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Abstract. Professor Chern Shiing-Shen contributed to Geometry in
many different ways, proving important results and, on many occasions,
providing a view on how the field could move forward. One of his articles
that both presented a remarkable synthesis of new developments and
offered his vision for future ones is “The Geometry of G-structures”
published in 1966.

In the present text, I propose an analysis of the article’s main fea-
tures. It also contains a testimony by Chern himself on how some of his
main contributions came about and his view on what may come next,
that proved remarkably correct.

Introduction

For this lecture given on the occasion of the celebration of S.S. Chern’s
110th birthday, I found it appropriate to discuss his article “The Geometry
of G-Structures” (cf. [19]) that appeared in 1966, i.e. 55 (= 110

2 ) years ago.
This article has been a landmark contribution to the development and the
recognition of Differential Geometry as a major field.

One should be aware that the very central role that the field now enjoys
in Mathematics and Theoretical Physics is the result of a progressive trans-
formation of the internal architecture of Mathematics that developed all
along the second half of the century. Among others, giants such as Chern,
Sir Michael Atiyah and Isadore M. Singer greatly contributed to this
transformation. Note that, at the time, Chern was also interested in other
topics as the announcement of a lecture he gave at IHÉS in 1964 shows: it
was entitled “Minimal Surfaces Embedded in n-space”.

Before looking at the article in some more detail, I would like to draw
a parallel with another comprehensive document produced this one by Élie
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Cartan, his “Notice des travaux scientifiques” (cf. [11]). It was written in
1931 in the context of Cartan’s candidacy to the Académie des Sciences de
Paris. It is well known that Chern often presented Élie Cartan as his main
mentor as far as his approach to Geometry goes. The 33-pages long obituary
of Élie Cartan that Chern and Claude Chevalley published (cf. [20]) in
the Bulletin of the American Mathematical Society is a remarkable tribute
to Élie Cartan underlying the importance of his work.

Coming back to the very special historical moments that the 1940s and
the 1950s have been in the history of Mathematics, one needs to emphasise
the major impact the introduction of new concepts, such as fibre bundles,
had on Geometry, as it forced to rethink a number of basic approaches and to
develop new tools. On several occasions, Chern stated unambiguously that
Élie Cartan understood Fibre Bundle Theory before it was formally defined
by Hasler Whitney (cf. [46], [47] and [48]) and Charles Ehresmann (cf.
[23], [24] and [25]) among others. The book [43] became later a standard
reference on this topic and the synthesis by Daniel Bernard (cf. [5]) can
also be mentioned.

At the same time, the coming together of several branches of Mathe-
matics (Topology, Geometry, and the theory of several complex variables)
changed considerably the landscape of the field. This is something that
Chern’s article illustrates remarkably.

1. An overview of the article

Here is what Chern says about the topic of the article: “A unifying
idea is the notion of a G-structure, which is the modern version of a local
equivalence problem first emphasized and exploited in its various special cases
by Élie CARTAN.”

The article is an expanded version of an AMS Colloquium lecture Chern

gave back in 1960. Already in 1950, in the lecture entitled “Differential Ge-
ometry of Fibre Bundles” he gave at the International Congress of Mathe-
maticians in Harvard (cf. [17]) Chern develops a very complete view of the
impact the newly introduced Fibre Bundle Theory will have on Geometry.

In the first section of the article, he describes the general approach he
takes as follows: “Two general problems are of importance:

• I. Existence or nonexistence of certain structures on a manifold;
• II. Local and global properties of a given structure.”

Chern then specifies: “We will emphasize simple and concrete problems,
at the expense of generality.”

Here is the table of contents of the article:
(1) Introduction
(2) Riemannian structure
(3) Connections
(4) G-structure
(5) Harmonic forms
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(6) Leaved structure
(7) Complex structure
(8) Sheaves
(9) Characteristic classes

(10) Riemann-Roch, Hirzebruch, Grothendieck, and Atiyah-Singer the-
orems

(11) Holomorphic mappings of complex analytic manifolds (I. Compact
manifolds; II. Equidistribution)

(12) Isometric mappings of Riemannian manifolds
(13) General theory of G-structures
Let G be a Lie group. Here is what Chern says in Section 4 about G-

structures. He works with n-dimensional differentiable manifolds M . In this
context, there is a natural bundle to consider, namely the tangent bundle.
One can consider of course the vector bundle TM −→ M of tangent vectors
to M , or equivalently the principal Gln-bundle of linear frames, that we
denote by GlM −→ M . For G a subgroup of Gln, a G-structure on an n-
dimensional manifold is a reduction of the structure group of the tangent
bundle to G.

Here is what it means technically. Let M be a manifold with an atlas of
charts (Ui, x

i). The tangent bundle over M inherits a natural atlas of charts
(xi, X i) over TUi: at a vector v in TM , the (Xi(v)) are the components
of v in the natural basis (∂/∂xi). This construction also allows to trivialise
locally the bundle of linear frames GlM −→ M .

To reduce the tangent bundle of M to a group G means choosing a G-
subbundle of the bundle of linear frames GlM . Since G is a subgroup of Gln,
for any frame in M , one can consider its orbit under G.

In Section 4, Chern introduces examples of G-structures:
• An On-structure determines a Riemannian metric and vice-versa;
• When n = 2m, one can consider the subgroup GlmC of linear maps

that preserve the complex structure for an identification of R
2m

with C
m; a GlmC-structure is an almost complex structure;

• He discusses conformal structures and structures determined by
a connection, whose automorphism group is automatically a Lie
group;

• He also considers structures involving elements of contact of higher
order, e.g. in relation with projective geometry.

He makes a brief presentation of the equivalence problem. The general
problem of equivalence has been formulated as a problem on exterior differ-
ential systems of a certain type. In the real analytic case, Élie Cartan (cf.
[10]) and Masatake Kuranishi (cf. [34]) proved that, in a finite number of
steps, the system can be prolonged either to a system without solution or
to a system in involution, hence solvable.

He mentions two instances where the problem of equivalence is not
solved:
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(1) Almost complex structures, except for m = 2 by a theorem of
Paulette Libermann (cf. [36]);

(2) Symplectic structures; note that this is the only place in the article
where they are mentioned.

2. Riemannian structures

Example 3 in Section 4 deals with G = SO2(= S1). This is of course
the case of 2-dimensional Riemannian metrics on an oriented surface. If one
uses an angle α to parametrise the circle and if one introduces the 1-forms
φ1 and φ2 defined as:

φ1 = cosα θ1 + sinα θ2 ,

φ2 = − sinα θ1 + cosα θ2
for a coframe (θ1, θ2), one can uniquely determine a 1-form

π = dα+ lin. comb.(θ1, θ2)

by the conditions dφ1 = π ∧ φ2, dφ2 = −π ∧ φ1. Then the key formula is:
dπ = K φ1 ∧ φ2, where K is the Gaussian curvature.

It is indeed inspired by this transgression formula that Chern found
his new proof of the Gauss-Bonnet formula (cf. [15]) as he explained in the
interview he gave me at the AMS Summer Institute held at UCLA in July
19901 (cf [9] for the full text of the interview in French).

To my question:“When did you realise that you had put your hands on
something important?”, Chern replies: “Oh, right at the beginning. You see,
everything began with my proof of the Gauss-Bonnet formula. That year,
1943, I went to the Institute for Advanced Study in Princeton. There I met
André WEIL. He had just finished his article with Carl. B. ALLENDOERFER
on the Gauss-Bonnet formula (cf. [2]), and the way they cut a Riemannian
manifold into manifolds with boundary, glue them together and so on. André
told me: “why could not there be a direct proof?” I therefore considered the
simplest case, that of a surface, and I realised that, in this case the proof
was given by the transgression formula.”

To my comment: “By going to the frame bundle?”, Chern replies: “Yes,
and the transgression formula contains not only the proof of the Gauss-
Bonnet formula for surfaces with boundary, but also the proof of the The-
orema Egregium of Gauss. All this comes from this single formula. I was
pleased to have discovered that, even in the case of a 2-dimensional man-
ifold, this is something people like GAUSS and DARBOUX did not have. It
is Heinz HOPF who called the attention to the higher dimensional case: in
a survey article entitled “Differentialgeometrie und Topologische Gestalt”
published in the Jahresberichte der Deutschen Mathematiker Vereinigung,
he says that it is one of the most important and difficult problems of Dif-
ferential Geometry. In this case, one needs to transgress to the bundle of

1The video of the interview shot by Anthony Philips, finally entitled “If possible, do
nothing”, is available at https://www.youtube.com/watch?v=vConuqi5vT0.

https://www.youtube.com/watch?v=vConuqi5vT0
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unit vectors and not any more to the frame bundle. It took me some time to
master all this. Then, naturally, if one does something for the Euler class,
one should also do it for the Stiefel-Whitney classes. I had difficulties with
torsion classes, namely homology classes for which a multiple bounds. Soon,
I realised that one must complexify. Then things became much simpler (cf.
[16]). One should note that, at this time, the atmosphere in Princeton was
dominated by Topology; one did not speak of cochains but of relative cohomol-
ogy. It took some time for complex characteristic classes to become useful.
But I was very pleased with this proof of the Gauss-Bonnet theorem.

I should also mention that, while at the Institute, I showed the manuscript
to Hermann WEYL who congratulated me. Before that, I had written an ar-
ticle entitled “The Geometry of Isotropic Surfaces” that got published in the
Annals of Mathematics of which Hermann WEYL had been the rapporteur.
When I sent this article from China to LEFSCHETZ, who was then the editor-
in-chief of the Annals, I had received a letter saying “we got so many articles
that it would be good if you could withdraw yours”. I did not reply to this let-
ter, but about a month later I got another letter from him saying “your article
has been examined by a rapporteur who warmly recommended it, and we will
be pleased to publish it in the Annals”. The rapporteur wrote a long report
of almost ten pages, I think. After arriving in Princeton, one day Hermann
WEYL asked me: “CHERN, do you know who was the rapporteur of your arti-
cle?”. That was him. He had heard about this work. We had several contacts,
and WEYL appreciated a lot my proof of the Gauss-Bonnet formula.”

To my question: “All in all, you felt quite sure that you were on the right
track both because of your personal conviction and thanks to the reactions of
people around you?”, Chern’s reply is a clear “Yes.”

In Section 9 Chern discusses a systematic theory of characteristic classes.
He starts with the universal bundle theorem transferring the issue of classi-
fying G-bundles to the study of homotopy classes of mappings of a manifold
into the classifying space for G. One of the first questions he considers is
the determination of obstructions for the reduction of the structure group
of a bundle to a subgroup, a key question in the theory of G-structures.
He then looks at some examples, focusing in particular on the question of
existence of an almost complex structure on a manifold, mentioning other
obstructions of a cohomological nature.

He of course also discusses the expression of characteristic classes using
the curvature of a connection. He recalls the theorem of André Weil stating
that the cohomology class determined by the image of symmetric multilinear
functions on the Lie algebra of G, when substituting the curvature 2-form of
a G-connection, does not change. This has later been coined as the Chern-
Weil Theory (cf. [18]).

When applied to G = Um, this provides the curvature expression for
the Chern classes. When applied to G = SO2m Chern discusses some
divisibility properties in relation with the Euler class giving a new proof
of the Borel-Serre Theorem (cf. [6]) on the existence of almost complex
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structures on S2m, that leaves, besides the Riemann sphere S2, only S6 as
a sphere potentially bearing a complex structure.

It is worth pointing out that, in 1938, appeared in the Annals of Math-
ematics an article by Cornelius Lanczos (cf. [35]) who was considering
possible quadratic Lagrangians on 4-manifolds in an effort to generalise Gen-
eral Relativity. He noticed that a specific combination of the three natural
quadratic forms on the Riemann curvature tensor did not lead to any field
equations. A bad news for a physicist looking for a generalisation of the
Einstein equation! But a good news for mathematicians as this means that
this Lagrangian had the potential to give a topological invariant of the man-
ifold. It indeed provided the expression of the Euler characteristic that was
discovered some years later by Chern.

The notion of holonomy of a covariant derivative is (briefly) discussed in
Section 5 under the heading of harmonic forms. Chern considers a group
G which is a subgroup of SOn, hence for which there is natural Riemannian
metric attached to it. In the case G is the holonomy group of the Riemannian
connection, he is interested in the refinement in the real cohomology that
one can derive from its representation via harmonic forms. When applied to
G = Um, this leads to the Hodge decomposition of the cohomology, and to
consequences on the Betti numbers.

3. Complex structures

Section 7 is dedicated to the question of existence of a complex structure
on a manifold, “a nontrivial fact” as he says.

For this question too, he starts considering some examples, namely sub-
manifolds of the obvious complex manifolds C

m and CPm and also quo-
tients thereof. He discusses complex tori and Hopf manifolds, topologically
S1 ×S2m−1 that give examples of non algebraic complex manifolds. He also
discusses at length more complicated examples coming from blowing up a
known complex manifold or from ruled surfaces, recalling Hirzebruch?s re-
sult that S2×S2 has an infinite number of (inequivalent) complex structures
(cf. [30] and [31]).

The specific question of the existence of a complex structure on a man-
ifold is taken up further. The Newlander-Nirenberg theorem (cf. [37]) takes
care of the local theory provided the appropriate tensor measuring the
integrability of the candidate holomorphic distribution vanishes. Chern

stresses that, for manifolds admitting an almost complex structure, no gen-
eral method to solve the global problem is available. He continues saying:
“In this respect the question whether S6 has a complex structure remains
one of the most urgent problems on complex manifolds”. It is still an open
question!

He mentions that the example just announced by Antonius Van de Ven

(cf. [45]) uses the Riemann-Roch-Hirzebruch formula (cf. [29] and [3]) and
therefore is a consequence of the Atiyah-Singer Index Theorem (cf. [4]).
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Of course of equal importance is the “determination of all complex struc-
tures on a manifold”. Beyond the example of S2 × S2 discussed previously,
the rigidity of the projective spaces CPm for m = 2 or odd is mentioned
and also for manifolds for which the 1-dimensional cohomology with values
in the sheaf of germs of holomorphic vector fields vanishes. The very im-
portant question of structuring the moduli space of complex structures is
also touched upon with the mention of the work of Kunihiko Kodaira and
Donald Spencer (cf. [33]).

The question of moduli spaces of complex vector bundles, that will be-
come so important in the future not only in Mathematics but also in Theo-
retical Physics, is not discussed.

Many questions related to complex geometry are discussed in Section
8 entitled “Sheaves”. The section starts with general considerations on the
meaning of the cohomology with values in a sheaf with de Rham?’s theo-
rem (cf. [42]) as an example. He states that “it is in complex manifolds that
the sheaf theory is most useful” starting with the example of the Dolbeault
Theorem (cf. [22].) He moves on discussing the Cousin Problem, the no-
tion of “coherent sheaves” and their role in the study of Stein manifolds, as
well as the theorem by Henri Cartan and Jean-Pierre Serre on the finite-
ness of the cohomology of analytic coherent sheaves over compact complex
manifolds (cf. [12]).

One should also mention the work Raoul Bott and Chern did on the
equidistribution of the zeroes of holomorphic sections of Hermitian bundles
(cf. [7]).

4. Beyond the differential context

Such a comprehensive survey comes at a moment when moving from
local issues to more global ones led to call the field “Differential Geometry
in the large” (“Differentialgeometrie im Großen” for the Oberwolfach regular
Tagung that Chern and Wilhelm Klingenberg organised for a number of
years). Still, we know that new trends came up. This is with this in mind that
I rebounded on a statement Chern made about “a new dress for Geometry”.
Here is the precise question I asked him when I interviewed him: “In an
article published in the “American Mathematical Monthly”, you establish
a parallel between the development of Geometry and that of clothing, the
concept of a manifold being put in correspondence with modern men and the
way they dress themselves. According to you what will be the new clothing
of Geometry after manifolds?”

Here is his reply: “That was for fun. Geometry should not be limited to
so smooth objects. I think that researchers in Differential Geometry should
consider singular spaces. It is remarkable that smoothness plays such an im-
portant role in Geometry. We would like to believe that continuity should
be sufficient, as it is in Topology. But smoothness gets rid of a lot of un-
interesting stuff while keeping still interesting and important things. It is
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unbelievable to think that functions have to be twice differentiable to be able
to do Differential Geometry. Consider the Calculus of Variations: one needs
to be able to speak about critical points, and it is much nicer if functions are
differentiable. One must work a bit more to get the second variation and iso-
late the index. Even if smoothness makes the tools of Algebra and Analysis
available, some of the most important properties are nevertheless concen-
trated at the critical points. One should pay more attention to the concept
of stratified manifolds or a variation of this concept. After all, almost all
important theorems in Differential Geometry have some discrete or combi-
natorial equivalents. My view is that smooth manifolds are only one stage.
We must consider a more general situation, including going to infinite di-
mensions. It often happens that the most interesting properties are preserved
when one takes this step. One must know how to keep important things and
get rid of unimportant ones. This requires work and a lot of insight.”

In the second half of the 20th century, one of the central developments in
Differential Geometry has been the key role played by Non-Linear Analysis,
hence the denomination “Global Analysis” that broadened further the field.
Indeed, a number of key problems in the field have been resolved thanks to
new analytical developments using estimates inspired by geometric consid-
erations.

This is of course the case for the solution in 1976 of a central question
in Kählerian Geometry, namely the Calabi conjecture, by Yau Shing Tung
(cf. [49]), among many other achievements.

To relate more directly to the need to study singularities suggested by
Chern, one can cite:

• The 1982 seminal work by Karen Uhlenbeck on “Removable sin-
gularities in Yang-Mills Fields” (cf. [44]);

• The existence of a local flow for the (opposite of the) Ricci cur-
vature, when viewed as a vector field in the space of Riemannian
metrics on a compact manifold; the result has been obtained by
Denis DeTurck (cf. [21]) solving a problem I suggested in 1979
(cf. [8]); using the so-called Ricci flow to evolve metrics on a mani-
fold led to many beautiful applications by Richard Hamilton (see
e.g. [27] for the first one) where geometric assumptions are made
to avoid the occurence of singularities;

• The control of singularities that may occur in the Ricci flow by
Grigori Perelman (cf. [38], [39] and [40]) leading to his solution
of the Poincaré Conjecture.

The context of Differential Geometry has been considerably broadened
in the last 50 years with the importance given to general Metric Spaces, in
particular by Mikhail Gromov. Here are some of the paths followed.

There has been attempts by Alexander Alexandrov (cf. [1]) to develop
a notion of bounded curvature in the context of metric spaces with enough
geodesics. Gromov systematically used a metric in the space of compact
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metric spaces (cf. [26]), that is now called the Gromov-Hausdorff distance, to
derive very powerful convergence theorems impacting Riemannian Geometry
but also Group Theory (and also Image Analysis).

Metric Measured Spaces with a control on the volume of balls lie in an
intermediate situation between differentiable manifolds and general metric
spaces. Many efforts have been dedicated in recent years to extend to them
some of the classical tools. The pioneering work of Jeff Cheeger (cf. [13])
shows that a good part of the differential calculus can be extended to them.
This led in particular to a deeper understanding of the Poincaré Inequality,
that is so important in establishing estimates in Analysis, but also to intro-
ducing a new notion of Lipschitz dimension for metric spaces by Cheeger

and Bruce Kleiner (cf. [14]).

5. Some conclusions

The link between Geometry and Groups goes back to Hermann von

Helmholtz (cf. [28]), Felix Klein and his Erlangen Programme (cf. [32]),
Henri Poincaré (cf. [41]) and Élie Cartan.

The article “The Geometry of G-Structures? extends this tradition. It
shows how, in the context of Bundle Theory, one can study various Ge-
ometries and connect them to important developments in Topology and in
particular in Algebraic Topology.

The comprehensive approach taken by Professor Chern is very typical
of his very broad command on Mathematics at large and has inspired many
geometers in the second part of the 20th century, and continues to be fruitful,
hence worth being celebrated.
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