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To Chern, who taught us all

Abstract. We define the notion of spectral network on manifolds of
dimension ≤ 3. For a manifold X equipped with a spectral network, we
construct equivalences between Chern-Simons invariants of flat SL2C-
bundles over X and Chern-Simons invariants of flat C

×-bundles over
ramified double covers ˜X. Applications include a new viewpoint on dilog-
arithmic formulas for Chern-Simons invariants of flat SL2C-bundles over
triangulated 3-manifolds, and an explicit description of Chern-Simons
lines of flat SL2C-bundles over triangulated surfaces. Our constructions
heavily exploit the locality of Chern-Simons invariants, expressed in the
language of extended (invertible) topological field theory.
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1. Introduction

A classical formula of Lobachevsky-Milnor-Thurston [T2, Chapter 7] ex-
presses the volume of a tetrahedron, i.e., 3-simplex, in hyperbolic space in
terms of a dilogarithm function. It follows that the volume of a triangu-
lated hyperbolic 3-manifold is a sum of real parts of dilogarithms. Thurston
observed that the Chern-Simons invariant of the associated flat PSL2C-
connection has real part equal to the volume, and Meyerhoff [Me] extended
this to hyperbolic 3-manifolds with cusps. These ideas have been refined
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and extended since their introduction in the late 1970’s and early 1980’s,
as we briefly review in Section 2. After much work, in particular by Neu-
mann [Neu], by the early 2000’s the Chern-Simons invariant of a flat PSL2C-
connection on a closed oriented 3-manifold was expressed as a sum of complex
dilogarithms. In a closely related development over the past 20 years, Fock
and Goncharov [FG1] studied special cluster coordinate systems on the
moduli space of flat bundles on a compact oriented 2-manifold with punc-
tures. The moduli space is symplectic, and the overlap functions—cluster
transformations—between different coordinate systems are generated by es-
sentially the same complex dilogarithms. These dilogarithms also serve as
transition functions defining a canonical prequantum line bundle over the
moduli space [FG2]. In this paper we introduce new perspectives and tech-
niques into this circle of ideas. Our work is inspired by two distinct sources:
spectral networks and invertible field theories. Both originated in physics and
both have well-developed mathematical underpinnings.

Spectral networks on 2-manifolds were introduced by Gaiotto-Moore-
Neitzke [GMN1] as part of their study of four-dimensional supersymmetric
gauge theories. For our purposes the key point is that, given a spectral net-
work on a surface Y , one can define the notion of stratified abelianization
[GMN1, HN]: this is a linkage between a flat GLNC-connection on Y

and a C
×-connection on a ramified covering Ỹ → Y . This notion has been

useful in various contexts, e.g. in exact WKB analysis and hyperkähler ge-
ometry of moduli of Higgs bundles; it also gives a reinterpretation of the
cluster coordinates of Fock-Goncharov. In Section 4 we extend the notion
of a spectral network and stratified abelianization from 2 dimensions to all
dimensions ≤ 3. In particular, in §4.2 we express the data of a spectral net-
work on a smooth manifold as a certain type of stratification together with
a double cover over a dense subset and a section of the double cover over a
certain codimension one subset. We use it to set up stratified abelianization
for the rank one complex Lie groups GL2C, SL2C, and PSL2C. In particular,
we construct canonical spectral networks associated to triangulations and
ideal triangulations of 2- and 3-manifolds.1

The Chern-Simons invariant was introduced in 1971 [CS1, CS2], and
it was fairly quickly expressed by Cheeger-Simons [ChS] in terms of their
novel differential characters, an amalgam of integral cohomology and dif-
ferential forms. For flat connections, which are our main focus here, the
differential characters are induced from a cohomology class on a classifying
space [Ch, D, DS]. With the advent of quantum Chern-Simons invari-
ants [W], it became clear that the classical Chern-Simons invariants share
the locality properties of the quantum invariants [F1, F6, F2, RSW]. Fur-
thermore, this locality of the classical invariants is similar to the locality of
the integral of a differential form on a smooth manifold M : if M is expressed

1We allow the intermediate case of semi-ideal triangulations in which both ideal and
interior vertices are allowed; see Definitions 4.26 and 4.36.
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Figure 1. Left: the canonical 2d spectral network in a tri-
angle. Right: the canonical 3d spectral network in a tetrahe-
dron. Its restriction to each face is the canonical 2d network
in a triangle.

as a union M =
⋃

iMi of manifolds with corners glued along positive codi-
mension submanifolds with corners, then the integral over M is the sum of
the integrals over the Mi. The fullest expression of this locality is in terms
of invertible field theories. They are constructed using the theory of gener-
alized differential cocycles [HS, BNV, ADH], and that theory in turn is
a fully local version of the Cheeger-Simons differential characters. We give
brief introductions to these ideas in Appendices A and B.

These two lines of development lead to the motivating idea behind our
theorems: a stratified abelianization of classical SL2C Chern-Simons theory
for flat connections. For a manifold X equipped with stratified abelianiza-
tion data (defined in §4), this amounts to an equivalence between the Chern-
Simons invariant of an SL2C-bundle over X and that of a C

×-bundle over a
ramified double cover X̃. We develop two main applications: (1) a formula
for the Chern-Simons line of a flat SL2C-connection on a closed2 oriented
2-manifold Y , derived from the simpler and more explicit C× Chern-Simons
theory applied to a branched double covering manifold Ỹ (Theorem 7.81);
and (2) a derivation of the formula for the Chern-Simons invariant of a flat
SL2C-connection on a closed3 3-manifold M as a sum of complex diloga-
rithms (Theorem 8.8).

Here is the rough strategy for (1), which we develop in Section 7. Let
Y be a closed 2-manifold equipped with a flat principal SL2C-bundle P → Y .
First, choose a triangulation and, over each vertex, a line in the fiber of the
complex 2-plane bundle associated to P → Y ; require that this data sat-
isfy a genericity condition (Assumption 4.32). The stratified abelianization
derived from the spectral network associated to the triangulation yields an
isomorphism of the Chern-Simons line FSL2C

(Y ;P ) with the Chern-Simons
line SC×(Ỹ ;A), where A → Ỹ is a flat C

×-bundle over a branched dou-
ble cover Ỹ of Y . We give a concrete description of SC×(Ỹ ;A) in terms
of various auxiliary data: orientations of the edges of the triangulation, a

2More generally, we treat flat SL2C-connections on a compact oriented 2-manifold
with boundary whose holonomies around boundary components are unipotent.

3with extensions as in footnote 2
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nonzero vector in the line at each vertex, etc. Each set of choices trivial-
izes SC×(Ỹ ;A), and we deploy C

× Chern-Simons theory in its local form
to compute explicit formulæ for the ratio of trivializations under changes of
auxiliary data. Out of this we construct a groupoid whose points are sets of
auxiliary data and whose morphisms are changes of the data. In this form
our description of the Chern-Simons lines makes contact with dilogarithmic
constructions of line bundles over cluster varieties in the literature; see the
discussion in §7.5.5.

For our result (2), which is the subject of Section 8, we proceed as
in (1) to choose a triangulation and lines over the vertices.4 We excise an
open ball from the center of each tetrahedron in the triangulation of the 3-
manifold M . The boundary 2-sphere of each ball is ramified double covered
by a 2-torus in the standard way: there are 4 branch points. The C

× Chern-
Simons invariant on the branched double cover localizes with a contribution
from each tetrahedron that we identify as a complex dilogarithm. This led
us to a new construction of the dilogarithm function in terms of (classical)
C
× Chern-Simons theory, which we worked out in [FN] and which we apply

here.
Spin structures are used in our stratified abelianization for a simple

reason. The generating level of SL2C Chern-Simons theory, when restricted
to the maximal torus C

× ⊂ SL2C, is half 5 the usual generating level of
C
× Chern-Simons theory; see equation (5.13). The division by 2 is effected

by passing to spin manifolds. Just as on oriented manifolds Chern-Simons
is a secondary invariant of characteristic classes in integer cohomology, on
spin manifolds there are secondary invariants of characteristic classes in KO-
theory. Here we use a simple 2-stage Postnikov truncation of KO-theory that
we describe in §5.2. The SL2C Chern-Simons theory does not require a spin
structure, so necessarily the results of our computations are independent of
the choice of spin structure on the base, but the intermediate formulæ on
the ramified double cover require us to keep careful track of spin structures
there.

The stratified abelianization—the production of a flat C
×-connection

from a flat SL2C-connection—gives new geometric meaning to some aspects
of standard constructions. For example, the shape parameters in Thurston’s
theory [T2, §4.1] are now holonomies of the flat C×-connection around cer-
tain loops in the total space of the branched double cover. Furthermore,
Thurston’s gluing equations [T2, §4.2] are a simple relation in the first ho-
mology group of that manifold; see Remark 4.56. Neumann’s “combinato-
rial flattenings” [Neu, §3] correspond to global sections of the principal
C
×-bundle over the branched double cover M̃ (with balls excised).

4For ideal vertices we choose a flat section of the associated CP
1-bundle over the

corresponding boundary component of M .
5There is a minus sign at stake here: see Convention 5.1 and Convention 5.28 for our

choices.
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In the course of our work we produced computer programs to implement
our formulas for the Chern-Simons invariants of 3-manifolds. We have made
those programs and computations available as ancillary files in the arXiv
version of this paper.

We conclude this introduction with a brief roadmap to the parts of the
paper not yet discussed. Section 3 is a brief recollection of the Chern-Simons
invariant in 3 dimensions, including its status as the partition function of
an invertible field theory. As a theory of a single flat connection, this field
theory is topological; as such it has a formulation in homotopy theory. How-
ever, it is not topological as a theory of families of flat connections, and for
that reason it requires the setting indicated in Appendix B. Section 5 begins
with cohomological computations relating levels of Chern-Simons theory for
different subgroups of SL2C, both in the oriented and spin cases. Then we
review the role of differential cochains and prove an important result (Theo-
rem 5.61) which essentially says that the Chern-Simons theory is unchanged
as connections move in unipotent directions in SL2C. We also prove some
theorems about the spin C

× Chern-Simons theory that are important for our
computations. Section 5 concludes with a global—as opposed to stratified—
abelianization theorem. Section 6 introduces the auxiliary data we impose
on a triangulated manifold. Then we prove important technical results which
underpin the abelianization of the Chern-Simons line. As stated earlier, our
main theorems are in Sections 7 and 8. We conclude in Section 9 with sug-
gestions for ambitious readers who would like to extend our work in new
directions. Finally, Appendix C takes up additional Z/2Z-gradings in spin
Chern-Simons theory which we suppress in the main text; there we prove a
spin-statistics result which justifies that suppression.

Marché’s approach in [M] is a close cousin to our derivation of the for-
mula for the Chern-Simons invariant in §8. Our stratified abelianization is a
classical version of a quantum abelianization proposed by Cecotti-Córdova-
Vafa [CCV, §7].

Over the long period in which this work was carried out we benefited
from the comments and insights of many colleagues, including Clay Cór-
dova, Tudor Dimofte, Stavros Garoufalidis, Matthias Goerner, Alexander
Goncharov, Pavel Safronov, Joerg Teschner, Christian Zickert. We warmly
thank them all, named and unnamed.

2. Hyperbolic volumes and Chern-Simons invariants

As a warmup suppose Y 2 is a complete hyperbolic 2-manifold with finite
area and finitely generated fundamental group. Then the Gauss-Bonnet the-
orem states that Area(Y ) = −2πEuler(Y ) is a topological invariant [Ro].
Furthermore, Y is the interior of a compact surface. The classification of
surfaces shows that the possible areas form a discrete subset of R.

Now suppose X3 is a complete oriented hyperbolic 3-manifold with fi-
nite volume and finitely generated fundamental group. Then X is the interior
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of a compact 3-manifold whose boundary is a union of tori [T2, Proposi-
tion 5.11.1]. Mostow rigidity [Mo, Pr] asserts that Vol(X) is again a topo-
logical invariant. Jorgenssen-Thurston proved basic properties of this invari-
ant [T1]. For example, the set of hyperbolic volumes is a well-ordered subset
of R, and there is a finite set of hyperbolic 3-manifolds of a given volume.
The volume is an important invariant which orders hyperbolic 3-manifolds
by complexity. The “simplest” is the Weeks manifold of volume 0.9427. . . ,
the minimal volume closed orientable hyperbolic 3-manifold [GMM]. Fur-
ther analytic properties of the set of hyperbolic volumes were explored early
on in [NZ, Y].

There is a classical formula for the volume of an ideal tetrahedron ⊂
H

3 in hyperbolic 3-space; it can be used to compute the volume of an ideally
triangulated hyperbolic 3-manifold. Suppose the vertices of are distinct
points Z0, Z1, Z2, Z3 ∈ CP

1 = ∂H3. Introduce the Bloch-Wigner dilogarithm
function [Z, §3]

(2.1)
D : CP1 \ {0, 1,∞} −→ R

z �−→ Im Li2(Z) + log |z| arg(1− z),

where Li2 is the classical dilogarithm, defined for |z| < 1 by the power series

(2.2) Li2(z) =
∞∑
n=1

zn

n2

and analytically continued to C \ [1,∞). Let

(2.3) z =
(Z0 − Z2)(Z1 − Z3)

(Z0 − Z3)(Z1 − Z2)

be the cross-ratio of the vertices of .

Theorem 2.4 (Lobachevsky, Milnor-Thurston [T2, Chapter 7]).
Vol( ) = |D(z)|.

In his PhD thesis Meyerhoff [Me] initiated the detailed study of the
Chern-Simons invariant CS(X) ∈ R/Z(1) of the Levi-Civita connection ΘLC

of a closed oriented hyperbolic 3-manifold. Here and throughout we deploy
the notation

(2.5) Z(1) = 2π
√
−1Z, Z(n) = Z(1)⊗n = (2π

√
−1)nZ, n ∈ Z

≥1.

This real Chern-Simons invariant is the real part of the complex Chern-
Simons invariant of the associated flat PSL2C-connection Θ. Recall that the
SO3-bundle BSO(X) → X of frames carries not only the Levi-Civita con-
nection ΘLC but also the R

3-valued “soldering form” θ; the complex com-
bination Θ = ΘLC +

√
−1 θ is a flat connection on the associated principal
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PSL2C-bundle:
BSO(X)

SO3

P

PSL2C

X

The exponentiated complex Chern-Simons invariant, which we review in §3,
satisfies
(2.6) FPSL2C

(X; Θ) = exp
(
Vol(X) +

√
−1CS(X)

)
∈ C

×.

Our focus in this paper is the complex Chern-Simons invariant of arbitrary
flat connections, mainly for structure group SL2C. (In the intrinsic case of
connections on the frame bundle, the passage from PSL2C to SL2C is the
introduction of a spin structure.)

Just as the real volume is related to a real dilogarithm (2.1), so too the
complex Chern-Simons invariant is related to a complex dilogarithm, the
enhanced Rogers dilogarithm. Let
(2.7) M = {(z1, z2) ∈ C

× × C
× : z1 + z2 = 1}

and
(2.8) pM = {(u1, u2) ∈ C× C : eu1 + eu2 = 1}.
Then M ≈ CP

1 \ {0, 1,∞} and pM → M is a universal abelian covering map
with Galois group isomorphic to Z × Z. The dilogarithm in question [ZG,
§4], [Z, §II.1.B], is the unique function

(2.9) L : pM −→ C/Z(2),

which satisfies the differential equation
(2.10) dL = (u1 du2 − u2 du1)/2

and limL(u1, u2) = 0 as u1 → ∞ and u2 → 0. (We encounter variants
in §§6–8.) The imaginary part of L is the Bloch-Wigner function (2.1) plus
Im(u1 u2)/2. See [FN] for a construction of the enhanced Rogers dilogarithm
using Chern-Simons invariants for C

×-connections.
Let BSL2C

δ denote the classifying space of flat SL2C-bundles.6 The uni-
versal Chern-Simons class for flat bundles
(2.11) ĉ2 ∈ H3(BSL2C

δ;C/Z(1))

was constructed by Cheeger-Simons [ChS] and is known as the Cheeger-
Chern-Simons class. It has an expression in terms of the dilogarithm (2.9),
going back to work of Dupont and collaborators in the 1980’s; see [D, DS].
The most precise relationship can be found in [DZ, §4], which is based
on [Neu]; see both papers for exact statements, history, and extensive ref-
erences.

6We use standard terminology: ‘flat’ is a structure—a flat connection—on a principal
bundle.
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In the early 2000’s, the formula for the Chern-Simons invariant of a flat
connection on a 3-manifold as a sum of dilogarithms was taken up again in
such works as [Neu, DZ, Zi, GTZ, DGG]. The formula for flat PSL2C-
connections on closed 3-manifolds is in [Neu]; the formula for flat SL2C-
connections on closed 3-manifolds is in [DZ]. The formula for boundary-
unipotent flat SLNC-connections appears in [GTZ]; for boundary-unipotent
flat PSL2C-connections it is in the earlier paper [Zi].

Remark 2.12. These previous works rely on global ordering data/con-
ditions on the vertices of a triangulation or ideal triangulation of the 3-
manifold. By contrast, in our work we only use edge orientations with no
constraints. As a consequence, our formula in Theorem 8.8 is a bit more
complicated: it involves four variants of the dilogarithm, and also some cube
roots of unity enter from a /μ

3
-symmetry not present in earlier approaches.

3. Chern-Simons as a topological field theory

The integral of a differential form over a smooth manifold M is local:
if M =

⋃
Mi is a finite union of submanifolds, possibly with boundaries

and corners, and if Mi ∩Mj has measure zero for all i �= j, then the integral
over M is the sum of the integrals over Mi. The exponentiated Chern-Simons
invariant of a connection on a principal bundle P → M is not the integral of
a differential form on M , yet it still satisfies strong locality properties: it is
the partition function of an invertible field theory. We review this aspect of
Chern-Simons invariants. See [FN, §2] for an exposition of the theory with
gauge group C

×.
Let G be a Lie group with finitely many components, called the gauge

group, and let g be its Lie algebra. In this section we make the simplifying
assumption that G is simply connected. Let π : P → M be a principal G-
bundle with connection7 Θ ∈ Ω1

P (g). Suppose
(3.1) 〈−,−〉 : g× g → C

is a G-invariant symmetric bilinear form on the Lie algebra g. Chern-Simons
[CS2] define a scalar 3-form on the total space P ,

(3.2) η(Θ) = 〈Θ ∧ Ω〉 − 1

6
〈Θ ∧ [Θ ∧Θ]〉 ∈ Ω3

P ,

where Ω = dΘ + 1
2 [Θ ∧ Θ] ∈ Ω2

P (g) is the curvature of Θ. If dimM ≤ 3,
then η(Θ) is closed. Also, in that case the simple connectivity of G ensures
the existence of sections s : M → P of π : P → M . If M = X is a closed
oriented 3-manifold, then

(3.3)
∫
X
s∗η(Θ) ∈ C

is unchanged under a homotopy of s, since η(Θ) is closed. The space of sec-
tions is generally not connected, so to ensure that (3.3) is independent of s we

7We use ‘G-connection’ as a shorthand for ‘principal G-bundle with connection’.
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make two modifications: (i) we impose an integrality hypothesis on 〈−,−〉,
and (ii) we reduce the integral to C/Z(1). The integrality condition lies in
topology if G is compact or G is complex, which we now assume. Namely, the
vector space of forms 〈−,−〉 is canonically isomorphic8 to H4(BG;C), where
BG is the classifying space of G. The image of H4(BG;Z) → H4(BG;C) is
a lattice of integral forms.9 Then if 〈−,−〉 is an integral form,

(3.4) 2π
√
−1

∫
X
s∗η(Θ) mod Z(1)

is independent of s. Define the exponentiated Chern-Simons invariant10

(3.5) FG(X; Θ) = exp

(
2π

√
−1

∫
X
s∗η(Θ)

)
∈ C

×.

Remark 3.6. The exponentiated Chern-Simons invariant is defined
without the simple connectivity assumption on G. In that case the form
〈−,−〉 is replaced by a class in H4(BG;Z), called the level. See [F4, Appen-
dix] for the general construction.

Example 3.7 (G = SL2C). The special linear group G = SL2C is a
matrix group with Lie algebra g = sl2C the space of 2× 2 traceless complex
matrices. There is an isomorphism H4(BSL2C;Z) ∼= Z with generator

(3.8) 〈A,B〉 = − 1

8π2
trace(AB), A,B ∈ sl2C,

the complex image of −c2 ∈ H4(BSL2C;Z). On the trivial bundle over X,
an SL2C-connection is a traceless matrix of 1-forms A ∈ Ω1

X(sl2C) and the
Chern-Simons invariant (3.4) is

(3.9) 1

4π
√
−1

∫
X
trace

(
A ∧ dA+

2

3
A ∧A ∧A

)
mod Z(1).

We remark that our choice of −c2 is motivated by (2.6); if we chose c2
instead, we would have an extra minus sign in that equation.

Now suppose X ′ is a compact 3-manifold with boundary, and let Θ′

be a G-connection on X ′ for G a simply connected Lie group. We define
FG(X

′; Θ′) so that if X = X1 ∪N X2 is a decomposition of a closed ori-
ented 3-manifold X along an embedded closed codimension one oriented
submanifold N , then

(3.10) FG(X; Θ) = FG(X1; Θ1) · FG(X2; Θ2),

8The isomorphism maps a form 〈−,−〉 to the de Rham cohomology class of 〈Ω,Ω〉,
where Ω is the curvature of a universal principal G-connection over BG.

9There is also a distinguished cone of forms whose restriction to a maximal compact
Lie subalgebra is positive definite. For G connected, the map H4(BG;Z) → H4(BG;C) is
injective: H4(BG;Z) is torsionfree.

10The notation is deficient, as it does not include the form 〈−,−〉, but the choice
should be clear from the context.
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where Θi = Θ
∣∣
Xi

. If ∂X ′ �= ∅ then (3.4) is not independent of s; it de-
pends on s

∣∣
∂X′ . That dependence satisfies a cocycle relation which leads

to the construction of a complex line FG(∂X
′; ∂Θ′) which only depends on

∂Θ′ = Θ′ ∣∣
∂X′ . The exponentiated Chern-Simons invariant FG(X

′; Θ′) is an
element of FG(∂X

′; ∂Θ′), and (3.10) is satisfied if the dot on the right hand
side is interpreted as the pairing of this line with its dual; see [F1, §2].

We summarize the situation in the language of field theory. Let
Bord〈2,3〉(GL+

3 R × G∇) be the bordism category where objects are closed
oriented 2-manifolds Y equipped with a G-connection ΘY . (The notation
indicates the structure group of the manifold, and the superscript ∇ evokes
the connection on the principal G-bundle.) A morphism (Y0,Θ0) → (Y1,Θ1)
in Bord〈2,3〉(GL+

3 R×G∇) is then a compact oriented 3-manifold X equipped
with a G-connection ΘX , together with a diffeomorphism −Y0�Y1

∼=−−→ ∂X,
and an isomorphism Θ0 �Θ1

∼=−−→ ∂ΘX . (These diffeomorphisms need to be
on collar neighborhoods—or germs of collar neighborhoods—of the bound-
ary.) As usual in bordism categories, composition of morphisms is defined by
gluing bordisms, and there is a symmetric monoidal structure given by dis-
joint union. Let Line

C
denote the groupoid whose objects are 1-dimensional

complex vector spaces, and whose morphisms are invertible linear maps. It
is a Picard groupoid under tensor product of lines.

Theorem 3.11. The exponentiated Chern-Simons invariant is a sym-
metric monoidal functor

�(3.12) FG : Bord〈2,3〉(GL+
3 R×G∇) −→ Line

C
.

So FG is an invertible field theory, called classical Chern-Simons theory;
see [HS, F2].

Our interest in this paper is the restriction to flat G-connections
(3.13) FG : Bord〈2,3〉(GL+

3 R×Gδ) −→ Line
C
.

This restricted theory is topological in a restricted sense—at least on single
manifolds (see Remark 3.15 below). Namely, the domain bordism category
has no continuously varying parameters.11 There is a well-developed math-
ematical theory of topological field theories. In this topological case it is
technically easier to implement strong locality in the form of an extended
field theory. For invertible topological theories, homotopy-theoretic methods
can be brought to bear [FHT, FH1]: an invertible topological field theory
can be realized as a map of spectra. The domain is a bordism spectrum and
the codomain a spectrum of “higher lines”. In that context, for G = SL2C

the extended version of (3.13) is realized as the composition

(3.14) MSO∧BGδ
+

id∧(−ĉ2)−−−−−−−→ MSO∧(HC/Z(1)3)+

∫
−−−→ Σ3HC/Z(1).

11More precisely, for any t ∈ A
1 the restriction map BunGδ (A1 ×M) → BunGδ ({t}×

M) on flat connections is an equivalence of stacks.



62 D. S. FREED AND A. NEITZKE

Here MSO is the Thom spectrum of oriented manifolds, HC/Z(1) is the
Eilenberg-MacLane spectrum associated to the abelian group C/Z(1), the
cohomology class ĉ2 is introduced in (2.11), and (HC/Z(1)3)+ denotes the
3-space of the spectrum HC/Z(1)3. The first map is the Cheeger-Simons
class (2.11), and the second is integration; see [HS, §4.10]. The induced
map on π3 is a bordism invariant of closed oriented 3-manifolds equipped
with a flat connection. The map (3.14) extends this bordism invariant to an
invertible topological field theory, thereby exhibiting its full locality.

Remark 3.15. Our analysis in this paper involves parametrized families
of flat connections, that is, connections on the total space of a fiber bundle
π : M → S that are flat along the fibers of π. Such connections need not be
flat on M , and for that reason we need more than the homotopy theoretic
map (3.14), since the latter only incorporates families of flat connection in
which the connection is flat on the total space M . It is in this broader sense
that the invertible field theory (3.13) is not topological. We explain this
further in Appendix B.

Remark 3.16. In codimension 1—on closed surfaces—we wrote in (3.13)
that the theory FG has values complex lines. Similarly, in codimension 2—on
closed 1-manifolds—we take the values of the theory to be V-lines, i.e.,
invertible modules over the tensor category V of complex vector spaces.

There is a spin variant of Chern-Simons theory, which we discuss in §5.2
in a special case.

4. Stratified abelianization and spectral networks

We begin in §4.1 with an elementary concrete example of stratified
abelianization which motivates all that follows. Here one explicitly sees the
monodromy around branch points (Lemma 4.12) and the unipotent auto-
morphism when crossing a wall (Equation (4.11)). We abstract this into a
general definition in §4.2. The data of a spectral network is the specifica-
tion of a particular type of stratified manifold. This is all for rank one Lie
groups. In §4.3 we construct a spectral network and stratified abelianization
for a triangulated surface, and in §4.4 we do the same for a triangulated 3-
manifold. An important example is a 2-sphere triangulated by the boundary
of a tetrahedron—this is the boundary of a 3-simplex, which we encounter
at the center of each 3-dimensional tetrahedron in the triangulation of a
3-manifold—and we prove an important relation in the stratified abelian-
ization in Proposition 4.43. Our setup here makes contact with cross ratios
(Remark 4.49) and the Thurston gluing equations (Remark 4.56).

4.1. 2-dimensional spectral networks: motivation. To motivate
stratified abelianization, begin with an invertible 2× 2 complex matrix A ∈
GL2C. For a geometric take, let E → S1 be a rank 2 flat complex vector
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bundle with holonomy A. Then A is diagonalizable if and only if there exist

L −−→ S1 � S1(4.1)

π∗L
∼=−−→ E,(4.2)

where π : S1 � S1 → S1 is the product12 double cover, (4.1) is a (flat) line
bundle, and (4.2) is an isomorphism. If so, and if A is not a scalar ma-
trix, then the projectivization PE → S1 has two distinguished horizontal
sections; the line bundle L → S1 � S1 is isomorphic to the restriction of
the tautological line bundle L → PE to the union of the images of those
sections. If A is not diagonalizable, then the existence of an eigenvector of
A implies that PE → S1 has a unique flat section.

Figure 2. A flat bundle over the one-holed torus.

Now consider two invertible matrices A1, A2 ∈ GL2C. If A1A2 = A2A1,
then there is a flat rank 2 complex vector bundle E → S1 × S1 with
holonomies A1, A2 about chosen based loops generating π1(S

1×S1). Then—
assuming each of A1, A2 is diagonalizable—there is a global abelianization
based on the product double cover of S1 × S1. Our story begins when
A1A2 �= A2A1. In this situation the matrices A1, A2 determine a flat rank 2
complex vector bundle E → Y over the compact surface Y = S1 × S1 \D2,
as depicted in Figure 2. Let x ∈ ∂Y be a basepoint. There is no hope of
a global abelianization. Instead, consider the ideal triangulation of Y de-
picted in Figure 3. If we collapse the boundary ∂Y , there are 2 triangles,
glued along 3 edges; each vertex is the point at “infinity” in Y/∂Y . We
interpret Figure 3 as a stratification
(4.3) Y = Y0 � Y−1 � Y−2.

The codimension 2 stratum Y−2 consists of two points, one interior to each
face. The codimension 1 stratum Y−1 is the union of six line segments,
joining the codimension 2 stratum to the vertices. The generic stratum Y0
is the complement of the lower dimensional strata.

The first step in stratified abelianization is the choice of a parallel section
of the associated projective bundle over ∂Y , equivalently an eigenline K ⊂
Ex of the commutator A1A2A

−1
1 A−1

2 . The generic stratum Y0 = R(1) �
R(2) � R(3) has three contractible components, and for each i ∈ {1, 2, 3}

12Note the sheets are not ordered.
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Figure 3. The stratification Y = Y0�Y−1�Y−2. The orange
points make up Y−2; the black segments (walls) make up Y−1;
the rest (including the gray edges of the triangles and the blue
boundary arcs) is Y0.

Figure 4. Computing the unipotent gluing and holonomy.

the intersection R(i) ∩ ∂Y has two contractible components; see Figure 4.
By parallel transport from ∂C we obtain for each i ∈ {1, 2, 3} two parallel
sections of PE

∣∣
R(i)→ R(i). In the second drawing of Figure 4 the two sections

in each component R of Y0 are labeled by the two vertices in the closure
of R.

Assumption 4.4 (genericity). For each i ∈ {1, 2, 3}, these sections are
distinct.

Then, as in the 1-dimensional case, construct a global abelianization over
the generic stratum:

π : Ỹ0 −→ Y0 double cover(4.5)

L −→ Ỹ0 flat line bundle(4.6)

π∗L
∼=−−→ E

∣∣
Y0

isomorphism of flat bundles(4.7)

The map π is the restriction of PE → Y over the image of the two sections,
and the line bundle (4.6) is the restriction of the tautological line bundle
L → PE to Ỹ0 ⊂ PE. The genericity assumption allows us to construct (4.7)
from the embedding L → PE × E.

As a preliminary, suppose �1, �2, �3 are three distinct lines in a 2-dimen-
sional vector space F . Define

(4.8) proj�1 : �2 −→ �3
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as the composition �2 ↪−−→ F
�1−−→→ �3, where the second map is projection

with kernel �1; the composition is an isomorphism.
Our task is to extend the abelianization to a structure over the lower

strata. Fix a component I of Y−1 and let R,R′ be the components of Y0
on either side of I. The intersection point I ∩ ∂Y picks out contiguous
components of R ∩ ∂Y and R′ ∩ ∂Y . Glue the corresponding sheets of the
double cover (4.5) along I; there is a distinguished sheet along I from the
contiguous components. In this manner extend (4.5) to a double cover

(4.9) π : Ỹ≥−1 −→ Y≥−1

together with a section s of π over Y−1. Next, extend (4.6) to a flat line
bundle
(4.10) L −→ Ỹ≥−1

as follows. (We refer to Figure 4.) In passing from R to R′, on the sheet
obtained by parallel transport from vertex 1 glue L → Ỹ0 via the identity.
Cover the identification of the sheet 2 in R and the sheet 3 in R′ with the
isomorphism (4.8) of the line bundle L → Ỹ0 across the segment in Ỹ−1.

We compare the isomorphisms (4.7) on each side of Y−1. By construction,
the unipotent automorphism passing from region R to region R′ is

(4.11)
�1 ⊕ �2 −→ �1 ⊕ �3

ξ1 + ξ2 �−→ ξ1 + proj�1(ξ2)

Lemma 4.12. Let λ be the link of Y−2 ⊂ Y and λ0 ⊂ λ a component
of λ.

(i) The restriction of the double cover (4.9) to λ0 is nontrivial.
(ii) The holonomy of (4.10) about π−1(λ0) is − id.

Figure 5. Computing holonomy by composing projections.

Proof. The proof of (i) is straightforward; we leave it to the reader.
For (ii), the holonomy about π−1(λ0) is the composition

(4.13) �1
id−−−→ �1

proj�2−−−−→ �3
id−−−→ �3

proj�1−−−−→ �2
id−−−→ �2

proj�3−−−−→ �1.

Fix ξ1 ∈ �1, and let ξ2 ∈ �2, ξ3 ∈ �3 be the unique vectors such that
ξ1 = ξ2 + ξ3. Then under (4.13)

�(4.14) ξ1 �−→ ξ1 �−→ ξ3 �−→ ξ3 �−→ −ξ2 �−→ −ξ2 �−→ −ξ1.
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4.2. Stratifications, spectral networks, and abelianization. The
double cover (4.9) together with the section over Y−1 is called a spectral
network (subordinate to the stratification (4.3)). Components of Y−1 are
the walls and Y−2 is the branch locus. Notice that Lemma 4.12(i) implies
that Ỹ≥−1 → Y≥−1 extends to a branched double cover Ỹ → Y with branch
locus Y−2. The stratified abelianization of E → Y is the data:

• the flat line bundle L → Ỹ≥−1

• the isomorphism (4.7) on Y0
• the unipotent gluing (4.11) on Y−1

In this subsection we give formal definitions of this structure which apply in
some generality.

Two-dimensional spectral networks were introduced by Gaiotto-Moore-
Neitzke [GMN1] in their study of supersymmetric 4-dimensional gauge the-
ories. They have motivated many mathematical constructions and conjec-
tures since, related to hyperkähler geometry, enumerative invariants, and
asymptotic analysis of complex ODE, among others.

4.2.1. Stratifications. We use the definition [L, 4.3.2]. In that approach
a type 
X of stratified manifold of dimension n is defined from the top down.
Namely, begin with a geometric structure13 for the generic stratum in codi-
mension 0. Then for each 1 ≤ k ≤ n specify the geometric structure and link
of a codimension k stratum; the link is an 
X-stratified (k − 1)-dimensional
manifold. An 
X-stratified manifold of dimension ≤ n is built from the bottom
up: first the highest codimension strata are specified, then higher strata with
the proper link are glued in successively. This heuristic depiction is fleshed
out precisely in [L, 4.3.2], and the heuristic specifications of the following
definition can easily be formulated in that precise framework.

Definition 4.15. An SN-stratification on a manifold-with-corners of
dimension ≤ 3 has the following specifications.

(i) codimension 0 : a codimension 0 smooth manifold;
(ii) codimension 1 : a codimension 1 submanifold—the link is a 0-sphere;
(iii) codimension 2 : a Type14 a codimension 2 stratum has link a circle

with an arbitrary codimension 1 submanifold consisting of a finite
set of points; a Type b codimension 2 stratum has link a circle with
a codimension 1 submanifold consisting of 3 points;

(iv) codimension 3 : a Type a codimension 3 stratum has link a 2-sphere
with an SN-stratification consisting of a codimension 1 trivalent
graph whose vertices are of Type a; a Type b codimension 3 stra-
tum has link a 2-sphere with the standard SN-stratification of the
boundary of a tetrahedron (Construction 4.37 below).

13That is, a topological space X equipped with a continuous map X → BOn. An
n-manifold M with an X-structure is equipped with a lift M → X of the classifying map
of its tangent bundle.

14Mnemonic: Type a is “anodyne”, Type b is “branch.”
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Figure 6. Links of codimension 2 strata. For Type a the
link can contain an arbitrary number of points of M−1, while
for Type b it must contain exactly three.

We use the term SN-stratified manifold for a manifold equipped with an
SN-stratification.

Remark 4.16. There is a generalization of Definition 4.15 to manifolds
with boundary and corners. The key point is that the SN-strata intersect
boundaries and corners transversely.

In §§4.3, 4.4 we define canonical SN-stratifications associated to semi-
ideal triangulations of 2- and 3-manifolds.

Remark 4.17. An SN-stratified manifold M is decomposed as a disjoint
union
(4.18) M = M0 � M−1 � M−2a � M−3a � M−2b � M−3b

where M−2a is the union of codimension 2 strata of Type a, M−2b is the union
of codimension 2 strata of Type b, and likewise M−3a, M−3b are the unions
of codimension 3 strata. This unusual notation is convenient for subsequent
definitions: the Type a strata of codimension 2,3 behave as singular parts of
the codimension 1 strata. Hence define

(4.19)
M≥−3a = M0 �M−1 �M−2a �M−3a,

M≥−2b = M0 �M−1 �M−2a �M−3a �M−2b.

4.2.2. Rank one Lie groups. Spectral networks and abelianization data
are conveniently formalized in terms of a triple of complex Lie groups G ⊃
H ⊃ T in which T is a (complex) maximal torus of G and H its normalizer.
In this paper we restrict to the groups GL2C, SL2C, and very occasionally
PSL2C. For G = GL2C we choose T ∼= C

× × C
× the subgroup of diagonal

matrices; then its normalizer is

(4.20) H =

{(
∗ 0
0 ∗

)}
∪
{(

0 ∗
∗ 0

)}
⊂ GL2C,

a 2-component Lie group with identity component T . Choose the diagonal
matrices to be the maximal torus of SL2C and its image in PSL2C to be the
maximal torus in the projective linear group; in each case the normalizer H
of T has two components. Let U ⊂ GL2C be the subgroup

(4.21) U =

{(
1 z
0 1

)
: z ∈ C

}
of upper triangular unipotent matrices. Then U ⊂ SL2C as well, and U
projects to a unipotent subgroup of PSL2C.
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Remark 4.22. Each of the three groups G acts on the projective line
P(C2) = CP

1. In each case H is the stabilizer subgroup of the 2-point subset
A ⊂ CP

1 of the axes in C
2, and T is the subgroup of elements of H that

act as the identity on A. The stabilizer of the first axis � ⊂ C
2 is a Borel

subgroup B ⊂ G, and there is a diffeomorphism G/B ≈ CP
1. Then for

G = GL2C or SL2C, the Borel B acts linearly on � and C
2/�, and U ⊂ B is

the subgroup of elements that act trivially on both � and C
2/�.

4.2.3. Definition of spectral networks and stratified abelianization data.
Assume G ⊃ H ⊃ T is one of the three triples defined in §4.2.2. We refer
to it as the pair (G,T ), since H is determined as the normalizer of T ⊂ G.
Some notation: If Q → M is a principal H-bundle, then we denote by ι(Q) =
Q ×H G → M its “inflation” to a principal G-bundle. Also, if w ⊂ M−1 is
a wall (a component), and R → w is a principal T -bundle, then there is an
associated fiber bundle of groups

(4.23) Uw = R×T U −→ w,

where T acts on U by conjugation.
The following definition applies to rank one groups, as does Defini-

tion 4.15; there are stratifications, spectral networks, and stratified abelian-
ization data in higher rank as well [GMN1, GMN2, LP, IM].

Definition 4.24. Let M be a compact manifold of dimension ≤ 3 with
boundary. Suppose M is equipped with an SN-stratification M \ ∂M =
M0 �M−1 �M−2a �M−3a �M−2b �M−3b.

(i) A spectral network N = (π, s) subordinate to the stratification of M
is:

• a double cover π : M̃≥−3a → M≥−3a which restricts nontriv-
ially to the link of each point in M−2b

• a section s of π over M−1 �M−2a �M−3a

(ii) Stratified abelianization data A = (P,Q, μ, θ) of type (G,T ) over
(M,N) is the data:

• a principal G-bundle P → M with flat connection
• a principal H-bundle Q → M≥−3a with flat connection
• an isomorphism of double covers μ : M̃≥−3a→Q/T over M≥−3a

• a flat isomorphism θ : ι(Q) → P over M0

We require that the discontinuity of θ lie in Uw → w as we cross a
point of the wall w ⊂ M−1.

Observe that the section s reduces the restriction of Q → M≥−3a over
M−1 �M−2a �M−3a to a principal T -bundle; on a wall w ⊂ M−1 the fiber
bundle of groups Uw → w is defined in (4.23). Stratified abelianization data
over a given (M,N ) form a category; we leave to the reader the definition
of the morphisms. Our usage of the term ‘spectral network’ often includes
the underlying SN-stratification.
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Remark 4.25. Definition 4.24 is adequate for our purposes but does
not capture the most general rank one spectral networks which can occur
in nature, e.g. from trajectory structures of meromorphic or holomorphic
quadratic differentials on Riemann surfaces; see [GMN2, HN, Fe], for
example.

4.3. 2-dimensional spectral networks from triangulations. Let
A
2 denote the standard affine plane. Denote the convex hull of a subset T ⊂

A
2 as Conv(T ). An affine triangle Δ̂ is the convex hull Conv(p0, p1, p2) of

three non-collinear points p0, p1, p2. Fix some ε ∈ (0, 12), say ε = 1
10 . The

truncated triangle Δ ⊂ Δ̂ is the convex hull of the six points (1− ε)pi + εpj
for i �= j, as shown in Figure 7. We will sometimes refer to “edges” or
“vertices” of Δ, meaning the corresponding edges or vertices of Δ̂.

Figure 7. The truncated affine triangle Δ contained in the
affine triangle Δ̂.

Let S◦ be the quotient of a finite union of disjoint truncated affine tri-
angles {Δi}i∈I whose edges are identified in pairs via affine isomorphisms.
Then S◦ can be given the structure of a smooth compact 2-manifold with
boundary.15 The gluing of edges induces an equivalence relation on the 3N
vertices of the N triangles Δi; each equivalence class of vertices corresponds
to a boundary component of S◦, with the topology of a circle. We sometimes
call such an equivalence class a “glued vertex” or simply a “vertex”. Parti-
tion the glued vertices into two subsets of interior and ideal vertices. Let S
be a space obtained by gluing a copy of the standard disc to each boundary
component of S◦ corresponding to an interior vertex. S is a smooth compact
2-manifold with boundary; π0(∂S) is canonically identified with the set of
ideal vertices.

Definition 4.26. Let Y be a compact 2-manifold with boundary. A
semi-ideal triangulation of Y is a diffeomorphism S → Y , where S is a
space of the sort just described. The semi-ideal triangulation is called ideal
if all vertices are ideal, and just a triangulation if all vertices are interior.

Construction 4.27 (SN-stratification of a truncated triangle). A trun-
cated affine triangle Δ carries a canonical SN-stratification Δ = Δ0�Δ−1�
Δ−2b as follows. Let c = (p0 + p1 + p2)/3 be the barycenter of Δ. Set
Δ−2b = {c}; the stratum Δ−1 is the union of the three line segments

15Indeed, since edges are identified in pairs, a neighborhood of any point on a glued
edge is a disc; moreover the link of a vertex is easily seen to be a circle.
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Figure 8. The SN-stratification of a truncated affine triangle.

(Conv(pi, c) ∩ Δ) \ Δ−2b, i = 0, 1, 2; and Δ0 is the complement of Δ≤−1.
This SN-stratification is depicted in Figure 8.

Construction 4.28 (SN-stratification of the standard disc). Let D be
the standard closed disc. For any finite subset W ⊂ ∂D we obtain an SN-
stratification D = D0 � D−1 � D−2a as follows. Let c be the center of D.
Then D−2a = {c}; D−1 is the union of line segments connecting c to each
point of W ; and D0 is the complement of D≤−1. See Figure 9.

Figure 9. An SN-stratification of the disc, determined by a
finite subset of the boundary circle.

Construction 4.29 (SN-stratification of a triangulated surface). Let
Y be a compact 2-manifold with boundary equipped with a semi-ideal trian-
gulation T. The transport of the SN-stratifications on the truncated triangles
and the discs around interior vertices defines an SN-stratification of Y . Fig-
ure 3 is an example where there are no interior vertices. See Figure 10 for
an example with an interior vertex.

Figure 10. A portion of the SN-stratification of a semi-
ideally triangulated closed 2-manifold with an interior vertex
(center).

Construction 4.30 (spectral network on a triangulated surface). Let
Δ = Δ0 � Δ−1 � Δ−2b be the canonical SN-stratification of a truncated
affine triangle (Figure 8). The boundary of each component of Δ0 contains
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precisely one edge of Δ; its boundary consists of two distinguished vertices.
Let π : Δ̃0 → Δ0 be the (trivializable) double cover whose fiber consists of
those two distinguished vertices. Each component of Δ−1 is in the closure of
two components of Δ0, with one vertex in common. Glue the corresponding
sheets of the double cover to define π : Δ̃≥−1 → Δ≥−1 together with a sec-
tion s over Δ−1, i.e., a spectral network on Δ. This construction glues across
edges and extends to discs around interior vertices, and thus transports to
give a spectral network N T over a semi-ideally triangulated surface (Y,T).

Construction 4.31 (stratified abelianization data on a semi-ideally
triangulated surface). Consider first G = GL2C or G = SL2C. Assume
that the compact 2-manifold Y has no closed components and is equipped
with a semi-ideal triangulation T. Let P → Y be a flat principal G-bundle.
On each component of ∂Y , choose a flat section of the associated CP

1-
bundle P/B

∣∣
∂Y

→ ∂Y , as in §4.1; see Remark 4.22 for the definition of the
Borel subgroup B ⊂ G. Also choose an element of the fiber of P/B over
each interior vertex. Use parallel transport—as in §4.1—to obtain two flat
sections s, s′ of P/B

∣∣
Y0
→ Y0. The following is a generalization of Genericity

Assumption 4.4:
Assumption 4.32 (genericity). The sections s, s′ are nowhere equal.
Identify P → Y as a bundle of bases of a rank 2 complex vector bundle

E → Y . The submanifold of bases contained in the lines defined by the
sections s, s′ determines a reduction of the principal G-bundle P → Y0 to
a principal H-bundle Q → Y0. For c ∈ Y−1, the limits of s, s′ from the two
sides of Y−1 ⊂ Y≥−1 give three points �1, �

′
2, �

′′
2 ∈ (P/B)c in the projective

line PEc over c. One of the sections has the same limit �1 on both sides; the
other has two possibly distinct limits. Let B�1 ⊂ AutPc be the subgroup
of elements which fix �1. Then (P/B)c is the projectivization PEc of the
2-dimensional vector space Ec, the group B�1 acts linearly on Ec, and we
define ϕc to be the unipotent element (4.11). Glue using ϕc at each c ∈ Y−1

to construct a flat principal H-bundle Q → Y≥−1. This gives most of the
stratified abelianization data Definition 4.24(ii). We leave the rest to the
reader, as do we the slight modifications for G = PSL2C.

Remark 4.33. The projection Q → Ỹ≥−2a, defined via the isomor-
phism μ of double covers, is a principal T -bundle. If G = SL2C or PSL2C,
then T ∼= C

×. If G = GL2C, there is an associated principal C×-bundle from
the character

(
λ1

λ2

)
�→ λ1 of T . Let L → Ỹ≥−2a be the associated flat line

bundle. Lemma 4.12 holds in this more general situation.
We conclude with a theorem about stratified abelianizations over a single

triangle Δ equipped with the standard spectral network N depicted in Fig-
ure 8. Specialize to G = SL2C and the corresponding subgroups T,H,B,U .
In this case there is a unique stratified abelianization, whose automorphism
group is /μ

2
, in the following sense.
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Proposition 4.34. Let A = (P,Q, μ, θ) and A′ = (P ′, Q′, μ′, θ′) be strat-
ified abelianization data over (Δ,N ). Then there is an isomorphism A → A′,
unique up to composition with the simultaneous action of −1 on P and Q.

Proof. First we construct a map of flat bundles ϕQ : Q → Q′. The
monodromy of Q around ∂Δ lies in H \ T , since Q/T � Δ̃ is the nontrivial
double cover, and likewise for Q′. But now recall that all elements of H\T are
conjugate in H. It follows that there exists an isomorphism ϕQ : Q → Q′ of
flat H-bundles, unique up to composition with an automorphism of Q → Δ.

The automorphism group of Q → Δ is the commutant of the mon-
odromy, which is a cyclic group of order 4; either generator acts nontrivially
on Q/T , and the order 2 element acts by −1 ∈ H. Thus, by composing with
an automorphism of Q → Δ if necessary, we may arrange that μ ◦ ϕQ = μ′,
and the remaining freedom in ϕQ is composition with the action of −1 ∈ H.

Next we construct a map of flat bundles ϕP : P → P ′. Along each
wall w we have a section sw of Q/T . On either side of the wall, θ(sw) then
gives a section of P/T → w; the condition on the discontinuity of θ ensures
that their projections to P/B agree, thus giving a section ow of P/B → w.
Because G/{±1} = PSL2C acts simply transitively on triples of distinct
points of G/B � CP

1, there exists ϕP : P → P ′ which maps ow to o′w for
all three walls w, and such a ϕP is unique up to a sign.

Finally we need to check that on Δ0 we have (possibly after composing
ϕP with the action of −1 ∈ G)

(4.35) ϕP = θ′ ◦ ϕQ ◦ θ−1.

For this we consider the difference ξ = ϕ−1
P ◦θ′◦ϕQ◦θ−1 which is a covariantly

constant section of Aut(P )|Δ0 , with two properties:
• In a component of Δ0 bounded by two walls w, w′, the difference
ξ belongs to the subgroup Tww′ � T preserving ow and ow′ . Thus ξ
acts by a constant scalar λw on ow, with λw′ = λ−1

w .
• The discontinuity of ξ across w belongs to the subgroup Uw � U .

It follows that λw is the same on both sides of w.
Labeling the three walls as wi (with i mod 3), the above properties say
λwi+1 = λ−1

wi
, which gives λwi+3 = λ−1

wi
, so λw = λ−1

w = λwi+1 and thus
ξ = ±1. This completes the proof. �

4.4. 3-dimensional spectral networks from triangulations. We
begin with a 3-dimensional analog of Definition 4.26. A tetrahedron ˆ in A

3

is the convex hull Conv(p0, p1, p2, p3) of four points in general position. The
truncated tetrahedron ⊂ ˆ is the convex hull of the 12 points (1−ε)pi+εpj
with j �= i. (Recall ε ∈ (0, 1), say ε = 1

10 .) See Figure 11. We will sometimes
refer to “faces”, “edges” or “vertices” of , meaning those of ˆ .

Let S◦ be the quotient of a finite union of disjoint affine truncated tetra-
hedra { i}i∈I whose faces are identified in pairs via affine isomorphisms.
Then S◦ can be given the structure of a smooth compact 3-manifold with
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Figure 11. A truncated tetrahedron.

boundary. The gluing of faces induces an equivalence relation on the 4N ver-
tices of the N tetrahedra i; each equivalence class of vertices corresponds
to a boundary component of S◦, which is a compact connected surface. We
sometimes call such an equivalence class a “glued vertex” or simply a “ver-
tex”. Partition the glued vertices into two subsets of interior and ideal ver-
tices, subject to the condition that the boundary component corresponding
to an interior vertex must be diffeomorphic to S2. Let S be a space obtained
by gluing a copy of the standard 3-disc to each boundary component of S◦

corresponding to an interior vertex. S is a smooth compact 3-manifold with
boundary; π0(∂S) is canonically identified with the set of ideal vertices.

Definition 4.36. Let Y be a compact 3-manifold with boundary. A
semi-ideal triangulation of Y is a diffeomorphism S → Y , where S is a
space of the sort just described. The semi-ideal triangulation is called ideal
if all vertices are ideal, and just a triangulation if all vertices are interior.

Construction 4.37 (Spectral network on a tetrahedron). Let ˆ =
Conv(p0, p1, p2, p3) be a tetrahedron in A

3. Let qi = (pi+1+pi+2+pi+3)/3 be
the barycenter of the face opposite pi, i = 0, 1, 2, 3; set c = (p0+p1+p2+p3)/4
the barycenter of . (We use pi+4 = pi, i = 0, 1, 2, 3.) Figure 12 depicts a

Figure 12. The canonical SN-stratification on a truncated
affine tetrahedron.
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canonical SN-stratification of ,

(4.38)

−3b = {c}

−2b =

4⋃
i=0

Conv(qi, c) \ −3b

−3a = ∅

−2a =

4⋃
i=0

Conv(pi, c) ∩ \ −3b

−1 =

4⋃
i=0

3⋃
j=1

Conv(pi+j , qi, c) ∩ \ ≥−3a

0 = \ ≥−1

The link Yc of −3b is a 2-sphere triangulated as the boundary of a tetrahe-
dron. By Construction 4.30 it has a canonical SN-stratification—the restric-
tion of (4.38) to Yc—and subordinate spectral network; see Figure 13. The
same construction extends the SN-stratification to a 3-dimensional spectral
network subordinate to (4.38). Namely, each component U of 0 contains
one edge with two vertices, and each component of −1 in U corresponds
to one of those vertices. Let π : ˜

0 → 0 be the (trivializable) double
cover whose fiber over U is the aforementioned set of two vertices, and glue
along −2a� −1 by identifying the common vertex on each wall. This pro-
duces a double cover π : ˜≥−3a → ≥−3a with a section s over −2a� −1,
i.e., a spectral network. There is an extension to a branched double cover
π : ˜≥−2b → ≥−2b with branch locus −2b.

Figure 13. The spectral network on Y = Yc.

Remark 4.39. It will be convenient to excise an open ball about c as
well as its inverse image on the branched double cover.

We investigate stratified abelianization on the link Y = Yc of the barycen-
ter of . The stratum Y−2b of Y consists of 4 points, and the double cover
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Figure 14. The branched double cover of the tetrahedrally
triangulated 2-sphere Yc by a 2-torus Ỹc, and a distinguished
triple of cycles on Ỹc.

π : Ỹ≥−2a → Y≥−2a extends to a branched double cover π : Ỹ → Y in which
Ỹ is diffeomorphic to a 2-torus. The double cover π is depicted in Figure 14.
The boundary of the tetrahedron has been unfolded, as in Figure 13, as has
been the covering 2-torus. Assume Y is oriented, and use π to induce an ori-
entation on Ỹ . To each edge E in associate an element ΓE ∈ H1(Ỹ≥−2a)
as follows. Let λ̄E ⊂ Y≥−1 be a loop which crosses E twice transversely and
encircles the branch points in the faces of which abut E. Orient λ̄E as the
boundary of the region which contains these two branch points. The desired
lift λE is distinguished from the other lift of λ̄E as follows: the lifts to λE

of the two intersection points λ̄E ∩ E lie on the sheet of the double cover
labeled by the closest endpoint of E. Then ΓE is the homology class of λE

in H1(Ỹ≥−2a), the homology of the torus with the 4 branch points excised.
Let γE ∈ H1(Ỹ ) be its image in the homology of the torus. We invite the
reader to deduce the following, using Figure 14.

Proposition 4.40.
(1) The image of ΓE∈H1(Ỹ≥−2a) under the deck transformation is −ΓE.
(2) Opposite edges of , such as 13 and 02 in the figure, induce the

same homology class in H1(Ỹ≥−2a).
(3) The three pairs of opposite edges lead to three homology classes

γ0, γ1, γ2 ∈ H1(Ỹ ) which sum to zero.

Cyclically order the three pairs of opposite edges so that the intersec-
tion product 〈γi, γi+1〉 = +1 for i ∈ Z/3Z. Denote the corresponding loops
in Ỹ≥−2a as λE0

, λE1
, λE2

.
Let Ỹ−2b ⊂ Ỹ be the set of 4 branch points π−1(Y−2b). Since Y is simply

connected, any flat G-bundle P → Y is trivializable. Fix �i in the fiber of the
associated CP

1-bundle P/B → Y at each vertex pi ∈ . Let E ≈ CP
1 be the

space of horizontal sections of P/B → Y , and let �i ∈ E be the extension
of the previous �i to a horizontal section. Assume that �0, . . . , �3 ∈ E are
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distinct; this implies the Genericity Assumption 4.32. Use Construction 4.31
to produce a stratified abelianization. By Remark 4.33 there is a flat line
bundle
(4.41) L −→ Ỹ≥−2a

with holonomy −1 around each of the 4 (branch) points in Ỹ−2b. The iso-
morphism class of the flat bundle (4.41) is determined by its holonomy, a
homomorphism

(4.42) holL : H1(Ỹ≥−2a) −→ C
×.

Set zi = holL(λEi
) for i ∈ Z/3Z.

Proposition 4.43. The holonomies of L satisfy

(4.44) zi+1 = 1− 1

zi
.

Proof. We compute as in the proof of Lemma 4.12 using Figure 14 as
a guide. The holonomy of L → Ỹ around λEi

is the composition

(4.45) �0
proj�3−−−−−→ �1

proj�2−−−−−→ �0

and the holonomy of L → Ỹ around λEi+1
is the composition

(4.46) �2
proj�3−−−−−→ �0

proj�1−−−−−→ �2

(Recall the projections in (4.8).) Choose ξj ∈ � �=0
j , j = 1 and then j = 3, 0, 2,

such that

(4.47)
ξ1 = ξ3 + ξ0

= ξ2 + zξ0

for some z ∈ C\{0, 1}. Then proj�3(ξ0) = ξ1 and proj�3(ξ2) = (1− z)ξ0, etc.
Hence the image of ξ0 under (4.45) is zξ0, and the image of ξ2 under (4.46)
is (1− 1

z )ξ2. Therefore,

�(4.48) zi+1 = holL(λEi+1
) = 1− 1

z
= 1− 1

holL(λEi
)
= 1− 1

zi
.

Remark 4.49.
(1) One interpretation of z = holL(λEi

) is as follows. Recall that 4 dis-
tinct points in a projective line PF are characterized up to isomor-
phism by their cross-ratio. If �0, �1, �2, �3 are the corresponding
lines in the 2-dimensional vector space F , then the cross-ratio is

(4.50) (ξ0 ∧ ξ3)(ξ1 ∧ ξ2)

(ξ0 ∧ ξ2)(ξ1 ∧ ξ3)
∈ C \ {0, 1}, ξi ∈ �i nonzero,

where the numerator and denominator are nonzero elements in
(DetF )⊗2; the ratio is independent of the choice of ξi ∈ � �=0

i . Per-
muting the lines we obtain numbers z, 1/z, 1−z, 1/(1−z), z/(z−1),
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(z−1)/z for some z ∈ C
×\{1}. In the case at hand, with the chosen

vectors ξ1, ξ2, ξ3, ξ4 in (4.47), we compute

(4.51) (ξ0 ∧ ξ3)(ξ1 ∧ ξ2)

(ξ0 ∧ ξ2)(ξ1 ∧ ξ3)
= z = holL(λEi

).

(2) As a corollary of Proposition 4.43 the product of the holonomies
around the loops λE0

, λE1
, λE2

defined after Proposition 4.40 is

(4.52) z

(
1− 1

z

)(
1− 1

1− 1
z

)
= −1.

This leads to a sharpening of Proposition 4.40(3). Let S ⊂ Ỹ≥−2a

be a link of the 4 points Ỹ−2b ⊂ Ỹ≥−2a, so S =
⊔4

k=1 Sk is a union
of 4 disjoint circles Sk, one surrounding each branch point. Form
the commutative diagram

(4.53)

H1(S)

χ

H1(Ỹ≥−2a) H1(Ỹ ) 0

0 /μ
2

{

H1(Ỹ ) H1(Ỹ ) 0

in which the homomorphism χ maps a generator of H1(Sk) to −1 ∈
/μ

2
. The bottom row of (4.53) is a central group extension. The

refinement of Proposition 4.40(3) is that the product of the images
of [λEi

] in {

H1(Ỹ ) is −1 ∈ /μ
2
.

(3) The space M = C\{0, 1} ≈ CP
1\{0, 1,∞} is the domain of the real

dilogarithm function (2.1), and the total space of an abelian cover
pM → M is the domain of the enhanced Rogers dilogarithm (2.9).
In our current setup M is a space of flat C×-connections on a punc-
tured torus. In §7.2 we introduce an extra twist to get rid of the
punctures, and so identify M as a space of flat C×-connections on a
torus. See [FN] for a development of the dilogarithm function with
this starting point.

Construction 4.54 (SN-stratification on a 3-disc). Let D be the stan-
dard closed 3-disc. Given an SN-stratification of the boundary ∂D = S2, of
the form ∂D = (∂D)0 � (∂D)−1 � (∂D)−2a, we obtain an SN-stratification
of D as follows. Let c be the center of D. Then D−3b = ∅, D−3a = {c}, and
each other stratum Dα is the cone over (∂D)α with c removed.

Construction 4.55 (Stratified abelianization data on a 3-manifold).
Let X be a compact 3-manifold with boundary, and suppose T is a semi-
ideal triangulation. The SN-stratification (4.38) and subordinate spectral
network on each truncated tetrahedron transport to X, and extend over the
3-discs around interior vertices. In particular, there is a branched double
cover π : X̃ → X≥−2b with branch locus X−2b.
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Suppose P → X is a flat principal G-bundle. Assume there exists16 a
flat section of the restriction of the associated CP

1-bundle P/B → X to ∂X,
and furthermore that we can and do choose a section such that Genericity
Assumption 4.32 hold. Excise from X open balls about the barycenters of
the tetrahedra. Let X ⊂ X̃ be the total space of the double cover π with
the inverse images of the balls excised. Then X̃ is a compact manifold with
boundary ∂X�∂X�S̃1�· · ·�S̃N , where each S̃i is a 2-torus. The preceding
gives an SN-stratification of X with strata of codimension 0, 1, and 2, and
a flat line bundle L → X≥−3a. The holonomy around a circle linking X−2b

is −1.

Remark 4.56 (Thurston gluing equations). Each tetrahedron (j) in
Construction 4.55 has a shape parameter z(j) ∈ C \ {0, 1} which is one of
the holonomies defined before Proposition 4.43. (There are three possibilities
labeled by the three pairs of opposite edges of (j).) Let E be an edge in
the triangulation T, and let SE ⊂ {1, . . . , N} be the set of j such that E is
an edge of (j). For j ∈ SE , let γj be the loop in the torus S̃j which is
called ‘γE ’ in the text following Remark 4.39. Then

(4.57)
∑
j∈SE

[γj ] = 0 in H1(X).

To prove this relation consider Figure 15. Depicted are the two faces of (j),
j ∈ SE , which abut E and the image γ̄j of the corresponding loop γj .
Now each of the triangular faces occurs in exactly one additional tetrahe-
dron (j′), j′ ∈ SE \{j}, and it does so with the opposite orientation. Hence
the halves of γ̄j and γ̄j′ contained in that face cancel, as do the halves of
their lifts γj and γj′ . This leads to (4.57). (The cancellation is in homol-
ogy; the actual half curves are not strictly opposite.) The relation (4.57) in
homology immediately implies the Thurston gluing equation [T2, §4.2]

(4.58)
∏
j∈SE

z(j) = 1,

where we choose the edge E to define the shape parameter in each (j),
j ∈ SE .

Figure 15. The two faces of the jth tetrahedron which abut
the edge E.

16Existence condition: on each component of ∂X the holonomies around loops at a
basepoint have a common eigenline.
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5. Levels and Chern-Simons invariants

We begin in §5.1 by proving relations among the Chern-Simons levels of
GL2C, SL2C, and their various subgroups. This is the topological basis for
abelianization. These topological computations imply relations among sec-
ondary differential geometric invariants via differential cohomology. We pro-
vide a brief introduction to differential cohomology in Appendix A. In §5.2
we introduce the spin refinement of Chern-Simons theory and prove ap-
propriate relations among the “spin levels”. We fully embrace differential
cohomology in §5.3, where we prove a key result: Theorem 5.61. It states,
heuristically, that moving in the unipotent direction does not change Chern-
Simons invariants. We also prove results about C

× Chern-Simons theory
(Theorem 5.83, Corollary 5.89, Corollary 5.103) that are important in our
later work. We conclude with a global statement, Theorem 5.106, of abelian-
ization. Our main focus, stratified abelianization, is the subject of the sub-
sequent §§6–8.

In this section we change notation slightly. Set pG = GL2C and let pH, pT
be the subgroups defined in §4.2.2. Also, set G = SL2C and let H,T be the
associated subgroups; the unipotent subgroup U is a subgroup of G, hence
too of pG.

We remind of a choice made in Example 3.7.

Convention 5.1. 3-dimensional Chern-Simons theory FSL2C
is based

on the level −c2 ∈ H4(BSL2C;Z).

In that section the level is encoded in a symmetric bilinear form (3.1) on
the Lie algebra, and (3.8) is the form that corresponds to −c2. In the next
section we compute the restriction of −c2 to the subgroup H ⊂ G, and then
we will define Chern-Simons theory on H—or, rather, a spin refinement—in
terms of that restricted level.

5.1. Levels and abelianization.
5.1.1. Levels in GL2C. Our goal is to relate Chern-Simons invariants of

principal pG-bundles to Chern-Simons invariants of pH-, pT -, and U -bundles,
and to do the same for G-bundles. These derive from relationships among
appropriate degree four integral cohomology classes on the classifying spaces,
which we prove in this section. The inclusions pT ⊂ pH ⊂ pG and surjective
homomorphism pH → /μ

2
lead to a diagram

(5.2)

B pT

p

B pH
r

q

B pG

B/μ
2

s
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in which p is a double cover and the vertical maps p, q form a fibration
sequence. The section s of q is the classifying map of the inclusion /μ

2
∼=

{( 1 0
0 1 ) , (

0 1
1 0 )} ↪→ pH. Let ci ∈ H2i(B pG;Z), i = 1, 2, be the universal Chern

classes, and p1 = c21 − 2c2 the universal first Pontrjagin class. Let c′, c′′ ∈
H2(B pT ;Z) be the first Chern class of the homomorphisms pT → C× indicated
by the matrix

(
z′ 0
0 z′′

)
∈ pT . Let a ∈ H2(B/μ

2
;Z) be the generator; note

2a = 0.

Proposition 5.3. In diagram (5.2) we have the following equality in
H4(B pH;Z):

(5.4) p∗(c
′)2 = r∗p1 + q∗a2.

Proof of Proposition 5.3. From the Leray-Serre spectral sequence
of the vertical fibration in (5.2), we deduce the split short exact sequence17

(5.5) 0 H4(B/μ
2
;Z)

q∗

H4(B pH;Z)
s∗

p∗
H4(B pT ;Z) 0

Hence a class in H4(B pH;Z) is determined by its pullbacks under p∗ and s∗.
For σ : B pT → B pT the deck transformation, we have p∗p∗ = 1+σ∗. Hence

(5.6) p∗p∗(c
′)2 = (c′)2 + (c′′)2 = p∗r∗(c21 − 2c2) = p∗r∗(p1),

because c′, c′′ are the Chern roots of the universal pG-bundle. Since s induces
an isomorphism on π1, the fiber product of s and p is contractible, from which
s∗p∗ = 0. Also, s∗r∗(c21 − 2c2) = (s∗r∗c1)

2, since H4(B/μ
2
;Z) is torsion of

order two. The composition r ◦ s classifies the sum of the complex sign and
trivial representations of Z/2Z, so its first Chern class is the generator a ∈
H2(B/μ

2
;Z). Combining the preceding with s∗q∗ = id we deduce (5.4). �

Remark 5.7. For pG = GL2C a level mc21 + nc2 is parametrized by
integers m,n ∈ Z. By a similar argument to the preceding proof, p∗c′ =
r∗c1 + q∗a, from which

(5.8) (p∗c
′)2 = r∗c21 + q∗a2.

Thus we can realize any level with n even by a linear combination of p∗(c′)2
and (p∗c′)2, up to q∗a2.

17It helps to observe that the action of /μ
2

on H2(B pT ;Z) ∼= Z ⊕ Z exchanges the
two summands, so the resulting local system on B/μ

2
is the pushforward of the trivial

local system on its contractible double cover. Hence the cohomology vanishes in positive
degrees.
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5.1.2. Levels in SL2C. By restriction we deduce a formula for the “spe-
cial” subgroups which appear in the diagram

(5.9)

BT

p

BH
r

q

BG

B/μ
2

Lemma 5.10. In the diagram (5.9) we have q∗a2 = 0.

Proof. Let x ∈ H1(B/μ
2
;Z/2Z) be the generator. Then a = β(x),

where β : Hq(−;Z/2Z) → Hq+1(−;Z) is the integral Bockstein, and also
a2 = β(x3). It suffices to prove q∗x3 = 0. Passing to maximal compact
subgroups we replace T → H → /μ

2
by Spin2 → Pin−2 → /μ

2
. In the Leray-

Serre spectral sequence for the fibration sequence B/μ
2
→ BPin−2 → BO2,

the differential d2 : E0,1
2 → E2,0

2 sends the generator y ∈ H1(B/μ
2
;Z/2Z) to

w2
1 + w2 ∈ H2(BO2;Z/2Z). (See [KT] for a review of pin groups.) Then

d2(w1y) = w3
1 + w1w2. Also, since y transgresses so too do its Steenrod

squares, and in particular d3(y
2) = d3(Sq

1y) = Sq1(d2y) = Sq1(w2
1 + w2) =

w1w2. Hence w3
1 is killed when pulled back to BPin−2 . Conclude by observing

that

(5.11)
Pin−2 /μ

2

O2

det

commutes. So the pullback of x equals the pullback of w1. �

The classifying map of the inclusion i : T ↪→ pT satisfies (Bi)∗c′ =
−(Bi)∗c′′ = c for c ∈ H2

(
BT ;Z

)
a generator. Also, i∗r∗c1 = 0. The fol-

lowing is a corollary of Proposition 5.3 and Lemma 5.10.

Corollary 5.12. In diagram (5.9) we have the following equality in
H4

(
BH;Z

)
:

�(5.13) p∗c
2 = −2r∗c2.

Remark 5.14. Note the minus sign in (5.13)! We must be mindful of
it when we define a C

× Chern-Simons theory which is compatible with our
Convention 5.1 for SL2C Chern-Simons theory.

5.1.3. Abelianization of connections. Let us now focus on G = SL2C. If
X is a 3-manifold with a flat H-connection, then global abelianization of the
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associated flat SL2C-connection is encoded in the commutative diagram

(5.15)

X̃

π

B(C×)δ

p

X BHδ r
B(SL2C)

δ

where we write C
× for the group of diagonal matrices T ⊂ SL2C. The pull-

back square defines the (unramified) double cover π. Stratified abelianization
is encoded in the diagram

(5.16)

X̃≥−3a

π

B(C×)δ

p

X≥−3a BHδ r
B(SL2C)

δ

X

in which the bottom triangle commutes on X0. In both the global and strat-
ified cases our goal is to compute the Chern-Simons invariant of the flat
SL2C-connection on X in terms of a Chern-Simons invariant of the flat
C
×-connection on X̃. The SL2C Chern-Simons invariant is the secondary

invariant of −c2 ∈ H4(BSL2C;Z); the C
× Chern-Simons invariant is the

secondary invariant of c2 ∈ H4(BC
×;Z). There is a mismatch for abelian-

ization: the factor of −2 in (5.13). To rectify we must divide the C
×-level

by 2 (and include the minus sign). This can be done—a secondary invariant
for “c2/2” exists—but at the cost of introducing a new cohomology theory
and a spin structure on X̃, as we explain in §5.2.

Remark 5.17. Levels have a refinement in differential cohomology, and
the Chern-Simons invariants are nicely located in the differential theory;
see [ChS, HS, F2, FH2]. We give a précis of differential cochains in Ap-
pendix A and use this point of view on Chern-Simons invariants in §5.3;
see also [FN, Appendix A]. This framework makes clear that cohomology
identities immediately imply corresponding relations among secondary in-
variants.

We conclude our discussion of levels in ordinary cohomology by exam-
ining the restriction to the unipotent subgroup U in (4.21). Recall (Defini-
tion 4.24(ii)) that the failure of the bottom triangle in (5.16) to commute
on all of X≥−3a is due to the unipotent gluing along the walls (components
of X−1) of the spectral network. Since U ∼= C is contractible, so is BU , and
the following is immediate.

Proposition 5.18. The restriction of any level of GL2C or SL2C to U
vanishes. �
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In principle, then, the unipotent gluing does not change the Chern-
Simons invariant and essentially allows us to proceed as if the bottom tri-
angle in (5.16) commutes on X≥−3a, though this heuristic requires a bit of
work to make precise; see Theorem 5.61.

5.2. Levels for spin Chern-Simons theory.
5.2.1. E-cohomology and spin C

× Chern-Simons theory. To divide c2 ∈
H4(BC

×;Z) by 2, we pass to a cohomology theory simply denoted E, the
nontrivial extension

(5.19) HZ
i−−→ E

j−−→ Σ−2HZ/2Z

of Eilenberg-MacLane spectra; the k-invariant Σ−2HZ/2Z → ΣHZ is β ◦
Sq2, the composition of the integral Bockstein and the Steenrod square. For
any topological space S, the extension (5.19) leads to a long exact sequence
of cohomology groups
(5.20)
· · ·−→Hq(S;Z)

i−−→ Eq(S)
j−−→ Hq−2(S;Z/2Z)

β◦Sq2−−−−−→ Hq+1(S;Z)−→· · ·

Multiplication by 2 on Eq(S) factors through i:

(5.21)

Hq(S;Z)
i

2

Eq(S)

2
k

Hq(S;Z)
i

Eq(S)

For S = BC
×, a slice of the long exact sequence (5.20) is the nontrivial

abelian group extension

(5.22) 0 −→ H4(BC
×;Z)

i−−→ E4(BC
×) −→ H2(BC

×;Z/2Z) −→ 0,

i.e., E4(BC
×) is infinite cyclic and i(c2) is twice a generator λ ∈ E4(BC

×).
The class λ plays the role of “c2/2”. Passing to maximal compact subgroups
there is a generalization from T ∼= SO2 to SON for any N ≥ 2. Namely,
there is a characteristic class λ ∈ E4(BSON ) whose image under k ⊕ j is
(p1, w2) ∈ H4(BSON ;Z) ⊕ H2(BSON ;Z/2Z). Furthermore, λ is additive:
for real vector bundles V ′, V ′′ → X over a space X we have

(5.23) λ(V ′ ⊕ V ′′) = λ(V ′)⊕ λ(V ′′).

The pullback of λ to E4(BSpinN ) is the image under i of a class λ̃ ∈
H4(BSpinN ;Z) whose double is p1. Also, λ̃ ≡ w4 (mod 2) if N ≥ 4. We refer
to [F3, §1] for background about this cohomology theory E and proofs18 of
these assertions.

18Even if the precise statement does not appear in [F3], the same techniques apply.
The standard fact that λ̃ 	= 0 (mod 2) follows since H4(BSpinN ;Z) ∼= Z and λ̃ is a
generator, if N ≥ 4.
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The characteristic class λ ∈ E4(BC
×) has a lift qλ ∈ qE4

C
(B∇C

×) to
the differential E-cohomology of the classifying object for principal C

×-
connections. (See [FN, Appendix A].) Here B∇C

× is a simplicial sheaf on
smooth manifolds, in the sense of [FH2], for example. There is also a sim-
plicial sheaf BδC

× which classifies flat C
×-connections, as well as a map

i : BδC
× → B∇C

×. The pullback i∗qλ is a flat differential class. Define the
spectrum EC/Z(1) as the cofiber of the composition

(5.24) E
k−−→ HZ

π
√
−1−−−−−→ HC.

Its nonzero homotopy groups are π0 ∼= C/Z(1) and π−1
∼= Z/2Z. The topo-

logical space B(C×)δ is a geometric realization of the simplicial sheaf BδC
×.

Then i∗qλ determines a characteristic class

(5.25) pλ ∈ E3
(
B(C×)δ;C/Z(1)

)
in the cohomology theory EC/Z(1).

An oriented real vector bundle has a Thom class in integer cohomology,
but a Thom class in E-cohomology requires a spin structure [F3, Propo-
sition 4.4]. In particular, E-cohomology classes can be integrated on com-
pact spin manifolds. This leads immediately to a fully extended unitary
3-dimensional topological field theory SC× on spin manifolds equipped with
a flat C×-connection, analogous to the usual Chern-Simons theory (3.13) on
oriented manifolds. It has a fully local version defined as a map of spectra
analogous to (3.14):

(5.26) MSpin∧B(C×)δ+
id∧pλ−−−−→ MSpin∧(EC/Z(1)3)+

∫
−−−→ Σ3EC/Z(1).

The field theory (5.26) assigns a Z/2Z-graded line to a closed spin 2-manifold
with flat C

×-connection. As noted in Remark 3.15 we need the theory for
parametrized families of flat connections, so for nonflat connections.

Remark 5.27. In fact, the grading of the spin Chern-Simons line of a
C
×-connection on a surface is determined by the parity of the degree of the

underlying principal C×-bundle. For a flat connection that degree is zero,
hence the line is even. Also, to a C

×-connection over a spin 1-manifold, the
spin Chern-Simons theory assigns an invertible module over super vector
spaces. See Appendix C for more details as well as a justification for ignoring
these Z/2Z-gradings in the body of this paper.

As a companion to Convention 5.1 we signpost our choice of sign for the
level, which is motivated by Corollary 5.40 below.

Convention 5.28. 3-dimensional spin Chern-Simons theory SC× is
based on the level λ ∈ E4(BC

×).

This spin Chern-Simons theory is developed in some detail in [FN]. For
future use we recall one particular result: [FN, Theorem 3.9(vii)]. Let Y be
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a closed 2-manifold endowed with a spin structure σ, and fix a principal C×-
bundle π : Q → Y with connection Θ ∈ Ω1(Q;C). A section t of π produces

(5.29) τt ∈ SC×(Y ; Θ;σ),

a nonzero element in the spin Chern-Simons line computed from the C
×-

connection Θ and the spin structure σ. Let h : Y → C
× be a smooth function.

Then t′ = t · h is another section of π, and the ratio of nonzero elements
in SC×(Y ; Θ;σ) is

(5.30)
τt′

τt
= εt,h exp

(
1

4π
√
−1

∫
Y
t∗Θ ∧ dh

h

)
,

where

(5.31) εt,h(s) = (−1)qσ([h]).

Here qσ : H
1(Y ;Z/2Z) → Z/2Z is the quadratic refinement of the intersec-

tion pairing given by the spin structure σ, and [h] ∈ H1(Y ;Z/2Z) is the
reduction modulo two of the homotopy class of h.

5.2.2. Levels in E-cohomology. We revisit Proposition 5.3 and Corol-
lary 5.12 in E-cohomology, so effectively divide (5.4) and (5.13) by 2.

Lemma 5.32.
(1) The map

(5.33) H4(BSL2C;Z)
i−−→ E4(BSL2C)

is an isomorphism.
(2) The group extension

(5.34) 0 −→ H4(B/μ
2
;Z)

i−−→ E4(B/μ
2
)

j−−→ H2(B/μ
2
;Z/2Z) −→ 0

is nontrivial: E4(B/μ
2
) is cyclic of order 4.

(3) The pullback map E4(B/μ
2
) → E4(BZ) is zero.

Proof. Statement (1) follows from H2(BSL2C;Z/2Z) = 0. For (2), we
claim

(5.35) α := λ(L⊕ L) ∈ E4(B/μ
2
)

has order 4, where L → B/μ
2

is the real Hopf line bundle. For this observe
L⊕2 → B/μ

2
is orientable, jλ(L⊕2) = w2(L

⊕2) = x2, and 2α = 2λ(L⊕2) =

λ(L⊕4) �= 0 since w2(L
⊕4) = 0 and w4(L

⊕4) = x4 �= 0, so λ̃(L⊕4) �= 0. (We
use the Whitney sum formula (5.23).) Finally, (3) follows immediately from
E4(BZ) = 0. �

Observe that 2α = i(a2), where a ∈ H2(B/μ
2
;Z/2Z) is the generator.
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Remark 5.36. Let p : Z → /μ
2

be the homomorphism n �→ (−1)n. Ob-
serve that the pullback (Bp)∗α ∈ E4(BZ) vanishes, since BZ � S1 and
E4(S1) = 0. The /μ

2
Chern-Simons theory based on α defines invariants of

compact oriented manifolds equipped with a double cover. A lift of a double
cover to a principal Z-bundle trivializes19 the /μ

2
Chern-Simons invariant.

Let λ
pG
∈ E4(B pG) be the pullback of the generator λ ∈ E4(BC

×) under
det : pG → C

×, where pG = GL2C; then 2λ
pG
= i(c21). Let λ′ ∈ E4(B pT ) be

the unique class such that k(λ′) = c′2. (See (5.21) for the definition of k.)
Identify c2 ∈ H4(BSL2C;Z) with its image under i in E4(BSL2C).

Proposition 5.37. In diagram (5.2) we have the following equality
in E4(B pH):

(5.38) p∗λ
′ = r∗(λ

pG
− c2) + q∗α.

Proof. In the diagram

(5.39)

H4(B/μ
2
;Z)

i

q∗

E4(B/μ
2
)

j

q∗

H2(B/μ
2
;Z/2Z)

q∗

H4(B pH;Z)
i

p∗

s∗

E4(B pH)
j

p∗

s∗

H2(B pH;Z/2Z)

p∗

s∗

H4(B pT ;Z)
i

E4(B pT )
j

H2(B pT ;Z/2Z)

the rows are exact, and the first and third columns are exact; see (5.5).
It follows that the second column is also exact. In other words, a class
in E4(B pH) is determined by its pullbacks under p∗ and s∗. Also, observe that
twice (5.38) is (5.4), which implies that the two sides of (5.38) differ by an
element of order dividing 2. Since E4(B pT ) is torsionfree, as can be deduced
from (5.22), it follows that the pullback under p∗ of the two sides of (5.38)
agree. For the pullback under s∗ we argue as in the proof of Proposition 5.3:
the λ

pG
-class of the complex sign representation is α; see (5.35). �

Corollary 5.40. In diagram (5.9) we have the following equality in
E4(B(H)):

�(5.41) p∗λ = −r∗c2 + q∗α.

Note from Lemma 5.10 that 2q∗α = q∗a2 = 0. Corollary 5.40 follows
immediately from Proposition 5.37. The minus sign in (5.41) is the spin
echo of the minus sign in (5.13); see Remark 5.14.

19The Chern-Simons theory is defined using a geometric representative of α, say a map
B/μ

2
→ E4, where E4 is the 4-space in the spectrum E, sometimes denoted Ω∞+4E. The

trivialization is based on a choice of null homotopy of the composition BZ → B/μ
2
→ E4.
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5.3. Chern-Simons theory and differential cochains. Shortly af-
ter the introduction of secondary invariants of connections by Chern-Simons
[CS2], Cheeger-Simons [ChS] recast them in terms of new objects in differ-
ential geometry: differential characters. Differential cohomology, which we
discuss briefly in Appendix A, introduces cochains into the theory of differ-
ential characters; it is the natural home in which to express the full locality
of Chern-Simons invariants. In [FN, Appendix A] we prove some properties
of spin C

× Chern-Simons theory using generalized differential cohomology,
and in §5.3.5 we take this up to prove a lemma we need later. Otherwise,
in this section we restrict to ordinary differential cohomology with complex
coefficients and Chern-Simons theory for G = SL2C. Our main goal is to
prove Theorem 5.61 about the behavior of Chern-Simons invariants under
unipotent modifications. We begin with some preliminaries in §§5.3.1–5.3.3.
A global abelianization theorem appears in §5.3.6.

5.3.1. The universal SL2C-connection. Let G be a Lie group with finitely
many components. There is a groupoid-valued sheaf B∇G on the category
of smooth manifolds whose value on a test manifold M is the groupoid of
G-connections; see [FH2] for an introduction and details. The sheaf B∇G
classifies G-connections: there is a universal principal G-bundle

(5.42) π : E∇G −→ B∇G

with connection Θuniv, and if P → M is a principal G-bundle with con-
nection Θ over a smooth manifold M , then there is a unique G-equivariant
map ϕ : P → E∇G which satisfies ϕ∗Θuniv = Θ. Moreover, the universal
connection on (5.42) is a weak equivalence

(5.43) Θuniv : E∇G −→ Ω1 ⊗ g,

where Ω1 ⊗ g is the set-valued sheaf which assigns to a test manifold M the
set Ω1

M (g) of g-valued 1-forms on M . The total space E∇G of (5.42) assigns
to M the discrete groupoid of principal G-bundles Q → M with connection
Θ ∈ Ω1(Q; g) and section s : M → Q; the universal connection (5.43) maps
the triple (Q,Θ, s) to the g-valued 1-form s∗Θ.

The universal Chern-Simons-Weil invariant is a differential cohomology
class on B∇G. The variant qH•

C
of differential cohomology we need uses com-

plex differential forms. The construction of qH•
C

as a homotopy fiber prod-
uct [HS, BNV, ADH] leads to the exact sequence

(5.44) 0 −→ qH4
C(B∇G) −→ H4(BG;Z)× Ω4

cl(B∇G;C)
−−−→ H4(BG;C)

in which Ω4
cl(B∇G;C) denotes the vector space of closed complex differential

forms. The main theorem of [FH2] computes Ω4
cl(B∇G;C) as the vector

space of real linear G-invariant symmetric bilinear forms g × g → C. For
G = SL2C we choose −c2 ∈ H4(BSL2C;Z) and the bilinear form

(5.45) 〈A,B〉 = − 1

8π2
trace(AB), A,B ∈ sl2C,
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as in Example 3.7; see also Convention 5.1. By (5.44) there is a unique
lift −qc2 ∈ qH4

C
(B∇SL2C), the desired universal Chern-Simons-Weil class.

This gives, for each principal G bundle with connection Θ over a smooth
manifold M , a differential characteristic class −qc2(Θ) ∈ qH4

C
(M). We need

a refinement to a differential cocycle representative of this class in qZ4
C
(M);

see §A.1. This depends on a contractible choice; see [F2, §3.1] or [HS, §3.3]
for detailed constructions. We use the same symbol qc2 for the differential
cocycle representative, and we make clear whether it denotes the cocycle or
cohomology class.

Suppose P
π−−→ M

p−−→ S is an iterated fiber bundle in which π is a
principal SL2C-bundle and the fibers of p are manifolds with boundary of
dimension n ≤ 3. Assume given an orientation on p, i.e., on the relative
tangent bundle T (M/S) → M . Let Θ ∈ Ω1(P ; sl2C) be a connection. We
obtain a differential cocycle −qc2(Θ) ∈ qZ4

C
(M). The Chern-Simons invariant

of this family of SL2C-connections is

(5.46) FSL2C
(M → S; Θ) = 2π

√
−1

∫
M/S

(−qc2(Θ)),

a differential cochain in qC4−n
C

(S); see §A.4 for the integral. For n = 3 and
assuming the fibers of M p−→ S are closed, (5.46) is a function S → C/Z(1),
as in (3.4). For n = 2 and closed fibers (5.46) is a complex line bundle with
covariant derivative over M , the Chern-Simons line bundle. For n = 3 and
a fiber bundle of manifold with boundary, (5.46) is a section of the Chern-
Simons line bundle computed from the boundaries; see Theorem A.24.

Consider the pullback −π∗
qc2 ∈ qH4

C
(E∇SL2C) to the total space of the

universal bundle (5.42). Let Ω•
Z
⊂ Ωcl denote the presheaf of closed differ-

ential forms with integral periods. The exact sequence

(5.47) 0 −→ Ω3(E∇SL2C;C)

Ω3
Z
(E∇SL2C;C)

−→ qH4
C(E∇SL2C) −→ H4(E∇SL2C;C)

from [HS, (3.3)] reduces to an isomorphism (the middle map), since
H4(E∇SL2C;C) = 0. Hence −π∗

qc2 reduces to a 3-form modulo closed 3-
forms with integral periods. There is a canonical choice of 3-form,20 the
Chern-Simons form η ∈ Ω3(E∇SL2C;C); see (3.2). To a triple (Q → M,Θ, s)
which represents a map M → E∇SL2C, the pullback of η to M is

(5.48) − 1

8π2
trace

(
α ∧ dα+

2

3
α ∧ α ∧ α

)
∈ Ω3(M ;C),

where α = s∗Θ ∈ Ω1(M ; sl2C). The Chern-Simons invariant of an oriented
family P

π−→ M
p−→ S with connection and trivialization s : M → P can be

computed by integrating the 3-form (5.48) over the fibers of p. For example,
if the fibers of p are closed of dimension 2, then the resulting 1-form on S is
the connection form of a trivialized complex line bundle over S.

20Use (A.10) to deduce the existence of this 3-form.
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5.3.2. Restriction to the unipotent subgroup. Recall the unipotent sub-
group U ⊂ SL2C defined in (4.21).

Definition 5.49. Let M be a smooth manifold with boundary.
(1) A flat principal SL2C-bundle P → M is boundary-unipotent if its

restriction ∂P → ∂M to the boundary admits a reduction to a flat
principal U -bundle.

(2) Such a P → M is boundary-reduced if a reduction is chosen.
(3) Stratified abelianization data (P,Q, μ, θ) over (M,N ) is boundary-

reduced if P is boundary-reduced and θ(Q)|∂M0 lies in the U -bundle
given by the reduction.

Note that a flat SL2C-bundle is boundary-unipotent iff on each bound-
ary component the holonomies around loops at a basepoint have a common
eigenline. Moreover, if (P,Q, μ, θ) is boundary-reduced, then Q|∂M is a triv-
ializable flat bundle, since H ∩ U = {1}.

Let B∇U be the groupoid-valued sheaf of U -connections. Then there is
a map B∇U → B∇SL2C.

Lemma 5.50. The restriction of the universal second differential Chern
class qc2 ∈ qH4

C
(B∇SL2C) to B∇U vanishes.

Proof. Since U is contractible, the restriction of c2 ∈ H4(B SL2C;Z)
to H4(BU ;Z) vanishes; also, the restriction of the bilinear form (5.45) to
the Lie algebra of U vanishes. �

Recall that we choose a differential cocycle representative of qc2; see the
text following (5.45). Now choose a trivialization of its restriction to B∇U .

Remark 5.51. With these choices, the Chern-Simons invariant of a
boundary-reduced flat SL2C-bundle is trivialized on the boundary. For ex-
ample, on a compact 2-manifold with boundary, the invariant is a complex
line.

5.3.3. A lemma in differential cohomology. Let M be an oriented n-
manifold with corners, equipped with the extra structure of a bordism out-
lined in §A.4; let S be a smooth manifold, which plays the role of parameter
space; and suppose21

qω ∈ qZq
C

(
S× [0, 1]×M

)
is a differential cocycle of some

degree q. Let ω ∈ Ωq
Z

(
S × [0, 1] × M ;C

)
be the “curvature” of qω, i.e., the

differential form underlying the differential cocycle qω. Let ∂/∂t denote the
standard vector field on [0, 1], lifted to S × [0, 1] ×M , and let ι∂/∂t denote

21N = [0, 1]×M has the structure of a bordism [FT1, §A.2]: set

(5.52)

N0 = (0, 1)×M0

N0
−1 = {0} ×M0

N1
−1 = {1} ×M0

Nδ
−j+1 = Mδ

−j , j ≥ 1, δ ∈ {0, 1}.
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its action via contraction on differential forms. Theorem A.24 implies the
following for M closed.

Lemma 5.53. If M is closed, then the integral

(5.54)
∫
[0,1]×M

qω :

∫
{0}×M

qω −→
∫
{1}×M

qω

is a nonflat isomorphism of the differential cocycles on S computed in the
domain and codomain. Its covariant derivative is

(5.55)
∫
[0,1]×M

ω ∈ Ωq−n−1(S;C).

In particular, if ι∂/∂tω = 0, then (5.54) is a flat isomorphism. �

If M is a manifold with corners—a bordism of positive depth—then the
integrals of qω over {0}×M and {1}×M are higher morphisms in a groupoid
of differential cochains on S: see §A.3. For example, if M has depth ≤ 2,
then the integrals are 2-morphisms in qG(q−n+2)(S), as depicted in (A.27).

Lemma 5.56.
(1) If M has corners of depth ≤ 2 and ι∂/∂tω = 0, then

∫
[0,1]×M qω is

an isomorphism of 2-morphisms in qG(q−n+2)(S):

(5.57)

∫
{0}×M0

−2

∫
{0}×M1

−2

∫
{0}×M1

−1

∫
{0}×M0

−1

∫
{0}×M0

∼=−−−−−→
∫
{1}×M0

−2

∫
{1}×M1

−2

∫
{1}×M1

−1

∫
{1}×M0

−1

∫
{0}×M0

(2) Suppose qτ ∈ qCq−1(S×[0, 1]×M) is a nonflat trivialization of qω with
covariant derivative τ ∈ Ωq−1(S× [0, 1]×M), and assume ι∂/∂tτ =

0. Then the isomorphism (5.57) preserves the nonflat trivializations
and nonflat isomorphisms in Theorem A.29. �

We omit the integrand ‘qω’ in (5.57) for readability.

Example 5.58. If n = q − 2, then
∫
{i}×M qω, i = 0, 1, is a complex

line bundle Li → S with connection, and (5.54) is an isomorphism L0 →
L1 of the underlying line bundles; its usual covariant derivative is the 1-
form (5.55).
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Example 5.59. If q = 2 and M = S1, then (5.55) reduces to a well-
known formula for the ratio of holonomies of a line bundle with connection
around the ends of a cylinder.

Remark 5.60. If qω is equipped with a nonflat trivialization, then so too
are its integrals over M , and then (5.54) becomes an equation in differen-
tial forms which follows from the usual Stokes’ theorem. The assertion in
Lemma 5.56(2) is a variation for manifolds with corners.

5.3.4. Moving along unipotents. Theorem 5.61 below is based on the
fact that the bilinear form (5.45) vanishes if A is diagonal and B is upper
triangular.

Let M be an oriented manifold with corners of depth ≤ 2 and dimen-
sion ≤ 3. Suppose M = M0 � M−1 � M−2a � M−3a is equipped with an
SN-stratification which satisfies M−2b = M−3b = ∅. In other words, M =

M≥−3a. Suppose (π, s) is a subordinate spectral network. Thus π : M̃ → M

is a double cover and s : M−1 �M−2a �M−3a → M̃−1 � M̃−2a � M̃−3a is a
section of π over M−1 �M−2a �M−3a. Let T ⊂ SL2C denote the diagonal
subgroup, and ι : H ↪→ SL2C its normalizer. Suppose A = (P,Q, μ, θ) is
stratified abelianization data of type (SL2C, T ). Thus

(1) P → M is a principal SL2C-bundle with flat connection ΘP ,
(2) Q → M is a principal H-bundle with flat connection ΘQ,
(3) μ : M̃ → Q/T is an isomorphism of double covers, and
(4) θ : ι(Q) → P is an isomorphism of flat principal SL2C-bundles

over M0.
Furthermore, let U ⊂ SL2C be the subgroup (4.21) of unipotent matrices.
Then we require that the discontinuity of θ along M−1 lie in U , relative to
the reduction of Q → M−1 to a principal T -bundle given by the section s.

Our task is to compute the Chern-Simons invariants (5.46) of the flat
SL2C-bundles ι(Q) → M and P → M . To state the theorem we posit a
family of this data over a smooth manifold S. Thus we work over S × M ;
the connections ΘP , ΘQ over S ×M are only assumed flat along M .

Theorem 5.61. There is a natural flat isomorphism

(5.62) FSL2C

(
S ×M → S, ι(ΘQ)

) ∼=−−→ FSL2C

(
S ×M → S,ΘP

)
.

Intuitively, moving a connection in unipotent directions does not affect
the SL2C Chern-Simons invariant. In the proof we construct a flat isomor-
phism which depends on a set of choices, and then we check that the iso-
morphism is independent of the choices.

Proof. Fix a smooth function φ : R �=0 → R �=0 which is odd and satisfies

(5.63) φ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ≤ −1;

−1
2 , −1

2 ≤ x < 0
1
2 , 0 < x ≤ 1

2

0, 1 ≤ x.
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Figure 16. The tubular neighborhood U .

Furthermore, require that φ be monotonic nonincreasing on R
<0 and R

>0.
Choose a tubular neighborhood of M−1 ⊂ M : an open subset U ⊂ M≥−1

which contains M−1, a surjective submersion ρ : U → M−1, and an iso-
morphism of ρ with the normal bundle ν → M−1 to M−1 ⊂ M≥−1. (See
Figure 16.) Fix an inner product on ν → M−1. Let R → M−1 be the reduc-
tion of Q → M−1 to a principal T -bundle; it is defined via the section s and
isomorphism μ. Locally, for each orientation of ν → M−1 the discontinuity
in θ along M−1 is a section u of the bundle S × R ×T U → S × M−1 of
unipotent groups. Under reversal of orientation, u maps to u−1. Globally,
write u = eX for X a section of the bundle of Lie algebras

(5.64) S ×R×T u → S ×M−1

twisted by the orientation bundle of ν → M−1. Extend X to U using parallel
transport along the fibers of ρ : U → M−1. The inner product on the normal
bundle identifies each fiber of ρ with R after choosing an orientation of
the normal bundle. Hence the product φX is a well-defined section of the
pullback of (5.64) over S × (U ∩M0). It extends22 by zero to S ×M0.

We now construct a connection Ξ on the principal SL2C-bundle

(5.65) Q = [0, 1]× S × ι(Q) → [0, 1]× S ×M

whose restriction to {0}×S×M is isomorphic to ι(ΘQ) and whose restriction
to {1}×S×M is isomorphic to ΘP . First, set Ξ

∣∣
{0}×S×M

= ι(ΘQ). Then over
{1} × S ×M0 let ϕ be the gauge transformation of the restriction of (5.65)
which equals e−φX on {1}×S× (U ∩M0) ⊂ [0, 1]×S× (U ∩M0) and is the
identity map on {1} × S × (M0 \ U). Construct an isomorphism

(5.66) ψ : Q
∣∣∣∣
S×{1}×M

∼=−−→ P

which equals θ◦ϕ on {1}×S×M0; it extends over {1}×S×(M−1�M−2a�
M−3a) using the fact that θ jumps by u on {1}×S×M−1. Set Ξ

∣∣
{1}×S×M

=

22Since the codomain of φX does not so extend, this is not strictly correct. What we
mean simply is that in formulas below replace φX by ‘0’ on S × (M0 \ U).
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ψ∗(ΘP ). Finally, define Ξ on [0, 1]t × S ×M by affine interpolation between
the specified connections Ξ0, Ξ1:

(5.67) Ξt = ι(ΘQ) + tα, α = Ξ1 − Ξ0.

Then α is a 1-form on S×M with values in the adjoint bundle of Lie algebras
isomorphic to sl2C; it has support on S × U . We claim that α takes values
in the subbundle (5.64) of nilpotent subalgebras, extended over S × U by
parallel transport along the fibers of ρ. Namely, on S × (U ∩M0) we have

(5.68) α =
[
Ade−φX

(
ι(ΘQ)

)
− ι(ΘQ)

]
+ dι(ΘQ)(φX).

The second term clearly lies in the nilpotent subalgebra. For the first, observe

(5.69)
(
1 x
0 1

)(
y 0
0 −y

)(
1 −x
0 1

)
−
(
y 0
0 −y

)
=

(
0 −2xy
0 0

)
is nilpotent.

Let qω = qc2(Ξ) be the Chern-Simons-Weil differential cocycle. As in (5.57),

(5.70)
2π

√
−1

∫
[0,1]×M

qω : FSL2C

(
S ×M → S, ι(ΘQ)

)
−→ FSL2C

(
S ×M → S,ΘP

)
is an isomorphism. We claim that it is a flat isomorphism. By Lemma 5.56
it suffices to show that ι∂/∂tω = 0, where

(5.71) ω = 〈Ω(Ξ),Ω(Ξ)〉

is the Chern-Weil 4-form of Ξ. The only nonzero contribution to ι∂/∂tω is
potentially on [0, 1]× suppα ⊂ [0, 1]× S × U . From (5.67) we compute the
curvature

(5.72) Ω(Ξ) = ι
(
Ω(ΘQ)

)
+ dt ∧ α+ tdι(ΘQ)α+

t2

2
[α ∧ α].

The last term vanishes since the Lie algebra u of the unipotent group is
abelian. The first term in (5.72) takes values in the diagonal subalgebra t ⊂
sl2C and the other terms take values in the nilpotent subalgebra u ⊂ sl2C.
It follows that

(5.73) ι∂/∂tω = 2〈α ∧ ι
(
Ω(ΘQ)

)
〉+ 2t〈α ∧ dι(ΘQ)α〉 = 0.

It remains to prove that (5.70) is independent of the choices of φ,U , ρ and
the isomorphism of ρ with the normal bundle. Any two sets of choices can be
joined by a path, so we extend the previous setup by taking the Cartesian
product with [0, 1]r, where r is the parameter along the path. If ω̃ is the
resulting Chern-Weil 4-form, then ι∂/∂rω̃ = 0 by a similar argument. �
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5.3.5. A theorem in T = C
× Chern-Simons theory. Recall from §5.2.1

and [FN, Appendix A] the characteristic class λ ∈ E4(BC
×) and its differ-

ential refinement qλ ∈ qE4
C
(B∇C

×), the universal differential class. The class λ
is the image of the generator under a quadratic function

(5.74) q : H2(BC
×;Z) −→ E4(BC

×)

which for c, c′ ∈ H2(BC
×;Z) satisfy

2q(c) = c � c = c2(5.75)
jq(c) = c̄(5.76)

q(c+ c′) = q(c) + q(c′) + i(c � c′),(5.77)

where j : E4(BC
×) → H2(BC;Z/2Z) and i : H4(BC

×;Z) → E4(BC
×) are

the maps in (5.19), and we denote c̄ = c (mod 2). The differential refinement

(5.78) qq : qH2
C(B∇C

×) −→ qE4
C(B∇C

×)

satisfies analogous properties. We implicitly use refinements of q, qq to co-
chains. Recall that integration23 of E-cocycles over a manifold M requires
a spin structure σ on M . Furthermore, if δ ∈ H1(M ;Z/2Z) is the class of a
double cover over M , and we write the shifted spin structure as24 σ → σ+δ,
then

(5.79)
∫
M,σ+δ

q(c) =

∫
M,δ

q(c) +
1

2

∫
M

δ � c̄,

where 1
2 : Z/2Z ↪→ C/Z; see [F3, Proposition 4.4] and [FN, Theorem 3.9

(ii)]. For dimM = 3 and M closed, (5.79) is an equation in C/Z; for man-
ifolds with boundary and manifolds of lower dimension it is a canonical
isomorphism of cochains in E-cohomology theory. We use the differential
refinement of (5.79).

Not only do double covers shift spin structures, but they also shift C×-
bundles via the homomorphism Z/2Z ↪→ C

×. The corresponding shift of
Chern classes is via the integer Bockstein

(5.80) β : H1(M ;Z/2Z) −→ H2(M ;Z).

The differential refinement shifts C×-connections by a flat C×-connection of
order two.

The following is a restatement of part of Lemma 5.32.

Lemma 5.81. qE4
C
(B/μ

2
) ∼= Z/4Z with generator qq

(
qβ(δ)

)
for δ ∈ H1(B/μ

2
;

Z/2Z) the nonzero class. Also, 2qq
(

qβ(δ)
)

is the image of δ3 under the map
φ : H3(B/μ

2
;Z/2Z) → qE4

C
(B/μ

2
).

23In (5.79) we also use the integral symbol for the pairing of a mod 2 cohomology
class with the fundamental class.

24Our notation conflates a double cover and its equivalence class, an overload we also
deploy in this section for spin structures and C

×-connections.
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Proof. The main theorem in [FH2] implies qE4
C
(B/μ

2
) → E4(B/μ

2
) is an

isomorphism. Now apply Lemma 5.32(2). For the last assertion apply (5.75).
�

Our main result in this section expresses the change of spin C
× Chern-

Simons invariants under the simultaneous shift of spin structure and C
×-

connection by a double cover. We express our result as a relation among 3-
dimensional invertible field theories whose background fields are independent
choices of: a spin structure σ, a double cover δ, and a C

×-connection qc. The
partition functions which define the theories are:
(5.82)

α1(σ, δ,qc) = spin C
× Chern-Simons invariant of qc in spin structure σ

α2(σ, δ,qc) = spin C
× Chern-Simons invariant of qc+ qβ(δ)

in spin structure σ + δ

α3(σ, δ,qc) = integral of 3qq
(

qβ(δ)
)

in spin structure σ

The theory α3 is topological (of order 4). The Chern-Simons invariants in α1,
α2 are based on λ, and so are computed by integrating q, the quadratic
function (5.74).

The proofs in the rest of this section draw on the material in Appendix B.

Theorem 5.83. There is an isomorphism α1 ⊗ α3
∼= α2 of invertible

field theories.

Proof. By (B.12) the curvatures of α1 and α2 are equal. Therefore
α−1
1 ⊗ α2 ⊗ α−1

3 is a flat invertible field theory, so it is topological in the
strong sense. To verify that it is trivializable, it suffices to check the partition
function on a closed 3-manifold X. The quadratic property (5.77) implies

(5.84) qq
(
qc+ qβ(δ)

)
= qq(qc) + qq

(
qβ(δ)

)
+ i

(
qc � qβ(δ)

)
,

and (5.79) implies that its integral in spin structure σ + δ is the integral of

(5.85) qq(qc) + qq
(

qβ(δ)
)
+ i

(
qc � qβ(δ)

)
+ φ

(
1

2
(δ � c̄ + δ � δ2)

)
in spin structure σ. Here φ : H3(X;Z/2Z) → qE4

C
(X) is the inclusion of flat

elements of order two. (The first two terms of (5.85) lie in qE4
C
(X) and their

integral uses the spin structure; the last two terms lie in H3(X;C/Z) and
no spin structure is used to integrate.) The difference of qq(qc) and (5.85)
computes the partition function in the theory α−1

1 ⊗ α2:
(5.86)

qq
(

qβ(δ)
)
+ φ

(
1

2
(c̄ � δ + δ � c̄ + δ � δ2)

)
= qq

(
qβ(δ)

)
+ φ

(
1

2
(δ3)

)
= 3qq

(
qβ(δ)

)
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where we use Lemma 5.81. Since the integral of this last quantity is by
definition the partition function in the theory α3, we see that the partition
function in the theory α−1

1 ⊗ α2 ⊗ α−1
3 is trivial. �

Example 5.87. Let X = RP
3 equipped with either spin structure σ

and the nontrivial double cover δ. The spin Chern-Simons partition func-
tion of the product C

×-connection qc is 1; the partition function of the C
×-

connection qc+ δ in either spin structure is a primitive 4th root of unity.

A principal Z-bundle δ∞ has a mod 2 reduction δ which is a double
cover. The invertible field theories α1, α2, α3 in (5.82) lift to invertible field
theories α∞

1 , α∞
2 , α∞

3 with background fields (σ, δ∞,qc).

Theorem 5.88. α∞
3 is isomorphic to the trivial theory.

Proof. The integer Bockstein of the mod 2 reduction is trivial. �

Corollary 5.89. There exist isomorphisms ζ : α∞
1

∼=−−→ α∞
2 .

For our work in §6 we need an isomorphism which satisfies a particular
property that we specify below in (5.102). We proceed to construct it. To
begin, fix a flat25 isomorphism

(5.90) ζ : α∞
1

∼=−−→ α∞
2 .

Pull back the theories α∞
1 , α∞

2 to invertible theories ttα∞
1 , ttα∞

2 with back-
ground fields (σ, δ∞,qc, t) in which t is a nonflat trivialization of the C

×-
connection qc, i.e., t is a section of the underlying principal C×-bundle. Then
t induces a nonflat trivialization of the theories ttα∞

1 , ttα∞
2 : they are topo-

logically trivial. In the formalism of Appendix B we omit the spin structure,
and the remaining fields are sections of the sheaf26 B∇Z×E∇C

× on Man. It
is convenient to replace B∇Z with the representable sheaf S1. This amounts
to specifying a classifying map for each principal Z-bundle. Then the topo-
logically trivialized theories ttα∞

i , i = 1, 2, give rise to differential forms
(see (B.9))

(5.91) ηi : S
1 × E∇C

× −→ Ω3
C.

Let ω ∈ Ω1
S1 be the rotation-invariant closed 1-form which integrates to 1,

and let a ∈ Ω1
C
(E∇C

×) be
√
−1
2π times the universal connection 1-form; the

latter gives the equivalence E∇C
× → Ω1

C
. Then from (5.75) we deduce

(5.92)
η1 =

1

2
a ∧ da

η2 =
1

2
(a+

1

2
ω) ∧ d(a+

1

2
ω) = η1 +

1

4
d(a ∧ ω).

25Isomorphisms of invertible field theories may be flat or nonflat; compare §A.2.
26A principal Z-bundle has a unique connection, so the ‘∇’ in ‘B∇Z’ is redundant;

the latter is better denoted ‘B•Z’
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The topologically trivialized theories defined by η1, η2 are isomorphic as
invertible theories (forgetting the topological trivialization)—as they must
be by Corollary 5.89—since the 3-forms differ by an exact 3-form.

Our constructions yield two isomorphisms ttα∞
1 → ttα∞

2 . First, the flat
isomorphism ζ : α∞

1 → α∞
2 lifts to a flat isomorphism

(5.93) ttζ : ttα∞
1

∼=−−→ ttα∞
2 .

Second, the topological trivializations induce a nonflat isomorphism

(5.94) λ : ttα∞
1

∼=−−→ ttα∞
2 .

From (5.92) we compute that the curvature of λ is 1
4d(a∧ω). The ratio ttζ/λ

is a 2-dimensional invertible theory on spin manifolds with a background
field in S1 × E∇C

×, and its curvature is the 3-form −1
4d(a ∧ ω). Let β be

the 2-dimensional invertible field theory defined by the 2-form

(5.95) −1

4
a ∧ ω,

and define the flat 2-dimensional theory γ by

(5.96) ttζ = βγλ.

Lemma 5.97. The abelian group of topological invertible 2-dimensional
theories with background fields (σ, δ∞,qc, t) is isomorphic to the Klein group
/μ

2
× /μ

2
. Furthermore, each theory depends only on the spin structure σ and

the double cover δ induced by the principal Z-bundle δ∞.

The partition functions of these four theories on a closed 2-manifold Σ
are

(5.98) 1, (−1)Arf(σ), (−1)Arf(σ+δ), (−1)Arf(σ+δ)−Arf(σ),

where Arf is the Arf invariant of the spin structure.

Proof. Since E∇C
× ∼= Ω1

C
is contractible, the group of invertible theo-

ries is isomorphic27 to the group of characters of

(5.99) π2(MSpin∧S1
+)

∼= π2(MSpin) ⊕ π1(MSpin) ∼= Z/2Z⊕ Z/2Z.

One can see that the theories listed in (5.98) exhaust the possibilities, or
can check that

(5.100) MSpin∧S1
+ −→ MSpin∧RP∞

+

induces an isomorphism on π2. �

27Both unitary and nonunitary theories are discussed in [FH1]. Here we do not assume
unitarity, but the background fields are for 3-manifolds, even for the 2-dimensional theory
which is the ratio of isomorphisms of 3-dimensional theories, hence the domain should
at first glance have Σ3MTSpin3 in place of MSpin. However, the obstruction theory
argument in the proof of [FH1, Theorem 7.22] allow us to replace Σ3MTSpin3 with MSpin
in (5.100).
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It follows that the theory γ in (5.96) depends only on (σ, δ). Therefore,
replace (5.90) by the isomorphism

(5.101) ζ̃ = γ−1ζ : α∞
1

∼=−−→ α∞
2 .

For this choice of isomorphism we have

(5.102) ttζ̃ = βλ,

where recall that β is defined by the 2-form (5.95).
We summarize with this refinement of Corollary 5.89.

Corollary 5.103. There exists an isomorphism

(5.104) ζ : α∞
1

∼=−−→ α∞
2

such that the induced isomorphism ttζ : ttα∞
1 → ttα∞

2 of theories which in-
clude a nonflat trivialization of the C

×-connection satisfies

(5.105)
ttζ

λ
= β,

where λ is the isomorphism (5.94) and β is defined by the differential form
(5.95).

This is the isomorphism we use in §6.
5.3.6. Global abelianization. Diagram (5.15) illustrates global abelian-

ization of an SL2C-connection. We apply Corollary 5.40 to deduce an iso-
morphism of Chern-Simons invariants, expressed as an isomorphism among
three invertible 3-dimensional field theories28 εSL2C

, ε
C× , and ε

/μ
2
. Each is

defined on the bordism multicategory of dimension ≤ 3 manifolds with cor-
ners equipped with a spin structure σ and a flat H-connection Θ. The first
theory εSL2C

uses only the underlying orientation of σ, and it evaluates
the Chern-Simons theory FSL2C

at level −i(c2) on the flat SL2C-connection
r(Θ). The second theory ε

C× maps a spin manifold with flat H-connection
to the total space of the associated /μ

2
-bundle with its induced spin struc-

ture and flat C×-connection, and then evaluates this data using spin Chern-
Simons theory SC× at level λ. The third theory ε

/μ
2
evaluates the spin Chern-

Simons theory S/μ
2

at level α on the associated /μ
2
-connection29 q(Θ).

Theorem 5.106. There is an isomorphism εSL2C
∼= ε

C× ⊗ ε
/μ

2
.

Proof. As in the proof of Theorem 5.83, it suffices to check equality of
partition functions on a closed oriented 3-manifold X equipped with a flat

28As in Theorem 5.83 we restrict to flat connections, so to topological invertible field
theories.

29Of course, this is simply a double cover, but we have endeavored to use consistent
and transparent notation.
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H-connection. For this, apply the secondary invariant version of (5.41) to
the following slight enlargement of the diagram (5.15):

�(5.107)

X̃

π

B(C×)δ

p

X B(H)δ
r

q

B(SL2C)
δ

B/μ
2

Let ε∞SL2C
, ε∞

C× , ε∞
/μ

2
denote the pullbacks of εSL2C

, ε
C× , ε

/μ
2
to the bordism

multicategory of dimension ≤ 3 manifolds with corners equipped with a spin
structure, a flat H-connection, and a lift of the associated /μ

2
-bundle to a

principal Z-bundle. Then Lemma 5.32(3) immediately implies
Theorem 5.108. ε∞

/μ
2

is isomorphic to the trivial theory.

Corollary 5.109. A trivialization of ε∞
/μ

2
determines an isomorphism

ν : ε∞SL2C

∼=−−→ ε∞
C×.

In Appendix C we constrain the trivialization, based on considerations
in §6.5.

6. Abelianization of Chern-Simons lines

Throughout this section we take G = SL2C.
So far we have discussed generalities about the Chern-Simons theories

FG, SC× , and their relation to one another via stratified abelianization.
Now we begin discussing applications.

Suppose Y is a compact 2-manifold, equipped with a boundary-reduced
flat G-bundle P → Y . In this section and the next we give a new description
of the line FG(Y ;P ). The idea is to identify FG(Y ;P ) with SC×(Ỹ ;Qε

tw;
σε
tw)⊗L(Y, ε), where Qε

tw is a flat C
×-bundle over a branched double cover

Ỹ → Y , and L(Y, ε) is a universal line which does not depend on P . In the
rest of this section we give a sketch of the construction.

The bundle Qε
tw will be constructed as follows. First, we fix a semi-ideal

triangulation T of Y , and let Ỹ → Y be the associated branched double
cover, and N T the associated spectral network (Construction 4.30). Next,
we fix a section of P/B over each vertex of Y (as usual, for ideal vertices this
means a flat section over the corresponding boundary component), obeying
the genericity Assumption 4.32. From these data, by Construction 4.31 we
obtain stratified abelianization data (P,Q, μ, θ).

Now, suppose we ignore the branch locus Y−2b for a moment, i.e. we
work just over Y≥−2a. Then, according to Theorem 5.61, FG(Y≥−2a;P ) is
naturally isomorphic to FH(Y≥−2a;Q); and by Corollary 5.109, if we choose
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a spin structure σ on Y , and a lift of Ỹ≥−2a → Y≥−2a to a Z-bundle Y ε,∞ →
Y≥−2a, FH(Y≥−2a;Q) is naturally isomorphic to SC×(Ỹ≥−2a;Q;π∗σ). Com-
posing these two we would get an isomorphism
(6.1) FG(Y≥−2a;P ) → SC×(Ỹ≥−2a;Q;π∗σ) .

This is the kind of statement we are after, but to extend the right side over
the full Y it needs to be modified. The complication is that Q → Ỹ≥−2a has
holonomy −1 around these points, as noted in Lemma 4.12, and π∗σ does
not extend over them either. One could think of this holonomy as a kind of
singularity, and try to define a modified version of the theory SC× which
works directly with these singular objects. Here we take an alternative path:
we twist both Q → Ỹ≥−2a and π∗σ by a /μ

2
-bundle Ỹ ε,4 → Ỹ≥−2a, which

cancels the unwanted holonomy. Fortunately, Corollary 5.103 ensures that
this twisting does not change the Chern-Simons theory away from the branch
locus, i.e., we get an isomorphism
(6.2) FG(Y≥−2a;P ) → SC×(Ỹ≥−2a;Q

ε
tw;σ

ε
tw) .

Now both sides extend over the branch locus. The isomorphism however
does not: there is a mismatch between the two Chern-Simons theories over
the branch locus. We measure this mismatch by a P -independent line we
call L(Y, ε). Thus ultimately what we get is an isomorphism

(6.3) FG(Y ;P ) → SC×(Ỹ ;Qε
tw;σ

ε
tw)⊗ L(Y, ε) .

In the above we needed to make various choices: a semi-ideal triangulation
T of Y , a Z-bundle Ỹ ∞ → Y , and a /μ

2
-bundle Ỹ ε,4 → Ỹ≥−2a. It turns out

that both Ỹ ∞ → Y and Ỹ ε,4 → Ỹ≥−2a can be conveniently built from the
data of edge-orientations on T; this is the data we call ε.

In §6.1-§6.5 we discuss the necessary twisting and the properties of the
difference line L(Y, ε); in particular, we compute the action of rotations of a
triangle on this line. Note also Appendix C in which we fix a choice in the
construction so that the super line L(Y, ε) is even. (Recall the discussion in
Remark 5.27.) In §6.6 we develop the stratified abelianization map (6.3), as
Construction 6.51. In the remaining sections §6.7-§6.8 we discuss some as-
pects of the dependence of stratified abelianization on the edge-orientations
ε, which will be used in the explicit calculations to follow.

6.1. Edge-orientations on a triangle. Let (Δ,T) be a triangle.
Choose an orientation εE for each E ∈ edges(T), and let ε = (εE)E∈edges(T).
Let
(6.4)

εE(v, v
′) =

{
+1 if the edge E with vertices v, v′ is oriented from v to v′,

−1 otherwise.

Construction 6.5. ε determines a lift of the /μ
2
-bundle Δ̃≥−2a →

Δ≥−2a to a Z-bundle Δ̃ε,∞ → Δ≥−2a.
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Proof. Δ0 has three connected components ΔE
0 , each containing one

edge E. Fix E with vertices v, v′. Over ΔE
0 we define the fiber of Δ̃ε,∞ as

the Z-torsor

(6.6) ({v, v′} × Z)/ ∼, (v, n) ∼ (v′, n+ εE(v, v
′)).

Each wall in Δ−1 lies in the boundary of two domains ΔE
0 , ΔE′

0 , where
the edges E, E′ have one vertex w in common. We glue Δ̃ε,∞ across such a
wall by identifying [(w, n)] on one side with [(w, n)] on the other side.

The /μ
2
-bundle Δ̃ε,∞/2Z is isomorphic to Δ̃≥−2a, via the map which

takes [(v, n)] �→ v when n ∈ 2Z. Thus Δ̃ε,∞ is indeed a lift of Δ̃≥−2a to a
Z-bundle as claimed. �

Note that the clockwise monodromy of Δ̃ε,∞ around ∂Δ is n+ − n− ∈
{3, 1,−1,−3} where n+ (n−) is the number of edges oriented clockwise
(counterclockwise). Reducing mod 2, we recover the fact that the mon-
odromy of the double cover Δ̃≥−2a → Δ≥−2a around ∂Δ is the nontrivial
element of /μ

2
.

6.2. Edge-orientations on a triangulated surface. In the last
subsection we considered a single triangle. More generally, suppose we
have a semi-ideally triangulated surface (Y,T) and edge-orientations ε =
(εE)E∈edges(T). All of our constructions glue canonically across edges, and
thus we obtain a Z-bundle

(6.7) Ỹ ε,∞ → Y≥−2a.

The action of 2Z on Ỹ ε,∞ commutes with the projection Ỹ ε,∞ → Ỹ≥−2a, so
Ỹ ε,∞ is also a 2Z-bundle over Ỹ≥−2a. Let

(6.8) Ỹ ε,4 = Ỹ ε,∞/4Z .

This is a /μ
2
-bundle over Ỹ≥−2a, since 2Z/4Z = /μ

2
. We can describe its

holonomies around cycles explicitly, as follows.

Definition 6.9. For any E ∈ edges(T), let QE be the quadrilateral
formed by the two triangles containing E. The ε-sign of E is (−1)n, where n
is the number of edges of QE which are oriented clockwise by ε. (Replacing
“clockwise” by “counterclockwise” here would give the same definition.)

We recall the class γE ∈ H1(Ỹ ) defined before Proposition 4.40. This
class depends on an orientation of Y , and reversing the orientation sends
γE �→ −γE ; the assertions in the rest of this section hold independent of the
choice of orientation.

Proposition 6.10. The holonomy hol
Ỹ ε,4(γE) is the ε-sign of E as de-

fined in Definition 6.9.
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Proof. Over each domain Y E
0 , the fiber over the sheet labeled by ver-

tex w of E is {[(w, n)] : n ∈ 2Z}. Thus Ỹ ε,∞ is the trivial 2Z-bundle on
each connected component of Ỹ0. The gluing across preimages of walls is as
follows. Each wall runs into a vertex v. On the sheet labeled by the vertex
v, [(v, n)] is glued to [(v, n)]. The other sheet is labeled by a vertex v′ on
one side and v′′ on the other. There the gluing takes [(v′, n)] to [(v′′, n+ k)],
where
(6.11) k = ε(v′, v) + ε(v, v′′) ∈ {−2, 0, 2} .

In traversing γE , referring to Figure 17 we see that we cross two walls
where the gluing is nontrivial (the horizontal walls in the figure). Summing
their contributions, hol

Ỹ ε,∞(γE) is a shift by ε(0, 1)+ε(1, 2)+ε(2, 3)+ε(3, 0),
which agrees mod 4 with 2n, where n was defined in Definition 6.9. Reducing
mod 4 gives the desired statement. �

Figure 17. The quadrilateral QE , with vertices labeled and
the class γE shown.

Construction 6.12. Consider two edge-orientations ε, ε′ which differ
by reversing the orientation on a single edge E. The difference /μ

2
-bundle

(6.13) Ỹ ε,4 ⊗/μ
2
Ỹ ε′,4 → Ỹ≥−2a

admits a lift to a Z-bundle (canonical up to isomorphism)

(6.14) �E → Ỹ≥−2a

which extends over Ỹ .
For any class μ ∈ H1(Ỹ )

(6.15) hol�E (μ) = 〈γE , μ〉 .
Proof. We first describe the difference bundle (6.13), as we did in the

proof of Proposition 6.10. It is the trivial /μ
2
-bundle on each connected

component of Ỹ0. The gluing across preimages of walls is as follows. Consider
a wall ending on a vertex v. On the sheet labeled by v, the gluing is given
by the identity element in /μ

2
. On the other sheet, the gluing is given by the

nontrivial element in /μ
2

if v is a vertex of E, and otherwise by the identity.
Now we can define the lift �E : it is the trivial Z-bundle on each con-

nected component of Ỹ0, with gluing across preimages of walls as follows.
Consider a wall ending on a vertex v. On the sheet labeled by v, the gluing
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is given by 0 ∈ Z. On the other sheet, if v is a vertex of E, then the gluing
in the direction away from E is given by +1 ∈ Z; if v is not a vertex of E,
then the gluing is given by 0 ∈ Z.

The holonomy of �E around a loop in Ỹ≥−2a encircling a branch point
comes to −1+1 = 0, so �E extends across the branch points, and thus over
Ỹ as desired. Finally, the formula hol�E μ = 〈μ, γE〉 is obtained directly by
evaluating both sides on arcs μ crossing the quadrilateral QE . �

6.3. Twistings over a triangulated surface. Now let (Y, ε, σ,A) be
a triangulated surface, with edge-orientations, spin structure, and stratified
abelianization data A = (P,Q, μ, θ). Then define the C

×-bundle

(6.16) Qε
tw = Q⊗/μ

2
Ỹ ε,4 → Ỹ≥−2a.

Qε
tw has trivial monodromy around each point of Ỹ−2b, and thus extends to

Ỹ , unlike Q. We use the name Qε
tw also for the extension.

The spin structure π∗σ on Ỹ≥−2a is non-bounding on a circle around a
branch point and thus does not extend from Ỹ≥−2a to Ỹ , but its twist

(6.17) σε
tw = π∗σ ⊗/μ

2
Ỹ ε,4

does extend to a spin structure over Ỹ .
It will be useful below to have some concrete information about this spin

structure. We recall a convenient bit of notation first. Given a spin structure
σ on a surface, and a simple closed curve λ, we define

(6.18) σ(λ) =

{
1 if σ|λ extends to a spin structure on the disc,
−1 otherwise.

We also recall the class γE ∈ H1(Ỹ ) defined before Proposition 4.40.

Proposition 6.19. σε
tw(γE) is the ε-sign of E as defined in Defini-

tion 6.9.

Proof. Since π∗γE can be represented by the boundary of a disc in Ỹ ,
π∗σ(γE) = +1. Thus σε

tw(γE) is the monodromy of the /μ
2
-bundle M̃ ε,4 → Ỹ

around γE , which we computed in Proposition 6.10. �

6.4. Stratified abelianization. Fix a manifold X of dimension ≤ 3
with corners, with X−2b = ∅. Suppose X is equipped with a spin structure
σ, a spectral network N , and stratified abelianization data A = (P,Q, μ, θ)

over (X,N ). Also suppose given a Z-bundle X̃∞ whose mod 2 reduction
is the double cover X̃. Then let X̃4 denote the mod 4 reduction of X̃∞.
X̃4 → X̃ is a /μ

2
-bundle.

Theorem 6.20. There is a canonical isomorphism

(6.21) χ(X;A;σ; X̃∞) : FG(X;P ) → SC×(X̃;Q⊗/μ
2
X̃4;π∗σ ⊗/μ

2
X̃4) .
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We remark that the isomorphism (6.23) is based on a choice of trivial-
ization in Corollary 5.109. We constrain that choice in Appendix C.

Proof. We combine ingredients as follows. First, Theorem 5.61 (trivi-
ality of Chern-Simons in unipotent directions) gives
(6.22) ρ(X;A) : FG(X;P ) → FH(X;Q) .

Second, Corollary 5.109 (identity between Chern-Simons for H-bundles over
X and C

×-bundles over X̃) gives

(6.23) ν(X;Q; X̃∞) : FH(X;Q) → SC×(X̃;Q;π∗σ) .

Finally, Corollary 5.103 (invariance of spin C
× Chern-Simons under /μ

2
-

twists) gives
(6.24)
ζ(X̃;Q;π∗σ; X̃∞) : SC×(X̃;Q;π∗σ) → SC×(X̃;Q⊗/μ

2
X̃4;π∗σ ⊗/μ

2
X̃4) .

The composition of these three is the desired isomorphism. �

The concrete nature of the isomorphism χ(X) in Theorem 6.20 depends
on the nature of X. In general, χ(X) is an isomorphism between objects in
appropriate diagram categories. For instance, if X is a closed 2-manifold,
χ(X) is an isomorphism of lines; if X is a 3-manifold with boundary, χ(X)
is an isomorphism of lines together with an isomorphism of objects in those
lines; if X is a closed 3-manifold, χ(X) is just an equation.

In what follows we will need to know that χ has good gluing properties.
These properties are most succinctly summarized as follows: they are just
as if χ came from an isomorphism of 3-dimensional topological field theo-
ries, defined on a bordism category of oriented manifolds X equipped with a
spectral network, stratified abelianization data, and a lift of the double cover
X̃ to a Z-bundle. We will apply this below to various individual manifolds X
carrying this data. Of the three ingredients above, two of them were formu-
lated as isomorphisms of topological field theories; the third, Theorem 5.61,
was not formulated in this language, but it was constructed in a fully local
and canonical way. This is sufficient to imply the desired gluing properties.

6.5. The difference line for a triangle. Let (Δ, ε, σ,A) be an ori-
ented triangle with edge-orientations, spin structure, and stratified abelian-
ization data A = (P,Q, μ, θ)

Figure 18. A triangle Δ with edge-orientations ε and the
canonical SN-stratification.
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Using G Chern-Simons theory on Δ gives an object in the V-line asso-
ciated to the boundary ∂Δ,
(6.25) FG(Δ;P ) ∈ FG(∂Δ; ∂P ) .

Using C
× Chern-Simons theory on Δ̃ likewise gives an object in the V-line

associated to ∂Δ̃,
(6.26) SC×(Δ̃;Qε

tw;σ
ε
tw) ∈ SC×(∂Δ̃; ∂Qε

tw;σ
ε
tw) .

Because Δ−2b �= ∅, we cannot use Theorem 6.20 to identify these two objects.
However, Δ−2b does not intersect ∂Δ, so Theorem 6.20 gives an equivalence
of V-lines,
(6.27) χ(∂Δ; ∂A;σ; Δ̃ε,∞) : FG(∂Δ; ∂P ) → SC×(∂Δ̃; ∂Qε

tw;σ
ε
tw) .

Now we can compare the two objects: we define a line
(6.28)

L(Δ, ε, σ,A) = χ(∂Δ; ∂A;σ; Δ̃ε,∞)(FG(Δ;P ))⊗ (SC×(Δ̃;Qε
tw;σ

ε
tw))

∗.

We explain in Appendix C how to make a choice of isomorphism χ in (6.21)
so that the super line L(Δ, ε, σ,A) is even; without further argument it could
be odd.

The line L(Δ, ε, σ,A) depends only on (Δ, ε), in the following sense.

Proposition 6.29. Suppose (Δ, ε, σ,A) and (Δ′, ε′, σ′,A′) are triangles
with edge-orientations, spin structure, and stratified abelianization data. An
orientation-preserving affine-linear isomorphism f : Δ → Δ′ which carries
ε to ε′ induces a canonical map
(6.30) f∗ : L(Δ, ε, σ,A) → L(Δ′, ε′, σ′,A′) .

An orientation-reversing affine-linear isomorphism f : Δ → Δ′ which car-
ries ε to ε′ induces a canonical map
(6.31) f∗ : L(Δ, ε, σ,A) → L(Δ′, ε′, σ′,A′)∗ .

Proof. By uniqueness of spin structures on Δ, we can lift f to an
isomorphism σ → f∗σ′. By Proposition 4.34 we can lift f to an isomorphism
A → f∗A′. Finally, since f∗ε′ = ε we can lift f to an isomorphism Δ̃ε,∞ →
Δ̃f∗ε′,∞. All of our constructions are canonical and depend only on these
data, so we obtain a map f∗ as desired. It only remains to check that this
map is independent of the choices we made in lifting f . To see this, we need
to show that the nontrivial automorphism of the spin structure—the spin
flip—and the automorphism of A induced by the action of −1 ∈ G and
−1 ∈ C

× both act trivially on L(Δ, ε, σ,A).
The argument that the spin flip acts trivially is the subject of Appen-

dix C.
To show that the automorphism −1 of A acts trivially we argue as

follows. Our definition of L(Δ, ε, σ,A) can equally well be made using G =
GL2C rather than SL2C. In this case the whole center Z(GL2C) � C

×

acts on A and thus on L(Δ, ε, σ,A). Now, to compute the action of the
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element λ ∈ C
× on L(Δ, ε, σ,A) we consider the mapping torus Δ × S1,

with abelianization data Aλ = (Pλ, Qλ, μλ, θλ) obtained by gluing A to
itself with the action of λ. The action of λ ∈ C

× is given by the ratio

(6.32) χ(∂Δ× S1; ∂Â;σ × S1; Δ̃ε,∞ × S1)(FG(Δ× S1;Pλ))

SC×(Δ̃× S1;Qε
λ,tw;σ

ε
tw × S1)

.

Now we consider the dependence on λ. Since Pλ is a flat G-connection for
each λ, and the curvature of FG vanishes when evaluated on a 1-parameter
family of flat connections, it follows that FG(Δ × S1;Pλ) gives a covari-
antly constant section of the bundle over C

× with fiber FG(∂Δ× S1; ∂Pλ).
Likewise SC×(Δ̃× S1;Qε

λ,tw;σ
ε
tw × S1) is covariantly constant. Finally, the

isomorphism χ(∂Δ × S1; ∂Â;σ × S1; Δ̃ε,∞ × S1) is flat, i.e. it is an iso-
morphism of line bundles with connection. Thus the ratio (6.32) is locally
constant as a function of λ. But at λ = 1 it gives the action of 1, which is
trivial; thus it must be 1 for all λ, as desired. �

Corollary 6.33. The line L(Δ, ε, σ,A) depends only on (Δ, ε) up to
canonical isomorphism.

Proof. Given (Δ, ε) and two different data (σ,A) and (σ′,A′) we apply
Proposition 6.29 taking f : Δ → Δ to be the identity map. This gives the
desired isomorphism f∗ : L(Δ, σ,A, ε) → L(Δ, σ,A′, ε′). �

With this corollary in mind we just write the line as L(Δ, ε). The most
important feature of this line for concrete computations is that it transforms
nontrivially under the /μ

3
rotational symmetry of Δ, as measured by the

following proposition.

Proposition 6.34. Suppose ε induces a consistent orientation of ∂Δ,
and f is a positively oriented rotation by 2π

3 with respect to the orientation
of Δ. Then f∗ acts on L(Δ, ε) as multiplication by exp(2π

√
−1/3).

Proof. Fix stratified abelianization data A = (P,Q, μ, θ) and a spin
structure σ over Δ. Lift the action of f to A and σ, in such a way that
f3 = 1. (This is possible, since each of A and σ is unique up to isomorphism
and has only a single nontrivial automorphism ρ; an arbitrary lift of f will
have either f3 = 1 or f3 = ρ, and in the latter case we replace the lift by
f ◦ ρ.) Also lift f to the /μ

2
-bundle Δ̃ε,4 → Δ̃, again in such a way that

f3 = 1. Combining this lift with the actions of f on Q and σ gives actions
of f on Qε

tw and σε
tw.

We consider the V-lines associated to the boundary, FG(∂Δ; ∂P ) and
SC×(∂Δ̃; ∂Qε

tw;σ
ε
tw). f gives actions of /μ

3
on both V-lines, the equivalence

χ(∂Δ; ∂A;σ; Δ̃ε,∞) is /μ
3
-equivariant, and FG(Δ;P ) and SC×(Δ̃;Qε

tw;σ
ε
tw)

are /μ
3
-invariant objects. The line

(6.35) L(Δ, ε) = Hom(SC×(Δ̃;Qε
tw;σ

ε
tw), χ(∂Δ; ∂A;σ; Δ̃ε,∞)(FG(Δ;P )))
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is thus acted on by /μ
3
, and we want to compute this action.

We will use an explicit picture of the /μ
3
-equivariant equivalence χ(∂Δ;

∂A;σ; Δ̃ε,∞), obtained by chopping ∂Δ into three segments, ending at the
midpoints of the three edges. First, we fix an f -invariant trivialization of
the restriction of A to the midpoints. (There is a T -torsor worth of freedom
in this choice, which we will fix below.) Given this trivialization, we may
factorize each of our V-lines as a tensor product of three V-lines associated
to the three segments, and factorize the equivalence χ(∂Δ; ∂A;σ; Δ̃ε,∞) into
a tensor product of three equivalences: for each segment S, we have
(6.36)

χ(S; ∂A|S ;σ; Δ̃ε,∞|S) : FG(S;P |S) → SC×(π−1(S);Qε
tw|π−1(S);σ

ε
tw) .

Now comes the crucial technical step: for the purposes of our compu-
tation we may replace the equivalences χ(S; ∂A|S ;σ; Δ̃ε,∞|S) by any other
equivalences ξS between the same V-lines, compatible with the f -action. In-
deed, any two equivalences differ by tensorization with a line LS , and the
f -equivariance identifies the three lines LS with a single line L, so the effect
of changing from χ(S; ∂A|S ;σ; Δ̃ε,∞|S) to ξS would be to replace L(Δ, ε)
by L(Δ, ε)⊗ L3; the /μ

3
-action on L3 induced by cyclic permutation of the

factors is trivial, so the /μ
3
-action we want to compute is insensitive to this

replacement.
We construct a convenient ξS as follows. We extend the trivializations

of P and Qε
tw from the midpoints to sections sP and sQ of P |∂Δ and Qε

tw|∂Δ̃
respectively, in an f -invariant way. On each segment S this gives trivializa-
tions of our two V-lines, and we choose ξS to intertwine these trivializations.
Tensoring the ξS we get

(6.37) ξ : FG(∂Δ; ∂P ) → SC×(∂Δ̃; ∂Qε
tw;σ

ε
tw) .

We may choose the trivialization of A at the midpoints in such a way
that the parallel transport of Qε

tw along any of the 6 preimages of segments
is given by 1 ∈ C×. (Indeed, for an arbitrary f -invariant trivialization, the
parallel transport of Q along each segment is given by some fixed element
h ∈ H \ T ; changing the trivialization by t ∈ T at each vertex conjugates
this transport by t, and by so doing we can set the off-diagonal entries to
±1 as needed.) From now on we fix such a choice. Having done so, we can
choose sQ to be covariantly constant.

However, we cannot choose sP to be covariantly constant. Indeed, the
parallel transport of P along an edge is given, relative to the trivializations
at the midpoints, by an element g = hb ∈ G, where h ∈ H \ T and b ∈ B;
in particular, g �= 1. The f -invariance implies that g is independent of the
choice of edge. Moreover, g3 = 1, since the holonomy of P around ∂Δ is
trivial. We choose sP as follows. Let t be a covariantly constant section
of ∂P → ∂Δ (necessarily not f -invariant). Then choose sP = φt, where
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φ : ∂Δ → G obeys

(6.38) φ(f(y)) = g φ(y) .

Now, to compute the action of f on L(Δ, ε) we consider the mapping
torus of f ,

(6.39) Δf = (Δ× R) / [(y, x) ∼ (f(y), x+ 1)] ,

and the mapping torus Δ̃f of the lift of f to Δ̃. The f -equivariant flat
bundles P → Δ and Qε

tw → Δ̃ induce flat bundles Pf → Δf and Qε
tw,f → Δ̃f

respectively. Moreover, the f -equivariant equivalence ξ of V-lines induces an
isomorphism of lines, ξf : FG(∂Δf ; ∂Pf ) → SC×(∂Δ̃f ; ∂Q

ε
tw,f ;σ

ε
tw). The

/μ
3
-action on L(Δ, ε) is multiplication by

(6.40)
ξf (FG(Δf ;Pf ))

SC×(Δ̃f ;Q
ε
tw,f ;σ

ε
tw)

.

To compute this, first note that, being f -invariant, sP and sQ induce
sections sPf

and sQf
of ∂Pf → ∂Δf and ∂Qε

tw,f → ∂Δ̃f respectively. The
resulting trivializations of the boundary lines have, essentially by definition
of ξ,

(6.41) ξf (τsPf
) = τsQf

.

Our task now is to compute the numerator and denominator relative to these
trivializations.

To compute SC×(Δ̃f ;Q
ε
tw,f ;σ

ε
tw) we note that sQf

is covariantly con-
stant on ∂Δ̃f , and it can be extended to a covariantly constant section over
the full Δ̃f ; thus the C

× Chern-Simons form vanishes, and SC×(Δ̃f ;Q
ε
tw,f ;

σε
tw) = τsQf

.
To compute FG(Δf ;Pf ) is more interesting. We choose an arbitrary

extension s of sPf
to the solid torus Δf . Let A denote the connection form

in Pf relative to the section s; then using (3.9)
(6.42)

FG(Δf ;Pf ) = τsPf
exp

[
1

4π
√
−1

∫
Δf

trace

(
A ∧ dA+

2

3
A ∧A ∧A

)]
.

To compute explicitly, we pull back to a triple cover p : Δ× S1 → Δf ,

(6.43) Δ× S1 = (Δ× R) / [(y, x) ∼ (y, x+ 3)] , p([(y, x)]) = [(y, x)] .

The covariantly constant section t of ∂P → ∂Δ induces a covariantly con-
stant section of ∂(p∗P ) → ∂Δ× S1,30 which we can further extend to a

30Since t is not f -invariant, it would not induce a section of Pf → ∂Δf ; this is the
reason why we had to pull back to the triple cover.
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covariantly constant section t̂ of p∗P → Δ× S1. Then p∗s = φt̂ for some
φ : Δ× S1 → G, and the invariance of p∗s under the /μ

3
deck group gives

(6.44) φ(f(y), x+ 1) = g φ(y, x) .

The connection form in p∗P relative to p∗s is A = φ−1dφ, and this form is
pulled back from Δf ; thus the integral over Δf in (6.42) can be rewritten
as one-third of a more explicit integral over Δ× S1,

(6.45) FG(Δf ;Pf ) = τsPf
exp

[
1

3

1

12π
√
−1

∫
Δ×S1

trace(φ−1dφ)3
]
.

Moreover, s|∂Δ×S1 is covariantly constant along translation in the x-direction
holding y ∈ ∂Δ fixed, while t is covariantly constant in every direction. Thus
φ|∂Δ×S1 is constant in the x-direction. Attaching a solid torus S1 × D2 to
Δ× S1 along this direction we obtain a closed 3-manifold M � S3. The map
φ naturally extends to the added S1×D2, by choosing it to be constant along
the D2 factor. Then (φ−1dφ)3 = 0 there, and thus we can replace the do-
main of integration in (6.45) by M . This integral gives exp(2π

√
−1

3 k), where
k is the degree of the map φ : M → G (by which we mean the degree of the
retraction of φ from G to SU(2), when we equip SU(2) with the orientation
for which − trace(h−1dh)3 is a positive 3-form.) To compute this degree, we
will use only the fact that φ commutes with certain /μ

3
-actions on M and

SL(2,C), as follows.
First, we can identify M with {|α|2 + |β|2 = 1} = S3 ⊂ C

2 as fol-
lows. On the torus ∂Δ × S1, we fix coordinates α = 1√

2
e
√
−1θ, where θ pa-

rameterizes ∂Δ (positively with respect to the boundary orientation), and
β = 1√

2
e2π

√
−1x/3. These coordinates naturally extend to the two solid tori

Δ × S1 and S1 ×D2, identifying them respectively as the loci |α| < 1
2 and

|β| < 1
2 in S3. The orientation of M matches the standard orientation of S3.

The /μ
3
-action (y, x) �→ (f(y), x+1) on Δ×S1 becomes in these coordinates

(α, β) �→ (e2π
√
−1/3α, e2π

√
−1/3β) (and thus extends to a fixed-point-free ac-

tion on the whole S3).

Next, parameterize SU(2) by h =

(
α β
−β̄ −ᾱ

)
. This gives SU(2) � S3 ⊂

C
2. Computing − trace(h−1dh)3 in this parameterization we see that it is

positive for the standard orientation on S3. By composing φ with an inner
automorphism of SL(2,C) we may assume g = diag(e2π

√
−1/3, e−2π

√
−1/3).

The /μ
3
-action h �→ gh then acts by (α, β) �→ (e2π

√
−1/3α, e2π

√
−1/3β).

We have shown how to identify both M and SU(2) with S3, in such a
way that the /μ

3
-actions and orientations agree with the standard ones for

S3. Using (6.44), φ intertwines the /μ
3
-action on M with the /μ

3
-action on

SU(2). Then using Lemma 6.46 below completes the proof. �
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Lemma 6.46. Any continuous map φ : S3 → S3 commuting with the
standard /μ

3
-action has degree equal to 1 mod 3.

Proof. Such a φ descends to a map φ̄ : S3//μ
3
→ S3//μ

3
which lifts

to the /μ
3
-bundle S3 → S3//μ

3
; this bundle has a nonzero characteristic

class lying in H3(S3//μ
3
; /μ

3
) � /μ

3
(because the inclusion S3//μ

3
→ B /μ

3
=

S∞//μ
3

induces an isomorphism on H3(·; /μ
3
)), and thus φ̄∗ must act trivially

on H3(S3//μ
3
; /μ

3
), i.e. the degree of φ̄ is 1 mod 3. Since the degree of φ agrees

with that of φ̄, this finishes the proof. �

To finish this section we remark on a diagrammatic perspective on
L(Δ, ε) which will be useful in some of the arguments to follow. Here we
suppress most of the background fields to reduce clutter. We regard Δ as a
morphism in the bordism category

(6.47) ∅ Δ−→ ∂Δ .

Applying FG and SC× to this diagram, and including the map χ(∂Δ, ε), we
get

(6.48)

FG(∂Δ)

Line

SC×(∂Δ, ε)

FG(Δ)

S
C× (Δ,ε)

χ(∂Δ,ε)

Here, and in various diagrammatic arguments to follow, we freely identify
morphisms Line → C with objects of C. Then the composition

(6.49) L(Δ, ε) = SC×(Δ, ε)−1 ◦ χ(∂Δ, ε) ◦ FG(Δ) .

6.6. Abelianization of Chern-Simons over triangulated surfaces.
Now suppose given an oriented surface Y with a semi-ideal triangulation T,
edge-orientations ε, and a spin structure σ. Also fix boundary-reduced strat-
ified abelianization data A = (P,Q, μ, θ) over (Y,N T). As we have discussed
in §5.3.2, because P is boundary-reduced, the V-line FG(∂Y ; ∂P ) is canoni-
cally trivial, and thus FG(Y ;P ) is a line. The V-line SC×(∂Ỹ ; ∂Qε

tw;σ
ε
tw) is

also canonically trivial, since Qε
tw has trivial holonomy around the boundary

components; thus SC×(Ỹ ;Qε
tw;σ

ε
tw) is also a line.

Define the difference line

(6.50) L(Y, ε) =
⊗

Δ∈faces(T)
L(Δ, ε|Δ) .

Construction 6.51. There is a canonical isomorphism of lines

(6.52) χε
Y : FG(Y ;P ) → SC×(Ỹ ;Qε

tw;σ
ε
tw)⊗ L(Y, ε) .
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Proof. First for simplicity suppose that there are no ideal vertices, so
Y is a closed triangulated surface.

For each Δ ∈ faces(T) we consider the dilation μ : Δ → Δ which
rescales distance from the barycenter by 1

2 . Then we have a decomposition
Y = Yout ∪ Yin, where Yin is the union of the rescaled triangles μ(Δ).

Figure 19. A portion of the triangulated surface Y with its
SN-stratification, and the decomposition Y = Yout ∪ Yin.

Let R = ∂Yin. To condense the notation we will just write the manifolds,
suppressing all the extra background fields, including the dependence on ε
(since ε is held fixed throughout this proof). Then we have a diagram in the
bordism category,

(6.53) ∅ Yin−−→ R
Yout−−→ ∅

Applying FG and SC× to this diagram, and inserting the maps χ(R) and
χ(Yout) provided by Theorem 6.20, we get the diagram below:

(6.54)

FG(R)

Line Line

SC×(R)

FG(Yin)

S
C× (Yin)

χ(R)

S
C× (Yout)

FG(Yout)

χ(Yout)

Here the dashed arrow indicates the composition SC×(Yout) ◦ χ(R). Now
whiskering χ(Yout) by FG(Yin) we get a 2-morphism

(6.55) Line Line

S
C× (Yout)◦χ(R)◦FG(Yin)

FG(Y )

Finally, defining

(6.56) L = SC×(Yin)
−1 ◦ χ(R) ◦ FG(Yin),
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we have χ(R)◦FG(Yin) = SC×(Yin)◦L(Y, ε), so we can rewrite the diagram
as

(6.57) Line Line

S
C× (Y )◦L

FG(Y )

Composition of maps Line → Line is tensor product, so this is a map of lines

(6.58) FG(Y ) → SC×(Y )⊗ L
as desired; what remains is to identify L with the L(Y, ε) we defined in
(6.50). This follows directly from (6.49) and the decomposition of Yin into
the disjoint union of triangles.

So far we discussed only the case where there are no ideal vertices. In
the general case one has to draw slightly more complicated diagrams:

(6.59) ∅ Yin−−→ R
Yout−−→ ∂Y

(6.60)

FG(R) FG(∂Y )

Line

SC×(R) SC×(∂Y )

FG(Yin)

S
C× (Yin)

χ(R)

FG(Yout)

S
C× (Yout)

χ(Yout) χ(∂Y )

However, because A is assumed boundary-reduced, we have trivializations
of FG(∂Y ) and SC×(∂Y ), which are intertwined by χ(∂Y ); using these
trivializations the diagram (6.60) reduces to (6.57), and then we can proceed
just as above. This completes the proof. �

We may also consider a family of boundary-reduced stratified abelian-
ization data A = (Ps, Qs, μs, θs) over a fixed (Y,N ), varying with a pa-
rameter s ∈ S. All of our constructions can be applied to such a fam-
ily: then we obtain two invariants FG(Y ;Ps) and SC×(Ỹ ;Qε

tw,s;σ
ε
tw) both

of which vary over S, and an isomorphism relating them. In particular,
if Y is a semi-ideally triangulated surface as above, then both FG(Y ;Ps)

and SC×(Ỹ ;Qε
tw,s;σ

ε
tw) are line bundles over S with connection, and χε

Y :

FG(Y ;Ps) → SC×(Ỹ ;Qε
tw,s;σ

ε
tw)⊗L(Y, ε) is an isomorphism of line bundles

with connection.

6.7. Reversing an edge orientation on a triangle. Now suppose
(Δ, ε, σ,A) is an oriented triangle with edge-orientations, spin structure,
and boundary-reduced stratified abelianization data. We first consider the
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restriction of all the data to a single oriented edge E. Let ε be the given ori-
entation of E and ε′ the opposite orientation. Then in the bordism category
we have the diagram

(6.61) ∅ E−→ ∂E

Once again we suppress some background fields in the notation: we just keep
the manifolds and (where necessary) the edge-orientations. We will also use
freely the fact that the Z-bundles Δ̃ε,∞ and Δ̃∞,ε′ are canonically trivial
over ∂E.

Then we have a diagram in the 2-V-line SC×(∂E):

SC×(E, ε)

χ(∂E) ◦ FG(E)

SC×(E, ε′)

χ(E,ε)

ζ(E,�E ,ε)

χ(E,ε′)

We define

(6.62) Ξ(E) = χ(E, ε′)−1 ◦ ζ(E,�E , ε) ◦ χ(E, ε)

which is an automorphism of the object χ(∂E) ◦ FG(E) ∈ SC×(∂E), or
equivalently a line.

Now suppose (Δ, ε, σ,A) is an oriented triangle with edge-orientations,
spin structure, and stratified abelianization data. Also suppose E is an edge
such that εE agrees with the boundary orientation, and ε′ is obtained from
ε by reversing the orientation on E. Let Ẽ = −(∂Δ \ E), so now we have

(6.63) ∅ ∂E

E

Ẽ

Δ

Then ζ(·, �E , ε) provides an isomorphism of 2-morphisms
(6.64)

VLine SC×(∂E) VLine SC×(∂E)

S
C× (E,ε)

S
C× (Ẽ)

S
C× (E,ε′)

S
C× (Ẽ)

S
C× (Δ,ε) S

C× (Δ,ε′)
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while χ(·, ε) gives a similar isomorphism of diagrams, but without the inner
arrow,
(6.65)

VLine FG(∂E) VLine SC×(∂E)

FG(E)

FG(Ẽ)

S
C× (E,ε)

S
C× (Ẽ)

and χ(·, ε′) gives the same isomorphism of diagrams with ε replaced by ε′.
Combining these, we can whisker the isomorphism (6.64) into an isomor-
phism between the lines we previously defined in (6.49), (6.62),

(6.66) ρε
′,ε(Δ) : L(Δ, ε′) → L(Δ, ε)⊗ Ξ(E)−1 .

This map describes the effect of reversing the orientation on one edge of Δ.
Now we want to consider reversing orientation on two edges of Δ. We

introduce a bit of notation that will be convenient below:

Definition 6.67. If E1 and E2 are edges of an oriented triangle Δ,
(6.68)

〈E1, E2〉 =

⎧⎪⎨⎪⎩
+1 if E1 is ahead of E2 in the boundary orientation,
−1 if E1 is behind E2 in the boundary orientation,
0 if E1 = E2.

Suppose εE1 , εE2 both agree with the boundary orientation, let ε′i be
obtained from ε by reversing εEi , and let ε′′12 be obtained from ε by reversing
both εE1 and εE2 .

Figure 20. An oriented triangle with two marked edges,
with 〈E1, E2〉 = 1, and edge orientations agreeing with the
boundary orientation. The third edge orientation is arbitrary.

We want to compare the two 2-morphisms appearing in the diagram:

SC×(∂Δ, ε) SC×(∂Δ, ε′′12)

Line

ζ(E1,�E1
)◦hζ(E2,�E2

)◦hid

S
C× (Δ,ε) S

C× (Δ,ε′′12)
ζ(Δ,�E2

)◦ζ(Δ,�E1
)

ζ(Δ,�E1
)◦ζ(Δ,�E2

)
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Lemma 6.69. In this situation,
(6.70)

ζ(Δ̃;Q
ε′1
tw;σ

ε′1
tw;�E2) ◦ ζ(Δ̃;Qε

tw;σ
ε
tw;�E1)

ζ(Δ̃;Q
ε′2
tw;σ

ε′2
tw;�E1) ◦ ζ(Δ̃;Qε

tw;σ
ε
tw;�E2)

= exp

(
−2π

√
−1

4
〈E1, E2〉

)
.

Proof. We use (5.105). For this purpose we choose a section s of Qε
tw

and maps p1, p2 : Δ̃ → S1 representing �E1 , �E2 , with pi constant on ∂Δ̃

except for Ẽi. Then we have another section s′′12 = eπ
√
−1(p1+p2)s of Q

ε′′12
tw ,

and in terms of these sections

(6.71)
ζ(Δ̃;Q

ε′i
tw;σ

ε′i
tw;�Ej ) ◦ ζ(Δ̃;Qε

tw;σ
ε
tw;�Ei)τs

= exp

(
−1

4

∫
Δ̃

(
s∗α+ π

√
−1 dpi

)
∧ dpj + s∗α ∧ dpi

)
τs′′12

so that the desired ratio is

�(6.72) exp

(
−2π

√
−1

4

∫
Δ̃
dp1 ∧ dp2

)
= exp

(
−2π

√
−1

4
〈E1, E2〉

)
.

Proposition 6.73. In this situation,

(6.74) ρε
′
2,ε

′′
12(Δ)◦ρε,ε′2(Δ) = exp

(
−2π

√
−1

4
〈E1, E2〉

)
ρε

′
1,ε

′′
12(Δ)◦ρε,ε′1(Δ).

Proof. Since ρ is constructed by whiskering ζ we get

(6.75) ρε
′
2,ε

′′
12(Δ) ◦ ρε,ε′2(Δ)

ρε
′
1,ε

′′
12(Δ) ◦ ρε,ε′1(Δ)

=
ζ(Δ̃;Q

ε′2
tw;σ

ε′2
tw;�E1) ◦ ζ(Δ̃;Qε

tw;σ
ε
tw;�E2)

ζ(Δ̃;Q
ε′1
tw;σ

ε′1
tw;�E2) ◦ ζ(Δ̃;Qε

tw;σ
ε
tw;�E1)

.

Then use Lemma 6.69. �
Similarly we can consider reversing the orientation on an edge E where

the initial orientation εE is opposite to the boundary orientation. Then the
same constructions as above give an isomorphism
(6.76) ρε,ε

′
(Δ) : L(Δ, ε′) → L(Δ, ε)⊗ Ξ(E) .

6.8. Reversing an edge orientation on a triangulated surface.
Now suppose (Y,T) is a semi-ideally triangulated surface, with boundary-
reduced stratified abelianization data (P,Q, μ, θ). Suppose ε, ε′ are edge-
orientations on T, differing by reversing the orientation on one edge E. We
would like to compare the maps χε

Y and χε′
Y from Construction 6.51. Their

ratio is an isomorphism
(6.77)
χε
Y ◦ (χε′

Y )
−1 : SC×(Ỹ ;Qε′

tw;σ
ε′
tw)⊗ L(Y, ε′) → SC×(Ỹ ;Qε

tw;σ
ε
tw)⊗ L(Y, ε) .

We already have an isomorphism
(6.78) ζ(Ỹ ;Qε′

tw;σ
ε′
tw;�

E) : SC×(Ỹ ;Qε′
tw;σ

ε′
tw) → SC×(Ỹ ;Qε

tw;σ
ε
tw)

given by Corollary 5.103. Thus we can write
(6.79) χε

Y ◦ (χε′
Y )

−1 = ζ(Y ;Qε′
tw;�

E)⊗ (λε,ε′(Y ))−1
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for some
(6.80) λε,ε′(Y ) : L(Y, ε) → L(Y, ε′).
This map is determined in terms of the edge-reversal maps for the two
triangles Δ1, Δ2 abutting E, as follows.

Proposition 6.81. λε,ε′(Y ) = ρε,ε
′
(Δ1)⊗ ρε,ε

′
(Δ2).

Proof. We decompose Y as indicated in the figure:

Figure 21. The decomposition of a triangulated surface Y
associated to an edge E.

(6.82) Y = Yout ∪ Y1 ∪ Y2 ∪ YE

Now we want to describe ζ(Y ;Qε′
tw;�

E)−1 ◦ χε
Y ◦ (χε′

Y )
−1 relative to this

decomposition. We will content ourselves with a heuristic description, leav-
ing the full diagrammatics to the reader. On Yout all the background fields
associated to ε and ε′ are canonically isomorphic, and the background field
�E is canonically trivial, so likewise ζ(Y ;Qε′

tw;�
E)−1 ◦χε ◦ (χε′)−1 is trivial.

On Yi, ζ(Y ;Qε′
tw;�

E)−1 ◦χε ◦ (χε′)−1 is described by the map (ρε,ε
′
(Δi))

−1 :
L(Δi, ε

′) ⊗ Ξ(Ei)
±1 → L(Δi, ε) where Ei is the edge of Δi corresponding

to E. Finally, on YE , ζ(Y ;Qε′
tw;�

E)−1 ◦ χε ◦ (χε′)−1 gives the isomorphism
Ξ(E1) → Ξ(E2) induced by identifying these two edges. Combining these
gives the desired result. �

Proposition 6.83. The composition
(6.84) λε′,ε(Y ) ◦ λε,ε′(Y ) : L(Y, ε) → L(Y, ε)
acts by multiplication by the ε-sign of the edge E, as defined in Definition 6.9.

Proof. First note that from (6.79) it follows directly that λε′,ε(Y ) ◦
λε,ε′(Y ) acts by ζ(Ỹ ;Qε′

tw;σ
ε′
tw;�E) ◦ ζ(Ỹ ;Qε

tw;σ
ε
tw;�E). Using (5.105) and

(5.30) we see that this is multiplication by σε
tw([�E ]) = σε

tw(γE); by Propo-
sition 6.19 this is the ε-sign of E. �

7. Gluing description of the Chern-Simons line

We continue with the setup of the last section. There we used abelian-
ization to produce an isomorphism

(7.1) ψD : FG(Y ;P ) → SC×(Ỹ ;Qε
tw;σ

ε
tw)⊗ L(Y, ε)
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depending on various choices encapsulated in D. In this section we pro-
cess this further to turn it into an explicit description of FG(Y ;P ). The
final result is Theorem 7.81, which asserts the existence of nonzero elements
τD̂ ∈ FG(Y ;P )∗ depending on choices D̂ (including an ideal triangulation,
edge-orientations, and certain choices of logarithms), and gives the cocycle
expressing how τD̂ changes when the data D̂ are changed.

7.1. Abelianization of Chern-Simons over interpolating 3-ma-
nifolds. Suppose M is a spin 3-manifold with boundary, equipped with a
spectral network N such that M−3 = ∅, the restriction of N to Y = ∂M is
the spectral network N T for a triangulation T of Y , and M−2b has no closed
components.

Each component B of M−2b is a closed interval, whose two ends lie on
Y−2b, in two triangles Δ0,Δ1 ∈ faces(T), with edge-orientations εΔ0 , εΔ1 .
Moreover, a tubular neighborhood of B can be identified with Δ× [0, 1], for
a triangle Δ with its standard spectral network. This in particular gives an
orientation-reversing identification f : Δ0 → Δ1.

Now suppose given edge-orientations ε over Y , and a Z-bundle M̃∞ →
M̃≥−3a, which restricts to Ỹ ε,∞ → Ỹ≥−3a over the boundary, and also re-
stricts to Δ̃εB ,∞ × [0, 1] over the tubular neighborhood of each component
B ⊂ M−2b, for some edge-orientations εB on Δ. In particular εB restricts
to match ε at the two ends, and so f∗(ε|Δ0) = ε|Δ1 . Thus using Proposi-
tion 6.29 we get an isomorphism L(Δ, εΔ) → L(Δ′, εΔ′)∗, i.e. an element
β ∈ L(Δ, εΔ)⊗L(Δ′, εΔ′). Tensoring over all components B ⊂ M−2b gives a
canonical element βM ∈ L(Y, ε). This element should be thought of as just
implementing the matching-up of triangles provided by M−2b.

Finally, suppose we have stratified abelianization data A = (P,Q, μ, θ)
over (M,N ).

Proposition 7.2. In this situation,
(7.3)
χε
Y (FG(M ;P )) = SC×(M̃ ;Qε

tw;σ
ε
tw)⊗ βM ∈ SC×(Ỹ ; ∂Qε

tw;σ
ε
tw)⊗ L(Y, ε).

Proof. Decompose M = Mout ∪ Min, where Min is a small tubular
neighborhood of M−2b. Min is a 3-manifold with 1-dimensional corners R;
R is a union of circles, which divides ∂Min into a union of cylinders B and
a union of discs Yin ⊂ Y . Likewise ∂Mout is divided by R into −B and
Yout ⊂ Y .

Now we need to apply FG and SC× to the various parts of this decom-
position. To lighten the notation a bit we write the V-lines (dimension 1)

(7.4) CG = FG(R;P |R), CC× = SC×(R̃;Qε
tw|R̃;σ

ε
tw) ,

with objects (dimension 2)

(7.5) OG,in = FG(Yin;P |Yin), OC×,in = SC×(Ỹin;Q
ε
tw|Ỹin

;σε
tw) .
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Thus OG,in ∈ CG, OC×,in ∈ CC× , and likewise we have OG,out ∈ C∗
G, OC×,out ∈

C∗
C× , and OG,B ∈ CG, OC×,B ∈ CC× . Finally, we have the elements (dimen-

sion 3)
ψG,in = FG(Min;P |Min) ∈ OG,in ⊗O∗

G,B ,(7.6)
ψG,out = FG(Mout;P |Mout) ∈ OG,out ⊗OG,B ,(7.7)
ψC×,in = SC×(Min;Q

ε
tw|Min ;σ

ε
tw) ∈ OC×,in ⊗O∗

C×,B ,(7.8)
ψC×,out = SC×(Mout;Q

ε
tw|Mout ;σ

ε
tw) ∈ OC×,out ⊗OC×,B .(7.9)

We can use Theorem 6.20 to construct various canonical abelianization
maps: an equivalence of V-lines (associated to dimension 1),
(7.10) χε

∂B : CG → CC× ,

homs (associated to dimension 2),
χε
Yout

: χε∗
∂B(OG,out) → OC×,out ,(7.11)

χε
Yin

: χε
∂B(OG,in) → OC×,in ⊗ L(Y, ε) ,(7.12)

χε
B : χε

∂B(OG,B) → OC×,B(7.13)
and an equation (associated to dimension 3),
(7.14) ((χε

Yout
⊗ χε∗

B ) ◦ ΩYout,∂B,B)(ψG,out) = ψC×,out

where
(7.15) ΩYout,∂B,B : OG,out ⊗OG,B → χε∗

∂B(OG,out)⊗ χε
∂B(OG,B)

is the canonical map. Now, we define an element δM ∈ L(Y, ε) by
(7.16) ((χε

Yin
⊗ χε

B) ◦ ΩYin,∂B,B)(ψG,in) = ψC×,in ⊗ δM .

This is a measurement of the difference between the G and C
× theories on

the cylinders Min, analogous to our definition of L(Y, ε), but one dimension
up, so it gives an element rather than a line. Tensoring (7.14) and (7.16) gives
(7.17) χε

Y (ψG) = ψC× ⊗ δM

so what remains to prove (7.3) is to show that δM = βM . Each component
of Min is a cylinder, with ends on two discs carrying the standard spectral
network for a triangle; call these discs Δ, Δ′. By a diffeomorphism we can
identify this cylinder with the mapping cylinder If of a map f : Δ → Δ′.
Moreover, f lifts to the spectral networks, spin structures and stratified
abelianization data. Thus we can transport the computation of δM to the
union of mapping cylinders; on each mapping cylinder If this gives the ac-
tion of f∗ : L(Δ, ε) → L(Δ′, ε′), and then tensoring over the cylinders gives
βM as desired. �

In Proposition 7.2 we only considered the case of a 3-manifold M with
boundary a closed triangulated surface Y . In applications we sometimes want
to use Y with boundary and a semi-ideal or ideal triangulation. In this case
M will have to have extra boundary components extending ∂Y , and corners
around the ideal vertices. As long as we always work with boundary-reduced
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stratified abelianization data over Y , these extra boundary components and
corners do not introduce additional complications in the formal structure:
the statement and its proof are unchanged except for a bit more notation,
which we omit here.

7.2. The dilogarithm in abelianization on one tetrahedron. Sup-
pose Y = S2, identified as the boundary of a tetrahedron , with the
induced triangulation T. Let σ denote a spin structure on Y , and A =
(P,Q, μ, θ) stratified abelianization data over (Y,N T). Then P extends to
P̂ → (uniquely up to isomorphism) and applying FG gives an element
(7.18) FG( ; P̂ ) ∈ FG(Y ;P ) .

Fix edge-orientations ε on . The goal of this section is to describe the
image χε

Y (FG( ; P̂ )) in terms of a relative of the dilogarithm function.
Choose a pair of opposite edges in T; as discussed above Proposition 4.40,

this determines classes γ1, γ2, γ3 ∈ H1(Ỹ ). Also choose a section t of the C
×-

bundle Qε
tw and let

(7.19) ui =

∮
γi

t∗α

where α denotes the connection form in the C
×-bundle Q → Ỹ . Thus ui is

a logarithm of holQε
tw
(γi). Changing the choice of section t shifts each ui by

an integer multiple of 2π
√
−1. Also let

(7.20) ηi = σε
tw(γi) ∈ {±1} .

Equivalently, ηi is the ε-sign of the edge Ei. Thus (η1, η2) measure the iso-
morphism class of the spin structure σε

tw on the torus Ỹ , and are determined
by (but have less information than) the six edge-orientations ε.

Proposition 7.21. We have the relation
(7.22) η1e

−u1 + η2e
u2 = 1 .

Proof. Theorem 4.43 shows that the holonomies zi = holQ(γi) obey
z−1
1 +z2 = 1, and (6.16) gives eui = holQε

tw
(γi) = ηizi; combining these gives

(7.22). �
Now let η = (η1, η2),

(7.23) Sη = {(u1, u2) : η1e−u1 + η2e
u2 = 1} ⊂ C

2,

and let
(7.24) �η : Sη → C/4π2

Z

be any function obeying

(7.25) d�η =
1

2
(u2 du1 − u1 du2).

Each �η is a variant of the dilogarithm function; see (7.69)–(7.72) for concrete
examples.
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Proposition 7.26.

(7.27) χε
Y (FG( ; P̂ ))

τt
= cε exp

[
1

2π
√
−1

�η(u1, u2)

]
,

for some cε ∈ L(Y, ε) independent of u1, u2.

Proof. We first note that (P,Q, μ, θ) fits into a family of stratified
abelianization data (Pu1,u2 , Qu1,u2 , μ, θ) over (Y,N T), parameterized by
(u1, u2) ∈ Sη, with the property eui = ηi holQu1,u2

(γi). To construct this fam-
ily we can use Construction 4.31, choosing the trivial flat bundle Pu1,u2 →
S2, and taking the 4 elements si ∈ CP

1 at the 4 vertices to have cross-ratio
η1e

u1 ; then the calculation in Remark 4.49 shows that the holonomies of
Qu1,u2 will be as desired. To show that our given (P,Q, μ, θ) is indeed iso-
morphic to a member of this family, we use the fact that stratified abelian-
ization data is determined up to isomorphism by the holonomies of Q (for
this calculation see e.g. [HN]).

Because Pu1,u2 → S2 is trivial and its extension P̂u1,u2 → is unique,
the elements FG( ; P̂u1,u2) sweep out a covariantly constant section of the
line bundle with fibers FG(Y ;Pu1,u2) over Sη. Using the compatibility of χε

Y

with the connection in this bundle, it follows that χε
Y (FG( ; P̂u1,u2)) is a

covariantly constant section of the line bundle with fibers SC×(Ỹ ;Qε
tw,u1,u2

;
σε
tw) ⊗ L(Y, ε) over Sη. Moreover the section t of the given Qε

tw deforms to
a section tu1,u2 of Qε

tw,u1,u2
, unique up to homotopy. The computations in

Section 4 of [FN] then show that the function

(7.28) f(u1, u2) =
χε
Y (FG( ; P̂u1,u2))

τtu1,u2

on Sη obeys31

(7.29) d log f =
1

4π
√
−1

(u2du1 − u1du2) .

This proves (7.27). �

7.3. Flipping an edge. Suppose given a boundary-reduced flat G-
bundle P → Y . Suppose T0, T1 are two semi-ideal triangulations of Y ,
which differ by flipping an edge E ∈ edges(T0) to an edge E′ ∈ edges(T1).
Also suppose given a choice of sections of G/P over the interior vertices of
T, such that the genericity Assumption 4.32 holds for both T0 and T1. Then
by Construction 4.31 we obtain boundary-reduced stratified abelianization
data (P,Q0, . . . ) and (P,Q1, . . . ) over (Y,N T0) and (Y,N T1) respectively.

Let ε0, ε1 be systems of edge-orientations on T0 and T1, which agree
on all common edges, i.e. all edges except for E and E′. We would like to

31In [FN] we discussed only the case η = (+1,+1), but this computation is indepen-
dent of η. Also, beware that u1 in this paper is −u1 in [FN], which leads to a sign flip in
comparing.
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compare χT0,ε0
Y and χT1,ε1

Y . Their ratio is an isomorphism

(7.30)
χT1,ε1
Y ◦ (χT0,ε0)−1

Y : SC×(Ỹ0;Q
ε0
0,tw;σ

ε0
tw)⊗ L(Y, ε0)

→ SC×(Ỹ1;Q
ε1
1,tw;σ

ε1
tw)⊗ L(Y, ε1).

To describe this map we consider the 3-manifold

(7.31) M = Y × [0, 1] .

Let p : M → Y denote the projection, and let P̂ = p∗P . On M we construct
a SN-stratification, spectral network and stratified abelianization, as follows.

Let Yrest be the union of all the triangles in Y except for the two abut-
ting E. Then we have a decomposition Y = Yrest ∪ QE . The stratified
abelianizations (P,Q0, . . . )|Yrest and (P,Q1, . . . )|Yrest are canonically isomor-
phic, and thus extend to boundary-reduced stratified abelianization data
over (Yrest × [0, 1],Nrest × [0, 1]). Over Yrest × [0, 1] we also have a Z-bundle
p∗Ỹ ε,∞|Yrest .

Next we consider QE × [0, 1]. Collapsing the vertical intervals in ∂QE ×
[0, 1] gives a surjective map ∂φ : ∂(QE × [0, 1]) → ∂ , where is a tetra-
hedron, and this map extends to

(7.32) φ : QE × [0, 1] →

which is a homeomorphism on the interior. On we have a standard SN-
stratification and spectral network as described in Construction 4.37; pulling
this back by φ gives a SN-stratification and spectral network on QE × [0, 1],
which glue to the ones we already have on Yrest × [0, 1]. Using Construction
4.55 we obtain stratified abelianization data over ≥−2b, which likewise
pulls back to QE × [0, 1] and glues to the stratified abelianization data we
already have on Yrest × [0, 1].

Thus altogether we have:
• A SN-stratification and spectral network N over M , with isomor-

phisms N|Y×{0} � N T0 , N|Y×{1} � N T1 ,
• Stratified abelianization data (P̂ , Q̂, μ̂, θ̂) over (M,N ), which re-

stricts to (P,Q0, μ0, θ0), (P,Q1, μ1, θ1) over Y0, Y1 respectively.
• A Z-bundle M̃∞ → M≥−3a, which restricts to Ỹ ε0,∞, Ỹ ε1,∞ over
Y0, Y1.

We need to extend our /μ
2
-twisted objects from Y0 and Y1 to M : define

M̃4 = M̃∞/4Z, and twist Q̂ → M≥−3a to Q̂tw = Q̂ ⊗/μ
2
M̃4 and π∗p∗σ to

σtw = π∗p∗σ ⊗/μ
2
M̃4.

The stratum M−3b consists of a single point p, the barycenter of the
tetrahedron . Let Bp be a small ball around p. By radial projection centered
at p, the sphere H = ∂Bp acquires a triangulation TH , whose four faces
correspond naturally to the two faces of QE and two of QE′ . TH comes with
edge-orientations εH , induced by ε0 and ε1 (using the fact that ε0 and ε1
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agree on the common edges). Moreover, the restriction N|H is the spectral
network N TH , and H̃εH ,∞ is the restriction of M̃∞ to H.

Now we can describe the effect of a flip on the abelianization maps χT,ε
Y :

Proposition 7.33. The map

(7.34)
χT1,ε1
Y ◦ (χT0,ε0

Y )−1 : SC×(Ỹ ;Qε0
0,tw;σ

ε0
tw)⊗ L(Y, ε0)

→ SC×(Ỹ ;Qε1
1,tw;σ

ε1
tw)⊗ L(Y, ε1)

is the product

(7.35) SC×(M \Bp; Q̂tw|M\Bp
;σtw)⊗ χεH

H (FG(Bp; P̂ |Bp))⊗ βM\Bp
.

Proof. We apply Proposition 7.2 to the 3-manifold M \Bp, noting that
what was called Y there is here the disconnected boundary ∂(M \ Bp) =
Y0 ∪ −Y1 ∪ −H, which carries a semi-ideal triangulation T0 ∪ T1 ∪ TH and
edge-orientations ε0 ∪ ε1 ∪ εH .

Figure 22. The 3-manifold M = Y × [0, 1] which we use to
study a flip of the semi-ideal triangulation on Y . The branch
locus M−2b is shown in orange. In this example each trian-
gulation has five triangles, and thus there are five points of
M−2b on each of Y0 and Y1.

This gives the formula

(7.36)
χT0∪T1∪TH ,ε0∪ε1∪εH
Y0∪−Y1∪−H (FG(M \Bp; P̂ |M\Bp

))

= SC×(M \Bp; Q̂tw|M\Bp
;σtw)⊗ βM\Bp

.

Tensoring with χεH
H (FG(Bp; P̂ |Bp)) then gives

(7.37)
χT0∪T1,ε0∪ε1
Y0∪−Y1

(FG(M ; P̂ ))

= SC×(M \Bp; Q̂tw|M\Bp
;σtw)⊗ βM\Bp

⊗ χεH
H (FG(Bp;P |Bp)) .

But since M = Y × [0, 1] and P̂ = p∗P , FG(M ; P̂ ) is the identity map on
FG(Y ;P ); the desired result follows by rearranging factors. �
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Using the identification between the 4 triangles in QE , QE′ and the 4
triangles in H, we get from Proposition 6.29 an element β : L(QE , ε0) ⊗
L(H, εH) → L(QE′ , ε1). Contracting that with the normalization constant
cεH ∈ L(H, εH) defined in Proposition 7.26, we obtain an isomorphism
(7.38) κε0,ε1E = β(cεH ) : L(QE , ε0) → L(QE′ , ε1) .

7.4. Gluing the Chern-Simons line. Let Y be a compact oriented
surface with boundary. Suppose P → Y is a flat boundary-reduced G-
bundle. In this section we use abelianization to give a description of the
line FG(Y ;P ).

Construction 7.39. We consider tuples D = (T, ε, s, x), where:
• T is a semi-ideal triangulation of Y ,
• ε = (εE)E∈edges(T) is a system of edge-orientations for T,
• s = (sv)v∈vertices(T) is a flat section of P/U = P ×G (C2 \ {0}) over

each v, such that if v is an ideal vertex then the projection of sv to
P/B agrees with the boundary reduction,

• x = (xE)E∈edges(T) is a collection of complex numbers, where

(7.40) exp(xE) = εE(v, v
′)sv′ ∧ sv

if E is an edge with vertices v, v′. Here sv means the continuation
of s from v by parallel transport along the edge E, similarly sv′ ,
and the wedge product is evaluated at any point along E; here and
below, we use the fact that P is an SL2C-bundle and thus there is
a canonical volume form in P/U .

For each such tuple there is a canonical isomorphism
(7.41) ψD : FG(Y ;P ) → L(Y, ε).

Proof. Fix P → Y and D as above. Construction 4.31 extends P to
stratified abelianization data (P,Q, μ, θ) over (Y,N T). Then Construction
6.51 gives an isomorphism

(7.42) χT,ε
Y : FG(Y ;P ) → SC×(Ỹ ;Qε

tw;σ
ε
tw)⊗ L(Y, ε).

Using the data (s, x) we determine a section s̃x of the line bundle Qε
tw →

Ỹ (up to homotopy), as follows. Recall that each v ∈ vertices(T) has two
preimages (v, v) and (v, v) in Ỹ . Each sv determines an element s̃(v, v) of
the fiber of Qε

tw. We also determine an element s̃(v, v) by the condition
θ(s̃(v, v)) ∧ θ(s̃(v, v)) = 1. Now suppose E ∈ edges(T) with vertices v, v′.
The parallel transport of Qε

tw along preimages of E takes
(7.43) s̃(v, v) �→ exp(xE)s̃(v

′, v′), s̃(v, v) �→ exp(−xE)s̃(v
′, v′) .

The choice of a logarithm xE thus determines (up to homotopy) an exten-
sion s̃x of s̃ over the preimages of E. Finally, by construction s̃x has zero
winding around the preimage of the boundary of each triangle, because the
summands xE and −xE cancel over each of the three edges; thus s̃x can be
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extended to a section s̃x of Qε
tw → Ỹ , uniquely up to homotopy. The section

s̃x determines a trivialization τs̃x ∈ SC×(Ỹ ;Qε
tw;σ

ε
tw). Then we define

�(7.44) ψD =
χT,ε
Y

τs̃x
.

We remark that the existence of the data xE above requires sv ∧sv′ �= 0,
i.e. that the genericity Assumption 4.32 is satisfied.

Proposition 7.45. We have relations among the maps associated to
data D = (T, ε, s, x) and D′ = (T′, ε′, s′, x′) as follows:

(1) Suppose D and D′ differ only by a change involving a single vertex
v: s′v = sv exp(t) and x′E = xE + t for all edges E incident on v.
Then

(7.46) ψD′ = ψD.

Figure 23. The quadrilateral QE .

(2) Suppose D and D′ differ only by a change involving a single edge
E: ε′E = −εE and x′E = xE + π

√
−1. With labeling as in Figure 23

let

(7.47) u = xE30 − xE02 + xE21 − xE13 .

Then

(7.48) ψD′ = exp

[
1

4
u

]
(ρε,ε

′
(Δ1)⊗ ρε,ε

′
(Δ2))ψD.

(3) Suppose D and D′ differ only in that T′ is obtained from T by
flipping edge E to obtain a new edge E′, with some orientation ε′E′

and a choice of logarithm xE′. Labeling the vertices as in Figure 24,
let

u1 = xE30 − xE02 + xE21 − xE13 , u2 = xE32 − xE21 + xE10 − xE03 ,(7.49)

η1 = (−1)
1
2
(ε(3,0)+ε(0,2)+ε(2,1)+ε(1,3)) , η2 = (−1)

1
2
(ε(3,2)+ε(2,1)+ε(1,0)+ε(0,3)) .

(7.50)
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Figure 24. The quadrilaterals QE in T and QE′ in T′, re-
lated by a flip.

Then

(7.51) ψD′ = exp

[
1

2π
√
−1

�η(u1, u2)

]
κε,ε

′

E ◦ ψD .

Proof. We treat the three relations in turn:
(1) In this case the sections s̃x and s̃′x′ are homotopic (the homotopy

obtained by continuously varying from 0 to t) and thus they induce
the same trivialization of SC×(Qε

tw;σtw).
(2) By (7.44) and (6.79) we have ψD′ ·τs̃′

x′
= (λε,ε′(Y )⊗ζ(Ỹ ;Qε

tw;�
E))◦

ψD · τs̃x . We use Proposition 6.81 to expand the λ factor. For the ζ
factor, we use (5.105), which gives

(7.52) ζ(Ỹ ;Qε
tw;�

E)(τs̃x) = exp

[
−1

4

∫
Ỹ
s̃∗xα ∧�E

]
τs̃′

x′

where α denotes the connection form on Qε
tw. By (6.15) the multi-

plicative factor here is

(7.53) exp

[
−1

4

∮
γE

s̃∗xα

]
and comparing (7.47) to the definition of γE , we have

∮
γE

s̃∗xα = −u,
so the factor becomes

(7.54) exp

[
1

4
u

]
as desired.

(3) We use the setup and notation of §7.3, involving the 3-manifold
M = Y × [0, 1]. Proposition 7.33 gives χT′,ε′

Y ◦ (χT,ε
Y )−1 as a tensor

product of three ingredients:
(a) First we have SC×(M \Bp; Q̂tw;σtw). The data of D and D′ in

particular determine sections s̃x and s̃′x′ of Q̂ε
tw on the bound-

aries Y0 and Y1, as discussed in Construction 7.39. There is a
section of Q̂ε

tw → M \ Bp which extends s̃x and s̃′x′ ; let s̃H be
its restriction to H. The C

× Chern-Simons form vanishes for
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a flat bundle; it follows that
(7.55) SC×(M \Bp; Q̂tw;σtw) = τ∗s̃x ⊗ τs̃′

x′
⊗ τ∗s̃H .

(b) Next we have the factor χεH (FG(Bp; P̂ |Bp)). Note that u1 and
u2 defined in (7.49) agree with the u1 and u2 defined in §7.2,
if we take the section t = s̃H . Likewise η1 and η2 defined in
(7.50) agree with the η1 and η2 used there. Then by (7.27),

χεH (FG(Bp; P̂ |Bp)) = cεH exp

[
1

2π
√
−1

�η(u1, u2)

]
τs̃H .

(c) Finally we have the isomorphism βM\Bp
.

Tensoring these ingredients together, and using the definition (7.44)
of ψD and the definition (7.38) of κε,ε

′

E , we get the desired (7.51). �
7.5. Explicit formulas. In the last section we gave a description of

the line FG(Y ;P ) which is canonical but somewhat inexplicit: the transition
maps described by Proposition 7.45 involve the maps ρε,ε

′
(Δ) and κε,ε

′

E , for
which we have not yet written down concrete formulas. Roughly speaking,
we have fully described the P -dependence in FG(Y ;P ), but left some con-
stant phases undetermined. In this section we rectify this omission, getting
concrete formulas in terms of actual numbers, at the cost of making some
arbitrary choices.

7.5.1. Trivializing the difference lines. Let Δs denote the standard tri-
angle with its standard orientation, and vertices labeled 012 in cyclic order
given by the orientation. We choose a nonzero element

Figure 25. The standard triangle.

(7.56) τε ∈ L(Δs, ε)

for each of the eight possible ε. We may choose τε so that if f : Δs → Δs is
a rotation which acts on the vertices by 012 → 120,32

(7.57) f∗(τε) = exp

(
2π

√
−1

3

)
τf∗ε,

and also if r : Δs → Δs is the reflection which acts on the vertices by
012 → 102,
(7.58) r∗(τε) = τ−1

r∗ε .

32The factor appearing in (7.57) is dictated by Proposition 6.34.
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From now on we assume that we make such a choice.
Now suppose (Y,T, ε) is a general triangulated manifold with edge-

orientations. We want to trivialize the line L(Y, ε); for this we need one
more datum:

• A marked edge eΔ on each Δ ∈ faces(T).
The edge eΔ determines an orientation-preserving identification φeΔ : Δs →
Δ, by the condition that φeΔ takes the edge (0, 1) to eΔ. Then, given the
extended data D̂ = (T, ε, s, x, e) we obtain a trivialization

(7.59) τD̂ =
ψD⊗

Δ∈faces(T)(φeΔ)∗τε
∈ FG(Y ;P )∗ .

What remains is to describe the relations between the elements τD̂ ∈
FG(Y ;P )∗ associated to different D̂.

7.5.2. Computing ρε,ε
′
(Δs). Recall the edge-reversal map ρ from §6.7.

Fix arbitrarily a nonzero element ξ in the line Ξ(E) considered there, and
then define constants b(ε, ε′) ∈ C

× by

(7.60) ρε,ε
′
(Δs)(τε) = b(ε, ε′) τε′ ⊗ ξ±1 .

Our aim now is to compute these constants. We write each ε as a 3-tuple
(ε(0, 1), ε(1, 2), ε(2, 0)).

Proposition 7.61. We have

(7.62) b(f∗ε, f∗ε
′) = b(ε, ε′) ,

and for some p, q ∈ C
× we have

(a1, a2) b((a1, a2,+1), (a1, a2,−1)) b((a1, a2,−1), (a1, a2,+1))
(−1,−1) p −p−1

(−1,+1) ω−1q ωq−1

(+1,−1) ωq ω−1q−1

(+1,+1) −p p−1

where ω = exp(2π
√
−1

8 ).

Proof. Applying f∗ to both sides of (7.60) and using (7.57) gives (7.62).
Proposition 6.73 gives

(7.63) b((+1,+1,+1), (+1,+1,−1))b((+1,+1,−1), (+1,−1,−1)) =

exp

(
−2π

√
−1

4

)
b((+1,+1,+1), (+1,−1,+1))b((+1,−1,+1), (+1,−1,−1)).

Applying (7.62) and canceling a common factor b((+1,+1,+1), (+1,+1,−1))
gives

(7.64)
b((−1,+1,+1), (−1,+1,−1))

= exp

(
−2π

√
−1

4

)
b((+1,−1,+1), (+1,−1,−1)) .
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Next, using Proposition 6.83, we have

(7.65)

b((a1, a2,+1), (a1, a2,−1))× b((a3, a4,−1), (a3, a4,+1))×
b((a1, a2,−1), (a1, a2,+1))× b((a3, a4,+1), (a3, a4,−1))

= (−1)
1
2
(a1+a2+a3+a4)

Finally, using the reflection condition (7.58) gives
(7.66) b(ε, ε′) b(r∗ε, r∗ε

′) = 1 ,

which implies in particular
(7.67) b((+1,−1,+1), (+1,−1,−1)) b((+1,−1,−1), (+1,−1,+1)) = 1

and
(7.68) b((+1,+1,+1), (+1,+1,−1)) b((−1,−1,−1), (−1,−1,+1)) = 1 .

The constraints (7.64), (7.65), (7.67), (7.68) determine the b(ε, ε′) up to
two undetermined constants as indicated in the table. �

Proposition 7.61 determines all of the b(ε, ε′) in terms of the undeter-
mined constants p, q. Fixing p, q is equivalent to fixing the remaining freedom
in the trivializations τε, up to an overall scale which remains unfixed.

7.5.3. Fixing the �η. In §7.2 we determined the functions Lη up to an
overall constant. We now make a definite choice as follows. Let Li2 denote
the principal branch of the dilogarithm function, which has a branch cut
along (1,∞). Then let

�(+1,+1)(u1, u2) = Li2(e
−u1)− 1

2
u1u2 − 2π

√
−1

⌊
− Imu2

2π
+

1

2

⌋
u1,

(7.69)

�(−1,+1)(u1, u2) = Li2(−e−u1)− 1

2
u1u2

(7.70)

− 2π
√
−1

⌊
− Imu2

2π
+

1

2

⌋
(u1 + π

√
−1),

�(+1,−1)(u1, u2) = Li2(e
−u1)− 1

2
u1u2 − π

√
−1u1 − 2π

√
−1

⌊
− Imu2

2π

⌋
u1,

(7.71)

�(−1,−1)(u1, u2) = Li2(−e−u1)− 1

2
u1u2 − π

√
−1u1

(7.72)

− 2π
√
−1

⌊
− Imu2

2π

⌋
(u1 + π

√
−1).

It is routine to check that these formulas indeed define holomorphic func-
tions �η : Sη → C/4π2

Z: the discontinuity of Li2 across its branch cut gets
compensated by the discontinuity of the floor function, up to an integer
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multiple of 4π2. Using the differential equation obeyed by Li2, it is also
straightforward to check that they obey (7.25) as needed.

7.5.4. Computing the κε,ε
′

E . Now that we have fixed our choices of �η

and also fixed trivializations of the L(Δ, ε) we are in position to express the
normalization constants from (7.38),

(7.73) κε,ε
′

E : L(QE , ε) → L(QE′ , ε′) ,

as concrete numbers: we write

(7.74) κε,ε
′

E ((φE)∗τε1 ⊗ (φE)∗τε2) = kε,ε
′

E ((φE′)∗τε′1 ⊗ (φE′)∗τε′2)

for some kε,ε
′

E ∈ C
×.

To compute the kε,ε
′

E , it will be useful to recall their origin in Chern-
Simons theory on an oriented sphere H with tetrahedral triangulation T,
obtained by gluing −QE to QE′ along the common boundary. We label
the edges of QE and QE′ as shown in Figure 24, thus identifying H with
a standard model. We use εH to represent the full collection of six edge-
orientations on T induced by (ε, ε′), and use the condensed notation kεH for
kε,ε

′

E .
The next lemma concerns just H, not the original surface Y .

Lemma 7.75. Suppose ε and ε′ are two systems of edge-orientations on
T, which differ by reversing the orientation on some Ẽ ∈ edges(T). Fix
stratified abelianization data (P,Q, μ, θ) on (H,N T), and extend (T, ε) to
data D = (T, ε, s, x) as in Construction 7.39. Also define D′ = (T, ε′, s, x′)
where x′E = xE +

√
−1π, and x′E = xE for all other edges. Let (u1, u2) and

(η1, η2) be given by (7.49) and (7.50), likewise (u′1, u
′
2) and (η′1, η

′
2). Let Δ1,

Δ2 denote the two triangles abutting Ẽ. Then

(7.76)

kε
′

kε
= exp

[
1

2π
√
−1

(
�η(u1, u2)− �η

′
(u′1, u

′
2)
)

+
1

4π
√
−1

(u1u
′
2 − u2u

′
1)

]
b(εΔ1 , ε

′
Δ1

)b(εΔ2 , ε
′
Δ2

)

with b determined in Proposition 7.61.

Proof. We consider the element o = FG( ; P̂ ), which has

(7.77) ψD(o) = cε exp

[
1

2π
√
−1

�η(u1, u2)

]
∈ L(H, ε) .

Part (2) of Proposition 7.45 gives the relation between ψD(o) and ψD′(o).
The quantity u appearing there is not necessarily the u1 here, because Ẽ is
not necessarily E01; one can show however (e.g. by checking the six cases for
Ẽ) that the correct relation is

(7.78)
√
−1πu = u1u

′
2 − u2u

′
1 .
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Thus we get

(7.79)

exp

[
1

2π
√
−1

�η
′
(u′1, u

′
2)

]
cε

′
= exp

[
1

2π
√
−1

�η(u1, u2)

+
1

4π
√
−1

(u1u
′
2 − u2u

′
1)

]
(ρε,ε

′
(Δ1)

⊗ ρε,ε
′
(Δ2))(c

ε) .

Now for each Δ ∈ faces(T) let the marked edge eΔ be either E01 or E23,
whichever lies on Δ. Dividing both sides by

⊗
Δ(φeΔ)∗(τεΔ) gives the desired

result. �
Lemma 7.75 determines the constants kε up to a single overall multiplica-

tive constant. The remaining constant can be fixed as follows. We consider
a triangulated surface (Y,T) with stratified abelianization data (P,Q, μ, θ).
Suppose T contains three triangles which make up a pentagon. Then we
consider two possible sequences of flips, involving various triangulations Ti

as indicated in Figure 26, and choose data D̂i (logarithms, edge-orientations
and marked edges) extending the triangulations Ti.

Figure 26. Two sequences of flips in a triangulated pentagon.

Since both sequences begin at D̂ and end at D̂′, we can follow either
sequence to compute the ratio τD̂′/τD̂; but one sequence contains 3 flips and
the other contains 2, so requiring that they are equal is enough to determine
the overall multiplicative constant in kε. Carrying this computation out
we obtain the following (the detailed computation can be found in the file
dilog-compute.nb included with the arXiv version of this paper.)

Lemma 7.80. If we set p = q = 1, then kε = exp
(
2π

√
−1

24 n(ε)
)
, with n(ε)

given below. We specify ε by the tuple (ε(0, 2), ε(2, 1), ε(1, 3), ε(3, 0), ε(1, 0),
ε(2, 3)).
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(+1,+1,+1,+1,+1,+1) → 7 (−1,+1,+1,+1,+1,+1) → 7
(+1,+1,+1,+1,+1,−1) → −5 (−1,+1,+1,+1,+1,−1) → 10
(+1,+1,+1,+1,−1,+1) → −5 (−1,+1,+1,+1,−1,+1) → 10
(+1,+1,+1,+1,−1,−1) → 7 (−1,+1,+1,+1,−1,−1) → 1
(+1,+1,+1,−1,+1,+1) → −11 (−1,+1,+1,−1,+1,+1) → 10
(+1,+1,+1,−1,+1,−1) → −2 (−1,+1,+1,−1,+1,−1) → 10
(+1,+1,+1,−1,−1,+1) → −8 (−1,+1,+1,−1,−1,+1) → −8
(+1,+1,+1,−1,−1,−1) → −11 (−1,+1,+1,−1,−1,−1) → −8
(+1,+1,−1,+1,+1,+1) → 1 (−1,+1,−1,+1,+1,+1) → 1
(+1,+1,−1,+1,+1,−1) → 10 (−1,+1,−1,+1,+1,−1) → 1
(+1,+1,−1,+1,−1,+1) → 10 (−1,+1,−1,+1,−1,+1) → 1
(+1,+1,−1,+1,−1,−1) → 7 (−1,+1,−1,+1,−1,−1) → 1
(+1,+1,−1,−1,+1,+1) → −8 (−1,+1,−1,−1,+1,+1) → −11
(+1,+1,−1,−1,+1,−1) → 10 (−1,+1,−1,−1,+1,−1) → −2
(+1,+1,−1,−1,−1,+1) → −8 (−1,+1,−1,−1,−1,+1) → −8
(+1,+1,−1,−1,−1,−1) → 10 (−1,+1,−1,−1,−1,−1) → −11
(+1,−1,+1,+1,+1,+1) → −11 (−1,−1,+1,+1,+1,+1) → 10
(+1,−1,+1,+1,+1,−1) → −8 (−1,−1,+1,+1,+1,−1) → −8
(+1,−1,+1,+1,−1,+1) → −2 (−1,−1,+1,+1,−1,+1) → 10
(+1,−1,+1,+1,−1,−1) → −11 (−1,−1,+1,+1,−1,−1) → −8
(+1,−1,+1,−1,+1,+1) → 1 (−1,−1,+1,−1,+1,+1) → 7
(+1,−1,+1,−1,+1,−1) → 1 (−1,−1,+1,−1,+1,−1) → 10
(+1,−1,+1,−1,−1,+1) → 1 (−1,−1,+1,−1,−1,+1) → 10
(+1,−1,+1,−1,−1,−1) → 1 (−1,−1,+1,−1,−1,−1) → 1
(+1,−1,−1,+1,+1,+1) → −8 (−1,−1,−1,+1,+1,+1) → −11
(+1,−1,−1,+1,+1,−1) → −8 (−1,−1,−1,+1,+1,−1) → −8
(+1,−1,−1,+1,−1,+1) → 10 (−1,−1,−1,+1,−1,+1) → −2
(+1,−1,−1,+1,−1,−1) → 10 (−1,−1,−1,+1,−1,−1) → −11
(+1,−1,−1,−1,+1,+1) → 1 (−1,−1,−1,−1,+1,+1) → 7
(+1,−1,−1,−1,+1,−1) → 10 (−1,−1,−1,−1,+1,−1) → −5
(+1,−1,−1,−1,−1,+1) → 10 (−1,−1,−1,−1,−1,+1) → −5
(+1,−1,−1,−1,−1,−1) → 7 (−1,−1,−1,−1,−1,−1) → 7

7.5.5. The final result. We summarize our description of the Chern-
Simons line, in its most concrete form:

Theorem 7.81. Fix a surface Y and a boundary-reduced flat G-bundle
P → Y . We consider tuples D̂ = (T, ε, s, x, e), where:

• T is a semi-ideal triangulation of Y ,
• ε = (εE)E∈edges(T) is a system of edge-orientations for T,
• s = (sv)v∈vertices(T) is a flat section of P/U = P ×G (C2 \ {0})

over each v, which when projected to P/B agrees with the boundary
reduction,

• x = (xE)E∈edges(T) is a collection of complex numbers, where
exp(xE) = εE(v, v

′)sv′ ∧ sv if E is an edge with vertices v, v′,
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• e = (eΔ)Δ∈faces(T) is a system of marked edges, where eΔ is an edge
of Δ.

For each such tuple there is a canonical nonzero element
(7.82) τD̂ ∈ FG(Y ;P )∗ .

They obey relations as follows.
(1) Suppose D̂ and D̂′ differ only by a change involving a single vertex

v: s′v = sv exp(t) and x′E = xE + t for all edges E incident on v.
Then

(7.83) τD̂′ = τD̂.

(2) Suppose D̂ and D̂′ differ only by changing the marking eΔ to e′Δ
for a single triangle Δ. Then

(7.84) τD̂′ = exp

[
2π

√
−1

3
〈eΔ, e′Δ〉

]
τD̂ .

(3) Suppose D̂ and D̂′ differ only by a change involving a single edge
E: ε′E = −εE and x′E = xE + π

√
−1. Labeling the edges of QE as

in Figure 23, define u by (7.47). Then

(7.85) τD̂′ = exp

[
1

4
u

]
b(εΔ1 , ε

′
Δ1

)b(εΔ2 , ε
′
Δ2

) τD̂ ,

where b(ε, ε′) is given by Proposition 7.61 with p = q = 1.
(4) Suppose D̂ and D̂′ differ only in that T′ is obtained from T by

flipping edge E to obtain a new edge E′, with some orientation ε′E′

and a choice of logarithm xE′. Suppose that the triangles Δ abutting
E in T both have eΔ = E, and the triangles abutting E′ in T′ both
have eΔ′ = E′. Labeling the edges of QE and Q′

E as in Figure 24,
define u1, u2, η1, η2 by (7.49), (7.50). Then

(7.86) τD̂′ = exp

[
1

2π
√
−1

�η(u1, u2)

]
kε,ε

′
τD̂ ,

where �η is given in (7.69)–(7.72) and kε,ε
′ is given by Lemma 7.80.

Proof. The object τD̂ has been defined in (7.59). The relations it obeys
are obtained from Proposition 7.45 by contracting with

⊗
Δ∈faces(T)(φeΔ)∗τε.

�
Theorem 7.81 closely resembles known patching constructions of a pre-

quantum line bundle Lcl over a symplectic leaf of the SL2C-character va-
riety of a punctured surface. In particular, in [FG2] such a line bundle is
constructed in the more general setting of an X-cluster variety, using the
dilogarithm as a gluing map. Related constructions appear in the subsequent
works [N, APP, BK, CLT].33 In all these cases, the characteristic property

33In all of these works the basic dilogarithmic formula for transition functions appears,
but the detailed treatment of the constant factors is somewhat different in each case.



3D SPECTRAL NETWORKS AND CLASSICAL CHERN-SIMONS THEORY 133

of Lcl is that it carries a natural connection given concretely in terms of the
cluster coordinates on the character variety. From our point of view, this
connection is the one provided by the TFT FG applied to families of flat
G-bundles P → Y , the cluster coordinates are (up to sign) the holonomies
of the corresponding flat C

×-bundles Qε
tw → Ỹ , and the fact that the con-

nection has a simple expression in cluster coordinates is obtained by using
χε
Y to pass from FG to SC× .

8. Computing CS invariants for flat SL2C-bundles over
3-manifolds

Let M be an oriented 3-manifold with boundary. Suppose P → M is
a boundary-reduced flat G-bundle. In this section we explain how to use
our results to obtain a dilogarithmic formula for the Chern-Simons invari-
ant FG(M ;P ), Theorem 8.8 below, assuming that P satisfies a genericity
condition. This formula closely resembles the previously known formulas we
recalled in §2, but its precise structure is slightly different, involving several
variants of the dilogarithm function and some extra cube roots of unity, and
not requiring any orderability constraints on the triangulation of M .

8.1. Abelianization of the CS invariant. We fix data:
• T a semi-ideal triangulation of M , such that the genericity Assump-

tion 4.32 is satisfied.
• ε = (εE)E∈edges(T) a system of edge-orientations for T.

According to Construction 4.55, T determines a spectral network N T on
M , and P → M extends to boundary-reduced stratified abelianization data
A = (P,Q, μ, θ) over (M,N T).

The edge-orientations ε determine a lift of the double cover M̃≥−3a →
M≥−3a to a Z-bundle over each face of T by Construction 6.5. We can then
extend by radial projection to get a Z-bundle M̃ ε,∞ → M≥−3a. As before,
we use this to twist Q to Qε

tw, and π∗σ to σε
tw, both of which extend over

M≥−2b.
For each tetrahedron ∈ tets(T) we introduce a small ball B around

the barycenter, and define H = ∂B . As we discussed in §7.3, H is
naturally triangulated and has edge-orientations induced from those of .
Then we have

(8.1) χ
ε

H

(
FG(B ;P |B )

)
∈ SC×(H ;Q

ε
tw |

H
;σ

ε
tw )⊗ L(H , ε ).

Moreover, each Δ ∈ faces(T) is pierced by a component of the branch locus
M−2b which connects a triangle Δ1 in H 1 to another triangle Δ2 in H 2 ,
and thus gives an element

(8.2) βΔ ∈ L(Δ1, ε)⊗ L(Δ2, ε) .
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Tensoring over all faces Δ gives an element

(8.3) β :
⊗
∈tets(T)

L( , ε ) → C .

Proposition 8.4. The Chern-Simons invariant FG(M ;P ) is

(8.5)
FG(M ;P ) = β

⎛⎝ ⊗
∈tets(T)

χ
ε

H

(
FG(B ;P |B )

)⎞⎠
⊗ SC×

(
M \ ∪ B ;Qε

tw|M\∪ B
;σε

tw

)
.

Proof. Apply Proposition 7.2 to the 3-manifold M \∪ B . This gives
(8.6)
χε
∪ −H (FG(M ;P )) = β

M\∪ B
⊗ SC×

(
M \ ∪ B ;Qε

tw|M\∪ B
;σε

tw

)
.

Then gluing in a factor χ
ε

H

(
FG(B ;P |B )

)
for each gives the desired

formula. �

8.2. Explicit formulas. To make the formula in Proposition 8.4 more
concrete, we fix more data:

• s = (sv)v∈vertices(T) a flat section of P/U = P ×G (C2 \ {0}) over
each v, lying in the line given by the boundary reduction if v is an
ideal vertex,

• x = (xE)E∈edges(T) a collection of complex numbers, where
exp(xE) = εE(v, v

′) sv′ ∧ sv if E is an edge with vertices v, v′.
• e = (e ) ∈tets(T) a pair of opposite edges on each tetrahedron.

Note that e induces a marked edge e(Δ, ) for each face Δ of .
Each face Δ has two abutting tetrahedra 1, 2, and the marked edges
coming from these two tetrahedra need not agree. Suppose we equip Δ with
the boundary orientation induced by 1; then we can consider the pairing
〈e(Δ, 1), e(Δ, 2)〉 which measures the mismatch. Note that this quantity
is independent of which tetrahedron we called 1, since that choice enters
both in the orientation of Δ and in the ordering of the antisymmetric pairing.

Fix a ∈ tets(T), and let E1 denote one of the marked edges e ; then
let E2, E3 be defined by following E1 around a face, with 〈Ei, Ei+1〉 = 1.
Then define

(8.7) ui =
∑

E′∈edges(T)
〈Ei, E

′〉xE′

and let (η )i be the ε-sign of the edge Ei. Then we have the following
concrete formula for the Chern-Simons invariant:
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Theorem 8.8. The Chern-Simons invariant FG(M ;P ) is

FG(M ;P ) =

⎛⎝ ∏
∈tets(T)

kε exp

[
1

2π
√
−1

� η (u1 , u2 )

]⎞⎠×

⎛⎝ ∏
Δ∈faces(T)

exp

[
−2π

√
−1

3
〈e(Δ, 1), e(Δ, 2)〉

]⎞⎠ ,

where �η is given in (7.69)–(7.72) and kε is given by Lemma 7.80.

Proof. As in Construction 7.39, the choice of logarithms xE determines
a section of Qε

tw over each face; using radial projection in each tetrahedron,
this extends to a section t of Qε

tw → M≥−2b. Then, using the fact that the
C
× Chern-Simons form vanishes for a flat bundle, we have

(8.9) SC×

(
M \ ∪ B ;Qε

tw|M\∪ B
;σε

tw

)
=

⊗
∈tets(T)

τ∗t|
H

.

We plug this into the formula of Proposition 8.4, which gives

(8.10) FG(M ;P ) = β

⎛⎝ ⊗
∈tets(T)

χ
ε

H

(
FG(B ;P |B )

)
τt|

H

⎞⎠ .

On each , we have

(8.11)

χ
ε

H

(
FG(B ;P |B )

)
τt|

H

= kε exp

[
1

2π
√
−1

� η (u1 , u2 )

]
⊗

Δ∈faces( )

(φe(Δ, ))∗(τεΔ)

Applying β to this tensor product pairs up the factors corresponding to
the same face on different tetrahedra. For a face where the marked edges
e(Δ, 1) and e(Δ, 2) agree, this pairing just gives 1, using (7.58). More
generally, using (7.57), we see that the pairing is exp

[
2π

√
−1

3 〈e(Δ, 1),

e(Δ, 2)〉
]
. Plugging this into (8.10) gives the desired result. �

8.3. An example. Let M be the ideally triangulated manifold ob-
tained by gluing two copies 1, 2 of the standard oriented tetrahedron
across the four triangles Δ1, . . . ,Δ4, with each gluing specified by giving
the mapping between three vertices of 1 and three vertices of 2:34

34This manifold is known as the “figure-eight sister,” or m003 in the SnapPea census.
To avoid confusion we note that it is not the figure-eight knot complement; the latter
is also obtained by gluing two tetrahedra, but it does not admit a boundary-unipotent
SL(2,C)-connection — although it does have boundary-unipotent PSL(2,C)-connections,
e.g. the one induced by the hyperbolic structure. See [C] for a general discussion of the
obstruction to lifting a boundary-unipotent PSL(2,C)-connection to a boundary-unipotent
SL(2,C)-connection.
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Δ1 : ( 1 012) ↔ ( 2 130)

Δ2 : ( 1 013) ↔ ( 2 012)

Δ3 : ( 1 023) ↔ ( 2 231)

Δ4 : ( 1 123) ↔ ( 2 023)

The induced orientations on each face are such that the vertex orderings
shown above are positively oriented on 1, negatively oriented on 2. This
gluing induces identifications on vertices and edges; after the gluing there
is 1 vertex and 2 edges. Choose edge-orientations so that εE1 points from
0 → 1 in 1 and εE2 points from 0 → 3 in 1. See Figure 27.

Figure 27. The gluing pattern defining the ideally triangu-
lated 3-manifold M . The boundaries of the two tetrahedra
are shown, with their boundary orientations. Edges with sin-
gle arrows form the equivalence class E1 after gluing; edges
with double arrows form the class E2. The direction of the
arrows gives the edge-orientations εE1 and εE2 .

Suppose given a flat G-bundle P → M , with a section s chosen at the
vertex. Write XE = sv∧sv′ if E is an edge from v to v′ and εE(v, v

′) = 1. The
XE corresponding to the edges of a single tetrahedron are constrained by the
“Ptolemy relation”:35 if we have four elements s0, . . . , s3 in a 2-dimensional
vector space then

(8.12) (s0 ∧ s1)(s2 ∧ s3) + (s0 ∧ s2)(s3 ∧ s1) + (s0 ∧ s3)(s1 ∧ s2) = 0 .

Applying this to 1 we get the relation

(8.13) −X2
1 −X1X2 +X2

2 = 0 .

35These relations are exploited systematically in [GGZ1, GGZ2] to parameterize
flat bundles over triangulated 3-manifolds.
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As it happens, in 2 we get the same relation.36 Assuming that X2 �= 0, we
may choose the scale of s so that X2 = 1, and then using (8.13)

(8.14) X1 =
1

2
(−1±

√
5) , X2 = 1.

For either choice of the sign in (8.14), we can build a flat boundary-reduced
G-bundle P → M , by taking the trivial bundle in each tetrahedron and then
gluing across each triangle, requiring that the gluing match up the sections
sv at the three vertices of the triangle. In this way we obtain two inequivalent
flat boundary-reduced G-bundles P → M . Moreover, since all XE �= 0 these
G-bundles obey the genericity Assumption 4.32.

In either case, we would like to compute FG(M ;P ) using Theorem 8.8.
For this we have to make a choice of a pair of marked edges on each tetrahe-
dron. We choose the edges labeled 01, 23. We also have to choose logarithms
xi of Xi. Then for either 1 or 2 we have

(8.15) u1 = −x1 + x2, u2 = 2x1 − 2x2, η = (+1,+1)

To be completely explicit let us choose P → M corresponding to the −
sign in (8.14) above. Then, using (7.69) and (8.14), it turns out that37

(8.16)
�(+1,+1)(u1, u2) =

9π2

20
(mod 4π2

Z),

exp

(
1

2π
√
−1

�(+1,+1)(u1, u2)

)
= exp

(
−9π

√
−1

20

)
.

Next we look up from Lemma 7.80 that for either tetrahedron we have

(8.17) kε = exp

(
7π

√
−1

12

)
.

Finally, we have to include the cube roots of unity from face gluings. For in-
stance, on face Δ1 we see from the face gluings above that the edge e(Δ1, 1)
(numbered 01 on 1) and the edge e(Δ1, 2) (numbered 01 on 2) have
〈e(Δ1, 1), e(Δ1, 2)〉 = 1. Computing similarly for the other three faces,
we get the overall factor

(8.18) exp

(
2π

√
−1

3
(1 + 0 + 1 + 0)

)
= exp

(
−2π

√
−1

3

)
.

36Had we used the figure-eight knot complement instead, we would have gotten a sign
flipped here, with the result that the only common solution of the two equations would
be X1 = X2 = 0.

37The fact that we get a closed form expression here comes from the fact that, for
z = − 1+

√
5

2
, we have the closed form expression Li2(z) = −π2

10
− log(−z)2. Also, in this

example �η(u1, u2) is actually independent (mod 4π2
Z) of the choice of logarithms x1,

x2. Both of these are exceptional properties, which do not hold in most examples; more
typically, the final result for FG(M ;P ) involves a sum of Li2(zi) for algebraic numbers zi,
and changing the choice of logarithms changes the contributions from individual tetrahedra
while leaving the final result unchanged.
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Combining the factors (8.16) (for each tetrahedron), (8.17) (for each tetra-
hedron), and (8.18) we get

(8.19) FG(M ;P ) = exp

(
π
√
−1

(
− 9

10
+

7

6
− 2

3

))
= exp

(
−2π

√
−1

5

)
.

If we take P → M corresponding to the + sign in (8.14), then (8.16) is
replaced by

(8.20)
�(+1,+1)(u1, u2) =

π2

20
(mod 4π2

Z),

exp

(
1

2π
√
−1

�(+1,+1)(u1, u2)

)
= exp

(
−π

√
−1

20

)
,

which when combined with the other factors gives

(8.21) FG(M ;P ) = exp

(
π
√
−1

(
− 1

10
+

7

6
− 2

3

))
= exp

(
2π

√
−1

5

)
.

8.4. Another example. Now let M be the manifold called m071 in
the SnapPea census. M admits an ideal triangulation T with 5 tetrahedra,
10 triangles, 5 edges and 1 vertex. Applying Theorem 8.8 in this example we
obtain the Chern-Simons invariants FG(M ;P ) for 7 inequivalent boundary-
reduced flat G-bundles P → M : numerically they are approximately

0.697849 + 0.716244
√
−1 −0.99614 + 0.0877733

√
−1 −0.26787 + 0.963455

√
−1

−0.948968− 0.315372
√
−1 0.982867 + 0.184319

√
−1 1.51835 + 0.0629475

√
−1

0.65748 + 0.0272577
√
−1

Details of this computation (along with a few others) are given in the Math-
ematica notebook dilog-compute.nb, available as an ancillary file included
with the arXiv preprint version of this paper. In making these computations
we made use of the software SnapPy [CDGW] and Regina [BBP].

9. Future directions

We conclude with a brief description of possible avenues for further ex-
ploration.
1. Although some basic setup in §4 and §5 applies to all rank one com-

plex Lie groups, our main results are proved here only for flat SL2C-
connections. One should be able to extend them to the groups GL2C

and PSL2C.
2. More ambitious is an extension to higher rank complex Lie groups.

Spectral networks in 2 dimensions for higher rank groups are discussed
in [GMN1, GMN2, LP, IM]. Some clues for spectral networks in
3 dimensions can be found in [GTZ, DGG].

3. The flat SL2C-connections to which we apply stratified abelianization are
assumed to be boundary-unipotent, this for both 2- and 3-dimensional
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compact manifolds with boundary. The expectation is that the boundary-
unipotent assumption could be dropped at the cost of having additional
lines or V-lines associated to boundary components.

4. The 3-dimensional spectral networks in this paper are either induced
from a triangulation or for the Cartesian product of a triangulated 2-
manifold and a closed interval (§7.3). According to [GMN3] one obtains
a 3-dimensional spectral network from a 1-parameter family of holo-
morphic quadratic differentials on a Riemann surface. This recovers the
spectral network of §7.3, but one can also get another transition of tri-
angulations called a “juggle”. It would be interesting to study this kind
of 3-dimensional spectral network.

5. One can strive to develop spectral networks (rank one or higher rank) as
a topological structure on a smooth manifold, much like an orientation
or spin structure. If so, then one could define bordism categories and
bordism spectra as domains of field theories on manifolds equipped with
a spectral network and stratified abelianization. This should lead to more
powerful theorems. Perhaps, then, our main results could be stated and
proved as parts of an isomorphism of field theories.

6. One of the most important aspects of 2-dimensional spectral networks is
the relationship to the WKB analysis of ordinary differential equations;
see e.g. [KaTa, GMN3] and references therein. One can inquire whether
3-dimensional spectral networks have a similar relationship to differential
equations.

7. We give a construction of the Chern-Simons line of a flat bundle on
a 2-manifold via stratified abelianization. In a parametrized family of
flat bundles, this gives a construction of the Chern-Simons line bundle
with its covariant derivative. This is the same construction that appears
in [FG2, APP, N, CLT], and therefore the line bundle constructed in
those papers must be the Chern-Simons line bundle. One can imagine
that this identification of the line bundle will lead to new insights and
results.

8. 2d spectral networks on a Riemann surface can be constructed in terms
of BPS particles in a corresponding supersymmetric quantum field the-
ory [GMN1]. It would be very interesting to know whether one can
understand 3d spectral networks in a similar way; candidates for the
corresponding quantum field theory are known in the physics literature,
beginning with [DGGu].

9. 2d spectral networks can be used to construct the quantum trace map
(or q-nonabelianization map, or quantum UV-IR map) of [BW], as a
homomorphism from the gl(2) skein algebra of a surface Y to the gl(1)

skein algebra of a double cover Ỹ [G, NY]. It would be interesting to use
the 3d spectral networks defined in this paper to construct a 3-manifold
version of the quantum trace, mapping the gl(2) skein module of a 3-
manifold M to an gl(1) skein module of a branched double cover M̃ .
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According to the recent proposal of [AGLR], such a 3-manifold quantum
trace is one of the necessary ingredients in the formulation of a “length
conjecture” for link invariants.

Appendix A. Ordinary differential cochains

Differential cohomology descends on the one hand from the differential
characters of Cheeger-Simons [ChS] and on the other from Deligne coho-
mology [De] in algebraic geometry. The ideas for an explicit model are sug-
gested in [DF, §6.3]. Hopkins and Singer [HS, §3] develop the model that
we recall in this appendix. The theory of generalized differential cohomology
(and differential cocycles) has been further developed in many works, for
example [SS, BNV, ADH]. In this brief appendix we also include a few
complements needed for Chern-Simons theory.

A.1. Cochain model. Let M be a smooth manifold, A an abelian
group, and Cp(M ;A) the group of singular p-cochains with values in the
abelian group A. For each q ∈ Z

≥0 define a cochain complex qC(q)• by

(A.1) qC(q)p(M) =

{
Cp(M ;Z)× Cp−1(M ;R)× Ωp(M), p ≥ q;

Cp(M ;Z)× Cp−1(M ;R), p < q,

with differential acting on (c, h, ω) ∈ qC(q)p(M), p ≥ q, or on (c, h) ∈
qC(q)p(M), p < q, given by

(A.2)

d(c, h, ω) = (δc , ω − c− δh , dω), p ≥ q;

d(c, h) =

{
(δc,−c− δh, 0), p = q − 1;

(δc,−c− δh), p < q − 1.

The cohomology of the cochain complex qC(q)• is

(A.3) qH(q)p(M) ∼=
{
Hp(M ;Z), p > q;

Hp(M ;R/Z), p < q,

and the diagonal group qH(q)q(M) is the differential cohomology. Since we
have great use for the diagonal groups, we introduce the notations

(A.4)

qCq(M) := qC(q)q(M)

qZq(M) := qZ(q)q(M)

qHq(M) := qH(q)q(M),

where qZ(q)p(M) ⊂ qC(q)p(M) is the subgroup of cocycles. The group qHq(M)
is isomorphic to the group of Cheeger-Simons differential characters on M .
It can be given [BSS], [DGRW, §6] the structure of an infinite dimensional
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abelian Lie group with Lie algebra and homotopy groups

(A.5)

Lie qHq(M) ∼= Ωq−1(M)

dΩq−2(M)
,

πk qHq(M) ∼=

⎧⎪⎨⎪⎩
Hq(M ;Z), k = 0;

Hq−1(M ;Z), k = 1;

0, k ≥ 2

Remark A.6.
(1) The case q = 2 is instructive: qH2(M) is isomorphic to the group

of isomorphism classes of principal R/Z-bundles with connection
over M .

(2) In the main text we use complex differential forms and complex sin-
gular cochains in (A.1), for which we use the notation ‘ qC

C
(q)p(M)’.

(3) The construction is functorial for smooth maps, so can be phrased
in terms of simplicial sheaves on manifolds [FH2, BNV, ADH].

(4) There are alternative models which replace singular cochains with
integer coefficients by other models of cochains or by maps to
Eilenberg-MacLane spaces. The latter approach is used to define
differential versions of generalized cohomology theories, as in [HS,
§4].

A.2. Curvature, characteristic class, and nonflat trivializations.
The projection

(A.7) qCq(M) −→ Ωq(M)

is called the curvature or covariant derivative map, depending on the con-
text. The restriction of (A.7) to differential cocycles qZq(M) ⊂ qCq(M) factors
through qHq(M) and has image the subgroup of closed differential forms with
integral periods. There is also a characteristic class homomorphism

(A.8) qHq(M) −→ Hq(M ;Z).

The short exact sequence

(A.9) 0 −→ qC(q)•(M)
i−−→ qC(q − 1)•(M) −→ Ωq−1(M)[1− q] −→ 0

induces a long exact sequence in cohomology:

(A.10) · · · −→ qHq−1(M) −→ Ωq−1(M) −→ qHq(M)
i−−→ Hq(M ;Z) −→ 0

Let qω ∈ qZq(M) be a differential cocycle.

Definition A.11. A cochain qτ ∈ qCq−1(M) is a nonflat38 trivialization
of qω if dqτ = i(qω) holds in qC(q − 1)q(M).

38‘Nonflat’ could be replaced by the more accurate ‘not necessarily flat’.
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By (A.10), a nonflat trivialization qτ produces a differential form τ ∈
Ωq−1(M), the covariant derivative of qτ . (It is the image of qτ under (A.7).)
For q = 2 we can represent qω as a complex line bundle π : L → M with
connection. Then a nonflat trivialization is a section of π, and its covariant
derivative is as usual.

Remark A.12. See [F3, Definition 5.12] for a model of nonflat trivial-
izations which works in generalized differential cohomology theories.

A.3. Higher Picard groupoids of differential cocycles. As a
warmup, recall that a cochain complex

(A.13) 0 −→ A0 d−−→ A1 d−−→ · · ·
gives rise to a sequence of higher Picard groupoids. For q ∈ Z

≥0, form the
truncated complex

(A.14) 0 −→ A0 d−−→ A1 d−−→ · · · d−−→ Aq
closed −→ 0

in which Aq
closed ⊂ Aq is the subgroup of closed elements. Define the Picard

q-groupoid G(q) as follows. The set of objects is Aq
closed. The Aq−1

closed-torsor of
1-morphisms between a0, a1 ∈ Aq

closed is

(A.15) Hom1(a0, a1) =
{
a′ ∈ Aq−1 : a0 + da′ = a1

}
.

The Aq−2
closed-torsor of 2-morphisms between a′0, a

′
1 ∈ Hom1(a0, a1) is

(A.16) Hom2(a
′
0, a

′
1) =

{
a′′ ∈ Aq−2 : a′0 + da′′ = a′1

}
,

and so on. The homotopy groups of G(q) are

(A.17) πiG(q) =

{
Hq−i(A), i = 0, . . . , q;

0, i > q.

A variation of this construction produces higher Picard groupoids out
of differential cohomology on a smooth manifold M . Define the Picard q-
groupoid qG(q)(M) to have as its set of objects qZq(M) ⊂ qCq(M), the set of
differential cocycles of degree q. Then for qω0, qω1 ∈ qZq(M), define

(A.18) Hom1(qω0, qω1) =
{

qτ ∈ qCq−1(M) : i(qω0) + dqτ = i(qω1)
}
,

where as in Definition A.11 the equation i(qω0) + dqτ = i(qω1) lies in qC(q −
1)q(M). In other words, qτ ∈ Hom1(qω0, qω1) is a nonflat trivialization of qω1 −
qω0. Now for qτ0, qτ1 ∈ Hom1(qω0, qω1), define

(A.19) Hom2(qτ0, qτ1) =
{

qλ ∈ qCq−2(M) : i(qτ0) + dqλ = i(qτ1)
}
.

The homotopy groups of qG(q)(M) are the differential cohomology groups:

(A.20) πiqG(q)(M) =

{
qHq−i(M), i = 0, . . . , q;

0, i > q.
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Remark A.21. In low degrees the qG(q)(M) have alternative, more geo-
metric, presentations. For example, qG(2)(M) is equivalent to the following
Picard 2-groupoid: an object is a principal R/Z-bundle P → M with con-
nection Θ; a morphism (P0,Θ0) → (P1,Θ1) is a section s of P1⊗P−1

0 → M ;
and a 2-morphism s0 → s1 is a function f : M → R such that s0 + f = s1,
where f : M → R/Z is the mod Z reduction of f .

A.4. Integration and Stokes’ theorem. We repeat and expand upon
material from [HS, §3.4], slightly specialized. Let p : M → S be a proper
fiber bundle whose base S is a smooth manifold and whose total space M
is a smooth manifold with boundary; the fibers of p are smooth manifolds
with boundary. Suppose an qH-orientation is given; see [HS, §2.4]. Then if
the fibers have dimension k, integration is a homomorphism

(A.22)
∫
M/S

: qC(q)p(M) −→ qC(q − k)p−k(S).

We also have the usual integration of differential forms, and the diagram

(A.23)

qC(q)p(M)

∫
M/S

Ωp(M)

∫
M/S

qC(q − k)p−k(S) Ωp−k(S)

commutes. Also the integration map (A.22) commutes with base change.
We state a version of Stokes’ theorem in this context. It concerns the

case p = q in (A.22), restricted to differential cocycles.39

Theorem A.24. Let qω ∈ qZq(M) be a differential cocycle with curvature
ω ∈ Ωq(M). Then the integral

∫
M/Z qω ∈ qCq−k(S) is a nonflat trivialization

of
∫
∂M/S qω ∈ qZq−k+1(S) with covariant derivative

∫
M/S ω ∈ Ωq−k(S).

See [HS, §3.4] for a more general theorem and proof.
We also need a generalization of Theorem A.24 to manifolds with cor-

ners. Here we state the next simplest version—corners of codimension at
most 2—and leave to the reader the more general version. For convenience
we use manifolds with corners equipped with the extra structure needed for
objects and morphisms in bordism multicategories, as in [FT1, §A.2]. The
data of such a manifold M of dimension k and depth ≤ d includes man-
ifolds M δ

−j with corners of depth ≤ d − j, δ ∈ {0, 1}, j ∈ {1, . . . , d}, and
embeddings [0, 1]j−1×M δ

−j → ∂M . The data is designed to fit the formalism
of multicategories. For example, if d = 2 then a 2-categorical interpretation
has objects M0

−2, M1
−2; 1-morphisms M0

−1,M
1
−1 : M

0
−2 → M1

−2; and M itself
is a 2-morphism M0

−1 → M1
−1.

39We do not vouch for the signs.
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Let p : M → S be a proper fiber bundle whose base S is a smooth
manifold and whose total space M is a manifold with corners of depth ≤ 2.
Assume that M carries the extra structure of [FT1, §A.2], fibered over S.
In particular, there are fiber bundles pδ−j : M

δ
−j → S, δ ∈ {0, 1}, j ∈ {1, 2}.

Let qω ∈ qZq(M) be a differential cocycle with curvature ω ∈ Ωq(M). Define

(A.25)
qηδj =

∫
Mδ

−j/S
qω ∈ qCq−k+j(S),

ηδj =

∫
Mδ

−j/S
ω ∈ Ωq−k+j(S).

These formulas pertain for j ∈ {1, 2}, δ ∈ {0, 1}; for j = 0 omit δ.

Theorem A.26.
(1) qηδ1 is a nonflat trivialization of qη12− qη02 with covariant derivative ηδ1.
(2) qη0 is a nonflat trivialization of qη11− qη01 with covariant derivative η0.

The diagram

(A.27) qη02 qη12

qη11

qη01

qη0

captures some of Theorem A.26. In the terms of §A.3, the integral of qω

over M0/S is a 2-morphism in qG(q−k+2)(S). We leave generalizations to
greater depths to the reader.

We also use a generalization of Theorem A.26 for the integral of a 1-
morphism in qG(q)(M). For simplicity, consider a 1-morphism of the form
q0

qτ−→ qω. In other words, qτ ∈ qCq−1(M) is a nonflat trivialization of qω ∈
qZq(M). Let τ ∈ Ωq−1(M) be the covariant derivative of qτ . As in (A.25), set

(A.28)
qσδ
j =

∫
Mδ

−j/S
qτ ∈ qCq−k+j−1(S),

σδ
j =

∫
Mδ

−j/S
τ ∈ Ωq−k+j−1(S).

Theorem A.29.
(1) qσδ

2 is a nonflat trivialization of qηδ2 with covariant derivative σδ
2.

(2) qσδ
1 : qσ1

2 − qσ0
2 → qηδ1 is a nonflat isomorphism with covariant deriv-

ative σδ
1.

(3) qσ0 : qσ1
1 − qσ0

1 → qη0 is a nonflat isomorphism with covariant deriv-
ative σ0.
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The data of qηδ2, qηδ1, qη0, qσδ
2, qσδ

1, qσ0 assemble to a 3-morphism in qG(q−k+2)(S).
We depict all but qσ0 in (A.30).

(A.30) q0 qη02 qη12 q0
qσ0
2

q0

q0

qη11

qη01

qσ1
2

qσ1
1

qη0

qσ0
1

Again, we leave to the reader generalizations of Theorem A.29 to greater
depths.

Remark A.31. Suppose q = k, so that (A.30) is a diagram in qG(2)(S).
Then as in Remark A.21 we interpret qηδ2 as a principal R/Z-bundle πδ : P δ →
S with connection, qηδ1 as a nonflat isomorphism π0 → π1, and qη0 as a func-
tion S → R whose reduction mod Z maps the isomorphism qη01 to the isomor-
phism qη11. Now qσδ

2 is a nonflat section of πδ. The isomorphism qηδ1 : π
0 → π1

maps qσ0
2 to a section of π1, and qσδ

1 is a function S → R whose mod Z reduc-
tion maps the section qσ1

2 to the section qηδ1(qσ
0
2). Finally, qσ0 = 0 trivially—

there are no nonzero 3-morphisms in qG(2)(S)—which means that the differ-
ence of the functions qσ1

1 − qσ0
1 equals the function qη0, as is evident from the

foregoing.

Appendix B. Invertible field theories

We briefly outline some general facts about invertible field theories, in-
cluding those which are not flat, hence not topological. For simplicity we
confine our exposition to a setting which applies to the Chern-Simons the-
ory we encounter in §5.3.5. Invertible field theories which are topological in
a restricted sense (which applies to evaluation on a single manifold, as for
example is true for Chern-Simons theory (3.14) on flat connections) or are
topological in a strong sense (which applies to evaluation in families) are
modeled as maps of spectra in topology; see [FHT, FH1, F5] and the ref-
erences therein. Here we use generalized differential cohomology, for which
we need a model of “cocycles” which generalize the singular cocycles used
in Appendix A. For background and detailed development of topics in this
appendix, see [FH2, HS, BNV, ADH] and the references therein.

Let G be a Lie group. Let Man denote the category of smooth manifolds
and smooth maps between them, and let sSet be the category of simplicial
sets. Then
(B.1) B∇G : Manop −→ sSet
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is the simplicial sheaf which assigns to a test manifold S the nerve of the
groupoid of G-connections on S; see [FH2, Example 5.11]. Similarly,
(B.2) E∇G : Manop −→ sSet

is the simplicial sheaf which assigns to a test manifold S the nerve of the
groupoid of G-connections on S and a trivialization of the underlying G-
bundle. Then E∇G is equivalent to the set-valued sheaf Ω1⊗g which assigns
to a test manifold S the vector space Ω1

S(g), where g is the Lie algebra of G;
see [FH2, Example 5.14]. A smooth manifold M defines a representable
set-valued sheaf on Man; its value on a test manifold S is the set of smooth
maps S → M .

Let h• be a generalized cohomology theory. Define the Z-graded real
vector space
(B.3) V •

h = h•(pt)⊗ R,

and suppose given an isomorphism of cohomology theories h•⊗R
∼=−−→ HV •

h ,
where the codomain is the Eilenberg-MacLane theory with HV •

h (pt) = V •
h .

There is then a differential cohomology theory qh• (of “Hopkins-Singer type”)
which refines the topological theory h•. Furthermore, these theories—as well
as the de Rham complex—can be evaluated on simplicial sheaves, in partic-
ular on B∇G. The Anderson dual IZ• to the sphere is a universal choice for
the codomain of an invertible field theory. Nonetheless, for Chern-Simons
theory in this context it is more convenient to use a truncation E•, the
cohomology theory introduced in §5.2.1, as the codomain.

Remark B.4. Chern-Simons theory has not only a G-connection as a
background field, but also a spin structure. In the formalism sketched here
we do not treat them symmetrically: we use the spin structure to integrate
differential E-cohomology classes (and cochains). By contrast, in topologi-
cal invertible theories we usually do treat them symmetrically and use the
universal codomain IZ•.

An n-dimensional invertible field theory on G-connections is modeled by
a map

α : B∇G −→ qhn+1.(B.5)

The theory α has an underlying cohomology class

B∇G −→ hn+1(B.6)

and curvature

B∇G −→ (Ω⊗ Vh)
n+1(B.7)

of total degree n+1. (For E-cohomology40 the Z-graded vector space V •
E = R

is supported in degree 0, hence the codomain of the curvature (B.7) is Ωn+1.)
40In the main text we use a complexified version of differential E-cohomology.
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The theory α is flat if its curvature (B.7) vanishes. In that case α factors
through a topological theory

(B.8) α̂ : B∇G −→ hn
R/Z,

where h•
R/Z is the cofiber of h• → h• ⊗R. The theory is topologically trivial

if its underlying cohomology class (B.6) vanishes. A trivialization of the
underlying cohomology class lifts α to a theory defined by the differential
form41

(B.9) η : B∇G −→ (Ω⊗ Vh)
n.

(Compare with Definition A.11 and the following paragraph.) Conversely,
a differential form (B.9) determines an invertible theory (B.5), and the iso-
morphism class of the latter does not change if the form is shifted by an
exact form (or, more generally, by a closed form whose periods are integral
in a sense defined by the cohomology theory h•).

Example B.10. The 3-dimensional spin C
× Chern-Simons theory in

§5.3.5 is a map

(B.11) B∇C
× −→ qE4

C

Recall [FH2] that the complexified de Rham complex of B∇C
× is a com-

plex polynomial algebra generated by a 2-form ω which is
√
−1/2π times

the curvature of the universal C
×-connection. Then the curvature of the

theory (B.11) is the 4-form

(B.12) 1

2
ω ∧ ω.

The curvature, and indeed the entire theory (B.11), should be evaluated on
families

(B.13) P
p−−→ X

π−−→ S

in which π is a proper fiber bundle equipped with a relative spin struc-
ture and p is a principal C

×-bundle equipped with a connection. Then
(B.12) pulls back to an element of Ω4

C
(X).

The discussions in §A.2 and §A.3 have analogs for invertible field theo-
ries. Thus there is a notion of a flat (or nonflat) isomorphism of invertible
theories. Furthermore, the equivalence classes of flat isomorphisms of two
n-dimensional invertible theories form a torsor over the abelian group of
flat (n−1)-dimensional invertible theories. The latter are topological invert-
ible theories in a strong sense, hence may be treated via methods of stable
homotopy theory.

41Our convention is that the partition function for a theory defined by a form η is
obtained by integrating 2π

√
−1η.
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Appendix C. Z/2Z gradings

The invertible spin C
× Chern-Simons theory is obtained by integration

in the cohomology theory E with two nonzero homotopy groups; see §5.2.1.
(As explained in §5.3, one integrates complex differential “cochains” in the
differential theory qEC or, for flat connections, “cochains” in the secondary
theory EC/Z.) The homotopy group Z/2Z, which appears along with the
standard Z or C/Z, introduces an additional Z/2Z-grading in the values of
the field theory. In this appendix we collect some remarks and results about
this grading. In particular, we complete the proof of Proposition 6.29. The
bottom line is: with a suitable universal choice we can and do ignore the
Z/2Z-gradings in the main text.

C.1. sV-lines. Let sV be the linear category of finite-dimensional com-
plex Z/2Z-graded42 vector spaces; for V1, V2 ∈ sV the hom space sV(V1, V2)
consists of even linear maps V1 → V2. Impose the symmetric monoidal struc-
ture of tensor product with the Koszul sign rule. A super category is a com-
plex linear module category over the tensor category sV. Super categories
form a 2-category. The multiplicative units in this 2-category are called sV-
lines, and there are two such up to isomorphism: the Bose line sV and the
Fermi line |Γ; the latter is the category of modules over the complex Clifford
algebra Cliff1. An automorphism of an sV-line is a functor defined by ten-
soring with a super line L; the complex line L can be even or odd. We refer
to [FT2] for more details about super categories.

Remark C.1. The integral of the level of spin Chern-Simons theory SC×

over a spin 2-manifold with flat C×-connection lies in E1
C/Z. The nonzero

homotopy groups of E1
C/Z are π0E

1
C/Z

∼= Z/2Z and π1E
1
C/Z

∼= C/Z; there is
a nonzero k-invariant which connects them. An equivalent linear Picard
groupoid is that of complex super lines, and so the value of SC× on a
closed 2-manifold is a complex super line. Similarly, on a spin 1-manifold the
relevant space is E2

C/Z, whose nonzero homotopy groups are π1E
2
C/Z

∼= Z/2Z

and π2E
2
C/Z

∼= C/Z. An equivalent linear Picard 2-groupoid is that of Bose
sV-lines. In particular, we do not encounter Fermi sV-lines. (We would have
met Fermi sV-lines had the level lain in the cohomology theory with an
additional homotopy group Z/2Z.)

C.2. Spin flip. A Riemannian spin m-manifold is a Riemannian man-
ifold M equipped with a principal Spinm-bundle BSpin(M) → M which
lifts the orthonormal frame bundle BO(M) → M under the homomorphism
Spinm → Om. A diffeomorphism f : M ′ → M of spin m-manifolds is an
isometry of the underlying Riemannian manifolds together with a lift to the
Spinm-bundles. The spin flip ΦM is the automorphism idM with lift given
as multiplication by the central element of Spinm.

42As usual, we use ‘super’ as a synonym for ‘Z/2Z-graded’.
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Let F be an n-dimensional field theory of spin manifolds—say nonex-
tended—so defined on a bordism category of (n − 1)- and n-manifolds. If
Y is a closed spin (n − 1)-manifold, then F (Y ) is a super vector space.
We say that F satisfies spin-statistics if the spin flip ΦY acts on the su-
per vector space F (Y ) = F (Y )0 ⊕ F (Y )1 as the grading automorphism
idF (Y )0 ⊕ − idF (Y )1 . Any F which is topological, invertible, and reflection
positive satisfies spin-statistics [FH1, §11]. Complex Chern-Simons theories
are not reflection positive, and in any case what we need is spin-statistics
for the difference line of a triangle, which is defined in §6.5 via a combi-
nation of the C

× spin Chern-Simons theory SC× , the SL2C Chern-Simons
theory FSL2C

, and the abelianization isomorphism (6.21). Although we can-
not simply quote [FH1, §11] for what we need, the basic setup pertains, and
so we review it briefly.

Let C be a symmetric monoidal category, and suppose x ∈ C is a dual-
izable object. Then

(C.2) 1
coevaluation−−−−−−−−−→ x⊗ x∗

symmetry−−−−−−−→ x∗ ⊗ x
evaluation−−−−−−−−→ 1

is by definition the dimension dimx. For example, if C = sV and x = V 0⊕V 1

is a finite dimensional super vector space, then dimx = dimV 0− dimV 1. If
f : x → x is a morphism, then the composition

(C.3) 1 −→ x⊗ x∗ −→ x∗ ⊗ x
1⊗f−−−−→ x∗ ⊗ x −→ 1

is by definition the trace tr f . For C = sV and f an (even) endomorphism
of V 0 ⊕ V 1, this categorical trace tr f = tr f

∣∣
V 0 − tr f

∣∣
V 1 is usually called

the supertrace. For C = Bord〈n−1,n〉(Spin) the spin bordism category and
x = Y a closed spin (n− 1)-manifold with spin flip ΦY , we find

(C.4)
dimY = S1

nonbounding × Y

trΦY = S1
bounding × Y

where ‘(non)bounding’ identifies the spin structure on S1. If

F : Bord〈n−1,n〉(Spin) → sV

is a topological field theory, then since F is a symmetric monoidal functor
it maps traces to traces:

(C.5) trF (ΦY ) = F (S1
bounding × Y ).

If F is invertible, then spin-statistics holds for Y iff this equals +1; spin
statistics holds for F iff this equals +1 for all Y .

C.3. Spin-statistics for the difference line L. Next, recall the con-
struction of the complex line L = L(D, ε, σ,A), defined in (6.28) in an equiv-
alent description to what we give here. Let D = D2 be the standard spin
2-disk; the spin structure is denoted σ. The edge orientations ε which appear
on the triangle Δ in (6.28) give rise to a universal cover of ∂D = S1; see 6.1.



150 D. S. FREED AND A. NEITZKE

The 2-disk D is equipped with its standard spectral network (Figure 25),
and A = (P,Q, μ, θ) is stratified abelianization data (Definition 4.24).

The line L derives from three ingredients. First G = SL2C Chern-Simons
theory FG on D produces an sV-line43 FG(∂D) and an isomorphism of sV-
lines

(C.6) sV
FG(D)

−−−−−−→∼=
FG(∂D).

Let c = D−2b be the center point of D and let D̃′ → D \ {c} the double
cover constructed from the spectral network on D. The spin structure σ lifts
to a spin structure on the deleted 2-disk D̃′; σ does not extend over the
deleted point. The principal Z-bundle derived from ε is used to twist this
spin structure and the flat C

×-bundle over D̃′—see §6.3—to obtain a spin
structure σ̃ and a flat C×-bundle over the filled-in 2-disk D̃. The second
ingredient in L is then the C

×-spin Chern-Simons invariant

(C.7) sV
S

C× (D̃)
−−−−−−−→∼=

SC×(∂D̃).

The third ingredient is the isomorphism of sV-lines

(C.8) FG(∂D)
χ(∂D)−−−−−→∼=

SC×(∂D̃)

constructed in §6.4. For now we simply note that χ(∂D) is the composition
of three isomorphisms; we dig into the details in §C.4 below. Finally, the
line L is the composition

(C.9) L = SC×(D̃)−1 ◦ χ(∂D) ◦ FG(D).

That is, the right hand side of (C.9) is an sV-linear automorphism of sV,
hence it is tensoring with a line L. Note that L is Z/2Z-graded; it may be
even or odd.

Let ΦD denote the spin flip of the spin 2-disk (D,σ). It induces the spin
flip Φ

D̃
of (D̃, σ̃), and these spin flips of 2-disks restrict to the spin flip of

the boundary circles. In this way ΦD induces an involution on each of (C.6),
(C.7), and (C.8), hence too an involution (ΦD)∗ : L → L on the line L which
is their composition.

Proposition C.10. (ΦD)∗ = idL if L is even, and (ΦD)∗ = − idL if L is
odd.

Proof. Define an invertible 1-dimensional field theory f of spin man-
ifolds as follows. If M is a compact 0-dimensional spin manifold or a 1-
dimensional spin bordism, then form the spin manifold M ×D and equip it

43The SL2C Chern-Simons theory does not use the spin structure and it factors
through ungraded linear objects, so FG(∂D) is canonically a V-line. Here we base ex-
tend to sV for consistency with SC× .
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with the structure pulled back from (ε,A) on D. Then f(M) is computed
as the composition in (C.9) applied to M ×−:

(C.11) f(M) = SC×(M × D̃)−1 ◦ χ(M × ∂D) ◦ FG(M ×D).

Note that f(pt) = L. By (C.5) the supertrace of (ΦD)∗ is
(C.12) tr(ΦD)∗ = tr f(Φpt) = f(S1

bounding).

Hence the proposition follows if we prove that f satisfies spin-statistics.
Compute f(S1

bounding) as the composition (C.11). Write S1
bounding = ∂D2.

The complex lines FG(S
1
bounding×∂D) and SC×(S1

bounding×∂D̃) have nonzero
(basis) elements FG(D

2 × ∂D) and SC×(D2 × ∂D̃). Furthermore, since χ is
a map of theories, the linear isomorphism
(C.13) χ(S1

bounding × ∂D) : FG(S
1
bounding × ∂D) −→ SC×(S1

bounding × ∂D̃)

maps FG(D
2 × ∂D) to SC×(D2 × ∂D̃). It remains to compute the ratio of

each of the vectors FG(S
1
bounding × D) and SC×(S1

bounding × D̃) and these
basis elements. The first ratio is FG evaluated on
(C.14) (S1

bounding ×D) ∪ −(D2 × ∂D),

and the second ratio is SC× evaluated on
(C.15) (S1

bounding × D̃) ∪ −(D2 × ∂D̃),

where the minus sign denotes the opposite spin structure (and reverse ori-
entation). But each of these is a 3-sphere with the trivial connection, and
so each partition function is +1. It follows that f(S1

bounding) = +1, as
claimed. �

Remark C.16. In the proof we encounter the 3-sphere S3 in (C.14) with
the following spectral network. The branch locus is an embedded S1 ⊂ S3.
The walls are three disjoint embedded open 2-disks B2, each of which has
boundary S1 ⊂ S3.

C.4. The freedom to eliminate odd lines. The isomorphism χ is
the composition of three isomorphisms: see Theorem 6.20. One of them,
(6.22), is given by a canonical construction in Theorem 5.61. We fixed an-
other, (6.24), in Corollary 5.103. The remaining isomorphism ν in (6.23)
derives from Corollary 5.109, which we did not fix completely. Namely, since
ν is an isomorphism of invertible 3-dimensional topological theories, we can
tensor it with an invertible 2-dimensional theory to obtain a new isomor-
phism. The background fields of ν—listed at the beginning of §5.3.6, are:
a spin structure σ, a flat H-connection, and a principal Z-bundle which
lifts the associated principal /μ

2
-bundle δ. Observe that the 2-dimensional

invertible theory whose partition function is44 (−1)Arf(σ+δ) takes value the
odd line on S1

bounding. Hence, possibly after tensoring ν with this shifted

44This is the Arf invariant (0 or 1) of the shifted spin structure σ + δ.
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Arf theory, we can arrange that L be an even complex line. It then follows
from Proposition 4.32 that the spin flip acts as idL, which is the claim in
Proposition 6.29.

References
[ADH] Araminta Amabel, Arun Debray, and Peter J. Haine, Differential Cohomology:

Categories, Characteristic Classes, and Connections, arXiv:2109.12250. 54, 87,
140, 141, 145

[AGLR] Prarit Agarwal, Dongmin Gang, Sangmin Lee, and Mauricio Romo, Quantum
trace map for 3-manifolds and a ‘length conjecture’ , 2022. https://arxiv.
org/abs/2203.15985. 140

[APP] Sergei Alexandrov, Daniel Persson, and Boris Pioline, Wall-crossing, Rogers
dilogarithm, and the QK/HK correspondence, Journal of High Energy Physics
2011 (2011), no. 12, 27, arXiv:1110.0466. MR 2935636 132, 139

[BBP] Benjamin A. Burton, Ryan Budney, William Pettersson, et al., Regina: Software
for low-dimensional topology, http://regina-normal.github.io/, 1999–2021.
138

[BK] Marco Bertola and Dmitry Korotkin, Extended Goldman symplectic structure in
Fock-Goncharov coordinates, 1910.06744. MR 4614542 132

[BNV] Ulrich Bunke, Thomas Nikolaus, and Michael Völkl, Differential cohomol-
ogy theories as sheaves of spectra, Journal of Homotopy and Related Structures
11 (2014), no. 1, 1–66, arXiv:1311.3188. 54, 87, 140, 141, 145

[BSS] Christian Becker, Alexander Schenkel, and Richard J. Szabo, Differential coho-
mology and locally covariant quantum field theory, Rev. Math. Phys. 29 (2017),
no. 1, 1750003, 42, arXiv:2011.05768. MR 3595481 140

[BW] Francis Bonahon and Helen Wong, Quantum traces for representations of surface
groups in SL2, 1003.5250v4. MR 2851072 139

[C] Danny Calegari, Real places and torus bundles, Geom. Dedicata 118 (2006),
209–227. MR 2239457 135

[CCV] Sergio Cecotti, Clay Cordova, and Cumrun Vafa, Braids, Walls, and Mirrors,
arXiv:1110.2115 [hep-th]. 56

[CDGW] Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks,
SnapPy, a computer program for studying the geometry and topology of 3-
manifolds, Available at http://snappy.computop.org (DD/MM/YYYY). 138

[Ch] Jeff Cheeger, Invariants of flat bundles, Proceedings of the International Con-
gress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, 1975, pp. 3–6.
MR 0423364 53

[ChS] Jeff Cheeger and James Simons, Differential characters and geometric invariants,
Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math.,
vol. 1167, Springer, Berlin, 1985, pp. 50–80. MR 0827262 53, 58, 82, 87, 140

[CLT] Ioana Coman, Pietro Longhi, and Jörg Teschner, From quantum curves to topo-
logical string partition functions II, arXiv:2004.04585 [hep-th]. 132, 139

[CS1] Shiing-shen Chern and James Simons, Some cohomology classes in principal
fiber bundles and their application to riemannian geometry, Proc. Nat. Acad.
Sci. U.S.A. 68 (1971), 791–794. MR 0279732 53

[CS2] Shiing Shen Chern and James Simons, Characteristic forms and geometric in-
variants, Ann. of Math. (2) 99 (1974), 48–69. MR 0353327 53, 59, 87

[D] Johan L. Dupont, The dilogarithm as a characteristic class for flat bundles,
Proceedings of the Northwestern conference on cohomology of groups (Evanston,
Ill., 1985), vol. 44, 1987, pp. 137–164. MR 0885101 53, 58

[De] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math.
(1971), no. 40, 5–57. MR 0498551 140

http://arxiv.org/abs/arXiv:2109.12250
http://dx.doi.org/10.48550/ARXIV.2203.15985
http://dx.doi.org/10.48550/ARXIV.2203.15985
https://arxiv.org/abs/2203.15985
https://arxiv.org/abs/2203.15985
http://arxiv.org/abs/arXiv:1110.0466
http://arxiv.org/abs/1910.06744
http://dx.doi.org/10.1007/s40062-014-0092-5
http://dx.doi.org/10.1007/s40062-014-0092-5
http://arxiv.org/abs/arXiv:1311.3188
http://dx.doi.org/10.1142/S0129055X17500039
http://arxiv.org/abs/arXiv:2011.05768
http://arxiv.org/abs/1003.5250v4
http://dx.doi.org/10.1007/s10711-005-9037-9
http://arxiv.org/abs/1110.2115
http://snappy.computop.org
http://dx.doi.org/10.1007/BFb0075216
http://arxiv.org/abs/2004.04585
http://dx.doi.org/10.1073/pnas.68.4.791
http://dx.doi.org/10.1073/pnas.68.4.791
http://dx.doi.org/10.1016/0022-4049(87)90021-1


3D SPECTRAL NETWORKS AND CLASSICAL CHERN-SIMONS THEORY 153

[DF] Pierre Deligne and Daniel S. Freed, Classical field theory, Quantum fields and
strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer.
Math. Soc., Providence, RI, 1999, pp. 137–225. MR 1701599 140

[DGG] Tudor Dimofte, Maxime Gabella, and Alexander B. Goncharov, K-decompo-
sitions and 3d gauge theories, J. High Energy Phys. (2016), no. 11, 151, front
matter+144. MR 3594814 59, 138

[DGGu] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov, Gauge theories labelled by
three-manifolds, Comm. Math. Phys. 325 (2014), no. 2, 367–419. MR 3148093
139

[DGRW] Joe Davighi, Ben Gripaios, and Oscar Randal-Williams, Differential cohomology
and topological actions in physics, 2011.05768. 140

[DS] Johan L. Dupont and Chih Han Sah, Scissors congruences. II, J. Pure Appl.
Algebra 25 (1982), no. 2, 159–195. MR 0662760 53, 58

[DZ] Johan Dupont and Christian Zickert, A dilogarithmic formula for the Cheeger–
Chern–Simons class, Geometry & Topology 10 (2006), no. 3, 1347–1372.
MR 2255500 58, 59

[F1] Daniel S. Freed, Classical Chern-Simons theory. I, Adv. Math. 113 (1995), no. 2,
237–303, arXiv:hep-th/9206021. MR 1337109 53, 61

[F2] Daniel S. Freed, Classical Chern-Simons theory. II, Houston J. Math. 28 (2002),
no. 2, 293–310. Special issue for S. S. Chern. MR 1898192 53, 61, 82, 88

[F3] Daniel S. Freed, Pions and generalized cohomology, J. Differential Geom. 80
(2008), no. 1, 45–77, arXiv:hep-th/0607134. MR 2434259 83, 84, 94, 142

[F4] Daniel S. Freed, Remarks on Chern-Simons theory, Bull. Amer. Math. Soc.
(N.S.) 46 (2009), no. 2, 221–254, arXiv:0808.2507. 60

[F5] Daniel S. Freed, Lectures on field theory and topology, CBMS Regional Confer-
ence Series in Mathematics, vol. 133, American Mathematical Society, Provi-
dence, RI, 2019. Published for the Conference Board of the Mathematical Sci-
ences. MR 3969923 145

[F6] Daniel S. Freed, Higher algebraic structures and quantization, Comm. Math.
Phys. 159 (1994), no. 2, 343–398, arXiv:hep-th/9212115. MR 1256993 53

[Fe] Aaron Fenyes, Abelianization of SL(2,R) local systems, 1510.05757. 69
[FG1] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems

and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006),
no. 103, 1–211, arXiv:math/0311149. 53

[FG2] Vladimir V. Fock and Alexander B. Goncharov, Cluster ensembles, quantization
and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 6, 865–930.
MR 2567745 53, 132, 139

[FH1] Daniel S. Freed and Michael J. Hopkins, Reflection positivity and invertible topo-
logical phases, Geom. Topol. 25 (2021), no. 3, 1165–1330, arXiv:1604.06527.
MR 4268163 61, 97, 145, 149

[FH2] Daniel S. Freed and Michael J. Hopkins, Chern–Weil forms and abstract
homotopy theory, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 3, 431–468,
arXiv:1301.5959. 82, 84, 87, 95, 141, 145, 146, 147

[FHT] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman,
Consistent orientation of moduli spaces, The many facets of geometry, Oxford
Univ. Press, Oxford, 2010, pp. 395–419. arXiv:0711.1909. 61, 145

[FN] A. Neitzke D. S. Freed, The dilogarithm and abelian Chern-Simons,
arXiv:2006.12565. MR 4571802 55, 58, 59, 77, 82, 84, 87, 94, 120

[FT1] Daniel S. Freed and Constantin Teleman, Gapped boundary theories in three di-
mensions, Comm. Math. Phys. 388 (2021), no. 2, 845–892, arXiv:2006.10200.
89, 143, 144

[FT2] Daniel S. Freed and Constantin Teleman, Fusion super categories. in prepara-
tion. 148

http://dx.doi.org/10.1007/JHEP11(2016)151
http://dx.doi.org/10.1007/s00220-013-1863-2
http://arxiv.org/abs/2011.05768
http://dx.doi.org/10.1016/0022-4049(82)90035-4
http://dx.doi.org/10.1016/0022-4049(82)90035-4
http://dx.doi.org/10.2140/gt.2006.10.1347
http://arxiv.org/abs/arXiv:hep-th/9206021
http://arxiv.org/abs/arXiv:hep-th/0607134
http://dx.doi.org/10.1090/S0273-0979-09-01243-9
http://dx.doi.org/10.1090/S0273-0979-09-01243-9
http://arxiv.org/abs/arXiv:0808.2507
http://dx.doi.org/10.1090/cbms/133
http://arxiv.org/abs/arXiv:hep-th/9212115
http://arxiv.org/abs/1510.05757
http://dx.doi.org/10.1007/s10240-006-0039-4
http://arxiv.org/abs/arXiv:math/0311149
http://dx.doi.org/10.24033/asens.2112
http://dx.doi.org/10.2140/gt.2021.25.1165
http://arxiv.org/abs/arXiv:1604.06527
http://dx.doi.org/10.1090/S0273-0979-2013-01415-0
http://arxiv.org/abs/arXiv:1301.5959
http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0019
http://arxiv.org/abs/arXiv:0711.1909
http://arxiv.org/abs/arXiv:2006.12565
http://dx.doi.org/10.1007/s00220-021-04192-x
http://arxiv.org/abs/arXiv:2006.10200


154 D. S. FREED AND A. NEITZKE

[G] Maxime Gabella, Quantum Holonomies from Spectral Networks and
Framed BPS States, Commun. Math. Phys. 351 (2017), no. 2, 563–598,
arXiv:1603.05258 [hep-th]. 139

[GGZ1] Stavros Garoufalidis, Matthias Goerner, and Christian K. Zickert, Gluing
equations for PGL(n,C)-representations of 3-manifolds, Algebr. Geom. Topol.
15 (2015), no. 1, 565–622. MR 3325748 136

[GGZ2] Stavros Garoufalidis, Matthias Goerner, and Christian K. Zickert, The Ptolemy
field of 3-manifold representations, Algebr. Geom. Topol. 15 (2015), no. 1,
371–397. MR 3325740 136

[GMM] David Gabai, Robert Meyerhoff, and Peter Milley, Minimum volume cusped
hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009), no. 4, 1157–1215.
MR 2525782 57

[GMN1] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Spectral networks,
Ann. Henri Poincaré 14 (2013), no. 7, 1643–1731, arXiv:1204.4824. 53, 66, 68,
138, 139

[GMN2] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Spectral networks and
snakes, Ann. Henri Poincaré 15 (2014), no. 1, 61–141, arXiv:1209.0866. 68, 69,
138

[GMN3] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Wall-crossing, Hitchin
systems, and the WKB approximation, Adv. Math. 234 (2013), 239–403,
arXiv:0907.3987. MR 3003931 139

[GTZ] Stavros Garoufalidis, Dylan P. Thurston, and Christian K. Zickert, The complex
volume of SL(n,C)-representations of 3-manifolds, Duke Math. J. 164 (2015),
no. 11, 2099–2160. MR 3385130 59, 138

[HN] Lotte Hollands and Andrew Neitzke, Spectral networks and Fenchel-Nielsen co-
ordinates, Lett. Math. Phys. 106 (2016), no. 6, 811–877, arXiv:1312.2979. 53,
69, 120

[HS] M. J. Hopkins and I. M. Singer, Quadratic functions in geometry, topology, and
M-theory, J. Diff. Geom. 70 (2005), 329–452, arXiv:math/0211216. MR 2192936
54, 61, 62, 82, 87, 88, 140, 141, 143, 145

[IM] Matei Ionita and Benedict Morrissey, Spectral Networks and Non-abelianization,
2021. https://arxiv.org/abs/2103.12285. 68, 138

[KaTa] Takahiro Kawai and Yoshitsugu Takei, Algebraic analysis of singular
perturbation theory, Translations of Mathematical Monographs, vol. 227,
American Mathematical Society, Providence, RI, 2005. Translated from the
1998 Japanese original by Goro Kato, Iwanami Series in Modern Mathematics.
MR 2182990 139

[KT] R. C. Kirby and L. R. Taylor, Pin structures on low-dimensional manifolds,
Geometry of Low-Dimensional Manifolds, 2 (Durham, 1989), London Math.
Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990,
pp. 177–242. MR 1171915 81

[L] Jacob Lurie, On the classification of topological field theories, Current devel-
opments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280.
arXiv:0905.0465. MR 2555928 66

[LP] Pietro Longhi and Chan Y. Park, ADE spectral networks, J. High Energy
Phys. (2016), no. 8, 087, front matter+90, arXiv:1601.02633. 68, 138

[M] Julien Marché, Geometric interpretation of simplicial formulas for the
Chern-Simons invariant, Algebr. Geom. Topol. 12 (2012), no. 2, 805–827,
arXiv:1011.3139. MR 2914619 56

[Me] Robert Meyerhoff, The Chern-Simons Invariant for Hyperbolic 3-Manifolds,
Ph.D. thesis, Princeton University, 1981. MR 2631318 52, 57

http://dx.doi.org/10.1007/s00220-016-2729-1
http://arxiv.org/abs/1603.05258
http://dx.doi.org/10.2140/agt.2015.15.565
http://dx.doi.org/10.2140/agt.2015.15.565
http://dx.doi.org/10.2140/agt.2015.15.371
http://dx.doi.org/10.1090/S0894-0347-09-00639-0
http://dx.doi.org/10.1007/s00023-013-0239-7
http://arxiv.org/abs/arXiv:1204.4824
http://dx.doi.org/10.1007/s00023-013-0238-8
http://arxiv.org/abs/arXiv:1209.0866
http://dx.doi.org/10.1016/j.aim.2012.09.027
http://arxiv.org/abs/arXiv:0907.3987
http://dx.doi.org/10.1215/00127094-3121185
http://dx.doi.org/10.1007/s11005-016-0842-x
http://arxiv.org/abs/arXiv:1312.2979
http://arxiv.org/abs/math/0211216
http://dx.doi.org/10.48550/ARXIV.2103.12285
https://arxiv.org/abs/2103.12285
http://dx.doi.org/10.1090/mmono/227
http://dx.doi.org/10.1090/mmono/227
http://arxiv.org/abs/arXiv:0905.0465
http://dx.doi.org/10.1007/JHEP08(2016)087
http://dx.doi.org/10.1007/JHEP08(2016)087
http://arxiv.org/abs/arXiv:1601.02633
http://dx.doi.org/10.2140/agt.2012.12.805
http://arxiv.org/abs/arXiv:1011.3139


3D SPECTRAL NETWORKS AND CLASSICAL CHERN-SIMONS THEORY 155

[Mo] G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton Univer-
sity Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of
Mathematics Studies, No. 78. MR 0385004 57

[N] Andrew Neitzke, On a hyperholomorphic line bundle over the Coulomb branch,
arXiv:1110.1619 [hep-th]. 132, 139

[Neu] Walter D. Neumann, Extended Bloch group and the Cheeger–Chern–Simons
class, Geometry & Topology 8 (2004), no. 1, 413–474. MR 2033484 53, 55,
58, 59

[NY] Andrew Neitzke and Fei Yan, q-nonabelianization for line defects,
JHEP 09 (2020), 153, arXiv:2002.08382 [hep-th]. MR 4190271 139

[NZ] Walter D. Neumann and Don Zagier, Volumes of hyperbolic three-manifolds,
Topology 24 (1985), no. 3, 307–332. MR 0815482 57

[Pr] Gopal Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973),
255–286. MR 0385005 57

[Ro] Steven Rosenberg, Gauss-Bonnet theorems for noncompact surfaces, Proc.
Amer. Math. Soc. 86 (1982), no. 1, 184–185. MR 0663893 56

[RSW] T. R. Ramadas, I. M. Singer, and J. Weitsman, Some comments on Chern-
Simons gauge theory, Comm. Math. Phys. 126 (1989), no. 2, 409–420.
MR 1027504 53

[SS] James Simons and Dennis Sullivan, Axiomatic characterization of ordinary dif-
ferential cohomology, J. Topol. 1 (2008), no. 1, 45–56. MR 2365651 140

[T1] William P. Thurston, Three-dimensional manifolds, Kleinian groups and hy-
perbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381.
MR 0648524 57

[T2] William P. Thurston, Three-dimensional Geometry and Topology. Vol. 1, Prince-
ton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ,
1997. Edited by Silvio Levy. MR 1435975 52, 55, 57, 78

[W] Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math.
Phys. 121 (1989), no. 3, 351–399. MR 0990772 53

[Y] Tomoyoshi Yoshida, The η-invariant of hyperbolic 3-manifolds, Invent. Math.
81 (1985), no. 3, 473–514. MR 0807069 57

[Z] Don Zagier, The dilogarithm function, Frontiers in number theory, physics, and
geometry. II, Springer, Berlin, 2007, pp. 3–65. MR 2290758 57, 58

[ZG] Don Zagier and Herbert Gangl, Classical and elliptic polylogarithms and spe-
cial values of L-series, The arithmetic and geometry of algebraic cycles (Banff,
AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ.,
Dordrecht, 2000, pp. 561–615. MR 1744961 58

[Zi] Christian K. Zickert, The volume and Chern-Simons invariant of a representa-
tion, Duke Math. J. 150 (2009), no. 3, 489–532. MR 2582103 59

Harvard University, Department of Mathematics, Science Center, Room

325, 1 Oxford Street, Cambridge, MA 02138

Email address: dafr@math.harvard.edu

Department of Mathematics, Yale University, 10 Hillhouse Avenue, New

Haven, CT 06511

Email address: andrew.neitzke@yale.edu

http://arxiv.org/abs/1110.1619
http://dx.doi.org/10.1007/JHEP09(2020)153
http://arxiv.org/abs/2002.08382
http://dx.doi.org/10.1016/0040-9383(85)90004-7
http://dx.doi.org/10.1007/BF01418789
http://dx.doi.org/10.2307/2044423
http://dx.doi.org/10.2307/2044423
http://dx.doi.org/10.1112/jtopol/jtm006
http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://dx.doi.org/10.1007/BF01388583
http://dx.doi.org/10.1007/BF01388583
http://dx.doi.org/10.1007/978-3-540-30308-4_1
http://dx.doi.org/10.1215/00127094-2009-058

	1.Introduction
	2.Hyperbolic volumes and Chern-Simons invariants
	3.Chern-Simons as a topological field theory
	4.Stratified abelianization and spectral networks
	 4.1.2-dimensional spectral networks: motivation
	 4.2.Stratifications, spectral networks, and abelianization
	 4.3.2-dimensional spectral networks from triangulations
	 4.4.3-dimensional spectral networks from triangulations

	5.Levels and Chern-Simons invariants
	 5.1.Levels and abelianization
	 5.2.Levels for spin Chern-Simons theory
	 5.3.Chern-Simons theory and differential cochains

	6.Abelianization of Chern-Simons lines
	 6.1.Edge-orientations on a triangle
	 6.2.Edge-orientations on a triangulated surface
	 6.3.Twistings over a triangulated surface
	 6.4.Stratified abelianization
	 6.5.The difference line for a triangle
	 6.6.Abelianization of Chern-Simons over triangulated surfaces
	 6.7.Reversing an edge orientation on a triangle
	 6.8.Reversing an edge orientation on a triangulated surface

	7.Gluing description of the Chern-Simons line
	 7.1.Abelianization of Chern-Simons over interpolating 3-manifolds
	 7.2.The dilogarithm in abelianization on one tetrahedron
	 7.3.Flipping an edge
	 7.4.Gluing the Chern-Simons line
	 7.5.Explicit formulas


	8.Computing CS invariants for flat SL(2,C)-bundles over 3-manifolds
	 8.1.Abelianization of the CS invariant
	 8.2.Explicit formulas
	 8.3.An example
	 8.4.Another example

	9.Future directions

	Appendix A.Ordinary differential cochains
	 A.1.Cochain model
	 A.2.Curvature, characteristic class, and nonflat trivializations
	 A.3.Higher Picard groupoids of differential cocycles
	 A.4.Integration and Stokes' theorem

	Appendix B.Invertible field theories
	Appendix C.Z/2Z gradings
	 C.1.sV-lines
	 C.2.Spin flip
	 C.3.Spin-statistics for the difference line L
	 C.4.The freedom to eliminate odd lines

	Appendix .References

