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New developments in Ricci flow with surgery

Richard H. Bamler

Abstract. We give a survey of the developments surrounding Ricci
flow in dimension 3 after Perelman’s work and explain the connection
with the partial resolution of the Generalized Smale Conjecture.
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1. Introduction and brief overview
One of the most interesting results concerning the topology of 3-mani-

folds was the resolution of the Poincaré and Geometrization Conjectures:

Poincaré Conjecture. Any simply connected, closed 3-manifold is
diffeomorphic to a 3-sphere.
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Geometrization Conjecture. Any closed, oriented, prime 3-mani-
fold has a geometric decomposition, i.e. a set of pairwise disjoint, incom-
pressible 2-tori whose complement consists of components that each admit a
complete locally homogeneous metric of finite volume.

Both conjectures were proven by Perelman [Per02, Per03b, Per03a]
in 2002/03 using Ricci flow, following a program initiated by Hamilton.
The Ricci flow equation, which was introduced by Hamilton [Ham82], is a
weakly parabolic equation governing the evolution of a family of Riemannian
metrics on a manifold. Under this equation, curvature terms evolve under a
diffusion-reaction equation (for more details see Subsection 2.1). The general
hope is that a Ricci flow “distributes curvature evenly” across the manifold,
improving the metric towards a more “symmetric” metric, such as a metric
of constant curvature or a locally homogeneous metric. Such a behavior
was first made rigorous by Hamilton in [Ham82], where he showed that
in dimension 3, starting from a metric of positive Ricci curvature the flow
converges (modulo rescaling) to a metric of constant curvature. This allowed
him to classify the topology of such manifolds and motivated further study
of the Ricci flow equation in connection with topological questions.

The proof of the Poincaré and Geometrization Conjectures required the
analysis of general Ricci flows, starting from metrics without a Ricci curva-
ture bound. These flows may develop singularities, which need to be excised
via a surgery construction at a discrete set of times. Perelman managed to
gain sufficient structural understanding of these singularities and devised
an appropriate surgery process (for more details see Subsection 2.2), pro-
ducing a Ricci flow with surgery, which he eventually used to resolve both
topological conjectures.

Interestingly, however, Perelman’s proof relied only on a very cursory an-
alytic and asymptotic characterization of the Ricci flow with surgery, leaving
many basic properties of the flow uncharacterized. For example, the locally
homogeneous metrics predicted by the Geometrization Conjecture were ul-
timately constructed via classical geometric-topological methods and the
question whether those metrics arise as limits of the flow remained unan-
swered after Perelman’s work.

After about 15 years, we finally have a more precise understanding of
the geometric and analytic properties of Ricci flows (with surgery) in di-
mension 3. Some of this work has resulted in the partial resolution of the
Generalized Smale Conjecture — another purely topological result proved
using geometric-analytic techniques. The purpose of this survey is to de-
scribe these new developments since Perelman’s work.

The focus of this survey will be primarily Ricci flow in dimension 3.
Unless stated otherwise, all manifolds are assumed to be 3-dimensional and
orientable. We will also mainly focus on work aimed at furthering our under-
standing of Perelman’s Ricci flow with surgery and the resulting topological
applications. We remark that there has been some other interesting work
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relating to Perelman’s techniques in dimension 3, for example on Ricci flow
with surgery in the non-compact [BBM11, BBM15] and orbifold cases
[DL09, KL14a] — the latter reproving the Geometrization Conjecture for
orbifolds. For further applications of Ricci flow with surgery to the study of
hyperbolic manifolds see [AST07].See also [Sim12, ST17, BCRW17] for
smoothing results, which partially rely on Perelman’s singularity analysis.

2. Background
In the following, we will provide a very condensed introduction, or reca-

pitulation, of Ricci flow and Ricci flow with surgery in dimension 3 up to and
including Perelman’s work. We will often state results in a very simplified
form and use a language that is somewhat different from Perelman’s, but
more suitable to present further work. A more detailed survey of Perelman’s
work can be found in [And04, Mor05], for example.

2.1. Ricci flows and singularity formation. The Ricci flow equa-
tion describes the evolution of a smooth family of Riemannian metrics
(g(t))t∈[0,T ) on a manifold Mn, depending on a time-parameter t ∈ [0, T ):
(2.1) ∂tg(t) = −2Ric(g(t)), g(0) = g0.

If M is compact, then for any initial condition g0 the initial-value problem
(2.1) has a unique solution on a maximal time-interval of the form [0, T ),
T ≤ ∞. If T < ∞, then the flow develops a singularity, meaning that the
curvature tensor blows up as t ↗ T .

A very basic class of examples of Ricci flows arises if the initial metric g0
is an Einstein metric with Ric(g0) = λg0. In this case, the Ricci flow takes
the form

g(t) = (1− 2λt)g0.

So depending on the sign of the Einstein constant λ, the flow shrinks, ex-
pands or is constant. If λ > 0, then the flow develops a singularity at time
T = 1

2λ . By taking Cartesian products, we can generate more examples,
for example the round shrinking cylinder on S2 × R, which takes the form
g(t) = (1− 2λt)gS2 + gR.

Let us now describe the behavior of flows starting from more arbitrary
initial data. In dimension 2, this behavior is well understood, due to the
work of Hamilton and Chow [Ham88, Cho91].

Theorem 2.1. If n = 2 and M is compact, then g(t) remains in the
same conformal class,

T =

⎧⎨
⎩
area(M, g0)

4πχ(M)
if χ(M) > 0

∞ if χ(M) ≤ 0

and g(t) is asymptotic to the examples mentioned earlier. More specifically,
depending on whether χ(M) > 0, = 0 or < 0, the rescaled metrics (T −
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Figure 1. Different singularity formations in the rotation-
ally symmetric case, depending on the choice of the radii r1,
r2, r3. The flows depicted on the top are the corresponding
singularity models.

t)−1g(t), g(t) or t−1g(t) smoothly converge to a metric of constant curvature
with K ≡ +1, 0 or −1.

In dimension 3, the behavior of the flow — and its singularity formation
— is far more complicated. To get an idea of possible behaviors, it is useful
to consider the famous dumbbell example (see Figure 1), as analyzed in
[AK04, AIK15]. In this example (M, g0) is constructed by connecting two
round spheres of radii r1, r3 by a certain type of rotationally symmetric neck
of radius r2. So M ≈ S3 and g0 = f2(s)gS2 + ds2 is a warped product away
from two points. It turns out that any flow starting from a metric of this
form must develop a singularity in finite time and its singularity formation
depends on the choice of the radii r1, r2, r3. More specifically, if all radii are
comparable, then the diameter of the manifold converges to zero and, after
rescaling, the flow (often1) becomes asymptotically round — similarly as in
the case χ(M) > 0 of Theorem 2.1. This case is called extinction. On the
other hand, if r2 � r1, r3, then the flow develops a neck singularity, which is
modeled on a round shrinking cylinder on S2×R. Note that in this case, the
singularity only occurs in a certain region of the manifold, while the metric

1For pedagogical reasons, we have omitted the discussion of an interesting non-generic
case, called the peanut solution. In this case r1 = r3 and the diameter converges to zero in
finite time. However, after rescaling, the metric looks like an expanding oval with a slight
indentation in the center, where some sectional curvatures are negative.
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converges to a smooth limiting metric everywhere else, as t ↗ T . Lastly,
there is also an intermediate case, which is expected to be non-generic. In
this case the flow develops a singularity that is modeled on the Bryant soliton
— a one-ended paraboloid-like singularity. This singularity is called a cap
singularity.

Perelman found that for general (non-rotationally symmetric) initial
metrics, the singularity formation is qualitatively similar to that of the pre-
vious example. The remainder of this Subsection is concerned with making
this statement more precise. The concepts introduced in the following will
be important later. We first define a class of Ricci flows that we expect to
observe as singularity models.

Definition 2.2 (κ-solution). An ancient Ricci flow (M, (g(t))t≤0) is
called κ-solution if

(1) The flow has uniformly bounded curvature and complete time-
slices.

(2) The curvature operator is non-negative everywhere (i.e. the sec-
tional curvature is non-negative in dimension 3).

(3) The scalar curvature is positive everywhere.
(4) The flow is κ-noncollapsed at all scales, meaning that whenever

|Rm| < r−2 on a time-t ball of the form B(x, t, r), then
voltB(x, t, r) ≥ κr3.

The precise meaning of the properties (1)–(4) will not be of importance
for this survey. The key point here is that a κ-solution is defined via a
collection of properties that hold on any non-trivial blow-up limit of a 3-
dimensional Ricci flow. By “blow-up limit” we mean a geometric limit of
parabolically rescaled Ricci flows; here the limit is understood in the sense
of Hamilton [Ham95], which is a generalization of Cheeger-Gromov con-
vergence to Ricci flows. So in summary, we have (note that all our results
from here on are in dimension n = 3 and all manifolds are assumed to be
orientable):

Theorem 2.3. Suppose that g(t) develops a singularity at some finite
time T . Then any smooth blow-up limit of g(t) is a κ-solution.

Perelman subsequently classified κ-solutions in a qualitative way and
showed that they essentially fall into one of three categories: spherical, cylin-
drical and one-ended. These categories correspond to the three different be-
haviors in the rotationally symmetric example above. In the following, we
will make Perelman’s classification more precise and we will restate The-
orem 2.3 in a language that will be useful later. We first introduce the
following notion of local geometric closeness.

Definition 2.4 (Curvature scale and local ε-models). Let (M, g) be a
Riemannian manifold and x ∈ M a point. We define the curvature scale of
x to be ρ(x) = |Rm|−1/2(x). So ρ has the dimension of length.
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A pointed Riemannian manifold (M, g, x) is called local ε-model at x if
there is a diffeomorphism onto its image

ψ : B(x, ε−1) −→ M

such that ψ(x) = x and∥∥ρ−2(x)ψ∗g − g
∥∥
C[ε−1](B(x,ε−1))

< ε.

The case in which the model space (M, g) is a round cylinder will be
particularly important for us.

Definition 2.5 (Centers of ε-neck). We say that a point x on a Rie-
mannian manifold (M, g) is a center of an ε-neck if the pointed round cylin-
der (S2 × R, gS2×R, x) (where x is an arbitrary point) is a local ε-model at
x.

We can now state Perelman’s qualitative classification of 3-dimensional
κ-solutions.

Theorem 2.6. For any κ-solution (M, (g(t))t≤0) one of the following is
true:

(a) Cylindrical case: (M, (g(t))t≤0) is homothetic to a geometric quo-
tient of the round shrinking cylinder on S2 × R.

(b) One-ended case: M ≈ R
3 and each time-slice (M, g(t)) is asymp-

totically cylindrical in the following sense: Given any ε > 0, there
an embedded 3-disk D ⊂ M such that all points of the complement
M \D are centers of ε-necks.

(c) Spherical case: M is diffeomorphic to a spherical space form and
either
(c ′) (M, (g(t))t≤0) is homothetic to a quotient of the round shrink-

ing sphere.
(c ′′) M ≈ S3,RP 3 and as t ↘ −∞ all non-trivial geometric limits

are of the form (a) or (b).

We refer to [KL08, Corollary 48.1] for a more detailed statement. A
prominent example in case (b) is the Bryant soliton [Bry05]. Recently,
Brendle [Bre18] showed that the Bryant soliton is the only κ-solution in
case (b). For more details, see Section 3.

For future applications, we need to discuss a more quantitative version
of Perelman’s blow-up result Theorem 2.3. The following result states that
a flow is close enough to a κ-solution whenever the curvature scale is below
(i.e. the curvature is above) a certain uniform threshold r2.

Definition 2.7 (Canonical Neighborhood Assumption). A Riemann-
ian manifold (M, g) satisfies the ε-canonical neighborhood assumption at
scales (of the interval) (r1, r2) if all x ∈ M of scale ρ(x) ∈ (r1, r2) are lo-
cally ε-modeled on the pointed final time-slice (M, g(0), x) of a κ-solution
(M, (g(t))t≤0).
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Figure 2. A schematic depiction of a Ricci flow with
surgery. The almost-singular parts Malmost-sing, i.e. the parts
that are discarded under each surgery construction, are
hatched diagonally.

Note that we may often take r1 = 0. Using this notion we have:

Theorem 2.8 (Perelman [Per02]). For any 3-dimensional Ricci flow
(M, (g(t))t∈[0,T )), T < ∞ and every ε > 0, there is a scale r0 = r0(ε,M,
g(0), T ) > 0 such that the flow satisfies the ε-canonical neighborhood as-
sumption at scales (0, r0).

So in summary, Perelman’s characterization of the singularity formation
in dimension 3 consists of two steps: First, Theorem 2.8 describes quanti-
tatively where the flow is close to a κ-solution, and second, Theorem 2.6
characterizes κ-solution geometrically in a qualitative way.

2.2. Ricci flows with surgery. Based on Theorem 2.8, Perelman
[Per03b] specified a surgery process, in which the manifold is cut open along
small cross-sectional 2-spheres, the high curvature part of the manifold and
extinct components are removed, and the resulting spherical boundary com-
ponents are filled in with 3-disks endowed with a standard cap metric. This
produces a new smooth metric, from which the Ricci flow can be restarted.
The process may then be iterated to yield a sequence of Ricci flows of the
form (see Figure 2)
(2.2)
(M1, (g1(t))t∈[0,T1]), (M2, (g2(t))t∈[T1,T2]), (M3, (g3(t))t∈[T2,T3]), . . .
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where the time-slices (Mi+1, gi+1(Ti)) arise from (Mi, gi(Ti)) by a certain
surgery process. The collection of these Ricci flows together with some ad-
ditional structure, which characterizes the surgery process itself, is called a
Ricci flow with surgery and will be denoted by M for the sake of this survey.
If t ∈ [Ti−1, Ti], then we will call (Mi, gi(t)) a time-t-slice; note that for any
t ∈ {T1, T2, . . .} there are two time-t-slices.

Let us provide some more details on Perelman’s construction. We will
disregard several fine points that are not of essence for this survey. For a
more precise discussion see Perelman’s original paper [Per02] or several
variations of his construction [KL08, MT07, BBB+10, Bam07].

We begin by describing the surgery process. Let for now (M, g) be a
compact (3-dimensional) Riemannian manifold that satisfies the ε-canonical
neighborhood assumption below some positive scale r for some small ε >
0, which we will later choose smaller than some universal constants. The
manifold (M, g) will later be taken to be the final time-slice (Mi, gi(Ti)) of
a Ricci flow from (2.2). We will moreover assume later that the time Ti is
chosen sufficiently close to a singular time, so that (M, g) contains some
points of scale ρ � r.

Let δ > 0 be another small constant (possibly much smaller than ε).
Choose some pairwise disjoint embedded 2-spheres Σ1, . . . ,Σm ⊂ M that
occur as central 2-spheres of δ-necks at a curvature scale of ≈ δr. Call each
component of the complement M \ (Σ1 ∪ . . . ∪ Σm) either non-singular or
almost-singular, depending on whether it contains a point of curvature scale
> 10δr or not. We can then write

(2.3) M \ (Σ1 ∪ . . . ∪ Σm) = Mnon-sing ·∪Malmost-sing.

Assuming that ε and δ are sufficiently small, it can be shown that the com-
ponents of Malmost-sing are topologically controlled in the sense that their clo-
sures must be diffeomorphic to either a 3-disk, S2× [0, 1] or its Z2-quotient,
a spherical space form, S2 × S1 or RP 3#RP 3. So these components can be
discarded without losing too much information on the topology of M .

Next, attach 3-disks to the (spherical) boundary components of Mnon-sing
and call the resulting manifold M ′. Endow this manifold with a metric g′

that equals g on Mnon-sing and is isometric to a fixed cap-like rotationally
symmetric metric with positive sectional curvature on the added 3-disks,
except in an interpolation region near the boundary. We say that (M ′, g′)
was constructed from (M, g) via surgery at scale δr. Each disk attached to
Mnon-sing is called a surgery. A surgery is called trivial if the boundary 2-
sphere Σj of this disk (in M ′) also bounds a 3-disk in M , i.e. if it didn’t
change the topology of M . We record:

Lemma 2.9. M is diffeomorphic to a connected sum of components of
M ′ and of copies of S2 × S1 and spherical space forms. If all surgeries are
trivial, then M and M ′ are diffeomorphic.
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Given this surgery process, we can construct the Ricci flows (2.2) itera-
tively: Starting from an initial metric gi(Ti−1) on Mi, consider the maximal
flow (g(t))t∈[Ti,T ∗

i )
. If T ∗

i = ∞, then we are done and (Mi, (gi(t))t∈[Ti,∞)) is
the last element of (2.2). If T ∗

i < ∞, so if the flow develops a singularity,
then we choose Ti < T ∗

i close enough to T ∗
i such that (Mi, gi(Ti)) has a non-

empty almost-singular-part Malmost-sing, carry out the surgery construction
above to determine (Mi+1, gi+1(Ti)) and repeat the process. Note that we
also allow the possibility that Mi = ∅ for some i, in which case we say that
the flow has become extinct.

Recall that the surgery construction above depends on a scale r below
which the ε-canonical neighborhood assumption holds. This scale could po-
tentially deteriorate (i.e. decrease) significantly with each surgery, possibly
leading to an accumulation of surgery times. However, Perelman found that
for sufficiently small δ, the scale r can be chosen independently of the number
of previous surgeries. More specifically, he showed that there is a continuous
positive function r : [0,∞) → R+ such that at each time t the ε-canonical
neighborhood assumption holds below scale r(t), except near regions where
a surgery had recently been performed. This exception turned out to be
inessential to the surgery process.

So in summary:

Theorem 2.10 (Perelman [Per03b]). Given any closed (3-dimensional)
Riemannian manifold (M, g), there are continuous positive functions r, δ :
[0,∞) → R+, such that if each surgery step at time Ti is performed at scale
δ(Ti)r(Ti), where δ : [0,∞) → R+ is continuous with 0 < δ(t) ≤ δ(t), then
the surgery process can be continued indefinitely, producing a Ricci flow with
surgery M such that:

(a) The initial time-slice (M1, g1(0)) is isometric to (M, g).
(b) The surgery times T1, T2, . . . don’t accumulate.
(c) At any time t the ε-canonical neighborhood assumption holds below

scales r(t), except in “certain parabolic regions after surgery caps”.

By iterated application of Lemma 2.9, one can see that if i < j, then Mi

is diffeomorphic to a connected sum of components of Mj and of copies of
S2×S1 and spherical space forms. So if the Ricci flow with surgery M goes
extinct in finite time, then the prime decomposition of the initial manifold
M = M1 consists only of copies of S2×S1 and spherical space forms.2 If the
initial manifold has finite fundamental group, then extinction in finite time
is guaranteed [Per03a, CM08], which implies the Poincaré Conjecture:

2An interesting application of this fact is the case in which the initial metric has
positive scalar curvature. In this case, finite-time extinction is guaranteed by a simple
maximum principle argument, which implies that the minimum of the scalar curvature has
to go to infinity in finite time. Therefore, any compact orientable 3-dimensional manifold
only admits a metric of positive scalar curvature if it is a connected sum of copies of
S2 × S1 and spherical space forms. The reverse statement is also true.
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Theorem 2.11. If π1(M) is finite, then M becomes extinct in finite
time. Thus M is diffeomorphic to a spherical space form and if M is simply
connected, then M ≈ S3.

Lastly, let us introduce some more terminology, which we will use later.
Recall that each initial time-slice (Mi+1, gi+1(Ti)) is constructed from (Mi,
gi(Ti)) by attaching 3-disks to its non-singular part. From now on, we will
denote this non-singular part (i.e. the set of points that survive the surgery)
by U−

i ⊂ Mi and U+
i ⊂ Mi+1. As the metric is not altered on the non-

singular part, the surgery construction induces a natural isometry
(2.4) φi : (U

−
i , gi(Ti)) −→ (U+

i , gi+1(Ti)),

which we will call transition map. The points in the complements Mi \ U−
i

and Mi+1 \ U−
i+1 are called surgery points. We record for future purpose:

Proposition 2.12. ρ ≤ Cδ(Ti)r(Ti) on surgery points Mi \ U−
i and

Mi+1 \ U−
i+1 for some universal constant C.

2.3. Long-time behavior. Let us now consider the case in which a
Ricci flow with surgery does not become extinct in finite time. We briefly
recapitulate Perelman’s results on the long-time asymptotics of the flow and
their connection with the resolution of the Geometrization Conjecture. We
will discuss refinements of these results in Section 4.

Theorem 2.13. Let M be a Ricci flow with surgery that does not be-
come extinct in finite time. Then there is a continuous positive function
w : [0,∞) → R+ with limt→∞w(t) = 0 and for large t any time-t-slice
(Mt, gt) has a decomposition of the form

Mt = Mthick
t ·∪Mthin

t ,

where Mthick
t is open and Mthin

t is closed, such that the following holds:
(a) The components of Mthick

t are diffeomorphic to a finite set of finite-
volume hyperbolic manifolds (with cusps) H1, . . . , Hm. Moreover
the rescaled metric (4t)−1gt restricted to these components is w(t)-
close to the corresponding hyperbolic metrics on each Hj, where we
truncate cusps at distance w−1(t) from a basepoint.

(b) The boundary tori of Mthin
t are incompressible in Mt.

(c) Mthin
t is locally collapsed at different scales in the following sense:

For any x ∈ Mthin
t there is a scale 0 < rx ≤

√
t such that sec ≥ −r−2

x

on the ball B(x, rx) and volB(x, rx) ≤ w(t)r3x.

We recall that a 3-dimensional hyperbolic metric ghyp evolves by the
Ricci flow as g(t) = (1 + 4t)ghyp. This illustrates the rescaling in Assertion
(a). A basic example for Assertion (c) would be a Cartesian product of a
hyperbolic surface with S1; in this example we can choose rx =

√
t.

By analyzing the collapse of Assertion (c) further (and using some ad-
ditional estimates coming from the Ricci flow) [SY05, KL14b, MT14,
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PBB+09], it is possible to decompose Mthin
t into Seifert pieces, which cor-

respond to different collapsing behaviors. The existence of this Seifert de-
composition implies the existence of a geometric decomposition, therefore
establishing the Geometrization Conjecture. Note, however, that a priori the
Seifert decomposition arising from Assertion (c) may be quite different from
the final geometric decomposition.

We refer to [Sco83, Thu97, Hat00] for excellent references concerning
prime and geometric decompositions.

2.4. Open questions after Perelman’s work. Perelman’s work rev-
olutionized the field of Ricci flow (with surgery) and provided sufficient
understanding to conclude two important topological conjectures. However,
from an analytic and geometric perspective his work left several natural
questions open, some of which have recently been resolved. More specifi-
cally:

(1) Perelman’s qualitative description of singularity models (κ-solution)
helped to locate necks, the basis of the surgery construction, and to
understand the topology of the almost-singular part. However, his
work did not fully classify all κ-solutions. See Section 3 for more
details. In addition, the higher order asymptotic behavior of the
flow near a singularity is still largely unknown. Related to this,
it is currently even unclear whether the diameter of the manifold
remains uniformly bounded in time close to a singular time.

(2) Perelman’s surgery procedure is a non-canonical construction since
it requires the choice of several parameters, such as the surgery
scale δr. Perelman recognized this disadvantage and conjectured
that there is a more canonical flow, which produces a unique flow
for any initial data. See Section 5 for more details.

(3) Theorem 2.13, characterizing the long-time behavior of the flow,
provided enough information on the thin part in order to find a
geometric decomposition using topological techniques. However, it
left open whether and in what way the asymptotic behavior of the
flow reflects this geometric decomposition. It also did not exclude
the occurrence of surgeries for large t. See Section 4 for more details.

As we will see in Section 6, recent work on (2) has resulted in the resolution
of the Generalized Smale Conjecture and the analysis of the space of metrics
with positive scalar curvature, so our efforts in gaining a better geometric
and analytic understanding of the flow have paid off from a topological
perspective. It is expected that our insights will have even further topological
consequences.

3. Classification of κ-solutions
In [Per02], Perelman showed that singularities in 3-dimensional Ricci

flows are modeled on κ-solutions (M, (gt)t≤0) (see Subsection 2.1 for further
details). He also gave a partial classification of κ-solutions (see Theorem 2.6).
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Let us recall the cases in which this classification was only of qualitative
nature:

(A) M ≈ R
3. In this case Perelman showed that the solution must

be asymptotically cylindrical, in the sense that all points in the
complement of a compact set are centers of necks. An example in
this case is the Bryant soliton. κ-solutions of this topological type
occur in “cap singularities”, as illustrated in Figure 1.

(B) M ≈ S3. In this case, the metric is almost cylindrical away from
two bounded sets, near which the metric converges to a κ-solution
of type (A) as t ↘ −∞. An example in this case was constructed by
Perelman and is similar to the 2-dimensional King-Rosenau solu-
tion [Kin93, Kin94, Ros95]. κ-solutions of this topological type
cannot occur as a singularity model of a single flow, but may occur
as limits of certain degenerating sequences of flows.

(C) M ≈ RP 3. Same as case (B) after passing to the double cover.
Before proceeding, we need to consider an important subclass of Ricci

flows, called solitons. Solitons are self-similar Ricci flows, whose time-slices
are homothetic. In other words, the metric at any time t is given by g(t) =
aφ∗g for some fixed metric g, where a > 0 and φ is a diffeomorphism. The
Ricci flow equation then reduces to the following soliton equation for g

Ric+LXg = λg,

where X is a vector field and λ ∈ R. We call a soliton shrinking, steady
or expanding, if λ > 0, = 0, < 0, respectively. If X = ∇f is a gradient
vector field, then LXg = 2∇2f and we call the soliton gradient.The Bryant
soliton is a rotationally symmetric steady gradient soliton on R

3 that takes
the following form in polar coordinates:

g = u2(r)gS2 + dr2, u(r) ∼
√
r as r → ∞.

Shrinking gradient solitons occur as models of Type I singularities (i.e.
singularities where the curvature satisfies a bound of the form |Rm| < C(T−
t)−1). In addition, shrinking and steady gradient solitons occur as certain
blow-downs or limits of κ-solutions. This motivates the study of κ-solutions
that are at the same time solitons. It can be seen easily that there are no
κ-solutions that are also expanding solitons. Any (3-dimensional) κ-solution
that is also a shrinking soliton must be a quotient of the round sphere or
the round cylinder. In the case of steady solitons Brendle showed:

Theorem 3.1 (Brendle [Bre13]). Any (3-dimensional) κ-solution that
is also a steady soliton is homothetic to the Bryant soliton.

This theorem has an interesting consequence, which follows via the work
of Hamilton [Ham93]: Let (M, (gt)t≤0) be a general κ-solution of type (A),
(B) or (C) (see the list above). Then there is a sequence of times ti ↘ −∞
such that any non-trivial pointed limit or blow-down limit of the metrics g(ti)
is a soliton. By Theorem 3.1, this limit must be rotationally symmetric. So,
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in a certain sense, (M, (gt)t≤0) is asymptotically rotationally symmetric for
t ↘ −∞. Recently, Brendle used this observation, combined with a clever
stability analysis, to show:

Theorem 3.2 (Brendle [Bre18]). Any (3-dimensional) κ-solution of
type (A) is homothetic to the Bryant soliton.

In the same paper, Brendle remarks that the same technique also yields
the following result. For an independent proof see also [BK19a].

Theorem 3.3. Any (3-dimensional) κ-solution of type (A), (B) or (C)
is rotationally symmetric.

An important consequence of Theorem 3.2 is:

Corollary 3.4 (Brendle). If (M, (g(t))t∈[0,T )) is a (3-dimensional)
Ricci flow that develops a singularity at time T < ∞, then any blow-up
limit is homothetic to the Bryant soliton or to a quotient of the round sphere
or the round cylinder.

It would still be desirable to classify κ-solutions in the cases (B) and (C).
This may be complicated by the fact that these solutions are expected to be
unstable. At the time of writing, partial progress was made by Angenent,
Brendle, Daskalopoulos and Sesum in [ABDS19], where a full classification
result in cases (B) and (C) was also announced.

4. Precise long-time asymptotics
Theorem 2.13 gives a relatively incomplete picture of the long-time

asymptotics of a Ricci flow with surgery M. For example:
(1) The decomposition arising from the collapse on Mthin

t may a priori
be different from the geometric decomposition.

(2) The theorem does not identify any of Thurston’s eight homogeneous
geometries as asymptotic limits — except for the hyperbolic one.

(3) The theorem does not make any assertions on the occurrence of
surgeries. A priori t could be a surgery time and Mthin

t could contain
surgery caps or the thin-part of a surgery step.

Note that due to the finiteness of the prime decomposition and Lemma
2.9, all but a finite number of surgeries in M are trivial. It can furthermore
be shown that any essential 2-sphere in the initial time-slice has to give rise
to a surgery in finite time. Therefore, after some finite time, all surgeries
must be trivial and all components must be prime.

Concerning Question (2), the convergence of the metric as t → ∞ was
further analyzed by Lott [Lot07, Lot10], under additional curvature and
diameter assumptions.

Theorem 4.1 (Lott). Suppose that |Rmt| < Ct−1 and diamtMt < C
√
t

for large t (this implies finiteness of surgeries). Then each component of Mt

contains a single piece in its geometric decomposition and, depending on the
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type of this piece, the rescaled metric t−1gt converges to a hyperbolic metric
or collapses to a lower dimensional space. After passing to the universal
cover, the metric converges to a homogeneous expanding soliton metric in
the pointed Cheeger-Gromov sense. The type of this limit agrees with the
geometric type of M , except for the case SL(2,R), in which the limit is
H

2 × R.
In [LS14], a similar characterization was achieved under an additional

symmetry assumption.
Theorem 4.2 (Lott-Sesum). Suppose that M contains a single piece

in its geometric decomposition and suppose that (M, g) is either a warped
product of a circle over a 2-dimensional space or it admits a local isometric
torus action. Then the flow either goes extinct in finite time, or it is free of
surgeries and the same conclusions as in Theorem 4.1 hold.

In [Bam18e, Bam18a, Bam18b, Bam18c, Bam18d], the author
showed finiteness of the surgeries in the general case and obtained an optimal
asymptotic curvature bound (see also [Bam17] for a discussion of a more
basic case):

Theorem 4.3 (Bamler). Let M be a Ricci flow with surgery and suppose
that the surgery function δ(t) is chosen sufficiently small. Then M has only
finitely many surgeries. So there is a time T ≥ 0 after which the flow is given
by a classical Ricci flow (M, (g(t))t∈[T,∞)). Moreover we have |Rmt| < Ct−1

for all t ≥ T .
Note that the smallness condition on δ(t) is qualitatively similar to

the bound required to make the surgery construction possible (see The-
orem 2.10). So this condition is not very restrictive. Also note that the
asserted curvature bound has the optimal decay, as it is realized in the hy-
perbolic case.

Theorem 4.3 reduces the study of the long-time asymptotics of Ricci
flows with surgery to the study of classical Ricci flows with |Rmt| <
Ct−1. So if M has trivial geometric decomposition, then it suffices to show
that diamtM < C

√
t, which would allow us to apply Theorem 4.1 in or-

der to obtain a complete characterization. In general, however, we have
lim supt→∞ t−1/2 diamtM = ∞.

The proof of Theorem 4.3 relies on a number of geometric, topolog-
ical and analytic observations. The main goal is to obtain the estimate
|Rmt| < Ct−1 for large t; this bound immediately implies the finiteness
of the surgeries. The key estimate is that a bound of this form holds on
Mthick

t and in regions of Mthin
t where the metric is collapsed along incom-

pressible fibers. A topological analysis of the collapse on Mthin
t (compare

with Assertion (c) of Theorem 2.13), yields that the desired curvature bound
holds everywhere, except possibly on a finite set of pairwise disjoint embed-
ded solid tori ≈ D2 × S1, where the metric is collapsed along compressible
fibers. The main part of the proof is aimed at understanding the evolution
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Figure 3. Schematic depiction of the metric g(t) at large
times t. The metric is collapsed along 2-tori in the shaded
regions and along circles in the white regions. The 2-tori may
not all belong to a geometric decomposition. The dark shaded
region denotes the thick part Mthick

t , which is nearly hyper-
bolic.

of these solid tori. It is shown that these solid tori have bounded diameter,
from which one can deduce the desired curvature bound.

Theorem 4.3 implies that the collapse in Mthin
t occurs at scale rx = c

√
t

and under 2-sided curvature bounds, as opposed to only lower curvature
bounds (compare with Assertion (c) of Theorem 2.13). Therefore, the theory
of Cheeger-Fukaya-Gromov [CFG92] is directly applicable to the rescaled
metric t−1gt. This allows us, for example, to rule out collapses along spherical
fibers. Combining this with arguments that were developed for the proof of
Theorem 4.3, we arrive at the following characterization of the thin part (for
a more detailed statement see [Bam18e, Theorem 1.4]).

Theorem 4.4 (Bamler). As t → ∞, the rescaled metric t−1gt on the thin
part either collapses to a point or it collapses locally along incompressible
2-tori or circle fibers. There is a finite subset of these torus fibers that
constitutes a geometric decomposition of the underlying manifold. Any 2-
dimensional pointed Gromov-Hausdorff limit as t → ∞ is a smooth orbifold
of finite volume (possibly with cusps). Compare with Figure 3.

A more precise characterization of the thin part would be desirable.
For further questions and conjectures in this direction see [Bam18e]. We
describe one particularly interesting behavior that we presently cannot ex-
clude. Consider the case in which M = Σ2×S1, where Σ2 denotes a surface
of genus 2. Assume that the rescaled metric t−1gt remains close to a Carte-
sian product of two metrics gΣ2

t , gS1

t , where gΣ2
t is hyperbolic. Then it may a

priori happen that gΣ2
t degenerates and converges to two cusped hyperbolic

metrics on a punctured torus. In this case the rescaled metric t−1gt would
collapse along 2-tori in a region that connects these two cusps. These torus
fibers would give rise to a JSJ-decomposition whose pieces are diffeomorphic
to a Cartesian product of a punctured torus with S1; such a decomposition is
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geometric, however not minimal. It remains an interesting question whether
such a behavior can occur.

5. Singular Ricci flows
Unfortunately, a Ricci flow with surgery, as described in Subsection 2.2,

is not a canonical object, because its construction depends on a number of
auxiliary parameters, such as:

• The surgery scale δr of the cross-sectional 2-spheres Σj along which
the almost-singular part is excised (compare with (2.3)).

• The precise position and number of these 2-spheres.
• The standard cap metric that is placed on the 3-disks which are

attached to the non-singular part during a surgery.
• The method used to interpolate between this metric and the metric

on the nearby necks.
Different choices of these parameters may influence the future development
of the flow significantly (as well as the space of future surgery parameters).
Hence a Ricci flow with surgery is not uniquely determined by its initial
metric.

This disadvantage was already recognized by Perelman in both of his
ground breaking papers. Perelman conjectured that there should be another
flow, in which surgeries are effectively carried out at an infinitesimal scale,
or which in other words “flows through singularities”. His conjecture was
recently resolved by Lott, Kleiner and the author [KL17, BK17b]. In the
following, we will first describe the construction of such a flow and then the
unique and continuous dependence on its initial data.

5.1. Existence and Construction. In [KL17], Kleiner and Lott in-
troduced a certain class of singular Ricci flows, which were a natural can-
didate for Perelman’s conjecture (see also [ACK12] for earlier work in the
rotationally symmetric case).

Theorem 5.1 (Kleiner, Lott). Let (M, g) be a compact Riemannian 3-
manifold. Then there is a singular Ricci flow M whose initial time-slice
(M0, g0) is isometric to (M, g).

A singular Ricci flow is described by a spacetime 4-manifold and time-
slices are given by the level sets of a time-function (see Figure 4). It can
be thought of as an analogue of other singular geometric flows, such as the
Brakke flow or the level set flow for mean curvature flow, however, there are
some important differences, which we will discuss later. Let us now give a
more precise definition of a singular Ricci flow. To do this, we first need to
define a broader class of flows, called Ricci flow spacetimes.

Definition 5.2 (Ricci flow spacetime). A Ricci flow spacetime is a tuple
(M, t, ∂t, g), often abbreviated by M, that consists of the following data:
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Figure 4. Illustration of a singular Ricci flow. The arrows
indicate the time-vector field ∂t.

(1) A smooth 4-manifold M with boundary, called the spacetime man-
ifold.

(2) A smooth time-function t : M → [0,∞). Its level sets Mt := t−1(t)
are called time-slices. We require that the initial time-slice is the
only boundary component of M, i.e. ∂M = M0.

(3) A smooth time-vector field ∂t on M such that ∂t t = 1. Its maximal
trajectories are called worldlines.

(4) A smooth inner product field g on ker(dt) ⊂ TM, which induces
a Riemannian metric gt on every time-slice Mt and which satisfies
the Ricci flow equation

L∂tg = −2Ric(g).

Here Ric(g) denotes the tensor that restricts to the Ricci curvature
of gt on each time-slice Mt.

A classical Ricci flow or a Ricci flow with surgery can be converted into
a Ricci flow spacetime as follows: If (M, (g(t))t∈[0,T )) is a classical Ricci flow,
then we let M := M× [0, T ) and let t and ∂t be the projection and standard
vector field induced by the second factor. The metric g is defined to be the
pullback of g(t) under the projection Mt = M × {t} → M for any t. Note
that the worldlines of M are of the form t �→ (x, t+ t0).

Next, consider a Ricci flow with surgery M consisting of Ricci flows (Mi,
(gi(t))t∈[Ti−1,Ti]). As described in the last paragraph, we can convert each
Ricci flow into a Ricci flow spacetime on Mi = Mi × [Ti−1, Ti]. Using the
(isometric) transition maps φi : (U

−
i , gi(Ti)) → (U+

i , gi+1(Ti)) (see (2.4)), we
can glue these spacetimes together and construct the spacetime manifold:

M :=
(
M1 × [0, T1] ∪φ1 M2 × [T1, T2] ∪φ2 M3 × [T2, T3] ∪φ3 . . .

)
\ S,
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where
S :=

⋃
i

(
(Mi \ U−

i ) ∪ (Mi+1 \ U+
i )

)
× {Ti}

denotes the set of surgery points, i.e. the set of points that are removed
or added during a surgery step. Then M is a manifold with boundary and
the time functions t, time vector fields ∂t and inner products g on each Mi

extend to smooth objects on all of M. The resulting object (M, t, ∂t, g) is
called a Ricci flow spacetime associated to M.

Note that the time-slices (Mt, gt) are isometric to (Mi, gi(t)) for any
non-surgery time t ∈ (Ti−1, Ti) and to (U−

i , gi(Ti)) ∼= (U+
i+1, gi(Ti)) whenever

t = Ti. So, by continuous extension, the associated Ricci flow spacetime M
encodes the same information as the original Ricci flow with surgery M.

Next, we introduce two important properties of Ricci flow spacetimes.
The first is the canonical neighborhood assumption, whose definition is anal-
ogous to the classical definition.

Definition 5.3 (Canonical neighborhood assumption for Ricci flow
spacetimes). A Ricci flow spacetime M is said to satisfy the ε-canonical
neighborhood assumption at scales (r1, r2) if the same is true for each time-
slice (Mt, gt) (see Definition 2.7).

For the second property, note that given any Ricci flow spacetime, we can
easily produce a new Ricci flow spacetime by removing a closed set of points.
The following notion of completeness limits or excludes such constructions.

Definition 5.4 (Completeness). A Ricci flow spacetime M is said to
be r0-complete for some r0 ≥ 0 if the following holds: Consider a path
γ : [0, s0) → M such that infs∈[0,s0) ρ(γ(s)) > r0 and such that:

(1) The image γ([0, s0)) lies in a single time-slice Mt and the length
of γ, measured with respect to the metric gt is finite or

(2) γ is a trajectory of ∂t or of −∂t.
Then the limit lims↗s0 γ(s) exists.

We can now define the main object from Theorem 5.1.

Definition 5.5 (Singular Ricci flow). A singular Ricci flow is a Ricci
flow spacetime M with the following two properties:

(1) It is 0-complete.
(2) For any ε > 0 there is a continuous positive function r(t) such that

M satisfies the ε-canonical neighborhood assumption below scale
r(t) at each time t.

We remark that in most cases property (2) can be simplified:

Lemma 5.6. If the initial time-slice (M0, g0) is complete and has bounded
curvature, then we only need to require assumption (2) for ε = εcan, where
εcan > 0 is some universal constant.
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An interesting example of a singular Ricci flow is detailed in [ACK12].
In this example, M0 is a rotationally symmetric dumbbell as sketched in
Subsection 2.1. The corresponding singular Ricci flow remains rotationally
symmetric and develops a non-degenerate neckpinch with subsequent reso-
lution at infinitesimal scale. By this we mean the following: There are times
0 < T1 < T2 such that M restricted to the time-interval [0, T1) is given by
a classical Ricci flow g1(t) on S3 that becomes singular at time T1, while
M restricted to (T1, T2) is given by a classical Ricci flow g2(t) on two dis-
joint copies of S3 that goes extinct at time T2. As t ↗ T1, the diameter
of the equatorial 2-sphere of S3 measured with respect to the metric g1(t)
converges to zero. On the complement of this 2-sphere, g1(t) converges to
a smooth metric that is isometric to (MT1 , gT1). So the Gromov-Hausdorff
limit of (S3, g1(t)) is isometric to (MT1 , gT1) after removing a single singular
point. On the other hand, as t ↘ T1, the metric g2(t) converges to a smooth
metric on the complement of two points (one in each copy of S3), which
is also isometric to (MT1 , gT1). So M is diffeomorphic to a 4-disk with 3
punctures; one puncture for the non-degenerate neckpinch at time T1 and
two punctures for the extinction of the two copies of S3. The time-function
t is equivalent to a Morse function on a 4-disk of indices 2, 2 and 3 — after
removing the critical points.

Let us digest the definition of a singular Ricci flow a bit more. It is tempt-
ing to think of the time function t as a Morse function, where critical points
correspond to infinitesimal surgeries. However, there are two important dif-
ferences: First, by definition t cannot have critical points since ∂t t = 1.
In fact, a singular Ricci flow is a completely smooth object. The “singular
points” of the flow are not part of M, but can be obtained after a metric
completion; however, such a construction does not seem to be very useful in
practice. Second, it is currently unknown whether the set of singular times,
i.e. the set of times whose time-slices are incomplete, is discrete. At present,
it is only known that this set has Hausdorff dimension ≤ 1

2 [KL18].
Similar notions of singular flows have been developed for mean curva-

ture flow, such as the level set flow and Brakke flow. However, these notions
characterize the flow at singular points via barrier and weak integral condi-
tions, respectively. This is possible, in part, because a mean curvature flow
is an embedded object and its singular set has an analytic meaning. In con-
trast, the definition of a singular Ricci flow only characterizes the flow on
its regular part. In lieu of a weak formulation of the Ricci flow equation on
the singular set, we have to impose the canonical neighborhood assumption,
which serves as an asymptotic characterization near the incomplete ends.

Let us finish this subsection by sketching the main idea of the construc-
tion of a singular Ricci flow in [KL17]. In brief terms, a singular Ricci flow
arises as a subsequential limit of a sequence of Ricci flows with surgery, in
which surgeries are performed at smaller and smaller scales. Therefore, a
Ricci flow with surgery can be seen as an approximation of a singular Ricci
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flow. To make this more precise, let us first rephrase Theorem 2.10 in the
language of Ricci flow spacetimes.

Theorem 5.7. Let (M, g) be a compact Riemannian manifold and as-
sume that r, δ : [0,∞) → R+ are chosen as in Theorem 2.10. Assume that
supt δ(t)r(t) ≤ r0. Then there is a Ricci flow spacetime M such that for
some universal constant C:

(a) (M0, g0) is isometric to (M, g).
(b) M is Cr0-complete.
(c) At any time t the ε-canonical neighborhood assumption holds at

scales (Cr0, r(t)).

Note we have introduced the lower bound Cr0 in Assertion (c) in order
to exclude points near surgery caps, which have scale ≤ Cδ(t)r(t).

Recall that the function r(t) in Theorem 2.10 is independent of the choice
of the surgery scale function δ(t), as long as δ(t) ≤ δ(t). This allows us to
construct a sequence of Ricci flow spacetimes for which completeness and
the canonical neighborhood assumption hold at smaller and smaller scales.
Passing to a subsequence and taking a limit produces a singular Ricci flow:

Theorem 5.8 (Kleiner, Lott [KL17]). Consider a sequence δj : [0,∞) →
R+ of continuous functions such that δj → 0 uniformly and denote by Mj the
corresponding Ricci flow spacetimes from Theorem 5.7 for the same initial
condition (M, g). Then, after passing to a subsequence, we have convergence
Mj → M∞, where the latter is a singular Ricci flow with initial time-slice
isometric to (M, g).

The convergence Mj → M∞ is understood as follows: If all flows
Mj , M∞ are non-singular, then the convergence is equivalent to Hamil-
ton’s convergence of Ricci flows [Ham95]. In the singular case write Mj =

(Mj , tj , ∂j
t , g

j) and view the tensor field gj as a degenerate Riemannian
metric on the 4-manifold Mj , with a nullspace generated by ∂j

t . So
g̃j := (dtj)2 + gj

is a (possibly incomplete) Riemannian metric on Mj . Using this new met-
ric, the convergence Mj → M∞ is equivalent to smooth Cheeger-Gromov
convergence (Mj , g̃j) → (M∞, g̃∞).

5.2. Uniqueness and continuity. Note that in Kleiner and Lott’s
construction a singular Ricci flow only arises as a subsequential limit of
Ricci flows with surgery (see Theorem 5.8). A priori, there could be many
subsequences, leading to different limiting singular Ricci flows. Recently,
Kleiner and author showed that this is not the case:

Theorem 5.9 (Bamler, Kleiner [BK17b]). Any singular Ricci flow M
is uniquely determined by its initial data (M0, g0), up to isometry.

This result fully resolved Perelman’s conjecture:
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Corollary 5.10. For every compact Riemannian 3-manifold (M, g)
there is a unique, singular Ricci flow M with initial time-slice (M0, g0) =
(M, g).

Moreover, it showed:

Corollary 5.11. In Theorem 5.8 we have convergence Mj → M∞

without passing to a subsequence.

We remark that Theorem 5.9 even holds in the non-compact case. More-
over, a slightly more technical wording of Theorem 5.9 even holds for singular
initial data.

A byproduct of the work [BK17b] is the following Stability Theorem,
which states that two singular Ricci flows are close if their initial data are
sufficiently close. This theorem will be the cornerstone of the Continuity
Theorem 5.13 below, which we will exploit in Section 6.

Theorem 5.12. Let M be a singular Ricci flow with compact initial
data and choose ε, r, T > 0. Then there is a δ = δ(M, ε, r, T ) > 0 such that
the following holds. If M′ is another singular Ricci flow whose initial time-
slice (M′

0, g
′
0) is (1 + δ)-bilipschitz to g0, then M and M′ are ε-close above

scale ε and up to time T . By this we mean that there is a (1 + ε)-bilipschitz
embedding

φ : M ⊃ {ρ > ε, t < T} −→ M′

whose image contains the set {ρ > cε, t′ < T} ⊂ M′, for some universal
constant c > 0.

We remark that there is an even more general version of this theorem,
called the Strong Stability Theorem [BK17b, Theorem 1.7], in which δ is
independent of M and in which both flows M, M′ are only assumed to be
δ-complete. So, in other words, even if the Ricci flow equation was violated
below scale δ, then we still obtain stability.

Theorem 5.12 implies the following Continuity Theorem, which we will
only state in a vague form; for more details see [BK19b, Section 4].

Theorem 5.13 (Bamler, Kleiner [BK19b]). Let M be a manifold and
for any metric g0 on M consider the singular Ricci flow Mg0 with initial
data (M, g0). Then Mg0 “depends continuously” on g0.

This continuity should be understood as follows. Let Met(M) be the
space of smooth Riemannian metrics on M , equipped with the C∞-topology.
For each g0 ∈ Met(M) write Mg0 = (Mg0 , tg0 , ∂g0

t , gg0). Then we can find a
topology on the disjoint union

⊔
g0∈Met(M)Mg0 such that the natural pro-

jection
⊔

g0∈Met(M)Mg0 → Met(M) is a topological submersion. Moreover,
we can find a lamination structure on

⊔
g0∈Met(M)Mg0 compatible with this

topology, whose leaves equal Mg0 and with respect to which the objects tg0 ,
∂g0
t , gg0 vary continuously in the C∞-topology.
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Lastly, let us remark that uniqueness has been shown to be false for
weak solutions to the mean curvature flow in dimensions n ≥ 3; see [Ilm98,
Whi02].

6. Topological applications
In the following, we will describe two topological applications that arise

from our improved understanding of singular Ricci flows, more specifically
from the Continuity Theorem 5.13. The first application concerns the classi-
fication of the homotopy types of the diffeomorphism groups of 3-manifolds.
The second application concerns the contractibility of spaces of metrics with
positive scalar curvature.

6.1. Topology of diffeomorphism groups and the Generalized
Smale Conjecture. Let M be a manifold and denote by Diff(M) the group
of self-diffeomorphisms equipped with the C∞-topology. Pick a Riemannian
metric g on M . We have a natural injection of the isometry group:
(6.1) Isom(M, g) −→ Diff(M).

It will turn out that in many cases this map is a homotopy equivalence if g
is chosen to be sufficiently symmetric.

The first result of this type was obtained by Smale [Sma59], who ana-
lyzed this question in dimension 2:

Theorem 6.1 (Smale). If (M, g) is isometric to the round 2-sphere, then
(6.1) is a homotopy equivalence. Therefore Diff(S2) � O(3).

In dimension 3 we have:

Generalized Smale Conjecture (GSC). Suppose that (M, g) is
closed and has constant curvature K ≡ ±1. Then (6.1) is a homotopy equiv-
alence.3

The case M = S3 (K ≡ 1) is known as the Smale Conjecture and
was resolved by Hatcher [Hat83]; see also earlier work by Cerf showing
that Diff(S3) has exactly two connected components [Cer64d, Cer64a,
Cer64b, Cer64c]. In the K ≡ 1 case, the GSC was also resolved for lens
spaces with the exception of RP 3, as well as for prism spaces and quater-
nionic spherical space forms [Iva82, Iva84, HKMR12]. The GSC, how-
ever, remained open for RP 3, as well as for the tetrahedral, octahedral and
icosahedral families of spherical space forms. In the case K ≡ −1, the GSC
was resolved by Hatcher and Ivanov [Hat76, Iva76] (in the Haken case)
and Gabai [Gab01] (in the general case). Note that in the hyperbolic case
Isom(M, g) is discrete due to Mostow rigidity. The proofs of all these results
were purely topological and relied on Hatcher’s result in the case M = S3.

Using singular Ricci flow, Kleiner and the author [BK17a, BK19b]
used singular Ricci flows to give a unified proof of the GSC in all cases.

3For simplicity, we have omitted the K ≡ 0 case. See [Iva79] for more details.
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Theorem 6.2 (Bamler, Kleiner). The Generalized Smale Conjecture is
true.

The proof of Theorem 6.2, as detailed in [BK19b], is independent of
Hatcher’s work on the Smale Conjecture and therefore it gives us an alter-
native proof in the S3-case. The same techniques also give a new proof of
the following theorems [BK19b], which have previously been obtained by
Hatcher [Hat81].

Theorem 6.3. Diff(S2 × S1) is homotopy equivalent to O(2) × O(3) ×
ΩO(3), where ΩO(3) denotes the loop space of O(3).

Theorem 6.4. Diff(RP 3#RP 3) is homotopy equivalent to O(1)×O(3).

Before continuing, let us point out the difference between the two papers
[BK17a, BK19b], which both address Theorem 6.2. The paper [BK17a]
contains a relatively short partial proof (about 30 pages). However, this
proof fails in the RP 3-case and it still relies on Hatcher’s resolution of the
Smale Conjecture. By contrast, the paper [BK19b] is much longer and more
technical, but can handle the full GSC and does not rely on Hatcher’s result.

We will now convey some ideas of the proof of Theorem 6.2 and, in partic-
ular, show how the study of diffeomorphism groups relates to the continuity
of singular Ricci flows, as stated in Theorem 5.13. For this purpose, we will
mainly focus the shorter proof in [BK17a], which is more instructional. To-
ward the end of this subsection, we will briefly describe the problems that
arise in the general case and sketch how they are resolved.

The basis of the proof Theorem 6.2 in both approaches is the follow-
ing elementary lemma, which reduces the GSC to the study of the space
of constant curvature metrics. Denote by Met(M) the space of Riemann-
ian metrics on M and by MetK≡±1(M) the subset of metrics of constant
curvature K ≡ ±1 (both equipped with the C∞-topology). Then:

Lemma 6.5. Suppose that (M, g) is closed and has constant curvature
K ≡ ±1. Then (6.1) is a homotopy equivalence if and only if MetK≡±1(M)
is contractible.

Proof. This follows via a long-exact sequence argument applied to the
fiber bundle Diff(M) → MetK≡±1(M), φ �→ φ∗g, whose fibers are homeo-
morphic to Isom(M, g). �

So it remains to show that MetK≡±1(M) is contractible. In order to
illustrate the proof of this fact, we will first sketch a proof in dimension 2
(i.e. of Theorem 6.1) using Ricci flow. This proof is different from Smale’s
original proof.

Proof of Theorem 6.1. We need to show that MetK≡1(S
2) is con-

tractible. To see this, consider the map
(6.2) Met(S2) −→ MetK≡1(S

2),
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sending each g0 to the limit of (T − t)−1g(t) as t ↗ T , where (g(t))t∈[0,T ) is
a Ricci flow with initial condition g(0) = g0. This limit exists and has K ≡ 1
by Theorem 2.1. The map (6.2) is a continuous retraction. Therefore, since
Met(S2) is contractible, so is MetK≡1(S

2). �

Let us now try to replicate this proof in dimension 3. Our goal will be
to define a continuous retraction of the form

(6.3) Met(M) −→ MetK≡±1(M)

Let g0 ∈ Met(M) and consider the solution of the singular Ricci flow Mg0

with initial time-slice (M, g0) (see Corollary 5.10); recall that the classical
Ricci flow starting from g0 will not be of much use in dimension 3, as it
develops a non-round singularity in finite time.

We now need to extract a constant curvature metric on M from M. This
step will be more difficult, since the topology of the time-slices depends on
time. To explain how we get around this issue, we will have to introduce some
basic terminology on the geometry of Ricci flow spacetimes. Recall that a
worldline in a Ricci spacetime M is a maximal trajectory of the time-vector
field ∂t; so a worldline corresponds to a non-moving point. We will now call
a point x ∈ M good or bad depending on whether the worldline through
x intersects the initial time-slice M0 or not. In the rotationally symmetric
example of a non-degenerate neckpinch in Subsection 2.1, each time-slice
Mt contains exactly two bad points for t ∈ (T1, T2) (one per S3) and none
for t ∈ (0, T1). For any time t we can define a map φt : Mgood

t → M0

mapping each good point x to the intersection of the worldline through
x with the initial time-slice M0. If M = M × [0, T ) is given by a classical
Ricci flow on a manifold M , then this map is nothing else than the projection
M × {t} → M × {0}. In the general case, it can be seen easily that φt is a
smooth diffeomorphism onto its image.

The following is true (see Figure 5):

Theorem 6.6. Let M be a singular Ricci flow. Then
(a) The set of bad points in any time-slice Mt is discrete.
(b) Suppose that M is a spherical space form other than S3, RP 3. Then

there are two times 0 < T1 < T2 with the following property: For
any time t ∈ (T1, T2) there is a unique component Ct ⊂ Mt that
is diffeomorphic to M . The flow restricted to ∪t∈(T1,T2)Ct is given
by a classical Ricci flow that converges modulo rescaling to a round
metric. Consequently, the image

U := φt(Ct ∩Mgood
t ) ⊂ M

does not depend on t ∈ (T1, T2) and we have smooth convergence

(6.4) (T2 − t)−1(φt)∗gt −→ g on U
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Figure 5. Illustration of Theorem 6.6. The bold vertical line
through x is a worldline. The union

⋃
t∈(T1,T2)

Ct is shaded
dark.

as t ↗ T2. The Riemannian manifold (U, g) is isometric to a punc-
tured round sphere where the punctures correspond to the bad points
of Ct.

(c) If M is a hyperbolic manifold, then we have a similar character-
ization, where T2 = ∞ and we have convergence t−1(φt)∗gt → g
instead of (6.4).

Note that we had to exclude the cases M ≈ S3,RP 3 in Theorem 6.6(b)
due to the possibility of a singularity modeled on a Z2-quotient of the peanut
solution (see the footnote in Subsection 2.1) — a solution that goes extinct
in finite time, but does not converge to a round sphere modulo rescaling.

Let us now assume that M �≈ S3,RP 3. We define the set of partially de-
fined metrics PartMetK≡±1(M) to be the set of pairs (U, g), where U ⊂ M
is open and g is a metric of constant curvature K ≡ 1 such that (U, g)
is isometric to a punctured constant curvature metric on M . We equip
PartMetK≡±1(M) with the C∞

loc-topology. Theorem 6.6 induces a canoni-
cal map
(6.5) Met(M) −→ PartMetK≡±1(M), g0 �−→ (U, g).

Using the continuous dependence of singular Ricci flows on their initial data
(see Theorem 5.13) or using the Stability Theorem (Theorem 5.12) one can
easily show that this map is continuous.

In the last step in the proof of Theorem 6.2 an obstruction theory argu-
ment and Hatcher’s resolution of the Smale Conjecture are used to construct
a map
(6.6) PartMetK≡±1(M) −→ MetK≡±1(M), (U, g) �−→ g̃,
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where g̃ is essentially an extension of g onto the complement M \ U . Com-
posing the maps (6.5) and (6.6) yields the desired retraction (6.3), finishing
the proof of Theorem 6.2 if M �≈ S3,RP 3.

Finally, let us briefly digest the argument above and discuss the difficul-
ties that have to be overcome in the general case in [BK19b]. As mentioned
above, in the cases M ≈ S3,RP 3 our argument breaks down, because the
flow may develop non-round limits. Moreover, the obstruction theory ar-
gument used to construct (6.6) relies on Hatcher’s resolution of the Smale
Conjecture. Lastly, in the case M ≈ S3 we face the further complication that
we cannot uniquely characterize the component Ct ⊂ Mt in Theorem 6.6(b)
by its topology, because for almost all times t all components of Mt are
spheres.

So in order to prove Theorem 6.2 for all spherical space forms and with-
out relying on Hatcher’s resolution of the Smale Conjecture, we have to
revise our construction of (6.3) in such a way that every component that is
separated by the flow is treated equally and fully until its extinction time.
This is achieved in [BK19b] using a new topological notion called a partial
homotopy at time T — among other things. A partial homotopy can be
viewed as a hybrid between a continuous family of singular Ricci flows (for
large T ) and a homotopy in Met(M) (for T = 0). Partial homotopies can be
modified via certain moves, which if applied correctly, allow us to reduce the
parameter T by a small and uniform amount. By an induction argument,
this implies the existence of partial homotopies at time 0 starting from a
family of singular Ricci flows. These partial homotopies in turn imply the
existence of the necessary homotopies in Met(M), allowing the construction
of the map (6.3) via an obstruction theory argument.

6.2. Contractibility of the space of metrics with positive scalar
curvature. Recall that M is assumed to be a compact, orientable 3-manifold
and denote again by Met(M) the space of Riemannian metrics on M equipped
with the C∞-topology. Let MetPSC(M) ⊂ Met(M) the subspace of metrics
with positive scalar curvature (PSC). In [BK19b], Kleiner and the author
showed:

Theorem 6.7 (Bamler, Kleiner). MetPSC(M) is either contractible or
empty.

This theorem was inspired by the work of Marques [Mar12], who showed
that MetPSC(M) is path connected — using Ricci flow with surgery. The
analogous statement in dimension 2 — the contractibility of MetPSC(S

2) —
can be proven using the uniformization theorem, or by Ricci flow. Starting
with the famous paper of Hitchin [Hit74], there has been a long history of
results based on index theory, which show that MetPSC(M) has non-trivial
topology when M is high dimensional; we refer the reader to the survey
[Ros07] for details. Theorem 6.7 provides the first examples of manifolds of
dimension ≥ 3 for which the homotopy type of MetPSC(M) is completely
understood.
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The proof of Theorem 6.7 relies on two basic facts: first, the PSC-
condition is preserved by the (singular) Ricci flow and second, every singular
Ricci flow on a manifold admitting a PSC-metric eventually acquires positive
scalar curvature near its extinction time. Let us provide some more details.
Our goal is to show that πk(MetPSC(M)) = 1 for any k ≥ 0. Since Met(M) is
contractible, this is equivalent to showing that πk+1(Met(M),MetPSC(M))=
1 for any k ≥ 0. For this purpose, consider a continuous map α : Dk+1 →
Met(M) with α(∂Dk+1) ⊂ MetPSC(M). This map can also be viewed as a
family of metrics (gs = α(s))s∈Dk+1 on M , where gs is PSC for all s ∈ ∂Dk+1.
To understand the main strategy of the proof let us first make the (very re-
strictive) simplifying assumption that M ≈ S3 and that every metric gs

can be evolved into a non-singular Ricci flow of the form (gst )t∈[0,T s) that
converges to the round metric modulo rescaling, which of course is a PSC-
metric. By reparameterizing the time parameter and rescaling the metric
appropriately, the family of Ricci flows (gst )s∈Dk+1,t∈[0,T s) can be converted
into a homotopy of the form β : Dk+1 × [0, 1] → Met(M) with the following
properties:

(1) β(·, 0) = α.
(2) β(s, t) ∈ MetPSC(M) for all s ∈ ∂Dk+1 and t ∈ [0, 1], because

β(s, 0) = α(s) ∈ MetPSC(M) and the PSC-condition is preserved
by the flow.

(3) β(s, 1) ∈ MetPSC(M) for all s ∈ Dk+1, because the flow eventually
acquires positive scalar curvature.

In other words, β is a nullhomotopy of α within (Met(M),MetPSC(M)),
showing that πk(Met(M),MetPSC(M)) = 1, as desired.

Lastly, let us briefly discuss the general case, in which the simplifying
assumption is violated. In this case, Theorem 5.13 implies that the family
of metrics (gs)s∈Dk+1 can be evolved into a continuous family of singular
Ricci flows (Ms)s∈Dk+1 with initial data (M, gs). These flows now need to
be converted into a nullhomotopy of the form β : Dk+1 × [0, 1] → Met(M)
that still satisfies Properties (1)–(3). During this conversion process we are
confronted with similar problems as described in the end of Subsection 6.1,
which can be overcome with similar techniques, such as the use of partial
homotopies.
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