinate system {u, v, θ, φ}, the Schwarzschild
metric is written as

ds2 = −16m2

r
exp(−r

2m)dudv + r2(dθ2 + sin2 θdφ2),

uv = −(r − 2m) exp r

2m.

Figure 1 visualises the Schwarzschild spacetime in the Kruskal-Szekeres
coordinate system. In the figure, each point represents a sphere of radius r.
The shadowed region is the interior of the black hole, consisting of spheres of
radius r ≤ 2m. The boundary of the shadowed region is the event horizon.
The sphere on the event horizon has the radius r = 2m.

1.2. Concepts of null infinity and a closed trapped surface

Before the above complete figure of the Schwarzschild spacetime was obtained,
there were important works done in the meantime. In 1939 [OS], Oppenheimer
and Snyder studied the gravitational collapse of a dust ball with uniform
density, based on the previous work of Tolman 1934 [T]. This is the first work
on relativistic gravitational collapse, and provides the intuition leading to the
concept of a future event horizon, and the concept of a black hole.
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Figure 1: Schwarzschild spacetime in the Kruskal-Szekeres coordinate system.

In 1964 [P1], Penrose introduced the idea of conformal compactification
and the Penrose diagram, to define the concept of null infinity. With this
concept, he could mathematically define the black hole region to be the com-
plement of the past of the future null infinity, and the boundary of the black
hole region as the future event horizon. Figure 2 shows the conformal com-
pactifications of the Minkowski spacetime and the Schwarzschild spacetime.

Examining the derivative of the radius r in the Schwarzschild spacetime,
one can easily find that, in the exterior region, r increases in the outgoing
future null direction, but decreases in the incoming future null direction.
While in the black hole region, r decreases in both future null directions. Such
spheres in the black hole region are called trapped. On the event horizon, r
is a constant along the tangential null direction, but decreases along the
transversal future null direction. We call these spheres on the event horizon
marginally trapped.

In 1965 [P2], Penrose introduced the general concept of a closed trapped
surface by requiring the area element decreases along both future null nor-
mal directions. Let Σ be a 2-dim closed spacelike surface embedded in a 4-
dimensional time-oriented Lorentzian manifold (M, g). At each point, choose
a conjugate null frame {L,L} in the normal bundle of Σ, where L,L are
both future null vector and satisfy the conjugate condition g(L,L) = −2.
Then for each future null direction, one can define the corresponding second
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Figure 2: The Penrose diagram.

fundamental form: let {e1, e2} be a unit orthogonal tangential frame on Σ,

χAB = g(∇eAL, eB), χ
AB

= g(∇eAL, eB).

The mean curvatures in two future null directions are the traces of χ and χ

in the tangent space of Σ, denoted by trχ, trχ,

trχ = χ11 + χ22, trχ = χ11 + χ22.

trχ and trχ are called future null expansions of Σ. They measure the rate of
change of the area element of Σ in future null directions. The definition of a
closed trapped surface introduced by Penrose is as follows.
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Figure 3: Conjugate null frame {L,L} on Σ.

Definition 1.1. A closed 2-dimensional spacelike surface Σ in a
4-dimensional time-oriented spacetime is called trapped if both future null
expansions on Σ are everywhere negative. Σ is called marginally trapped if
one of its future null expansion vanishes everywhere and the other one is
everywhere negative.

Based on the concepts of null infinity and a closed trapped surface, Pen-
rose proved his celebrated incompleteness theorem: If a spacetime (M, g)
satisfies the following three assertions:

i. the null convergence condition: Ric(N,N) ≥ 0 for all null vectors N ;
ii. there is a non-compact Cauchy hypersurface in M;
iii. there is a closed trapped surface in M;

then (M, g) cannot be future null geodesically complete. Roughly speaking,
the theorem tells us that under reasonable physical assumptions, assuming
the future null infinity is complete, the existence of a closed trapped surface
implies the existence of a future event horizon, of which the future interior
contains the trapped surface. The future interior region of the future event
horizon, the region unable to communicate with future null infinity, is given
the term black hole (introduce by Wheeler in 1967, see [Wh]).

1.3. Bondi mass, irreducible mass and event horizon area

Einstein studied approximated integration of the field equations of gravitation
in 1916 [E3], and predicted the existence of gravitational waves which can
transport energy.

In 1962 [BBM], Bondi et al. considered the gravitational waves in axi-
symmetric solutions of Einstein’s equations. For such solutions, Bondi defined
the Bondi mass aspect function M(u, θ) and the Bondi news function ∂uc(u, θ)
at future null infinity, where θ is the angle variable in the spherical coordinates
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(θ, φ), and φ is the angle around the axis of symmetry. The integration of the
Bondi mass aspect function gives the Bondi mass at future null infinity

m(u) = 1
2

∫ π

0
M(u, θ) sin θdθ.

Moreover it is showed that the Bondi mass satisfies the Bondi mass loss
formula:

dm
du (u) = −1

2

∫ π

0
|∂uc|2(u, θ) sin θdθ ≤ 0.

By this formula, Bondi concluded “The mass of a system is constant if and
only if there is no news. If there is news, the mass decreases monotonically
as long as the news continues.”

Figure 4: Bondi mass at future null infinity.

The Bondi mass m(u) measures the total mass of the spacetime at a
retarded time u at future null infinity, while what is the mass of a black hole
inside the spacetime? In 1970 [C1], Christodoulou introduced the irreducible
mass mir and the concepts of reversible and irreversible transformations for
black holes. The irreducible mass mir of a stationary black hole of total mass
m and angular momentum L is given as follows:

m2 = m2
ir + L2

4m2
ir

.

His most significant results by these concepts are that “an irreversible trans-
formation is characterised by an increase in the irreducible mass of the black
hole and there exists no process which will decreased the irreducible mass”.

A decisive development arrived in 1971 [H2], where Hawking proved the
Hawking’s area theorem that the event horizon area cannot decrease in any
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process. He showed that even when two black holes capture each other to form
a single black hole, the area of the resulting black hole cannot be smaller than
the sum of two initial areas. For a stationary black hole, its irreducible mass
mir and event horizon area Aeh are related by the simple identity

Aeh = 16πm2
ir.

The results of Christodoulou [C1] and of Hawking [H2] motived Bekenstein
to choose the area of a black hole as a measure of its entropy in 1972 [Be],
leading to the celebrated black hole thermodynamics.

1.4. Penrose inequality, heuristic arguments and Riemannian
Penrose inequality

Based on the Bondi mass loss formula, Hawking’s area theorem and other
reasonable physical assumptions, Penrose heuristically derived an inequality
relating the mass of black holes and the mass of the spacetime in 1973 [P3].
Figure 5 illustrates the circumstance where Penrose derived his inequality.
The heuristic argument follows a chain of inequalities as follows: assume that

Figure 5: Gravitational collapse to a black hole.
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no naked singularity exists, then

|Σ 0| ≤ |︸ ︷︷ ︸
i.

Σ1| ≤ Aeh︸ ︷︷ ︸
ii.

(i+) = 16π
[
mir(i+)

]2 ≤ 16π
[
m(i+)

]2︸ ︷︷ ︸
iii.

≤ 16π︸ ︷︷ ︸
iv.

[
m(i0)

]2
= 16π︸ ︷︷ ︸

v.

m2
ADM .

i. trχ < 0 between Σ0 and Σ1;
ii. Hawking’s area theorem;
iii. the black hole eventually settles down to a Kerr black hole at future

timelike infinity;
iv. Bondi mass loss formula;
v. Bondi mass converges to the ADM mass at spatial infinity.

The inequality between the farmost two terms in the above chain is called
the Penrose inequality

|Σ0| ≤ 16πm2
ADM .

A breakthrough in the study of the Penrose inequality is the confirmation
of an important case on a time-symmetric spacelike hypersurface, which is
called the Riemannian Penrose inequality. The proof is given by two groups
of mathematicians, Huisken and Ilmanen 2001 [HI], and Bray 2001 [Br], with
different methods. Both proofs are built on the magnificent toolkit of geomet-
ric analysis, which was first applied successfully to general relativity in the
monumental proof of the positive mass theorem by Schoen and Yau [SY1],
[SY2] and later by Witten [Wi] in a different way.

Huisken and Ilmanen adopted the inverse mean curvature flow in their
proof. In 1973 [G], Geroch discovered that the Hawking mass along an inverse
mean curvature flow is monotone nondecreasing provided that the scalar cur-
vature of the manifold is nonnegative. This idea was later extended by Jang
and Wald 1977 [JW] to prove the Riemannian Penrose inequality heuristically.
However since the inverse mean curvature flow generally develops singulari-
ties, this approach didn’t succeed until Huisken and Ilmanen [HI] introduced
the weak inverse mean curvature flow, established its global existence and
confirmed the Geroch monotonicity formula of Hawking mass for the weak
inverse mean curvature flow. Their theorem of the Riemannian Penrose in-
equality states as follows.
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Theorem 1.2 (Huisken and Ilmanen 2001 [HI]). Let (M, g) be a complete,
connected 3-manifold. Suppose that:

(i) (M, g) has nonnegative scalar curvature.
(ii) (M, g) is asymptotically flat, with ADM mass m.
(iii) The boundary of M is compact and consists of minimal surfaces, and

(M, g) contains no other compact minimal surfaces.

Then

m ≥
√

|N |
16π ,

where |N | is the area of any connected component of ∂M. Equality holds if
and only if M is isometric to one-half of the spatial Schwarzschild manifold.

Bray improved Huisken and Ilmanen’s result by generalising the area of
any outermost minimal surface to the total area of all outermost minimal
surfaces.

Theorem 1.3 (Bray 2001 [Br]). Let (M, g) be a complete, smooth, asymp-
totically flat 3-manifold with nonnegative scalar curvature and total mass m
whose outermost minimal spheres have total surface area A. Then

m ≥
√

A

16π ,

with equality if and only if (M, g) is isometric to a Schwarzschild manifold
outside their respective outermost horizons.

Instead of using the inverse mean curvature flow in the fixed Riemannian
manifold, Bray constructed a flow of the metric gt by conformal deformation.
He showed that the total area of all outermost minimal spheres remains con-
stant, while the total mass of the manifold is non-increasing. As t goes to ∞,
the manifold (M, gt) approaches a spatial Schwarzschild manifold.

2. Null Penrose inequality

2.1. General null Penrose inequality

Analogue to the Riemannian Penrose inequality on a spacelike hypersurface,
the null Penrose inequality is a case of the Penrose inequality on a null hyper-
surface. Figure 6 illustrates the circumstance of the null Penrose inequality.
Instead of comparing the area of Σ0 with the ADM mass at spatial infinity
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Figure 6: The null Penrose inequality.

i0, the null Penrose inequality concerns the Bondi mass measured on H at
past null infinity. It conjectures that on a null hypersurface H, the area of
the marginally trapped surface Σ0 is bounded by the Bondi mass as follows

√
|Σ0|
16π ≤ mBondi(H).

We present here a heuristic argument for the null Penrose inequality from
the Penrose inequality. At past null infinity I−, by the Bondi mass loss for-
mula, the Bondi mass is monotone non-decreasing, and remains constant if
there is no incoming gravitational radiation. The non-decreasing monotonic-
ity of the Bondi mass at past null infinity implies that the Penrose inequality
follows from the null Penrose inequality, since

√
|Σ0|
16π ≤ mBondi(H) ≤ m(i0)︸ ︷︷ ︸

Bondi mass loss formula

= mADM .

It seems that the null Penrose inequality is stronger than the Penrose inequal-
ity from the above argument, however we note that if there is no incoming
gravitational wave after H, then the Bondi mass mBondi(H) should be equal
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Figure 7: Bondi mass at past null infinity.

to m(i0), thus the Penrose inequality will imply the null Penrose inequality,√
|Σ0|
16π ≤ mADM = m(i0) = mBondi(H)︸ ︷︷ ︸

no incoming
gravitational radiation

.

Thus if assuming the existence of such a spacetime with no incoming gravita-
tional radiation after H, the null Penrose inequality follows from the Penrose
inequality.

2.2. Constant mass aspect function foliation

A natural approach to prove the null Penrose inequality is to construct a foli-
ation starting from the marginally trapped surface Σ0 and approaching past
null infinity, along which the Hawking mass is monotonically non-decreasing.

In 1968 [H1], where Hawking introduced the Hawking mass, he already
realised that under certain physical assumptions, by choosing the foliation
parameter as a “luminosity parameter”, the Hawking mass will be mono-
tonically non-decreasing. As showed in figure 8, {Σv} is a foliation on H
parameterised by v, then one can define the associated conjugate null frame
along the foliation by

Lv = 1, g(L,L) = 2.

The foliation parameterised by a “luminosity parameter” proposed by
Hawking is equivalent to the constant null expansion condition, i.e. the null
expansion in the direction of L is a constant function on each Σv,

trχ|Σv ≡ constant.
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Figure 8: A foliation from a marginally trapped surface Σ0 to past null infinity
I− on a null hypersurface H.

In 2008 [S], Sauter constructed two kinds of foliations on a class of nearly
spherically symmetric null hypsurfaces, along which the Hawking mass is
monotonically non-decreasing towards past null infinity:

i. Constant null expansion foliation, where the null expansion trχ in the
direction of L is constant on each Σv. As we mentioned before, this is
the foliation parameterised by a “luminosity parameter” proposed by
Hawking;

ii. Constant mass aspect function foliation, where the mass aspect function
μ is constant on each Σv. The mass aspect function μ for the foliation
{Σv} is defined by

μ = K − 1
4trχtrχ− div/ η,

where K is the Gauss curvature of Σv, trχ is the null expansion of Σv

in the direction of L, η is the torsion 1-from of the conjugate null frame
{L,L} on Σv defined by

η(X) = 1
2g(∇XL,L), ∀X ∈ TΣv,

and div/ is the intrinsic divergence operator on the surface (Σv, g/v =
g|Σv). This foliation was proposed by Christodoulou, see 2008 [C3] [S].
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Figure 9: The foliation is not asymptotically round at I−. limv→+∞ mH (Σv)
has no clear physical meaning.

The mass aspect function was first introduced by Christodoulou in 1991
[C2], and applied in the monumental proof of the global nonlinear stability
of Minkowski spacetime by Christodoulou and Klainerman in 1993 [CK]. An
analogue of the constant mass aspect function foliation on spacelike hyper-
surface was introduced in [CK], playing an important role in the proof. A
simple calculation shows the relation between the mass aspect function and
the Hawking mass: by the Gauss-Bonnet theorem and the Stokes theorem,∫

Σv

μdvolg/v = 8π
rv

mH(Σv),

where rv is the area radius of Σv, i.e. |Σv| = 4πr2
v .

2.3. Obstacle towards proving null Penrose inequality by foliations

By Sauter’s construction in [S], he obtained that along each of the two above
foliations, the Hawking mass is monotonically non-decreasing, i.e.

d
dsmH(Σv) ≥ 0 ⇒

√
|Σ0|
16π = mH(Σ0) ≤ lim

v→+∞
mH(Σv)

??←→ mBondi(H).

If the limit Hawking mass limv→+∞ mH(Σv) was equal to the Bondi mass on
H at past null infinity, then this would prove the null Penrose inequality. How-
ever contrary to the weak inverse mean curvature flow on a spacelike hypersur-
face, where the Hawking mass converges to the ADM mass at spatial infinity
as proved in [HI], there is no definite relation between limv→+∞ mH(Σv) and
mBondi(H). The obstacle comes from the asymptotic geometry of the foliation
at past null infinity.

Figures 9 and 10 explain the main issue of the obstacle. In general, the
foliations constructed by Sauter are not asymptotically round at past null
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Figure 10: The foliation is asymptotically round at I−, then it defines an
asymptotic reference frame. limv→+∞ mH (Σv) is the Bondi energy measured
w.r.t. this frame on H at I−.

infinity, thus the Hawking mass does not converges to the Bondi energy mea-
sured w.r.t. some asymptotic reference frame on H, let alone the Bondi mass
on H.

2.4. Strategy to overcome the obstacle

The obstacle to prove the null Penrose inequality by foliations is the asymp-
totic geometry of the foliation at past null infinity, while there is no room to
deform the foliation’s asymptotic geometry on a fixed null hypersurface, since
the foliation is determined by the marginally trapped surface Σ0.

Figure 11: {Σv} is not asymptotically round at I−.

Christodoulou and Sauter in [S] proposed the strategy to vary the whole
null hypersurface inside the spacetime, and hope that one could find a nearby
null hypersurface and an embedded marginally trapped surface Σ̄0, such that
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|Σ̄0| = |Σ0| and the foliation starting from Σ̄0 is asymptotically round, hope-
fully even defines the center-of-mass reference frame at past null infinity.
Figure 12 visualises this strategy. It is the approach to prove the null Penrose
inequality adopted by us in [L2].

Figure 12: Strategy by varying the null hypersurface: {Σ̄v} on a nearby null
hypersurface H̄ is asymptotically round at I−.

3. Null Penrose inequality in a perturbed Schwarzschild
spacetime

3.1. Assumptions on a perturbed Schwarzschild spacetime

Recall the Schwarzschild metric in the Kruskal-Szekeres coordinates,

ds2 = −16m2

r
exp(−r

2m)dudv + r2(dθ2 + sin2 θdφ2),

uv = −(r − 2m) exp r

2m.

As we mentioned before, the Kruskal-Szekeres coordinates has the advantage
for covering the maximal analytic extension of the Schwarzschild spacetime.
However, when considering the null Penrose inequality, we only concerns the
spacetime along and near a null hypersurface. Therefore we introduce the
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following coordinate transformation {s, s} → {u, v}: let r0 = 2m,
⎧⎪⎪⎨
⎪⎪⎩
u(s) = − s

v0
exp s + r0

r0
,

v(s) = v0 exp s

r0
.

Then the null hypersurface {v = v0} in the Kruskal-Szekeres coordinate sys-
tem is the null hypersurface {s = 0} in the {s, s} coordinate system. In this
new double null coordinate system {s, s, θ, φ}, the Schwarzschild metric takes
the form

gSch = 2(s + r0)
r

exp s + s + r0 − r

r0
(ds⊗ ds + ds⊗ ds)

+ r2
(
dθ2 + sin2 θdφ2

)
,

(r − r0) exp r

r0
= s exp s + s + r0

r0
.

We shall consider a vacuum perturbed Schwarzschild metric in a neigh-
bourhood of the null hypersurface Cs=0 = {s = 0, s ≥ 0}.

Figure 13: Mκ =
{
p : s(p) > −κr0,

∣∣s∣∣ < κr0
}
.

A general vacuum perturbed Schwarzschild metric in Mκ takes the form

g = 4Ω2dsds + g/θθ
(
dθ − bθds

)2
+ 2g/θφ

(
dθ − bθds

) (
dφ− bφds

)
+ g/φφ

(
dφ− bφds

)2
.

The coordinate system {s, s, θ, φ} inherited from the Schwarzschild spacetime
is still a double null coordinate system for the perturbed metric. Let Σs,s
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denote the (s, s)-surface in the coordinate system. There is a natural choice
of a null frame on Σs,s as follows

L = ∂s, L = ∂s + bθ∂θ + bφ∂φ.

Associated with this null frame, one can define the corresponding structure
coefficients, i.e. the corresponding second fundamental forms, the torsion and
the accelerations: for X, Y ∈ TΣs,s,

χ(X, Y ) = g(∇XL, Y ), χ(X, Y ) = g(∇XL, Y ),

η(X) = 1
2Ω2 g(∇XL,L),

ω = 1
4Ω2 g(∇LL,L), ω = 1

4Ω2 g(∇LL,L).

The curvature tensor can also be decomposed into components regarding to
the null frame {L,L} as follows: let {e1, e2} be a unit orthonormal frame on
Σs,s, and latin indices A,B denote 1, 2,

αAB = RLABL, αAB = Ω−4RLABL,

β
A

= 1
2Ω2 RALLL, βA = 1

2Ω4 RALLL,

ρ = 1
4Ω4 RLLLL, σε/AB = 1

2Ω2 RABLL.

Then the metric components Ω, b, g/, the structure coefficients χ, χ, η, ω, ω
and the curvature components α, α, β, β, ρ, σ encode the geometric informa-
tion of the vacuum perturbed Schwarzschild spacetime. A good reference for
the above constructions can be found in [C4]. By comparing these quanti-
ties, we can obtain the quantitative description of the perturbation of the
Schwarzschild metric.

The class of vacuum perturbed Schwarzschild metrics considered in the
proof of the null Penrose inequality satisfies the following assumptions:

i. Σ0,0 is marginally trapped;
ii. the differences of the geometric quantities between the perturbed metric

and the Schwarzschild metric are small and have certain decaying rate
in r at past null infinity. For examples, we list the assumptions on g/, η,
α: let ◦

g denote the standard round metric dθ2 +sin2 θdφ2 on the sphere,
∣∣g/ − g/S

∣∣◦
g
< εr2,

∣∣∂l
s∂

m
s (g/ − g/S)

∣∣◦
g
<

ε

rl−1rm−1
0

,
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|η|◦
g
<

εr0

r
,

∣∣∂l
s∂

m
s η

∣∣◦
g
<

ε

r1+lrm−1
0

,

|α|◦
g
<

εr

r0
,

∣∣∂l
s∂

m
s α

∣∣◦
g
<

ε

rl−1rm+1
0

.

The assumptions on the decaying rate in r are motived from the results
in the global nonlinear stability of Minkowski spacetime [CK]. In fact, these
decaying assumptions are exactly the ones proved in [CK].

3.2. Main results on the null Penrose inequality

In 2018 [L2], we carry out the strategy proposed by Christodoulou and Sauter
that, by varying the null hypersurface in a vacuum perturbed Schwarzschild
spacetime, we found not only one single null hypersurface but a 4-parameter
family of null hypersurfaces, on which the constant mass aspect function
foliation starting from the marginally trapped surface is asymptotically round
at past null infinity.

Theorem 3.1 ([L2]). There is a 4-parameter family of marginally trapped
surfaces near Σ0,0, such that the constant mass aspect function foliation start-
ing from any surface in this family is asymptotically round at past null infin-
ity, hence defining a reference frame at past null infinity.

As the corollary of the above theorem, combining the result of Sauter on
the monotonicity of Hawking mass along the constant mass aspect function
foliation, we proved the following weak null Penrose inequality, where the
Bondi mass is replaced by the Bondi energy.

Theorem 3.2 ([L2]). Let Σ̄ be an arbitrary one in the 4-parameter family of
marginally trapped surfaces, γ∞ be the asymptotic reference frame defined by
the constant mass aspect function foliation starting from Σ̄, and Eγ∞

Bondi

(
H̄
)

be the Bondi energy measured w.r.t. the asymptotic reference frame γ∞ on H̄
at past null infinity, then we have

mH(Σ̄) =

√
|Σ̄|
16π ≤ Eγ∞

Bondi

(
H̄
)
.

The above result is close to the null Penrose inequality, however it suffers
a severe drawback: as long as the Bondi mass is non-zero, the Bondi energy
could be made arbitrarily large by choosing suitable reference frames. How-
ever there is still hope that the asymptotic reference frame in theorem 3.2
could be an asymptotic center-of-mass frame, as the degree of freedom of



Null Penrose inequality in a perturbed Schwarzschild spacetime 1685

marginally trapped surfaces found in theorem 3.2 is 4, which coincides with
the dimension of energy-momentum vector. Thus it is possible to eliminating
the 3-dimensional linear momentum vector to pick up an asymptotic center-
of-mass reference frame by making use of the additional 4 parameters. We
confirmed this intuition and proved the following result, improving the in-
equality from the Bondi energy to the Bondi mass.

Theorem 3.3 ([L2]). There is a 1-parameter family of marginally trapped
surfaces inside the 4-parameter family in theorem 3.2, such that the constant
mass aspect function foliation starting from an arbitrary Σ̄ in this 1-parameter
family defines an asymptotic center-of-mass frame on H̄ at past null infinity,
hence the null Penrose inequality on H̄ holds

mH(Σ̄) =

√
|Σ̄|
16π ≤ mBondi

(
H̄
)
.

The above theorem almost concludes the goal of the strategy of
Christodoulou and Sauter, with one question left: within the 1-parameter
family of marginally trapped surfaces, does there exist one Σ̄ having the
same area as the original marginally trapped surface Σ0,0? As the climax of
[L2], we confirmed it positively and obtained a spacetime Penrose inequality
for Σ0,0.

Theorem 3.4 ([L2]). There exists at least one Σ̄ in the 1-parameter family
of marginally trapped surfaces, such that |Σ̄| = |Σ0,0|. Then we have

mH(Σ0,0) =

√
|Σ0,0|
16π =

√
|Σ̄|
16π ≤ mBondi

(
H̄
)
.

Suppose that the vacuum perturbed Schwarzschild spacetime is embedded in
an asymptotically flat vacuum spacetime with a complete past null infinity,
then

mH(Σ0,0) ≤ mBondi

(
H̄
)
≤ mADM .

The last inequality follows from the Bondi mass loss formula at past
null infinity. In theorem 3.4, it isnot answered whether that the null Penrose
inequality holds on the original null hypersurface C where Σ0,0 is located.
However we can give a heuristic argument of the null Penrose inequality on
the original null hypersurface C as follows: if there is no incoming gravitational
radiation after C at past null infinity, then the Bondi mass loss formula implies
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that the Bondi mass is constant after C, thus it implies the null Penrose
inequality on the original null hypersurface C, i.e.

mH(Σ0,0) ≤ mADM = m(C).

Thus if assuming the existence of such a spacetime with no incoming grav-
itational radiation after C, the null Penrose inequality on the original null
hypersurface C follows form theorem 3.4.

4. Some discussions about the proof

4.1. Basic system of equations for constant mass aspect function
foliation

A useful method to handle the asymptotic geometry of constant mass aspect
function foliation at past null infinity is to investigate the equations of the
geometric quantities along the foliation. For the constant mass aspect function
foliation, we have a system of such equations, which is very useful for the study
of the foliation’s geometry.

The system consists of two groups of equations: one group of propagation
equations, and the other group of elliptic equations. Suppose {Σv} is a con-
stant mass aspect function foliation. Firstly, since the mass aspect function
is constant on each Σs, then

μ = μg/ =
∫
Σv

μdvolg/∫
Σv

dvolg/
.

Secondly, we choose the foliation being parameterised by area radius, i.e.

rΣv = rΣ0 + v ⇔ trχg/ = 2
rΣv

.

The group of propagation equations consists of the following equations:

Ltrχ = 2ωtrχ−
∣∣χ̂∣∣2

g/
− 1

2(trχ)2,

Ltrχ = −2ωtrχ− 1
2trχtrχ−

(
χ̂, χ̂

)
g/
− 2

(
div/ η +

∣∣η∣∣2
g/

)
− 2ρ

= −2ωtrχ− 1
2trχtrχ− 2

∣∣η∣∣2
g/

+ 2μ,

Lμg/ = −3
2trχg/

μg/ + 1
4trχ

∣∣χ̂∣∣2
g/

g/

+ 1
2trχ

∣∣η∣∣2
g/

g/

.
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The group of elliptic equations is the following:

2Δ/ω = − 3
2μ(trχ− trχg/) + 1

2(trχ
∣∣η∣∣2 − trχ

∣∣η∣∣2g/) + 1
4(trχ

∣∣χ̂∣∣2 − trχ
∣∣χ̂∣∣2g/)

+ 4
(
div/ χ̂, η

)
g/

+ 4
(
χ̂,∇/ η

)
g/
− 2div/ β,

div/ χ̂− 1
2d/ trχ− χ̂ · η + 1

2trχη = −β,

div/ χ̂− 1
2d/ trχ + χ̂ · η − 1

2trχη = −β,⎧⎪⎪⎨
⎪⎪⎩

div/ η = K − 1
4trχ trχ− μ = −ρ− 1

2
(
χ̂, χ̂

)
g/
− μ,

curl/ η = 1
2 χ̂ ∧ χ̂ + σ.

Note that if the curvature components β, β, ρ, σ are known functions, then
the above equations form a closed system for the structure coefficients trχ,
trχ, ω, χ̂, χ̂, η and the mass aspect function μ: if their values were known on
the starting surface Σ0, then in principle, we could obtain their values on each
Σs by solving the system. Thus we call the above system the basic system of
equations for constant mass aspect function foliation.

4.2. Perturbation of null hypersurfaces

In our proof of the null Penrose inequality, we have to perturb null hypersur-
faces, therefore we must find a method to describe the perturbation of null
hypersurfaces. The simplest way to achieve such a description is to use the
double null coordinate system to parameterise null hypersurfaces and study
the perturbation of the parameterisations.

In [L2], and later in [L5] with more relaxed assumptions of the space-
time, we describe the following method to parameterise a null hypersurface
as a graph of s over the (s, ϑ) domain. As illustrated in figure 14, the null
hypersurface H is a graph s = h(s, ϑ) over the (s, ϑ) domain. h is the pa-
rameterisation of the null hypersurface H. Σs is the intersection surface of H
with the outgoing null hypersurface Cs. Then introduce the function sf by

sf(ϑ) = h(s, ϑ).

Similar to the parameterisation of H, Σs can be parameterised as a graph of
(s, s = sf(ϑ)) over the ϑ domain.

Since H is null, geometrically it is easy to observe that H is determined by
Σs=0, the intersection of H with Cs=0. This means that the parameterisation
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Figure 14: Null hypersurface H.

h of H is solely determined by s=0f = h(s = 0, ·). In fact, we can derive the
following first order nonlinear partial differential equation satisfied by h

∂sh = −bi · hi + Ω2
(
g/−1

)ij
· hi · hj , where hi = ∂h/∂θi.(4.1)

The converse of the above is also true that if h solves equation (4.1) then H is
null. Thus as long as the parameterisation s=0f of Σs=0 is known, by solving
equation (4.1), we can obtain the parameterisation h of the null hypersurface
H.

With the above method to parameterise a null hypersurface, it is concep-
tually easy to describe the perturbation of null hypersurfaces. As showed in
the following figure, suppose that Ha, a = 1, 2 are two null hypersurfaces with
the parameterisation functions ah, then the perturbation from H1 to H2 can
be described quantitatively by the difference between their parameterisation
functions, i.e. if define

d
{
h
}

= a=2h− a=1h, d
{sf

}
= a=2,sf − a=1,sf,

then these functions tell us how much the null hypersurface H2 deforms away
from H1.

4.3. Space of closed marginally trapped surfaces near Σ0,0

Let H be a null hypersurface near the original null hypersurface Cs=0. When
considering the null Penrose inequality on H, we have to locate the marginally
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Figure 15: A perturbation of null hypersurfaces: H1 and H2.

trapped surface embedded in it. This naturally leads us to consider the space
of all marginally trapped surfaces near Σ0,0.

The first question that needs to be answered is that how we describe
an arbitrary spacelike surface near Σ0,0. In [L2] and also [L3], we adopt a
two-step procedure to parameterise a spacelike surface, which is visualised in
figure 16.

Figure 16: Parameterisation of a spacelike surface Σ.

Geometrically the position of a spacelike surface Σ can be determined by
two sets of data:
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i. the null hypersurface H where Σ is embedded in;
ii. its position inside the null hypersurface H.

As figured out in previous section, H is solely determined by its intersec-
tion surface Σ0 with Cs=0, thus we can apply the parameterisation function
s=0f of Σ0 to locate H. For the position of Σ in H, we use the restriction of
(s, ϑ) on H as a coordinate system and represent Σ as a graph of s over the
ϑ domain. Therefore the above gives a way to parameterise Σ by a pair of
functions (s=0f, f) over the ϑ domain:

i. s=0f : the parameterisation function of Σ0, the intersection surface of H
with Cs=0;

ii. f : Σ is a graph of s = f(ϑ) over the ϑ domain in H.

With the above parameterisation of a spacelike surface Σ, we can trans-
form the question of finding marginally trapped surfaces to a problem of
analysis as follows: consider the map from the parameterisation functions
(s=0f, f) to the outgoing null expansion (trχ)Σ,

(s=0f, f) → Σ → (trχ)Σ,

we denote this map by trχ(s=0f, f). Therefore finding a marginally trapped
surface is equivalent to solving the equation

trχ(s=0f, f) = 0.

In order solve the above equation, one need to obtain the formula of the
outgoing null expansion in terms of s=0f and f . The key feature in the formula
is that trχ(s=0f, f) is an elliptic equation in f . This can be demonstrated
clearly by the following case in the Schwarzschild spacetime.

Suppose that Σ is embedded in Cs=0 in the Schwarzschild spacetime, then
the parameterisation of Σ is (0, f). The outgoing null expansion of Σ is given
by the formula below

trχ(0, f) =trχSch − 2r−2 ◦
Δf + trχ

Sch
· r−2|d/f |2◦

g

=2(r0 + f)−2
[
f − ◦

Δf + (r0 + f)−1|d/f |2◦
g

]
.

In [L4], the formula of the outgoing null expansion is applied to prove the
following interesting result: if a hypersurface satisfies the property that each
spacelike section inside the hypersurface is marginally trapped, then the hy-
persurface must be null. Another interesting application of the formula of the
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Figure 17: A spacelike surface Σ embedded in Cs=0 in the Schwarzschild
spacetime.

outgoing null expansion is the anisotropic criteria for formation of trapped
surfaces in vacuum, see [KLR], [L1].

In [L2], and also [L3], we proved that, in a perturbed Schwarzschild space-
time, for each s=0f which is small in a certain Sobolev norm, the equation
trχ(s=0f, f) = 0 has a unique solution f which is also small in the same
Sobolev norm. Geometrically the result means that in any null hypersurface
H which is a perturbation of Cs=0, there exists a unique marginally trapped
surface Σ close to Σ0, the intersection of H with Cs=0.

4.4. Linearised perturbation of asymptotic geometry at past null
infinity

The main problem in the proof of the null Penrose inequality in a perturbed
Schwarzschild spacetime can be stated as follows: considering the map from
the space of marginally trapped surfaces to the asymptotic geometry at
past null infinity of constant mass aspect function foliations starting from
marginally trapped surfaces, does the image of this map contain the round
metric on the sphere?

For the space of marginally trapped surfaces, we have a desired description
from the point of view of analysis. For the asymptotic geometry at past null
infinity, it is natural to consider the Gauss curvature as the characterisation.
Suppose that {Σv} is a foliation on a null hypersurface H, then define the
renormalised Gauss curvature rK(v, ϑ) to be

rK(v, ϑ) = r2
vKΣv(ϑ),
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where rv is the area radius of Σv: |Σv| = 4πr2
v . We define the limit of rK(v, ·)

as v → +∞ as the limit renormalised Gauss curvature of the foliation at past
null infinity, which is denoted by ∞,rK.

Therefore we have the following description of the problem from the point
of view of analysis: consider the following map from the space of marginally
trapped surfaces to the asymptotic geometry at past null infinity

s=0f
a.−→ (s=0f, f) b.−→ {Σv} c.−→ rK(v, ·) d.−→ ∞,rK

a. trχ(s=0f, f) = 0, i.e. the surface Σ0 parameterised by (s=0f, f) is
marginally trapped;

b. {Σv} is the constant mass aspect function of foliation starting from Σ0;
c. rK(v, ·) is the renormalised Gauss curvature of Σv;
d. ∞,rK(ϑ) = limv→+∞

rK(v, ϑ).

Denote the above map by k:

k : s=0f → ∞,rK.

The problem is to solve the equation

k(s=0f) = 1.

In [L2], this equation is solved by the idea of the inverse function theorem.
We study the linearisation of the map k, use the linearisation to construct
approximating solutions of equation k(s=0f) = 1, and eventually prove that
the approximating solutions converge to an exact solution of the equation.

One key step is to construct the linearisation for the map k in a per-
turbed Schwarzschild spacetime. In general, the construction is involved and
the linearisation is complicated, however in the Schwarzschild spacetime, the
linearisation of k at s=0f = 0 can be calculated explicitly. We demonstrate
the result in this special case in [L2] and [L6]. Denote the linearisation of k
by δk. Let Yl be a spherical harmonic of degree l, i.e.

◦
ΔYl = −λlYl, λl = l(l + 1), l = 0, 1, 2, · · ·

Then the function Ylr0 is an eigenfunction of δk,

δk(Ylr0) =
{(

λl

3 + 2
3

)
− 1

3(λl − 1) exp
[ 3
λl

]}
(λl − 2)λlYl

∼
[
−λl

2 + 1 + 3
8λl

+ O

(
1
λ2
l

)]
Yl.
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The factor (λl − 2)λl implies that the spherical harmonics of degree 0 or 1
are the kernel of the linearisation δk. In fact, δk is a bounded linear map
from the Hilbert space H2(S2,

◦
g) to L2(S2,

◦
g). Moreover δk is diagonal in the

basis of spherical harmonics. Let V = span{1, Y1,1, Y1,2, Y1,3} be 4-dimensional
space spanned by the spherical harmonics of degree 0 or 1 and V ⊥ be the L2

orthogonal complement of V , then

ker δk = V, imδk = V ⊥,

and δk : H2(S2,
◦
g) ∩ V ⊥ → V ⊥ is a bounded self-adjoint bijection.

The above special case is enlightening, where the 4-dimensional kernel
of δk corresponds to the 4-parameter family of marginally trapped surfaces
in theorem 3.3. From this special case, we also observe a difficulty when
applying the idea of the inverse function theorem, that δk is not surjective.
To resolve this difficulty, we apply the well-known Kazdan-Warner identity
on the conformal deformation of the standard round metric on the sphere,
which says that its Gauss curvature must lie in V ⊥.

In [L2] and [L6], we also calculated the linearised perturbation of the
energy-momentum vector with respect to the linearised perturbation of the
marginally trapped surface in ker(δk) = V in the Schwarzschild spacetime.
We use γ∞ to denote the asymptotic reference frame defined by the asymp-
totically round constant mass aspect function foliation. Let δEγ∞ and δP γ∞,i

be the linearised perturbations of the Bondi energy and the linear momentum
respectively. For a linearised perturbation δ(s=0f) = c0+c1Y

1
l=1r0+c2Y

2
l=1r0+

c3Y
3
l=1r0 in V , the corresponding linearised perturbations δEγ∞ and δP γ∞,i are

δEγ∞ = 0, δP γ∞,i = ci

(1
3e

3
2 − 4

3

)
r0.

The above result implies that the linear map from V to the 3-dimensional
space of linearised perturbation of the linear momentum is surjective, and the
kernel V0 of this map is the 1-dimensional space of constant functions. This
partially indicates that one can eliminate the linear momentum to achieve the
asymptotic center-of-mass reference frame, thus to obtain the 1-parameter
family of marginally trapped surfaces in theorem 3.3 from the 4-parameter
family of marginally trapped surfaces in theorem 3.2.
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