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Abstract. This is an invitation to the probabilistic approach for con-
structing Kähler-Einstein metrics on complex projective algebraic man-
ifolds X. The metrics in question emerge in the large N -limit from a
canonical way of sampling N points on X, i.e. from random point pro-
cesses on X, defined in terms of algebro-geometric data. The proof of the
convergence towards Kähler-Einstein metrics with negative Ricci curva-
ture is explained. In the case of positive Ricci curvature a variational ap-
proach is introduced to prove the conjectural convergence, which can be
viewed as a probabilistic constructive analog of the Yau-Tian-Donaldson
conjecture. The variational approach reveals, in particular, that the con-
vergence holds under the hypothesis that there is no phase transition,
which – from the algebro-geometric point of view – amounts to an ana-
lytic property of a certain Archimedean zeta function.
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1. Introduction

A central theme in current complex geometry is the interplay between
the differential geometry of Kähler-Einstein metrics on a compact complex
manifold X and complex algebraic geometry. These connections were em-
phasized by Yau in the 80s [84], leading up to the formulation of the Yau-
Tian-Donaldson conjecture involving the notion of K-stability [76, 42]. This
paper is as an invitation to the probabilistic approach to Kähler-Einstein
metrics, initiated in [10, 11, 8]. From this probabilistic point of view the
Kähler-Einstein metrics emerge in the large N -limit from a canonical way of
samplingN points onX, i.e. from canonical random point process onX. The
point processes are defined in terms of algebro-geometric data and furnish
canonical and explicit approximations to Kähler-Einstein metrics, expressed
as period integrals. The thrust of this approach is thus that it provides a
new explicit bridge between Kähler-Einstein metrics and algebraic geometry.
Moreover, it leads to a new notion of stability, dubbed Gibbs stability, which
naturally fits into the logarithmic setup of the Minimal Model Program of
current birational algebraic geometry. The investigation of the large N -limit
of the point processes also naturally ties in with the variational approach
to Kähler-Einstein metrics in [18, 19, 20] (via the notion a large deviation
principle).

The aim of the present work is to provide both a survey of the proba-
bilistic construction of Kähler-Einstein metrics with negative Ricci curvature
in [10], as well as a variational approach towards a proof of the remaining
main open problem concerning positive Ricci curvature. As demonstrated
in [15] this approach settles the problem in the case of log Fano curves,
but in the general case it hinges on a conjectural energy bound. Interest-
ingly, as explained in [15], already the simplest case of a log Fano curve
with trivial automorphism group – the complex projective line decorated
with 3 weighted points – exhibits some rather intriguing connections be-
tween this probabilistic approach and the classical theory of hypergeometric
functions and integrals, as well as Conformal Field Theory and Integrable
Systems.

There are also many other connections to other fields that will not
be covered here. Motivations from Quantum Gravity are discussed in [7],
where a heuristic argument for the large N -convergence was first given. The
connections to pluripotential theory and interpolation theory in complex
affine space Cn are covered in [14, 47] and relations to stochastic gradi-
ent flows and optimal transport (via tropicalization) appear in [13]. More-
over, connections to Arithmetic Geometry and Non-Archimedean Geometry
will be developed elsewhere, as well as relations to the AdS/CFT corre-
spondence in theoretical physics, connecting geometry to Conformal Field
Theory [24].

Finally, a caveat: “The probabilistic approach to Kähler-Einstein met-
rics” will, in the following, refer to the approach, based on random point
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processes with N points, introduced in [7, 10, 11]. It should, however, be
pointed out that there is also a different probabilistic approach to Kähler ge-
ometry, introduced in [50], using random elements in the symmetric spaces
SL(N,C)/SU(N). In the case of a complex curve, there are also, as ex-
plained in [15], some relations between the canonical random point processes
and the theory of Gaussian Multiplicative Chaos, as used in the probabilistic
approach to Liouville Quantum Gravity in [63]. It should also be pointed out
that a statistical mechanics approach has previously been applied to con-
formal geometry in [60], which is related to the present complex-geometric
setup in the case of complex curves.

1.1. Organization. Since this work is mainly aimed to be expository,
most of the proofs are merely sketched. However, there are also some new
results (Theorems 3.7, 3.15, 7.6, 7.9) where more details are provided.

After a brief recap of Kähler-Einstein metrics in Section 2 and some
motivation we give, in Section 3, a bird’s-eye view of the probabilistic ap-
proach to Kähler-Einstein metrics. First, the main results concerning the
case when the sign β of the canonical line bundle KX is positive are ex-
plained. Then, the conjectural picture concerning the Fano setting, where
β < 0, is described. In Section 4 background material is provided on com-
plex geometry, pluripotential theory, probability and variational analysis.
This material is needed for the more detailed view of the probabilistic ap-
proach, which is the subject of the subsequent sections, starting in Sec-
tion 5 with a thermodynamical formalism for Kähler-Einstein metrics. The
focus in this section is on the analytical properties of the free energy func-
tional (which appears as the rate functional of a large deviation principle
for the canonical point processes). The connection to the standard func-
tionals in Kähler geometry, in particular the Mabuchi functional is also
explained. In the following Section 6 we explain the proof of the conver-
gence of the point processes and the general large deviation principle in
the case β > 0. The Fano setting, where β < 0, is considered in Section 7
where a variational approach is proposed for proving the conjectural con-
vergence of the point processes and relations to phase transitions are ex-
plored.

Acknowledgements. I am grateful to Shing-Tung Yau for the invita-
tion to contribute to the upcoming volume of Surveys in Differential Geom-
etry, on the occasion of his 70th birthday – his work has been a constant
source of inspiration. It is also a pleasure to thank Sébastien Boucksom,
David Witt-Nyström, Vincent Guedj and Ahmed Zeriahi for the stimulating
collaborations [16, 17, 18], which paved the way for the current probabilis-
tic approach. Also thanks to Daniel Persson and the referee for comments
on the paper. This work was supported by grants from the KAW founda-
tion, the Göran Gustafsson foundation and the Swedish Research Coun-
cil.
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2. Recap of Kähler-Einstein metrics and motivation

Recall that a Kähler metric ω on a compact complex manifold X of
dimension n is said to be Kähler-Einstein if it has constant Ricci curvature:

Ricω = −βω

for some constant β. The existence of such a metric implies that the canonical
line bundle KX of X (i.e. the top exterior power of the cotangent bundle of
X) has a definite sign:

(2.1) sign(KX) = sign(β)

We will be using the standard terminology of positivity in complex geome-
try: a line bundle is said to be positive, L > 0, if it is ample and negative,
L < 0, if its dual. Moreover, we shall adopt the standard additive nota-
tion for tensor products of line bundles, so that the dual of L is expressed
as −L (see Section 4.1.2). Here we will focus on the case when β �= 0
(see [10, Section 6.1] for probabilistic aspects of the case β = 0). Then
X is automatically a complex projective algebraic manifold. After a rescal-
ing of the metric we may as well assume that β = ±1. In the case when
KX > 0 and KX = 0 the existence of a Kähler-Einstein metric was estab-
lished in the seminal works [83, 2] and [83], respectively. However, in the
case when KX < 0, i.e. when X is a Fano manifold, there are obstructions
to the existence of a Kähler-Einstein metric. According to the Yau-Tian-
Donaldson conjecture a Fano manifold X admits a Kähler-Einstein metric
iff X is K-polystable (the “only if” statement holds for singular Fano va-
rieties [9]). This an algebro-geometric notion of stability, modeled on the
notion of stability in Geometric Invariant Theory. Briefly, a Fano manifold
X is K-polystable iff the Donaldson-Futaki invariant DF (X ) of any normal
C∗-equivariant deformation X → C of (X,−KX) (called a test configura-
tion) is non-negative and vanishes only for the test configurations X whose
central fiber is biholomorphic to X. The invariant DF (X ) may be defined
as a the normalized large N -limit of the Chow weight of the orbit of X in
PN−1 under a one-parameter subgroup of SL(N,C) associated to X . See the
survey [45] for the detailed definition and further background.

When a Fano manifold X admits a Kähler-Einstein metric it is uniquely
determined modulo the action of the group Aut (X)0 of all biholomorphic
automorphisms of X in the connected component of the identity [4]. The
dichotomy non-trivial vs. trivial group Aut (X)0 is reflected in the difference
between K-polystability and the stronger notion of K-stability, which implies
that Aut (X)0 = {I}.

The relation between Kähler-Einstein metrics and stability, in the sense
of GIT, was propounded by Yau in [84, 85] and further developed by Tian
[76] and then Donaldson [42], who considered the more general setting of
constant scalar curvature metrics on polarized complex compact manifolds.
In the Fano case the Yau-Tian-Donaldson conjecture was settled in [32],
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using a logarithmic version of Aubin’s continuity (and the Cheeger-Colding-
Tian theory of Gromov-Hausdorff limits of Kähler manifolds). There is also
a stronger form of K-stability, called uniform K-stability, introduced in [74,
75, 40, 29]. In [20] it was shown by a direct variational approach that a Fano
manifold admits a unique Kähler-Einstein-metric iffX is uniformly K-stable,
using pluripotential theory (including some Non-Archimedean aspects). Very
recently the variational approach in [20] has also been extended to general
singular Fano varieties in [66] and [65], using a notion of equivariant uniform
K-stability.

2.1. The lack of explicit formulas. Already in the case when the
canonical line bundle KX is positive and thus X admits a Kähler-Einstein
metric ωKE with negative Ricci curvature, there are very few cases where
ωKE can be written down explicitly. For example, let X be the projective
algebraic manifold defined by the zero-locus of a homogeneous polynomial
of degree d in (n + 1)-dimensional complex projective space Pn+1

C . Then
KX > 0 iff d > (n + 2) (by the adjunction formula). However, even in
the case of a complex algebraic curve X in P2

C the problem of explicitly
describing the Kähler-Einstein metric on X is, in general, intractable. By
the classical uniformization theory this problem is equivalent to finding an
explicit biholomorphic map from X to the quotient H/G of the upper half-
plane by a discrete subgroup G ⊂ SL(2,R). This has only been achieved
for very special curves, using techniques originating in the classical works
by Weierstrass, Riemann, Fuchs, Schwartz, Klein, Poincaré, ... [72]. See, for
example, [5] for the case when X is a Fermat curve of degree d ≥ 4, [48] for
the case when X is the Klein quartic, including arithmetic aspects and [46]
for connections to the mirror-moonshine conjecture of Lian-Yau. A recurrent
theme in all these cases is that the uniformizing map from X to H/G may
be expressed as a quotient of hypergeometric functions.

Thus one motivation for the probabilistic approach to Kähler-Einstein
metrics is that for any given projective manifold X with KX > 0 it leads
to canonical approximations ωk of the Kähler-Einstein metric ωKE on X,
which are explicitly expressed in terms of algebro-geometric data on X. This
will be explained in detail in the following sections (see Corollary 3.2). For
the moment we just point out that, realizing X as an algebraic subvariety
of Pm

C , the Kähler potential ϕk on X may be explicitly expressed as follows,
in terms of homogeneous coordinates z ∈ Cm+1 on Pm

C :

(2.2) eϕk(z) =
1

ZNk

∫
XNk−1

|PNk
(z, z2..., zNk

)|2/k

|z|2 |z2|2 · · · |zNk
|2

dV ⊗(Nk−1)

where Nk is a sequence tending to infinity (the plurigenera of X), PNk
is

a homogeneous polynomial on the Nk-fold product XNk of X, naturally
attached to the degree k component of graded homogeneous coordinate ring
of X and dV is an algebraic volume form on X, induced by the embedding
in Pm. The normalizing constant ZNk

is given by ZN,β for β = 1 where ZN,β
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is the following Archimedean zeta function1

(2.3) ZN,β :=

∫
XNk

(
|PNk

(z1, z2..., zNk
)|2/k

|z1|2 |z2|2 · · · |zNk
|2

)β

dV ⊗Nk .

In the case when X is Fano the exponent 2/k in formula (2.2) is replaced
by 2β/k for β = −1. The conjectural convergence towards the potential of
a Kähler-Einstein metric, when Nk → ∞, then turns out to be related to
analytic properties of the corresponding Archimedean zeta function β �→
ZN,β .

Incidentally, the integral in formula (2.3) is reminiscent of the Euler in-
tegral (period) formulas for the hypergeometric functions that appear in the
classical uniformization theory for complex curves and integrable systems,
alluded to a above. Indeed, the ordinary (Gauss) hypergeometric function
with real parameters (a, b, c) may be expressed as follows when z is in the
upper half-plane of C:

(2.4) F (z) =
1

B(b, c− b)

∫
[0,1]

(1− zx)−axb−1(1− x)c−b−1dx,

where B(p, q) is the Beta function:

(2.5) B(p, q) =

∫
[0,1]

xp−1(1− x)q−1dx, Re p > 0, Re q > 0

These connections can be made more precise in the case of complex curves,
as explained in [15].

Remark 2.1. When X is defined over Q the integrals in (2.3) and (2.4)
are examples of periods, as defined in [62, Chapter 4], i.e. integrals of the
form

∫
γ η for an algebraic form η of maximal degree on a projective variety

Y defined over Q and homology class γ ∈ H(Y (C),Q) with boundary on
a normal crossing divisor in Y (C). Indeed, Y (C) can be taken as the com-
plexification of X, when X is viewed as a real manifold of real dimension
2n and γ as X. As stressed in [62], in many classical cases period integrals
satisfy differential equations with respect to variations of the parameters of
the integrand (notably Picard-Fuch equations, such as the hypergeometric
equation satisfied by F (z) above). In the present setup the role of the dif-
ferential equation is thus – loosely speaking – played by the Kähler-Einstein
equation, but it only arises in the limit when N → ∞.

The canonical Kähler potentials ϕk in formula (2.2) are also somewhat
reminiscent of the sequence of balanced metrics introduced in [44] (when
either KX > 0 or KX < 0), defined as fixed point of an algebraic iteration.
But one virtue of the present setup is that ϕk is given by an explicitly
formula.

1Integrals of complex powers of algebraic functions are Archimedean analogs of local
Igusa zeta functions, defined in a p-adic setting [56].
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3. A bird’s-eye view of the probabilistic approach to
Kähler-Einstein metrics

We continue with the notation introduced in Section 2, with X denoting
a compact complex manifold with the property that its canonical line bun-
dle KX has a definite sign β. First recall that it follows directly from the
basic formula for the Ricci curvature of a Kähler metric, that, in the case
when β �= 0, a Kähler-Einstein metric ωKE on X can be recovered from its
(normalized) volume form dVKE

ωKE =
1

β
ddc log dVKE ,

using the notation ddc := i
2π∂∂̄ (see Section 4.1). Accordingly, the strategy

of the probabilistic approach is to first construct the canonical normalized
volume form dVKE by a canonical sampling procedure on X.

We will denote by P(X) the space of all normalized measures μ on X,
i.e. the space of all probability measures on X (see Section 4.3 for a recap
of the basic probabilistic background).

3.1. The case β > 0. Let X be a compact complex manifold with
positive canonical line bundle KX . The starting point of the probabilistic
approach to Kähler-Einstein metrics is the observation that, when KX > 0,
there is canonical way of sampling configurations of N random points on
X, i.e. there is a canonical random point process on X with N points. This
means that there is a canonical sequence of symmetric probability measures
μ(N) on the N -fold products XN and, as shown in [10], the corresponding
empirical measure

δN :=
1

N

N∑
i=1

δxi : XN → P(X)

viewed as a random measure on the probability space (XN , μ(N)), converges
in probability as N → ∞, to the volume form dVKE of the unique Kähler-
Einstein metric ωKE . In fact, the canonical sequence of probability measures
on μ(N) on XNk is defined for a specific subsequence of integers N tending
to infinity, the plurigenera of X:

Nk := dimH0(X, kKX),

where H0(X, kKX) denotes the complex vector space of all global holo-

morphic sections s(k) of the k th tensor power of the canonical line bundle
KX → X (aka pluricanonical forms). We recall that, in terms of local holo-

morphic coordinates z ∈ Cn on X, this simply means that a section s(k) may
be represented by local holomorphic functions s(k) on X, such that |s(k)|2/k
transforms as a density on X, i.e. defines a measure on X. The canonical
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probability measure μ(Nk) on XNk is now defined by

(3.1) μ(Nk) :=
1

ZNk

∣∣∣detS(k)
∣∣∣2/k , ZN :=

∫
XNk

∣∣∣detS(k)
∣∣∣2/k

where detS(k) is the holomorphic section of the canonical line bundle
(kKXNk ) over X

Nk , defined by the Slater determinant

(detS(k))(x1, x2, ..., xN ) := det(s
(k)
i (xj)),

in terms of a given basis s
(k)
i in H0(X, kKX). Note that under a change

of bases the section detS(k) only just changes by a multiplicative complex
constant c (the determinant of the change of bases matrix). Hence, by ho-

mogeneity, the probability measure μ(Nk) is independent of the choice of
bases and thus defines a canonical symmetric probability measure on XNk ,
as desired. Moreover, the probability measure is μ(Nk) is encoded by algebro-
geometric data in the following sense: using the Kodaira embedding theorem
to realize X as projective algebraic subvariety the density detS(k) can be
identified with a homogeneous polynomial (see Section 4.1.3).

The following convergence result was shown in [10]:

Theorem 3.1. Let X be a compact complex manifold with positive ca-
nonical line bundle KX . Then the empirical measures δNk

of the corre-
sponding canonical random point processes on X converge in probability, as
Nk → ∞, towards the normalized volume form dVKE of the unique Kähler-
Einstein metric ωKE on X.

In particular, the convergence in probability in the previous theorem
implies that the measure on X defined by the expectations E(δNk

) of the
empirical measure δNk

converge towards dVKE in the weak topology of mea-
sures on X:

E(δNk
) =

∫
XNk−1

μ(Nk) → dVKE , k → ∞

Noting that

(3.2) ωk := ddc logE(δNk
) = ddc log

∫
XNk−1

∣∣∣detS(k)
∣∣∣2/k

defines a canonical sequence of Kähler metrics on X (for k sufficiently large)
we thus arrive at the following

Corollary 3.2. Let X be a compact complex manifold with positive
canonical line bundle KX . Then the canonical sequence of Kähler metrics
ωk converges towards the unique Kähler-Einstein metric ωKE on X, in the
weak topology.

It does not seem clear how to directly prove the convergence of the
measures E(δNk

) on X (and the Kähler metrics ωk) without first proving the
stronger convergence in probability in Theorem 3.1. Moreover, as explained
in Section 6, the convergence in probability is shown to hold in the stronger
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exponential sense of a Large Deviation Principle (LDP). Endowing the space
P(X) of all probability measures on X by a metric compatible with the weak
topology and denoting by Bε(μ) the ball of radius ε centered at a given
element μ ∈ P(X) this essentially means that there exists a functional I(μ)
on P(X), called the rate functional, such that

(3.3) Prob

(
1

N

N∑
i=1

δxi ∈ Bε(μ)

)
∼ e−NI(μ)

when first N → ∞ and then ε → 0 (see Section 4.3.1 for the precise meaning
of a LDP). Moreover, the rate functional I(μ) is non-negative and vanishes
iff μ = dVKE In fact, if ω is a Kähler form in the first Chern class c1(KX),
then the rate functional I may be identified with the Mabuchi functional on
the space of Kähler metrics:

I(
ωn∫
X ωn

) = M(ω),

where M(ω) denotes Mabuchi functional on the space of Kähler metrics
in c1(KX). Once the LDP (3.3) has been established the convergence in
probability in Theorem 3.1 then follows from the well-known fact in Kähler
geometry that ωKE is unique minimizer of M. More precisely, since the rate
functional I(μ) is defined on the whole space of probability measure P(X)
and not only on the dense subspace of volume forms, some additional argu-
ments are required, using variational calculus on P(X) (see Theorem 5.4).

3.1.1. The proof of the LDP for β > 0 and statistical mechanics. Fixing
a volume form dV on X the canonical probability measure (3.1) may be
expressed as

μ(N) =
1

ZNk

∥∥∥detS(k)
∥∥∥2/k dV ⊗N ,

where ‖·‖ denotes the metric on KX induced by the volume form dV . The
starting the point of the proof of the LDP (3.3) is to rewrite this expression
as a Gibbs measure:

(3.4) μ
(Nk)
β =

e−βNE(N)

ZN,β
dV ⊗N , ZN,β :=

∫
:XN

e−βNE(N)
dV ⊗N

with

(3.5) E(N) := − 1

kN
log

∥∥∥detS(k)(x1, ..., xNk
)
∥∥∥2 , β = 1

In the general terminology of statistical mechanics, if X is a Riemannian
manifold (where we assume that the Riemannian volume form dV is nor-

malized) and E(N) is a given symmetric function on XN , called the energy
per particle, the Gibbs measure (3.4) represents the microscopic equilibrium
state of N interacting identical particles on X at inverse temperature β. The
normalizing constant ZN,β is called the partition function.
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The proof of the LDP is inspired by the notion of amean field approxima-
tions in physics. Briefly, the idea is to first show that there exists a functional
E on P(X) such that the energy per particle, may be approximated as

E(N)(x1, ...xN ) ≈ E(μ),
1

N

N∑
i=1

δxi ≈ μ

in an appropriate sense, as N → ∞. Formally, this suggests that the rate
functional is given by

I(μ) = Fβ(μ)− inf
P(X)

Fβ, Fβ(μ) = βE(μ) +DdV (μ) ∈]0,∞],

where DdV (μ) is the entropy of μ relative to dV , which arises when integrat-
ing the volume dV ⊗N form over small balls in the N -particle configuration
space XN/SN (see Section 6.1).

In the general statistical mechanical setup E(μ) represents the energy
of the macroscopic state μ and Fβ(μ) its free energy, at inverse temperature
β. In the present setting the role of the macroscopic energy E(μ) is played
by the pluricomplex energy of the measure μ (introduced in [18]), defined
with respect to the Kähler form −Ric dV . More generally, the same proof
yields the following general result, where the role of KX is played by a given
positive line bundle L over a compact complex manifold X.

Theorem 3.3. Let L be a positive line bundle over a compact complex
manifold (X,L). Given a volume form dV on X and a metric ‖·‖ on L

denote by μ
(N)
β the corresponding Gibbs measure (3.4), at inverse temper-

ature β ∈]0,∞[. Then the laws of the corresponding random measures δN

on (XN , μ
(N)
β ) satisfy a Large Deviation Principle (LDP) with speed N and

rate functional Fβ(μ)− Cβ, where

Fβ(μ) = βEω0(μ) +DdV (μ), Cβ = inf
P(X)

Fβ.

As a consequence, the empirical measure δN converges in probability
towards the unique minimizer μβ of the free energy functional Fβ on P(X),
which is the volume form characterized by the property that the Kähler
metric

ωβ := ω0 +
1

β
ddc log

μβ

dV

is the unique solution to the twisted Kähler-Einstein equation

Ricω = −βω + θ, θ := βω0 +Ric dV.

In particular, specializing the previous theorem to the “canonical case” L =
KX , ω0 := −Ric dV and β = 1 yields Theorem 3.1. The technical ingredients
in the proof of the LDP in Theorem 3.3 are discussed in Section 6. An
important feature of the case β > 0 is that βE(N) is quasi-superharmonic.
However, allowing negative values of β is crucial in the case when X is a
Fano manifold, as discussed below.
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3.1.2. Varieties of positive Kodaira dimension and log pairs. Before
turning to Fano manifolds we recall that, as shown in [11], Theorem 3.1
holds in much greater generality. Indeed, the minimal requirement for the
previous setup to apply is that the plurigenera Nk of X tend to infinity as,
k → ∞. In the classical terminology of algebraic geometry this means that
KX has strictly positive Kodaira dimension κ and is shown in [11] the ana-
log of Theorem 3.1 then holds if dVKE is replaced by the canonical measure
on X first introduced in [79, 73] in different contexts. Then ωk (defined by
formula (3.2)) defines a canonical sequence of positive currents in c1(KX)
which are Kähler on the complement in X of the base locus defined by kKX

and ωk converges in the weak sense of currents to the pull-back to X of the
canonical twisted Kähler-Einstein current on the κ-dimensional base Y of
the Iitaka fibration X → Y , whose generic fibers are Calabi-Yau manifolds
of dimension n− κ.

In fact, these results hold more generally when X is a (normal) pro-
jective algebraic variety (with klt singularities) and may be formulated in
a birationally invariant manner using the general the setting of log pairs
(X,Δ), in the usual sense of MMP [61]. Recall that a log pair (X,Δ) is a
complex (normal) variety X endowed with a Q-divisor Δ on X, i.e. a sum of
irreducible subvarieties of X of codimension one, with coefficients wi in Q.
Then the role of the canonical line bundle KX is placed by the log canonical
line bundle

K(X,Δ) := KX +Δ

(when defined as a Q-line bundle) and the role of the Ricci curvature Ricω
of a metric ω is played by twisted Ricci curvature Ricω− [Δ], where [Δ] de-
notes the current of integration defined by Δ. The corresponding log Kähler-
Einstein equation reads

(3.6) Ricω − [Δ] = βω,

where [Δ] denotes the current of integration along Δ. When β is non-zero
existence of a solution ωKE forces

β(KX +Δ) > 0

In general, the equation (3.6) should be interpreted in the weak sense of
pluripotential theory [49, 19]. However, in the log smooth case it follows
from [57, 55] that a positive current ω solves the equation (3.6) iff ω is a
bona fide Kähler-Einstein metric on X−Δ and ω has edge-cone singularities
along Δ, with cone-angle 2π(1−wi), prescribed by the coefficients wi of Δ.

Remark 3.4. Starting with a normal variety Y such that KY is defined
as a Q-line bundle and taking X to be a non-singular resolution of Y , X →
Y , the pull-back of KY to X is of the form K(X,Δ) for an exceptional divisor
Δ on X that may be assumed to have simple normal crossings. The divisor
Δ is said to be klt (Kawamata Log Terminal) if all of its coefficients wi

satisfy wi < 1 [61]. If this is the case the variety Y is also said to have klt
singularities. In another direction, if Y is a projective algebraic manifold
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with positive (but not maximal) Kodaira dimension, then KY is the pull-
back of K(X,Δ) for a klt divisor Δ supported on the ramification locus of the
Iitaka fibration Y → X.

As shown in [11] Theorem 3.1 can be generalized to any klt pair (X,Δ)
such that (X,Δ) has positive Kodaira dimension.

3.2. The case β < 0. When KX is negative, that is, X is a Fano man-
ifold, we replace the zero-dimensional spaces H0(X, kKX) with the spaces
H0(X,−kKX) of dimension

Nk := dimH0(X,−kKX),

tending to infinity, as k → ∞. We are then forced to replace the power 2/k
in formula (3.1) with a negative power −2/k in order to ensure that

(3.7)
∣∣∣detS(k)

∣∣∣−2/k

transforms as a density on XNk , i.e. defines a global measure on XNk . How-
ever, then the corresponding normalization constant ZNk

ZNk
:=

∫
XNk

∣∣∣detS(k)
∣∣∣−2/k

may diverge, since the integrand blows-up along the zero-locus in XNk of the
section detS(k). Accordingly, we will say that a Fano manifold X is Gibbs
stable at level k if ZNk

< ∞ and Gibbs stable if it is Gibbs stable at level k
for k sufficiently large. For a Gibbs stable Fano manifold X we set

(3.8) μ(Nk) :=
1

ZNk

∣∣∣detS(k)
∣∣∣−2/k

,

which defines a canonical symmetric probability measure on XNk , i.e. a
canonical random point process on X with Nk points. We thus arrive at the
following probabilistic analog of the Yau-Tian-Donaldson conjecture

Conjecture 3.5. Let X be Fano manifold. Then

• X admits a unique Kähler-Einstein metric ωKE if and only if X is
Gibbs stable.

• If X is Gibbs stable, the empirical measures δN of the correspond-
ing canonical point processes converge in probability towards the
normalized volume form of ωKE.

If X is Gibbs stable then

(3.9) ωk := −ddc logE(δNk
) = −ddc log

∫
XNk−1

∣∣∣detS(k)
∣∣∣−2/k

defines a sequence of canonical positive currents (as follows from the posi-
tivity of direct image bundles in [25]; see [11, Prop 6.5]). In analogy with
Corollary 3.2 it seems natural to also conjecture that, if X is Gibbs stable,
then ωk converges to a Kähler-Einstein metric on X.
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It should be stressed that the Gibbs stability of X implies that the
group Aut (X)0 is trivial [11, Prop 6.5]. Accordingly, when comparing Con-
jecture 3.5 with the Yau-Tian-Donaldson conjecture one should view Gibbs
stability as the analog of K-stability.

In the light of Theorem 6.2 it is natural to pose the following stronger
LDP form of the previous conjecture:

Conjecture 3.6. Let X be a Fano manifold. Then X admits a unique
Kähler-Einstein metric iff the canonical measure μ(N) is a probability mea-
sure for N sufficiently large. Moreover, if this is the case then the laws of
the empirical measures δN on (XN , μ(N)) satisfy a Large Deviation Principle
(LDP) with speed N and rate functional F−1(μ)− Cβ, where

F−1(μ) = −Eω0(μ) +DdV (μ), C−1 = inf
P(X)

F−1.

To highlight the connection to the LDP in Theorem 6.2, fix a volume
form dV on X and denote by ‖·‖ the induced metric on the anti-canonical
line bundle −KX . Then the canonical probability measure (3.8) may be
expressed as

μ
(N)
β :=

1

ZNk,β

∥∥∥detS(k)
∥∥∥2β/k dV ⊗N , ZNk,β :=

∫
XNk

∥∥∥detS(k)
∥∥∥2β/k dV ⊗N ,

(3.10)

for β = −1. Since the rate functional of a LDP is automatically lower semi-
continuous (lsc) the validity of the LDP in Conjecture 3.6 would imply that
the free energy functional F−1 is lsc on P(X). This is indeed the case. More
precisely, the following result holds, deduced from a combination of results
in [76, 19]:

Theorem 3.7. Let X be a Fano manifold and set β = −1. Then the
free energy functional Fβ on the space P(X) of probability measures on X is
lower semi-continuous iff X admits a unique Kähler-Einstein metric ωKE.
Moreover, if Fβ is lsc, then the normalized volume form of ωKE is the unique
minimizer of Fβ.

We note in passing that, just as in the case when KX > 0 and β = 1, the
free energy functional Fβ at β = −1, restricted to the space of volume forms
on P(X), may be identified with the Mabuchi functional M on c1(−KX).

3.2.1. Symmetry breaking. As discussed above, Gibbs stability should
be considered as the analog of K-stability. One is thus naturally lead to ask
whether there is also a notion of “Gibbs polystability”, taking the action
of the group Aut (X)0 into account? This is an intriguing question that we
shall sidestep here, by breaking the Aut (X)0-symmetry as follows. Fixing

a volume form dV one can viewed the probability measure μ
(N)
β , defined by

formula (3.10), as a deformation of the canonical measure μ(N) to β < −1.
Since −KX > 0 we may pick a volume form dV inducing a metric on −KX
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with positive curvature:
ω0 := Ric dV > 0

One advantage of allowing β > −1 is that it attenuates the singularities of
the integrand, as further discussed below.

Conjecture 3.8. Assume that X is a Fano manifold. If X admits a
Kähler-Einstein metric, then for any given β < 1 we have that ZNk,β < ∞
for k sufficiently large. Moreover, the empirical measure δN on (XNk , μ

(Nk)
β ),

convergence in law towards a volume form μβ and

lim
β→

μβ = dVKE ,

where dVKE is the volume form of a Kähler-Einstein metric on X. More
precisely, for β > −1

ωβ := Ric dV + β−1ddc log
μβ

dV
is the unique Kähler metric solving

Ricωβ = −βωβ + (1 + β)Ric dV.(3.11)

One motivation for this conjecture is that it holds for β > 0. Indeed,
according to Theorem 3.3 the result holds in the stronger sense of large
deviations. As a consequence, for β > 0, the LDP also implies that

(3.12) − lim
N→∞

1

N
logZN,β = inf

P(X)
Fβ ,

if the fixed bases in H0(X,−kKX) is taken to be orthonormal with respect
to the scalar product induced by dV .

Remark 3.9. Incidentally, the equation (3.11) coincides with the one in-
troduced by Aubin’s in his continuity method for solving the Kähler-Einstein
equation at β = −1. [3] In Aubin’s notation the time-parameter corresponds
to −β ∈ [0, 1]. The uniqueness of solutions for β > −1 was established in
[4]. Moreover, it was also shown in [4] that if X admits a Kähler-Einstein
metric, then ωβ exists for any β > −1 and converges, as β → −1, towards a
particular Kähler-Einstein metric, singled out by dV .

From a statistical mechanics point of view it may, at a first glance, seem
rather odd to consider the case when β < 0, since it would correspond to
a negative (absolute!) temperature. But the notion of negative temperature
states does make sense physically (see the discussion in [14, Remark 8.1]).
Moreover, from an equivalent point of view we may as well consider the case
of unit temperature and instead replace the energy particle E(N) with the
rescaled energy βE(N) (thus treating β as a coupling constant). For β > 0
this energy is repulsive, since it tends to ∞ as any two particle positions
merge (due to the vanishing of the determinant detS(k)(x1, ..., xNk

)). How-
ever, when β changes sign, from positive to negative, the rescaled energy
βE(N) becomes attractive; it tends to −∞ as any two points merge. Still, it
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turns out that the system is sufficiently mildly attractive to allow ZN,β to
be finite for β > β0, for some negative β0, ensuring that the Gibbs measure

μ
(N)
β is well-defined. This may be interpreted as a statistical mechanical type

of stability, since it amounts to the existence of the microscopic N -particle
equilibrium state. More precisely, there exists β0 ∈] − ∞, 0[ such that for
any β > β0

1

N
logZN,β ≥ −Cβ ,

as N → ∞.
3.2.2. Stability thresholds and uniform Gibbs stability. The previous dis-

cussion motivates the introduction of the following “microscopic stability
thresholds”

(3.13) γNk
(X) := sup {γ : ZNk,−γ < ∞}

and their limit
γ(X) := lim inf

k→∞
γNk

,

as well as the “macroscopic stability threshold”

Γ(X) := sup
β>0

{
−β : inf

P(X)
Fβ > −∞

}

In the “thermodynamical limit”, N → ∞, it is thus natural to make the
following

Conjecture 3.10. Let X be a Fano manifold. Then the two invariants
γ(X) of X and Γ(X), defined above, coincide:

γ(X) = Γ(X)

Remark 3.11. The threshold γN (X) may be interpreted as the threshold
where the self-attraction of the N -particle system can no longer be compen-
sated by the disorder resulting from the randomness. Similarly, the threshold
Γ(X) is the threshold where the macroscopic tendency to self-attract and
form singular states can no longer be balanced by the regularizing effect of
the entropy.

Let us call a Fano manifold uniformly Gibbs stable if γ(X) > 1. This
should be thought of us an analog of the notion of uniform K-stability. By
the results in [20] a Fano manifold is uniformly K-stable iff Γ(X) > 1.
Hence, the validity of the previous conjecture would imply the validity of
the following one:

Conjecture 3.12. Let X be a Fano manifold. Then X is uniformly
Gibbs stable X iff X is uniformly K-stable.

Remark 3.13. Combining [32] and [29, 40] reveals that a Fano manifold
is, in fact, uniformly K-stable iff it is K-stable. This leads one to wonder
whether Gibbs stability, is, in fact, equivalent to the uniform Gibbs stability?
Theorem 3.15 below shows that for log Fano curves this is indeed the case.
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As observed in [11] the notion of Gibbs stability introduced above can
also be given the following purely algebro-geometric formulation in the spirit
of Minimal Model Program (MMP). Let Dk be the effective divisor in XNk

cut out by the section det S(k). Geometrically, Dk may be represented as
the following incidence divisor in XNk :

Dk := {(x1, ...xN ) ∈ XNk : ∃s ∈ H0(X,−kKX) : s(xi) = 0, i = 1, .., Nk}

Gibbs stability at level k amounts to the anti-canonical Q-divisor Dk/k on
XNk having klt singularities (see Remark 3.4), which means that

(3.14) lct(XNk ,Dk/k) > 1

for k >> 1, where lct(XNk ,Dk/k) denotes the log canonical threshold (lct)
of the Q-divisor Dk/k on XNk [61]. Indeed, it follows from the standard
analytic interpretation of the lct as an integrability threshold that

γk(X) = lct(XNk ,Dk/k)

Using properties of log canonical and techniques from the MMP one di-
rection of Conjecture was established in [53] (see also [51] where K-stability
was first shown):

Theorem 3.14 (Fujita-Odaka [53]). Uniform Gibbs stability implies
uniform K-stability.

Let us briefly recall the elegant argument in [53]. First, by [53, Thm
2.5],

γk(X) ≤ δk(X) := inf
Dk

lct (X,Dk),

where the inf is taken over all anti-canonical Q-divisors Dk on X of k-basis
type, i.e. Dk is the normalized sum of the Nk zero-divisors on X defined by
the members of a given basis in H0(X,−KX). Finally, by [53, Thm 0.3], if
the invariant δ(X) defined as the limsup of δk(X) satisfies δ(X) > 1, then
X is uniformly K-stable, as follows from the valuative criterion in [64, 52]
(see also [20, 28, 35] for related results).

Combining Theorem 3.14 with [32] or [20] shows that uniform Gibbs
stability implies the existence of a unique Kähler-Einstein metric ωKE . This
is in line with Conjecture 3.5. However, the converse implication is still open,
as well as the problem of establishing the convergence of the corresponding
canonical random point processes towards dVKE , when it exists. Here we
will focus on the convergence problem, introducing a variational approach.
As shown in [21] a non-Archimedean analog of this variational approach
also has bearings om the converse of Theorem 3.14.

3.2.3. A variational approach towards proving the convergence in Con-
jecture 3.5. As discussed in Section 7 the proof of the LDP in Theorem 3.3
brakes down when β < 0. To handle this case a variational approach is
proposed in Section 7. The approach, which is based on Gibbs variational
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principle, reveals that it is enough to establish the asymptotics (3.12) for
β = −1:

(3.15) − lim
N→∞

1

N
logZN,−1 = inf

P(X)
F−1

We show that the upper bound does hold, but the lower bound hinges on a
conjectural upper bound on the mean energy of the N -particle Gibbs mea-
sures. By making contact with the theory of phase transitions in statistical
mechanics, we also observe that if there exists β0 < −1 and a function f(β)
on ]β0, 0[ such that

− lim
N→∞

1

N
logZN,β = f(β)

then the convergence (3.15) holds iff f(β) is real-analytic. Hence, if this is the
case then the convergence in Conjecture 3.5 holds. Moreover, as explained in
Section 7.1, the real-analyticity in question can be related to the distribution
of the poles of the Archimedean zeta functions ZN,β.

3.2.4. The case of log Fano curves. There is only one-dimensional Fano
manifold X – the complex projective line (the Riemann sphere) – and its
Kähler-Einstein metrics are all biholomorphically equivalent to the stan-
dard round metric on the two-sphere. A geometrically more interesting sit-
uation appears when introducing weighted points (conical singularities) on
the Riemann sphere. From the algebro-geometric point of view this fits into
the general setting of log Fano manifolds. A log pair (X,Δ), consisting of a
complex manifold X and an effective Q-divisor Δ, is said to be a log Fano
manifold if its anti-canonical line bundle is positive, −(KX + Δ) > 0. The
corresponding log Kähler-Einstein equation (3.6) for β = −1 thus reads

(3.16) Ricω = −ω + [Δ].

To any log Fano manifold (X,Δ) we may attach a sequence of canonical

probability measures μ
(Nk)
Δ on XNk by simply replacing the anti-canonical

line bundle −KX with −K(X,Δ) and setting

μ
(Nk)
Δ :=

1

ZNk

∣∣∣detS(k)(z1, ..., zN )
∣∣∣−2/k

|sΔ|−2(z1) · · · |sΔ|−2(zNk
),

which is a well-defined probability measure, as long as the corresponding
normalizing constant is finite,

ZNk
:=

∫
XNk

∣∣∣detS(k)(x1, ..., xNk
)
∣∣∣−2/k

|sΔ|−2(x1) · · · |sΔ|−2(xN ) < ∞

We then say that log Fano manifold (X,Δ) is Gibbs stable. The invariants
γk(X,Δ) and uniform Gibbs stability of (X,Δ) can also be defined as before,
mutatis mutandis.
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Now, let (X,Δ) be a log Fano curve (X,Δ), i.e. X is the complex pro-
jective line and

Δ =

m∑
i=1

wipi

for positive weights wi satisfying
∑m

i=1wi < 2. In [15] it is shown that the
conjectures discussed above hold for any log Fano curve:

Theorem 3.15. Let (X,Δ) be a log Fano curve. Then the following is
equivalent

• (X,Δ) is Gibbs stable
• (X,Δ) is uniformly Gibbs stable
• The following weight condition holds:

(3.17) wi <
∑
i �=j

wj , ∀i

• There exists a unique a unique Kähler-Einstein metric ωKE for
(X,Δ)

Moreover, if any of the conditions above hold, then the laws of the random

measures δN on (XN , μ
(N)
Δ ) satisfy a Large Deviation Principle (LDP) with

speed N and a rate functional I with a unique minimizer ωKE/
∫
X ωKE.

In this logarithmic setting the rate functional I has the property that

I(
ω∫
X ω

) = M(X,Δ)(ω),

where M(X,Δ) denote the Mabuchi functional for (X,Δ), which in the gen-
eral setting of log Fano varieties was defined in [19] on the space of finite
energy currents in ω in −c1(KX + Δ). As explained in [15], the previous
theorem is a direct consequence of the LDP in [12, Thm 1.5], concerning sin-
gular pair interactions, which generalize the vortex model in two-dimensional
hydrodynamics in [31, 59]. A key ingredient is an a priori estimate on the
correlation measures of the processes, which builds on [31, 59] and implies
the conjectural energy bound property (7.4) in this setting.

The problem of finding constant curvature metrics on Riemann surfaces
with conical singularities has a long history and was first posed as a compe-
tition topic by the Göttingen Mathematical Society in 1890 [72]. The weight
condition in the previous theorem first appeared in [80], where the existence
of ωKE was established and the uniqueness was settled in [68]. By [52, Ex.
6.6] the weight condition (3.17) is equivalent to the uniform K-stability of
(X,Δ), which thus is equivalent to uniform Gibbs stability in this setting.

4. Background

4.1. Complex geometry. We start by recalling some basic complex
geometry – for more background see, for example, the exposition in [14]
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and the books [40, 54]. Let X be an n-dimensional compact complex man-
ifold and denote by J the corresponding complex structure, viewed as an
endomorphism of the real tangent bundle satisfying J2 = −I.

4.1.1. Kähler forms/metrics. On a complex manifold (X, J) anti-sym-
metric two forms ω and symmetric two tensors g on TX ⊗ TX, which are
J-invariant, may be identified by setting

g := ω(·, J ·)
Such a real two form ω is said to be Kähler if it is closed, dω = 0, and
the corresponding symmetric tensor g is positive definite (i.e. defines a Rie-
mannian metric).2 Conversely, a Riemannian metric g is said to be Kähler if
it arises in this way (in Riemannian terms this means that parallel transport
with respect to g preserves J). By the local ∂∂̄− lemma a J-invariant two
form ω is closed, i.e. dω = 0 if and only if ω may be locally expressed as
ω = i

2π∂∂̄φ, in terms of a local smooth function φ (called a local potential
for ω). In real notation this means that

ω = ddcφ, dc := − 1

4π
J∗d

Remark 4.1. The normalization above ensures that ddc log |z|2 is a
probability measure on C.

We will denote by [ω] ∈ H2(X,R) the de Rham cohomology class repre-
sented by ω. If ω0 is a fixed Kähler form then, according to the global ∂∂̄−
lemma, any other Kähler metric in [ω0] may be globally expressed as

ωϕ := ω0 + ddcϕ, ϕ ∈ C∞(X),

where ϕ is determined by ω0 up to an additive constant and called a Kähler
potential for ωϕ. The space of all Kähler potentials is denoted by

H(X,ω) := {ϕ ∈ C∞(X) : ωϕ > 0}
The association ϕ �→ ωϕ thus allows one to identify H(X,ω)/R with the
space of all Kähler forms in [ω0].

4.1.2. Metrics on line bundles and curvature. Let L be a holomorphic
line bundle onX and ‖·‖ a Hermitian metric on L. The normalized curvature
two-form of ‖·‖ may be (locally) written as

(4.1) ω := −ddcφ log ‖eU‖2 , φ := − log ‖eU‖2

in terms of a given local trivialization of L, i.e. a non-vanishing holomorphic
section eU of L over U ⊂ X. The local function φ is called the weight of
the metric. The corresponding cohomology class [ω] is independent of the
metric ‖·‖ on L and coincides with the first Chern class c1(L) in H2(X,R)∩
H2(X,Z) (conversely, any such cohomology class is the first Chern class of
line bundle L). A line bundle L is said to be positive if it admits a metric

2A J-invariant two form ω is usually said to be of type (1, 1) since ω =
∑

i,j ωijdzi∧dz̄j
in local holomorphic coordinates.
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with positive curvature, i.e. such that the curvature form ω is Kähler. Then
the pair (X,L) is called a polarized manifold. Fixing a reference metric ‖·‖0
on L with curvature form ω0 any other metric on L may be expressed as

‖·‖ = ‖·‖0 e−ϕ/2,

for ϕ ∈ C∞(X). The curvature form of ‖·‖ is thus given by ωϕ which is
positive iff ϕ ∈ H(X,ω0). Note that the definitions are made so that

ϕ = φ− φ0

in terms of the local weights φ and φ0 of the metrics ‖·‖ and ‖·‖0. Any
positive line bundle L is big, i.e. there exists V > 0 (called the volume of L)
such that

Nk := dimH0(X, kL) = V kn + o(kn), k → ∞
This follows, for example, from the Kodaira embedding theorem (recalled
below) and the volume V may be expressed as

V :=

∫
X
ωn
0

Given a metric ‖·‖ on L we will use the same notation ‖·‖ for the induced
metric on the tensor products of L over X, obtained by imposing that ‖·‖
be multiplicative. In particular, if φ is a local weight for ‖·‖ (defined with
respect to the local trivialization eU ) then kφ is a local weight for the k th

tensor product of L (defined with respect to the local trivialization e⊗k
U ).

This motivates using the additive notation kL for tensor products. More
generally, we will use the same notation ‖·‖ for the induced metrics on the
line bundles (kL)�N over the N -fold products XN .

4.1.3. Algebraic embeddings of polarized manifolds. Recall that the m-
dimensional complex projective space Pm

C is defined by

Pm
C (:= Cm+1/C∗

Denote, as usual, by O(1) the hyperplane line bundle over Pm
C , i.e. the dual

of the tautological line bundle Cm+1 → Pm
C . The space H0(X, kO(1)) may

be identified with the space of all homogeneous polynomials on Cm+1 of
degree k. The line bundle O(1) → Pm

C comes with a positively curved metric,
namely the Fubini-Study metric induced by the Euclidean norm on Cm+1

(see [14, Section 3.7] for more background). Hence, (X,L) is a polarized
manifold, in the sense of the previous section. More generally, if X is a
complex submanifold of Pm

C (which, by Chow’s theorem, equivalently means
that X is a algebraic) then (X,OX(1)) is a polarized manifold, where O(1)X
denotes the restriction of O(1) → Pm to X. Indeed, the restriction to OX(1)
of the Fubini-Study metric on O(1) is positively curved. Conversely, by the
Kodaira embedding theorem, if (X,L) is a polarized manifold, then after
perhaps replacing L by a large tensor power, X may be holomorphically
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embedded in a projective space Pm in such a way that L gets identified with
O(1)X :

(4.2) X → P(H0(X,L)∗), x �→ [s0(x) : ... : sm(x)] ∈ Pm

where x is mapped to the evaluation functional at x and s0, ..., sm denotes a
fixed basis in P(H0(X,L). Thus, for k sufficiently large, H0(X, kL) identifies
with the restriction to X of the space of all k-homogeneous polynomials over
Pm. By Chow’s theorem the embedding of X is an algebraic submanifold
and hence a line bundle is positive iff it is ample, in the algebro-geometric
sense.

4.1.4. The canonical line bundle and Ricci curvature. When L is the
canonical line bundle KX , i.e. the top exterior power of the holomorphic
cotangent bundle of X:

KX := det(T ∗X)

any volume form dV on X induces a smooth metric ‖·‖dV on KX , by locally
setting

(4.3) ‖dz‖2dV := cndz ∧ dz̄/dV,

where dz := dz1 ∧ · · · ∧ dzn is the local holomorphic trivialization of KX

induced by a choice of local holomorphic coordinates and cndz∧dz̄ is a short
hand for the local Euclidean volume form i

2dz1∧dz̄1∧· · ·∧ i
2dzn∧dz̄n. When

dV is the volume form of a given Kähler metric ω on X, i.e. dV = ωn/n!,
then its curvature form may be identified with minus the Ricci curvature of
ω, i.e.

(4.4) Ricω = −ddc log
dV

cndz ∧ dz̄
.

By a slight abuse of notation we will also write Ric (dV ) for the right hand
side in formula (4.4).

4.1.5. Twisted Kähler-Einstein metrics. A Kähler metric ωβ is said to
be a twisted Kähler-Einstein metric if it satisfies the twisted Kähler-Einstein
equation

(4.5) Ricω = −βω + θ,

where the form θ is called the twisting form. Since ωβ is Kähler the form η
is necessarily closed and J-invariant, i.e. of type (1, 1). The corresponding
equation at the level of cohomology classes is

(4.6) [ω] =
1

β
([θ] + c1(KX))

Remark 4.2. There is no loss of generality if one assumes that |β| = 1
(by replacing ω with |β|ω), but allow general β makes the connection to the
statistical mechanical framework more apparent. Moreover, allowing β to
vary continuously is important for Aubin’s method of continuity [3].
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To a given pair (dV, ω0) consisting of a volume form dV and a Kähler
form ω0 on X we associate, for any parameter β ∈ R, the twisting form

(4.7) θ := βω0 +Ric dV.

This association is invariant under (dV, ω0) −→ (eβudV, ω0 + ddu) for any
u ∈ C∞(X).

The following lemma follows directly from the expression (4.4) for the
Ricci curvature of a Kähler metric:

Lemma 4.3. Let X be a compact complex manifold endowed with a
Kähler form ω0 and volume form dV . Then a Kähler form ωβ ∈ [ω0] solves
the corresponding twisted Kähler-Einstein equation (4.5) iff ωβ := ω0+ddcϕβ

for a unique ϕβ ∈ H(X,ω0) solving the PDE

(4.8) ωn
ϕ = eβϕdV

The Aubin-Yau theorem may now be formulated as follows:

Theorem 4.4 (Aubin-Yau [2, 83]). Assume given a compact complex
manifold X, endowed with a Kähler form ω0 and a volume form dV . Then
the PDE (4.8) admits, for any positive number β ∈]0,∞[, a unique solution
ϕβ ∈ H(X,ω0). Equivalently, given a closed (1, 1)-form θ such that the co-
homology class [θ] + c1(KX) is positive (i.e. contains a Kähler form) there
exists a unique Kähler metric ωβ in ([θ] + c1(KX)) /β solving the twisted
Kähler-Einstein equation (4.5).

Proof. We recall that the uniqueness follows from the maximum prin-
ciple, which also yields a priori C0(X)-estimates. As for the existence it
is shown using a method of continuity, based on the Aubin-Yau Laplacian
estimates. �

Example 4.5. A complex manifold X admits a Kähler-Einstein metric
with negative Ricci curvature iff KX is positive (and the metric is unique).
Indeed, if KX is positive then, by the very definition of positivity, we can
take ω0 := −Ric dV for some volume form on X, ensuring that θ = 0 above,
with β = 1 (and the converse is trivial).

4.1.6. The Fano setting. Let X be a Fano manifold, i.e. −KX > 0 and
fix a volume form dV on X with the property that Ric dV > 0. The “Fano
setting” will refer to the special situation when the geometric data is of the
form (dV, ω0) with

ω0 := Ric dV

For any given β �= 0 the corresponding twisted Kähler-Einstein equation
(4.5) is then of the form

(4.9) Ricωβ = −βωβ + (1 + β)Ric dV.

For β = −1 this is precisely the Kähler-Einstein equation (4.5) for a metric
with positive Ricci curvature, while for a general β ∈ [−1, 0[ this is Aubin’s
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continuity equation with “time-parameter”

γ := −β ∈]0, 1]
The fixed volume form dV corresponds to a metric ‖·‖ on −KX , which

is the dual of the metric induced by dV on KX (formula (4.3)). In other
words, ∥∥∥∥ ∂

∂z1
∧ · · · ∧ ∂

∂zn

∥∥∥∥
2

:= dV/cndz ∧ dz̄

Denoting by φ0 the local weight of the metric we can thus locally express

dV = cne
−φ0dz ∧ dz̄, ddcφ0 = Ric dV

Accordingly, the complex Monge-Ampère equation which is equivalent to
Aubin’s equation (Lemma 4.3) may be locally expressed as

(ddcφβ)
n = cne

−(γφ+(1−γ)φ0)dz ∧ dz̄,

where φβ := φ0 + ϕβ.

Theorem 4.6 (Bando-Mabuchi [4]). For β > −1 the equation (4.9) ad-
mits at most one solution and for β = −1 a solution is uniquely determined
modulo the action of the group Aut (X)0.

Proof. The proof is based on Aubin’s method of continuity [3], de-
forming from β = 0 to β = −1, using the uniqueness at β = 0 of the Cal-
abi equation and the uniqueness property for the linearized equations for
β > −1, which follows from the Bochner-Kodaira-Nakano inequality (which
also holds for β = −1 when the group Aut (X)0 is trivial). An alternative
proof is given in [26] which generalizes to the log Fano setting, as discussed
in Section 4.1.7. �

4.1.7. The log Fano setting. Let X be a complex manifold and Δ a Q-
divisor on X, i.e. a formal sum

Δ =
m∑
i=1

wiΔi

of irreducible subvarieties Δi of codimension one in X, with coefficients
wi ∈ Q. The pair (X,Δ) is called a log pair [61] and (X,Δ) is called a
log Fano manifold if the anti-canonical line bundle L of the pair (X,Δ) is
positive

L := −(KX +Δ) > 0,

where we have identified Δ with the Q-line bundle LΔ defined by Δ, which
admits a (multivalued) meromorphic section sΔ with multiplicities wi along

Δi (this means that s⊗l
Δ is a well-defined meromorphic section of the line-

bundle lLΔ for any sufficiently divisible positive integer l). We fix such a
section sΔ (which is uniquely determined up to a non-zero multiplicative
constant).

Fix a metric ‖·‖ on L with positive curvature form ω0. Using that sΔ
defines a canonical (multi-valued) trivialization of the line bundle LΔ on
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X − Δ we then get a measure on X defined as in the previous section on
X −Δ and then extended by zero to all of X. In other words, locally on X
we can express

(4.10) μ0 = cne
−φ0+φΔdz ∧ dz̄, ,

where φ0 is the weight of the metric ‖·‖ on L and φΔ is the weight of the
singular metric on LΔ induced by sΔ. This formula shows that, in the log
smooth case, μ0 has an Lp

loc-density for some p > 1 iff all coefficients of Δ
are in ]−∞, 1[. In general, if μ0 has a Lp

loc-density for some p > 1 then the
log pair (X,Δ) is said to be (sub) klt (which, in algebraic terms means that
the log canonical threshold of (X,Δ) is > 1 [61, 19]). Moreover, formula
(4.10) reveals that

Ricμ0 − [Δ] = ω0,

where [Δ] denotes the current of integration defined by Δ. The “log Fano
setting” will refer to the situation when the geometric data is of the form
(μ0, ω0) as above. In this setting, ϕβ ∈ E1(X) satisfies

(ω0 + ddcϕβ)
n = eβϕβμ0

iff the (1, 1) current ωβ := ω0 + ddcϕβ satisfies

Ricωβ − [Δ] = −βωβ + (1 + β)Ric dV

in a weak sense [19]. In particular, for β = −1 this is the log Kähler-Einstein
equation (3.16) for the log pair (X,Δ).

4.2. Pluripotential theory. Recall first that a function φ(z) in Cn,
taking values in [−∞,∞[ is said to be plurisubharmonic (psh, for short)
if it is subharmonic along all complex lines. Equivalently, this means that
φ can be written as a decreasing limit of smooth functions φj such that
ddcφj is strictly positive, i.e. defines a Kähler form. For φ psh ddcφ defines
a positive (1, 1)-current. Coming back to the global setting of a compact
complex manifold X endowed with a holomorphic line bundle L a singular
metric ‖·‖ om L (taking values in [0,∞[) is said to be psh, i.e. φ ∈ PSH (L), if
the corresponding local functions φ (formula (4.1)) are psh. The curvature of
a psh metric on L thus defines a global positive (1, 1)-current on X. When L
is positive, i.e. admits a smooth reference metric ‖·‖0 whose curvature form
ω0 defines a Kähler form on X, we can identify PSH(X,L) with the space
PSH(X,ω0) of all ω0-psh functions ϕ on X, i.e.

PSH(X,L) ←→ PSH(X,ω0) :=
{
ϕ ∈ L1(X) : ωϕ ≥ 0

}
,

where ϕ is assumed to be a strongly usc function (in order to make the
representation in L1(X) unique). By Demailly’s global approximation result
a function ϕ is in PSH(X,ω0) iff it can be written as a decreasing limit ϕj

in H(X,ω0).

Example 4.7. Any element sk ∈ H0(X, kL) induces a singular psh met-
ric φ on L corresponding to ϕ ∈ H0(X, kL) defined by ϕ(x) :=
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k−1 log ‖sk‖2 (x). Thus the curvature of φ is the current of integration along
the subvariety defined by the zero-locus of s, including multiplicities.

4.2.1. The complex Monge-Ampère operator and the pluricomplex energy
E(μ). For ϕ ∈ H(X,ω0) the complex Monge-Ampère measure MA(ϕ) is
the probability measure on X defined by the normalized volume form of the
Kähler form ωϕ:

(4.11) MA(ϕ) := ωn
ϕ/V V :=

∫
X
ωn
0

using exterior products. The map ϕ �→ MA(ϕ), viewed as a one-form on the
convex space H(X,ω0) is exact and thus admits a primitive, denoted by E .
In other words, E is the functional on H(X,ω0) defined by the property that

(4.12) dE|ϕ = MA(ϕ),

in the sense that

dE (ϕ0 + t(ϕ1 − ϕ0))

dt |t=0
=

∫
X
MA(ϕ)(ϕ1 − ϕ0)

and the normalization condition E(0) = 0. Occasionally, we will write Eω0 to
indicate the dependence of E on the normalization. Integrating the defining
relation (4.12) along the affine line segment in H(X,ω0) between ϕ0 := 0
and ϕ1 := ϕ reveals that

(4.13) E(ϕ) = 1

(n+ 1)V

∫
X
ϕ

n∑
j=0

ωj
ϕ ∧ ωn−j

ϕ

We will also denote by Eω0 the smallest upper semi-continuous extension of
Eω0 to all of PSH(X,ω0) and write

E1(X) := {ϕ ∈ PSH(X,ω) : Eω0(ϕ) > −∞} ,
which is called the space of all functions on X with finite energy. The dif-
ferential property (4.12) still holds on the whole space E1(X) if the Monge-
Ampère measureMA(ϕ) is defined in terms of non-polar products of positive
currents (see [18]).

Now, following [18] the pluricomplex energy Eω0(μ) of a probability mea-
sure μ is defined by

(4.14) Eω0(μ) := sup
ϕ∈E1(X)

Eω0(ϕ)− 〈ϕ, μ〉 ∈]−∞,∞]

on P(X). The functional Eω0 thus defined is lsc on P(X) (since it is the sup
of lsc (affine) functionals, using that ϕ is usc).

Example 4.8. In the classical case n = 1, i.e. when X is a Riemann
surface,

Eω0(μ) =
1

2

∫
X
G0(x, y)μ⊗ μ,

where G0(x, y) is the corresponding Green function, i.e. the symmetric lsc
function in L1(X × X) determined by ddcG0(·, y) = ω0 − δy and
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∫
X G(x, y)ω(x) = 0. In electrostatic terms this means that Eω0(μ) is the
classical Coulomb energy of a positive charge distribution μ on X in the
“neutralizing back-ground charge ω0” (compare [6]).

As shown in [18] the Monge-Ampère operator yields a bijection

(4.15) ϕ �→ MA(ϕ)

between the space E1(X)/R and the space of all probability measure of finite
energy. The proof uses a direct variational approach where the potential ϕμ

of a measure μ of finite energy, i.e. the solution,

MA(ϕμ) = μ

is obtained as the element E1(X) realizing the sup defining Eω0(μ) (formula
(4.14)). In particular,

(4.16) Eω0(μ) = Eω0(ϕμ)− 〈ϕμ, μ〉

Remark 4.9. In the case when μ is a volume form the existence of a
smooth solution ϕμ was first shown by Yau [83] in the solution of the Calabi
conjecture (the uniqueness of such solutions is due to Calabi).

Inverting the relation (4.12) reveals that the differential of dE at a vol-
ume form in P(X) is given by

(4.17) dE|μ = −ϕμ ∈ H(X)/R.

More generally, by [8, Prop 2.7] this formula holds on all of P(X) in the
sense of sub-gradients. That is to say that for any two elements μ0 and μ1

in P(X) of finite energy

(4.18) E(μ1) ≥ E(μ0)− 〈ϕμ, μ1 − μ0〉

4.2.2. The psh-projection Pθ and the Legendre-Fenchel transform of E.
The “psh-projection” is the operator Pω0 from C0(X) to PSH(X,ω0) de-
fined as the following envelope:

(4.19) (Pω0u)(x) := sup
ϕ∈PSH(X,ω0)

{ϕ(x) : ϕ ≤ u}

Using the operator P the pluricomplex energy Eω0 may be realized as a
Legendre-Fenchel transform (see the general definition (4.29) below):

Proposition 4.10. The pluricomplex energy Eω0, extended by ∞ to the
space M(X) of all signed measures on X, is the Legendre-Fenchel transform
of the convex functional

(4.20) f(u) := −Eω0(Pω0 − u)

Equivalently, this means that

(4.21) Eω0(μ) = sup
u∈C0(X)

Eω0(Pω0u)− 〈u, μ〉 .
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Proof. Since we have assumed that L > 0 this follows readily from
monotonicity arguments and the fact that any ϕ ∈ PSH(X,ω0) is the de-
creasing limit of functions in PSH(X,ω0)�C0(X). But as shown in [6] the
result, in fact, holds more generally for any big cohomology class. �

We also recall the following differentiability result from [16], which plays
a key rule in the variational approach to complex Monge-Ampère equations
in [18]:

Theorem 4.11. The convex functional f(u) on C0(X), defined by for-
mula (4.20), is Gateaux differentiable and its differential at u ∈ C0(X) is
given by

(df)(u) = MA(Pω0u)

4.3. Probability. We recall some basic notions of probability theory
(covered by any standard textbook; see in particular [39] for an introduction
to large deviation techniques). A probability space is a space Ω equipped with
a probability measure p and a collection F of p-measurable subsets B ⊂ Ω.
For our purposes it will be enough to consider the case when Ω is a compact
topological space and then we will always take F to be the collection of all
Borel subsets of Ω. In general, the space Ω is called the sample space and a
measurable subset B ⊂ Ω is called an event with

ProbB := p(B),
interpreted as the probability of observing the event B when sampling from
(Ω, p). A measurable function Y : Ω → Y on a probability space (Ω, p) is
called a random element with values in Y and its law Γ is the probability
measure on Y defined by the push-forward measure

Γ := Y∗p

(the law of Y is often also called the distribution of Y ). A sequence of
random elements YN : ΩN → Y of probability spaces (ΩN , pN ), taking
values in the same topological space Y are said to convergence in law towards
a deterministic element y in Y if the corresponding laws ΓN on Y converge
to a Dirac mass at y:

lim
N→∞

ΓN = δy

in the weak topology. In the present setting Y will always be a separable
metric space with metric d and then YN converge in law towards the deter-
ministic element y iff YN converge in probability towards y, i.e. for any fixed
ε > 0

lim
N→∞

pN{d(YN , y) > ε} = 0.

Remark 4.12. The expectation of a random variable Y it defined by

E(Y ) :=

∫
Ω
Y p
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(aka the sample mean of Y ) which defines an element in Y. The statement
that YN converges in law towards a deterministic element y equivalently
means that E(YN ) → y and that YN satisfies the (weak) law of large num-
bers, i.e. the probability that YN deviates from its mean tends to zero, as
N → ∞.

A random point process with N particles on a space X is, by definition, a
probability measure μ(N) on the N -fold product XN (the N -particle space)
which is symmetric, i.e. invariant under action of the group SN of permuta-
tions of the factors of XN . The empirical measure of a given random point
process is the following random measure

δN : XN/SN → P(X), (x1, . . . , xN ) �→ δN (x1, . . . , xN ) :=
1

N

N∑
i=1

δxi

(4.22)

on (XN , μ(N)). The law of δN thus defines a probability measure on the
space P(X), that we shall denote by ΓN :

(4.23) ΓN := (δN )∗μ
(N)

Remark 4.13. The j-point correlation measure (μ(N))j of theN -particle
random point process is the probability measure on Xj defined as the push-
forward to Xj of μ(N) under projection XN → Xj , where (x1, ..., xN ) �→
(xi1 , ..., xij ) for any choice of j different indices i1, ..., ij . In particular, by
symmetry,

(4.24) E(δN ) = (μ(N))1

Note that the exchangeable random variables x1, .., xN are independent
iff μ(N) is a tensor product measure, μ(N) = μ⊗N , where μ is the law of
any xi.

4.3.1. Large Deviation Principles (LDP). The notion of a Large Devia-
tion Principle (LDP), introduced by Varadhan, allows one to give a notion
of exponential convergence in probability. The general definition of a Large
Deviation Principle (LDP) for a general sequence of measures [39] is mod-
eled on the classical Laplace method of “saddle point approximation” of
integrals:

Definition 4.14. Let Y be a Polish space, i.e. a complete separable
metric space. A sequence Γk of measures on Y satisfies a large deviation
principle with speed rk and rate function I : Y →]−∞,∞] if

(4.25) lim sup
k→∞

1

rk
log Γk(F) ≤ − inf

μ∈F
I

for any closed subset F of Y and

lim inf
k→∞

1

rk
log Γk(G) ≥ − inf

μ∈G
I(μ)

for any open subset G of Y.
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In the present setting ΓN will arise as the sequence of probability mea-
sures on P(X) defined as laws of the empirical measures δN (formula (4.22)).
Once the LDP has been established we can apply the following basic

Lemma 4.15. Let YN be a sequence of random variables taking values
in space Y which is a compact Polish space. If the laws ΓN ∈ P(Y) of YN
satisfy a LDP at speed N with a good rate functional I which admits a unique
minimizer y∗, then YN converge in law towards y∗. More precisely,

Prob{d(yN , y∗) ≥ ε} ≤ Cεe
−N/Cε

Proof. We recall the simple proof. First applying the LDP to F =
G = Y gives I(y∗) = 0. Since y∗ is the unique minimizer of I it follows
that inf I > 0 on the closed subset Fε of Y where d(·, y∗) ≥ ε. Applying the
upper bound (4.25) in the LDP to Fε thus concludes the proof of the desired
deviation inequality. �

In other words, the lemma says that risk that YN deviates from y∗ is
exponentially small. In order to establish the LDP we will have great use
for the following alternative formulation of a LDP (see Theorems 4.1.11 and
4.1.18 in [39]):

Proposition 4.16. Let Y be a compact metric space and denote by Bε(y)
the ball of radius ε centered at y ∈ Y. Then a sequence ΓN of probability
measures on P satisfies a LDP with speed rN and a rate functional I iff

lim
ε→0

lim inf
N→∞

1

rN
log ΓN (Bε(y)) = −I(y) = lim

ε→0
lim sup
N→∞

1

rN
log ΓN (Bε(y))

(4.26)

In the present setting of a sequence of random point process with N par-
ticles the previous proposition may be symbolically summarized as follows:

Prob

(
1

N

N∑
i=1

δxi ∈ Bε(μ)

)
∼ e−rN I(μ)

when first N → ∞ and then ε → 0.
We also recall the following classical result of Sanov, which is the stan-

dard example of a LDP for random point processes (describing the case
when the particles x1, ..., xN define independent variables with identical dis-
tribution μ0):

Theorem 4.17 (Sanov). Let X be a topological space and μ0 a finite
measure on X. Then the laws ΓN of the empirical measures δN defined with
respect to the product measure μ⊗N

0 on XN satisfy an LDP with speed N
and rate functional the relative entropy Dμ0.

Proof. As explained in [39] this is a consequence of the general
Gärtner-Ellis theorem (recalled in Section 6.2). From this point of view the
rate functional I arises as the Legendre-Fenchel transform of the functional
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f(u) on C(X) defined by f(u) := log
∫
euμ0, which, by Jensen’s inequality

is given by Dμ0 . �

Recall that the relative entropy Dμ0 (also called the Kullback–Leibler di-
vergence or the information divergence in probability and information the-
ory) is the functional on P(X) defined by

(4.27) Dμ0(μ) :=

∫
X
log

μ

μ0
μ,

when μ has a density μ
μ0

with respect to μ0 and otherwise Dμ0(μ) := ∞. If

μ0 is a probability measure, then Dμ0(μ) ≥ 0 and Dμ0(μ) = 0 iff μ = μ0 (by
Jensen’s inequality).

Remark 4.18. The “physical entropy” is usually defined as

S(μ) := −Dμ0(μ)

In fact, Sanov’s theorem can be seen as a mathematical justification of Boltz-
mann’s original formula expressing the physical entropy S as the logarithm
of the number of microscopic states consistent with a given macroscopic
state (using the characterization of a LDP in Proposition 4.16).

4.4. Variational analysis. The notion of Gamma-convergence was
introduced by de Georgi (see the book [30] for background on Gamma-
convergence).

Definition 4.19. A sequence of functions EN on a topological space M
is said to Gamma-converge to a function E on M if

(4.28)
μN → μ inM =⇒ lim infN→∞EN (μN ) ≥ E(μ)

∀μ ∃μN → μ inM : limN→∞EN (μN ) = E(μ)

Given μ, a sequence μN as in the last point above is called a recovery sequence
for μ. The limiting functional E is automatically lower semi-continuous
on M.

Example 4.20. In our complex-geometric setting we will first embed
XN/SN into P(X) using the empirical measure δN and define EN by for-
mula (3.5), extended by ∞ to all of the space M(X) of signed measures
on X. Then, as explained in Section 6, EN Gamma-converges towards the
pluricomplex energy E(μ). This example illustrates that, in general, it is
not the case that lim supN EN (μN ) ≤ E(μ). Indeed, for any sequence where
two points, say x1 and x2, coincide, EN (μN ) = ∞! For this reason Gamma-
convergence is not preserved under multiplication by negative numbers.

Following [12] we will also have use for a weaker notion of convergence.
Given a subset S � X we will say that fj Gamma-converge to f relative to
S if the existence of a recovery sequence in X is only demanded when x ∈ S.
The definition is made so that the following basic property holds:
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Lemma 4.21. Let X be a compact topological space and assume that fj
Gamma-converges to f relative to a set S containing all minima of f . Then

lim
j→∞

inf
X

fj = inf
X

f

Moreover, if f admits a unique minimizer x, then any sequence xi of mini-
mizers of fj converges towards x, as j → ∞.

A general criterion for Gamma-convergence on P(X) can be obtained
using duality in topological vector spaces, as next explained. Let f be a
function on a topological vector space V . The Legendre-Fenchel transform
f∗ of f is the following convex lower semi-continuous function f∗ on the
topological dual V ∗

(4.29) f∗(w) := sup
v∈V

〈v, w〉 − f(v)

in terms of the canonical pairing between V and V ∗. In the present setting
we will take V = C0(X) and V ∗ = M(X), the space of all signed Borel
measures on a compact topological space X.

Proposition 4.22. Let EN be a sequence of functions on the space P(X)
of probability measures on a compact space X and assume that

lim
N→∞

E∗
N (w) = f(w)

for any w ∈ C(X) and that f defines a Gateaux differentiable function on
C(X). Then EN converges to E := f∗ in the sense of Gamma-convergence
on the space P(X), equipped with the weak topology.

See [10, Prop 4.4] for the proof.

5. The thermodynamical formalism

In this section we recall the thermodynamical formalism introduced in
[8] and further developed in [19]. The main character is the free energy
functional Fβ on P(X), which, from the probabilistic point of view, appears
as the rate functional of the LDP for the random point processes. In par-
ticular, the lower semi-continuity properties of Fβ will play a crucial role in
Section 7.

Remark 5.1. Regardless of the probabilistic motivations the thermody-
namical formalism (in particular, the use of Legendre-Fenchel transforms)
also sheds some new light on the standard functionals in Kähler geometry.
This was, in particular, exploited in the singular setting of log Fano va-
rieties in [19] and in the variational approach to the Yau-Tian-Donaldson
conjecture in [20].
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5.1. The case β > 0. Let X be a compact complex manifold. To the
data (dV, ω0) consisting of a volume form dV and a Kähler form ω0 on X
and a parameter β > 0 we attach the following free energy functional on
P(X)

(5.1) Fβ(μ) := βEω0(μ) +DdV (μ) ∈]−∞,∞]

which is lsc and convex on P(X) (since both terms are).

Remark 5.2. In thermodynamics the free energy is usually defined as
E + β−1DdV (since it is the energy that is free to perform work after the
“useless” thermal energy has been subtracted; compare Remark 4.18). This
definition was also used in [8]. But here it will be convenient to use the
rescaled version of the free energy above, since it facilitates the transition
from positive to negative β.

Lemma 5.3. Assume that μβ is a volume form. Then the differential of
Fβ at μ is given by

dFβ(μ) = −βϕμ + log
μ

dV
,

i.e. if μt is an affine curve of volume forms in P(X), then

dFβ(μt)

dt
=

〈
−βϕμt + log

μt

dV
,
dμt

dt

〉

Proof. Since dD(μ) = log μ
dV this follows directly from formula (4.17).

�

As a consequence, if μβ is a volume form which is a critical point of Fβ

on P(X), then μβ satisfies the mean field type equation

−βϕμβ
+ log

μβ

dV
+ logZ = 0

for some positive constant Z, i.e.

(5.2) μβ =
eβϕμβ dV

Z

Equivalently, this means that the potential ϕβ of μβ satisfies, after perhaps
shifting ϕμ by a constant to ensure Z = 1, the complex Monge-Ampère
equation (4.8):

(5.3) MA(ϕ) = eβϕμβ dV

To a volume form μβ minimizing Fβ on P(X) we attach the Kähler potential

ϕβ :=
1

β
log

μβ

dV

and the Kähler form on X

ωβ := ω0 + ddcϕβ ,

which satisfies the twisted Kähler-Einstein equation (4.5).
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The following result was shown in [8] (see also [11] for singular general-
izations):

Theorem 5.4. Assume given (dV, ω0) as above and parameter β > 0.
Then the free energy functional Fβ(μ) admits a unique minimizer μβ on
P(X). Moreover, μβ is a volume form and the corresponding Kähler potential
ϕβ and Kähler form ωβ satisfy the complex Monge-Ampère equation (4.8)
and twisted twisted Kähler-Einstein equation (4.5), respectively.

Proof. By the Aubin-Yau Theorem 4.4 there exists a volume form μβ

solving the critical point equation (5.2). Indeed, we can take μβ := MA(ϕβ),
where ϕβ solves the complex MA-equation in Theorem 4.4. But E is convex
on P(X) (by its very definition as a sup of affine functions) and D is strictly
convex (by Jensen’s inequality). Hence, it is enough to show that μβ is a sub-
gradient for Fβ . But this follows from the sub-gradient relation (4.18). �

Remark 5.5. Instead of relying on the Aubin-Yau theorem the mini-
mizer μβ can be obtained by directly maximizing the functional Gβ, appear-
ing in the following section, following the variational approach introduced
in [18]. This alternative approach is important in the more general case of
a big cohomology class, as well as in singular settings (see [11]).

5.2. The case β < 0. In the case when β < 0 we define Fβ(μ) by the
same expression (5.1), when Eω0(μ) < ∞ and otherwise we set Fβ(μ) = ∞.
The definition is made so that we still have Fμ(μ) ∈]−∞,∞] with Fμ(μ) < ∞
iff both E(μ) < ∞ and D(μ) < ∞. Set

γ = −β > 0.

In order to the study the functional F−γ the following auxiliary “dual”
functional on C0(X) turns out to be very useful:

G−γ(u) := E(P (u))− 1

γ
log

∫
X
e−γudV : C0(X) → R

Moreover, for ϕ ∈ E1(X) we set

G−γ(ϕ) := E(ϕ)− 1

γ
log

∫
X
e−γϕdV : E1(X) → R,

which is consistent with the previous notation since both functional coincide
on the intersection of their domains. Note that the critical point equation
for the functional G−γ(ϕ) is precisely the Monge-Ampère equation (5.3).
Moreover, as observed in [8] the functional G−γ on C0(X) may be expressed
in terms of termwise Legendre-Fenchel transforms of Fβ, as exploited in the
proof of the following result from [8]:

Lemma 5.6. The following holds:

inf
P(X)

γF−γ = − sup
C0(X)

G−γ = − sup
E1(X)

G−γ
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Moreover, for any ϕ ∈ E1(X)

γF−γ(MA(ϕ)) ≥ −G−γ(ϕ)

Proof. Let f and g be two lsc convex function on the dual X ∗ of a
locally convex topological vector space X . Then

(5.4) inf
X

(g∗ − f∗) = − sup
X ∗

(g − f)

Indeed, this follows directly from the fact that the Legendre-Fenchel trans-
form is decreasing and involutive on X (see Section 4.5.2 in [39]). Moreover,
if f is Gateaux differentiable, then, for any u ∈ X ∗,

(5.5) (g∗ − f∗)(df [u]) ≥ − (g − f) (u),

just using that g∗(df [u]) ≥ 〈df [u], u〉 − g(u) and f(u) = 〈df [u], u〉 − f(u).
In particular, taking X to be the space M(X) of all signed measures on
X and setting g(u) := 1

γ log
∫
X eγudV on C0(X) = M(X)∗ gives g∗ = γD

(compare the proof of Theorem 4.17). Moreover, by Proposition 4.10, E = f∗

for f(u) := −E(P (−u) and hence applying formula (5.4) yields

inf
P(X)

(γD − E) = − sup
C0(X)

(
1

γ
log

∫
X
eγuμ+ E(P (−u))

)
,

which proves the first equality in the lemma (since the sup in the rhs above
is invariant under u �→ −u). The second equality then follows from combin-
ing P (u) ≤ u with monotonicity and a simple approximation argument. Fi-
nally, the inequality (5.5), combined with the differentiability Theorem 4.11r,
yields the inequality in the lemma when ϕ ∈ H(X) and the general case then
follows by approximation.

The previous lemma is used in the proof of the following regularity result
from [19]: �

Theorem 5.7 (Regularity). Any minimizer μβ of Fβ is a volume form
and hence the corresponding Kähler form ωβ satisfies the twisted Kähler-
Einstein equation (4.5).

Proof. If μβ minimizes Fβ then, in particular, E(μβ) < ∞. Let ϕβ ∈
E1(X) be a potential for μβ, i.e. MA(ϕβ) = μ. It follows from the previous
lemma that ϕβ maximizes the functional Gβ on E1(X). But then it follows,
as shown in [18], that φβ satisfies the MA-equation (5.3) (using the differ-
entiability of the functional E ◦ P on E1(X) + C0(X), which follows from
Theorem 4.11). Finally, as shown in the appendix of [19] (using Aubin-Yau
type Laplacian estimates) any solution in E1(X) is smooth, as desired. �

It can be shown that Fβ is not bounded from below for β sufficiently
negative. In particular, it does not have a minimizer then. But we have the
following
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Theorem 5.8. Assume that the free energy functional Fβ0 is bounded
from below for some β0 < 0. Then for any β > β0 the functional Fβ is lsc
on P(X). In particular, it then admits a minimizer μβ ∈ P(X).

Proof. The lower semi-continuity follows from the results in [19], as we
next recall. Take a sequence μj → μ∞ in P(X). We may as well assume that
Fβ(μj) ≤ C < ∞ (otherwise there is nothing to prove). Since Fβ0 ≥ C0 we
getD(μj) ≤ C1. But then it follows the energy-entropy compactness theorem
in [19, Thm 2.17] that μj → μ∞ in P(X) and E(μj) → E(μ∞) < ∞. Since
D is lsc we deduce that Fβ(μ∞) ≤ lim infj Fβ(μj), as desired. �

In general, a minimizer of Fβ need not be unique when β < 0 and
moreover there may be critical points which are not minimizers. However,
the situation simplifies in the “Fano setting” (Section 4.1.6).

Theorem 5.9. Consider the “Fano setting” and fix β ∈ [−1, 0[. In the
case β = −1 we assume that the group Aut (X)0 is trivial. Then the func-
tional Fβ admits at most one minimizer. Moreover, the following is equiva-
lent

(1) There exists a minimizer Fβ on P(X)
(2) There exists ε > 0 such that the functional Fβ−ε is bounded below

on P(X), i.e. the following connectivity inequality holds for some
constant Cε

(5.6) Fβ(μ) ≥ εEω0 − Cε

(3) Fβ is lsc on P(X)

Proof. Combining the regularity theorem with the uniqueness Theo-
rem 4.6 for solutions to the twisted Kähler-Einstein-equation for ωβ shows
that Fβ admits at most one minimizer. By the previous theorem all that
remains is the implication “1 =⇒ 2”. We thus assume that there exists
a minimizer μβ . By the regularity Theorem 5.7 this means that there ex-
ists a Kähler metric ωβ solving the twisted Kähler-Einstein-equation (4.5).
Since the restriction of Fβ to the space of volume forms may be identified
with the twisted Mabuchi functional (see Section 5.3) the connectivity in-
equality (5.6) restricted to the space of volume forms then follows from the
corresponding coercivity inequality for the twisted Mabuchi functional on
H(X,ω0), established in [76] Tian (using Aubin’s method of continuity).
Finally, if μ satisfies Fβ(μ) < ∞ we take a sequence of volume forms μj con-
verging weakly towards μ such that D(μj) → D(μ). By the energy-entropy
compactness theorem, as used in the proof of Theorem 5.8, E(μj) → E(μ)
and hence the coercivity inequality holds on all of P(X). �

Remark 5.10. In the case when β = −1 and the group Aut (X)0 it
follows from [37] that the equivalence between the first two items still holds
if the lower bound Eω0(μ) is replaced by inff Eω0(f∗μ), where f ranges over
all element in Aut (X)0.
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We next observe that the lower-semi continuity of F−1, in fact, forces
the group Aut (X)0 to be trivial, leading to the following equivalence:

Theorem 5.11. Let X be a Fano manifold. Then the following is equiv-
alent:

• X admits a unique Kähler-Einstein metric
• The free energy functional F−1 is lsc on P(X)

Proof. By the previous theorem we just have to show that the second
point implies the first point. We thus assume that F−1 is lsc on P(X). By
the previous theorem this implies that X admits a Kähler-Einstein metric.
Hence, by the uniqueness Theorem 4.6 we just have to show that the group
Aut (X)0 is non-trivial. Assume, to get a contradiction, that this is not the
case. Then X admits a non-trivial C∗-action (since Aut (X)0 is reductive
when X admits a Kähler-Einstein-metric). Denote by ρτ the corresponding
family in Aut (X)0, parameterized by τ ∈ C∗. Fix any volume form dV1 on
X and set dVτ := (ρτ )∗dV . Note that F (dVτ ) is independent of τ . Indeed, as
recalled below F (μ) can be identified with the Mabuchi functional M and
it is well-known that M is invariant under any C∗-action, if there exists a
Kähler-Einstein-metric. It follows from standard results that when τ → 0 the
volume forms dVτ converge weakly to a measure μ0 ∈ P(X) supported on
the fixed-point locus Z in X of the C∗-action. In particular, μ0 is supported
on a proper analytic subvariety of X. But, for any measure μ charging a
pluripolar subset Eω0(μ) = ∞ [18]. In particular, F (μ0) = ∞ and hence,
F cannot be lsc along the family dVτ . For completeness, we note that the
converge of dVt towards μ0 used above, can be shown as follows. First note
that ρ0(x) := limτ→0 ρτ (x) yields a well-defined continuous map ρ0 from
X − Z into Z. Indeed, using that the C∗ action lifts to −KX and that
the Kodaira embedding (4.2) is C∗-equivariant we can identify X with a
submanifold of Pm and the C∗-action with the restriction to X of a linear
C∗-action on Pm. The existence of ρ∞(x) then follows from the projective
case, where the map in question is simply a rational projection from Pm onto
a projective linear subspace. Hence, the limit μ0 is equal to the push-forward
of dV under the map ρ∞ (which is well-defined since dV does not charge
the locus Z where f∞ is undetermined). �

5.2.1. The log Fano setting. Now assume given a log Fano manifold
(X,Δ), as defined in Section 4.1.7. Assume that (X,Δ) is (sub-)klt. We then
consider the data (ω0, μ0) consisting of a Kähler metric ω0 ∈ c1(KX + Δ)
and the induced measure μ0 on X with singularities along Δ, defined as in
Section 3.2.4. In this setting we define the corresponding functional Fβ as
in the Fano setting, but replacing the volume form dV in formula (5.1) by
the measure μ0. The following results are shown in [19].

Theorem 5.12. Consider a log Fano manifold (X,Δ). If the functional
Fβ is bounded from below for some β < −1, then F−1 admits a minimizer
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μ−1. Moreover, any minimizer μ−1 is given by a volume form on X−Δ and

ω−1 := ω0 − ddc log
μ−1

μ0

defines a Kähler metric on X−Δ which extends to a current in −c1(K(X,Δ))
solving the Kähler-Einstein-equation for (X,Δ). In the case when Δ is klt
the minimizer is uniquely determined.

The uniqueness statement in the previous theorem follows from the gen-
eralization of the Bando-Mabuchi Theorem 4.6 to general singular log Fano
varieties in [19], deduced from a variant of the convexity properties of the
Ding functional along bounded geodesics in PSH(X,ω0) ∩ L∞(X) estab-
lished in [26] (see also [32, the appendix of III]).

5.3. Relation to the standard functionals in Kähler geome-
try. First observe that it follows directly from formula (4.16), that if ϕ) ∈
H(X,ω0), then we can express

Eω0(MA(ϕ)) = (Iω0 − Jω0)(ϕ),

where Iω0 and Jω0 are the standard energy type functionals in Kähler ge-
ometry defined by

Iω0(ϕ) := − 1

(n+ 1)

∫
ϕMA(ϕ)

and

Iω0(ϕ) :=
1

V

∫
ϕωn

0 − Eω0(ϕ)

As is well-known all functionals Iω0 , Jω0 and Iω0 − Jω0 are non-negative
(vanishing only for ϕ = 0) and mutually compatible, with constants only
depending on n (see, for example, [18]).

In the “Fano setting” with β = −1 the functional

D(ϕ) := −G−1(ϕ) := −Eω0(ϕ)− log

∫
X
e−ϕdV

is the Ding functional introduced in [41]. In the case of a general (dV, ω0)
the corresponding functional −G−1(ϕ) can be viewed as a generalization of
the Ding functional to the twisted setting.

Next, consider the functional Mβ on H(X,ω0) defined by

Fβ (MA(ϕ)) =: Mβ(ϕ)

Lemma 5.13. Given the data (dV, ω0) the differential of Mβ at ϕ ∈
H(X,ω0) is given by

dMβ(ϕ)=− 1

V
n (βωϕ +Ricωϕ − θ)∧ωn−1

ϕ =: − n

V

(
β + n(Rωϕ − trωϕθ)

)
ωn
ϕ

where Ru is the (normalized) scalar curvature of the Kähler metric ωu and
trωuθ is the trace of the twisting form θ with respect to ωϕ.
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Proof. Combining Lemma 5.3 with the chain rule and using that
d(MA(ut))/dt = V −1nωn−1

ut
∧ ddc(dut/dt) gives

dMβ(ϕt)/dt = V −1n

〈
−βϕt + log

MA(ϕt)

dV
, ωn−1

ϕt
∧ ddcϕt

〉
.

Integrating by parts to move ddc to the other side then concludes the proof,
using that Rω := trω Ricω := n−1Ricω ∧ ωn−1/ωn. �

For β = ±1 and θ = 0 we thus have that ω0 ∈ c1(KX)

(5.7) dM±(u) = − n

V
(±ωu +Ricωu − θ)∧ωn−1

u =: − n

V
((±1 + nRωu))ω

n
u ,

which is the defining property of the Mabuchi functional on the space of
Kähler potentials for±c1(KX), introduced in [69] (which is thus only defined
up to an additive constant). More generally, when β = ±1 and θ is a general
closed one-form satisfying the cohomological equation (4.6) the formula (5.7)
is the defining property of the corresponding twisted Mabuchi functional on
the space of Kähler potentials for ± (c1(KX) + [θ]).

5.3.1. Digression on constant scalar curvature. We make a brief digres-
sion to recall that the Mabuchi functional Mω0 is, in fact, defined for any
Kähler class [ω0] by the property

dMω0(u) = − 1

V
n (C0ωu +Ricωu) ∧ ωn−1

u ,

where C0 is the cohomological constant ensuring that the right hand side
above integrates to zero over X. This means that the critical points of dMω0

in H(X,ω0) are the Kähler potentials defining Kähler metrics with constant
scalar curvature. Similarly, for any closed (1, 1)-form θ there is a twisted
Mabuchi functional on H(X,ω0) associated to the twisting form θ (obtained
by replacing Ricωu with Ricωu − θ and adjusting the cohomological con-
stant C0 accordingly). In this general setup there is variant of Theorem 5.9
saying that there exists a unique Kähler metric in [ω0] ∈ H2(X,R) iff the
Mabuchi functional M is coercive on H(X,ω0). This is the content of Tian’s
properness conjecture, which was recently settled in [33] using a generaliza-
tion of Aubin’s continuity method. The “only if” direction was previously
shown in [23], building on the general existence/properness principle in met-
ric spaces established in [37]. Its application to Kähler geometry is based on
the metric space realization of E1(X) introduced in [36] together with the
energy/entropy compactness theorem in [19] and the geodesic convexity of
M in [16].

6. The large N-limit in the case of positive β

In this section we will explain the key ideas in the proof in [10] of
Theorem 3.3 (which implies Theorem 3.1 and also shows that Conjecture 3.8
is valid when β > 0).
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Let (X,L) be a polarized manifold. Since L is positive the sequence

Nk := dimH0(X, kL)

tends to infinity, as k → ∞. To the geometric data (dV, ‖·‖) consisting of
a volume form dV on and a metric ‖·‖ on L we attach, for any parameter

β ∈]0,∞[ the following sequence of probability measures μ
(Nk)
β on XNk :

(6.1) μ
(Nk)
β :=

∥∥detS(k)(x1, ..., xNk
)
∥∥2β/k

ZNk,β
dV ⊗Nk ,

where detS(k) is the holomorphic section of (kL)�Nk → XNk defined as a
Slater determinant for H0(X, kL):

(detS(k))(x1, x2, ..., xN ) := det(s
(k)
i (xj)),

in terms of a given basis s
(k)
i in H0(X, kL). A change of basis only has the

effect of multiplying the section detS(k) by a complex constant c (the de-
terminant of the change of bases matrix) and hence the probability measure

μ(Nk) is independent of the choice of basis. We will fix a basis which is or-
thonormal with respect to the scalar product on H0(X, kL) induced by the
data (dV, ‖·‖). As in Section 4.1 we denote by ω0 the curvature form of the
fixed metric ‖·‖ on L.

Example 6.1 (“canonical case”). When L = KX and ‖·‖ is taken to be
the metric on KX induced by the fixed volume form dV , the contributions

from ‖·‖ and the volume form dV cancel and then μ
(Nk)
β coincides with the

canonical probability measure defined in Section (3.1).
The following result from [10, Thm 5.7], was stated as Theorem 3.3 in

Section 3.

Theorem 6.2. Let (X,L) be a polarized manifold and fix the geometric
data (dV, ‖·‖). Then, for any β > 0, the laws of the corresponding random

measures δN on (XN , μ
(N)
β ) satisfy a Large Deviation Principle (LDP) with

speed N and rate functional Fβ(μ)− Cβ, where

Fβ(μ) = βEω0(μ) +DdV (μ), Cβ = inf
P(X)

Fβ.

In particular,
− lim

N→∞
N−1 logZN,β = inf

P(X)
Fβ

Since, by Theorem 5.4, there exists a unique minimizer μβ of Fβ it follows
(see Lemma 4.15) that δN converges in law towards the unique minimizer
μβ . We recall that μβ is a volume form and the Kähler metric

ωβ := ω0 +
1

β
ddc log

μβ

dV

is the unique solution to the twisted Kähler-Einstein equation

Ricω = −βω + θ, θ := βω0 +Ric dV
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In particular, specializing the previous theorem to the “canonical case” in
the previous example yields Theorem 3.1.

6.1. The proof of Theorem 6.2. As mentioned in Section 3.1.1 the
starting point of the proof of Theorem 3.3 is to rewrite μ(Nk) as a Gibbs
measure, at inverse temperature β,

μ
(Nk)
β =

e−βNE(N)

ZN,β
dV ⊗N , E(N) := − 1

kN
log

∥∥∥detS(k)(x1, ..., xNk
)
∥∥∥2

where, E(N) is called the energy per particle and the normalization con-
stant ZN,β is called the partition function. To explain the idea of the proof
first assume that the following “Mean Field Approximation” holds in an
appropriate sense

(6.2) E(N)(x1, ...xN ) ≈ E(
1

N

N∑
i=1

δxi), N >> 1

for some functional E on P(X). We are going to use the characterization
4.16 of a LDP. By definition, given μ ∈ P(X) and ε > 0

Prob

(
1

N

N∑
i=1

δxi ∈ Bε(μ)

)
:= Z−1

N,β

∫
δ−1
N (Bε(μ))

e−βNE(N)
dV ⊗N

Hence, formally, as N → ∞ and ε → 0, we can take out the factor e−βNE(N)

to get

(6.3)

∫
δ−1
N (Bε(μ))

e−βNE(N)
dV ⊗N ∼ e−βNE(μ)

∫
δ−1
N (Bε(μ))

dV ⊗N

Applying the Sanov’s LDP result 4.17 to the integral thus suggests that the
non-normalized measures

(δN )∗
(
e−βH(N)

dV ⊗N
)

on P(X) satisfy a LDP with speed N and rate functional

Fβ(μ) := E(μ) + β−1DdV (μ).

Once this LDP has been established the asymptotics for ZN follow from the
very definition of a LDP.

6.1.1. The two technical ingredients. In order to make this argument rig-
orous two issues need to be confronted. First, the nature of the convergence
in the “Mean Field Approximation” (6.2) has to be specified. Secondly, ap-

propriate conditions on E(N) need to be introduced, ensuring that the “tak-
ing out” argument (6.3) is justified. As for the first issue it is shown in [10],
that, the approximation (6.2) holds in the sense of Gamma-convergence,
with E given by the pluricomplex energy Eω0 (defined by formula (4.14)).
More precisely, using the embedding

(6.4) δN : XN/SN → P(X)
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we can identify E(N) with a function on P(X), defined to be equal to ∞, on
the complement of the image of δN in P(X). Under this identification it is
shown in [10] that the following Gamma-convergence on P(X) holds:

(6.5) E(N) → Eω0 , N → ∞
In fact, using the dual criterion in Proposition 4.22, this follows directly
from the Legendre-Fenchel formula for Eω0 in Proposition 4.10 and the dif-
ferentiability Theorem 4.11, combined with the following convergence result
for the weighted transfinite diameters of X in [16]: given u ∈ C0(X)

(6.6)
1

kNk
log

∥∥∥(detS(k)
)
e−u/2

∥∥∥2
L∞(XNk))

→ Eω0(Pu), k → ∞,

where we are using the same notation u for the induced function
∑

i u(xi) on
XNk . As for the “taking out” issue in formula (6.3) it is handled using the
following key asymptotic sub-mean inequality in high dimensions established
in [10]. There exist positive constants C and Aε such that for any x(N) ∈ XN

and ε > 0

(6.7) e−βNE(N)(x(N)) ≤ Aεe
CNε

∫
δ−1
N (Bε(δN (x(N))) e

−βNE(N)
dV ⊗N∫

δ−1
N (Bε2 (δN (x(N))) dV

⊗N

when the metric d on P(X), defining the weak topology, is taken to be
the Wasserstein L2-metric dW 2 . Combining the previous inequality with the
Gamma-convergence (6.5) it is straightforward to conclude the proof of the
LDP in Theorem 6.2 (see [10] and the exposition in [14]).

6.1.2. The proofs of the technical ingredients. We briefly recall the proofs
of the two technical ingredients discussed above. First, an important ingre-
dient in the proof of the asymptotics (6.6) in [16] is the simple observation
that the L∞(XN ) norm in question has the same logarithmic asymptotics
as the corresponding L2(XN )-norm. In turn, the L2(XN )-norm may, by ex-

panding detS(k)(x1, ...xN ) as an alternating sum over the N ! elements of
SN , be expressed as

(6.8)
∥∥∥detS(k)e−ku

∥∥∥2
L2(XNk )

= Nk det
i,j≤Nk

Aij [u],

where Aij [u] is the N×N Gram matrix defined by the scalar products of the

base elements s
(k)
i in H0(X, kL) with respect to the scalar product induced

by the volume form dV and the metric ‖·‖ e−u/2 on L. As shown in [16]
the corresponding convergence towards Eω0(Pu) then follows from Bergman
kernel asymptotics on X, using that the differential of the functional

(6.9) u �→ − 1

kNk
log

∥∥∥detS(k)e−ku
∥∥∥2
L2(XNk )

on C(X) is represented by the probability measure on X defined by the
point-wise norm of the Bergman kernel on the diagonal, with respect to the
metric ‖·‖ e−u/2 on L.
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Remark 6.3. Formula (6.8) allows one to view the functional in formula
(6.9) as an analogue of Donaldson’s L-functional [43]. However, in contrast
to the setting in [43], it is crucial that u is allowed to be any continuous (or
smooth) function and not only a function in H(X,ω0).

Finally, we recall the starting point of the proof of the asymptotic sub-
mean inequality (6.7) in [10] is the well-known fact that the embedding δN
of XN/SN into the L2-Wasserstein space (P(X), dW2) is an isometry when
XN/SN is endowed with the quotient space (orbifold) metric induced from
the Riemannian metric gN on XN , defined as N−1 times the product Rie-
mannian metric. The quasi-subharmonic property of NE(N) is equivalent
to

ΔgNE
(N) ≥ −λ

on XN . Moreover, the scaling of gN also ensures that the Ricci curvature of
g(N) is bounded from below by a uniform constant times the dimension of
XN . The inequality (6.7) now follows from the general sub-mean inequality
in [10, Thm 2.1] for Riemannian quotients (orbifolds) Y := M/G (which
yields a distortion factor with sub-exponential growth in the dimension).
We recall that the latter inequality is proved using geometric analysis on the
orbifold Y , by generalizing an inequality of Li-Schoen in Riemannian geom-
etry [67]. A key ingredient in the proof is the Cheng-Yau gradient estimate
[34] for harmonic functions on a Riemannian manifold (or more generally
orbifold) and the observation that the dependence on the dimension in the
estimate is sub-linear.

6.2. A general LDP and the Gärtner-Ellis theorem. The same
method of proof, in fact, yields the following general LDP:

Theorem 6.4. Let E(N) be a sequence of lower semi-continuous symmet-
ric functions on XN , where X is a compact Riemannian manifold. Assume
that

• The corresponding functions E(N) on P(X) converge to a functional
E, in the sense of Gamma-convergence on P(X).

• NE(N) is uniformly quasi-superharmonic, i.e. Δx1NE(N)(x1, x2,
...xN ) ≤ C on XN

Then, for any sequence of positive numbers βN → β ∈]0,∞] the measures

ΓN := (δN )∗e−βNNE(N)
on P(X) satisfy, as N → ∞, a LDP with speed

βNN and rate functional

(6.10) Fβ(μ) = E(μ) +
1

β
DdV (μ)

Moreover, assuming that the second point above holds, the first point may be
replaced by the following assumption: there exists a sequence βN → ∞ such
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that for any u ∈ C0(X)

FβN
(u) := − 1

NβN
logZN,β[u], ZN,β[u] :=

∫
XN

e−βN(NE(N)+u)dV ⊗N ,

(6.11)

converges, as N → ∞, towards F(u) for some Gateaux differentiable func-
tional F on C0(X). Then the Gamma-convergence in the first point above
holds with E defined as the Legendre-Fenchel transform of f(u) := −F(−u).

To see the connection between the last statement in the previous theorem
and the present complex-geometric setup note that the functional in formula
(6.9) can be expressed as FβN

(u) for βNk
= k. In this particular case, the

corresponding random point processes is a determinantal point process (see
[14, 47] for background on such processes and the relations to Fekete points
and interpolation nodes).

As explained in [10], the previous theorem can be viewed as generaliza-
tion of the Gärtner-Ellis theorem to β ∈]0,∞[. The Gärtner-Ellis theorem
(which is a generalization of Cramér’s classical LDP theorem for indepen-
dent random vectors) says, when applied to the laws of Gibbs measures, that
the last assumption in Theorem 6.4 implies that LDP holds for β = ∞. How-
ever, extending the LDP to β ∈]0,∞[ appears to require assumptions on the

nature of E(N), such as the superharmonicity assumption in Theorem 6.4.

7. Towards the case of negative β

Now consider the “Fano setting” with β ∈ [−1, 0[ (see Section 4.1.6). In
order to extend the method of proof discussed in section to the case when
β < 0 it seems natural to expect that one would need to exploit that βE(N is
uniformly quasi-plurisubharmonic. One small step in this direction is taken
in the following

Lemma 7.1. There exists β0 < 0 such that for any β > β0 the following
bound holds for a positive constant Cβ:

N−1 logZN,β ≤ Cβ

Proof. Setting ϕ(N) := −E(N) on XN , the functions on X obtained by
fixing all but one arguments in ϕ(N) are ω0-psh on X. By (6.6) there exists a

uniform constant C such that supXN ϕ(N) ≤ C0. Moreover, as is well-known,
there exists a positive number α such that for any γ < α there exists a
constant Aγ such that

∫
X e−γϕ ≤ Aγe

−γ supX ϕ for any ϕ ∈ PSH(X,ω0).
Indeed, the optimal such α is Tian’s α-invariant of c1(−KX) aka as the
global log canonical threshold of X (see, for example, the appendix in [8],
which applies to more general reference measure μ0). Hence, the lemma
follows with β0 = −α and Cβ = log(Aγ) + γC0, by writing ZN,−γ as an

iterated integral over the N factors of XN . �
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Here we will, however, propose a different variational route, based on
Gibbs variational principle. As explained in [15] this approach is successful
in the one-dimensional setting, but, in general, it hinges on a missing energy
bound.

It will be convenient to consider the setting of a general β ∈]0, 1]. In
order to get started we will make the following assumptions:

• The normalizing constant ZN,β is finite, i.e. the corresponding Gibbs

measure μ
(N)
β is well-defined (formula (3.10)).

• The free energy functional Fβ on P(X) has a unique minimizer μβ

The goal is then to prove that the random measure δN on (XN , μ
(N)
β ) con-

verges in law towards the unique minimizer μβ of Fβ , i.e. that the conver-
gence

(7.1) ΓN,β := (δN )∗μ
(N)
β → δμβ

, N → ∞
holds in the weak topology on

X := P(Y), Y := P(X)

We start by recalling Gibbs variational principle, which is a standard tool in
Statistical Mechanics, involving the N -particle mean free energy functional

F
(N)
β on the space P(XN ) of all probability measures on XN , defined by

(7.2) F
(N)
β (μN ) := βE(N)(μN ) +D(N)(μN ),

where E(N)(μN ) denotes the N -particle mean free energy

E(N)(μN ) :=

∫
XN

E(N)μN ,

and D(N)(μN ) denotes the N -particle mean entropy (relative to dV ⊗N )

D(N)(μN ) := DdV ⊗N (μ(N))/N

Lemma 7.2 (Gibbs variational principle). Assume that ZN,β < ∞. Then

the Gibbs measure μ
(N)
β is the unique minimizer of the functional F

(N)
β on

P(XN ). Moreover,

− logZN,β = inf
P(XN )

F
(N)
β

As a consequence, when E(N) is symmetric, i.e. SN -invariant μ
(N)
β is the

unique minimizer of F
(N)
β on the space P(XN )SN of all SN -invariant prob-

ability measures on XN and

− logZN,β = inf
P(XN )SN

F
(N)
β

Proof. This follows directly from rewriting F
(N)
β (μN ) = − logZN,β +

D
μ
(N)
β

(μN ) and using that Dν(μ) ≥ 0 with equality iff μ = ν. �
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Next, in order to study the limit N → ∞ we embed all the spaces

P(XN )S
N

into the space X :

(δN )∗ : P(XN )S
N → X

We can then identify mean free energies F (N) with functionals on X , ex-
tended by ∞ to all of X . In particular, this means that we identity P(X)
with its image in X under the embedding μ �→ δμ. Consider now the follow-
ing functional on X :

Fβ(Γ) = βE(Γ) +D(Γ),

defined when E(Γ) < ∞, where E(Γ) and D(Γ) are the affine functionals on
X defined by

E(Γ) :=

∫
E(μ)Γ, D(Γ) :=

∫
D(μ)Γ

In the case when E(Γ) = ∞ we define Fβ(Γ) := ∞. In order to prove the
weak convergence (7.1) it is, in view of the previous lemma, enough to show
the following conjectural convergence

(7.3) lim
N→∞

F
(N)
β = F, on X

in the sense of Gamma-convergence relative to some subset S of X contain-
ing the minima of F . Indeed, by Gibbs variational principle, if the previous
convergence holds, then by Lemma 4.21 it is enough to show that the affine
functional F has the following property: it has a unique minimum and more-
over the minimum is attained at δμβ

. But this follows from the following two
results. First, we have the following elementary lemma:

Lemma 7.3. Suppose that F (μ) is lsc on P(X) and admits a unique
minimizer μ∗. Then δμ∗ is the unique minimizer of the affine functional
F (Γ) on P(X).

Proof. Since F (μ) is lsc we can write Fβ(Γ) =
∫
Fβ(μ)Γ, which is lsc

and affine on X . Since Fβ(Γ) is affine we have

inf
X

F = inf
P (X)

F = F (μ∗)

After shifting F (μ) by a constant we may as well assume that F (μ∗) = 0.
Take Γ �= δμ∗ . Then there exists a compact subsetK of P(X), not containing
μ∗ and such that Γ(K) > 0. Moreover, since F is lsc on P(X) we have
F (μ) ≥ δ on K for some δ > 0. But then F (Γ) ≥ δΓ(K) > 0 = F (μ∗),
which concludes the proof. �

Secondly we have the following

Lemma 7.4. The functional Fβ is lsc on P(X) and hence so is its affine
extension to X

Proof. Theorems 5.9 and 5.11 show that, in fact, Fβ is lsc iff it admits
a unique minimizer, which we have assumed. �
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Remark 7.5. By general principles (see [12]) the strong LDP form of
Conjecture 3.5, formulated in Conjecture 3.6 is, in fact, equivalent to having
bona fide Gamma-convergence in (7.3). But using the weaker relative notion
may have some advantages, as discussed in Step 2 below.

We next take a first step towards proving the relative Gamma-convergence
(7.3):

Step 1: The existence of a recovery sequence. By Lemma 7.3 it is enough
to prove the existence of a recovery sequence ΓN for any Γ of the form Γ = δμ.
To this end we set ΓN := (δN )∗μ⊗N and first observe that the mean entropy
is additive in the following sense:

D(N)(μ⊗N ) = D(μ),

for any given μ ∈ P(X). Indeed, this follows directly from the additivity of
log. Next observe that

lim inf
N→∞

E(N)(μ⊗N ) ≥ E(μ)

Indeed, fixing u ∈ C0(X) and rewriting

E(N)(μ⊗N ) =

∫
XN

(
E(N)(x1, ..., xN ) +N−1

N∑
i=1

u(xi)

)
−
∫
X
uμ

and estimating the integral over XN from below by its infimum, this follows
directly from combining the asymptotics (6.6) with Proposition 4.10. Hence,
since β < 0, this shows that

lim sup
N→∞

F
(N)
β (ΓN ) ≤ Fβ(Γ),

as desired.
Towards the missing Step 2: the lower bound. We first recall the fun-

damental fact that mean entropy D(N) on X satisfies the lower bound in
the definition of Gamma-convergence (as follows from basic sub-additive
properties of the entropy; see [70] and [58, Thm 5.4]). In particular,

D(Γ) ≤ lim inf
N→∞

D(N)(μ
(N)
β ) < ∞

Since β < 0, it would thus be enough to show the following “upper bound
property of the mean energy”:

(7.4) lim sup
N→∞

E(N)(μ
(N)
β ) ≤ E(Γβ) :=

∫
E(μ)Γβ(μ)

for any limit point Γβ in X of ΓN,β. It should, however, be stressed that such

bound can not hold for any sequence in μ(N) in P(XN )SN , since E(μ) is not
continuous on P(X). Note that, in general, D(Γ) < ∞ =⇒ E(Γ) < ∞,
since Fβ(Γ) is bounded from below on X for some β < −1.

We summarize the output of the previous discussion, applied to the case
β = −1, in the following
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Theorem 7.6. Let X be a Fano manifold and assume that X is uni-
formly Gibbs stable. Then X admits a unique Kähler-Einstein metric ωKE

and if the “upper bound property of the mean energy” (7.4) holds for the

canonical sequence μ(N), then the empirical measures δN of the canonical
random point process on X converge in law towards the normalized volume
form dVKE of ωKE.

Proof. Set β = −1. If X is uniformly Gibbs stable, then as shown
in [53], X is uniformly K-stable. Hence, by either [32] or [20] X admits a
unique Kähler-Einstein metric. Thus F−1 admits a unique minimizer, μ−1,
given by dVKE . Moreover, by the uniform Gibbs stability ZN,β is finite for N
sufficiently large. Hence, the theorem follows from Step 1 and 2 above. �

Remark 7.7. Note that if the “upper bound property of the mean en-
ergy” holds then the argument above shows that

lim
N→∞

inf
P(XN )SN

F
(N)
β = lim

N→∞
inf

P(X)⊗N
F

(N)
β ,

i.e. asymptotically, as N → ∞ the infimum of the mean free energy func-

tional F
(N)
β can be restricted to the subspace P(X)⊗N � P(XN )SN .

7.1. Analyticity and absence of phase transitions. The proof of
Theorem 7.6 reveals that in order to establish the convergence towards dVKE

it is enough to show that

(7.5) − lim
N→∞

1

N
logZN.β = inf

P(X)
Fβ

for β = −1. By Theorem 5.4 the converge does hold for β ≥ 0 and the
problem of extending the convergence to β = −1 can be connected to the
theory of phase transitions in statistical mechanics. To see this first con-
sider the following general setup. Let H(N) be a sequence of measurable
functions (“Hamiltonians”) on the measure spaces (XN , dVN ) such that the
corresponding partition function

ZN,β :=

∫
X
e−βH(N)

dVN

is finite for some β > β0. Then ZN,β is real-analytic in β on ] − β0,∞[ for
any N and strictly positive. However, in general N−1 logZN,β may converge
to a function which is not real-analytic. This is often taken as the definition
of a phase transition in statistical mechanics (see [71, Chapter 5]).

Example 7.8. The prime example of a phase transition is provided by
the Curie-Weiss mean field model for magnetization in spin systems, where
N is the number of spins. If the sign convention for the corresponding Hamil-
tonians is taken so that H(N) is anti-ferromagnetic then the real-analyticity
in question brakes down at a critical negative inverse temperature βc (in
this case β0 = −∞). This is precisely the inverse temperature for which the
convergence of the empirical magnetization towards a deterministic limit
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fails (see the appendix in [14] for a comparison between the Curie-Weiss
model and the present complex-geometric setup).

In the present Fano setting the partition function ZN,β is real-analytic in
β, as long as −β is strictly smaller than the stability threshold γN (formula
(3.13)). In fact, according to well-known results of Atiyah and Bernstein-
Gelfand the Archimedean zeta function β �→ ZN,β extends to a meromorphic
function on C with a discrete set of rational poles located at ]−∞, 0[⊂ C (see
the book [56]). The next result shows that the convergence in Conjecture 3.5
holds in the absence of phase transitions down to the inverse temperature
−1:

Theorem 7.9. Assume that there exists β0 < −1 and a real-analytic
function f(β) on ]− β0,∞[ such that for any β ∈]− β0, 0[

− lim
N→∞

logZN,β

N
= f(β).

Then X admits a unique Kähler-Einstein-metric ωKE and the empirical
measures δN of the canonical random point process on X converge in law
towards the normalized volume form dVKE of ωKE.

Proof. Step 1: For β ∈ [−1,∞[ the free energy functional Fβ admits a
unique minimizer μβ on P(X)

To see this first recall that the argument in Step 1 of the proof of The-
orem 7.6 shows that for β ∈ [−1,∞[ we have Fβ−ε ≥ −C for some positive
constants C and ε (depending on β). Hence, by Theorems 5.8 Fβ admits a
unique minimizer μβ. In particular, there exists a unique Kähler-Einstein
metric on X.

Step 2: The function F (β) := F (μβ) is real-analytic on ] − 1,∞[ and
continuous up to the boundary at β = −1

The continuity up to β = −1 was shown in[4]. Now fix positive integers
p, l and consider the Banach (Hilbert) spaces defined by the Sobolev spaces
B1 := Lp,l+2(X) and B2 := Lp,l(X). Take p and l sufficiently large so that
B2 ⊂ C2(X) (as ensured by the Sobolev inequality). Consider the map

g : B1×]− β0,∞[→ B2 × {0},

(u, β) �→
(
(ddcu)n/dV − eβu,

∫
X
β−1(eβu − 1)dV

)

(where β−1(eβt − 1) is defined to be equal to t for β = 0). The definition of
g is made so that ϕβ solves the MA-equation (6.6) iff g(ϕβ , β) = (0, 0) and
when β = 0 the solution ϕβ is normalized so that

∫
ϕβdV = 0. The map

g is a real-analytic map between Banach spaces in the sense of [77, 78].
Indeed, u �→ (ddcu)n/dV is continuous and multilinear (of order 2n) and
the functions eβt and β−1(eβt − 1) are both real-analytic on R × R. Next,
note that the directional derivative Du(g, u) is surjective for β ∈ [−1,∞[ and
u ∈ H(X). Indeed, this is shown in the course of the proof of the openness
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property in Aubin’s continuity path [2] (see also [4]). Hence, it follows from
the real-analytic implicit function theorem in Banach spaces [77, 78], that
the curve ϕβ is real-analytic in B1. But then it follows from the explicit
expression (4.13) for E(ϕ), which is a sum of multilinear terms in ϕ that the
function

E(β) := Eω0(μβ) = Eω0(ϕβ)− 〈ϕβ ,MA(ϕβ〉
is real-analytic on ]−1,∞[. The proof of Step 2 is now concluded by observing
that dF (β)/dβ = E(β). Indeed, this follows from the chain rule using that
μβ is the unique minimizer of Fβ on P(X).

Step 3: Conclusion of proof
By Theorem 6.2 f(β) = F (β) for β > 0 (note that the relation f(0) =

F (0) is trivial). Since f and F are both real-analytic on ] − 1,∞[ and con-
tinuous as β → −1 it follows that f(β) = F (β) on all of [−1,∞[. Hence, it
follows from the proof of Theorem 7.6 that for any given β ∈ [−1,∞[ the

empirical measures δN on (XN , μ
(N)
β ) converge in law towards μβ . Indeed,

since f(β) = F (μβ) the assumed convergence can be used as a replacement
for Step 2 in the proof of Theorem 7.6. Specializing to β = −1 thus concludes
the proof. �

Assuming the existence of a limiting function f(β), one way of establish-
ing the real-analyticity of f is to show that the meromorphic extension of
ZN,β to C is holomorphic and has no zeroes on some N -independent neigh-
borhood of [−1, 0] in C (using Montel’s convergence theorem of complex
analysis). This is an approach that was pioneered by Lee-Yang for some sta-
tistical mechanical models, including spin models and lattice gases [81, 82].
Interestingly, in the present complex-geometric setup such a non-vanishing
result holds in the setting of log Fano curves (in a slightly different setup),
as shown in [15]. However, the general case is completely open.
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[76] Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130
(1997), no. 1, 1–37. MR 1471884

[77] Tolands, J.: http://www.dma.unina.it/hamiltonianPDE/mate/tolandCapri.pdf.
[78] Buffoni, B., Toland, J.: Analytic theory of global bifurcation. An introduction. Prince-

ton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2003.
MR 1956130

[79] Tsuji, H.: Canonical measures and the dynamical systems of Bergman kernels.
Preprint arXiv:0805.1829, 2008.

[80] Troyanov, M.: Prescribing curvature on compact surfaces with conical singularities.
Trans. Amer. Math. Soc. 324 (1991), no. 2, 793–821. MR 1005085

[81] Yang, C. N., Lee, T. D.: Statistical theory of equations of state and phase transitions.
I. Theory of condensation. Physical Review 87 (1952), no. 3, 404–409. MR 0053028

[82] Lee, T. D., Yang, C. N.: Statistical theory of equations of state and phase transi-
tions. II. Lattice gas and Ising model. Physical Review 87 (1952), no. 3, 410–419.
MR 0053029

[83] Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex
Monge-Ampère equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.
MR 0480350

[84] Yau, S. T.: Nonlinear analysis in geometry. Enseign. Math. (2) 33 (1987), no. 1-2,
109–158. MR 0896385

[85] Yau, S.-T.: Open problems in geometry. Proc. Symp. Pure Math. 54 (1993) 1–28.
MR 1216573

Mathematical Sciences, Chalmers University of Technology and the Uni-

versity of Gothenburg, SE-412 96 Göteborg, Sweden
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