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A survey on Yau’s uniformization conjecture

Bing-Long Chen and Xi-Ping Zhu

Abstract. This is a survey on Yau’s uniformization conjecture which
states that any complete noncompact Kähler manifold with positive
holomorphic bisectional curvature is biholomorphic to C

n. The accom-
plishments of the conjecture during the past decades and recent devel-
opments, from the view point of geometry, will be reviewed.

1. Introduction

The classical uniformization theorem says that a simply connected Rie-
mann surface is biholomorphic to one of the sphere S2, the complex plane C,
or the disc D. Its higher dimensional generalization forms one of the themes
of the current geometry and topology. From the view point of differential
geometry, one may investigate the problem by imposing certain geometric
conditions, which can be roughly divided into elliptic, parabolic or hyper-
bolic cases. The current paper is concerned with the parabolic case. For this
case, there is a well-known conjecture due to Yau [47]:

Conjecture 1.1. A complete noncompact Kähler manifold with positive
holomorphic bisectional curvature is biholomorphic to C

n.

The analogous elliptic case is called Frankel conjecture, which says that a
compact Kähler manifold with positive holomorphic bisectional curvature is
biholomorphic to the complex projective space CPn. The Frankel conjecture
has been completely solved by Siu-Yau [42]. A stronger algebraic geometric
version, the Hartshone conjecture, was also true (see Mori [35]).

During the past decades, there have been much important progress for
Yau’s conjecture, especially for maximal volume growth case, but the full
conjecture still remains to be answered so far. The purpose of this paper,
based on [17], is to give a survey on these accomplishments and some recent
developments.
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Historically, the first result in this direction should be the following the-
orem due to Mok-Siu-Yau [33] in 1981:

Theorem 1.1 (Mok-Siu-Yau [33]). Let M be a complete noncompact
Kähler manifold of nonnegative holomorphic bisectional curvature of complex
dimension n ≥ 2. Suppose there exist positive constants C1, C2 such that for
a fixed base point x0 and some ε > 0,

(i) V ol(B(x0, r)) ≥ C1r
2n, 0 ≤ r < +∞,

(ii) R(x) ≤ C2/d(x0, x)
2+ε on M,

where V ol(B(x0, r)) denotes the volume of the geodesic ball B(x0, r) cen-
tered at x0 with radius r, R(x) denotes the scalar curvature and d(x0, x)
denotes the geodesic distance between x0 and x. Then, M is isometrically
biholomorphic to C

n with the flat metric.

The above theorem is also called a gap theorem, which roughly says that
if the curvature is nonnegative and decays faster than quadratic, then the
curvature is actually identically equal to zero. For this reason, in the above
theorem, the curvature can only be assumed to be nonnegative, not positive
instead. Besides the first result in this direction, the above theorem also
indicates what kind of conditions should be considered for the geometry of
the discussed manifolds, namely,

i) the volume growth;
ii) the curvature decay.

It will be seen later that these two conditions are not independent, they
are relevant to each other.

The starting point in the proof of Theorem 1.1 is to solve the Poincaré-
Lelong equation:

(1.1)
√
−1∂∂̄u = Ric,

with the purpose to find a pluri-subharmonic function (psh) u. The condi-
tions (i) and (ii) in Theorem 1.1 ensure that the equation (1.1) can be solved
and the solution u is bounded. The equation (1.1) is an overdetermined sys-
tem with only one unknown function u. In solving (1.1), nonnegative bi-
sectional curvature condition plays a key role in applying a Bochner type
formula. The philosophy of the proof of Theorem 1.1 is that a complete
Kähler manifold with nonnegative bisectional curvature can not support
nontrivial bounded psh functions, except constants.

Of course, one may also ask the analogous question to the uniformization
conjecture by relaxing the positive curvature condition to nonnegative. For
compact Kähler manifolds, this is the so-called generalized Frankel conjec-
ture, which was completely solved by Mok [32].

The parabolic analogue of [32] is the following:
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Theorem 1.2 (Cao-Chen-Zhu). Let M be a complete noncompact Käh-
ler manifold with bounded and nonnegative holomorphic bisectional curva-
ture. Then one of the following holds:

(i) M admits a Kähler metric with bounded and positive bisectional
curvature;

(ii) The universal cover M̂ of M splits holomorphically and isometri-
cally as

M̂ = C
k ×M1 × · · ·Ml1 ×N1 × · · · ×Nl2

where k, l1, l2 are nonnegative integers, C
k is the complex Euclidean space

with flat metric, Mi, 1 ≤ i ≤ l1, are complete (compact or noncompact)
Kähler manifolds with bounded and nonnegative bisectional curvature ad-
mitting a Kähler metric with bounded and positive bisectional curvature,
Nj , 1 ≤ j ≤ l2, are irreducible compact Hermitian symmetric spaces of rank
≥ 2 with the canonical metrics.

This theorem reduces the nonnegative bisectional curvature case to pos-
itive bisectional curvature case when the curvature is bounded. We remark
that in the above theorem, the bounded curvature condition can be replaced
by assuming the volumes of all unit balls are non-collapsed. The proof of
Theorem 1.2 is a maximum principle argument for the Ricci flow. This argu-
ment was used previously by Gu [21] in compact case to give an alternative
and transcendental proof of Mok’s theorem [32].

There are several approaches in literatures [33], [30], [40], [13], [8], [27]
tackling Yau’s uniformization Conjecture 1.1. We list them in the following:

a) construct a biholomorphic map from M to C
n;

b) construct a complete flat Kähler metric on M ;
c) construct a biholomorphic map F from M to itself such that

the basin of attraction of some point P , i.e. Ω = {x ∈ Mn :
limi→∞F i(x) = P} contains an open neighborhood of P .

For a), we need to construct holomorphic functions on the manifold. A
conservative strategy is first to embed M to C

N or CP
N as an algebraic

subvariety for some large N , then proceed to prove this subvariety is just
C
n. The major tool in analysis for the former step is the L2− estimate of

∂̄-operator (see [2], [24]):

Theorem 1.3 (Andreotti-Vesentini, Hömander). On a complete Kähler
manifold (M,ω), suppose we have a function ϕ, a Hermitian holomorphic
line bundle L̃ with curvature (1, 1)− form C1(L̃) such that

(1.2)
√
−1∂∂̄ϕ+ C1(L̃) +Ric ≥ c(x)ω

where c(x) is a positive function on M , ω is the Kähler form; suppose we
also have a ∂̄− closed L̃− valued (0, 1) form f on M such that

(1.3)
∫
M

‖f‖2
c

e−ϕ < ∞.
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Then the equation
(1.4) ∂̄ξ = f

admits a smooth solution ξ (section of L̃) such that

(1.5)
∫
M

‖ξ‖2e−ϕ ≤
∫
M

‖f‖2
c

e−ϕ.

To construct holomorphic functions by using Theorem 1.3, the key point
is to find a strictly psh function u of suitable growth. As in the work of
[33], solving Poincaré-Lelong equation (1.1) is one method to obtain a psh
function. Another natural method to produce psh functions is using distance
functions and comparison theorems in Riemannian geometry (see [22]). Usu-
ally, the psh functions obtained from comparison theorem are only Lipschitz
continuous. One can use the heat equation

(1.6) ∂u

∂t
= �u

to smooth it. The point is that the Levi form
√
−1∂∂̄u satisfies a parabolic

Lichnerowicz equation:

(1.7) ∂

∂t
uαβ̄ = �uαβ̄ +Rαβ̄ξη̄uηξ̄ −

1

2
(Rαξ̄uξβ̄ +Rξβ̄uαξ̄).

The solvability of equation (1.6) can be guaranteed under very mild con-
ditions, for example, |u| ≤ CeCd(x0,x)2 . In this case, the maximum principle
argument can be applied to (1.7). That is to say,

√
−1∂∂̄u ≥ 0 is preserved

under the heat equation, and it becomes strictly positive for t > 0, un-
less the universal cover of the manifold splits isometrically as a product
Mn = Nk × C

n−k, see [37]. If the bisectional curvature or Ricci curvature
is strictly positive, the splitting can not happen, and the heat equation de-
formation will give a smooth strictly psh function u(·, t) for t > 0.

Now we talk about b). One naive approach is to deform the initial metric
using the Ricci flow:

(1.8) ∂

∂t
g = −2Ric.

Hopefully, a suitable scaled limit as t → ∞ will produce a flat Kähler
metric. This approach was initiated by Shi [40].

c) is one characterization of Cn due to [39] and [45]. Nevertheless, it is
difficult to construct such a biholomorphic map F . Using Ricci flow, in [8],
a generalized version of c) has been successfully developed to give a proof
of Yau’s uniformization conjecture under certain conditions.

2. Geometry of bisectional curvature

In this section, we are mainly concerned with the volume growth and
curvature decay properties. The above Theorem 1.1 indicates that we should
study the geometry at infinity of complete noncompact Kähler manifolds
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with positive bisectional curvature. These results can be compared with that
of complete Riemannian manifold with positive Ricci or sectional curvature.

Theorem 2.1 (Chen-Zhu [15]). Let Mn be a complex n-dimensional
complete noncompact Kähler manifold with positive holomorphic bisectional
curvature. Then the volume growth of M satisfies

V ol(B(x0, r)) ≥ c(1 + r)n

for all 0 ≤ r < ∞, where c is some positive constant depending on x0.

Theorem 2.2 (Chen-Zhu [15]). Let Mn be a complete noncompact Käh-
ler manifold with positive holomorphic bisectional curvature. Then for any
x0 ∈ Mn, there exists a positive constant C such that

1

vol(B(x0, r))

∫
B(x0,r)

R(x)dv ≤ C

1 + r

for all 0 ≤ r < ∞, where R(x) is the scalar curvature of Mn.

Since positive bisectional curvature implies positive Ricci curvature, by
Bishop-Gromov volume comparison theorem,

r → vol(B(x, r))

r2n

is a nonincreasing function. Theorem 2.1 says that the volumes of geodesic
balls grow at order between n and 2n. Therefore, if there exist x ∈ Mn and
C > 0 such that

vol(B(x, r)) ≥ C−1r2n

for all r > 0, we say the manifold has maximal volume growth. On the other
hand, if

vol(B(x, r)) ≤ C(1 + r)n

for all r > 0, we say the manifold has minimal volume growth. Remark that
an example of Klembeck and Cao’s static Kähler Ricci soliton with positive
bisectional curvature has volume growth of order n:
(2.1) vol(B(x0, r)) ≈ (1 + r)n,

and the curvature decays linearly

(2.2) R ≈ 1

1 + r
.

That means the results in Theorem 2.1 and 2.2 are sharp. Note also that
examples with intermediate growth order
(2.3) vol(B(x0, r)) ≈ (1 + r)n(1+ε), 0 < ε < 1

have been constructed in literatures, see [46].
On the other hand, the gap theorem 1.1 and Theorem 2.2 also suggest

that the curvature decays from linear r−1 to quadratic r−2. The examples
of various intermediate decay orders r−(1+ε) can also be constructed [46].

We discuss a little on the proof of Theorems 2.1 and 2.2.
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Let γ : [0,∞) → Mn be a ray, and
(2.4) bγ(x) = lim

t→∞
(t− d(x, γ(t)))

be the Busemann function associated to γ, which is strictly psh by compar-
ison theorem. One can smooth bγ a little by using the heat equation (1.6)
to obtain a smooth strictly psh function u of linear growth
(2.5) |u(x)| ≤ C(1 + d(x, x0))

and bounded gradient
(2.6) |∇u| ≤ C.

Let 0 ≤ ξ ≤ 1 be a cut-off function such that ξ |B(x0,r)= 1, ξ |Mn\B(x0,2r)=
0, |∇ξ| ≤ c/r. Integrating by parts gives,

∫
B(x0,2r)

ξn(
√
−1∂∂̄u)n ≤ C

r

∫
B(x0,2r)

ξn−1(
√
−1∂∂̄u)n−1 ∧ ω

· · ·

≤ C

rn

∫
B(x0,2r)

ωn.

(2.7)

Theorem 2.1 follows. For Theorem 2.2, choosing a suitable weight function
based on u, using Theorem 1.3, one can construct a nontrivial holomorphic
section S of the canonical line bundle K, and S has at most exponential
growth in geodesic distances:

(2.8) |S|(x) ≤ CeC(1+d(x,x0)).

The Poincaré-Lelong equation
(2.9)

√
−1∂∂̄ log |S|2 = [S = 0] +Ric

implies
(2.10) � log |S|2 ≥ R

which holds in weak sense. Theorem 2.2 follows by integrating � log |S|2
over geodesic balls.

We remark that Theorem 2.2 plays a crucial role in the Ricci flow, which
ensures the maximal volume growth condition can be preserved.

3. Maximal volume growth

The maximal volume growth case has been thoroughly studied in lit-
eratures. One possible reason is that in some sense, this condition ensures
that the geometry of the manifold at infinity is already close to that of the
Euclidean space. Mok-Siu-Yau [33] says that the curvature can not decay
faster than quadratic. But we do have many examples whose curvature de-
cays exactly in a quadratic manner. After the seminal work of [33], the first
essential breakthrough was made by Mok [30].
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Theorem 3.1 (Mok [30]). Let M be a complete noncompact Kähler
manifold of complex dimension n with positive holomorphic bisectional cur-
vature. Suppose there exist positive constants C1, C2 such that for a fixed
base point x0,

(i) vol(B(x0, r)) ≥ C1r
2n, 0 ≤ r < ∞

(ii) 0 < R(x) ≤ C2/(1 + d2(x0, x))
(3.1)

then M is biholomorphic to an affine algebraic variety. Moreover, if in ad-
dition the complex dimension n = 2 and

(iii) the Riemannian sectional curvature of M is positive,

then M is biholomorphic to C
2.

The proof of Theorem 3.1 is a profound generalization of Kodaria’s em-
bedding theorem. The Poincaré-Lelong equation (1.1) gives a psh function
u of logarithmic growth. The L2− estimate implies that the algebra P (X)
of holomorphic functions of polynomial growth and its quotient field R(X)
have plentiful functions. The main tool is a multiplicity estimate for func-
tions in P (X), i.e., for any function f ∈ P (X), x ∈ X,
(3.2) multx(f = 0) ≤ Cdeg(f)

where deg(f) is the growth order of f w.r.t. the geodesic distance, C is a con-
stant independent of f . Multiplicity estimate immediately implies that the
field of rational functions R(X) is a finite extension of a purely transcenden-
tal extension of C of degree n. More precisely, R(X) = C(f1, · · · , fn, g/h),
fi, g, h ∈ P (X). To prove the map F = (f1.....fn, g, h) of X into an affine al-
gebraic variety misses only finite number of subvarieties, one can use Skoda’s
L2-estimate for the ideal problem. Finally, by adding finite number of holo-
morphic functions of polynomial growth, F can be desingularized and com-
pleted to a proper embedding.

In his Ph.D thesis [40], W.X. Shi initiated the Ricci flow approach to
solve Yau’s uniformization conjecture. He replaced the pointwise quadratic
curvature decay condition in Mok’s theorem with an averaged one:

Theorem 3.2 (Shi [40]). Let M be a complete noncompact Kähler man-
ifold of complex dimension n with bounded and positive holomorphic bisec-
tional curvature. Suppose there exist positive constants C1, C2 such that for
a fixed base point x0,

(i) vol(B(x0, r)) ≥ C1r
2n, 0 ≤ r < ∞

(ii)
1

vol(B(x, a))

∫
B(x,a)

Rdv ≤ C2/(1 + a2),
(3.3)

then M is biholomorphic to a pseudo-convex domain in C
n.

Shi [40] claimed that the manifold is biholomorphic to C
n. The proof

contains a gap which can be explained in the following. First of all, the
Kähler condition, the positivity of bisectional curvature and the maximal
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volume growth are all preserved by the Ricci flow. Shi developed an elegant
a priori estimate, from which he proved that the solution exists for all t > 0
and the scalar curvature satisfies

(3.4) R(x, t) ≤ C

1 + t
[log(2 + t)]3.

Fix a point P ∈ M , and a nonzero vector v ∈ TPM , Shi proved that
ĝ(x, t) = 1

|v|2gt
g(x, t) converges in C∞

loc-topology to a flat Kähler metric as t →
∞. The regret is that we do not know whether the limit metric is complete
or not. But it is enough to conclude that the manifold is biholomorphic to
a pseudo-convex domain.

The quadratic curvature decay condition was further removed in complex
dimension 2 in [13]. More precisely, we proved that

Theorem 3.3 (Chen-Tang-Zhu [13]). Let M be a complete noncompact
Kähler manifold of complex dimension 2 with bounded and positive holomor-
phic bisectional curvature. Suppose there exist a positive constant C1 such
that for a fixed base point x0,

vol(B(x0, r)) ≥ C1r
4, 0 ≤ r < ∞,(3.5)

then M is biholomorphic to C
2.

This is a result in this direction for the first time that there is no any
curvature decay assumption. For the proof of Theorem 3.3, we should an-
swer the question in several levels. The proof consists of three parts. In the
first part, we answer the question in topological category, i.e. we prove the
manifold is homeomorphic to R

4. The argument is the following. By Theo-
rem 2.2, the maximal volume growth condition is preserved (with the same
asymptotic volume ratio) under the Ricci flow. Via a blow up and blow
down argument, all possible singularity models can be excluded except the
Type III singularities in Hamilton’s classification [23], i.e., the solution of
the Ricci flow exists for all time t > 0 and the scalar curvature satisfies

(3.6) R(x, t) ≤ C

1 + t
.

Then the injectivity radius of the evolving metric at any point is greater
than c

√
1 + t and any geodesic ball of radius c

√
1 + t is pseudo-convex. This

implies that M is homeomorphic to R
4 from the generalized Poincaré con-

jecture, moreover, M is Stein as a complex manifold.
In the second part, in order to find a psh function, we try to solve the

Poincaré-Lelong equation (1.1). Note that we do not assume any curvature
decay condition in advance. The idea is to transform the decay estimate in
time (3.6) of the evolving metrics to the decay estimate in space at t = 0,
via a priori estimates. More precisely, by combining the equation

(3.7) R(·, 0) = �0F (x, t) + gαβ̄(x, 0)Rαβ̄(x, t)
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where F (x, t) = log
det(gαβ̄(x,t))

det(gαβ̄(x,0))
, and the estimate (3.6), we deduced that

(3.8)
∫
B(x,a)

R(y)d(x, y)−2dv(y) ≤ C log(2 + a),

for all a > 0.
This estimate is enough to solve the Poincaré-Lelong equation (1.1) to

find a strictly psh function of logarithmic growth:
(3.9) |u|(x) ≤ C log(2 + d(x, x0)).

In the third part, we basically followed the approach of Mok [30] to
construct a biholomorphic map from M to a quasi-affine algebraic variety.
Combining with a classical theorem of Ramanujam [38], we concluded that
M is biholomorphic to C

2.
The dimension restriction in Theorem 3.3 was further removed by Chau-

Tam [6]. They proved the following theorem:

Theorem 3.4 (Chau-Tam [6]). Let M be a complete noncompact Kähler
manifold of complex dimension n with bounded and nonnegative holomorphic
bisectional curvature. Suppose there exists a positive constant C1 such that
for a fixed base point x0,

vol(B(x0, r)) ≥ C1r
2n, 0 ≤ r < ∞,(3.10)

then M is biholomorphic to C
n.

The proof is sketched as follows. The Ricci flow was also used to deform
the initial metric, the Kählerity, nonnegativity of bisectional curvature, and
maximal volume growth are all preserved as before. The linear curvature
decay (3.6) was extended to all dimensions by Ni [36]. When curvature
operator is nonnegative, the result can be proved using the standard blowing
up and blowing down argument, see [15]. Let g̃(t) = e−tg(et), then

(3.11) ∂

∂t
g̃ij̄(x, t) = −R̃ij̄(x, t)− g̃ij(x, t)

for all t ∈ (−∞,∞). One may expect the solution will be close to an expand-
ing Kähler Ricci soliton. For the expanding Kähler Ricci soliton, there is a
biholomorphic map verifying the condition in Rosay-Rudin-Varolin’s result
[39], [45].

Fix a point P ∈ M , since the injectivity radius of g̃(t) is uniformly
bounded from below, using Theorem 1.3, there exists a r > 0 such that for
each i ∈ N, one can construct a biholomorphic map Ψi : B(r) = {|z| < r} →
Ψi(B(r)) ⊂ M , such that Ψi(B(r)) contains a geodesic ball of radius r/2
around P of the metric g̃i. Moreover, Ψ∗

i g̃i is close to the Euclidean metric.
Fix a large N , let Fi = Ψ−1

(i+1)N ◦Ψ−1
(i)N be a biholomorphic map from B(r) to

its image. The key point is to prove that the map Fi is asymptotically close
to a single map. Cao’s Li-Yau-Hamilton inequality [3] plays an important
role in the argument. For any tk → ∞, the solution g̃(t + tk) behaves close
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to an expanding Kähler Ricci soliton, this ensures that Fi is asymptotically
close to a single map F , see [6] for details.

Recently, the bounded curvature condition in Chau-Tam’s theorem was
further removed by Liu [27]. Some new ideas from Cheeger-Colding theory
to this problem were introduced.

Theorem 3.5 (Liu [27]). Let M be a complete non-compact Kähler man-
ifold of complex dimension n with nonnegative holomorphic bisectional cur-
vature. Suppose there exists a positive constant C1 such that for a fixed base
point x0,

vol(B(x0, r)) ≥ C1r
2n, 0 ≤ r < ∞,(3.12)

then M is biholomorphic to C
n.

Liu [27] studied the Gromov-Hausdorff limit of Kähler manifolds whose
holomorphic bisectional curvatures are bounded from below and volumes
are non-collapsed. The celebrated three circle theorem [29] and Cheeger-
Colding theory ensured that ∂̄-equation on the holomorphic tangent bundle
can be solved. This eventually constructed a global integrable holomorphic
vector field retracting to a point, and provided the desired biholomorphic
map from M to C

n. In a previous paper [28], Liu proved that the ring of
holomorphic functions of polynomial growth on a complete manifold with
nonnegative bisectional curvature is finitely generated, confirming another
conjecture of Yau [47].

We remark that in [26], Lee-Tam proved that on a complete noncom-
pact Kähler manifold with nonnegative bisectional curvature and maximal
volume growth, the Kähler Ricci flow can always be solved for a short time,
and it preserves all these good conditions, moreover, the curvature becomes
bounded instantly for t > 0. Combining with Theorem 3.4, this provides an
alternative proof of Theorem 3.5.

4. Non-maximal volume growth

Yau’s uniformization conjecture is true in the maximal volume growth
case, this gives us a strong confidence that the conjecture should always be
true. The purpose of this section is to review some progress and ideas for
the non-maximal volume growth case, for which it is more difficult since the
geometry of the manifolds at infinity is more complicated.

We should mention the following result of Shi [41]:

Theorem 4.1. Suppose Mn is a complete noncompact Kähler manifold
with bounded and positive sectional curvature. Suppose there exist constants
0 < ε, C1 < ∞ such that

(4.1)
∫
B(x0,r)

R(x)dx ≤ C1

(1 + r)1+ε
vol(B(x0, r)), ∀x0 ∈ M, 0 < r < ∞.

Then Mn is biholomorphic to a pseudo-convex domain of Cn.
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Shi [41] used the Ricci flow to deform the initial metric and proved that
the solution exists for all time t > 0 and the scalar curvature satisfies

(4.2) R(x, t) ≤ C(1 + t)−
2ε
1+ε .

Using L2-estimate for ∂̄-operator, there exists a smooth family of holo-
morphic maps φ̃t : {|z| < c(1 + t)

ε
1+ε } → Mn, φ̃t(0) = P , φ̃t is a local

diffeomorphism and essentially close to the exponential map of the metric
gt at P . The inverse φ̃−1

t can be defined on any fixed compact set for all
large t, since M admits a sequence of bounded convex exhausting domains
P ∈ Ω1 ⊂ Ω2 · · · . More precisely, there exists a sequence of t1 < t2 < · · ·
such that Φt = φ̃−1

t is a biholomorphic map from Ωk into C
n for all t ≥ tk.

Using the results of Anderson-Lempert [1] and Forstneric-Rosay [20], with
the help of the family Φtk , for each k ≥ 3, one can construct a family of
biholomorphic maps Φk,t such that

1) Φk,t = Φt, for t ≥ tk,
2) for t ≤ tk, Φk,t is defined at least on Ωk and very close to Φk−1,t on

Ωk−2.

The limit Φ = limk→∞Φk,t3 is a biholomorphic map from Mn to C
n

such that Φ(M) is pseudo-convex domain in C
n.

Note that the positivity of sectional curvature already implies the mani-
fold is Stein and diffeomorphic to the Euclidean space. This is still not known
for bisectional curvature up to now. We remark that if the bisectional cur-
vature is nonnegative, bounded, and decays uniformly and linearly in the
average sense:

(4.3)
∫
B(x0,r)

R(x)dx ≤ C1

(1 + r)
vol(B(x0, r)), ∀x0 ∈ M, 0 < r < ∞,

Chau-Tam [9] proved that the manifold is holomorphically covered by a
pseudoconvex domain (in C

n), which is homeomorphic to R
2n. The follow-

ing result obtained by the first author in [12] is a partial extension of the
above Theorem 4.1, replacing sectional curvature by holomorphic bisectional
curvature.

Theorem 4.2. Let M be a complete n-dimensional Kähler manifold with
bounded and positive holomorphic bisectional curvature such that there exist
n

n+1 < ε < 1, and C > 0 such that

(4.4) 1

vol(B(y, a))

∫
B(y,a)

R(x)dv ≤ C

a1+ε
, ∀y ∈ M, 0 ≤ a < ∞.

Then M is homeomorphic to R
2n and biholomorphic to a pseudo-convex

domain in C
n.
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In general, if there are constants 0 < δ < ε < 1, and C > 0 such that
vol(B(x0, a)) ≥ C−1a2n−δ, ∀a ≥ 1

1

vol(B(y, a))

∫
B(y,a)

R(x)dv ≤ C

a1+ε
, ∀y ∈ M, 0 ≤ a < ∞,

(4.5)

then the conclusion of Theorem 4.2 holds.
The 1 + ε-order curvature decay implies that the Poincaré-Lelong equa-

tion (1.1) can be solved and solution u grows in 1−ε order. This in turn yields
that the volume growth order is at least n(1 + ε). The condition ε > n

n+1

ensures that (4.5) holds for δ = n(1− ε).
The proof of the result is also using the Ricci flow.
The key point is to prove that the injectivity radius inj(M, gt) → ∞

as t → ∞. On the one hand, the scalar curvature of the solution decays as
follows:
(4.6) R(x, t) ≤ C(1 + t)−

2ε
1+ε .

By estimating the volume element, one can prove

(4.7) volt(Bt(x0, r))

vol0(B(x0, r))
≥ 1− C

t

r1+ε

[
1 +

(
t

r1+ε

) 1−ε
1+ε

]
.

This gives

(4.8) volt(Bt(x0, r)) ≥
1

2
vol0(B(x0, r))

for r = C−1t
1

1+ε . By Bishop-Gromov volume comparison theorem, we have

(4.9) volt(Bt(x0, a)) ≥
(
a

r

)2n

volt(Bt(x0, r))

for all a ≤ r.
Note that, the injectivity radius at x0 can be bounded from below by

(4.10) injt(M,x0) ≥ C−1a
volt(Bt(x0, a))

volt(Bt(x0, a)) + vol(B
−t

− 2ε
1+ε

(a))

where a = C−1t
ε

1+ε , vol(B
−t

− 2ε
1+ε

(a)) is the volume of geodesic ball of ra-

dius a in the space form of constant curvature −t−
2ε
1+ε , see [11] and [18].

Combining with (4.5), (4.8) and (4.9), we have

injt(M,x0) ≥ C−1t
ε

1+ε
(ar )

2nr2n−δ

(ar )
2nr2n−δ + a2n

≥ C−1t
ε−δ
1+ε → ∞

(4.11)

as t → ∞, since we have assumed ε−δ > 0. Note that the metric is shrinking
under the Ricci flow, the ball of radius C−1t

ε−δ
2(1+ε) at time t is a very large

region.
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By assuming the finiteness of the first Chern number Cn
1 and a mixture

of the curvature decay and volume growth, To [44] proved the following
compactification theorem:

Theorem 4.3 (To [44]). Let X be an n-dimensional noncompact com-
plete Kähler manifold of positive Ricci curvature and of finite topological
type. Suppose for some base point x0 ∈ X that there exist positive constants
k1, k2, k3 and a positive real number p such that

(i) Scalar Curvature < k1/(d(x0;x))
p

(ii)

∫
X
Ricn < ∞,

(iii)

∫
B(x0,a)

ωn/(1 + d(x0;x))
np < k2 log a, ∀a ≥ 1,

(iv) |Bisect(v, w)| < k3Ric(v, v)

(4.12)

for all unit tangent vectors v, w ∈ T ′(X) and x ∈ X. Then X is biholomor-
phic to a quasi-projective variety. Moreover, if p ≥ 2, the theorem is valid
without assuming condition (iii).

The embedding map was constructed by using holomorphic sections of
pluri-anticanonical line bundles. This method has been previously system-
atically developed in [43], [31], [34]. The finiteness of Chern numbers Cn

1

(i.e. the above condition (ii)) is a natural condition to derive the “Bezout
estimate” for divisors of holomorphic sections.

Theorem 4.4 (Chen-Zhu [16]). Let Mn be a complete noncompact Käh-
ler manifold with bounded and positive sectional curvature, and∫

Mn

Ricn < ∞.

Then Mn is biholomorphic to a quasi-projective variety. In the case of com-
plex dimension n = 2, M2 is biholomorphic to C

2.

We conjecture that the Chern number
∫
Ricn is always finite for a com-

plete noncompact Kähler manifold with positive bisectional curvature.
A partial result in this direction is the following:

Theorem 4.5 (Chen-Zhu [17]). Let Mn be a complete Kähler manifold
with bounded sectional curvature and positive Ricci curvature. Suppose Mn

admits a Hermitian holomorphic line bundle L such that the curvature C1(L)
of L is positive and bounded and satisfies∫

Mn

C1(L)
n < ∞.

Then ∫
Mn

Ricn < ∞.



26 B.-L. CHEN AND X.-P. ZHU

Corollary 4.6. Let Mn be a complete Kähler manifold with bounded
sectional curvature and positive Ricci curvature. Suppose Mn admits a strictly
psh ϕ such that

√
−1∂∂̄ϕ is bounded and∫

Mn

(
√
−1∂∂̄ϕ)n < ∞.

Then ∫
Mn

Ricn < ∞.

Suppose we have proved Mn is biholomorphic to a pseudo-convex domain
of C

n (as in Theorem 3.1), let z1, z2, · · · zn be coordinates in C
n, and set

φ = log(1 + |z|2), then
∫
Mn(

√
−1∂∂̄φ)n < ∞. Thus, to derive the finiteness

of the Chern number, it is reduced to find a strictly psh function φ with
finite Monge-Ampere measure and bounded Levi-form. Recall that we say
Mn has minimal volume growth (in the sense of Theorem 2.1), if there exist
x0 ∈ Mn and C > 0 such that

vol(B(x0, r)) ≤ C(1 + r)n,

for all r > 0, where n is the complex dimension of the manifold. The following
result gives an affirmative answer in the case of minimal volume growth.

Proposition 4.7. Let Mn be a complete Kähler manifold with positive
bisectional curvature. Then there exists a smooth strictly psh function φ
satisfying

(i) |φ(x)| ≤ C(1 + d(x, x0));

(ii) |∇φ|(x) + |∂∂̄φ|(x) ≤ C;
(4.13)

and if Mn has minimal volume growth, we have

(4.14) (iii)

∫
Mn

(
√
−1∂∂̄φ)n < ∞.

Proof. Fix a point P ∈ Mn, let
(4.15) b(x) = sup

γ
lim
t→∞

(t− d(x, γ(t)))

where the supremum is taken over all geodesic rays departing from P . Then
b(x) is Lipschitz continuous with Lipschitz constant 1. By comparison theo-
rem in Riemannian geometry, b(x) is strictly psh. Consider the heat equation

⎧⎨
⎩
(

∂
∂t −�

)
u = 0,

u |t=0= b(x)

where �u = gαβ̄uαβ̄. As mentioned in Section 1, the Levi form
√
−1∂∂̄u

satisfies a parabolic Lichnerowicz equation:
∂

∂t
uαβ̄ = �uαβ̄ +Rαβ̄ξη̄uηξ̄ −

1

2
(Rαξ̄uξβ̄ +Rξβ̄uαξ̄),
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which implies by maximum principle that u(x, t) is strictly psh for any t > 0.
By direct computations, we have(

∂

∂t
−�

)
|uα|2 = −|uαβ̄ |2 − |uαβ|2 −Rαβ̄uβuᾱ(

∂

∂t
−�

)
|uαβ̄ |2 = −|uαβ̄γ |2 − |uαβ̄γ̄ |2 −

∑
α,β

Rαᾱββ̄(λα − λβ)
2,

(4.16)

where uαβ̄ = λαδαβ is diagonalized at a point. Combining the two equations
in (4.16), and using the curvature condition, we have(

∂

∂t
−�

)
(|uα|2 + t|uαβ̄ |2) ≤ 0.(4.17)

Applying the maximum principle on (4.17) implies
|∇u|2 = 2|uα|2 ≤ 1,

|uαβ̄ |2(x, t) ≤
1

2t
.

(4.18)

Set φ(x) = u(x, 1), (i) and (ii) in (4.13) follow from (4.18). To prove (iii), as
in (2.7), we have ∫

B(x0,2r)
ξn(

√
−1∂∂̄φ)n ≤ C

rn

∫
B(x0,2r)

ωn,(4.19)

where ξB(x0,r) ≡ 1, ξMn\B(x0,2r) = 0, 0 ≤ ξ ≤ 1, |∇ξ| ≤ C
r . The minimal vol-

ume growth condition implies that the right hand side of (4.19) is bounded,
hence there is a constant C independent of r such that∫

B(x0,r)
(
√
−1∂∂̄φ)n ≤ C.(4.20)

Let r → ∞, (4.14) follows. Then φ fulfills all requirements of Proposition 4.7.
�

Thus the combination of Theorem 4.4, Corollary 4.6 and Proposition
4.7 gives a partial answer to Yau’s uniformization conjecture in the case
of minimal volume growth. Finally, we state a new result by removing the
condition of bounded curvature.

Theorem 4.8. Let Mn be a complete noncompact Kähler manifold with
positive sectional curvature. Suppose Mn has minimal volume growth. Then
Mn is biholomorphic to an affine algebraic variety. Moreover, if n = 2, then
M is biholomorphic to C

2.
The proof has recourse to a theorem of Demailly on characterizing affine

algebraic varieties.
Theorem 4.9 ([19]). Let Xn be a complex manifold of complex dimen-

sion n. Then Xn is biholomorphic to an affine variety if and only if Xn

possesses a smooth strictly psh proper function φ with the following proper-
ties:



28 B.-L. CHEN AND X.-P. ZHU

(a)
∫
Xn(

√
−1∂∂̄φ)n < ∞;

(b) The Ricci curvature of the Kähler metric β =
√
−1∂∂̄eφ satisfies

(4.21) Ricci(β) ≥ −
√
−1∂∂̄ψ

for some C0 function ψ ≤ Aφ + B, where A,B are positive con-
stants;

(c) dimRH
2q(Xn,R) < ∞, for all q ≥ 0.

Proof. of Theorem 4.8. Let b(x) be the Busemann function in (4.15).
Since the sectional curvature is positive, by comparison theorem, there is a
constant C1 > 0 such that

(4.22) 1

2
d(x, P )− C1 ≤ b(x) ≤ d(x, P ).

As in Proposition 4.7, let u(x, t) be the heat equation deformation of b(x),
and set φ(x) = u(x, 1). Then φ satisfies

1

3
d(x, P )− C2 ≤ φ(x) ≤ d(x, P ) + C2.(4.23)

In particular, φ is proper and satisfies (i)(ii)(iii) in Proposition 4.7. Now, (c)
is trivial from a theorem of Gromoll and Meyer. It remains to check (b).

From
βij̄ � ∂i∂j̄(e

φ) = eφ(φij̄ + φiφj̄)

we know

Ric(β)ij̄ = −(log det(βkl̄))ij̄ = Ric(g)ij̄ − nφij̄ − (log
det(φkl̄ + φkφl̄)

det(gkl̄)
)ij̄

≥ −ψij̄

(4.24)

where ψ = nφ+ log
det(φkl̄+φkφl̄)

det(gkl̄)
. Combining with (4.13), we obtain

ψ ≤ nφ+ C

which verifies (b). The proof is completed. �
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