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Abstract

Conservation laws, heirarchies, scattering theory and Bicklund transformations
are known to be the building blocks of integrable partial differential equa-
tions. We identify these as facets of a theory of Poisson group actions, and
apply the theory to the ZS-AKNS nxn heirarchy (which includes the non-linear
Schrodinger equation, modified KdV, and the n-wave equation). We first find a
simple model Poisson group action that contains flows for systems with a Lax
pair whose terms all decay on R. Bicklund transformations and flows arise
from subgroups of this single Poisson group. For the ZS-AKNS nxn heirarchy
defined by a constant a € u(n), the simple model is no longer correct. The a
determines two separate Poisson structures. The flows come from the Poisson
action of the centralizer H, of a in the dual Poisson group (due to the behavior
of e*® at infinity). When a has distinct eigenvalues, H, is abelian and it acts
symplectically. The phase space of these flows is the space S, of left cosets of
the centralizer of @ in D_, where D_ is a certain loop group. The group D_
contains both a Poisson subgroup corresponding to the continuous scattering
data, and a rational loop group corresponding to the discrete scattering data.
The H,-action is the right dressing action on S,. Bécklund transformations
arise from the action of the simple rational loops on S, by right multiplication.
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Various geometric equations arise from appropriate choice of a and restrictions
of the phase space and flows. In particuar, we discuss applications to the
sine-Gordon equation, harmonic maps, Schrédinger flows on symmetric spaces,
Darboux orthogonal coordinates, and isometric immersions of one space-form
in another.
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1 Introducton

Soliton theory is an enticingly elegant part of modern mathematics. It has a
multitude of interpretations in geometry, analysis and algebra. The main goal
of this paper is to relate loop groups actions, scattering theory, and Backlund
transformations within the same narrative, via Poisson actions. Our work is
motivated by Beals and Coifman’s rigorous and beautiful treatment of scatter-
ing and inverse scattering theory of the first order systems ([BC 1, 2, 3]). An
expository version of our main result on scattering theory is contained in lec-
ture notes by Richard Palais [Pa]. In retrospect,, we also find that many of our
results in the su(2) case are contained in the book by Faddeev and Takhtajian
([FT]). Throughout the paper, the matrix non-linear Schridinger equation is
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used as a motivating example. In the final section we discuss a number of appli-
cations in geometry, including Darboux orthogonal coordinates and isometric
immerisons of space forms in space forms. We begin the paper with a survey.

¢ Finite dimensional mechanics

To give some perspective, we start with a short review of finite dimensional
Hamiltonian systems, complete integrability, symplectic actions, Poisson ac-
tions, and moment maps. A more detailed review of Poisson actions is given in
section 2. A symplectic structure on a 2n-dimensional manifold M is a closed,
non-degenerate two form w on M. Since w is non-degenerate, it induces an
isomorphism J : T*M — TM. A Hamiltonian on M is a smooth funtion
f: M — R. The Hamiltonian vector field X; corresponding to f is the sym-
plectic dual of df, i.e.,

Xy = J(df), or ix,w = df.

It follows from this definition that X is symplectic, i.e., Lx,w = 0, or equiva-
lently the one parameter subgroup generated by X preserves w.

A Poisson structure on M is a Lie bracket {, } on C*(M, R), which satisfies
the Leibnitz rule

{fg.h} = f{g,h} + g{f, h}.

A symplectic form w induces a natural Poisson structure on M by

{f,9} = w(Xy, X,) = df (X,).

Then the map from C*°(M, R) to the Lie algebra of vector fields on M defined
by f — Xy is a Lie algebra homomorphism, i.e.,

(X7, Xo] = X(1.0)-

Two Hamiltonians f, g are said to be in involution if {f,g} = 0. In this case
the corresponding Hamiltonian flows commute, and g is a conservation law for

the Hamiltonian system
dz
— =X 1
= = X (a(0), (L)

i.e., g is constant on the integral curves of X;.

The Hamiltonian system (1.1) on M?2" is called completely integrable if
there exists n conservation laws f; = f, fa,..., fn that are in involution and
df1,...,df, are linearly independent. For example, the Hamiltonian systems
given by the Kowalevsky top, the Toda system and the geodesic flow on an
ellipsoid are completely integrable.

Suppose f is completely integrable and f = fi,..., f, are in involution.
Then X¢,,... , Xy, generate an action of R" on M. If themap p = (f1,..., fn) :
M — R™ is proper, then Xy ,..., Xy, generate an action of the n-torus T™ on
each R™-orbit of M. Let 61, ...,8, denote the angular coordinates on the torus
orbit. Then (f1,..., fn,61,...,0s) is a coordinate system on M and the system
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(1.1) is linearized in these coordinates. These are the action-angle coordinates
in Liouville’s Theorem (for detail see [AbM], [Ar]).

The notion of complete integrability can be extended to the notion of sym-
plectic action of a Lie group. An action of G on (M, w) is symplectic if the
action preserves w. A symplectic action of a Lie group G on M is Hamiltonian
if there exists a map u: M — G* such that the infinitesimal vector field on M
corresponding to & € G is the Hamiltonian vector field of the function f; defined
by fe(z) = p(z)(€). Such p is called a moment map. When G is abelian, the
flows generated by the action commute. In particular, the study of completely
integrable systems on M?" is the same as the study of Hamiltonian actions of
R™ on M?". When G is non-abelian, the flows generated by 7 in the central-
izer of £ G¢ = {n € G|[{,n] = 0} commute with the flow generated by £. In
other words, f, is a conservation law for the flow generated by £. But the flows
generated by n1,1m2 € G¢ in general do not commute.

o Poisson groups

Given two Poisson manifolds (M, {, }1) and (Ms, {, }2), the product Pois-
son structure on My x M, is defined by

{£,9},y) ={f( ), 9(, ) h(e) + {f(=,), 9(z, ) }(y)-

A map ¢ : M; — M, is Poisson if ¢ preserves the Poisson structure, i.e.,

{fi9}ecd={fop,g00}.

A Poisson group is a Poisson manifold (G, {, }) such that G is a Lie group
and the multiplication map m : G x G — G is a Poisson map, where G x GG
is equipped with the product Poisson structure. The modern study of Poisson
groups was initiated by Drinfeld in [Dr] and there are several good articles by
Lu and Weinstein [LW] and Semenov-Tian-Shanksy [Sel, 2]. Given a Poisson
group G, there is a canonical construction of a dual Poisson group G* (cf. [LW]).
The simplest Poisson group is a Lie group G with the trivial Poisson structure,
and its dual Poisson group is the dual G* of Lie algebra G with the standard
Lie Poisson structure and viewed as an abelian Lie group. In general, Poisson
groups are best understood as part of a Manin triple. A Manin triple is a
triple (9,G+,G-), where G is a Lie algebra with a non-degenerate bi-linear
form (,), 9+, G- are Lie subalgebras of G, § = G, + G as direct sum of vector
spaces, and (G4, G+) = (§—,5G-) = 0. Then the corresponding Lie group G is
Poisson and G_ is its Poisson dual. The triple (G,G+,G_) is called a double
group in the literature. In this paper, we will call this triple a Manin triple
group to avoid confusion with the completely different concept of a double loop
group. For example, (SL(n),SU(n), B,) is a Manin triple group, where B,
is the subgroup of upper triangular matrices in SL(n,C) with real diagonal
entries and (z,y) = Im(tr(zy)) is the non-degenerate bi-linear form. For the
trivial Poisson structure on G, the Manin triple group is (G Xaq §*, G, G*),
where G X ,q9 §* is the semi-direct product.
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¢ Adler-Kostant-Symes Theorem

Let G be a Lie algebra equipped with an ad-invariant, non-degenerate bi-
linear form ( ,). Suppose X and N are Lie subalgebras of G such that G is the
direct sum of X and N as vector space. Then the space X' perpendicular to
X in G with respect to ( ,) can be identified as the dual N* of N. Let M C X+
be a coadjoint N-orbit equipped with the standard co-adjoint orbit symplectic
structure. The Adler-Kostant-Symes theorem ([AdM], [Kos]) states that if f
and g are Ad-invariant function from § to R then f|M and g| M are com-
muting Hamiltonians. For example, let (z,y) = tr(zy) and sl(n,R) = X + N,
where X = so(n) and N is the subalgebra of real, trace zero, upper triangular
matrices. Then X+ is the space of real, symmetric, trace zero matrices, and
the coadjoint N-orbit M at zo = Z?;ll(ei,i+1 + e;41,:) is the set of all tridi-
agonal matrices z = Y I | Tie; + E?;ll yi(eii+1 + €i+1,;) such that all y; > 0
and Y, z; = 0. Note that fi(z) = tr(z*) is Ad-invariant function on sl(n, R).
So the Hamiltonians Hy = fo | M, ..., H, = f,| M are commuting, and the
Hamiltonian system on M corresponding to Hs is the Toda lattice.

Adler and van Moerbeke [AdM] have shown that many finite dimensional
completely integrable systems can be obtained by applying the Adler-Kostant-
Symes theorem to suitable Lie algebras. For more examples, see also the paper
by Reyman [R].

¢ Poisson actions and dressing actions

An action of a Poisson group G on a Poisson manifold M is Poisson if the
action G x M — M is a Poisson map. When G is equipped with the trivial
Poisson structure, a G-action on a symplectic manifold is Poisson if and only
if it is symplectic. The coadjoint action of G on G* is Poisson in this trivial
structure. In general, if (G,G4+,G_) is a Manin triple group such that the
multiplication map from G_ x G4 to G is an isomorphism, then the action of
G, on G_ defined by g4 *g— = §+, where g+ is obtained from the factorization

9+9- = 9-9+ € G- x G4,

is Poisson. This action of G4 on G_ is called the dressing action. To construct
a global dressing action, every element in G must be factored as a product
9+9— € G4 x G_. For example, in reference to the example in the previous
paragraph, the factorization of g € GL(n) as g+9- € U(n) x B,, can be obtained
by applying the Gram-Schmidt process to the columns of g. In general, this
factorization cannot be carried out in the entire group G.

¢ Birkhoff decompositions theorems

We remark here that all of the definitions and results in symplectic and
Poisson geometry mentioned above make sense in infinite dimensions.
Two typical examples of infinite dimensional Manin triple groups are given by:
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(1) G = the loop group of smooth maps from S* to GL(n,C), G4 is the
subgroup of g € G such that g is the boundary value of a holomorphic
map in the disk |A| < 1, and G_ is the subgroup of g € G such that g is
the boundary value of a holomorphic maps in {A] > 1 and g(1) = I.

(2) G and G, are the same as in example (1), and G_ is the subgroup of
g € G such that g(S') c U(n) and g(1) = I.

The two Birkhoff decomposition theorems, which are carefully explained by
Pressley and Segal ([PrS]) state that the multiplication map from G4 x G_ to
G is injective onto an open dense subset of G in example (1) and is a diffeo-
morphism in example (2). We also need a third analytic theorem on how the
decomposition depends on a parameter x € (zg,00) (Theorem 7.14).

o Soliton equations and inverse scattering

Infinite dimensional completely integrable systems are defined in terms of
the existence of action-angle coordinates. All interesting infinite dimensional
completely integrable Hamiltonian systems seem to be generalizations of the
“classical” soliton equations. To set the stage, we give a brief, biased history
of some of the work of these equations that is directly related to our paper.
It is impossible to give a full history here and we have omitted many major
developments.

Solitons were first observed by J. Scott Russel in 1834 while riding on horse-
back following the bow-wave of a barge along a narrow canal. In 1895, Korteweg
and de Vries [KdV] derived the equation

9t = —Qrzz — 64q. (KdV)

to model the wave propagation in a shallow channel of water, and obtained
solitary wave solutions, i.e., ¢(z,t) = f(z—ct) and f decays at +00. The modern
theory of soliton equations started with the famous numerical computation of
the interaction of solitary waves of the KdV equation by Zabusky and Kruskal
([ZK]) in 1965. In 1967, Gardner, Green, Kruskal, and Miura [GGKM] used
a method called inverse scattering of the one-dimensional linear Schrédinger
operator to solve the Cauchy problem for rapidly decaying initial data for the
KdV equation. In 1968, Lax ([La]) introduced the concept of Lax-pair for
KdV and wrote KdV as the condition for a pair of commuting linear operators.
Zakharov and Faddeev ([ZF] 1971) gave a Hamiltonian formulation of KdV,
and proved that KdV is completely integrable by finding action-angle variables.
Zakharov and Shabat ([ZS1] 1972) found a Lax pair of 2x 2 first order differential
operators for the non-linear Schrédinger equation:

g = %(qm +2|q|q) (NLS)

and solved the Cauchy problem via a similar inverse scattering. Wadati
([Wa] 1973) used the same inverse scattering transform for the Modified KdV
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equation
qt = _(q:vxz + 6q2Qm)- (mKdV)

Ablowitz, Kaup, Newell and Segar ([AKNS1] 1973) again used this same inverse
scattering transform for the sine-Gordon equation

Gyt = sing, (SGE),

and also observed ([AKNS2]) that all these equations have a Lax pair of 2 x 2
linear operators. In 1973, Zakharov and Manakov ([ZMal], [ZMa2]) “solved”
the 3-wave equation

b; — b;
— (uij)s +

~ be—b; b — b o
(uu)t_ Z (ak_aj ai_ak>uzkuk]a l#]'

k#i,j

i

using a Lax pair of 3 x 3 first order linear operators. In 1976, Gelfand and
Dikii [GDi] found an evolution equation on the space of n-th order differential
operators on the line with a Lax pair (this generalizes the KdV equation). In
1978, Zakharov and Mikhailov studied harmonic maps from RY! to Lie group
G using a Lax pair of G-valued first order linear operators ([ZMil], [ZMi2]).
The scattering theory of the n x n linear system was studied by Shabat [Sh],

and Beals and Coifman [BC1], [BC2]. In a series of papers, Beals and Coifman
studied the scattering and inverse scattering theory of the first order n x n linear
operator:

5 = (ar + )y,

limg oo €7 4(z,A) = 1, (1.2)

e~2*y(z, \) is bounded in z.

Here a = diag(ay, ... ,a,) is a constant diagonal matrix with distinct eigenval-
ues ai,...,an, and u lies in the space 8(R, gl.(n)) of Schwartz maps from R
to the space gl.(n) of all y € gl(n) with zero diagonal entries. The “scattering
data”, S, of u is defined in terms of the singularity of e~2**4(x, A) in X. As-
sume b € gl(n) is a diagonal matrix. Beals and Coifman defined an evolution
equation, the j-th flow associated to a,b on 8(R, gl.(n)), such that if u(z,t) is
a solution of this equation then the scattering data S(-,t) of u(-,t) is a solution
of the following linear equation:

oS j
615 - [S»A b],
ie., S(\t) = e ?tS(),0)e"’t. Then by the inverse scattering transform they
solved the Cauchy problem for the j-th flow equation globally. When n = 2
and u € su(2), the second flow defined by a = b = diag(i, —7) is the non-linear
Schrédinger equation, and when n = 3 and u € su(3), the first flow defined by
a,b with b # a is the 3-wave equation. They prove that

w = Re /oo tr(—ad(a) "} (v1)ve) dz (1.3)

hade el
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is a symplectic structure on 8(R, gl.(n)) and all the j-th flows are commuting
Hamiltonian flows. In 1991, Beals and Sattinger ([BS]) proved that the j-
th flow equation is completely integrable by finding action-angle variables. A
good survey on recent results is contained in the article by Beals, Deift and
Zhou [BDZ].

e Soliton equations and geometry

Even earlier than they appeared in applied problems, soliton equations oc-
curred in classical differential geometry. It was known in the mid 19th century
that solutions of the sine-Gordon equation correspond to surfaces in R?® with
constant Gaussian curvature —1. The Bécklund transformations (cf. [Ba]) of
surfaces in R® generate families of new surfaces with —1 curvature from a given
one, and hence give a method of generating new solutions of the sine-Gordon
equation from a given one by solving two compatible ordinary differential equa-
tions. Inspired by this classical result, Backlund transformations have been con-
structed for a large class of the equations already mentioned (cf. [Mi], [SZ1, 2],
[GZ], [TU1]). Many more equations in differential geometry possesses Bicklund
transformations. For example, equations for submanifolds with constant curva-
ture in Euclidean space ([TT], [Ten]), Darboux orthogonal coordinate systems
([Da2]), and harmonic maps from R into a Lie group ([U1]).

Another interesting soliton equation made its appearance in differential ge-
ometry at the beginning of the twentieth century. Da Rios, a student of Levi-
Civita, studied the free motion of a thin vortex tube in a liquid medium in
his master degree thesis ([dR]). He modeled this motion using the evolution of
curves in R? (the vortez filament equation or the smoke ring equation):

M= Ve X Yz (1.4)

i.e., 7 evolves along the direction of the binormal with curvature as speed.
The corresponding evolution of the geometric quantity ¢ = kexp(—i [ 7dz)
satisfies the non-linear Schrédinger equation, where k(-,t) and 7(-,t) are the
curvature and torsion of the curve (-, t). This is the Hasimoto transformation
of the vortex filament equation to the non-linear Schrodinger equation. For
an interesting historical account of the multiple rediscoveries of the non-linear
Schrodinger equation for vortex tubes see an article by Ricca [Ri].

Recently, techniques developed in soliton theory have also been used suc-
cessfully in several geometric problems whose differential equations are elliptic.
For example, the studies of harmonic maps from S? to a compact Lie group by
Uhlenbeck ([U1]), harmonic maps from a torus to S® by Hitchen ([Hil]), into a
symmetric space by Burstall, Ferus, Pedit and Pinkall ([BFPP]), constant mean
curvature tori in S* by Pinkall and Sterling ([PiS]), constant mean curvature
tori in 3-dimensional space forms by Bobenko ([Bo]), and minimal tori in S*
by Ferus, Pedit, Pinkall, and Sterling ([FPPS]). For a detailed and beautiful
account of these developments see the survey book by Guest [Gu].
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e Main goal of the paper

The main point of our paper is to show how Béacklund transformations,
scattering theory, and the hierarchy of flows can be obtained in a uniform and
natural way from “dressing actions” of suitable infinite dimensional Manin triple
groups.

e Decay case

Most of the soliton equations considered in our paper are evolution equations
on the space 8; , of gl(n)-valued connections with one complex parameter:

;—5 +al + u.
Here a € u(n) is a fixed diagonal element and u € §(R,UL), where U} is the
orthogonal complement of the centralizer U, = {y € u(n)|[a,y] = 0} of a.

To help explain the basic Poisson group action for soliton equations, we
study a simpler case first: flows on the space 8 of gl(n)-valued connections of
the form d
E.-’L'_ + A(Ia )\)a
where A(z,)\) = E;;o a;(z)N for some k and a; € 8(R,u(n)) forall 0 < j < k.
Hence A(z,)) is rapidly decaying in = for each A € C. Consider now the
infinite dimensional Manin triple group (G,G+,G_), where G is the group of
holomorphic maps g from O\ {co} satisfying the condition g(A)*g(A) = I, G+
is the subgroup of ¢ € G that are holomorphic in C and G_ is the subgroup of
g € G that is holomorphic in O, where O is a small neighborhood of oo in the
Riemann sphere C'U {oo}. Since 8, can be identified as a subspace of the dual
of the Lie algebra C(R,S-), and is invariant under the coadjoint action, 84 is
a Poisson manifold with the standard Lie-Poisson structure. Here we use X to
denote the loop variable for G and z for the variable z € R. The trivialization
Fof D=4 + A(z,)) in 8 is the solution of

-1
{F Fp = Az, \), 15)
limg o F(z,\) =1,

and the monodromy of D is
Fo(X) = zlirr;o F(z,\).

Since A(z, ) is decaying in z, it follows that the linear system (1.5) has a
unique global solution. This identifies 84 as a subset of C(R,G). Moreover,
the monodromy Fy, exists and is an element in G4. The group G_ acts on
C(R,G.) by the pointwise dressing action of G_ on G4, hence it induces an
action x of G_ on 8. In fact, given g € G_, factor

9()F(z,") = F(z,)j(z,") € G4 x G—,



324 Terng and Uhlenbeck

then gx D = d% + F~1F,. The fundamental theorem for the decay case ap-
pears in section 4. We show that the action of G_ on 84 is Poisson with the
monodromy on the line as the moment map. We call the flows generated by
the action of G_ on & the negative flows.

e Rational loop group action

For a fixed constant a € u(n), the phase space 8; , is a coadjoint orbit of
C(R,(G-), and the w defined by formula (1.3), is the Kostant-Kirillov symplectic
form. Since aA + u does not decay in z, the monodromy of the connection
£ + a) +u(z) € 81,4 on the line is not defined. The “action” of G_ on §; 4
can still be defined formally by the dressing action. In fact, first we identify A
with its trivialization E € C(R,G4) of A normalized at ¢ = 0, i.e., F is the
solution of

E-'E, =a)+u,
E(0,)\) =1I.

Let E(z,-) denote the dressing action of g on E(z,-) for each £ € R. Then
E'E, =a)\+ 4

for some smooth 4. In general, 4 does not decay at +oo for g € G_. So the
action of G_ on 8 , does not exist. But & does belong to the Schwartz class for
g € G™, the subgroup of rational maps in G_. Hence the subgroup G™ does
act on 8; ,. Moreover, if g € G™ is a linear fractional transformation then 4
can be obtained by solving an ordinary differential equation or by an algebraic
formula in terms of ¢ and E. These results are proved in section 6.

e Homogeneous structure of scattering data

We are motivated by results from scattering theory to choose the group D _
of meromorphic maps f from C \ R to GL(n,C), which satisfy the following
conditions:

@) fO)fN) =1,

(i) f has a smooth extension to the closure Cy,
(ili) f has an asymptotic expansion at oo,
(iv) fi(r) =lims, f(r £is) such that

f+ = hyvy factors with vy unitary and h4 upper triangular and h4 — [ in the
Schwartz class.

Note that G™ is a subgroup of D_. But D_ is not a subgroup of G_ because
we do not assume f is holomorphic at A = co. Let D¢ denote the subgroup of
f € D_ such that f is holomorphic in C' \ R. In section 7, we prove that D_ is
diffeomorphic to G™ x D¢ by translating the Birkhoff decomposition theorems
for maps from the unit circle to maps from the real line using a linear fractional
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transformation. We identify the space 8; , as the homogeneous space D_/H_
of left cosets of H_ in D_ (scattering cosets), where H_ is the subgroup of
f € D_ that commutes with a. In fact, given f € D_, we use the Birkhoff
decomposition

F)e = B\ )M (A, 2) 7, (1.6)

with £ € C(R,G+) and M € C(R,D_). Then E71E, is of the form a) + u
for some decay map u, and the map sending the left coset H_ f to f—z +E-'E,
gives the identification of D_/H_ and 8; ,. Moreover, the right action of D_
on D_/H_ induces an action of D_ on 8 4, which extends the action * of the
G™ on §; , defined in section 6.

¢ Poisson structure of positive flows

Let H; denote the subgroup of G generated by {e?|p is a polynomial in
A which commutes with a}. In section 8, we construct an action of H4 on
D_/H_ by the “dressing action” of H} on D_. Hence it induces an action of
H, on 8 4. If a is regular (i.e., a has distinct eigenvalues) then H, is abelian,
the action of Hy on 8; , is Hamiltonian, and the flows generated by H, are
the commuting hierarchy of the j-th flows. If a is singular, then H, is a non-
abelian Poisson group and H, contains a distinguished infinite dimensional
abelian subgroup generated by polynomials in a. Although the action of H; is
not symplectic, we prove the action of H; on 8; , is Poisson by constructing
a moment map. Here we need to prove the difficult result that My, € H_,
where M1oo(A) = limg_, 400 M(x, ). Then M-1 M, is a moment map for the
H_ -action. We also show that the pull back of the symplectic form w to the
space of continuous scattering cosets D¢ /(H_ N D) is non-degenerate. We
believe the restriction of w to each algebraic component of the space of discrete
scattering cosets G™/(H.. N G™) is also non-degenerate, and we prove this in
one case.

¢ Backlund transformations

Since G™ acts on the phase space 8; 4, it induces an action of G™ on the
space of solutions of the j-th flow. In general, if G acts on M, the induced
action of G on the space of solutions of a dynamical system is not easy to write
down. In section 10, we prove that the induced action of G™ on the space of
solutions of the j-th flow on 8; , can be constructed again by dressing action as
done in section 6. In fact, if aA + u is a solution of the j-th flow and g € G™ is
a linear fractional transformation, then g § (aA + «) can be obtained by solving
two compatible ordinary differential equations. The action of such g gives the
classical Backiund transformation for the sine-Gordon equation. The orbit of
the rational negative loop group G™ through the vacuum (trivial) solution can
be computed explicitly, and is the space of pure solitons. Using the action of
G™, we are also able to construct periodic (breather) solutions for the harmonic
map equation and the j-th flow equation with 7 > 2.
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¢ Geometric Non-linear Schrédinger equation

In section 11, we apply soliton theory to the Schrodinger flow on Gr(k, C™).
Suppose (M, g, J) is a complex Hermitian manifold. The geometric non-linear
Schrédinger equation (GNLS) is the following evolution equation of curves
on M:

J¢ = Db = Vg, ba, (GNLS)

where V is the Levi-Civita connection of the metric g. When M = S2, this equa-
tion is equivalent via the Hasimoto transformation to the non-linear Schrédinger
equation. In fact, if v evolves according to the vortex filament equation (1.4)
and z is the arc length parameter, then -, satisfies the geometric non-linear
Schrédinger equation on $2. When M is the complex Grassmannian manifold
Gr(k,C™), the GNLS gives the matrix non-linear Schrédinger equation (MNLS)
studied by Fordy and Kulish [FK] for maps ¢ from R? to the space M (n—k)
of k x (n — k) complex matrices:

i .
¢ = §(sz + 299" q), (MNLS)

where ¢* = g*. The MNLS is the second flow on 8, , defined by

(il 0
“= ( 0 —iIn_k) '
This flow has a Lax pair:

0 i 0 0 ¢

(o S (G 8)
0 i 0Y,2 0 ¢ 1 (9* —-aq\] _
6t+(0 _i)/\ +(_q,‘ 0)/\+2i (_qz )] =0

By applying soliton theory to the MNLS, we can solve the Cauchy problem
globally with decay initial data, and obtain a Poisson action of H, on 8; , such
that the flow generated by a)? is the MNLS. The flow generated by b\ with
b € U, commutes with MNLS. If n = 2 then H, is abelian and the action is
symplectic. If n > 2 then H, is non-abelian and the flows generated by bA*
with b € U, commute with the MNLS. But the flows generated by b, A/ and
baA® with by,b2 € U, do not commute if [b, bs] # 0. Not all these flows are
described by differential equations. The flow generated by bA\*¥, b # a and &k # 1,
are mixed integral-differential flows.

¢ Restriction of the phase space by an automorphism

The phase space of the modified KdV (mKdV) equation is the following
subspace of 81 ,:

o= {%+ (é i) A+ (_Oq g) IqES(R,R)}.
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The third flow defined by b = a = diag(i, —i) leaves 8] , invariant and is the
modified KdV flow. While all the even flows vanish on 8 ,, all odd flows
leave 8] , invariant. This is a special case of restrictions given by finite order
automorphisms. To explain this in a more general context, we let U be a semi-
simple Lie algebra (not necessary a subalgebra of su(n)), and let ( ,) denote
the Killing form. Given a € U, let §; , denote the space of all connections
of the form E% + a) + u, where u is a Schwartz class map from R to the
orthogonal complement U of the centralizer U, of a in U. Then ad(a) maps
UL isomorphically onto UL . Hence

w(v1,v5) = Re /_oo (- ad(a)~ (v1), va)de

still defines a symplectic structure on 8 4.
Suppose ¢ is an order k Lie algebra automorphism of U such that there is
an eigendecomposition of o

U=Ug+...4+ U1,

where U; is the eigenspace with eigenvalues e2U—U7/k with 1 < j < k. Assume
a € Uz, and consider the following subspace of 81 ,:

l,a

- _f[d
(U)—{E+a)\+u

ue uoﬁui.}

Note that when U = su(2), o(x) = Z, and a = diag(i, —i), we have 87 , = & ,.

It was shown by the first author [Te2] that there exist a sequence of sym-
plectic structures w, such that w_; = w and all positive flows are Hamiltonian
with respect to w,. In section 9, we study the restriction of the sequence
wy of symplectic forms and the hierarchy of flows to the subspace 87 ,. We
generalize results proved in [Te2] when o is of order 2 and a result for the
generalized modified KdV equation proved by Kupershmidt and Wilson [KW]
when U = gl(n,C), o is the order n automorphism defined by the conjugation
of the operator ¢ € GL(n) that permutes the standard basis of C™ cyclically,
and a = diag(1, a,-,a™ 1) with a = exp(27i/n). In fact, we prove:

(i) If j # 1 (mod k), then the j-th flow vanishes on 87 ,, and if j = 1 (mod
k) then the j-th flow leaves 87 , invariant.

(ii) The restriction of w, on 87 , is zeroif r # 0 (mod k), and is non-degenerate
if » = 0 (mod k).

(iii) Let J.x denote the Poisson structure corresponding to wyi, and Fjgig
the Hamiltonian for the (jk + 1)-th flow with respect to Jo. Then the
(k + 1)-th flow satisfies the Lenard relation

Uy = Jo(VFk+1) = Jk(VFl)
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We should point out that when U C su(n), ¢ must have order 2. So the order
k automorphisms occur in a more general context, in situations for which the
scattering theory is considerably more difficult than the case we have discussed.
This leads us to the question of other algebraic situations.

e Other semi-simple Lie algebras

In this paper we have proved that all rational factorizations can be carried
out, and all the formal scattering coset data yield actual geometric flows when
U = su(n). It follows that any problem for a Lie algebra U C su(n) becomes
purely an algebraic subproblem. However, many interesting equations in differ-
ential geometry arise as flows on a twisted space 87 ,(U), where U ¢ su(n). We
believe that some form of the discrete factorization theory and construction of
scattering coset can be carried out for many real semi-simple Lie algebras. How-
ever, one normally expects a certain number of the factorization theorems to
fail off a “big cell”. Even more complications arise in trying to handle systems
which lie properly in the full complex group. For example, the Gelfand-Dikii
hierarchy for a k-th order differential operators is linked to a restriction by an
order k automorphism (k-twist) in the full gi(k,C), and the scattering theory
is along rays in the directions of k-th roots of unity. Our formal observations
about twists apply, and can help understand pure soliton solutions, but do not
address the scattering theory difficulties.

e First flows and flat metrics

A symmetric space U/K is formed by a splitting of the Lie algebra U =
X + P, where
K, XlcX, [X,Pc? [P,PCX.

The rank of a symmetric space is the maximal number of linearly independent
commuting elements in P, i.e., the dimension of a maximal abelian subalgebra T
in P. Choose a basis by, ... ,b; of T. Then for each element [f] of the scattering
coset, from our point of view (at least formally, rigorously if U C su(n)), there

are k commuting first flows in variables we call z;,...,z,. This yields a flat
connection 5
+ b+ uy
8:171‘

of k variables for each scattering coset [f]. For example, Darboux orthogonal
coordinates in R™ ([Da2]), isometric immersions of R™ into R?" with flat normal
bundle and maximal rank ([Te2]), equations of hydrodynamic types ([DN1],
[DN2], [Dubl], [Ts]) and Frobenius manifolds ([Dub2], [Hi2}) are of this type.
In the appendix, we apply some of the soliton theory to these examples.

The authors would like to thank Mark Adler, Percy Deift, Gang Tian and
Pierre Van Moerbeke for many helpful discussions. We are grateful to Dick
Palais and Gudlaugur Thorbergsson for reading a draft of this paper.
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2 Review of Poisson Actions

In this section, we review basic definitions and theorems on Poisson Lie groups
and Poisson actions. Two good introductions for this material are articles by
Lu and Weinstein [LW] and Semenov-Tian-Shansky [Sel].

A Poisson structure on a smooth manifold M is a smooth section m of
L(T*M,TM) such that the bilinear map

{,}:C®(M,R) x C*°(M,R) - C*(M,R)
defined by {f, g} = dg(n(df)) is a Lie bracket and satisfies the condition

{fg,h} = f{g,h} + g{f,h}, forallf,g,h e C®(M,R).

We will refer to either {, } or = as the Poisson structure on M. The section m
can also be viewed as a section of (T*M ® T*M)* or a section of TM ® TM,
which will still be denoted by . Symplectic manifolds are well-known examples
of Poisson manifolds.

Let (M,{, }nm) and (N, {, }n) be two Poisson manifolds. A smooth map
¢: M — N is called a Poisson map if {fi0¢,food}m = {f1,fa}no¢. The
product Poisson structure on M x N is defined by

{£:9}(=,y) = {f(x,9), 9(x, ¥)}m(@) + {f(z, %), 9(z, ¥) }n (y)-

A submanifold IV of M is a Poisson submanifold if there exists a Poisson struc-
ture on N such that the inclusion map i : (N, {, }~) = (M, {, } ) is Poisson.
The dual G* of a Lie algebra has a natural Lie-Poisson structure by

me(z,y) = £([z,y]), Le§z,ye §=(9")",

with coadjoint orbits as its symplectic leaves. If § has a non-degenerate ad-
invariant form (, ), then by identifying G* with § via (, ), the Lie-Poisson
structure on § is 7, (y, z) = (z, [y, 2]) for all z,y,z € G.

2.1 Definition. A Poisson group is a Lie group G together with a Poisson
structure 7 such that the multiplication map m : G x G — G is a Poisson map,
where G x G is equipped with the product Poisson structure.

Note that w(e) = 0 when =7 is viewed as a map from G — TG x TG.
Moreover, the dual of drm, is a map from G* x §* — G*, which defines a Lie
bracket on G*. The corresponding simply connected Lie group G* has a natural
Poisson structure 7* such that the dual of d(7*), is the Lie bracket on §. We
will call (G*,7*) the dual Poisson group of (G,n). This pair often fits into a
larger group and we call the collection of three groups a Manin triple group.
We first explain the Manin triple at the level of Lie algebras.

2.2 Definition. A Manin triple is a collection of three Lie algebras (G, 9+, 5-)
and an ad-invariant non-degenerate bilinear form { ,) on G with the properties:
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(1) G4,9- are subalgebras of G and § = G4 + G- as direct sum of vector
spaces,
(2) S+, are isotropic, i.e,, (G4, 54+) = (5—,5-) = 0.

Let (G, 59+,5-) be a Manin triple with respect to ( ,). Then §; ~ G* and
the infinitesimal vector field corresponding to z_ € §_ for the coadjoint action
of G_ on G4 is

Ve _ (y+) = [(U_., y+]+'
The Lie Poisson structure on G is
(T4)ey (=) = [z4,y-1+.

If there are corresponding Lie groups (G,G+,G-) we call this a Manin triple
group. If (G,G4,G-) is a Manin triple group, then G and G_ have natural
Poisson group structures. To describe the Poisson structures on G4 and G_,
we first set up some notation: Given z4 € G4, let £, ,7,, denote the 1-forms
on Gz defined by

b (Y+9+) = (@—,y+), T2 (9+¥+) = (T-,y4),
by (y-9-) = (z4,9-), T2y (9-y-) = (T4,y-).

Then the Poisson structures on G4 are given explicitly:

(1) gy (lo_ by ) = (95" 2-94)+,95 ' y-94)
(W—)Q— (TI+3TU+) = ((g_z+g:1)_,g_y+g:1)-

This is equivalent to

(m4)gy ba_) = g+ (97 ' T—94) 4, (7_)g_(T2y) = (9-z4+9-")—g-,

where g+ € G4, x4 € G4 and y4 denotes the projection of y € G onto G+ with
respect to the decomposition § = G4 + §_. Here we identify §_ as G}, G4 as
G* via (,), and use the matrix convention gz = (£,).(x), gzg~! = Ad(g) (=),
and so forth. Since

e, (9-) = T(4m15,4_), (9-),
we have
(m-)g_ (Cay ly,)
=((9- (9= 24+9-)+9-" )=, 9-(97 yrg-)+9=")
= ((9-(9=" 2+ 9- — (92 2+9-)-)9=") -, 9-(9~ v+ 9-)+9=")
=—(9-(97'xrg-)-9=", 9-(9= y+9-)+9-")
=—((9= e19-) -, (97 y49-)4)
=—((g-'z49-)-, 9" ysg-).
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Hence (G4, m4) is the dual Poisson group of (G_,n_). Conversely, if K is a
Poisson group and K* is its dual Poisson group, then there exist an Ad-invariant
form ( ,) and a Lie bracket on § = X + X* such that (G,X,X*) is a Manin
triple. Hence there is a bijective correspondence between the Manin triples and
simply connected Poisson groups. The Manin triple group (G, G4, G-) is called
a double group in the literature. In some cases, multiplication in G can not be
globally defined. In this case, we call (G,G4,G_) a local Manin triple group.

2.3 Example. Let G = SL(n,C), G+ = SU(n), G_ the subgroup of upper
triangular matrices with real diagonal entries, and (z,y) = Im(tr(zy)) the non-
degenerate bi-invariant form on §. Then (G,G4,G-) is a Manin triple group,
and the multiplication map G4 xG_- — G and G_ xG; — G are isomorphisms.
The decomposition of g € SL(n,C) as g = g9+9- € G+ x G- and g =h_hy €
G_ x G+ are obtained by applying the Gram-Schmidt process to the columns
and rows of g respectively.

2.4 Examples. The type of Poisson groups we need in this paper are
generally credited to Cherednik ([Ch]). Let Q4 and Q_ be two domains of
S§%? = C U {oo} such that S? = Q4 U Q- and both Q4 and Q_ are invariant
under complex conjugation. Let O = Q. NQ_. Amapg: 0 — SL(n,C) is
called su(n)-holomorphic if ¢ is holomorphic and satisfies the reality condition
g(A)*g(A) =1 for all A € O. Let

G={g:0— GL(n,C)|g is su(n)-holomorphic}.
Now we fix a normalization point A, € C' U {oo}. If A, € €2, define

G4 = {g € G| g extends su(n)-holomorphically to Q4 g(Xo) = I},
G_ = {g € G| g extends su(n)-holomorphically to Q_}.

Similarly, if A, € 2_, we define

G+ = {g € G| g extends su(n)-holomorphically to Q. },
G_ = {g € G| g extends su(n)-holomorphically to Q_ g(A,) = I}.

The normalization point A, determines an Ad-invariant bilinear form ( ,) on
G =G, +G_ such that (G,9+,5G-) is a Manin triple. In fact,

1 tr(u(A)v(d))
omi L (A= )2

2_;_1_ }{ (W o(A)dA,  if A, = oo,

d\, if X €C,
(u,v) =

where v = 0. Note that if w(A) = 3, ur(A — Xo)* and v = 3, vk(A — A)¥,
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then
Ztr(ukv—k+l), if A, € C,
k

<uvv>z\a =
E tr(ugv_g—1), if A, = 00.
k

The main examples we use in this paper are:
(i) Q4 =C, Q- = O a neighborhood of oo,
(ii) Q4 =C\ {0}, Q- = Qg U 0.

It follows from the Birkhoff Decomposition Theorem (cf. p. 120 Theorem 8.1.2
in the book by Pressley and Segal ([PrS])) that the multiplication map G x
G- — @G for example (i) is injective and maps onto an open dense subset of G.
McIntosh shows that the multiplication map for example (ii) is a diffeomorphism
[Mc].

Now suppose {G,G+,G_) is a Manin triple group, and the multiplication
map G4 x G_ — G is a diffeomorphism. Then given g+ € G4, we decompose

9+9- = f-f+ €G_G4,  g-gy =hih_€GG_.

Define
g+#9- = f-, 9-#9+ = hy.

Then # defines the dressing action of G4 on G_ on the left, and the dressing
action of G_ on G4 on the left respectively. Let z_ € G_, and Z_ denote the
infinitesimal vector field of the action of G_ on G4. Then

£ (9+) =9+(95 ' 2-91)+,  F4+(9-) = 9-(9Z'249-)-.

There are clearly also corresponding dressing action of G_ on G4 and G4 on
G_ on the right.

Since the image of the multiplication map is an open dense subset for Ex-
ample 2.4 (i) and the whole group G for Example 2.4 (ii), the dressing actions
for the corresponding Manin triple groups are local and global respectively.
However, the Lie algebra actions are defined for all elements in both cases.

2.5 Definition. An action of a Poisson group G on a Poisson manifold P is
Poisson if the action G x P — P is a Poisson map.

It is clear that if the G-action on P is Poisson, M is a Poisson submanifold
of P, and M is invariant under G, then the G-action on M is also Poisson.
Here one must be careful as the requirement that M C P is Poisson is quite
restrictive.

A symplectic structure on P is a Poisson structure 7 such that =, : TP} —
TP, is injective for all z € P. This definition agrees with the standard one when
P is finite dimensional, and is the definition of a weak symplectic structure
defined in the lecture notes of Chernoff and Marsden [CM] when P is of infinite
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dimension. For simplicity of notation, we still call such structure a symplectic
structure. A G-action on P is called symplectic if g.(n) =« for all g € G. If
G is equipped with the trivial Poisson structure (g = 0), then an action of G
on a symplectic manifold P is Poisson if and only if it is symplectic. However,
in general these two notions of actions are different on symplectic manifolds.

A moment map of a symplectic action of G on a symplectic manifold P is
a G-equivariant map g : P — §* such that wp(df¢) is the infinitesimal vector
field £ associated to &, where f; is the function on P defined by fe(z) = u(z)(€).
When the action is Poisson, we can not expect to define a Poisson map p: P —
G*. The following theorem gives a natural generalization of moment map for
Poisson actions.

2.6 Theorem ([Lu]). Suppose the Poisson group (G,w) acts on the Poisson
manifold (P,7p), and there exists a G-equivariant Poisson map

m: (P,wp) = (G*,7")
such that
mp(((dm)ym™1)(€)) =€, VEES,
where € is the infinitesimal vector field on P associated to € and (G*,7*) is the

dual Poisson group of (G, ). Then the action of (G,7) on (P,7p) is Poisson.

2.7 Definition. A moment map for a Poisson action of a Poisson group G
on a Poisson manifold P is a map m : P — G* which satisfies the assumptions
in the above theorem.

2.8 Example. Suppose (G,G4,G_) is a Manin triple group, and the multi-
plication maps G+ x G_ — G and G_ x G4 — G are diffeomorphisms. Then
the dressing action of (G_,w_) on (G4,ny) is Poisson and the identity map
id : Gy - G* = G+ is a moment map. To see this, note first that the identity
map is Poisson and equivariant. So by Theorem 2.6 it suffices to check

(74 )94 (dgs 97" (22)) = (14 )g, (le_) = g4(97 - 94)+ = E-(94)-

Similarly, the dressing action of (G4, 7+) on (G-, 7_) is Poisson.

3 Negative flows in the decay case

Our starting point is the Manin triple (9, 5+,5-,(,)) of Cherednik type (Ex-
ample 2.4 (i)) with @ =C, Q_ = O and

(u,v) = % }{ (), v,
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where 7, = 80 is a contour around oco. The basic geometric object is a
G.-valued connection on the real line R of the form
d d k k-1
D=—+A(z,)) = — + (@)X + a1 (2)A* 7" + ...+ ao(z).
dz dz
From the analytic point of view there are three distinct theories which have
very different algebraic structures:

(1) Asymptotically constant cases—the leading term oy is a constant a €
gl(n,C) and a;(z) decays in z for 0 < j < k.

(2) Decay case—oyj(z) decays in z for all 0 < j < k.

(3) Periodic case—a;(z) is periodic in z for all j.

Most of the classical scattering theory deals with the asymptotically constant
case, which is the case we discuss in most of the paper. For the periodic case we
refer the readers to papers by Krichever [Krl], [Kr2]. We start with the decay
case, as a warm-up for the asymptotically constant case.

Fix an element a;y € L!(R). An important example would be ax(z) =
p(z)a for p € LY(R) and a € gl(n,C). If p = dy/dz, then we can rewrite the
connection in y as

Z—i (% + a)\k> = % + p(z)ar*.
Hence the decay case is in reality the case of a “finite interval”. However,
we use the parametrization of the infinite interval to demonstrate structural
relationships with the asymptotically constant case.

Let C(R,G+) be a linear subspace of maps from R to G4, that has a formal
Lie group structure with Lie algebra C(R, G+ ), where C(R) consists of functions
which decay at least as fast as those in L!(R). Identify a map A € C(R,G4)
with an element in C(R,§_)* via the pairing

(e.e)

(A,T)) = / (A,T) dz.

—o0

(Note that if Adz is thought as a one form, then the above formulation is
coordinate invariant). Let 8§ be a subset of C(R, G4 ) that is invariant under the
coadjoint action of C(R,G_). The infinitesimal vector fields for the coadjoint
action of C(R,G_) on § are

vr(A)(z) = [A(z), T ()]+,

where + indicates the orthogonal projection from § onto §;+. The Poisson
structure on 8 is given by

ﬂ-A(T—) = —[Aa T—]+:
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and gives rise to a symplectic structure on the coadjoint orbits of C(R,G_)
on 8.

The coadjoint orbit of a(x)\* under C(R,G_) is clearly contained in the
set of polynomials of degree k of the form

A=a@)M +or 1 (@M a1 (@)X + aole)

with the condition that ag-1(z) is of the form [a(z),v(z)] for some v. For
many choice of a, this will be the only constraint. The vector field vy for
T=Y5, T@A~ is

k-1 k
vr(4) =[A,T)y =) ( > lu(@), Tij (90)]) X,

J=0 \i=j+1
where oy = a.

The negative flows in the decay case can be easily described. Let P(R, G )
denote the Lie algebra of maps A : R — G4 such that A(z)(A) is a polynomial
in A and decay in z. Let Py denote the set of all A € P(R,G_) of degree k, and
Pr.o the set of all A € P(R,5_) whose leading term is aA*. Then P(R,G.),
Pr and Py o are invariant under the coadjoint action of C(R,G_), and

ma(T-) = =[4,T_]+
gives the Poisson structure.

3.1 Definition. The trivialization of A = Z?:o a;(z)N normalized at T =
—00 is the solution F(A) € C(R,G) of

F'F, =4, lm F(@))=1I
Given b € su(n) and A = Y°5_; a;(z) N, then F(A)~!(z)bF(A)(x) € .
Write the expansion of F(A)"16F(A) at A = 0 to get
F(A)T'bF(A) = Bo + BiA+ A + ... (3.1)
The fB;’s can be computed explicitly from A. Since
(F7Y0F), + [A, F71bF) = 0, (3.2)

we can compare coefficients of M in equation (3.2) to get

(Bo)z + [0, Bo] = 0, o
(87)e + lao, 5] + =M ey, 8] = 0.

The B;’s can be solved explicitly from ag,...,a; as follows: Let g : R —
GL(n,C) be the solution to

97'9: = a0
lim, o g(x) =1I.
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Then
Bo = g—lbg,
Bi(z) = g7 (@) S0 (17 9(w)lev), B5-i(w)]g ™ W)y 9(a).

(3.3)
Hence we have obtained a family of integral equations to describe the §;’s.
The Lax pair for this system is written
0 0
Z 4 A =
[ax A 5
It follows from the definition of 3’s that the coefficient of A7 with j < 0 in the
left hand side of equation (3.4) is automatically zero. Setting the coefficients
of M (j > 0) in equation (3.4) to zero gives a system of equations describing a
flow on Py:

+ (F"lb/\‘mF)_} =0. (3.4)

dog _
a
. 4 (3.5)
do; min{k,m+j}
—(# = Zi:j+1 [, Bt j—)-

We call this flow the —m-flow on Py o defined by b. Equation (3.4) also gives
= (A" F'F),)- + [4, A" F1bF)_]

[(A™™F~F), A]- + [A,(A\"™FbF)_]

— [4, (F~'5A"™F)_];.

So the —m-th flow can also be written as
A= [4,(F7'0A™F) L. (36)
Since the vector field
&.s(4) = [A,(FTIA"F) ]+

is bounded in L%, it is not difficult to see that the —m-flow is global. We will
prove these flows generate a natural Poisson group action on Pj o in the next
section.

For our basic model, k = 1, we have

A= a(z)A + u(x),
vr(u) = [o(2), T1(z)),

oo

{T,V}A:/ tr(a(z)[T (z), Vi(z)]) dz,

—0o0

where T' = Z Tix7andV = Y Vs A~7. This gives our next proposition.
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3.2 Proposition. The —m-th flow on P; o defined by b is

Ut = [O!, /Bm—l]y

where 3; is defined inductively by

{60 = g—lbg,
Bi(@) = =974 (@) ([7oo 9o Bj-1lg ™y ) 9(a),

and g is the solution to g7'g, = u and lim,_, o g(x) = I.

A simple change of gauge (cf. [Te2]) implies that the —1-flow describes the
geometric equation for harmonic maps from RY! into U(n) in characteristic
coordinates:

3.3 Proposition. Fiz a smooth L'-map a: R — u(n) and b € u(n). Suppose
u(z,t) is a solution of the —1-flow equation on Py o defined by b:

us = [a, g™ bg), where g71g, = u, lim g(z) =1. (3.7)

T—>—00

Then there exists a unique solution E(x,t,\) for

E-'E, =a)+ u,
E71E, = \"1g71bg,
EA(0,0) = I.

Set s(z,t) = E(z,t,—1)E(z,t,1)"t. Then s : RY' — U(n) is harmonic,
(s71sz)(z,t) is conjugate to —2a(z), and (s™1s¢)(z,t) is conjugate to —2b for
allt € R.

Harmonic maps into a symmetric space are obtained by restriction ([Te2]).
This is discussed in section 9. Also, a more elaborate choice of Cherednik
splittings allows more complicated examples like the harmonic map equation in
space-time (laboratory) coordinates.

4 Poisson structure for negative flows (decay
case)

The dressing action defines a local action of G_ on P(R,§) which is Poisson
and generates the negative flows. The notation is the same as in section 3.

4.1 Theorem. For A € P(R,G), let F(A) : R — G4 denote the trivializa-
tion of A normalized at T = —co. Given g— € G_, let F(z) = g_ § (F(A)(x)),
where § denotes the dressing action of G_ at G4 for each x € R. Define

g-xA=F1F,.
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Then g_ x A defines a local action of G on P(R,G;). Moreover, the infinites-
imal vector field £_ associated to £ € G_ for this action is

E-(A) = —[A, (FTH(A)E-F(A) - (4.1)

Proof. It is clear that (g— x A) defines a local action of G- on C(R, G ).
Now we compute the infinitesimal vector field £~ on €(R, G ). Write g_F =
Ff_, and let § denote the tangent variation. Then (6g_)F = 6F 4+ Fdf_, which
implies that

F~Y(6g_)F = F~'6F +6f_.

If &£ =g, then we have
§f-=(FY%_F)_, FYF=(FY%_F),. (4.2)
Since g_ * A = F~1F,, we obtain
E_(A) = —F Y 0F)F'F, + F7Y(6F),

= —(F Y _F) A+ F{F(FTY€_F)4),

= —(FY_F); A+ A(F Y F)y + (FTY-F)a)+

= [A, (F—lé—F)-f-] + [F-lf—F: A]+

= —[A,(FTY_F)_];.

Since = A(z)(X) is in L' (R)NC*°(R) and z — F(z, A) is bounded for all
A, we have £_ is tangent to P(R, G4). d

4.2 Corollary. The local action of G_ on P(R, S+ ) leaves Py o invariant, and
the flow generated by {— = —bA™™ is the —m-flow on Py o defined by b.

4.3 Theorem. The local action of G- on P(R,G4) is Poisson. The in-
finitesimal vector field corresponding to £_ is £_(A) = —[A,(F~Y_F)_],,
where F' is the trivialization of A normalized at x = —oc. In fact, the map
¢ : P(R,S4+) = G4 = G* defined by ¢(A) = lim, o F(A)(z) is a moment
map for this action.

To prove the theorem, we first need a lemma:
4.4 Lemma. dps(B) = ([* F(A)BF(A)™'dz)¢(A).

Proof. Let F denote F(A), and §F = dF4(B). Taking the variation of
the equation F~1F, = A, we get (F~'0F), + [A, F~16F] = B. This implies
that

T

F~16F = F(A)™! (/

—00

F(A4)(y, By, NF(A)(y, A)dy) F(A).

Then the lemma follows from taking the limit as z — oo. O
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4.5 Proof of Theorem 4.3. It suffices to prove that ¢ satisfies the assump-
tion in Theorem 2.6. First we prove that ¢ is G'_-equivariant. Taking the limit
of g F=Ff_asz— —o0, we get

z—l—i>r—noo F\z) =1, zli»IEloo f-(Az) =g-(N).

So F(g_ x A) = F and
$lg—* A) = lim F'=g_¢(A)(lim f)™" = g_#(A4).

This proves that ¢ is G_-equivariant.
Given £_ € G_ and B € P(R, G+ ), using Lemma 4.4 we get

((dpa(B)($(A) 71, €-)) = ((F(A)BF(A)™',¢))
(B, F(A)T¢-F(4)))
(

B
(B,(FT1¢_F)-)).

il

I

So (1) a(dgag(A) ™, 6-) = E_(A).
It remains to prove that ¢ is a Poisson map. Given £_,7- € §_, let g4 =
#(A), and ¢; the linear functional on T(G ),, defined by
bi(z194) = (€, 24), b(z494) = (n-,24).
It follows form Lemma 4.4 that
l10dpa(B) =(B,(F~Y¢_F)_), lyodpa(B) = (B,(F'n_F)_).
But (F7Y_F), + [A, F71¢_F) = 0. So we get

I, (41 0doa,bs0dda)
= —(([4, (F~Y_F)-],(F~'n_F)-))
= —(([4,(F7Y_F) = (F7Y¢-F)4],(F'n-F)_))
= ((FTY-F); +[A, (FTY-F)4), (F~'n-F)-))
= ((F7H-F)g, (F'n_F)_)) + ({([A, (FTY¢-F)4], (F'n_F)-))
= (FTY_F,(F'_F)_) | 322 — ({(F7Y_F),(F'n-F).)z))

+ ([A, (FTYF)4), F'n-F)-)).

The first term is equal to

(97%€ g+, (95 m-g4)=) — (€-,n=) = (95 €9+, (97 n-94)-)
= (7f+)g+ (~g+,m-g+) = (7T+)g+ (41,82),
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where (§_,n_) = 0 because G_ is isotropic with respect to (, ). The second
term is

((FH-F), (F7'n-F)-)a)) = ((FTH6-F)4, (F7'n-F)s))
(FHE-F)+ —[AF-n F])
[A, (FTY¢-F)4], F'n_F))

[A, (FTI - F)4],(F~'n-F)-)),

I | I

(
(
(
(

which cancels the third term. This proves that ¢ is Poisson. Since ¢ satisfies
all assumptions of Theorem 4.3, the action of G_ on L is Poisson and ¢ is a
moment map. O

5 Positive flows in the asymptotically constant
case

In this section, we will use the same Manin triple as in section 3, and describe
flows in the asymptotically constant case. We restrict our discussion to the
simplest cases.

Fix a € su(n), and set

U, = {g € SU(n)|ga = ag},
Uy = {y € Su(n) | [aay] = 0}1
UL = {z € su(n) | (z,U,) = 0}.

Given a vector space V, we let §(R, V) denote the space of all maps from R
to V that are in the Schwartz class. Let 8;, denote the space of all maps
A : R — G4 such that A(z)(A) = a) + u(z) with v € §(R,U}). The basic
symplectic structure on 8; , is similar to what we have described already for
the decay case. However, the structure of the natural flows is different because
we may not normalize at £ = —oo. Integration as described in the negative
flows will tend to destroy the decay condition. The —1-flow does in some sense
exist: 81 4

ug = [a, g7 by,

gz = gu, (5.1)

limy g =1.

However, the right-hand boundary at oo will not be under control and the
symplectic structure does not make coherent sense.

Rather than identify A with the trivialization F' normalized at £ = —oo0,
we use two different trivializations. For the purposes of constructing Béacklund
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transformations, we identify A with the trivialization F normalized at z = 0,
ie.,
E7'E, =aX+u, E(0,)\) =1

When we describe the Poisson structure of the positive flows we use M (z, \),
where

(e*A* M)~ (e M), = A, lim M(z,\) =1.
T——00

Since both E and e®*? M solve the same linear equation, there exists f(A) such
that
FNE(z,2) = e M(z, \).

Note that f(A) = M(0,)) contains all the spectral information. The general
condition is that f is not holomorphic at A = oo, but that both f(A) and
M (z, ) have asymptotic expansion at A = co. This is known to be the case in
scattering theory, and we need our theory to mesh with this analysis.

The positive flows for the asymptotically constant case are defined in a
similar fashion as the negative flows for the decay case with the restriction that
the generators commute with a. The hierarchy of flows is now mixed ordinary
differential and integral equations. Let A = a) + u with u € §(R,U}), and M
as above. Fix b € u(n) such that [a,b] = 0. Then M ~'bM has an asymptotic
expansion at A = oo (cf. [BC1,2]):

MM ~ Qb+ Qo1 A +Qp2A 2+ ..., @b =b.
Since
M™M= E7' f~le*be M fE = E7' fTOfE,
we get (M~1bM), + [a\ + u, M ~1bM] = 0. So we have

(Qb,i)s + [u, Qv,s) + [a, @pi41] = 0. (5.2)

This defines @y ;’s recursively.

An element a € u(n) is regular if a has distinct eigenvalues. Otherwise, a is
singular. If a is regular, then it is known that @ ;’s are polynomial differential
operators in u (cf [Sa]). But when a is singular, the Qs ;’s are integral-differential
operators in u. To be more precise, we decompose

Qb!j = Pb,j + Tb,j € ua + ui‘.
Using equation (5.2), P’s and T"s can be solved recursively. In fact,

Pb0=0a

)

Pojer = —ad(@) = ((Po)e + [, @o]5), (5:3)

Ty i1 = — [° [t Po 1] dy,
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where v and v” denote the projection onto U} and U, respectively, and
— ad(a) maps U} isomorphically to UL. It follows from induction and formula
(5.3) that the T3 ; are bounded and the Py ; are in the Schwartz class.
Consider the Lax pair
0 0 O ] -
[-6—x+A, 52+(M bNM)y| =0. (5.4)

Set the coefficient of A%, 0 < k < j, in equation (5.4) equal to zero to get

[0’7 Qb,()] = 07 (5.5)
(Qbk)z + [4, Qo k] + [a, Qo k1] =0, 1<k< .
This defines the Q5 ;’s. The constant term gives
ur = (Qb,5)z + [u, Q5] = [Qs,5+1, 0] (5.6)

which is called the j-th flow equation on 8; , defined by b. Equation (5.4) can
also be written as

A= (MM M) 4 ). + [A, (MTTON M) 4]
= [M7ION M, M7 M)+ + [A, (M0 M) 4]
=M N M, A - M~ YaAM], + [A, (M7TX M),]
=[M71oN M, Al; +[A,(M~ION M), ]
= [(M7'oN M), Aly = [Qb,541,0]-

It is clear that the following three statements are equivalent:
() [Z+A4 & +B]=0,

(ii) the connection 1-form § = Adz + Bdt is flat for all ), i.e., df = —6 A6,

E'E,=A
(iii) i " is solvable.
E—FE; = B,

So we have

5.1 Proposition. A = aX + u is a solution of the j-th flow (5.6) on 81,
defined by b if and only if

8(z,t,\) = (aX + u)dz + (DN + Qp i N1 + ...+ Qp,;)dt

is flat on the (z,t)-plane for each .
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5.2 Definition. The one parameter family of connection 1-form € defined in
Proposition 5.1 is called the flat connection associated to the solution A of the
j-th flow. The unique solution E : R? x C — GL(n,C) of

E7'E, = a) +u,
E7IE = bN + Qea N7t + ...+ Qs
E(0,0,)) = I

is called the trivialization of the flat connection 8 normalized at the origin or
the trivialization of the solution A at (z,t) = (0,0).

When a is regular, positive flows are the familiar hierarchy of commuting
Hamiltonian flows described by differential equations. When a is singular, pos-
itive flows generate a non-abelian Poisson group action. This will be described
in section 8.

5.3 Example. For su(2) with a = diag(i, —i), 81 4 is the set of A of the form

aX + u, where
0 f
u= ( = 0>

and f : R — Cisin the Schwartz class. The first flow is the translation u; = ug,
the second flow defined by a is the non-linear Schrédinger equation (NLS)

(g + 2|CI|2Q), (5.7)

[ R

qt =

and the positive flows are the hierarchy of commuting flows associated to the
non-linear Schrédinger equation.

5.4 Example. For a = diag(as,...,an) € su(n) with a1 < ... < ap, 81,4 is
the set of all A = a\+ u, where u = (u;;) € su(n) and uy =0 forall 1 <i < n.
The first flow on 8, , defined by a is the translation

Ut = Uy-

The first flow on 8; , defined by b = diag(b1,...,bn) (b # a) is the n-wave
equation ([ZMal, 2]) for u:

b — by
: a],- (uij)e +

b — b; b;—b ..
E (k L= k)uikukj, i #J
ar — aj a; — ag

k#i,j

Wii)y =
( z])t a; —

If a is singular and [b,a] = 0, then the j-th flow on 8, , defined by b is in
general an integro-differential equation. But the j-th flow on 8; , defined by a
is again a differential operator:

5.5 Proposition. Q, ;(u) is always a polynomial differential operator in u.
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Proof. It is easy to see that Q,1 = u. We will prove this Proposition
by induction. Suppose @, is a polynomial differential operator in u for i < j.
Write
Qa,i = Pa,i + Ta,i € u,J; + ua

as before. Using formula (5.3), we see that P, j;, is a polynomial differential
operator in u. But we can not conclude from formula (5.3) that T, ;41 is a
polynomial differential operator in u. Suppose a has k distinct eigenvalues
c1,---,Ck. Then

f@)=Gt—c)t—c2)...(t —ck)
is the minimal polynomial of a. So f(M~!aM) = 0, which implies that the
formal power series

fla+Quid™  +Qaar24+...)=0. (5.8)

Notice that f’(a) is invertible and T, j;1 commutes with a. Now compare
coefficient of A\~(*1) in equation (5.8) implies that T, ;41 can written in terms of
a,Qa,1,--- ;Qq,;- This proves that Q, ;41 is a polynomial differential operator
in u. O

5.6 Example. For u(n) with

ue (e 0O
0 —ilLi)’

0 X
uz(_x* 0)’X€ka(n—k)}a

where My (n—r) is the space of k x (n — k) complex matrices. Identifying 8, ,
as 8(R, My (n—k)), then the bi-linear form

81‘(1 = {a/\ +u

(u,v) = /OQ tr(uv) dz

—0o0

on 8(R,UL) induces the following bi-linear form on $(R, M (n—k)):

o0
(X, )= —/ tr(XY* + X*Y) dz.

—00

The orbit symplectic structure on 8; , induces the following symplectic struc-
ture on 8(R, My yx (n—k)):

w(X,Y) = <%X Y> .
According to Propositions 5.5, the j-th flow defined by a can be written down

explicitly. For
0 B
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we have Qa,O = a, Qa,l =U,

1BB* B,
Qa,2 = ‘Li * 1 * ’
iB: -1pB*B

The first three flows on 8(R, My (n—k)) are
B; = B;

B; = %(Bm +2BB*B)

1
By =~ Bssz — %(BzB*B + BB*B,).

Notice that the second flow is the matrix non-linear Schrédinger equation as-
sociated to Gr(k,C™) by Fordy and Kulish [FK]|. By Proposition 5.1, B is a
solution of the second flow if and only if

(ad +u) dz + (a/\2 + ud 4+ Qa,z) dt

is flat for all A.

6 Action of the rational loop group

The rational loop group is used to construct the soliton data for the positive
flows discussed in section 5. We first define a local action § of G— on C(R, G4)
via the dressing action. In general the G_-action does not preserve the space
81,0 (because the Schwartz condition on u for A = aA + u is not preserved even
locally). However, we prove that the action ff of the subgroup G™ of rational
maps in G_ leaves 8; , invariant. We also show that the factorization can be
done explicitly. In particular, the action g_ § A can be computed explicitly in
terms of the trivialization E(A) of A normalized at = 0. In fact, g_ f§ A is
given by an algebraic formula in terms of E(A) and g.

Let A € C(R,9+), and E(z, ) denote the trivialization of A normalized at
z = 0. Then the map A — FE identifies C(R, G, ) with a subset of C(R,G4).
(We write E(z)(\) = E(z, A)).

Given f_ € G_ and A € C(R,S4), define

fHA=EY(E),

where E(z) = f_  E(z) is the dressing action of G_ on G4 for each z € R. In
other words, we factor

f_E(z)=E(z)f_(z) € G4 x G_.
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Clearly, this defines a local action of G_ on C(R,G4+). For £_ € G_, the
corresponding infinitesimal vector field on C(R, G4)
)

€-(4) = —[A, (E(4)'¢-E(4

1S

)]+

6.1 Proposition. Let a be a fized diagonal element in u(n), and C1, the
space of all A € C(R,G4) such that A(z)(\) =ar+u(z) andu: R - UL isa
smooth map. Then {_ — &_ defines an action of G_ on C) 4.

In general, the action of G_ does not preserve the Schwartz condition for
81,a- So it does not define an action on 8; 4. But the subgroup G™ of rational
maps does preserve the decay condition.

6.2 Theorem. Let G™ be the subgroup of rational maps ¢ € G_. Then the
t action of G™ on C(R,S4) leaves the space 8y, invariant. Moreover, let
g € G™, A€ S8y ,4, and E the trivialization of A normalized at x = 0, then

(i) we can factor gE(z) = E(z)§(z) € G+ x G™ and g § A= E~1(E),,
(ii) g § A can be constructed algebraically from E and g.

To prove this theorem, we first recall the following result of the second
author [U1]:

6.3 Proposition ([U1]). Let z € C\ R, V a complex linear subspace of C™,
7 the projection of C™ onto V, and 7+ = I — w. Set

A=z
Gza(A) =7+ )\_zﬂ'J'. (6.1)

Then
(Z) gz,n € GT_n;

(11) G™ is generated by {g, » |2z € C\ R, T is a projection}. (g, will be called
a simple element).

6.4 Proposition.
(i) Let g(A\) = H;ﬂ;\\_—_’zi_ and A=al+u. Thenge G™ and g ff A = A.

_2] 7
(%) Letwvy, ... ,vx be a unitary basis of the linear subspace V', m; the projection
of C™ onto Cvj, and m the projection onto V. Then

ﬁ _(A—2 k=l
' 9z,m; = N_ 3 9z,
i=1

Proof. Statement (i) follows from the fact that ¢ commutes with G and
G_. Statement (ii) follows from a direct computation. d

The above two Propositions imply that to prove Theorem 6.2 it suffices
to prove g, » # A € 81, where 7 is the projections onto a one dimensional
subspace. First, we give an explicit construction of g, » § A.
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6.5 Theorem. Let A = al+u € 81 4, and E the trivialization of A normalized
atz =0. Let z € C\R, V a complez linear subspace of C™, and 7 the projection
onto V. Set
V(z) = E(z,2)"(V),
#(z) = the projection of C™ onto V (z),
E(-’I), /\) = gzyﬂ'(’\)E(za )‘)gz,fr(z) -t

= <7T + i_;wl> E(z, ) (fr(x) + i" jfr(a:)J_) ‘

Then:
(i) 90} E = B.
(ii) 71 (7, + (az + u)®) = 0.
(i) If v: R — C™ is a smooth map such that v(z) € V(z) for all z € R, then
vy (z) + (aZ + u)v(z) € V(z) for all x.
() g.n § A=A+ (z - 2)[7,a].

_ Proof. First we claim that E(z, \) is holomorphic for A € C. By definition,
E is holomorphic in A € C'\ {2, z} and has possible poles at z, Z with order one.
The residues of E at these two points can be computed easily:

Res(E, z) = (z — 2)7E(z, 2)7* (2),
Res(E, z) = (z — 2)7t E(z, 2)7(z).

Since A(z,%)* + A(z,2) = 0 and E(0,)\) = I, E(z,2)*E(z, z) = I. This implies
that
V(z) = E(z,2)*(V) = E(z,2) (V).
So both residues are zero, and the claim is proved. In particular, we have
9:+E(z) = E’(:z:)gz,,-f(m) € G4 x G_. This implies (i).
By Proposition 6.1, E1(E), = a) + @(z) for some smooth @ : R — U
We get from the formula for E that

aX+ @ = g:7(aX + w)g s — (9:,7)297 5

- (fr+ ’;:;F) (aX + u) (fr+ i:j#) (6.2)
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Since the left hand side is holomorphic at A = z, the residue of the right hand
side at A = z is zero. This gives (7(az + u) — 7;)#* = 0, which is equivalent

to (ii).

Statement (iii) follows from (ii) since

Uy + (a2 + u)v ( (v)z + (az + w)v
= fT,v + Fug + (aZ + u)v
= (7 + (aZ + w)A)(v) + 7 (vs) € V().

To prove (iv), we multiply g,z to both sides of equation (6.2) and get

(A=2)7+(A=2)7H) (ar +u) = (N = D)7z + (N = 2)7)
= (aX + @)((A = 2)7 + (A = 2)71).

Set A = z and A = Z in the above equation, we get

(az + u) — iy = (az + 4)7,
{frJ* (aZ +u) — 7F = (az + @)7t. (6.3)
Add the two equations in (6.3) to get
@ =u+ (z— 2)[7,a]. (6.4)
O

6.6 Theorem. The map 7 in Theorem 6.5 is the solution of the following
ordinary differential equation:

() + [az + u, 7] = (2 — 2)[F, a]F,
{7r =7, #*=7, 70)=m. (65)

Moreover, if 7 is a solution of this equation then [7, a] is in the Schwartz class.

Proof. Substitute equation (6.4) into the first equation of (6.3} to get the
equation (6.5).

By Proposition 6.4, to prove [T, a] is in the Schwartz class it suffices to prove
it for the case when V is of one dimensional. By Theorem 6.5 (iii) there exist
smooth maps v : R = C™ and ¢ : R — C, such that v(z) spans the linear
subspace V (z) and

Vg + (aZ + u)v = ¢v.

Set w = exp (— ffoo q5> v. Then w(z) generates V(z) and

wy + (aZ + u)w = 0. (6.6)
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We may assume that

a = diag(icy, ... ,icn), c <...<eq.
Let ; : R — C™ denote the solution of

lim, oo 7 %%%9;(z) = ¢,

{(zpj)x + (aZ +uw)y; =0,

where {e1,... ,en} is the standard basis of R™. The construction of the 1; is a
standard textbook part of the scattering theory. Then 1y, ... ,%, form a basis
of the solution for equation (6.6). So there exist constants b, ... ,b, such that

w = 2?21 bjyp;. Let Z = r 4+ is with s > 0 and choose j to be the smallest
integer such that b; # 0. Then

n n
e~ teiiTy, — Z e_wjzzbk'd)k — Z ez(—-c,-+ck)2:cbk(e—zckiz,llbk)
k<j k<j

Since limy_, o €i(~¢i+ek)22 = ( if ¢ < cj, we get

lim e *%%y(z) = E brex,
I——00
cr=cj

which is an eigenvector for a. So lim,—,_o[#(z), a] = 0. Moreover,

e—iijzw(m) — Z brex + Z ei(——c,~+ck)2zbke—ickizwk_

Cr=C; cj<Ck
Since limg_, oo e ¥k Z%9y (z) = ey,

— e(—CJ‘+Cm)I Im(Z)O(l),

e~ iy (z) — Z brex

Cp=Cj

where ¢, is the next non-zero term. Hence #(z) — lim,_,_ 7(z) decays ex-
ponentially, so [#,a] also decays exponentially as ¢ — —oo. Similarly, we can
prove that [#(z),a] = 0 decays exponentially when z — oo.

From equation (6.5)

72| < 2|2] [[a, 7]| + 4fu.

So 7, decays like u. Repeated differentiation of equation (6.5) gives the desired
result. In fact, 7, € S(R) as well. O

If U is a matrix whose columns form a basis of V, then the projection of C™
onto V is 7 = U(U*U)~U*. This follows from elementary linear algebra. So
we have:



350 Terng and Uhlenbeck

6.7 Corollary. Let V be a k-dimensional linear subspace of C*, and U a
matriz whose columns form a basis of V. Then g, 4 A = A+ (z — 2)[7,q],

where
7(z) = E*(x,2)U(U*E(z, 2) E*(z, 2)U) 'U*E(z, 2). (6.7)

6.8 Proof of Theorem 6.2.

Given g € G™, write g as product of simple elements Hle gz;,m; (note
that the factorization of g into simple elements is not unique, for example see
Proposition 6.4 (ii)). Use Theorem 6.5 to see that g § A € 81 ,, and g § F and

g § A are obtained by algebraic formulae from E and g. O

7 Scattering data and Birkhoff decomposition

The asymptotically constant case is the case standardly treated in the soliton
literature. We obtain many hints of how to describe the theory, since most of
what we need is already contained in scattering theory literature. The main
purpose of this section is to give a homogeneous structure for the space of
scattering data, to obtain the Inverse Scattering Transform using the standard
Birkhoff decompositions, and to relate the action of the rational loop group
described in section 6 to the scattering data in a natural and simple way.

We first review results of Beals-Coifman ([BC1, 2]) and Zhou ([Zh1, 2]) on
scattering theory for n x n first order linear system. Let

a = diag(ia, ... ,ia,) € u{n), a1 <az <...< Gn,

and A = aX + u € 8; ,. Consider the linear system

Yz = ¢(aA +u),
limg_s 0o 7% (z,A\) = I, (7.1)
m(z,\) = e"?**4(z, \) is bounded in z.

(m will be called the normalized (matriz) eigenfunction of A).

7.1 Theorem ([BC1, 2],[Zh2]). Given A = aX +u € 8;, there ezxists a
bounded discrete subset D of C \ R such that the normalized eigenfunction
m(z,\) = e~ (z,)) is holomorphic in A € C \ (RU D) and has poles at
z € D. Moreover, there exists a dense open subset 81 , of 81, such that for
A =aX+u €8] ,, the normalized eigenfunction m(z, ) satisfies the following
conditions:

(i) The subset D is finite, and m has only simple poles at z € D,

(i1) The matriz function m can be extended smoothly to the real azis from the
upper and lower half A-plane,
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(iii) As a function of A\, m has an asymptotic expansion at A = oo.

The open dense subset 8] , contains all {u € 8;,, such that the L'-norm of
u is less than 1 and all u with compact support.

7.2 Theorem ([BC1,2}). Letm be the normalized eigenfunction of A = aX+
u € 81,4, and b € u(n) such that [a,b] = 0. Set Qy = m~1bm. Then Q, has an
asymptotic expansion at A = 0o:

Qo ~ b+ QoA+ QoA 2 4. ...
Moreover,

(i) (@b,5)z + [w, Qb,5] = [Qb,5+1,0].
(it) The j-th flow uy = [Qp,j+1, 0] is symplectic with respect to the symplectic

structure w(vy,v2) = (—ad(a) "1 (v1), v2).

Recall

G+ ={g:C — GL(n,C)| g isholomorphic, g(A\)*g(\) = I},
G_ ={g:0x = GL(n,C) | g isholomorphic, g(A\)*g(X) = I, g(o0) = I}.

Since m(z, A) is not holomorphic at A = oo, we must change G_, and restrict
G4 to have a singularity at A = oo of the type exp(polynomial).
We are motivated by Theorem 7.1 to choose a different negative group D_:

7.3 Definition. Let D_ denote the group of meromorphic maps f from C\ R
to GL(n,C) satisfying the following conditions:

@) f)fN) =1

(ii) f has a smooth extension to the closure C’t yie. fe(r) =limg o f(rkis)
exists and is smooth for r € R, (since f(A)*f(A) = I, we have f_(r) =

(f+(r)")™).
(i) f has an asymptotic expansion at oo.

(iv) f+ — I lies in the Schwartz class modulo unitary maps. In other words,
if we factor fi = hyvy with vy unitary and hy upper triangular then
h, — I is in the Schwartz class.

Let m(z,A) be the normalized eigenfunction for A € 8] ,, and E the trivi-
alization of A normalized at z = 0. Since both e2**m(z, ) and E(z, ) satisfy
the ordinary differential equation in z:

E_lEz — (ea)\zm)—l(ea)\:cm)z = A,
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there exists f such that
e m(z, ) = F(NE(z, A).

In fact, f(A) = m(0,\). By Theorem 7.1, f € D_.

Beals and Coifman [BC1,2] defined the scattering data of A = aA+u € 8} ,
to be the map S : RUD — GL(n): for z € D, S(2) is the element in GL(n,C)
such that

(I — (A =2)"1e*S(2)e”***)m(x, \)
has a removable singularity at A = z, and for r € R, S(r) = vZ'(r)v4(r), where

—arze

1'1\1‘1(1) m(z,T +1s) = e vi(r)e m(z,r).
8

They prove:
(i) The map sending A to S is injective.

(ii) If u(z,t) is a solution of the j-th flow on 8; , defined by b, ur = [@s,j+1, 4],
and S(),t) is the corresponding scattering data, then

Se(\ 1) = [S(A, 1), M b).
In particular, S(\,t) = e"*N'tS(), 0)et¥*.
We note that scattering data S for A is determined by f(A) = m(0, A). In fact,

S(r) = f_(r)"'f4+(r) for r € R and S(2) can be obtained from the residue of
f(A) at z€ D.

7.4 Remark. The rational group G™ defined in section 6 is a subgroup
of D_.

Instead of using S as the scattering data, we use the left coset H_f in
D_/H_ as the scattering data of A, where H_ is the subgroup of h € D_
that commutes with a. We will call [f] = H_f the scattering coset of A. One
advantage of using the scattering cosets is that the inverse scattering transform
can be obtained from the standard Birkhoff Decomposition Theorems. Another
advantage is that the natural action of the subgroup G of rational maps on
D_/H_ on the right by multiplication induces the action of G™ on 8; 4 defined
in section 6. To explain this, we first prove a decomposition theorem.

7.5 Theorem. Let D¢ denote the subgroup of v € D_ such that v is holo-
morphic in C \ R. Then any f € D_ can be uniquely factored into

f=gh=hg,
where g,g € G™ and h, h € D¢. Moreover, the multiplication map
G" x D¢ - D_

is a diffeomorphism.
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This theorem is the real line version of the Birkhoff decomposition theorem,
which can be seen by transforming the domain C to the unit disk and real axis
to the unit circle S* by a linear fractional transformation. To be more precise,
let LGL(n,C) denote the loop group of smooth maps from S! to GL(n,C),
and LTGL(n, C) the group of maps g € LGL(n, C) such that g is the boundary
value of a holomorphic map

g:{z|]z| <1} = GL(n,C)}.

Let QU(n) denote the based loop group of maps g : S — U(n) such that
g(=1) = I, Recall that the standard Birkhoff Decomposition Theorem (cf. [PrS]
p. 120, Theorem 8.1.1) is:

7.6 Birkhoff Decomposition Theorem. Any g € LGL(n,C) can be fac-
tored uniquely as

9=9+9- =h_hy,
where g, ,hy € LYGL(n,C) and g—,h_ € QU(n). In other words, the multi-

plication map
LTGL(n,C) x QU (n) - LGL(n,C)

is a diffeomorphism.

A direct computation shows:
7.7 Proposition. Given g : S' — GL(n,C), define ®(9) : R = GL(n,C) by
P(g)(r) =g (}—*_’%) Then

(i) g is smooth if and only if ®(g) is smooth and has the same asymptotic
expansions at —oo and 0o,

(ii) g — I is infinitely flat at z = —1 if and only if ®(g) — I is in the Schwartz
class,

(iti) g : C — GL(n,C) satisfies the reality condition 9(1/2)*9(z) = I if and

only if G(A) = g( }f;i‘\) satisfies the reality condition §(A\)*g(A) = 1.

7.8 Corollary. The group D_ is isomorphic to the group of smooth loops
g: S = GL(n,C) that are boundary values of meromorphic maps with finitely
many poles in |z| <1 and g*g — I is infinitely flat at z = —1.

As a consequence of Theorem 7.6 and Proposition 7.7, we have

7.9 Corollary. If f : R — GL(n,C) is smooth and has an asymptotic expan-
sion at A = oo, then f can be factored

f:Uga

where g is unitary and v is the boundary value of a holomorphic map on Cy.



354 Terng and Uhlenbeck

7.10 Proof of Theorem 7.5.
1t follows from Corollary 7.9 that given f € D_, we can factor fi

fx(r) = hi(r)g+(r), reR

where hy is the boundary value of a holomorphic map h on Cy and g4 is
a smooth map from R to U(n). It follows from f_ = (f})~! that we have
g+ = g— and h(A\)*h(A\) = I. Write f = hg. Since f is meromorphic and h
is holomorphic in Cy, g is meromorphic in C;. However, g(r)*g(r) = I for
r € R implies that g extends holomorphically across the real axis. So g is
meromorphic in C and bounded near infinity. This implies that g is rational,
ie,geG™ O

Recall that a = diag(iai,... ,ian) € u(n) is a fixed diagonal matrix, and
G is the group of holomorphic maps g : C — GL(n,C).

7.11 Theorem. Let f € D_, k a positive integer, and b € u(n) such that
[a,b] = 0. Let ey r(z)(A) = €**®. Then there ezists a unique E(z,)\) and
M(x, ) such that

ftep(x) = E(z, )M z,-) € G+ x D_.

Proof. Write f = hg as in Theorem 7.5 with h € D¢ and g € G™. Write
h = pv, where p is upper triangular and v is unitary. By definition of D_,
p — I is in the Schwartz class when restricted to the real axis in the A-plane.
So e,’,’,i(w)p“lebyk(z) has an asymptotic expansion at r = £oo for each z. Write
e,;‘,,lc(z)p‘leb,k(m) = §(xz)h(z), where ¥ is unitary and h is the boundary value
of a holomorphic map on C. Notice f,p,v and h do not depend on z, whereas
the rest of the matrix functions do depend on z. So

h~lep(z) = v_leb,k(a:)ﬁ(:c)iz(x) = B(m)ﬁ(w),

where B(z) = v~ leyx(z)3(z) is unitary. Both h(z) and h are holomorphic
in A € C4, and ep x(z) is holomorphic in C;. Hence B(z) is holomorphic in
A € C,. However, B(z) is unitary hence it is holomorphic in A € C.

Next we claim that we can factor g~!B(z) = E(z)g7'(z) with E holo-
morphic in C and g; € G™. This can be proved exactly the same way as
Theorem 6.2. Then

flesi(z) = (hg) tepi(z) = g h tep k()
= ¢7'B(z)h(z) = E(z)g{ '(z)h(z) = E(z)M ' (z),

which finishes the proof. O
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7.12 Definition. A matrix ¢ is called a-diagonal if g;z = 0 whenever a; # ax,
q is (strictly) upper a-triangular if g;5 = 0 whenever a; > a; (and g = 0 or
I'if a; = a), and q is (strictly) lower a-triangular if ¢;z = 0 whenever a; < a;
(and g;x = 0 or I if a; = ax). Let g4 denote the a-diagonal projection of g, i.e.,

- q,’j, ifa,-:aj,
(94 {O, if a; # ax.

7.13 Proposition. Any f € D_ can be factored uniquely as
f=pv=qi,

where p is upper a-triangular, q is lower a-triangular, v and U are unitary, and
the a-diagonal projections pg,qq are holomorphic in Cy.

Proof. Write g = povg, where pp is upper a-triangular and vg is unitary.
Such pg,vo are not unique because an element in U, = {y € U(n)|ay = ya}
is both a-triangular and unitary. Write py = pipe2, where p; is strictly upper
a-triangular and ps is in a-diagonal. Factor po = psh, where p3 is holomorphic
in C4 and h is unitary. Then g = pipshvy = pv, where p = p;ps is upper
a-triangular and v = hwp is unitary. Since p; is strictly upper a-triangular,
Pg = ps is holomorphic. a

To study how the Birkhoff factorization of Theorem 7.11 depends on pa-
rameter =, we introduce the class of Schwartz maps from [rg, 00) to a Hilbert
space. Let H be a Hilbert space, a map ¢ : [rg,00) = H is in 8([rg, 00), H) if
for each pair of integers (m, s) there exists a constant ¢, s such that

” (ﬁ)m‘“’“’)” SeaFI

Let H; denote the Sobolev space for maps from Rt = [0,00) to UL. In other

words, u € H; if
© (N dul®
huli = [ (“d— + uunZ) ar

- / W+ DllilPdy < oo,
0

where 4 is the Fourier transform of w.
The following is a functional analytic extension of Birkhoff decomposition.

7.14 Theorem. Let I+ D(z,-) = (I +h(z,-))V(z,-) be the Birkhoff decompo-
sition, where h(z)(r) is the boundary value of a holomorphic map in the upper
half plane and V(z)(r) is unitary. If D € (R, Hy), then h and V — I are in
S(RT, Hy).
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Proof. This should be regarded as an implicit function theorem. It is
based on the two facts about the Sobolev space H;. The first is that H; is an
algebra under multiplication and exp : H; — H; is smooth. The second is that
the linear Birkhoff decomposition can be defined using the Fourier transform
F. Let ¥ : L?(R) — L%(R) denote the linear operator defined by

fly)+ f(=y)*, ify>0,

0, otherwise,

(f)y) = {

and let 74 : Hy = H; be the bounded linear map
1y =F 10T, ie.,
/ (F(y) + F(-y))emvdy.

We claim that f = 7. (f) + (I — 74)(f) is the linear Birkhoff Decomposition,
or equivalently, 74 (f) is the boundary value of a holomorphic map on C, and
(I —m4)(f) is is in u(n). To see this, we note that 74 (f) is the boundary value
of the holomorphic map

NeCy / )+ F(=y)")eMvdy.
Then

(1-m)0) =0 - [ () + Fley))emvdy

= [ Fwervay - /0 T (W) + -y vy

/.
[

‘LTydy / f ‘L’V"ydy.

It follows that (I — 7 }(f)* = —(I — 73)(f)-
Due to the linearity of m, it is easy to see that this extends to the parameter
version in z. We write this as

T4 @ S(R+,H1) - 8(R+,H1).

Now the Birkhoff decomposition is a non-linear operator. However we are near
the identity, so it can be regarded as a perturbation of the linear operation
because the exponential map is smooth on H;(R).

Let Y : 8(R™,H;) = 8(R™, H,) be the map defined by

Y (f) = emDel—m)(f),
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Given D, we wish to find D such that
(I + D) = exp(m+ (D)) exp((I - 7:)D) = V(D).
Since dYp = I, for z sufficiently large
7+ (D)l < |1Dlh < Os,

where O,(z) = c||D[|y < ccs/(1+ |x|)®. The estimate on derivatives in z is
more difficult. Let I + h = exp(74+(D)). Then

(I+h)1D V=t = (I+h) " hy + V1.

On the right, the first term is holomorphic in the upper half plane, the second
term is unitary. Hence

(I+h)hy =7 (I +h)1D, V™) =7, (I +h)"'D (I + D)~(I +h)).

Or
he = (I +h)my((I 4+ h)"'D(I + D)~ (I + h)).

Certainly, D, (I + D)~! € 8(R*, Hy), 74 is linear, and H; is an algebra. Using
the Leibnitz rule repeatedly, we can obtain

oY ™D
= <
() 1) <cntm max| (Gem)| |
where Cyp,(h) = C(||Al], ... ,]|(8/8z)™ 1hl|). Estimates in the Schwartz topol-
ogy follows by induction on m. O

7.15 Remark. The awkwardness of this proof reminds one that the classical

use of the Schwartz space is probably not as natural for the analysis as various

choices of Hilbert or Banach spaces in z would be. The above proof would then

be a straight forward use of the usual implicit function theorem (rather than a

reproof). Notice that in fact Hy(R) could be replaced by any Hi(R), k > £.
Recall that e, 1 (z)()\) = €=,

7.16 Theorem. In the Birkhoff factorization of Theorem 7.11
fleai(z) = E(x)M Y (z) € G4 x D_.
We have in addition the following properties
(i) E'E, = A, where A(z,\) = a\ + u(z) for some u € $(R,UL),
(i) Mio € H_, where Mioo(A) = limgsi00 M(z, A),

(i) if X is not a pole of f then My(,A) = M(:,\) — Mio()) is in the
Schwartz class.

To prove this theorem, we need the following Lemma:
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7.17 Lemma. Given g € S(R) and 8 < 0 a constant, and set
0 .
@) = [ aty+pa)emay,

—00

§(z)(r) = /0°° q(y + Bz)eVdy.

Then
(i) & € 8(RT, Hy),
(ii) for any integer m > O there exists a constant c,, such that

¢ (or)

ozm < Cm-

Proof. Write A(z,r) = A(z)(r) and &(z,r) = &(z)(r). Then
m 0 m .
(32:1:) Az,r) = g™ = gy—:i(y + Bx)eVdy.
Since ¢ € $(R7),
o\™ Cm,s
(&%) w|s

But by the Plancherel Theorem

|(52) e

~—

2 0 amq 2
— A2m 2 i 4
= [ e (SRwren) @

O (1+yA)E.,
2m s
<h /_oo 1+ y] + 1By Y

2m .2
Cm,s

An adjustment of the constants completes the proof of (i). A straight forward
computation gives (ii). a

7.18 Proof of Theorem 7.16.
Take the variation with respect to f € D_ in the formulas
F7HNe**® = Bz, )M (2, ),
A(z,\) = E" Yz, \)E, (2, \).
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We get

—E7Yf7YSfE=E"16E - M~6M,
6A = (A, (B~ f'61E)];.

For f = I, we have A = aA. So §A(z) is independent of A and lies in U} for
all z. This implies that E~'E; = aX + u for some u : R — U}. The fact that
u € 8(R,U}) follows directly from (ii) and (iii). Write

u=M"M, + M7 'a) M].

Now M(-,A) — M € 8(R') and [Ms,a] = 0 imply that u| Rt € §(R*). The
corresponding argument gives u| R~ € 8(R™).
We first prove the theorem for f € D¢. Use Proposition 7.13 to write

f=pa(l +pv,

where py is a-diagonal and holomorphic in C4, p is strictly upper a-triangular,
and v is unitary. We will be looking at z — o0o. Examine the formula for
/\ € C+Z

0, if a; _>_ Ak,

. 7.2
pik(N)eHei—aAe - if g, < . (7.2)

(e=**p(N)e® ) = {

Here pji | R lies in the Schwartz space if a; < ax.
Use inverse Fourier transform to write

o0
pix(r) = / pi(w)e™dy.
-0

So

o]

pjk(r)e e mawIrT = / Pie(y + (a; — ax)z)eVdy.

— 00

The piece fooo Pk (y + (aj — ag)z)e'™Vdy is the boundary value of a holomorphic
map in Cy, which can be written

€@, N) = / Dir(y + (a; — ag)z)ePVdy.
0
So

pik(r)e =) = £ (r 3) + Aji(z,7), where
0
Djk(z,r) = / Dir(y + (a; — ax)z)e™dy.

—00
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am
dz™ (z,7)

It follows from Lemma 7.17 that A € §(R', H;) and '
Now write

< cm.

e 'pa(I + p)ea = pae; (I + plea = pa(l + £+ A)
=pa((I +&)(I + L) = £D)
=pa(I + (I + A - (I +€)71¢D).

We claim that D = A ~ (I + £)71¢A € 8(RT, Hy). Note that
T+ ' =T-¢+8-8+...+¢"

is a finite series since £ is strictly upper a-triangular. The rules of multiplication
of (R*, Hy) by a smooth bounded function give the result that D € S(R*, H;).

Let (I + D) = (I + h)V be the Birkhoff decomposition. By Theorem 7.14,
hand V — I are in §(R*, Hy). So

e;tf=e'pa(I +p)v = e lps(I + plese; v
=pa(I +&)(I + D)e;'v
=pg(I+&)(I+ h)Veglv.

By definition M = py(I + £)(I + k), and

M — pa(I + &) = pa(I + E)h.

Since h € §(R*, H;), and we have uniform estimates on all derivatives of py(I+
p), M —pa(I + &) € $(RT, H,). The same argument, in which a factorization
f = q? for q lower a-triangular and ¥ unitary, proves Schwartz space decay as
T — —oo.

To complete the proof, given f € D_, write f = hg € D¢ x G™. Write

h™leq1(x) = Eo(z)M; (z) € G4 x D_.

By Theorem 6.5, we factor g7!Ey(z) = E(z)g(z) € G4 x G™. Then

flear(x) = g7 W ea 1 (z) = g7 Eo(x) My (z) = E(x)§(z) Mg ' (z)
= E(z)M(z).

By Theorem 6.6 § satisfies condition (ii) and (iii). But we just proved that My
satisfies (i) and (iii), so is M = gM;". 0O

Note the convergence is actually uniform in the argument in Theorem 7.16.
So we have
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7.19 Theorem. Asin Theorem 7.16let f € D_, f~le,1(z) = E(z)M(z)™! €
Gy x D_, and fy = limgyo f(r +is). Factor fy = Pv = QU, where v,0 are
unitary, P is upper a-triangular, Q is lower a-triangular, and Py, Qg is holo-
morphic in C4. Then

ILm e My (z,m)e” %" = P(r),
—00

lim e®*M, (z,r)e"%"® = Q(r).

T—>—0Q

7.20 Theorem. Let ¥ : D_ — 8; , be the map defined by ¥(f) = E~'E,,
where E is obtained from f as in Theorem 7.16. Let H_ denote the subgroup
of f € D_ such that fa = af. Then

(i) 8 , = ¥(D_) is an open and dense subset of 81 4,
(i) U(f) = W(g) if and only if there exist h € H_ such that g = hf,

(i) S?’a is isomorphic to the homogeneous space D_/H_ of left cosets of H_
in G_,

(w) if A = U(f) and M is as in Theorem 7.16, then the normalized eigen-
function m in Theorem 7.1 of A is M__;oM.

Proof. The first part (i) is a consequence of Theorem 7.1. Both (iii) and
(iv) follow from (ii). To prove (ii), recall if

Fflear(z) = E(zx)M ' (z) € Gy x D_,
g ear(z) = E(x)N"Y(z) € G4 x D_.

Then
M(z)N~(z) = ea1(2) 7' fg  €a1 ().

Suppose Im A > 0. Then the limit of the right hand side is upper a-triangular
when z — o0, and the limit is lower a-triangular when z — —oco. So MN ! is
both upper and lower a-triangular. Hence it is a-diagonal, i.e., MN~! € H_.
So fg~le H_.

Conversely, if g = hf for some h € H_ and f~le,i(z) = E(z)M(z)™! €
G+ X D_, then

g—lca,l(w) = f‘lh_lea,l(z) = f—lea,l(x)h_l
=E(z)(M(z)"'h™Y) € G4 x D_.

So ¥(f) = ¥(g). O

In summary, we have shown that given f € D_, we can construct an A €
81,0 such that A = ¥(f) by using various Birkhoff decomposition theorems
repeatedly.
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7.21 Theorem. The natural right action of D_ on the space D_/H_ of left
cosets induces a natural action x of D_ on 8% , via the isomorphism U from
D_/H_ to 8% ,. Equivalently, if A= ¥(f) and g€ D_ then gx A=¥(fg™").
Moreover:

(i) Letge D_, A€ 8, and E the trivialization of A normalized at z =0,
then we can factor

9E(z) = B(@)i(z) € Gy x D_,
and gx A= E~'E,.

(i) If g € G™, then gx A = g A, where {§ is the action of G™ on 814
defined in Theorem 6.2. In other words, if A = ¥(f) and g € G™, then
g8 A=9(fg). Or equivalently, if H_f is the scattering coset of A then
H_fg is the scattering coset of g § f.

Proof. Given f,g € D_, we factor
flean(@) = E@M ™ 2),  (f9) 'ean(z) = E(@)M 7 (2).

Then ¢g~'E(z) = E(z)(M~(z)M(z)) € G4 x D_. This defines the action of
D_on 8 ,, and it extends the action of G™ on 8, , defined in Theorem 6.2. O

7.22 Remark. If the scattering data of A has k poles counted with multi-
plicity, then g, . § A typically has k + 1 poles, but it may have k or k — 1 poles
for special choices of z and 7. To see this, let z € C'\ R, and 7 a projection such
that ma # an. If Z is not a pole of the scattering data of A then g, . § A add
one pole Z to the scattering data. Let A = gz » § Ao, where A is the vacuum
solution. Then the scattering data of g, § A

(i) has no poles if 7, ==,

(ii) has only one pole z if m; and # commute and 7 + m; # I.

8 Poisson structure for the positive flows
Let H; denote the subgroup of G4 generated by
{e?™ | p()) is a polynomial p(A)a = ap()}.

In this section, we prove that the right dressing action of H, on D_ induces
a Poisson group action of Hy on S‘l’,a and show that it generates the positive
flows defined in section 5. We also study the induced symplectic structure on
the space of discrete scattering data G™/(G™ N H_), and the space of the
continuous scattering data D¢ /(D° N H_).

Set eq,5,5(z, t)(A) = ea*e+0Nt and recall e j(z)(A) = PSED
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8.1 Theorem. Let a,b € u(n) such that [a,b] = 0. Then we can factor
[ eajp(@,t) = E(z,t)M ' (z,t) € G4 x D_.
Moreover, E and M satisfy the following conditions:

(1) E7YE, = A is a solution of the j-th flow defined by b, where A(z,)\) =
aX + u(z).

(i) EYE; = B, where
B(-,A) = bN + Qp1 (N 4+ 4+ Qp(u) = (MM M),

Proof. Since [a,b] = 0, exp(adz + bAt) = et Use Theorem 7.11
to factor

fleap(@,t) = flea1(@)en;(t) = Eo(2) Mg (z)es,;(t).-
Use Theorem 7.11 again to factor
M (x)ep,;(t) = Er(z,t)M (z,t) € G4 x D_.
The variational form of f~'e, ;, = EM ™! implies
{E_IEz =al+u,
E-'E, =bN + N +... +q.

So

5] 0 ; i
[£+a,\+u,5+b/\3+qw Y4+ ... +g] =0 (8.1)

Compare coefficient of A* in equation (8.1) to get

(Ql)z + [Uy(h] = [qi+17a]> if 0 S 1 < j7
ue = (g5)z + [, gj+1)-
This is the same system as (5.2) defining the Qjm.ss. Hence ¢; = Qb ;- O

8.2 Corollary. The dressing action ] of Hy on D_ on the right is well-defined
and H_ is fized under this action. Hence an action i of Hy on D_/H_ is
defined, which leads to an action on Sg,a. In fact, this action is defined as
follows: Write A = U(f), fles1(z) = E(x)M(z)~!. For h € Hy, we factor

hM(z) = M(z)h(z) € D_ x G4

to get _ ~
kA= (M) (e M),.
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8.3 Corollary. If Ag = ¥(fo), then A(t) = Y(es ;(t) I fo) is the solution of
the j-th flow on 81, defined by b with A(0) = A,.

8.4 Corollary. Let ai,...,a, be a basis of the space T of diagonal matrices
inu(n), f€ D_, and e, ... 0. (T1,-.. ,2p)(A) = exp(‘:d?=1 a;jz;\). Factor

flea, a.(x) = E(@)M(z) € Gy x D_.
Then there exists v : R* — T+ such that
(i) E7'E;; = ajA+[a;,v] for all1 < j <mn,
(ii) v is a solution of equation
Ov Ov
|:ai, 8_131] - {aj, a—:g] = [[ai,v], [a;,v]]- (8.2)
8.5 Remark. Equation (8.2) is the n-dimensional system associated to U(n)

constructed in the paper of the first author [Te2].

8.6 Theorem. The action | of Hy on 8 , is Poisson. Moreover, the map

p: 8, = H_ = H} defined by p(A)(A) = M-L My is a moment map,
where A = ¥(f), flea1(z) = E(@)M(z)™ € G+ x D_ and Myin(N) =
limg 100 M(z, A).

Proof. Suppose A = T(f), i.e.,

flean(z) = E()M*(z) € G4 x D_,
A= E—-lEac — (ea/\zM)—l(ea)‘zM)z.

The second equation implies
M7IM, +AM " 'aM = A. (8.3)

Set = M~'6M, B = §A and ¢ = e***M. Compute the variation directly
from equation (8.3) to derive

Nz +[4,n] = B, Jlim 7 =0,

() = o) [ " By )dy (@),

—0Q
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For &4 € H,, since [§+,a] =0, we have M~ 16, M = ¢~ 1€, 9.
(dua(B)u( Y, Ep)
= lim <M(:1: (z) (¢B¢_1)dy¢(ﬂ?)M—l(z)a §+> ,

T—00

—oxe / (WBY~)dye™ ,f+>

Jim (¢
] ngo</ ’(/)BI/) dy ea,\zé- e z>
A

i
p—y

= li
5

[ @By e) = tim [ wBut oy

lim (B, ¢ le Mg e V) dy
z—oo [_ o

(B, (M~16M)-)).

ll

The rest of the proof goes exactly the same as for Theorem 4.3. O

8.7 Remark. Leta = diag(ias,...,ia,), and a; < ... < a,. Then U, is the
set of all diagonal matrices in u(n), UL is the set of all matrices u € u(n) such
that u;; = 0 for all 1 < ¢ < n. So H; is abelian and the action of H; on 8;,
is in fact symplectic.

The following theorem was proved by Flaschke, Newell and Ratiu [FNR1, 2]
for n = 2 and by one of us [Te2] for general n:

8.8 Theorem ([Te2]). The Hamiltonian function on 81, corresponding to
the j-th flow defined by a is:

1 (e o]
Fos) = =—7 [ Qusnia)d 89

i.e., VFy ;j(u) = Qg:ﬂ_l(u)'

8.9 Remark. Let b,c € U,, and & ; and & denote infinitesimal vector
field for the H,-action on 87 , corresponding to bA7 and cA* respectively. Then
the bracket [ ;, & k] is equal to the infinitesimal vector field corresponding to
[b,c]A¥+7. Unless [b, c] = 0, these two flows do not commute.

8.10 Remark. If we replace the group SU(n) by a simple compact Lie group,
then what we have discussed still holds if appropriate algebraic conditions are
prescribed.

In the end of this section, we will study the pull back of the symplectic struc-
ture w on 8; , to D_/H_ via the isomorphism ¥. Note that ¥(G™) (¥(D<)
resp.) is the space of A’s with only discrete (continuous resp.) scattering data.
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We have been using the base point z = 0, i.e., f(A) = M(0,)). But there
is nothing special about z = 0. In the following, we choose a base point y and
let y & —o0o0. The expression with base point 0, and with y, differ by a term
which cancels out when we evaluate integrals at the end points.

We only deal with the symplectic structure on ¥(D¢). However, this set
is pretty large. For example, Beals and Coifman and later Zhou show the
following:

8.11 Theorem ([BDZ]). Let B, denote the unit ball in 8; , with respect to
the L'-norm, i.e., By is set of all A= a\ +u € 81,4 such that fix’oo {ulldr < 1.
Then By C ¥(D*).

Let S denote the scattering transform that maps A € 8} , to its scattering
data S (defined in section 7). The restriction of the symplectic form w on
81,4 to S(B1) was computed by Beals and Sattinger [BS]. We will compute the
restriction of w to ¥(D¢) in terms of variations in D¢ below. Let

ey = [ " In(ir(f(r)g(r)dr.

By the same computation as in Theorem 4.3, the Poisson bracket on By C 8; ,
is

(014,8,4) = lim (B ()6, B(@)) -, Bla)™ 62 £ B(z)
= dim (BT )T fEW)-, E() 7 f 6 f B ()
= zl'gr;o(E_l(z)cSlE(:t:),M“l(SzM(:I:))
- lim (E7 ()8 E(y), M6 M(y)).

y——00

Now, let the vacuum be based at y, i.e., factor
FH NV = E(z,y, )M~ (z,y, A).

Hence f(A) = M(y,y, ) and 6E(y,y,A) = 0. The y-term in the above descrip-
tion is now zero, and we have
= 0{1}1;5_00—(M(ac)—le-ﬂ*(z—wa1 FF e @M (z), M~ (z)6M (z))

— lim __<€—a)\(z'—y)61ff—leaA(z—y), (SQM(.T)M_l(.’E))

T—+00,y——00

= dim (e M) M (y)e, e M ()M (2)e™).

Z—$00,y——00

Now by Theorem 7.19, we get
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8.12 Theorem. The Poisson structure on the unit ball By in 81,q with respect
to the L'-norm, written in terms of variations in De | is

o0

Biand) = [ @PP5007),

-—00
where A = ¥(f), fr = Pv = Q0 is the factorization of f, into upper a-
triangular and lower a-triangular times unitary and Py, Qq are holomorphic as
gwen in Proposition 7.13.

Next we study the pull back the symplectic form

o

wlang) = [ (@ @) @) ds
-0

on 814 to the space ¥(G™). This space has many complicated algebraic com-

ponents. For example the space of all A € 8; , whose scattering data have

only one pole (or equivalently, A = ¥(g), where g is a simple element) can be

parametrized by

n

U Cs x{V eGrk,C)|a(V) ¢ V}.

k=1
However, the space of A whose scattering data has only two poles immediately
becomes complicated as the factorization of g € G™ as product of simple ele-
ments is not unique. The following Proposition gives the restriction of w to the
simplest component of ¥(G™). We believe that the restriction of w to each al-
gebraic component should be symplectic, but we have not yet found an efficient
way to compute the general case.

8.13 Proposition. Let a = diag(—i,4,...,1). Then:
(i) The space of all A = ¥(g, ), where 7 is the projection onto a one dimen-
stonal subspace Cv, is isomorphic to
N =C4 x (C" '\ 0)={(2,v)|z€ C\ R,v = (v2,... ,0,) # 0}
(i) The pull back of the symplectic form w to N is
2Re (dz A 8log(|v|?) + (z — 2)8dlog(|v]*)) ,
where [v] = 377, |v;]?.
Proof. Let 7 denote the projection of C™ onto the one dimensional sub-
space spanned by (1,v), where v = (v,... ,v,) € C™" 1. By Theorem 6.5 (vi)

and formula (6.7), g.» # 0 = (uy;), where (u;;) € u(n), uj; =0if2< 4,5 <n
and

2i(z ~ 2)7,eix 192
e~iz=2)z 4 eiz=2)(Juy |2+ ... + v, |2)
Then the proposition follows from at least two separate computations, neither
of which is very illuminating. We hope to provide the more general results in a
future paper. O

Ulj(T») =
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8.14 Remark. Fix z € C;. Then the restriction of the symplectic form to
the subset {(z,v)|v € C*~ 1\ {0},|lv]] = 1} of M in the theorem above gives
the standard symplectic structure of CP"~2.

9 Symplectic structures for the restricted case

Most of the interesting applications in geometry come from restrictions of the
full flow equation to a smaller phase space satisfying additional algebraic con-
ditions. This leads to a serious problem, not with the flows and the scattering
cosets, but with the symplectic structure. Generally the original symplectic
structure we have used to this point vanishes on the restricted submanifolds.
In this section, we describe a typical restrictions and the construction of the hi-
erarchy of symplectic structures. We give an outline of the theory, and explain
how it can be applied. The details of this construction for involutions appear
in [Te2].

Let U be a simple Lie group, ( ,) a non-degenerate, ad-invariant bilinear
form on the Lie algebra U, and ¢ an order m automorphism of U. For simplicity,
we denote the Lie algebra automorphism do. on U again by o. Fix a primitive
m-th root of unity a. Suppose o has an eigendecomposition on U:

j=0

where U; is the eigenspace of o on U with eigenvalue o. Then

[u]‘,uk} C u]'+k, for all j, k,
W, Ug) =0,  if j # k.

Here we use the convention U; = Uy if § = k (mod m).
Fix an element a € U;. Let U, denote the centralizer of a, and U;IL the
orthogonal complement of U, in U. Consider a subspace of 81 ,:

{o={A=ar+ueSi|lueUpnNUs} C 81,
Then A € 87 , satisfies the reality condition
a(A(a™tX) = A(N). (9.1)

Hence the trivialization E of A € 8; , normalized at the origin satisfies the
condition g(E(a~!)) = E(A). Then

9.1 Proposition. 8 , is invariant under the action § of GT7 on 8, , defined
in section 6, where G° is the subgroup of g € G™ such that a(g(a~t))) =

g(A).
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The trivialization M of A € 87 , normalized at infinity also satisfies the
same reality condition as E. So for b € U; N U,, we have

oM (a ' A)bM (a X)) = aM 1AM (N).

Since
e}
M™OM ~ 3" Qp A7,
7=0
we get
Qv € U_jy1, for all j > 0.

In particular, [Qj4+1,a] € U_j11. So [Qs,j+1(u), a] is normal to 87 , if j Z 1
(mod m), and is tangent to 87 , if j = 1 (mod m). And we have

9.2 Proposition. The j-th flow preserves 87 , for all j and any order m au-
tomorphism o. If j 21 (mod m), then the flows are identically constant.

However, the symplectic form
oo
w(b1u, 6yu) = / tr(— ad(a)~ (611, 65u) da

—00

vanishes on 87 ,.

The sequence of symplectic structures constructed by Terng can be described
using a sequence of coadjoint orbits, which arise using a shift in the bi-linear
form ( ,) on the loop algebra §.

For k < —1, let M) denote the coadjoint C(R,G_)-orbit at (£ + aX) vy
in C(R,Gy), where vg () = A1, Set

S1.ak = (Mrrg) N8y a.

Then du lies in the tangent space of 8; 4 at % + aX + u if and only if

Su(z) = ({g_ (z), % + A(x)] u,;1> Vk, (9.2)

+

where formally £_(z) € §_. Here (-)4 is the projection into G4, and the
construction is entirely algebraic. For A = a) + u, write

E_(6u) = E_1 (BN Eo(Su)A™2 + ... .
Then equation (9.2) gives
[€-1,a] = bu,

d .
[éj:a]z {d_m+u7§j+1:|7 kS]S'l
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This gives a recipe to compute £_(éu) explicitly via a mixed integro-differential
operation:

€2, (0u) = J;* (du),

& (u) = (Jo ' Pu) 771 I (bu),

where

Jo(v) = [v,q],
Pu(v) = vg + [u, 9] = [u,nu(v)],

7@ = [ ), o).

—00

Here v’ and v? denote the projection onto a-off diagonal (U}) and a-diagonal
(U,) respectively. Set
Jr = Jo(J7EP,)FL.

The natural shifted symplectic structure is given by

wn b, o) = [ <—d— A (61u>,5_<52u)1> dz

oo \dT

- /°° - ((% +ad+ u) ([E-(6ru), £ (52u)])>k dz,

— 00
oo

- / tr ((61) €F (62)) d,

—00

= /_oo tr ((61w) J; ! (G2u)) dz,

where (-)x denote the coefficient of A* in (-). In particular, the first two in the
series are:

w—1(d1u, dou) = w(byu, dou) = /_00 tr((— ad(a) ! (61u))dau) dz,

o0

w_a (611, 6u) = / tr((61u)(J_2) 71 (Gou)) dz

—00

- /°° be((510) T PuJ 7t (65w)) da.

—00

The natural coadjoint orbits require the relevant terms of {_ to lie in the
Schwartz class. So the tangent space of the smaller submanifold §; . =
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(Mkvk) N 81,4 at u is
{0u]£_5(6u)(o0) = 0,1 < j < —K}.

Hence 8; 4, is a finite codimension submanifold of 8; , and the formulas we
write down for wy, are skew symmetric.

For k > 0, let M}, denote the coadjoint C(R, G4)-orbit at (& +aX) v, ! in
C(R,S_), and 81 o x = (Myvg) N8y 4, where vg(A) = A**!. Then du lies in the
tangent space of 81 4% at d—dz- + A if and only if

sute) = ([er@) 5 + @) 157) o 93)

where formally £ (z) € G+. Here ()_ is the projection into §_. For A = aA+u,
write

& (du) = &(0u) + &L (du)A+ ... .
Then equation (9.3) gives

d
[E + U,&)] = (5U,

d

[a;+u7£j:|:[£j—l1a]a 1S]Sk

Hence
& (6u) = (P 7Y P (6u) = J; (bu).

The natural shifted symplectic structure is given by

o0
wi (611, Spu) = / tr(($1) T (6u)) di.
—o0
In particular,
wo(élu, (5211«) = / tr((élu)Pu—l(égu)) dzx.

If a € U;, then J, = —ad(a) maps U; to U;4;. This implies that J, maps
U; to U;—x. Thus we obtain:

9.3 Proposition ([Te2]). wy is a symplectic structure on 8; 4 x. Moreover,
(i) wp =0 0n 8,xN8, if kZ0 (mod m),
(ii) wy, is non-degenerate on 81,1 N 87 , if k=0 (mod m).

Recall that Fy; defined by formula (8.4) is the Hamiltonian for the j-th
flow on 8; , defined by b with respect to the symplectic form w_;, and VI ; =

Qs ;41 Since Pu(Qy;) = [Qb,5+1, 0], we get
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9.4 Theorem ([Te2]). If a is regular, then
(i) Jr(VFy;) = [Qbj+r+2,0],

(i) the Hamiltonian flow corresponding to Fy ; on (81,4, wy) is the (j+7r+1)-th
flow defined by b.

9.5 Examples.

Example 1. Let o denote the involution o(y) = —y* of SU(n), and
a = diag(i, —4,...,—1). Then 8 , ; is the set of all A = aA + u with

(0
u= _,Ut 0/’

where v : R — M (n-1) is a decay map from R to the space M x(51) of real
1 x (n — 1) matrices. The even flows vanishes on 8 , 5, and the odd flows are
extensions of the usual hierarchy of flows for the modified KdV. The third flow
written in terms of v : R — My (,—1) is the matrix modified KdV equation:

1
vy = —Z(vmI + 3(vgvtv + voluy).

(When n = 2, v is a scalar function and the above equation is the classic
modified KdV equation.) The 2-form wy gives the appropriate non-degenerate
symplectic structure for the matrix modified KdV equation and the hierarchy
of odd flows.

Example 2. It seems appropriate to mention the relation of the restriction
to the sine-Gordon equation. The sine-Gordon equation is written in space time
coordinates (7,y) as

82q aQq )
gz— - —a? +sing = 0,
or
ot = Sing

in characteristic coordinates. This is the —1-flow on 87 , defined by b, where
o(y) = —yt is the involution on su(2), a = diag(i, —i) and b = —a/4. The Lax
pair is best written in characteristic coordinates:

0 0 Z1pl
[55+a/\+u,§+)\ B} =0,

({1t 0 {0 % . fcosq sing
a—(O —i)’ u_(—%’- 0)’ B_l<sinq —cosq/’

The restriction is the same as for the modified KdV. The natural Cauchy prob-
lem is in space time coordinates (7,y), but the scattering theory has been de-
veloped for characteristic coordinates. However, the classical Backlund trans-
formations work well with either choice of coordinates , and preserve whatever
decay conditions have been described in either coordinate systems.

where



Poisson Actions and Scattering Theory for Integrable Systems 373

Example 3. We obtain the Kupershmidt and Wilson equation ([KW]) in
terms of a restriction by an order n automorphism of sli(n). Let a = e27¥/™
and p € SL(n) the matrix representing the cyclic permutation (12...n), i.e.,
p(e;) = eiy1 (here we use the convention that e; = e; if ¢ = j (mod n)). Let
o : sl(n) — sl(n) be the order n automorphism defined by o(y) = p~'yp. Then
X € U; if and only if 0(X) = &/ X. Let

a =diag(l,q,...,a™ 1) € U;.

Note that U} is the space of all matrices X € sl(n) such that X;; = 0 for all
i=1,...,n. So

1 0 0 v
(( 2)e (0 3 resnr).
g,a: 1 0 0 0 V1 U2
00 a 0 |A+]|ve 0 v |v,v2€8R,C)p, ifn=3.
0 0 o v vy O

In general, A = a\ +u € 87 , is determined by (n — 1) functions (the first row
of u). By Propositions 9.3, {w,,, |r € Z} is a sequence of symplectic forms on

{ o~ The (n+1)-th flow is the Kupershmidt-Wilson equation. By Theorem 9.4
it satisfies the Lenard relation:

Ug = [Qa,n+2a a] = Jo (VFb’n) = Jn(VFbyo).

When n = 2, the third flow on 87 , defined by a gives the modified KdV
equation:
1
v = Z(vmz - 6vv,), (9.4)
and all the odd flows are the hierarchy of commuting flows of the modified
KdV equation. For n > 2, this gives another generalization of modified KdV
equation.

10 Baiacklund transformations for j-th flows

This section contains a brief outline of ideas and results in [TU1]. The classical
Bécklund transformations are originally geometric constructions by which a two
parameters family of constant Gaussian curvature —1 surfaces is obtained from
a single surface of Gaussian curvature —1. This is accomplished by solving two
ordinary differential equations with a parameter s. The second parameter is
the initial data. Since surfaces of Gaussian curvature —1 are classically known
to be equivalent to local solutions of the sine-Gordon equation ([Dal], [Ei])

Qzt =sing
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this provides a method of deriving new solutions of a partial differential equation
from a given solution via the solution of ordinary differential equations. Most of
the known “integrable systems” possess transformations of this type, which are
sometimes called Darboux transformations. Ribaucour and Lie transformations
are other classical transformations that generate new solutions from a given
one.

The action of the rational loop group we constructed in section 6 can be
extended to an action which transforms solutions of the j-th flow equation. In
this section we describe very briefly the results in [TU1], which will construct an
action of the semi-direct product of R* x G™ on the solution space of the j-th
flow. The construction of this loop group action is motivated by the construction
given by the second author in [U1] for harmonic maps. We will see

(1) the action of a simple element g, , corresponds to a Bécklund transfor-
mation,

(2) the action of R* corresponds to the Lie transformations,

(3) the Bianchi permutability formula arises from the various ways of factor-
ing quadratic elements in the rational loop group into simple elements,

(4) the Bécklund transformations arise from ordinary differential equations if
one solution is known,

(5) once given the trivialization of the Lax pair corresponding to a given
solution, the Backlund transformations become algebraic.

Since the sine-Gordon equation arises as part of the algebraic structure (the
—1-flow for su(2) with an involution constraint), we can check that we are
generalizing the classical theory. The choice of group structure depends on the
choice of the base point (just as the scattering theory depends on the choice of
a vacuum, or the choice of 0 € R). Hence the group structure was not apparent
to the classical geometers.

One of the most interesting observations is that appropriate choices of poles
for the rational loop yield time periodic solutions. This yields an interesting in-
sight into the construction of time-periodic solutions (or the classical breathers)
to the sine-Gordon equation as explained in Darboux ([Dal]). For recent de-
velopments concerning breathers of the sine-Gordon equation see [BMW], [De],
[SS]. There are no simple factors in the rational loop group corresponding to
the placement of poles for time periodic solutions. However, there are quadratic
elements, whose simple factors do not satisfy the algebraic constraints to pre-
serve sine-Gordon, but which nevertheless generate the well-known breathers
(one way to think of them is as the product of two complex conjugate Bicklund
transformations). The product of these quadratic factors generate arbitrarily
complicated time periodic solutions.

The classical theory of Backlund transformations is based on ordinary dif-
ferential equations.
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10.1 Theorem ([Ei]). Suppose q is a solution of the sine-Gordon equation,
and s # 0 is a real number. Then the following first order system is solvable

for q*:
*
(¢" = q)c = 4ssin (q ;q)
* __1 . q*_q
(g +q)t—ssm( 5 )

Moreover, q* is again a solution of the sine-Gordon equation.

(10.1)

10.2 Definition. If ¢ is a solution of the sine-Gordon equation, then given
any ¢, € R there is a unique solution ¢* for equation (10.1) such that ¢*(0,0) =
¢, Then B;. (¢) = ¢* is a transformation on the space of solutions of the
sine-Gordon equation, which will be called a Bécklund transformation for the
sine-Gordon equation.

10.3 Proposition ([Ei]). Define Ls(q)(z,t) = g(sz,s7't). Then q is a so-
lution of the sine-Gordon equation if and only if Ls(q) is a solution of the
sine-Gordon equation. (Ls is called a Lie transformation).

10.4 Proposition ([Ei]). Bdcklund transformations and Lie transformations
of the sine-Gordon equation are related by the following formula:

Bse, = L7'By ., L.

There is also a Bianchi permutability theorem for surfaces with Gaussian
curvature —1 in R3, which gives the following analytical formula for the sine-
Gordon equation:

10.5 Theorem ([Ei]). Suppose qo is a solution of the sine-Gordon equation,
s? # s%, and s1s9 # 0. Let ¢; = By, c,(q0) for i = 1,2. Then there exist
di,ds € R, which can be constructed algebraically, such that

(1) leydl‘BS2yCZ = Bs;,d; Bsy,c15
(2) let g3 = By, 4y Bss,c,(q0), then

g3 —qo _ S1+ 82 Q-G
ta = tan . 10.2
n 4 S1 — 82 4 ( )

This is called the Bianchi permutability formula for the sine-Gordon equa-
tion.

Next we describe the action of G™ on the spaces of solutions of the j-th
flow (j > —1). This construction is again using dressing action as in section 6
for the action of G™ on 8, ,. First we make some definitions:
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10.6 Definition. Let M(j,a,bd) denote the space of all solutions of the j-th
flow (equation (5.6)) on 8; 4 defined by b with [a,b] =0 for j = -1and j > 1
respectively.

Assume j > 1. Let A = aX+u € M(j,a,b), and E(z,t, ) the trivialization
of A normalized at (z,t) =0, i.e,,

E-'E, = aX+u,
E7'E; =N + QpaN "t + ...+ Qv
E(0,0,\) = I.

Given g € G™, by exactly the same method as in section 6, we can factor

I E(z,t, ) = E(z,t,N)§(, 1, ),
such that E(z,t,-) € G4 and g(z,t,-) € G™. Define

geE=E,
ge A=E'E,

Then g ¢ A € M(j,a,b), and e defines an action of G™ on M(j,a,b).

Recall that the g € G™ can be generated by simple elements g, . € G™,
which are rational functions of degree 1. Choose a pole z € C' \ R, and a
subspace V C C™, which is identified with the Hermitian projection

T:C" > V.
Write

z
ﬂ,J_

-z

g:n(A) =7+ 3
as in Proposition 6.3.

10.7 Definition. A — g, . e A is a Bécklund transformation for the j-th
flow.

Compute the action of g, . explicitly as in section 6 to get:

10.8 Theorem. Let g, » be a generator in G™, where 7 is the projection of C™
onto a k-dimensional complex linear subspace V. Let A = aX + u € M(j4,a,b),
and E(zx,t,)\) the trivialization of A normalized at (z,t) = 0. Set V(z,t) =
E(z,t,2)*(V), and let 7(z,t) denote the projection of C™ onto V (x,t). Set

(10.3)

#(x,t) = E*(z,t,2)U(U*E(z,t,2)E*(z,t,2)U)"*U*E(z,t, 2),

~ A -2 . 1
7 = b ,t
9z,7(x,t)(A) 71.(I ) + N — 271'(.77 )

where U is a n X k matriz whose columns form a basis for V. Then
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(i) g:n @ E = 9znlge 7 -1
(i) gzn @ A=A+ (2 — 2Z)[7,a].

10.9 Theorem. The 7 constructed in Theorem 10.8 is the solution of the
following compatible first order system:

(T)z + [a?+ u’ﬁ-] = (2 — 2)[7, a]T,
(M)t = Pkmol Qb j—k (W)](2 + (2 = 2)7)F, (10.4)

it =, #*=a, «(0,0)=nm.

Moreover,

(1) equation (10.4) is solvable for & if and only if A = a\ +u is a solution of
the j-th flow on 8, 4 defined by b,

(i) if A= aX+u is a solution of the j-th flow and 7 is a solution of equation
(10.4), then A = A + (z — Z)[7, a] is again a solution of the j-th flow.

10.10 Definition. Let R* = {r € R|r # 0} denote the multiplicative
group, and R* x G™ the semi-direct product of R* and G™ defined by the
homomorphism

p: R = Aut(GT),  p(r)(9)(A) = g(rA),
i.e., the multiplication in R* x Q(G) is defined by
(r1,h1) - (2, he) = (rir2, ha(p(r1)(h2))).

10.11 Theorem. The action ¢ of G™ extends to an action of R* x G* on
the space M(j,a,b) of solutions of the j-th flow on 81, defined by b. In fact, if
A =al+u € M(j,a,b) and E is the trivialization of A normalized at (z,t) =0,
then

(r e E)(z,t,\) = E(r~lz,r79t,7A),

(re A)(z,t,\) = aX + r~tu(r~lz,r=9t).

Since (T_la 1)(1age‘a,ﬂ)(r’ 1) = (1797"5""‘,77): we have
10.12 Corollary. If A € M(j,a,b), then

rte (ge“",n b (T d A)) = Greio g ® A.

Next we state an analogue of the Bianchi Permutability Theorem for the
positive flows:
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10.13 Theorem. Let z; =71 +1is1, 23 = 2 +15g € C'\ R such that ry # r2 or
s2 # s3, and m1, ™y projections of C™. Let Ag € M(j,a,b), and A; = gz, r; ® Ay
fori=1,2. Set

(10.5)

& = (—(z1 — 22)I + 2i(s1m1 — sama))mi((— (21 — 22)T + 2i(s1m1 — 327T2))_1,
gi = (—(Zl - Z2)I + 27:(8177'1 b 8277'2))7?,‘,(—(21 - 2.’2)I + 21'(317?1 - 827?2))_1,

for i = 1,2, where 7; is as in Theorem 10.8 and A; = Ao + 2is[f;,a]. Then
(") 920,62921,m1 = 921,61922,m25
(i1)
Az = (2g,62921,m1) ® Ao = Ao + 2i[s171 + $2€2,a]

. N (10.6)

= (gz1.£192,m2) ® Ao = Ao + 2i[s161 + 5272, a].

Note that if A lies in the orbit of R* x G™ through the vacuum solution
Ag = ah of the j-th flow then A has no continuous scattering data.

10.14 Definition. An element A in the orbit of R* x G™ through the vac-
uum solution Ag = a\ of the j-th flow is called a k-soliton if the normalized
eigenfunction has k poles counted with multiplicities.

10.15 Remark. The trivialization of the vacuum solution Ap = aX of the
j-th flow on 8 , defined by b is E = exp(aiz + bAt). So 1-soliton is

gz,w.AO — a}\_+_(z_2) [e—aZa:—-bijtU(U*ea(z—Z)x+b(zj—Zj)tU)—lU*eaza:+szt, a] ,

where U is a matrix whose columns form a basis of Im(r). If g = Hle Gzimis
then g ff Ag can be written in terms of 1-solitons gz, m;  4,... , gzu,m, # A al-
gebraically by applying the permutability formula (10.6) repeatedly.

10.16 Remark. If A is a soliton solution of the j-th flow on 8, , defined by
b, then by Corollary 8.3 there exists g € G™ such that

A(t) = ¥(es,;(t) b 9)-

As noted in Remark 7.22, given g, & H—_, g-,» ® A can be a m + 1,m or
m — 1-soliton if A is a m-soliton solution.

10.17 Proposition. The set of all soliton solutions of the j-th flow on 81,4
defined by b is isomorphic to the space GT/H™ of left cosets, where H™ =
GmNH_.
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10.18 Remark. Although the space G™/H™ of all multi-solitons does not
have a manifold structure, the set B,, all m-solitons is the union of complex
algebraic varieties. For example,

n—1
B, = U (C+ x X), where
k=1
Xy, = Gr(k,C")\ {V € Gr(k,C™) |a(V) = V}.

But B,,, with m > 2 is much more complicated because of the non-uniqueness of
the factorization and the fact that generators of G™ have complicated relations
such as the permutability formula given in Theorem 10.13 (i).

Next we apply the action of G™ on the first flows to get actions of G™ on
the space M of solutions of the n-dimension system (8.2) associated to U(n).
Given v € M, the trivialization E of v normalized at the origin is the solution

E7'E:; =ajA+[a;,v], 1<j<n
E(0,\) =1.

10.19 Theorem. The group R* x G™ acts on M, and the action e is con-
structed in the same manner as on the spaces of solutions of the first flow. In
fact, given g, . € G, the following initial value problem is solvable for © and
has a unique solution:

Moreover,
(i) g.mwov =v — ((z — 2)7)L, where y* denote the projection of y € U onto
T,

-1

(i) the trivialization of g, .~ ®v 1s g, = Eg; ,

(#i) 7 is the projection onto the linear subspace E;(V'), where V is the image
of the projection w,
(iv) (rev)(z) = r tv(r~lz) forr € R*.
10.20 Remark. The permutability Theorem 10.13 holds for system (8.2)
with the same formula.
There are also analogous results for the —1-flow:

10.21 Theorem. The group R* x G™ acts on the space M(—1,a,b) of solu-
tions of the —1-flow on 8, , defined by b:

—_ -1
U = [a’7g bg]a . (107)
gt = gu, limg, o g(z) = 1.
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Moreover, let A € M(—1,a,b), E the trivialization of A normalized at (z,t) =0,
and g; . a simple element of G™, then

(i) Theorems 10.8, 10.13 and Corollary 10.12 hold with the same formulas,

(it) 7 is the solution to

(M)z + [az + u, 7] = (£ — 2)[7, a]T,

. 1 e o1~ o~ e o

() = PIE ((z — 2)7g~'bgit — 29~ 'bg# + Zi g~ bg) , (10.8)
i =7, =% #0,0)=mr,

(iis) for v € R* we have

(re E)(z,t,\) = E(r~tz,rt, 7)),
(r e A)(z,t,2) = aX + rtu(r~lz,rt).

10.22 Remark. Let A € M(-1,a,b), and E its trivialization normalized
at the origin. Then s(z,t) = E(z,t,—1)E(z,t,1)"! is a harmonic map from
RY! with the metric 2dz dt to U(n) and s~!s, is conjugate to a and s~ !s; is
conjugate to b. In particular, this says that M(—1,a,b) is a subset of the space
F of harmonic maps from RM! to U(n). The action of G™ on JF constructed in
[U1] leaves M(—1,a,b) invariant, and agrees with the action e we constructed
here.

Recall that given an involution ¢ of su(n), G™7 is the subgroup of g € G™
such that o(g(=A)) = g()\) and 87, = {A € 81,a|0(A(=A)) = A(N)}. Since
the action of G™7 leaves 87 , invariant, we have

10.23 Theorem. The space M?(2j—1,a,b) of solutions of the (25 —1)-th flow
associated to U/K defined by b is a subset of M(25—1,a,b) for j > 0. Moreover,
the action @ of R* x G™7 leaves M° (25 —1,a,b) invariant, and Theorems 10.8,
10.9, 10.11 and Corollary 10.12 hold for M° (25 — 1,a,b) and R* x G™°.

10.24 Theorem. The space M°(—1,a,b) of solutions of the —1-th flow equa-
tion on 87 , defined by b is a subset of M(—1,a,b). Moreover, the action of
R*x G leaves M?(~1,a,b) invariant and Theorem 10.21 holds for M{ ,
and R* x G™°7.

10.25 Proposition. Let o denote the involution on SU(n) defined by o(y) =
y. Then

(i) 9:.n € G™ ifand only if z = —Z and 7 = m,

(1t) if T =, then g, ng—z. € GT7.
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Next we explain the relation between the classical Biacklund transformations
and the action of G™" on the space of solutions of the sine-Gordon equation
(or the space M?(—1,a,b) with o, a,b defined as in Example 9.5). If s € R,
7* = # = (7)* and (7)* = 7, then by Proposition 10.25, g;s = € G™. Hence

2f gndcos?
- cos” 2 sin 5 cos 5
sin g cos g sin? é
cos L
for some function f, i.e., 7 is the projection onto | 2 . So the first order
sin £

system (10.8) for 7# becomes

{fzzgzl+2351nf, (10.9)

ft = 5= sin(f —g).

Write /
o (0 /2
U—gzs,ﬁ.u—(*qz/2 0 )

But @ = u + 2is[7, a], hence we have § = 2f — gq. Writing equation (10.9) in

terms of ¢, we get

(¢" + @)¢ = Lsin(451),

which is the classical Backlund transformation for the sine-Gordon equation.
So we have:

{(q* — ) = 4ssin(£59)

10.26 Proposition. Let q be a solution of the sine-Gordon equation, and 0 <

co < m. Set
( O 921
A=al+ _e ,
ﬁ fo= 1/2((](0, 0) + Co)
cos? % sin % cos %
T = .
| sinf2cosf  sin? L
Then

Bs,ca (CI) = Gis,n ® A.

(We will still use o to denote the induced action of GT° on the set of solutions
of the sine-Gordon equation,).

10.27 Proposition. Let q is a solution of the sine-Gordon equation. Then:

(i) s eq is the Lie transformation L,(q).
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(i1) Proposition 10.4 is a consequence of the following equality in the group
R* X GT—H ;
(871 D)(1, geta g)(8,I) = gseia g-

(i) The Permutability Formula (10.2) in Theorem 10.5 is the same formula
(10.6) given in Theorem 10.13, which follows from the following relation
of the generators of G™:

921,619z22,m2 = 922,62921,m15
where m; and &; are related by formula (10.5).

10.28 Remark. It is noted by Xi Du [Du] that a classical Ribaucour trans-
formations as defined in Darboux ([Dal]) for surfaces of K = —1 in R*® corre-
spond to the action of an element g € G™?, which is the product of two simple
elements as in Proposition 10.25 (ii).

Using the action of G™, we obtain many solutions of the j-th flow that are
periodic in time. This is an algebraic calculation, which shows that when the
poles are properly placed, the solutions are periodic. Multi-solitons will be time
periodic if the periods of the component solitons are rationally related.

10.29 Theorem. Let j > 1 be an integer, a = diag(iai,...,lan), and b =
diag(iby,... ,ibn). If b1,...,b, are rational numbers. Then the j-th flow equa-
tion defined by a,b:

ug = [Qb,j+1(u), a]

has infinitely many m-soliton solutions that are periodic in t.

The trivialization of the vacuum solution for the —1-flow defined by a =
diag(i,... ,4, ~1,...,—1) is B()\, x,t) = exp(a(Az + A~'t)). By Theorem 10.21,
the 1-soliton g, . @0 is a function of

exp(i(cos8(z + t) — isin(z - t))) = exp(iT cosf + ysin F),

where y =z —t and 7 = z + t are the space-time coordinates. This gives

10.30 Theorem. If z = ¢¥ and a = diag(i,... ,4,—4,...,—1i), then the 1-
soliton g, 0 for the —1-flow (harmonic maps from R*! to SU(n))) is periodic

in time with period c§§9' A multiple soliton generated by a rational loop with
poles at z, = €¥1,... 2z, = e will be periodic with period T if there exists
integers ki, ... ,k, such that
2rk;
=8 yi<ji<n
cos 9j

The multi-solitons above satisfy the sine-Gordon equation if the rational
loop satisfies f(—A) = F()). This means the poles occur in pairs (e?%i, —e %)
and the projection matrices 7; must be real.
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10.31 Corollary. Multiple-breather solutions ezists for the sine-Gordon equa-
tion.

10.32 Example. If 7 is real, then

(9eio n -0 ).o=4tan—1(Sinasin((x+t)cos0))

cosf cosh((z — t) sin )

is the classical breather solution for the sine-Gordon equation. Theorems 10.24
and 10.30 give m-breather solutions explicitly, although the computations are
quite long.

10.33 Corollary. There are infinitely many harmonic maps from RY! to a
symmetric space that are periodic in time.

11 Geometric non-linear Schrodinger equation

Consider the evolution of curves in R?

Yt = Yz X Vza, (11.1)

where x denote the cross-product in R®. This equation is known as the vorter
filament equation , and has a long and interesting history (cf. [Ri]). It is easy
to see that |]v;||? is preserved under the evolution. It follows that if 4(-,0) is
parametrized by its arc length, then so are all (-, t) for all t. So equation (11.1)
can also be viewed as the evolution of a curve that moves along the direction of
binormal with the curvature as its speed. Let k(-,t) and 7(-,t) be the curvature
and torsion of the curve ~(-,t). Then there exists a unique 6(z,t) such that
6, =7 and
q(z,t) = k(z,t)e™t /7 rla)ds

is a solution of the non-linear Schrodinger equation:

Gt = % (Qa:z + 2|q|2Q) .

There is another interesting evolution of curves in S? that is also associated to
the non-linear Schrédinger equation:

11.1 Proposition. ~(z,t) is a solution of equation (11.1) with x as the arc
length parameter if and only if ¢(x,t) = vz(z,t) : R? — S? satisfies the equation

J(pt) = V. ¢z, (11.2)

where V is the Levi-Civita connection and J is the complex structure of the
standard two sphere S2.
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Equation (11.2) is the geometric non-linear Schrodinger equation (GNLS) on
S2. Such equation can be defined on any complex Hermitian manifold (M, g, J).
Consider the Schrédinger flow on the space S(R, M) of Schwartz maps, i.e., the
equation for maps ¢: R x R — M:

8¢\ _
(&) =2

where A¢ = V4, @, is the gradient of the energy functional on 8(R, M), or the
accelleration.

In this section, we give a brief outline of ideas and results in a forthcoming
paper [TU3]. There is a Hasimoto type transformation that transforms the
GNLS equation associated to Gr(k,C™) to the the second flow on 8; , defined
by

0 ~il,_¢

We have seen in Example 5.6 that identifying 81, as the space My (n—k) of
k x (n — k) matrices, the second flow defined by a is the matrix non-linear
Schrodinger equation:

0= (”’“ 0 ) € u(k) x u(n — k). (11.3)

B, = %(Bm +2BB*B). (11.4)

Applying our theory to equation (11.4), we obtain many beautiful properties
for the GNLS associated to Gr(k,C"™). For example, we have

(i) a Hamiltonian formulation,
(ii) long time existence for the Cauchy problem,
(iii) a sequence of commuting Hamiltonian flows,
(iv) explicit soliton solutions,
(v) anon-abelian Poisson group action on the space of solutions of the GNLS,

(vi) a sequence of compatible symplectic structures on the space
S(R,Gr(k,C™)) in which the GNLS is Hamiltonian and has a Lenard
relation.

Let U(n) be equipped with a bi-invariant metric. It is well-known that
Gr(k,C™) can be naturally embedded as a totally geodesic submanifold M of
U(n). In fact, M is the set of all X € U(n) such that X is conjugate to a as
described by formula (11.3). The invariant complex structure on M is given by

Jh(v) = [U,h].
Consider the following equation for maps ¢ : R? — M:

Jo(9t) =V, (¢2), ¢:R > M (11.5)
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where V is the Levi-Civita connection of the standard Kahler metric on M. A
direct computation gives

V¢= (¢z) = ¢(¢_1¢m)z

So equation (11.5) becomes

b= —5(67 62)e (GNLS)

Next we want to associate to each solution of equation (11.4) a solution of
the GNLS. This is a generalization of the Hasimoto transformation of the vortex
filament equation to non-linear Schrodinger equation. As noted in Example 5.6,
A =a)+ u € is a solution of (11.4) if and only if

6 = (aX + u)dz + (ar? + ud + Qq 2(u))dt

is flat for all A, where

(D ()
2z 2
In particular, 8y = udx + Q4 2(u)dt is flat. Let g be the trivialization of g, i.e.,
{g‘lgz =u,
97 9t = Qa2 (u).
Set ¢ = gag™!. Changing the gauge of 8, by g gives

T\ = gOrg~ " —dgg~! = (gag™ N)dz + (gag™ \* + gz9 "1 \)dt
= ¢Xdz + (X% + gug™I\)dt.

Since 7y is flat for all A, we get

— -1
¢z = _[¢a gug ]
But for u € U}, we have a~'ua = —u. Hence

1 1

¢ s = ga~ g (9o097! ~ gag T g:97") = ga luag™! — gog”
= —gug™! — 9,97 = —-2¢,97 = —2gug™!. (11.7)
So the first equation of (11.6) implies that ¢ is a solution of the GNLS.

Conversely, suppose ¢ : R2 — M is a solution of the GNLS. Then there
exists g : R> — U(n) such that ¢ = gag™" and g~ 'g,(z,t) € U} for all (z,t).
Set

1
u=g"lg,, f= *'2‘(¢—1¢z)-
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Then the equation (11.7) implies that ¢~ '¢; = gz g~ ! = f. Differentiate ¢ =
gag~! with respect to z to get

¢z = [9297", 6] = [£,¢]-
But the GNLS gives ¢: = fz. So
(pA)dz + (¢X? + fA)dt
is flat for all A\. Changing the gauge by g~1, we find that
Bx = (aX + w)dz + (a)d? + ul + h)dt

is flat, where h = g~'g;. Flatness of 8 on the (z,t)-plane for all A implies that
h = Qa2(u). So this proves that u is a solution of the second flow equation
(11.4). To summarize,

11.2 Proposition. If B : R? - M(k x (n — k)) is a solution of the matriz
NLS (11.4), then there is g : R* = U(n) such that

1 * 1
B 0 B ) LBB* iB
979 = (_B* 0), 979 = (22 .
iB: -LB*B

and ¢ = gag™! is a solution of the GNLS. Conversely, if ¢ is a solution of the
GNLS, then there is g : R* — U(n) such that

_ ’ZIk 0 -1 -1 . 0 B
¢_g(0 _n—k)g ) g gz— _B* 0 )

and B is a solution of the matriz NLS equation (11.4).

To end this section, we will translate properties for the second flow (11.4)
to properties of the GNLS equation.

When a is singular, formula (8.4) implies that the corresponding Hamilto-
nians for the first three flows on 8 , defined by a are

1 [ 1
Fy(B) = Z/ tr(iB, B* - iBB,)dw = 7(iBz, B),

Fy(B) = %/ tr(—B,B: + B*BB*B) dr
~o0
1

= g(_<B$an> + (B*BaB*B))a
Fy(B) = = / tr(= BB, + BusaB") + 3tr(~BB*BB’ + B,B* BB")dt
—00

1
= — 75 ((iBsas, B) + 3(iBs, BB"B)).

11.3 Remark. Ifbe U,,ie, [a,b] =0, and b # a, then
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(i) @,j(u) in general is not a local operator in u,
(i) the flow generated by bA™ € H commutes with the flow (11.4),

(iii) given by,by € Uy, the flow generated by b; A* and b2 A7 need not commute
and

(661,55 €b2,5] = &br,b2] k45

where & , denotes the infinitesimal vector fields corresponding to bA™,

(iv) the action of Hy = {9 € G4 |ga = ag} on 8 4 is Poisson.

It follows from the discussion in section 7 that the Cauchy problem for
equation (11.4) with initial condition Ag = aX +up € 8 , can be solved by
using factorizations. First we use the direct scattering of Ag = aA + ug on the
line, i.e., solve equation (7.1). Set f(A) = (0, A). Then f € D_. Decompose

FN)ePHN — Bt N M (x,t,A) !

as in section 7 by applying Birkhoff decompositions repeatedly. Then A =
E~'E, is the solution of the Cauchy problem.

The rational group G™ acts on the space of solutions of the GNLS, and
soliton solutions can be calculated explicitly using the formulas in Theorem 10.8.

11.4 Proposition. Let a = diag(—i,i,...,%), and choose a pole z = r +
is € C \ R. Let 7 be the projection on the subspace spanned by (1,v)! =
(1,vg,... ,v,)t. Then the one-solitons for the j-th flow defined by a generated
by Bicklund transformations from the vacuum solution Ag(z,t,\) = aX are of
the form

Az, t,\) = a) +u(z,t),
0 B(z,1)
u(t) = (—B*(z,t) 0 ) !

where ,
486—2i(rz+Re(z’ )t)

B(z,t) = e~2(ss+Im(z7)t) | 2(sz+Im(=)t) |92 v.

Proof. We use Theorem 10.8 to make our computations. We start with
Ag = aA. According to Theorem 10.8,

Ag = aX + (z — Z)[7, a),
where a = diag(—i,4,... ,i). Here 7 is the projection on (1,9)¢, where

b= (1,3) = (1,e¥Ete0y),



388 Te.ng and Uhlenbeck

Let z = r +is. Then

~ 1 00
*(@1) = G 3 eI

The formula for B follows. O

12 First lows and flat metrics

The integrable equations of evolution we have been describing up to this point
have at most two independent variables. The flow of the first variable, regarded
as a spacial variable, is used to construct the initial Cauchy data from the
scattering coset (hence the “first flow” terminology). The second variable is
considered to be the time variable, and the flow in this variable is the evolution.
Many authors consider a commuting heirarchy of flows to generate functions
of an infinite sequence of time variables. However, the physical and geometric
applications do not require this consideration. '

We turn our attention to a family of geometric problems in n spacial vari-
ables, which we shall call n-dimensional systems or n-dimensional flows. In
the applications, the n variables are on an equal footing, and the flows in each
variable is a first flow. The flows commute, and hence the resulting geometric
object is always a flat connection on a region of R™ with special properties.
From our viewpoint, the natural parameter (moduli) space of solutions is a
coset space of the sort we have just described. In many cases, we have obtained
global results on connections in R™ via the decay theorems in section 7.

The n commuting first flows associated to a rank n symmetric space have
been discussed in a paper by the first author ([Te2]). We outline the general
theory and give some of the basic examples. The results on coset spaces and
Béacklund transformations apply naturally to these systems.

12.1 Definition ([Te2]). Let U be a rank n Lie group, T a maximal abelian
subalgebra of the Lie algebra U, and a;, ... ,a, a basis of T. The n-dimensional
system associated to U is the following first order system:

[ai,vlj] = laj, vz.] = [[ai, v], [a;, 0], v:R" = T (12.1)

12.2 Definition ([Te2]). Let U/K be arank n symmetric space, o : U = U
the corresponding involution, U = X + P the Cartan decomposition, A a max-
imal abelian subalgebra in P, and a3, ... ,a, a basis of A. The n-dimensional
system associated to U/K is the first order system:

[ai, vs,;] — [aj,v5.] = [[ai,v), [a;,0])], v:R™—PnAL (12.2)
12.3 Theorem ([Te2]). The following conditions are equivalent:
(i) v is a solution of equation (12.1) (or (12.2))
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(%) thg cc;nnection 1-form 8 = Z;’zl (a;A + [aj,v]) dz; is left flat, i.e., df =
—6N0,

(iii) [8%.— + (aiX + [ai, V), % + (a;A + [aj,v])} =0 for alli # j.

12.4 Theorem ([Te2]). Let T be a mazimal abelian subalgebra of U, T+
the orthogonal complement of T in U, and let S(R™,T+) denote the space of
Schwartz maps from R™ to T+. Let ay,...,a, be reqular elements and form
a basis of T. Then there exists a dense open subset 8o of S(R™,T+) such that
given vy € 8¢, the following Cauchy problem for equation (12.1) has a unique
solution:

[ai)v:tj] - [ajvvl‘i] = [[ai’v]’ [a‘jiv]]7 if i 75 7,

v(t,0,...,0) =vo(t).

At this point, it is important to give some explaination and application.
Because these flows all commute, a change of basis in the abelian subalgebra
T or A can be represented by composition with an element of GL(n, R). So
we might as well assume that aq,...,a, are generic or regular (have distinct
eigenvalues). Starting at 0 € R™, given an element in the coset space D_/H_,
we can solve for E(z;,0,...,0,)) and find % + Aay + u(z1,0,...,0) as if we
were solving for initial Cauchy data. Instead of going to one of the heirarchy of
flows, we solve for the entire family of first flows in variables (zy, ... ,z,). This
gives us a map

D_/H_ — {flat connectionson aregion of R™}.
In the case that our flows can be embedded in the unitary flows,
D_/H_ ~ {flat connections on R" decaying at oo}

(by Theorem 7.16). This gives a proof of Theorem 12.4.

12.5 Remark. Note that we are constructing a more rigid structure then
a flat connection. We are actually constructing special connection one-forms,
and we do not allow arbitray coordinate change or gauge changes in the theory.

By expressing the parameter space in this form, we have made a beginning
towards thinking about the natural symplectic structure on this solution space.
In the case of one-dimensional Cauchy data, the symplectic structures were
averaged out over the one-parameter flow. Here we need to average them out
over an n-dimensional flow to obtain a natural structure.

The canonical examples of these flat connections are quite easy to describe.

12.6 Examples.

Example (i) Let U = GL(n,R), T the maximal abelian subalgebra of
diagonal matrices, and {e11,... ,enn} a basis of T, where e;; denote the matrix
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in gl(n) all whose entries are zero except that the ij-th entry is equal to 1.
Then the n-dimensional system associated to GL(n, R) is the system for

f=(fi):R* - gl(n,R), fii=0,1<i<n

{(fi,-),'. + (Fi)e; + Sp finfag =0, ifi # 4,

12.3
(fij)zr = fikfrj if 7, j, k are distinct. ( )

Example (ii) Let U/K = GL(n,R)/SO(n), and U = X + P the corre-
sponding Cartan decomposition. Then P is the set of all real symmetric n x n
matrices, the space A of all diagonal matrices is a maximal abelian subalgebra
in P, e11,...,enn form a basis of A, and P N At is the space gl;(n) of all
symmetric n X n matrices whose diagonal entries are zero. The n dimensional
system (12.2) associated to GL(n, R)/SO(n) is the system for

F =(fi):R" = gl(n,R), fij="Ffj, fu=0if1<i<n

{(fij)ze + (fij)e; + 2op finfrj =0, if i #7j,

12.4
(fij):nk = fikfkj, if 4, 7, k are distinct. ( )

Note that system (12.4) is the system (12.3) restricted to maps f = (f;;) that
are symmetric.

Example (iii) Let U/K = U(n)/SO(n), and u(n) = so(n) + P a Cartan
decomposition. Then P is the set of all symmetric pure imaginary n xn matrices
and the space A of all diagonal matrices in P is a maximal abelian algebra. Let
iai1,...,ia, be a basis of A. Write v : R* - PNAL as v = —iF, where F is a
real n X n symmetric matrix. Then equation (12.2) for v is the equation (12.4)
for F. This is a special case of the general fact that the n-dimensional system
associated to a compact symmetric space is the same as that associated to its
non-compact dual.

Example (iv) Let U/K = SO(2n)/S(0(n) x O(n)), and U = X + P the
corresponding Cartan decomposition. Then

% = so(n) x so(n) = { (’g g) ’ B,Ce so(n)},

2= { (% £)|renm)

and D
0 - -
A—{(D 0 )'Dlsdlagonal}
is a maximal abelian subalgebra of P. Let a; = (eO-A —g“). Then aq,... ,an

form a basis of A, and PN A is the set of matrices of the form (_g{t }é)
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such that X = (z;;) is n x n matrix with z;; = 0 for all i. Then equation
(12.2) for v = (—(1)7" g), with F' = (fi;) : R™ —= gl(n,R) and f; = 0 for all
1<i<n,is

(fif)as + (fii)a; + 2k frifig =0, ifi##j
(fi)a; + (Fii)as + 24 firfie =0, ifi# (12.5)
(fis)er = fir frs) if 4, j, k are distinct.

Up to now, the flat connections were not constructed to relate to Riemannian
geometry. To explain the relation of these flat connections to geometry, we need
to set up some notations. A diagonal metric is a metric of the form

ds?® = Z b (z)zdmf.
J

If this diagonal metric is flat, then (z;,...,z,) is an orthogonal coordinate
system on R™ in the sense of Darboux ([Da2]). These examples arise in the
study of isometric immersions of constant sectional curvature n-manifolds into
Euclidean space.

On the other hand, to study Lagrangian flat submanifolds in C™ or Frobe-
nius manifolds (used in quantum cohomology), we consider Egoroff metrics.
These are metrics of the form

ds? = Z d)mjd:c?
J

for some function ¢.
The Levi-Civita connection 1-form for the diagonal metric Y 1, b;(z)?dz?

(bi).’tj
b

is

w = (wy) = (= fijde: + fiidzj),  fij =
Or equivalently,
w=—60F + F*, where § = diag(dzy, ... ,dzT,).

Hence we are looking for flat connections o this special form.
The Levi-Civita connection of a Egoroff metric is w = [F,§] with F = F*.
It is easy to see that a diagonal metric is Egoroff if and only if fi; = fj.

12.7 Definition. A Darbouz connection is a connection of the form —§F +
Ft6, and an Egoroff connection is a connection of the form [F, 4] with F sym-
metric, where § = diag(dz,... ,dz,).

By definition of flatness, we get
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12.8 Proposition. A Darbouz connection —0F + F§ is flat if and only if
F = (fi;) satisfies

(fii)e; + (fii)e: + 2 firfin =0, ifi#j (12.6)
(fij)ew = fir fris if 4, j, k are distinct. ’

An Egoroff connection [F,8] (with F = F*') is flat if and only if F = (f;)
is a solution of equation (12.4), the n-dimensional system associated to the
symmetric space GL(n, R)/SO(n).

Let w = —6F + F'§ be a flat Darboux connection. Then a metric ds? =
> bf(z)dz;" has w as its Levi-Civita connection if and only if (b1,...,b,) is a
solution of ()

D% = fyy i (12.7)
J

In general, given a solution F' = (f;;) of equation (12.6), equation (12.7) has
infinitely many local solutions parametrized by n functions b; defined on the
line z; = 0 for j # i. These are used as the initial conditions for the ordinary
differential equations (12.7).

Next we will explain the relation between the space of solutions of equation
(12.6) and the set of flat n-submanifolds in R?>" with flat normal bundle and
maximal rank. First we need the following definition:

12.9 Definition. The rank of a submanifold M™ of R™ at £ € M is the
dimension of the space of shape operators at £ € M. M is said to have constant
rank k if the rank of M at z is equal to k for all z € M. In general, the rank k&
of M at z is less than or equal to the codimension of M in R™.

Using the local theory of submanifolds, it is easy to see that (cf. [Te2]) if
M™ is a flat submanifold of R?" with flat normal bundle and constant rank n,
then locally there exist a coordinate system z: O & M C R?™, A = (a;;) : 0 =
O(n), b; : O = R and parallel normal frame {ep41, ... ,€2n} such that the two
fundamental forms are:

{I =Y, bi(z)?dz2,

n
IIr=3%7. ajibidziensy ;.

The coordinate system z is unique up to permutation and changing z; to —z;
(i-e., the action of the Weyl group B,,). Such coordinates will be called principal
curvature coordinates, and (b, A) will be called the fundamental data of M.

12.10 Theorem ([Te2]). Suppose M™ is flat submanifold of R*" with flat
normal bundle and constant rank n, x is a principal curvature coordinate sys-
tem, and (b, A) is the fundamental data of M. Set

fir = (bi)z; /b5, fiF# 7,
“ 0, fi=j.
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Then F = (fi;) is a solution of equation (12.5), the system associated to the
rank n symmetric space SO(2n)/S(0O(n) x O(n)). Conversely, if F = (fi;) is a
solution of equation (12.5), then there exist an open subset O of R™, b: O — R",
A:0 = O(n) and an immersion X : O — R*" such that

{dA = A(~F6 + 6Ft), where § = diag(dz1, ... ,dzs) 128)

(b:i)z; = fijbj, fi# 7,
and
(i) the immersion X is flat, has flat normal bundle and constant rank n,

(ii) = is a principal curvature coordinate system for X(0) and (b, A) is its
fundamental data,

(iii) given any constants ci,...,c, and set b; = Zj cjaj; for 1 <i < n. Then
(b1,-..,bn) is a solution of the second equation of system (12.8),

(iv) let b= (ai1,-..,a1n), then X(0) C 271

12.11 Remark. If F = F! is a solution of equation (12.4), then F is a solu-
tion of equation (12.5). Let A be as in Theorem 12.10 and b = (a11,... ,01n),
and X : O = R?" the corresponding immersion. It was observed by Dajczer
and Tojeiro [DaR2] that the condition F = F* is equivalent to the condition
that X (0) is a Lagrangian flat submanifold of R?" = C™.

12.12 Remark. Let N"(c) denote the n-dimensional space form of sectional
curvature c. It was proved by Cartan ([Ca]) that if ¢ < ¢’ then N"(c) can
not be locally isometrically embedded in N™(c¢') when m < 2n — 1, but can if
m > 2n — 1. An analogue of Bicklund’s theorem for immersions of N™(c) into
N?27=1(c'") was constructed by Tenenblat and the first author [TT] for ¢ = —1
and by Tenenblat [Ten] for ¢ = 0. The corresponding Gauss-Codazzi equations
for these immersions are called the generalized sine-Gordon equation (GSGE)
and generalized wave equation GWE respectively. GSGE and GWE arise as the
n-dimensional system associated to the symmetric spaces SO(2n,1)/SO(n) x
S0(n, 1) and SO(2n)/S(0(n) x O(n)) respectively (cf. [Te2]). Du ([Du]) noted
that the equation for isometric immersions of N*(c) in N™(c') is the k-dimen-
sional system associated to a suitable rank k symmetric space. For example,
the equation for immersions of R* into S™, n > 2k — 1, is the k-dimensional
system associated to Gr(k, R"*'). Du also proved that the Backlund transfor-
mations constructed in [TT], [Ten], and Ribaucour transformations constructed
in [DaR1] are given by actions of certain order two elements in G.

Darboux’ orthogonal coordinate systems arises naturally in the work of
Dubrovin and Novikov ([DN1, 2]) and Tsarev ([Ts]) on Hamiltonian system
of hydrodynamic type. A brief review of their results follows. Given a smooth
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section P of L(TR™ TR™), the following first order quasi-linear system for

v:R? > R"

&y oy

hull - 12.

2 =r0) (5 (129)
is called a hydrodynamic system. If (u1,... ,u,) is a local coordinate system on
R™, then P(u) (5%) =3 i (“)E?T,- for some smooth map v = (v;;) : R* —

gl(n). System (12.9) is said to be diagonalizable if given any point z € R"
there is a local coordinate u around z such that the corresponding matrix map
v for the smooth section P is diagonal. Let ds2 denote the standard flat metric
on R™, and V its Levi-Civita connection. Given two functionals F and G on
S(R,R"),

(F,6Y0) = [ (6F(), ¥, (66(0) do

defines a Poisson structure on §(R, R™). Dubrovin and Novikov ([DN1], [DN2])
proved that this is the only Poisson structure on 8(R, R™) that is given by a
first order differential operator. Given a zero order Lagrangian F' with density
f:R" > R, ie,

Fo) = [ " f(w)) da,

the Hamiltonian equation with respect to the Poisson structure defined above
is

Oy

T =9, (V). (12.10)
Such system is called Hamiltonian system of hydrodynamic type. Novikov con-
jectured that if system (12.10) is diagonalizable then it is completely integrable.
This conjecture is proved by Tsarev in [Ts]. In these results, the boundary con-
ditions for the Poisson bracket are ignored and equation (12.10) is defined on
an open subset of R™. In other words, this is the local theory of Hamiltonian
hydrodynamic systems. Below we state some of Tsarev’s results:

12.13 Theorem ([Ts]). Suppose the Hamiltonian system for

re) = [ " 1) do

is diagonalizable with respect to a local coordinate system (uy,...,un). Then
Vi =Y vi(u)du; ® ;9%, and the Hamiltonian system (12.10) is

Ous
ot

Bui

= vi(u)???' (12.11)

Moreover:
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(1) (u1,...,un) is a local orthogonal coordinate system on R™, i.e., the stan-
dard metric ds§ on R™ is 3 . bi(u)?du? for some smooth functions
bi,...,b,. Moreover,

1 vy 1 Ob;
Vi (12.12)
v; — vj Ou; b; Qu;’
(i) If (D1,... ,Upn) is a solution of system (12.12), then %i = ﬁi(u)%‘- is also

a Hamiltonian system of hydrodynamic type.

(iii) Suppose 3 & b2 (u)du? and Z bi(u)?du? have the same connection
1-form, i.e., (b;)u, /b5 = (bi)u, /D] for alli;éj. Set h; = b;/b;. Then

Ou;
= h; 12.1
En i(u ) (12.13)
15 a Hamiltonian system of hydrodynamic type and commutes with system

(12.11).
(i) If vi,... vy are distinct, then system (12.11) is completely integrable.

To end this section, we review some of the elementary relations between
Dubrovin’s Frobenius manifolds ([Dub2]) and the n-dimensional system (12.4)
associated to the symmetric space GL(n)/SO(n). For more deep and detailed
results of Frobenius manifolds, we refer the reader to Dubrovin’s article [Dub2].

12.14 Definition ([Dub2], [Hi2]). A Frobenius manifold of degree m (not
necessarily an integer) is a quintuple (R™,z,g,0,£), where = is a coordinate
system on R, ¢ E ¢x]dx a flat Egoroff metric, § = E ¢z;dz; and

Z bz, d:c for some function ¢ such that ¢,g,8, ¢ satisfy the following
COHdlthnS

(i) V6@ =0, where V is the Levi-Civita connection of g,
(ii) V¢ is a symmetric 4 tensor,
(iii) ¢, is homogeneous of degree m for all j, i.e., ¢, (rz) = 1™, () for all
r € R* and z € R™.
The coordinate system z is called a canonical coordinate system.
Each tangent plane of the Frobenius manifold has a natural multiplication
defined as follows: Set v; = §/dz;. Then
ViV; = Vv = Jijvi, V1 S i,j S n
defines a multiplication on the tangent plane of R™. Moreover, T(R"), is a
commutative algebra and
O(uv) = g(u,v), &(u,v,w) = gluvw). (12.14)

The dual of the 1-form § is e = }; 9/0z;, which is the identity, i.e., ve = ev = v
for all v € T(R™),.

The following Proposition gives the relation between Frobenius manifolds
and solutions of the n-dimensional system associated to GL(n)/SU(n).
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12.15 Proposition ([Dub2], [Hi2]). Let (R",z,g9,0,£) be a Frobenius man-
ifold of degree m, g = Zj b?dz?, and w;; = fij(—dz; + dz;) the Levi-Civita
connection of g, i.e., b? = ¢, and fi; = (bi)z,/bj. Set

F = (fij), S(z) = (Sij(x)) = (fij(@)(@: — z5))-
Then

(i) F = (fij) is a solution of equation (12.4), the n-dimensional system as-
sociated to GL(n)/SO(n),

(i) F is invariant under the action of R* defined in section 9, i.e.,

r-F(z) =r 'F(r~'z),forall r # 0.

(iii) g—i = [[F,ei], S], where e;; is the diagonal matriz with all entries zero
except the ii-th entry is 1,

(iv) (b1,...,bn)" is an eigenvector of the matriz (S;;) with eigenvalue m/2.

Since Frobenius manifolds are flat, there are also coordinate systems such
that all the coordinate vector fields are covariant constant. A coordinate system
(t1,...,tn) on a Frobenius manifold (R",z,g,6,€) is called a flat coordinate
system if g has constant coefficients with respect to the ¢-coordinates. Since
V0 = 0 and e is the dual of 8, we have Ve = 0. So there exists a flat coordinates
(t1,... ,tn) such that e = 9/0t;. It follows from the condition that V¢ is
symmetric, there exists a function h(t) such that

g= Ejk ht]tjtkdtjdtkj
0 = dt,,
&= Eijlc ht‘.tjtkdtidtjdtk.

Using condition (12.14) and the fact that 3/8¢; is the identity, the multiplication
can be written down explicitly in terms of A. In order for this multiplication to
be associative, h has to satisfy a complicated non-linear equation, which is the
WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation. The WDVV equation
arises in the study of Gromov-Witten invariants, and we refer the readers to
work of Dubrovin ([Dub2]) and Ruan and Tian ([RT]).
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