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MIRROR PRINCIPLE. III
BONG H. LIAN, KEFENG LIU & SHING-TUNG YAU

Abstract

We generalize the theorems in Mirror Principle I and II to the case of
general projective manifolds without the convexity assumption. We also
apply the results to balloon manifolds, and generalize to higher genus.

1. Introduction

The present paper is a sequel to Mirror Principle I and II [29] [30].
For motivations and the main ideas of mirror principle, we refer the
reader to the introductions of these two papers.

Let X be a projective manifold, and d € A;(X). Let Myk(d,X)
denote the moduli space of k-pointed, genus 0, degree d, stable maps
(C, f,z1,..,xzk) with target X [26]. Note that our notation is without
the bar. By the construction of [27] (see also [6], [14]), each nonempty
My (d, X)) admits a homology class LTp x(d, X') of dimension dim X +
(c1(X),d) + k — 3. This class plays the role of the fundamental class in
topology, hence LTy x(d, X) is called the virtual fundamental class. For
background on this, we recommend [28].

Let V be a convex vector bundle on X. (i.e., HY(P!, f*V) = 0
for every holomorphic map f : P! — X.) Then V induces on each
My x(d,X) a vector bundle V,, with fiber at (C, f,z1,..,zx) given by
the section space H(C, f*V). Let b be any multiplicative characteristic
class [20]. (ie.,if 0 » E' - E — E” — 0 is an exact sequence of vector
bundles, then b(E) = b(E')b(E").) The problem we study here is to
understand the intersection numbers

Kq:= / b(Va)
LTo,o(d,X)
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434 B. H. LIAN, K. LIU & S.-T. YAU

and their generating function:

o(t) =Y Kqe*h.

There is a similar and equally important problem if one starts from a
concave vector bundle V {29]. (i.e., H*(P!, f*V) = 0 for every holomor-
phic map f : P! — X.) More generally, V can be a direct sum of a
convex and a concave bundle. Important progress made on these prob-
lems has come from mirror symmetry. All of it seems to point toward
the following general phenomenon [9], which we call the Mirror Princi-
ple. Roughly, it says that there are functional identities which can be
used to either constrain or to compute the K, often in terms of certain
explicit special functions, loosely called generalized hypergeometric func-
tions. In this paper, we generalize this principle to include all projective
manifolds. We apply this theory to compute the multiplicative classes
b(Vy) for vector bundles on balloon manifolds. The answer is in terms of
certain universal virtual classes which are independent of V,b.

When X is a toric manifold, b is the Euler class, and V is a sum of line
bundles, there is a general formula derived in [21], [23] based on mirror
symmetry, giving ®(t) in terms of generalized hypergeometric functions
[15]. Similar functions were studied [16] in equivariant quantum coho-
mology theory based on a series of axioms. For further background, see
introduction of [29].
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1.1 Outline.

In Section 2, we do the necessary preparation to set up the version of
localization theorem we need. This is a (functorial localization) formula
which translates a commutative square diagram into a relation between
localizations on two T spaces related by an equivariant map.

We do basically three things in Section 3. After we introduced the
necessary notations, first we apply functorial localization to stable map
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moduli spaces. Second, we prove one of the main results of this paper:
Theorem 3.6, which translate structure of fixed points on stable map
moduli into an algebraic identity on the homology of a projective mani-
fold (with or without T action). This motivates the notion of Euler data
and Euler series. These are essentially solutions to the algebraic identity
just mentioned. Third, we prove the main Theorems 3.12-3.13 which re-
late the generating functions ®(¢) with an Euler series A(t) arising from
induced bundles on stable map moduli.

In Section 4, we specialize results in Section 3 to balloon manifolds,
and introduce the notion of linking. The main theorems here are 4.5 and
4.7. The first of these gives a description of an essential polar term of
A(t) upon localizing at a fixed point in X. The second theorem gives
a sufficient condition for computing A(t) in terms of certain universal
virtual classes on stable map moduli. We then specialize this to the case
when br is the Euler class or the Chern polynomial.

In Section 5, we explain some other ways to compute A(t), first by
relaxing those sufficient conditions, then by finding an explicit closed
formula for those universal virtual classes above by using an equivari-
ant short exact sequence for the tangent bundle. This includes toric
manifolds as a special case. We then formulate an inductive method for
computing A(t) in full generality for any balloon manifold. Next, we
discuss a method in which functorial localization is used to study A(t)
via a resolution of the image of the collapsing map. In certain cases,
this resolution can be described quite explicitly. Finally, we discuss a
generalization of mirror principle to higher genus.

2. Set-up.

Basic references: on intersection theory on algebraic schemes and
stacks, we use [13], [40]; on the virtual classes, we follow [27]; on their
equivariant counterparts, see [1], [2], [7], [25], [12], [17], [41].

T denotes an algebraic torus. T-equivariant Chow groups (homology)
with complex coefficients are denoted by AT(.). T-equivariant opera-
tional Chow groups (cohomology) with complex coefficients are denoted
by A%(-). For ¢ € A(X), and 8 € AT(X), we denote by cN g = Bﬂc
the image of ¢ ® 8 under the canonical homomorphisms

AL (X) @ AT (X) — AL (X).

The product on A%(X) is denoted by a - b. The homomorphisms N
define an A%(X)-module structure on the homology AT (X). When X is



436 B. H. LIAN, K. LIU & S.-T. YAU

nonsingular, there is a compatible intersection product on AT (X) which
we denote by - .
Given a T-equivariant (proper or flat) map f : X — Y, we denote by

for AT(X) > AT(Y),  f: AT(Y) - AT(X)

the equivariant (proper) pushforward and (flat) pullback; the notations
f* and f, are also used for pullback and (flat) pushforward on cohomol-
ogy. All maps used here will be assumed proper. A formula often used
is the projection formula:

f*(f*cnﬂ) = Cnf*(ﬁ)

for cohomology class c on Y and homology class  on X. Note that both
AT(X) and A%(X) are modules over the algebra A% (pt) = C[T*], where
T* is the dual of the Lie algebra of T', and the homomorphisms fi, f* are
module homomorphisms. We often extend these homomorphisms over
the field C(7*) without explicitly saying so. Finally, suppose we have a
fiber square

F 5 oM

pd  lag

X — Y
where ¢ is a regular embedding of codimension d, then we have

p*’i!ﬁ =1"q.f3

for any homology class 8 on M. Here i' : AT(M) — AT ,(F) is the
refined Gysin homomorphism.

2.1 Functorial localization.

Let X be an algebraic stack with a T action and equipped with a suitable
perfect obstruction theory (see [27], [17]). Let F, denote the fixed point
components in X. Let [X]"", [F.]""" be the equivariant virtual classes of
X and the F,. Then by [17],

]’UZ’I'

szr__ e
X] Z:’ er(Fy/X)

where ¢, : F, — X are the inclusions, and er(F,/X) the equivariant
Euler class of the virtual normal bundle of F;, C X. Then for any
cohomology class ¢ on X, we have

i*en [ F ]m’r

(2.1) cN[X]"" = Zz,m
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Throughout this subsection, let
f: XY

be an equivariant map with Y smooth. Let E be a fixed point component
in Y, and let F' be the fixed points in f~!(E). Let g be the restriction
of ftoF,and jg: E = Y,ir: F — X be the inclusion maps. Thus we
have the commutative diagram:

F B X
(2.2) gl Lf
E & v

Then we have the following functorial localization formula.

lemma 2.1. Given a cohomology class w € A}(X), we have the
equality on E:

JEfwn [X]7) _ (z'*Fw N [F]”")
er(E/Y) *\ er(F/X) )

Proof. Applying (5.5) to the class c=w - f*jg,1 on X, we get
ip(w- f*je.1) N [F]”")
er(F/X)

Note that the contributions from fixed components other than F' vanish.
Applying f, to both sides, we get

w- frip, 10 [X]T =ip*(

iy - (ip(w- fried) N F]T
, vir 1=f, . F
R N
Now f oip = jg o g which, implies
f*iF'* =jE*g*a Z;f* :g*]E

Thus we get

ity 1 ipw - g*er(E/Y) N [F]™
FN X)L = page ( EEIED .
Applying j% to both sides here, we get

JefwN [X]") Ner(E/Y)
B hw - g*er(E/Y) N [Fr
=er(E/Y)Ng. ( er (F/X) )
iw N [F]W)
er(F/X)

= eT(E/Y)z N g« (

437
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Since er(E/Y) is invertible, our assertion follows. q.e.d.

Note that if F' has more than one component, then the right hand
side of the formula above becomes a sum over those components in an
obvious way.

Corollary 2.2. Let Y' be a T-invariant submanifold of Y, f' : X' =
F7YY') = Y’ be the restriction of f : X — Y to the substack X', and
J:Y' =>Y,i: X" X be the inclusions. Then for any w € AL(X), we

hav )
ave j*f*(w N [X]vir) _ f’ (i*w n [X/]mr)
er(Y']Y) *er(X'/X) )

Proof. Let E be any fixed point component of Y contained in Y’
and F be the fixed points in f~!(E), as in the preceding lemma. Then
we have the commutative diagram

F 5 x 4 ox
(2:3) gl fL 1l
E B y 1, v

We will show that

o (LR~ (B )

Then our assertion follows from the localization theorem.
Put jg := j o j, ir := it 0 i%. The left hand side of (*) is

J*f*(w nx]n) _ Jpfe(wn[X]"7)
=er(E/Y")Ng. (————"‘; ‘; (r;,[/F)g))

(preceding lemma).

Now apply the left hand square in (5.5) and the preceding lemma again
to the class 575 L 7%y On X'. Then the right hand side of (*) becomes

) *e—/— o
A (mn[x'r”) = er(B/Y') Ng. ( - Téx(;(/)X')[ : )

= er(E/Y") N g. (%) |

This proves (*). q.e.d.
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3. General projective T-manifolds

Let X be a projective T-manifold. Let My(X) be the degree (1,d),
arithmetic genus zero, 0-pointed, stable map moduli stack with target
P! x X. The standard C* action on P! together with the T' action on X
induces a G = C* x T action on My(X). Let LT(X) € AS(M4(X)) be
the virtual class of this moduli stack. This is an equivariant homology
class of dimension (¢1(X),d) + dim X.

The C* fixed point components F., labelled by 0 < r < d, in My(X)
can be described as follows (see [30]). Let F;. be the substack

F, = Mo,l(T,X) Xx M(),l(d — 'I‘,X)

obtained from gluing the two one pointed moduli stacks. More precisely,
consider the map

eX xeX,:Moi(r,X)x Moi1(d—7,X) = X x X
given by evaluations at the corresponding marked points; and
A: X>XxX
the diagonal map. Then we have

F, = (X x el ) IA(X).
Note that Fy = My,1(d, X) = Fp by convention, but Fy and Fy will be
embedded into My(X) in two different ways. The F, can be identified
with a C* fixed point component of My(X) as follows. Consider the
case T # 0,d first. Given a pair (Ch, f1,21) X (C2, f2,z2) in F,, we get
a new curve C by gluing C1,Cs to P! with z;,z, glued to 0,00 € P!
respectively. The new curve C is mapped into P! x X as follows. Map
P! C C identically onto P!, and collapse Cy,C; to 0,00 respectively;
then map Cp,C3 into X with fi, fo respectively, and collapse the P! to
f(z1) = f(xz2). This defines a stable map (C, f) in My(X). For r = d,
we glue (C1, f1,21) to P! at z; and 0. For 7 = 0, we glue (Ca, f2,z2) to
Pl at 29 and oo.

Notations.

(i) We identify F, as a substack of M4(X) as above, and let
iy« Fy — Mg(X)

denote the inclusion map.
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(i) We have evaluation maps
eX: F, - X,

which sends a pair in F; to the value at the common marked point.
While the notation eX doesn’t reflect the dependence on r, the
domain F, that eX operates on will be clear.

(iii) We have the obvious inclusion
A" F, C My(r,X) x Mpa1(d —r, X),
and projections
po:Fr = Mpi(r, X), Poo:Fr— Mpi(d—r,X).
(iv) Let L, denote the universal line bundle on My (r, X).
(v) We have the natural forgetting, evaluation, and projection maps:
p:Mpi(d,X) — Mpp(d,X)

eX : Moi(d, X) = X
e Md(X) — M0,0(d,X).

We also have the obvious commutative diagrams

My(X)
Tl N %0
Mopo(d,X) &~ Mo,(d,X)
Fr 2% Moi(r,X) x Moa(d -7, X)
(3.1) eX | leX xef
x A X x X

where A is the diagonal map. Note that we have a diagram similar to
(3.1) but with X replaced by Y in the bottom row. From the fiber square
(3.1), we have a refined Gysin homomorphism

A" AT (Mo (r, X) x Mo(d — 7, X)) = AT o +(F)).
We refer the reader to Section 6 [27] for the following
Lemma 3.1. ([27]). Forr #0,d,

[F]"" = AN(LToa(r, X) x LToa(d — 7, X)).



(vi)

(vii)

(viii)
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Let o be the weight of the standard C* action on P'. We denote
by AT(X)(a) the algebra obtained from AT (X)[a] by inverting the
classes w such that (t%w)~! is well-defined in A.(F) ® C(7T*)(),
for every fixed point component F'. If 8 is an element in AT (X)(«),
we let B be the class obtained from 8 by replacing a - —a. We
also introduce formal variables ¢ = ({1, ..., (m) such that {, = —(,.
Denote R = C(7*)[c]. When a multiplicative class by, such as
the Chern polynomial ¢y = z" + z¢y + - - - + ¢, is considered, we
must replace the ground field C by C(z), so that cr takes value in
Chow groups with appropriate coefficients. This change of ground
field will be implicit whenever necessary.

For each d, let ¢ : My(X) — W, be a G-equivariant map into
smooth manifold (or orbifold) W, with the property that the C*
fized point components in Wy are G-invariant submanifolds Y, such
that o~ 1(Y;) = F,.

The spaces W, exist but are not unique. Two specific kinds will
be used here. First, choose an equivariant projective embedding

7: X —=>Y=P" x...xP"

which induces an isomorphism A'(X) = A(Y). Then we have a
G-equivariant embedding

My(X) = My(Y).
There is a G-equivariant map (see [29] and references there)
Md(Y) — Wd = Nd1 X o X Ndm

where the Ny, := PHO(P!,O(d,))"t! = P(ratDdatna  which are
the linear sigma model for the P™. Thus composing the two maps
above, we get a G-equivariant map ¢ : Mg(X) — Wy. It is also
easy to check that the C* fixed point components in Wy have
the desired property. Second, if X is a toric variety, then there
exist toric varieties Wy [31] where Y, are submanifolds of X. We
postpone the discussion of this till Section 5 when we discuss the
case of toric manifolds. From now on, unless specified otherwise,
W, will be the first kind as defined above.

We denote the equivariant hyperplane classes on Wy by k, (which
are pullbacked from the each of the Ny, to W;). We denote the
equivariant hyperplane classes on Y by H, (which are pullbacked
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from each of the P™ to Y'). We use the same notations for their
restrictions to X. We write k- ( = Y KkaCa, H -t = ), Hatg,
d-t=),data, where the ¢t and { are formal variables.

3.1 Localization on stable map moduli.
Clearly we have the commutative diagram:
F o My(X)

(3.2) e¥ | . lo

v, I w,
Let ¢ : My(X) —» Wy, e¥ : F. = Y, play the respective roles of f : X —
Y, f': X’ - Y’ in functorial localization. Then it follows that

Lemma 3.2. Given a cohomology class w on My(X), we have the
following equality on Y, 2 Y for 0 <r <d:

oo AILO0) _ oy (e DRI
ec(r/Wa) 7 \ec(Fr/Ma(X)

Following [29], one can easily compute the Euler classes eq (Y, /Wy),
and they are given as follows. For d = (dy,..,dm), r = (r1,...,7m) X d,
we have

m ng dg

eg(Yr/Wd) = H H H (Ha - )\a,i - (k - ra)a)

a=11:=0 kZOk#TQ

where the ), ; are the T" weights of P™s. Note that eY is the composition
ofeX :F. 5 X with7:X —»Y =Y,. Thus

el = Tvex.

It follows that

Lemma 3.3. Given a cohomology class w on My(X), we have the
following equality on X for 0 <r < d:

* j:(p*(w n LTd(X)) _ Z:w N [Frlvzr
! ( ec(Yr/Wa) ) =er(X/Y)Nnef (m) .

Now if 9 is a cohomology class on Mo o(d, X), then for w = 7%, we
get iqw = gy = p*1p. It follows that
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Lemma 3.4. Given a cohomology class ¥ on Myo(d, X), we have
the following equality on X :

- <J'3<P*(7f*1/) N LTy(X))
ec(Yo/Wa)

) =er(X/Y)Nef (”*w A LToyl(d,X))

ec(Fo/Ma(X))

Lemma 3.5. Forr # 0,d,
eq(Fr/My(X)) = a(a + pger(Lr)) - a(a — picr(La-r))-
Forr =0,d,

eq(Fo/Ma(X)) = a(a —c1(La)),  eq(Fa/My(X)) = a(a + c1(La))-

The computation done in Section 2.3 of [29] and in Section 3 of [30]
(see also references there), for the normal bundles Nf, /ur,(x), makes no
use of the convexity assumption on 7 X. Therefore it carries over here
with essentially no change.

3.2 From gluing identity to Euler data.

Fix a T-equivariant multiplicative class by. Fix a T-equivariant bundle
of the form V = V@V ~, where V¥ are respectively the convex/concave
bundles on X. We assume that

. br(V')
= br(V-)

is a well-defined invertible class on X. By convention, if V = V* is
purely convex/concave, then = bp(V*)*!. Recall that the bundle
V — X induces the bundles

Vd — Moyo(d,X), Ud —> Mo,l(d,X), Ud — Md(X)
Moreover, they are related by Uy = p*Vy, Uy = 7%V, Define linear maps

wn [F] )
ec(Fr/Ma(X))

T AB(MA(X)) > AT(X)(0), 0w = e (

Theorem 3.6. For 0 <X r < d, we have the following identity in
AL(X)(e):

QN w*br(Vy) = a8 wrbr (V) - i by (Var).
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Proof. For simplicity, let’s consider the case V = V*. The general
case is entirely analogous. The proof here is the one in [29], [30], but
slightly modified to take into account the new ingredient coming from
the virtual class. )

Recall that a point (f,C) in F,, C My comes from gluing together a
pair of stable maps (f1,C1,%1), (f2, C2,%2) with fi(z1) = fo(z2) =p €
X. From this, we get an exact sequence over C:

0= f'VofiVe fV-oV]—0.
Passing to cohomology, we have
0 — H(C, f*V) — HCy, f{V)® H°(Ca, f3V) = V|, — 0.
Hence we obtain an exact sequence of bundles on F:
0= iUy = Ul eU,, —eX Vo
Here iUy is the restriction to F; of the bundle Uy — My(X). And U]

is the pullback of the bundle U, — Mp1(d, X), and similarly for U}_,.
Taking the multiplicative class br, we get the identity on F.:

eX b (V) - br(izUy) = br(U}) - br(UL_,).

We refer to this as the gluing identity.
Now put

w = bT(Ur) x bT(Ud—r)
ec(Fr /M (X)) ec(Fo/Ma—r(X))
From the commutative diagram (3.1), we have the identity:

eX Al(w) = A*(eX x ef ) (w).

r

N LTo(r, X) x LTp1(d — 7, X)

On the one hand is
A*(ef x el )u(w)
_ (eX) br(Uy) N LTp1(r, X)
" eq(Fr/Mr(X))
. (eX ) br(Ug—r) N LTy (d — 7, X)
I e (Fo/My—, (X))
— (eX) p*bT(V:") n LTO,l(Ta X)
o ec(Fr/M:(X))
) (eX ) ,O*bT(Vd__T) N LT(),](d b X)
dorin ec(Fo/Ma—r(X))
= 38T m*br(V,) - i m*br(Va_y).
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On the other hand, applying the gluing identity, we have
br(U)) br(U),_) : )
X A! X T\Yr d—r vir
e; A'(w) =e; . N [F;
@ = (e sty "
x [ €X7br(V) -itbr(Uy) N [E ]
) ec(Fr/Ma(X))
‘*bT(ud) N [Fr]vi'r>
=bp(V)NeX (Z’
T ea (R M)
= bT(V) N i:zrﬂ'*bT(Vd).

This proves our assertion. q.e.d.

Specializing the theorem to by = 1, we get

Corollary 3.7. i%"13 = zg" r 197 14, where 14 is the identity class
in on My(X).

For a given convex/concave bundle V' on X, and multiplicative class
br, we put

AVPT(8) = A(t) i= e H YN " 4, et

Ad _ zvzr *b (V) =e’ <p bT(Vd) r-]L,I'O 1(d X)) )

ec(Fo/Ma(X))

Here we will use the convention that Ay = 2, and the sum is over all
d = (di,...,dm) € Z7. When the reference to V,br is clear, we’ll drop
them from the notations. The special case in the corollary will play an
important role. So we introduce the notation:

1(t) := e Ht/@ lded't, 1; = ivirld.
0
d

By the preceding theorem and Lemma 3.2, it follows immediately
that for w = @.(m*br(Vg) N LTd(X)) we have

wne¢ = / e(H+ra)C
/ 026, v

— Z/ T*i:iT‘Ir*bT(Vd) e(H-+-7'oz)-(
T Yy

___Z/ ’i:irﬂ'*bT(Vd) e(H+ra)~C
r X

= Z/ QNA, . Ay, eftre)d (Theorem 3.6).
X
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Since w € A% (W), hence
/ wnee AS(pt) = C[T*,q]
Wa
for all ¢ € AL (Wy), it follows that both sides of the eqn. above lie in

R[[¢]]- This motivates the following (cf. [16])

Definition 3.8. Let Q € A%(X), invertible. We call a power series
of the form

B(t):=e H*3"B e, By AT(X)()
d

an ()-Euler series if

> / Q71N B, - By, )¢ e R[[¢]]
o=<r=d’X

for all d.

Thus we have seen above that an elementary consequence of the
gluing identity in Theorem 3.6 is that

Corollary 3.9. AV (t) = e~ Ht/a S ¥ n*bp(Vy) et is an Buler
series.

Definition 3.10. ([29]). Let A € A5 (Y). We call a sequence
P: Py € AL(Wy) an A-Euler data if

A jiPi=33Pr  j¢Pucr, 0=7=d.

Let P be an A-Euler data such that 7*A is invertible. Then we have

(3.3)  TA-TUrPiNdYT 1y = TR Py - 7t GG Py N8 L - 5T 14,

By Lemma 3.3,
i . _ i* 0. LTy(X)
XD VT — XD XY lﬁ* Jr Px d
T JrpLadllt, L4 T Jrtd eT( / ) T (CG(K/Wd)
_ * 04 (0" Py N LTy(X))
—er(X/Y 107_*(.71'90(90 d d )
— i:ZTQO*Pd.

Thus (5.5) becomes

T*A VYT Q* Py = i3 p* Py - 87 0* Py_,.
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(cf. Theorem 3.6.) From this we get, as before,

/ puLT4(X) N Py- e
Wa

= [ AT O, i Pacy e € R
X

Therefore, that

B(t) - e——H-t/oz Zigir¢*Pd ed-t
d

is an Euler series, is just an elementary consequence of the Euler data
identity. More generally, we have

Theorem 3.11. Let P be an A-Euler data as before, and let O(t) =
e~Ht/a S~ 04 e*t be any Q-Euler series. Then

B(t) = e Ht/*Y " r*jiPyN Og e
d

is an Q) - 7*A-Euler series.

Proof. Define P; on W, by setting
JEP) = (710, - Og_y) Neg(Yr/Wy).

By the localization theorem, this defines a class on W,;. Moreover, we
have

Pine < =Y" / 0710, - 0g_, eHTC c R
Wy —Jx

It follows that P} € AY(W,) ® R (see proof of Lemma 2.15 [29]). Now

/ Pd N Pc,l e""(
Wq

= Z/ Q_IT*A—I (_TW . (T*jSPd—r N Od—r) e(H‘H'a)'C,
r vX

which lies in R because Py N P} lies in AS(W;) ® R.  q.e.d.

Note that if Og = 14, then Pj in the proof above is just ¢.LTy(X).
For explicit examples of Euler data, see [29], [30].
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3.3 From Euler data to intersection numbers.

Again, fix the data V, by as before. From now on we write eX simply as
e. We recall the notations

AVET (1) = A(t) = e7 >N " A4 e,
d

Ag = 37 mbp(Vy) = eX (p*bT(Vd) N LTy, (d, X))

ec(Fo/Ma(X))
K¥ =Ko= [  bv)
LTo,0(d,X)
@V,b =& = Z K, Cd't.
Theorem 3.12. (i) deg,Aq < —2.

(i) If for each d the class br(Vy) has homogeneous degree the same as
the dimension of LTpo(d, X), then in the nonequivariant limit we
have

/ e~Htlag, = o=3(2 _ 4. 1)K,
X
0%
_ —Ht/a — 43 _ el
/X(A(t) e o) = ad(28 - Yot g,

Proof. By definition,

—e p*b(Vd) N LTo,l (d, X)
Aa= ( ec(Fo/Ma(X)) )

So assertion (i) follows immediately from this formula Lemma 3.5.
The second equality in assertion (ii) follows from the first equality in
(ii). Now consider

I:=/ e_H't/aAd
e
=/ e—e*H-t/a p*b(Vd)
LTo.1(d,X) ecx (Fo/Ma(X))

e~ Ht/a
= b(V, % .
/LTo,o(d,X) Va) ¢ ecx (Fo/Ma(X))

Now b(Vy) has homogeneous degree the same as the dimension of
LTy 0(d, X). The second factor in the last integrand contributes a scalar
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factor given by integration over a fiber F of p. By Lemma 3.5, the degree
1 term in the second factor is —e;f L + & where ¢ = ¢1(La).

Now the line bundle L; on My 1(d, X) is the restriction of the uni-
versal bundle L), on Mp;(d,Y) (Y = P™ x -.- x P™), and the map
p: Myi(d,X) — Mopp(d,X), is the restriction of the forgetting map
P Mo1(d,Y) = Myo(d,Y). For the latter, the general fiber of p' is
smooth E’ = P! so that

/ iten (L) = / o(TE) = 2.
E’ 7

Since p’ is flat,
/ it (La) = / itey(Lh) = 2.
E E

Restricting to a fiber E say over (C, f) € Mpo(d, X), the evaluation map
e is equal to f, which is a degree d map £ — X. It follows that

/ e*H =d.
E

d-t
I=(—-a?+

So we have N
— ) Ky. .e.d.
043) d q.-€

Theorem 3.13. More generally suppose br is an equivariant multi-
plicative class of the form

br(V)=a"+2" 0y(V)+---+b.(V), rkV =r
where z is a formal variable, b; is a class of degree i. Suppose
s:=r1k Vg —exp. dim Myo(d,X) >0

is independent of d = 0. Then in the nonegquivariant limit,

X
| = = — *0N) = (2% — ti—).
s! (da:) == /X (A(t) ¢ Q) o™z Z ot;

Proof. The proof is entirely analogous to (ii) above. q.e.d.

In the case of by(V) = 1, one can improve the a degree estimates for
A4 = 14 given by Theorem 3.12 (i).
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Lemma 3.14. For all d,

dego 14 < min(—2, —(c1(X), d)).

Proof. If (c1(X),d) < 2, then the assertion is a special case Theorem
3.12 (i). So suppose that (c1(X),d) > 2. The class LTp:1(d, X) is of
dimension

s = exp.dim Mp1(d, X) = (c1(X),d) + dim X — 2.

Let ¢ = c1(Lg). Then ¢* N LTy 1(d, X) is of dimension s — k, and so
ex(cF N LTp1(d, X)) lies in the group AT ,(X). But this group is zero
unless s—k < dim X or k > s—dim X = (c1(X),d)—2. Now by Lemma
3.5, it follows that

~ViT 1
ld =19 ld = Z a_k—'l-_2 e*(ck N LTO,I(d, X))
k>{c1(X),d)—2

This completes the proof. q.e.d.

Remark 3.15. The entire theory discussed in this section obviously
specializes to the case T' = 1, hence applies to any projective manifold
X.

4. Linking

Definition 4.1. A projective T-manifold X is called a balloon man-
ifold if X7 is finite, and if for p € X7, the weights of the isotropic
representation T, X are pairwise linearly independent.

The second condition in the definition is known as the GKM condition
[18]. We will assume that our balloon manifold has the property that if
p,q € XT such that ¢(p) = c(q) for all ¢ € AL(X), then p = q. From
now on, unless stated otherwise, X will be a balloon manifold with this
property. If two fixed points p,q in X are connected by a T-invariant
2-sphere, then we call that 2-sphere a balloon and denote it by pg. For
examples and the basic facts we need to use about these manifolds, see
[30] and references there. All the results in Sections 5-6 in [30] are
proved for balloon manifolds without any convexity assumption, and are
therefore also applicable here. We will quote the ones we need here
without proof, but with only slight change in notations and terminology.
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Definition 4.2. Two Euler series A, B are linked if for every balloon
pg in X and every d = §[pq] > 0, the function (44— By)|, € C(T*)(e) is
regular at a = % where ) is the weight on the tangent line T, (pq) C TpX.

Theorem 4.3 (Theorem 5.4 [30]). Suppose A, B are linked Euler
series satisfying the following properties: for d > 0,

(i) Forp € XT, every possible pole of (Aq — Bg)lp is a scalar multiple
of a weight on T, X .

(zz} dega(Ad - Bd) < -2.
Then we have A = B.

Theorem 4.4 (Theorem 6.6 [30]). Suppose that A, B are two linked
Euler series having property (i) of the preceding theorem. Suppose that
degoaAg < =2 for all d > 0, and that there exists power series f €
R[e, ..,e™]], g = (g1,-,9m), g, € Rl[e",..,e'™]], without constant
terms, such that

(4.1) ef/*B(t) = Q - QH—%JL—Q +0(a™?)

when ezxpanded in powers of a~!. Then

A(t + g) = !/ B(t).

The change of variables effected by f,g above is an abstraction of
what’s known as mirror transformations [9)].

Theorem 4.5. Let p € X7, w € A% (Mo (d,X)) [¢], and

consider iye. (;Q;Z}’A}gd(’)}(()))) € C(T*)(e) as a function of a. Then

(i) Every possible pole of the function is a scalar multiple of a weight
on TpX.

(ii) Let pq be a balloon in X, and X be the weight on the tangent line
Tp(pq). If d = é[pq] > 0, then the pole of the function at o = \/d
is of the form

11 ihw
5 a(a — A/8) ex(F/Mo1(d, X))

er(p/X)

where F is the (isolated) fized point (P!, f5,0) € Mo1(d,X) with
f5(0) = p, and f5 : P! — X maps by a §-fold cover of pq.
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Proof. Consider the commutative diagram

{F} 5 Moy(d, X)
el el
P N X
where e is the evaluation map, {F'} are the fixed point components in
e~ !(p), € is the restriction of e to { F'}, and iF, i, are the usual inclusions.
By functorial localization we have, for any 8 € AT (Mo1(d, X))(a),

ipex(B N LTo,1(d, X)) = er(p/X) Z (eng’/ﬂl\?o[lp(‘gz;))>

ipB
= er(p/X) XF:/[F]"" eT(F/]MFO,l(d,X)).

(4.2)

We apply this to the class

"~ eg(Fo/Ma(X))  ala—o)

where ¢ = ¢1(Lg) (cf. Lemma 3.5). For (i), we will show that a pole of the
sum (5.5) is at either « =0 or a = ) /¢’ for some tangent weight A\’ on
Tp,X . For (ii), we will show that only one F in the sum (5.5) contributes
to the pole at @ = A/4, that the contributing F' is the isolated fixed point
(P!, f5,0) as asserted in (ii), and that the contribution has the desired
form.

A fixed point (C, f,z) in e~!(p) is such that f(x) = p, and that the
image curve f(C) lies in the union of the T-invariant balloons in X. The
restriction of the first Chern class ¢ to an F' must be of the form

ipC = cp + wp

where cr € A(F), and wr € T* is the weight of the representation on
the line T;C induced by the linear map df, : T,C — T, X (cf. [26]). The
image of df, is either 0 or a tangent line T,(pr) of a balloon pr. Thus
wr is either zero (when the branch C; C C containing z is contracted),

or wr = X /4§’ (when Cy I x maps by a §'-fold cover of a balloon pr with
tangent weight A’). The class er(F/My,1(d, X)) is obviously independent
of a.. Since cF is nilpotent, a pole of the sum (5.5) is either at & = 0 or
a = wr for some F. This proves (i).

Now, an F' in the sum (5.5) contributes to the pole at & = A/§ only if
wp = A/d. Since the weights on T, X are pairwise linearly independent,
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that A/6 = X /¢’ implies that A = X and § = §'. Since d = §[pq], it
follows that the only fixed point contributing to the pole at @ = \/§
is (C, f,z) where chx maps by a é-fold cover of the balloon pq with
C =2 P! and f(x) = 0. This is an isolated fixed point, which we denote
by F = (P!, f5,0). It contributes to the sum (5.5) the term

/‘ 50 _ l Tpw 1
rer(F/Moi1(d, X)) da(a—A/d)er(F/Myi(d, X))

Here F is an orbifold point of order 4, and hence the integration con-
tributes the factor 1/§. This proves (ii). q.e.d.

Fix the data V,br and a A-Euler data P : P, such that
T*A = Q:=bp(V1)/bp(V7).

We now discuss the interplay between four Euler series: AV**T(t), 1(t),
and two others

O(t) := e H2Y " 0y et

B(t) := e Ht/e Z o PyN Og et
d
where O(t) denote some unspecified FEuler series linked to 1(t). (In par-

ticular O(t) may be specialized to 1(t) itself.) That B(t) is an Euler
series follows from Theorem 3.11.

Corollary 4.6. Suppose that at o = A\/§ and F = (P, f5,0), we
have iyjoPa = ipp*br(Va) for all d = 6[pg]. Then B(t) is linked to
AVbr(t).

Proof. Since O(t) is linked to 1(¢) by assumption, it follows trivially
that

B(t) = e HY*N "5 PN Oy e
d

C(t) = e—H-t/a Z T*japd N1y ed't
d

are linked. So it suffices to show that A(¢) and C(t) are linked. Denote
their respective Fourier coefficients by A4, C4. Then

% % ok ek % LTOyl(d)X)
ipCa — ipAa =ipjo Pa - tpex (eG(Fo/Md(X))

(4.3) . (p*bT(Vd) N LTy,1(d, X))

¢ ec(Fo/Ma(X))

453



454 B. H. LIAN, K. LIU & S.-T. YAU

By Theorem 4.5 (ii), this difference is regular because the zero of the
function i;j5 Py — ipp*br(Va) cancels the simple pole of each term in
(5.5) ata=M\/d. q.ed.

We now formulate one of the main theorems of this paper. It’ll also
give a more directly applicable form of Theorem 4.4. Given the data
‘/7 bT, O(t)> P; and

B(t) = e Ht/*Y " 7*j6 Pyn Og %,
d

assume that the preceding corollary holds. Suppose in addition, that
(*) For each d, we have the form
55 Py = QD (o 4 (' + 0" - H)a ™' +--),
for some a,d’,a; € C(T*) (depending on d).
(**) For each d, we have the form (written in cohomology A%.(X)):
Og=a @XM (p 4 (¥ 40" H)a 14 ---),

for some b,b',b; € C(T*) (depending on d).

Theorem 4.7. Suppose that AV'*T(t), B(t) are as in the preceding
corollary. Under the assumptions (*)-(**), there exist power series f €
R[le™,...,et"]], g = (91,-,9m), 9; € R[[e",..,e'™]], without constant
terms, such that

AV (t 4 g) = eF/2B(2).

Proof. Recall that

B(t) = e Htay " 1*js Pyn Og .
d

By the preceding corollary, B(t) is linked to A(t). We will use the asymp-
totic forms (*)-(**) to explicitly construct f,g satisfying the condition
(4.1). Our assertion then follows from Theorem 4.4.

By (*)-(**), the Fourier coefficient By, d > 0, of B(t) has the form

By =Q (ab + (ab +a'b)a"! + (ab” +a"b) - Ha™' + - )
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(and By = ). Multiplying this by e Ht/a =1 _H.ta ' +-.., and
e?t and then sum over d, we get the form

Bt)=Q(C+(C'+C"-H-CH -t)a ' +--)

where C,C’,C! € C(T*)[le™,..,e'™]] having constant terms 1,0,0 re-
spectively. It follows that

e—C'/ch c" .
C B(t)..Q(l—(t—_CT).Ha +>

So putting f = —alog C — %’ and g = —%" yields the eqn. (4.1). This
completes the proof. q.e.d.

Corollary 4.8. The preceding theorem holds if we specialize the
choice of O(t) to 1(t), i.e.,

B(t) = ¢ Ht/a Z T*jan N1y edt.
d

Proof. The preceding theorem holds for any Euler series O(t) satisfy-
ing the condition (**) linked to 1(¢). Now by Lemma 3.14, 1(t) satisfies
condition (**); and obviously it is also linked to itself. q.e.d.

4.1 Linking values.

In this subsection, we continue using the notations V, br, 1(t), O(t), A(t),
introduced above, where O(t) is linked to 1(t). We will apply Theorem
4.7 to the case when by is the Euler class or the Chern polynomial.

For simplicity, we will assume that V has the following property: that
there exist nontrivial T-equivariant line bundles L{, .., L7 ; LT, .., Ly_
on X with ¢;(L) > 0and ¢;(L’) < 0, such that for any balloon pg = P*
in X we have |

+ Nt 4+
V=|pg = ®iz1 L |pg-

Note that N* = rk V*. We also require that

(4.4) Q:=bp(V*)/br(V7) = [[br(LF)/ [ ] br (L))
2 J

In this case we call the list (L], .., L]TH L1, .., Ly-) the splitting type of
V. Note that V is not assumed to split over X.

455
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Theorem 4.9. Let by = et be the equivariant Euler class. Let pq be
a balloon, d = §[pq] > 0, and A be the weight on the tangent line Tq(pq).
Let F = (P!, f5,0) be the fized point, as in Theorem 4.5 (ii). Then

{aa(L}).d)

swoer) =1 I (@l -0)

—<c1(L;),d>—1

I 1I (cl(L;)|,, + k/\/6) :
2 k=1
In particular, AV°T (t) is linked to the Euler series

B(t) = e~ Ht/e Z By et
d

(4.5)

where

(Cl L+) d) —<Cl(l’;)7d)—'1

By=04n]] H @) -ka)x[[ I (aZ;)+ke).
[ 7 k=1

Proof. Define P : Py € AL(Wy) by

(e (L)) d) —(er(L;),d)-1

Pd:=H II G-k x]] kHl (L] + ka),
p =

where LT € A%(W,) denotes the canonical lifting of ¢1(LE) € A%(Y).
Then P is an Q-Euler data (see Section 2.2 [29]). By Theorem 3.11,
it follows that By = 7*j5P3 N O4 is an Euler series. By (corollary to)
Theorem 4.5, A(t) is linked to B(t), provided that eqn. (5.5) holds. We
now prove eqn. (5.5).

We first consider a single convex line bundle V' = L. As before, the
fixed point F = (P!, f5,0) in My 1(d, X) is a d-fold cover of the balloon
pq = Pl. We can write it as

f5: Pl o pg = Pl [wo,wi] > [w, wl].

Note that the T-action on X induces the standard rotation on pg = P!
with weight A. Clearly, we have

ipp er(Va) = iy mer(Va) = er(iyp)Va).
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The right hand side is the product the weights of the T representation
on the vector space

inpVa=H(P', f;L) = H'(P', f0(1))
where I = (c1(L), [pq]). Thus we get (cf. Section 2.4 [29)])
14 Y
er(iymVa) = [[(a(D)lp - k%)-
k=0

This proves (5.5) for a single convex line bundle.

Similarly for a concave line bundle V = L, if its restriction to the
balloon pq is O(—!) with —I = (¢1(L), [pq]), then

15-1
er(iymVa) = H(Cl L)lp'f'k )-

This is (5.5) for a single concave line bundle. The general case can
clearly be obtained by taking products. q.e.d.

A parallel argument for by = the Chern polynomial yields

Theorem 4.10. Let by = cr be the equivariant Chern polynomial,
with the rest of the notations as in the preceding theorem. Then

(e1(L7).d)

ippter(V) =[] JI (z+a@)l—kr/s)
i k=0
—(e1(L] ),d)—1

X H H (a:+c1(Lj_)|p+k)\/6).
i k=1

In particular, AV°T (t) is linked to the Euler series

B(t) = e Ht/*)" By et
d

where

(e (L) d) ~(e1(L )d)-1

B; = OdﬂH H (z+c1(LF)— ka)xH H (z—c1(L) ) +ka).
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By Theorem 4.7, we can therefore compute A(t) = AV**7(t) in terms
of the Euler series B(t) given above, provided that the Euler data P
and the Euler series O(t) both have the appropriate asymptotic forms
(*)-(**) required by Theorem 4.7.

Corollary 4.11. Let by be either er or cp. Suppose that
(4.6) a(Vt)—ca(V7) < a(X).
Then the condition (*) holds for the Euler data P in the two preceding
theorems. In this case, if O(t) is any Euler series linked to 1(t) and
satisfies condition (**), then Theorem 4.7 applies to compute AV*T(t)
in terms of O(t) and P.

Proof. The Euler data P in either of the preceding theorems has the
form: for each d > 0,

T*joPa = Qala(VH)-a(V7).d-N- (a + (@ +d Hoa+-.. )
for some a,d’,a! € C(cT™) (depending on d). By assumption,
(@(VF) —a(V7),d) < (a(X),d).
This implies that P satisfies the condition (*). q.e.d.

This result shows that if @ = br(V*)/b7(V ™) has a certain factorized
form (4.4), and if there is a suitable bound (4.6) on first Chern classes,
then A(t) = AT (t) is computable in terms of the 1(¢) (or a suitable
Euler series O(t) linked to it). Note that even though 1(¢) is not known
explicitly in closed form in general, it is universal in the sense that it
is natural and is independent of any choice of V' or bp. Its Fourier
coefficients also happen to be related to the universal line bundle on
Moy 1(d, X). In the next section, we specialize O(t) to something quite
explicit. We also discuss some other ways to compute A(t). We consider
situations in which the first Chern class bound and the factorization
condition on 2 can be removed.

5. Applications and generalizations.
Throughout this section, we continue to use the same notations:
V,br,Q, A(t), ....
5.1 Inverting 1,.

Suppose 1; is invertible for all d. Then obviously, there exist unique
Bg € AT(X)(c) such that

At) = e HH2Y " BN 1y et
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In particular this says that for d = 6[pq], F = (P!, f5,0), we must have
(5.1) ipBa = 1pp br(Va)

at @ = A\/d. By Theorem 4.3, the By are the unique classes in A%(X)(a)
such that

(i) eqn. (5.5 holds.
(ii) dego BgNly < -2.
(iii) e"Ht/*$ B3N 14 e?t is an Q-Euler series.

In other words these algebraic conditions completely determine the
Bg. Thus in principle the By can be computed in terms of the classes
1; and the linking values (5.5). The point is that this is true whether or
not the bound (4.6) or the factorized form Q0 (4.4) holds. Here are a
few examples.

Example 1. X =Y is a product of projective space with the maxi-
mal torus action. In this case,

L1
47 e (Yo/Wa)

which is given explicitly in Section 2. We also have
By = jop«(m*br(Va) N LT4(X)) € AT(X)[a]

(cf. Lemma 3.3). Finding the By explicitly amounts to finding polyno-
mials in H,,a with the prescribed values (5.5), and the degree bound
(ii). This is a linear problem! This approach is particularly useful for
computing br (V) for nonsplit bundles V' (e.g. V = T'X), or for bundles
where the bound (4.6) fails (e.g. O(k) on P™ with k > n + 1).

Example 2. Suppose X is a balloon manifold such that every
balloon pq generates the integral classes in A;(X). Then every integral
class d € A1(X) is of the form é[pq] (e.g. Grassmannians). We claim
that, in this case, 1; is invertible for all d. It suffices to show that i;14
is nonzero for every fixed point p in X. Given p, we know that there
are n = dim X other fixed points q joint to p by balloons pq. Pick such
a g. Then d = §[pq] for some §. It follows from Theorem 4.5 that the
function ;14 has a nontrivial simple pole at a = A/ where A is the
weight on the tangent line T,,(pg). This completes the proof.

Obviously, we can take product of these examples and still get in-
vertible 14 for the product manifold.
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5.2 Toric manifolds.

Let X be a toric manifold of dimension n. Denote by D,, a = 1,.., N,
the T-invariant divisors in X. We denote by the same notations the
equivariant homology classes they represent. Recall that 3], [11], [32] X
can be represented as an orbit space

X =(T-2)/K

where K is an algebraic torus of dimension N —n, I' = C¥ is a linear
representation of K, and Z is a K-invariant monomial variety of CV, all
determined by the fan of X. The T action on the orbit space is induced
by (C*)¥ acting on T by the usual scaling. Define

O(t) — e—H-t/a zod ed-t7

5.2 (Da,d)
(52) Oy = I(pa,4)<0 [Telo™” " (Da + ka)
Iip..ay>0 IRz Da’ (Do — ka)

We will prove that O(t) is a 1-Euler series.

First we recall a construction in [31], [42]. Given an integral class
d € A1(X), let Ty = @,H°(P,0((D,,d))). Let K act on Ty by ¢g +—
t*e ¢, where the A\, are the same weights with which K acts on I'. Let

Z43 = {¢ € Tglp(z,w) € Z, Y(z,w) € C?}.

(Note that ¢ here is viewed as a polynomial map C2 — CV.) It is
obvious that Z, is K-invariant. Define the orbit space

Wa = (T4 — Z4)/K.

(i) If not empty, W; is a toric manifold of dimension

!
dim Wy =Y ((D,,d) + 1) — dim K

a

! . . oy
where ), means summing only those terms which are positive.

(ii) T acts on Wy in an obvious way. There is also a C* action on Wy
induced by the standard action on P! with weight a. Each C*
fixed point component in Wy is (consisting of K-orbits of)

Ve ={0¢ :(xlwéDl’r)w§Dl’d—r), ...,me((,DN’T)wPN’d—T))I(xl, .+IN) € CN,

zp = 0 if the corresp. monomial has negative exponent}.
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Let jr : Y» — Wy be the inclusion maps. If nonempty, ), is
canonically isomorphic to a T-invariant submanifold in X given
by intersecting those divisors z; = 0 corresponding to negative
exponents above. Denote the canonical inclusions by 7, : V. — X.
Then 77.(1) = [Lp, r)<0 or (Da,d—r)<0 Da- We will denote the class
of D, NY, in Y, simply by D,

(iii) The G = C* x T-equivariant Euler class of the normal bundle of
Yr in Wy is

(Da,d)

ec(Vr/Wa) = H H (Dg + (Dq,r)a — ko).

(Da,d)>0 k=0 k#£(D,,r)

(iv) Corresponding canonically to every T-divisor class D, on X is a
G-divisor class D, on W;. It is determined by

§*D, = Do + (Dg, 7).

Similarly, every linear combination D of the D, corresponds to
some D on Wj.

Lemma 5.1. O(t) introduced above is a 1-FEuler series.
Proof. Let

—(Da,d)~1
(5.3) = ] H (Dq + ko) € AS(Wy).

(Da,d)<0 k=1

By the localization theorem,

erd (H+ra)-(
w, e .
/Wd ¢ Z/, ec(Vr/Wa)

Obviously, the left hand side lies in A (pt)[[¢]] C R[[¢]]. Now observe
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that the right hand side is

2

—(Dg,d)—
ip..ay<o 162" ™ (Do + (Da, r)ex + k)

Do d
Yr H(Da,d)>0 Hi =0 )k#Da,r)(Da + (Da, ) — kev)

Dg,r)—
_Z HDa,r<0 k<0 )I(Da_ka)

(Da,r)>0 I Da,"')( D, + ka)

—(Dg,d—7)—1
y H(Da,d—r)<0 k=0 (Da + ka)- (HAra)¢

Dg,d—7
H(Da,d—T>ZO I<<;:1 )(Da - ka)

= Z/ O, - Og_, elFFra)<,
— Jx

This shows that O(t) is a 1-Euler series. q.e.d.

Remark 5.2. One can define the notion of Euler data on the basis
of W; in a way similar to Definition 3.10. The classes (5.5) in fact give
an example of Euler data for W;. One can also construct the whole
parallel theory of mirror principle for toric manifolds using W;.

Lemma 5.3. The two Euler series O(t) and 1(t) are linked.

Proof. Let p € X7, pg be a balloon in X, d = é[pq] > 0, and A be
the weight on the tangent line on T,(pg). Let F = (P!, f5,0) be the
fixed point in My 1(d, X), as given in Theorem 4.5, which says that the
function iy14 has the polar term, at a = A/,

1 1

(5.4) er(p/X) N — Ao er(F/Mo1(d, X))’

We now compute the contribution from er(F/Mp1(d, X)) for a toric
manifold X. The virtual normal bundle of the pomt F = (C =Pl f50)
in My1(d, X) is

NF/Mo,l(d,X) = [HO(C’ ngX)] - [Hl(C’ -f(;‘TX)] - AC

(notation as in Section 2.3 [29]). From the Euler sequence of X [24], we
get an equivariant exact sequence for every balloon pq in X,

0— OV & ©,0(Da)lpg = TX|pg — 0

where O is the trivial line bundle. At p, there are exactly n nonzero
D, (p) := ipD, giving the weights for the isotropic representation 7, X,
and N —n zero D,(p) corresponding to the trivial representation OV =",
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As usual we ignore the zero weights below, which must drop out at the

end.
Let A = Dy(p). Note that (Dp,d) =1 (Section 2.3 [30]). The bundle
O(Dy) contributes to er([H°(C, f3TX)]) the term

6-1

11 (Ds(p) - EA/5).

k=0

For each a # b with (D,,d) > 0, the bundle O(D,) contributes to
er([H°(C, f3TX)]) the term

(Da 1d)

II (Dalp) — kA/8) if Da(p) #0,
Do)

[I (Dalp) = kA/8) if Da(p) =0.

k=1
For each a with (D,,d) < 0, the bundle O(D,) contributes to
er([H'(C, f;TX)]) the term

—<Da1d)_1

I[I (Dalp) +EN/0).

k=1
The automorphism group A¢ contributes er(A¢) = —A/é. Finally, we

have
er(p/X)= [[ Dal
D, (p)#0

Combining all the contributions, we see that (5.5) becomes a+w times

‘1 p..0<0 Teto™® " (Da(p )+1cA/5)
H(D“’d)>0a¢b (Da,d)(Da(P) kX/6) xH Dy(p) k/\/é)

But this coincides with

lima_>,\/5 (a - A/d)i;Od
This shows that 1,04 — 151, is regular at @ = A\/6. q.e.d.

Note that Oy = a(1(X)d 4 Jower order terms, because Y D, =
c1(X). Thus O(t) is an Euler series linked to 1(¢) and meets the condi-
tion (**) of Theorem 4.7. In particular to apply to the case by = er or



464 B. H. LIAN, K. LIU & S.-T. YAU

cr, all we need is the form (4.4) for © and the bound (4.6). For then
Corollary 4.11 holds.

Example. Take by = c¢p. Take V to be any direct sum of convex
equivariant line bundles L;, so that (4.6) holds. Note that in this case
(4.4) holds automatically. Then Theorem 4.7 yields an explicit formula
for AV*T(t) in terms of the Oy (5.2) and the P; in Theorem 4.10. For
br = er, and V a direct sum of convex line bundles L; with ), ¢1(L;) =
c1(X), we get a similar explicit formula for A(t). Plugging this formula
into Theorem 3.12 in the nonequivariant limit, we get

Corollary 5.4. Let

{c1(L,),d)

B(t) =e~Ht/« ZH H (c1(Li) — ka)

Da,d)—1
H(Da,d)<0Hk< ""}(Dq + ka) odt
Dard) ;

Ip.,a>0 P2 (D, — ka)

as in Theorem 4.7. Then we have

/X (ef/“B(t) e H T/"‘Q) =a3(2® - ZT, 6<I>

where T = t + g, and f,g are the power series computed in Theorem
4.7.

This is the general mirror formula in [21], [22] (see also references
there), formulated in the context of mirror symmetry and reflexive poly-
topes [4], [5].

5.3 A generalization.

We have now seen several ways to compute A(t) = AV*7(t) under var-
ious assumptions on either V by, or T X, or the classes 1z, or some
combinations of these assumptions. We now combine these approaches
to formulate an algorithm for computing A(t) in full generality on any
balloon manifold X, for arbitrary V,bpr. The result will be in terms of
certain (computable) T representations.

(i) By Lemma 3.4, the A, is of the form

T g

M W
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where ¢4 € AT(Y)[ca], hence represented by a polynomial
C[T*|[Hi, ..., Hm,a]. Note that the denominator of Ay is

eg(X/Wd) = eT(X/Y) . T*eg(Yo/Wd).

Thus the goal is to compute the class 7*¢4 for all d. We shall set
up a (over-determined) system of linear equations with a solution
(unique up to ker 7*) given by the ¢q4.

(ii) By Theorem 3.12, the degree of ¢4 is bounded according to

degaAg < —2.

(iii) By Theorem 4.5 (i), at any fixed point p, the function izA, is
regular away from o = 0 or A\/J, where X is a weight on T,X. In
other words,

Resq—r(a —7)* ipAd =0

for all v # 0,A/é and k > 0. Note that these are all linear condi-
tions on ¢q4.

(iv) By Theorem 4.5 (ii) (see notations there), for any balloon pg in X
and d = d[pg| > 0, we have

limg_sa5(c — A/6) i, A4
_ er(p/X) .
- )Y BT(F/MO’l(d,X))ZFp bT(Vd)
_ —er(p/X) er[H'(P", FTX)) @ Vi)
§ er[HO(PY, f;TX)) T eE) 4

(5.5)

Here we have used the fact that
NesMoa,x) = [HO(PY fiTX)] - [H'Y (P, f5TX)] - Ac

(cf. Section 5.2). The prime in the Euler classes above means that
we drop the zero weights in the T representations [H*(P!, fTX)).
Now if V. = V*+ @ V™ is a convex/concave bundle on X, then we
have the T representation

i) Va = HY(PY, f;vH) @ H'\(P, f5V7).
Thus

br(i3y Va)) = br[H(PY, V)] br[H (P, V7)),
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which is just the value of by for a trivial bundle over a point.
Note that if U is any T representation with weight decomposition
U = &;C,,, then br(U) = [, br(C.;) by the multiplicativity of
br. Hence once the T representations H'(P!, fyV*) are given,
eqn. (5.5) becomes a linear condition on the ¢4, where the right
hand side is some known element in C(7*).

(v) Finally, we know that A(t) is an Q-Euler series. This is (induc-
tively) a linear condition on the ¢g.

(vi) By Theorem 4.3, any solution to the linear conditions in (ii)-(v)
necessarily represents the class 7*¢4 we seek.

Of course, this algorithm relies on knowing the T representations
[Hi(PY, fTX)], [H'(P!, f;V)] induced by the T-equivariant bundles
TX|pq and V|pq on each balloon pg = P!. But describing them for any
given X and V is clearly a classical question. We have seen that these
representations are easily computable in many cases. We now discuss a
general situation in which these representations can also be computed
similarly.

Let V be any T-equivariant vector bundle on X and let

0=-Vn—o-- =2V =2V -0

be an equivariant resolution. Then by the Euler-Poincare Principle, we
have

[HO(PL, f;V)] - [H' (P, £V)]
= Z D (HOPY, £5Va)] - [H' (P, f3Va))).
Note that there is a similar equality of representations whenever V is a
term in any given exact sequence
0O—-Vw—= - 2V,2 VoV 13- >V 0.

Now suppose that each Vj is a direct sum of T-equivariant line bundles.
Then each summand L will contribute to [H(P!, f3V,)]-[H (P!, £ V,)]
the representations

ar(D)lp — kXS, k=0,1,...,16,
if I = (c1(L), [pq]) > 0; and
er(D)lp + kXS, k=1,..16 -1,
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if = = (c1(L),[pq]) < 0 (cf. proof of Theorem 4.9). In this case,
[HY(PL, f3V)] — [HY(P!, f;V)] are then determined completely. Thus
whenever a T-equivariant resolution by line bundles is known for T'X
and the convex/concave bundle V¥, the right hand side of eqn. (5.5) be-
comes known.

Example. Consider the case X = P", V = TX, and br the Chern
polynomial. This will be an example where V has no splitting type, but
A(t) can be computed via a T-equivariant resolution nevertheless. Recall
the T equivariant Euler sequence

00 —>@ OH-N)—>TX —0.

For F = (P!, f5,0), where fs is the 6-fold cover of the balloon pg, this
gives

br (i gy Va) = HHw+/\ — X — k)A/6).

it k=0

Here p, q are the jth and the lth fixed points in P", so that A = \; — \;.
We can use this to set up a linear system to solve for A(t) inductively.

However, there is an easier way to compute A(t) in this case. Observe
that Q = bp(V) = L1 [;(z + H — X), and that

d
szzinn(x—l—n-—)\z—-ka)

i k=0

defines an Q-Euler data (see Section 2.2 [29]). Since jjx = H and iyH =
Aj, it follows that

bT(i;(p)V:i) = 'i;jSPd
at @ = A\/4. By the corollary to Theorem 4.5, the Euler series

B(t) := e~ Htla Z]'SPd N1,

is linked to A(t). Obviously, we have deg,j;Pa = (n + 1)d, hence P
meets condition (*) of Theorem 4.7 (7 is the identity map here). For
Og4 = 13, condition (**) there is also automatic. It follows that

A(t +g) = e//2B(t)

where f, g are explicitly computable functions from Theorem 4.7. Note
that rank Vg = (n + 1)d + n, and so Theorem 3.13 yields immediately
the codimension s = 3 Chern class of V.

467
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5.4 Blowing up the image.

In this section, we discuss another approach to compute A(t). For clarity,
we restrict to the case of a convex T-manifold X (T may be trivial), and
br =1, so that A(t) = 1(¢). Thus we will study the classes

_ x (_LToa(d, X)
ta= (eG(Fo/Md(X))>'

We will actually be interested in the integrals | X el < N 1, where
7:X — Y is a given projective embedding. For the purpose of studying
the intersection numbers in Section 3.3, this is adequate. Since X is
assumed convex, LTy 1(d, X) is represented by My 1(d, X). Likewise for
My(X).

Suppose that we have a commutative diagram

e¥ 9
F() — Yo “— Eo
(5.6) Li Vi Lk
My 5 ow, & Q.
Here the left hand square is as in (3.2) (%9, jo, Mg(X) there are written
as 1, j, My here for clarity). We assume that Qg is a G-manifold, that
Y : Q4 — Wy is a G-equivariant resolution of singularities of ¢(My), and
that Ej is the fixed points in 9 ~!(Yp). Here g denotes the restriction of
1, and k the inclusion. Recall that ¢ is an isomorphism into its image
away from the singular locus of My. The singularities in ¢(My) is the
image of the compactifying divisor in My, which has codimension at least
2. Then we have the equality in AG(W,):

pa[Ma] = P4[Qa]-

Applying functorial localization to the left hand square in (5.6) as in
Section 3.1, we get

7*u[My) :ey< [Fo] )
ec(Yo/Wq) ™ \eg(Fo/Ma)) "

Doing the same for the right hand square, we get

T Y«[Qdl [Eo]
ec(Yo/Wa) <eG<Eo/Qd>> '

It follows that
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Lemma 5.5. In AT(Y), we have the equality

Tl =€) (gg(—[;f/]—@) =9 (EZ;TEE‘EBQ/]'Q'E) '

It follows that

* H-C _ H [Eo] )
et N1y = / e N g (
/X ““ 9\ ec(Eo/ Q)
/ g*eH-C
 J, ec(Eo/Qa)
= / g*jre~s
Eo €G(Eo/Qa)
-/ krgrert
B €G(Eo/Qa)

In many cases, the spaces Qg can be explicitly described, and the
classes ¥*k on Q4 can be expressed in terms of certain universal classes.
For example, when X is a flag variety, then the Q4 can be chosen to be
the Grothendieck Quot scheme (cf. [10], [8]). Integration on the Quot
scheme can be done by explicit localization (cf. [39]). When X is a
Grassmannian and 7 : X — Y = PV is the Plucker embedding, then
Y*k = —c1(S), where S is a universal subbundle on the Quot scheme.
In this case, the image ¥(Qg) has been studied extensively in [37], [38].

When X is not convex, a similar method still works if we can find an
explicit cycles Zg in @ such that

or LTy(X) = . [Zd]

in AS(W,). This approach deserves further investigation.

5.5 Higher genus.

In this section, we discuss a generalization of mirror principle to higher
genus. More details will appear elsewhere. As before X will be a pro-
jective T-manifold, and 7 : X — Y a given T-equivariant projective
embedding. (Again, T" may be the trivial group.)

Let Mg r(d, X) denote the k-pointed, arithmetic genus g, degree d,
stable map moduli stack of X. Let MJ denote Mgyo((d,1),X x P?).
Note that for each stable map (C,f) € MJ there is a unique branch
Co =2 P! in C such that f composed with the projection X x P! — P!

469
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maps Cop — P! isomorphically. Moreover, C is a union of Cy with some
disjoint curves C1, .., Cn, where each C; intersects Cy at a point z; € Cyp.
The map f composed with X x P! — P! collapses all Cj,..,Cx.

The standard C* action on P! induces an action on M g . The fixed
point components are labelled by Fg}"’gj withdy +da=d, g1 +g2=g.
As in the genus zero case, a stable map (C, f) in this component is given
by gluing two 1-pointed stable maps

(f1,C1, 1) € Mg, 1(d1, X), (f2,Ca,x2) € Mg, 1(d2, X)

with fi(z1) = f2(z2), to a P! at 0 and co at the marked points
(cf. Section 3). We can therefore identify Fj.'J? with

Mgl,l(dlaX) Xx Mgz,l(d%X)-
We denote by
9 . 91,9 . . g g
Fdl,dz = H Fdll,d;7 Ydydy ¢ Fdl,dz — My,
g1+g2=g

the disjoint union and inclusions. There are two obvious projection maps

g. g
Po - Fgl,dz - H Mgl,l(dl,X), Poo - Fgl,d,z 4 H Mg2,1(d2,X).
91=0 g92=0

The map py strips away the stable maps (f2,Ca,z2) glued to co and
forgets the P!; po, strips away the stable map (f1,C1,z1) glued to 0
and forgets the P!. We also have the usual evaluation maps, and the
forgetting map:

€d; ,dy * Fgl,dz 4 X, €d Mg,l(d,X) — X, p: Mg,l(d,X) — Mg,o(d,X).

Relating and summarizing the natural maps above is the following dia-
gram:

(5.7)
X el ppn ok M3 Iy M,o(d, X)
€d; T Po v N/ Poo
Mgl,l(dlaX) Mgz,l(d%X)
Pl ip
Mgl,O(dle) Mg2,0(d27X)

Fix a class Q € A%L(X). We call a list b € A% (Myo(d, X)) an Q-
gluing sequence if we have the identities on the Fgl &

* ¥ *19 * %7141 * _xpg2
edlad2Q "y ,dy T bd - Z Pop bd1 *PocP bd2-
g1+g2=g
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It is easy to verify that b} = 1 is an example of a 1-gluing sequence.
Restricted to g = 0, the identity above is precisely the gluing identity in
Section 3.2. There we have found that the gluing identity results in an
Euler series. It turns out that a gluing sequence too leads to an Euler
series. For w € A5 (MJ) and d = dy + da, define (cf. Section 3.2)

% g
juir = eg 4 dy,d, W N [Fdl ,d2
di, d2 1,02 % g g

eG(Fdl,dz/Md)

]‘UZ’I‘

) e AT(X)(a).

Then for a given gluing sequence b € A% (Mgyo(d, X)), we have the
identities

vir * () E SUIT T* 91 SVIT % 1.g2
an dz bd_ 10d1 b II‘Odg bdz'
g91+g92=9

Again, putting g = 0, we get the identities in Theorem 3.6. The argu-
ment in the higher genus case is essentially the same as the genus zero
case. Here, one chases through a fiber diagram analogous to (3.1) using
the associated refined Gysin homomorphism, together with the diagram
(5.7).

Now given a gluing sequence, we put

A =g, Ag _ZAd“ , At —e_Ht/"‘ZAde

Here p is a formal variable. Then A(t) is an Euler series. (We must, of
course, replace the ring R by R[[u]].) The argument is also similar to
the genus zero case: one applies functorial localization to the diagram

tdy,dy

g g
Fdl ,da2 Md
€dy,dy + 1o,
Jdq,do
Xcy % w,

the same way we have done to diagram (3.2) in Section 3.2.

We can proceed further in a way parallel to the genus zero case.
Namely, to find further constraints to a gluing sequence, we should com-
pute the linking values of the Euler series A(t). For this, let’s assume
that X is a balloon manifold, as in Sections 4.1 and 5.3. In genus
zero, the linking values of an Euler series, say coming from br(Vj), are
determined by the restrictions i:br(p*Vy) to the isolated fixed point

= (P!, f5,0) € Mo1(d, X), which is a §-fold cover of a balloon pg in X
(see Theorem 4.5). In higher genus, this is replaced by a component in
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Mgy 1(d, X) consisting of the following stable maps (C, f,z). Here C is a

union of two curves C; and Cy = P! such that Coi>pq is a d-fold cover
with f(z) = p, and f(C;) = g. Therefore this fixed point component
can be identified canonically with M, , the moduli space of genus g,
1-pointed, stable curves. Let’s abbreviate it F'. The linking values of
A(t) for this component is then a power series summing over integrals
on Mg, of classes given in terms of i}p*bJ and er(F/Mgy1(d, X)) (cf.
Theorem 4.5).

The entire discussion in this section can be generalized to the case
of multiple marked points, i.e., M x(d, X). The details will appear else-
where.
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