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Abstract. This is a survey article of a part of the history how various
Floer homology and related topological field theory have been developed.
More emphasis is put on the development of the ideas rather than results.
The way of writing naturally is biased due to the authors’ knowledge
and taste.
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1. Numerical invariants: Donaldson and Gromov

The relations between topology and linear partial differential equations
are classical going back to 19 century and a recent high point is Atiyah-
Singer index theorem. The relations between non-linear differential equa-
tions and geometry are very hot and active topics which become big trends
after several important discoveries in the 1970’s. More recently relations be-
tween moduli spaces of the solutions of non-linear differential equations and
‘topology’ are discovered and become an important topic.
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In his famous paper [D1], Donaldson used the moduli space of the solu-
tions of Yang-Mills equation to obtain novel restrictions on the intersection
forms of closed 4-dimensional manifolds. In subsequent papers [D2, D3], the
moduli space is used to obtain an invariant of a closed smooth 4-dimensional
manifold.

Let X be a closed 4-dimensional manifold and EX → X an SU(2) bun-
dle.1 A connection A of EX is said to be an ASD (anti-self-dual) connection,
if it satisfies the equation:

(1.1) FA + ∗XFA = 0.

Here FA is the curvature of A and ∗X is the Hodge ∗ operator. Note that ∗X
depends on the choice of a Riemannian metric on X. The set of solutions
of (1.1) is invariant under the action of the gauge transformation group
(the set of automorphisms of the principal bundle EX → X). We denote by
M(X; EX) the set of gauge equivalence classes of the solutions of (1.1). The
space M(X; EX) has the following nice properties.
(ASD1) The moduli space M(X; EX) is generically a smooth manifold out-

side the set of points corresponding to the reducible connections.2
(ASD2) The space M(X; EX) has a nice compactification called the Uhlen-

beck compactification.
(ASD3) The ‘cobordism class’ of M(X; EX) is independent of various choices.

In the case of SU(2) bundles, a reducible connection is induced from
a U(1) connection. The curvature of an anti-self-dual U(1) connection is a
harmonic two form h with ∗Xh = −h. So the negative eigen-space on the
second cohomology group H2(X;R) (with respect to the intersection form)
is related to the singularity of M(X; EX). We denote by b+2 and b−2 the
dimensions of positive and negative eigen-spaces on the second cohomology
group H2(X;R) with respect to the intersection form. If b+2 = 0 (and b−2 �=
0) then for any Riemannian metric on X there exists a harmonic 2 form
h representing integral cohomology classes and satisfying ∗Xh = −h. It
implies that there exists a reducible connection for any Riemannian metric.
In general, the set of Riemannian metrics for which M(X; EX) contains a
reducible connection has codimension b+2 . Thus M(X; EX) is ‘closer’ to a
non-singular space (manifold) if b+2 is large. In fact the Donaldson invariant
is well-defined if b+2 ≥ 2 but is not defined if b+2 = 0. The case b+2 = 1 is a
borderline case where the invariant exists but depends on the ‘chamber’ in
which the Riemannian metric is contained. Namely it depends on the metric
however we can control the way how it changes when a family of Riemannian
metrics crosses the ‘wall’ and moves from one chamber to the other. The
case b+2 = 1 is used in [D2] to obtain the first example of a pair of closed
4-dimensional manifolds which are homeomorphic but are not diffeomorphic.

1One can use SO(3) bundle also.
2that is, the connection A such that the set of gauge transformations which preserves

A has positive dimension.
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In the simplest case, that is, when the (virtual) dimension M(X; EX)
is zero, Donaldson invariant is a number. In general Donaldson introduced
and used a certain cohomology class to cut down the space M(X; EX) and
obtain a number. He used a map

ν : H∗(X;Z) → H4−∗(B∗(X; EX);Z).

Here B∗(X; EX) is the set of gauge equivalence classes of the irreducible
connections of EX . Donaldson invariant can be regarded as a polynomial on
H∗(X;Z) and written as

(1.2) Q(a1, . . . , ak) =

∫
M(X;EX)

ν(a1) ∧ . . . ν(ak).

(ASD3) ‘implies’ that this number is independent of the Riemannian metric
etc. and becomes an invariant of a smooth 4-dimensional manifold.

A certain delicate (dimension counting type) argument is necessary to
understand how the reducible connections and the infinity of the Uhlenbeck
compactification affect the well-defined-ness of the integral (1.2).

Gromov [Gr] introduced the method of pseudo-holomorphic curve to
symplectic geometry. For a symplectic manifold (X,ω) Gromov considered
a compatible almost complex structure J , that is, a tensor J : TX → TX
such that J2 = −1 and g(V,W ) := ω(V, JW ) becomes a Riemannian metric.
Then a pseudo-holomorphic curve is a map u from a Rieman surface (Σ, jΣ)
to (X, J) such that
(1.3) J ◦Du = Du ◦ jΣ.
The equation (1.3) is also written as
(1.4) ∂u = 0.

Here it is very important that J is an almost complex structure which is
not necessary integrable. If J is an integrable complex structure we can take
a complex coordinate of X so that J =

√
−1 is constant. Then writing

u = (u1, . . . , un) by the complex coordinate, (1.3) becomes

(1.5) ∂ui

∂y
=

√
−1

∂ui

∂x
,

where z = x+
√
−1y is a complex coordinate of the Rieman surface (Σ, jΣ).

The equation (1.5) is a linear partial differential equation. On the other
hand, (1.3) is non-linear. An important observation by Gromov is that the
non-linear partial differential equation (1.3) can have lots of solutions in
the case when the domain has complex dimension one. In fact if (Y, j) is a
complex two dimensional manifold, typically there is no non-constant map
u : Y → X satisfying J ◦Du = Du ◦ j in the case when J is not integrable.

Another important point is in the case when the almost complex struc-
ture J is compatible with a certain symplectic structure3 the moduli space

3Actually a slightly weaker condition, that J is tamed by a symplectic structure, is
enough.
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of solutions of the equation (1.3) has a nice compactification. In fact we
have the following properties. We fix a non-negative integer g and a positive
number E and for a symplectic manifold X with compatible almost com-
plex structure J , we denote by

◦
Mg(X, J ;E) the set of pairs ((Σ, j), u) where

(Σ, j) is a Rieman surface of genus g and u : Σ → X satisfies the equation
(1.3). We also require ∫

Σ
u∗ω ≤ E.

(PHC1) The moduli space
◦
Mg(X, J ;E) is generically a smooth manifold.

(PHC2) The space
◦
Mg(X, J ;E) has a nice compactification.4

(PHC3) The ‘cobordism class’ of the compactification Mg(X, J ;E) is inde-
pendent of the various choices especially of the choice of the almost
complex structure.

These properties are similar to the properties (ASD1), (ASD2), (ASD3).
Gromov used them to prove that, for any almost complex structure J on CP 2

which is compatible with the standard symplectic structure, there exists a
pseudo-holomorphic curve u : S2 → (CP 2, J) whose homology class is the
generator of H2(CP

2). This fact has an important application which is called
non-sqeezing theorem.

Theorem 1.1 ([Gr]). If there exists a map u from
◦
D4(r) (the open r-ball

in C2) to D2(1)×C such that u∗ω = ω (where ω is the standard symplectic
form) then r < 1.

It implies, for example, that
◦
D4(1) is not symplectomorphic to

◦
D2(2)×

◦
D2(1/2). This is one of the first results which show the ‘existence of global
symplectic geometry’.

Around the same time, physicists working on string theory studied ‘topo-
logical’ version of string theory and the ‘invariant’ obtained by integrating
a certain cohomology class on the moduli space which can be regarded as a
compactification of

◦
Mg(X, J ;E). (See for example [Wi3].) One point which

is not so clear from physicists’ point of view is the fact that such ‘invariant’
is one of symplectic structure and not one of almost complex structure (or
complex structure). On the other hand, various important properties of the
invariant (obtained from the moduli space of pseudo-holomorphic curves)
are discovered by physicists. Among them the associativity of the product

4Gromov (and also [McSa] etc.) used a compactification which he called the moduli
space of cusp curves. This compactification works for the purpose of Gromov’s paper [Gr]
and also in the semi-positive case but not likely works in the general case. Later Kontsevich
introduced a different compactification, the stable map compactification (whose origin is
in algebraic geometry), which is now widely used in symplectic geometry also. The stable
map topology on Mg(X, J ;E) is defined in [FOn, Definition 10.3]
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structure5 obtained from a pseudo-holomorphic map S2 → X is very impor-
tant (see [Va]).

Ruan [Ru1] and Ruan-Tian [RT1, RT2] established the theory of invari-
ants obtained from the moduli space of pseudo-holomorphic curves.6 After
McDuff-Salamon’s lucid exposition [McSa] appeared this theory becomes
popular among differential and symplectic geometers.

2. Floer homology

Floer homology was discovered in the 1980’s (by A. Floer) in two areas.
One is gauge theory and the other is symplectic geometry. Floer’s work is a
development of three important works in those areas.

(1) Casson invariant of 3-dimensional manifolds (See [AM]) and
Taubes’ work [Ta] to relate it to gauge theory.

(2) Conley-Zehnder’s proof [CZ] of Arnold’s conjecture for tori. (There
was a related work [Ra] before that.)

(3) Witten’s work [Wi1] which relates Morse theory to a (supersym-
metric) quantum field theory.

All of these are famous and important works. We mention them briefly.
For a 3-dimensional manifold M3, which is a homology 3-sphere, Casson

defined an integer valued invariant, the Casson invariant, which is morally
the ‘number’ of flat SU(2)-connections on M3. The ‘virtual’ dimension of
the moduli space of flat SU(2)-connections on M3 is 0. However because
of failure of transversality the number of flat connections in the naive sense
may be infinite. Also, as in the case of intersection theory in differential
geometry or topology, the ‘number’ should be counted with sign. Casson’s
way to count the number of flat SU(2)-connections on M uses Heegaard
splitting of M into the union of two handle bodies M = H1

g ∪Σg H
2
g . Here

Σg is an oriented 2-dimensional manifold of genus g and Hg
∼= H1

g
∼= H2

g are
the handle bodies which bound Σg. The moduli space R(Σg) of flat SU(2)-
connections on the trivial bundle on Σg is a singular space of dimension
6g − 6. The moduli spaces R(H i

g) of flat SU(2)-connections on the trivial
bundle on the handle bodies H i

g become subspaces of R(Σ) of dimension
3g − 3. Casson defined Casson invariant Z(M) as the ‘intersection number’

Z(M) := R(H1
g ) ·R(H2

g ) ∈ Z

of two 3g− 3 dimensional subspaces in the 6g− g dimensional space R(Σg).
The points to be worked out are the following:

(1) The intersection number is well-defined even though R(Σg) and
R(H i

g) have singularities.

5the product structure of the quantum cohomology ring
6They assumed a certain positivity assumption, which was removed later in the year

1996 by groups of mathematicians.
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(2) The number Z(M) is independent of the choices of Heegaard split-
ting M ∼= H1

g ∪Σg H2
g and g. It becomes an invariant of the 3-

dimensional manifold M .
Casson proved them in the case when H(M ;Z) = H(S3;Z). Note that this
assumption implies that the intersection points R(H1

g )∩R(H2
g ) are not sin-

gular points of R(Σg) unless it is the point corresponding to the trivial
connection.

Taubes’ work [Ta] gave an alternative construction. In place of using
Heegaard splitting Taubes studied the set of all connections B(M ;SU(2))
(modulo the gauge transformation group) and regard the condition FA = 0
(the curvature is 0) as a differential equation. In the case when the set of flat
connections on M is not transversal this equation is not transversal. Taubes
then perturbed the equation FA = 0 so that after adding an appropriate
perturbation term μ(A) the set of solutions of the equation FA + μ(A) = 0
becomes isolated. He then counted its order. This construction works under
the assumption H(M ;Z) = H(S3;Z) since otherwise there are reducible
connections other than the trivial one, which causes trouble. Taubes then
proved that the invariant by such a count is equal to one obtained by Hee-
gaard splitting.

Defining an invariant of 3-dimensional manifolds is one of the applica-
tions of Floer homology. The other application is to symplectic geometry
especially to Arnold’s conjecture on the periodic orbits of a periodic Hamil-
tonian system. Conley-Zehnder [CZ] proved it in the case of (symplectic)
torus T 2n, as follows. Let H : T 2n × S1 → R be a smooth function. For
t ∈ S1, we put Ht(x) = H(x, t) and let XHt be the Hamiltonian vector field
associated to the function Ht with respect to a certain symplectic structure
T 2n (with constant coefficient). We consider the set PERH of solutions of
the equation

(2.1) d

dt
γ = XHt ◦ γ

where γ : S1 → T 2n. Conley-Zehnder proved that the order of PERH is not
smaller than 22n, the Betti-number of T 2n, under a certain non-degeneracy
condition. A solution of Equation (2.1) can be regarded as a critical point
of the action functional AH defined by

(2.2) AH(γ) = −
∫
D2

u∗ω +

∫
S1

H(γ(t), t)dt.

Here we consider only the loops γ : S1 → T 2n which are homotopic to
the constant map and u : D2 → T 2n is a map such that u|∂D2 = γ. The
integral of the symplectic form ω which is the first term of the right hand
side is independent of the choice of u, because of Stokes’ theorem, since
π2(T

2n) = 0. The fact that a periodic solution of Hamilton equation (2.1) is a
critical point of the action functional AH is a classical fact (maybe discovered
by Hamilton himself). However it had been difficult to use ‘Morse theory’ of
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action functional AH to study periodic solutions of Hamilton equation (2.1).
In fact the properties of AH are far from many of the functionals studied in
geometric analysis. In the case when the functional F satisfies a condition
that {x | F(x) ≤ c} is ‘compact’ in a certain weak sense (Palais-Smale’s
condition C is a typical way to formulate it), then one can show that the set
of critical points of F is related to the topology of the configuration space.
However in the case of the action functional AH such ‘compactness’ does
not hold in any reasonable sense. In fact the set of critical points of AH is
related to the topology of T 2n but not to the topology of the loop space
Ω(T 2n).

Conley-Zehnder [CZ] used a finite dimensional approximation of the
loop space Ω(T 2n) by Fourier expansion and used an appropriate finite di-
mensional approximation of the action functional AH to study the set of
critical points of the action functional AH .

Note that in gauge theory there exists a functional, the Chern-Simons
functional:

(2.3) cs(A) =

∫
M

Tr(A ∧ dA+
2

3
A ∧A ∧A)

on the set of gauge equivalence classes of connections on a 3-dimensional
manifold M , such that its critical point set coincides with the moduli space
R(M) of flat connections on M . Floer homology studies two functionals (2.2)
and (2.3) in a similar way.

Witten’s paper [Wi1] had also an important impact to the discovery of
Floer homology. Witten explained how Morse theory can be regarded as a
(supersymmetric topological) field theory. Using a Morse function f : M →
R, Witten deformed a Laplace operator Δ on p-forms to

Δt = dt ◦ d∗t + d∗t ◦ dt, dt = e−tfdetf

and found that:
(1) For large t the set of small eigen-spaces of Δt on p-forms can be

identified with the vector space whose basis is identified with the
set of critical points of f with Morse index p.

(2) The restriction of dt to the set of small eigen-spaces of Δt defines
a cochain complex which is isomorphic to (C(M ; f), d) where:
(a) As a vector space C(M ; f) has a basis {[p] | p ∈ Critf} where

Crit is the set of critical points.
(b) The matrix coefficient 〈d[p], [q]〉 is the number counted with

sign of the integral curves of the gradient vector field gradf
joining p and q.

The chain complex defined by (2) above is called the Witten complex. (Ac-
tually very similar constructions had been known in the classical works by
Morse, Smale, Milnor etc. The importance of Witten’s work is explaining
its relation to quantum field theory, supersymmetry, and etc.)



176 K. FUKAYA

The important point of the Witten complex in Floer theory is the fol-
lowing: It uses the moduli space of the solutions of the equation

(2.4) d�

dτ
(τ) = grad�(τ)f

together with the asymptotic boundary conditions
(2.5) lim

τ→−∞
�(τ) = p, lim

τ→+∞
�(τ) = q.

Floer studied infinite dimensional versions where the Morse function f is
replaced by either the action functional AH or the Chern-Simons functional
cs. The equation (2.4) then becomes

(2.6) ∂u

∂τ
= J

(
∂u

∂t
−XHt

)
or

(2.7) ∂A

∂τ
= ∗MFA.

Here u : S1×R → X is a map to a symplectic manifold X, J is a compatible
almost complex structure and A is a connection of a trivial SU(2) bundle on
M×R. We take a gauge (temporal gauge) such that A has no dτ component,
where τ is the coordinate of R.

Studying (2.6) or (2.7) with initial condition u(0, t) = given, or A|τ=0 =
given, is difficult. Actually it is known that for almost all (smooth) initial
values they do not have solutions.7 In other words the gradient flow of AH

or cs is not well-defined.
On the other hand, if we put an asymptotic boundary condition similar

to (2.5), the equations (2.6) and (2.7) behave nicely. Namely:
(1) Its ‘weak solution’ is automatically smooth.
(2) The moduli spaces of its solutions are finite dimensional.
(3) The moduli spaces of its solutions have nice compactifications,

which are similar to those of finite dimensional Morse theory.
This is based on the fact that the equation (2.6) is a variant of Gromov’s
pseudo-holomorphic curve equation (1.4) and (2.7) is a particular case of
the ASD-equation (1.1).

Let X be a compact symplectic manifold and H : X×S1 → R a smooth
function. We denote by PERH the set of solutions γ : S1 → X of the
equation (2.1) which are homotopic to zero. We assume that elements of
PERH satisfy an appropriate non-degeneracy condition. We put

CF (X;H) =
⊕

γ∈PERH

F[γ],

7Let us consider the case X = C. The initial value u(0, t) has Fourier expansion
u(0, t) =

∑
k∈Z

ake
2π

√
−1kt. The solution u(τ, t) should be u(τ, t) =

∑
k∈Z

ake
2πk(τ+

√
−1t).

For this series to converge for |τ | < δ it is necessary |ak| < Ce−2πδk. This condition is
much more restrictive than the condition for

∑
k∈Z

ake
2π

√
−1kt to converge to a smooth

map.
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where F is the coefficient ring which is explained later.

Theorem 2.1. There exists a boundary operator d : CF (X;H) →
CF (X;H) such that d ◦ d = 0. The Floer homology

HF (X;H) :=
Kerd

Imd

is isomorphic to the ordinary homology H(X;F) with F coefficients.

Corollary 2.2. In the situation when elements of PERH are all non-
degenerate, we have

#PERH ≥ rankH(X;F).

Floer [Fl4] proved Theorem 2.1 in the case when X is monotone. Here a
symplectic manifold (X,ω) is said to be monotone if there exists a positive
number c such that

(2.8) c

∫
S2

u∗ω = u∗([S
2]) ∩ c1(X)

for all u : S2 → X. In that case F = Z. This assumption is relaxed by Hofer-
Salamon [HS] and Ono [On] to the semi-positivity. Here (X,ω) is said to
be semi-positive if there does not exist u : S2 → X such that∫

S2

u∗ω > 0, 0 > u∗([S
2]) ∩ c1(X) ≥ 6− 2n.

In this case, F is a Novikov ring (with Z as a ground ring). There are several
variants of the definition of a Novikov ring.8 A version which is called (the
universal) Novikov ring (with the ground ring R) is the set of all formal
sums

(2.9)
∞∑
i=0

aiT
λi

where ai ∈ R and λi ∈ R≥0 with limi→∞ λi = +∞ ([FOOO1]). The univer-
sal Novikov ring with R as the ground ring is written as ΛR

0 .
In the case when F is the universal Novikov ring with the ground ring Q,

Theorem 2.1 is proved by Fukaya-Ono [FOn], Liu-Tian [LT], Ruan [Ru2].
Note that Theorem 2.1 for F to be the universal Novikov ring with the

ground ring R implies Corollary 2.2 with F = R. In the case when F is a
finite field Corollary 2.2 is proved in a recent paper by Abouzaid-Blumberg
[AB]. See also [BX].

All of those proofs use Morse theory of the functional AH and the equa-
tion (2.6) to define Floer homology. The difference between the methods

8This ring itself is known before Novikov. Novikov [Nov] first pointed out that to
study Morse theory of closed one form (which is not necessary exact) we need to use this
ring. In the case α �→

∫
α
ω is non-zero on π2(X), the action functional (2.2) is not single

valued. So Floer theory (of, say, periodic Hamiltonian system) should be regarded as a
Morse theory of closed 1 form.
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of papers mentioned above lies on the way to overcome various difficulties
appearing in the infinite dimensional situations. We do not discuss it here.

To prove that Floer homology HF (X;H) is isomorphic to the ordinary
homology there are three different methods established in the literature.

(1) (a) We relax the condition that the periodic orbits of XH are non-
degenerate, so that the case H = 0 will be included.

(b) We show the Floer homology HF (X;H) is independent of H
in that generality.

(c) We prove that in case H = 0 Floer homology HF (X; 0) is
isomorphic to the ordinary homology.

(2) We study the case when H : X × S1 → R is independent of S1

factor and so is a function on X. We furthermore require that H
is a Morse function and its C2-norm is sufficiently small. Then we
show that the boundary operator d to define the Floer homology
HF (X;H) is equal to the boundary operator of the Witten complex
of CF (X;H) (the one of finite dimensional Morse theory).

(3) (a) We study two Lagrangian submanifolds in (X × X,−π∗
1ω +

π∗
2ω). One is the diagonal Δ = {(x, x) | x ∈ X} and the

other is the graph Graϕ1
H

: {(x, ϕ1
H(x) | x ∈ X} of ϕ1

H . Here
ϕt
H : X → X is defined by

(2.10) ϕ0(x) = x,
dϕt

H(x)

dt
= XHt(ϕ

t
H(x)).

(b) We show that the Lagrangian Floer homology9 HF (Δ,Graϕ1
H
)

is well-defined, isomorphic to HF (X;H), independent of H
and is isomorphic to H(X).

To prove that HF (X;H) is isomorphic to the ordinary homology in the case
when F is the universal Novikov ring with the ground ring Q, the method
(1) is used in [LT], [Ru2], the method (2) is used in [FOn]. The method
(3) is worked out later in [FOOO1] and [FOOO5]. Actually there are two
methods which can be used to show that HF (Δ,Graϕ1

H
) is isomorphic to

H(X). One uses the fact that H(Δ) → H(X×X) is injective. The other uses
the anti-holomorphic involution X ×X → X ×X for which Δ is the fixed
point set. The first method is used in [FOOO1], [FOOO5]. The second
method works under a certain assumption on X when the ground ring is Z2.

In Yang-Mills gauge theory (Donaldson-Floer theory) Floer homology
(instanton homology) is defined in one of the following two cases.10

(AIF1) M is a 3-dimensional closed manifold such that H(M ;Z) ∼= H(S3;Z)
and EM → M is the trivial SU(2) bundle.

9See Section 4.
10This condition is called admissibility in certain references.
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(AIF2) M is a 3-dimensional oriented closed manifold. EM → M is a
principal SO(3) bundle. There exists a 2-dimensional submanifold
Σ ⊂ M such that the restriction of EM to Σ is non-trivial.

The Chern-Simons functional (2.3) can also be defined in the case (AIF2)
such that its gradient flow equation is (2.7).

We consider the set R(M) of gauge equivalence classes of flat connec-
tions of EM → M . In the case (AIF2) all the elements [a] of R(M) are
irreducible, that is, the bundle automorphism of EM preserving a is triv-
ial. In the case (AIF1) all the elements [a] of R(M) except [a] = [0] are
irreducible. The reducible connections correspond to the singularity of the
set of gauge equivalence classes of connections. (AIF1),(AIF2) are used to
go around the trouble which the singularity of the set of gauge equivalence
classes causes.

Let B(M ; EM ) be the set of gauge equivalence classes of connections on
EM . We can define an appropriate function h : B(M ; EM ) → R, such that
the set of solutions of the perturbed equation
(2.11) ∗MFa +Dah = 0

is isolated. Here ∗M is the Hodge ∗ operator and Dah is the derivative of
h at a. The two terms in (2.11) are sections of Λ1 ⊗ adEM . Here EM is
the su(2) = so(3) bundle induced by the adjoint representation from the
principal bundle EM . We also required that the linearized operator

Da := ∗Mda +Hessah

is invertible for solutions a of (2.11). Let R(M ;h) be the set of gauge equiv-
alence classes of solutions of (2.11). In case (AIF1) we remove the trivial
connection from R(M ;h). We put

CF (M, EM ;h) =
⊕

[a]∈R(M ;h)

Z[a].

Floer defined a boundary operator d : CF (M, EM ;h) → CF (M, EM ;h) by

(2.12) d[a] =
∑
a′

〈da, a′〉[a′]

where the matrix element 〈da, a′〉 is the number counted with sign of solu-
tions of the equation

(2.13) ∂A

∂τ
= ∗FA|M×{τ} +DA|M×{τ}h

with asymptotic boundary conditions:
(2.14) lim

τ→−∞
[A|M×{τ}] = [a], lim

τ→+∞
[A|M×{τ}] = [a′].

Theorem 2.3 (Floer). d ◦ d = 0. The cohomology, called instanton
(Floer) homology

I(M ; EM ) :=
Kerd

Imd
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is independent of h and is an invariant of a 3-dimensional manifold M
equipped with EM .

Floer proved Theorem 2.3 in [Fl1] in the case (AIF1) and in [Fl7] in the
case (AIF2).

3. Topological field theory

An important development of Floer homology in gauge theory is the
discovery of its relation to 4-dimensional Donaldson invariant. (This is due
to Donaldson and Floer and is explained in [D4].) Let X be a 4-dimensional
manifold with boundary M = ∂X and EX → X is a, say, SU(2) bundle over
X. Suppose that the restriction of EX to M is trivial. Then, under a certain
hypothesis, one can define a relative Donaldson invariant as follows.

Let [a] be a gauge equivalence class of a flat connection a on M . We take
a Riemannian metric on

◦
X := X \ ∂X such that

◦
X minus a compact set is

isometric to M × (0,∞). We consider the moduli space of connections A on
EX which solves11:
(3.1) FA + ∗XFA = 0

and satisfies the asymptotic boundary condition
(3.2) lim

τ→∞
[A|M×{τ}] = [a].

We also require that the energy E(A) :=
∫
X ‖FA‖2 is finite. The moduli

space M(X; a;E) of such connections with given E = E(A) becomes a finite
dimensional space and has a nice compactification. In a simplest case when
the virtual dimension is zero, it gives an element

(3.3)
∑
a,Ea

#M(X; a;Ea)[a] ∈ CF (M).

Here the sum is taken over a,Ea such that the virtual dimension of
M(X; a;Ea) is zero.

Using the fact that (2.7) and (3.1) coincide on M × (0,∞), we can show
that (3.3) is a cycle with respect to the boundary operator (2.12) and so
obtain a relative invariant in the (instanton) Floer homology I(M ; trivial).
In case the (virtual) dimension of M(X; a;E) is positive we cut M(X; a;Ea)
using homology classes of the space of connections on X (typically obtained
from homology classes of X) in the same way as the case of Donaldson
invariant (1.2) and obtain a relative invariant.

This construction becomes a prototype of the definition of topological
field theory ([Wi2, At]), which might be formulated as follows.12

11Here FA and ∗X denote the curvature of the connection A and the Hodge star
operator of X, respectively.

12The description below is not intended to formulate a precise axiom. It is rather an
informal guideline how such a theory will be built. More precise and systematic formulation
of topological field theory is now being built.
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(TF1) To a closed oriented n-dimensional manifold Xn it associates a
number ZX .

(TF2) To a closed oriented (n − 1)-dimensional manifold Mn−1 it
associates a vector space HF (M) with inner product, such that
HF (−M) = HF (M)∗ (where V ∗ denotes the dual vector space of
V ) and HF (M1 �M2) = HF (M1)⊗HF (M2).

(TF3) Let X be an oriented n-dimensional manifold such that X minus
a compact set is the union of M− × (−∞, 0) and M+ × (0,+∞).
Then it associates a linear map:

ZX : HF (M−) → HF (M+).

(TF4) Let M1,M2,M3 be closed oriented (n − 1)-dimensional manifolds
and Xij be an oriented n-dimensional manifold for (ij) = (12) or
(23) such that Xij minus a compact set is the union of −Mi ×
(−∞, 0) and Mj × (0,+∞).

We glue X12 and X23 along M2 and obtain X13 such that X13

minus a compact set is the union of −M1 × (−∞, 0) and M3 ×
(0,+∞). Then we have

ZX13 = ZX23 ◦ ZX12 : HF (M1) → HF (M3).

We remark that Donaldson-Floer theory actually does not satisfy this axiom
itself. In fact the instanton Floer homology is defined only under a certain
assumption on 3-dimensional manifolds and Donaldson invariant in general
uses a certain auxiliary data (such as a homology class of a 4-dimensional
manifold) and in a certain case (b+2 = 1) it depends on the ‘chamber’. More-
over it is not defined in a certain case (b+2 = 0). It seems that such delicate
‘unstable’ phenomenon is the reason why this theory is so nontrivial and
powerful. The ‘axiomatic’ understanding of Donaldson-Floer theory seems
to be a subject yet to be studied and clarified in the future.

In the early 1990’s various people expected that relative Donaldson
invariant (Donaldson-Floer theory) will be a tool to calculate Donaldson
invariant, via decomposing 4-dimensional manifolds into pieces. However
the mathematical study of gauge theory developed in a different way. The
major tool to compute Donaldson invariant turns out to be Kronheimber-
Mrowka’s structure theorem ([KM]) and its relation to Seiberg-Witten in-
variant ([Wi5]).

In the early 1990’s there was also an attempt to expand the topological
field theories to those on n-(n − 1)-(n − 2) dimensional theory. It may be
formulated as follows.

(TF5) Let N be an (n − 2)-dimensional closed oriented manifold. To N
the topological field theory associates a category C (N). For two
objects c, c′ of C (N), the set of morphisms C (N)(c, c′) is a vector
space with an inner product. The category C (−N) associated to
−N (Here −N is the manifold N with the opposite orientation.)
is the opposite category C (N)op. The set of objects of C (N)op is
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identified with the set of objects of C (N). For two objects c, c′

C (N)op(c, c′) = C (N)(c′, c).

(TF6) Let M be an oriented (n − 1)-dimensional manifold such that M
minus a compact set is the union of N−×(−∞, 0) and N+×(0,+∞).
Then the topological field theory associates a functor:

HFM : C (N−) → C (N+).

(TF7) Let N1, N2, N3 be closed oriented (n−2)-dimensional manifolds and
Mij an oriented (n−1)-dimensional manifold for (ij) = (12) or (23)
such that Mij minus a compact set is the union of −Ni × (−∞, 0)
and Nj × (0,+∞).

We glue M12 and M23 along N2 and obtain M13 such that M13

minus a compact set is the union of −N1 × (−∞, 0) and N3 ×
(0,+∞). Then we have

HFM13 = HFM23 ◦HFM12 : C (N1) → C (N3).

See [Fu12, Definition 8.5] for the case N1 = ∅ and/or N3 = ∅.
See [Fu2, Theorem 3.2] for the formulation in the case when X is an n-
dimensional manifold with corners such that ∂X = M− ∪ M+ and M− ∩
M+ = N .

In the case of Donaldson-Floer theory (Yang-Mills gauge theory), Don-
aldson proposed a candidate of the category C (Σ) to be associated to a
2-dimensional manifold in the year 199213 as follows. (Here we write Σ in
place of N = N4−2.)

Let (M, EM ) be a pair of 3-dimensional manifold with boundary and an
SU(2) or SO(3) bundle on it. We consider one of the following two situations:
(AIFB1) EM is a trivial SU(2) bundle.
(AIFB2) EM is an SO(3) bundle. The second Stiefel-Whitney class of the

restriction of EM to the boundary Σ = ∂M is the fundamental
class [Σ] ∈ H2(Σ;Z2).

Note that (AIFB2) implies that the number of connected components of Σ
is even.

We denote by EΣ the restriction of EM to Σ = ∂M . Let R(Σ; EΣ) be the
space of gauge equivalence classes of the flat connections of EΣ.

In case (AIFB2), the space R(Σ; EΣ) is a smooth manifold and in case
(AIFB1), the space R(Σ; EΣ) has a singularity. In both cases its dimension
is 6g− 6 where g is the genus of Σ. In the disconnected case R(Σ; EΣ) is the
direct product of the spaces R(Σa; EΣa) for connected components Σa of Σ.

(The regular part of) R(Σ; EΣ) has a symplectic structure [Go]. In fact
the tangent space at [a] of R(Σ; EΣ) is identified with the first cohomology

13during a conference at University Warwick. At the same conference Y. Ruan ex-
plained his work [Ru1] to define an invariant of a symplectic manifold using the funda-
mental class of the moduli space of pseudo-holomorphic curves. This idea was not explicit
before. (It was implicit in Gromov’s work.)
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H1(Σ; ad(a)) of the flat su(2) = so(3) bundle associated to the principal
bundle EΣ by the adjoint representation. The cup product defines an anti-
symmetric form on H1(Σ; ad(a)) which we can check to be a symplectic
form.

Let R(M ; EM ) be the set of gauge equivalence classes of flat connections
of EM . The restriction of a connection defines a map

Res : R(M ; EM ) → R(Σ; EΣ).

By Stokes’ theorem we can show

Res∗ω = 0,

where ω is the symplectic form on R(Σ; EΣ). Let B(Σ; EΣ) be the space of
gauge equivalence classes of connections of EΣ. In a similar way as (2.11)
we can find an appropriate perturbation h : B(Σ; EΣ) → R, such that h(A)
depends only on a restriction of A to a complement of a neighborhood of
∂M , such that the following holds. Let R(M ; EM ;h) be the space of gauge
equivalence classes of solutions of the equation:

(3.4) ∂A

∂τ
= ∗FA +DA|M×{τ}h.

Proposition 3.1 (Herald [He]. See also [DFL2].). For a generic choice
of h the space R(M ; EM ;h) has dimension 1

2 dimR(Σ; EΣ;h). The map

Res : R(M ; EM ;h) → R(Σ; EΣ)

becomes a Lagrangian immersion outside the set of singular points of
R(Σ; EΣ).

In the case (AIFB1), the space R(M ; EM ;h) contains a reducible connec-
tion, where it becomes singular. In the case (AIFB2), the space R(M ; EM ;h)
does not contain a reducible connection and is a smooth manifold. In the
latter case, Res becomes a Lagrangian immersion.

The candidate proposed by Donaldson for C (Σ) is one whose object is
a Lagrangian submanifold of R(Σ; EΣ) and the morphisms are Lagrangian
Floer homology. (See Section 4).

This proposal is related to several results and conjectures which appeared
around the same time (early 1990’s).

Let us first consider the case when the 3-dimensional manifold is the
handle body Hg and the case (AIFB1). The map

Res : R(Hg, EHg) → R(Σg; EΣg)

for the trivial bundle EHg is a Lagrangian embedding outside the set of
reducible connections.

Let M = H1
g ∪Σg H2

g be a Heegaard decomposition of a homology 3-
sphere M . The instanton (Floer) homology I(M) is defined by using the
trivial SU(2) bundle. (Theorem 2.3.)
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Conjecture 3.2 (Atiyah-Floer conjecture [At]). The instanton (Floer)
homology I(M) is isomorphic to the Lagrangian Floer homology

HF (R(H1
g ; EHg), R(H1

g ; EHg)).

Actually the statement itself has a difficulty. In fact since R(Σg; EΣg) is
singular the definition of Lagrangian Floer homology in Conjecture 3.2 is
not yet established.

Note that Casson’s definition of Casson invariant uses Heegaard decom-
position and Taubes’ version is based on gauge theory. Therefore Conjecture
3.2 can be regarded as a ‘categorification’ of Taubes’ theorem that two def-
initions coincide.

We like to mention that other than those we describe in this article,
there are various approaches to Conjecture 3.2 by various mathematicians,
such as [Yo, LLW, Weh, MWo, Dun].

Since the case (AIFB1) has a difficulty, we discuss the case (AIFB2). We
consider Σg a genus g 2-dimensional oriented manifold and an SO(3) bundle
EΣg on it such that w2(EΣg) = [Σg]. We put M = Σg × [0, 1] and consider
the SO(3) bundle EM induced from EΣg . In this case R(Σ; EΣ) is a smooth
symplectic manifold. Note that ∂M is the disjoint union of two copies of
Σg. Therefore R(∂M ; E∂M ) = −R(Σg; EΣg) × R(Σg; EΣg). Here we put the
minus sign to the first factor. It means that the symplectic form of the first
factor is −ω and the one of the second factor is ω. In fact the two copies of
Σg in ∂M have opposite induced orientation and the symplectic structure
on R(Σg; EΣg) changes the sign if we change the orientation of Σg. The map

Res : R(M ; EM ) → −R(Σg; EΣg)×R(Σg; EΣg)

is the diagonal embedding. In this situation an analogue of Conjecture 3.2
is proved by Dostoglou-Salamon [DS] as follows. We consider M1 = M2 =
Σg× [0, 1]. Then ∂M1 = −∂M2 is a disjoint union of two copies of Σg, which
we write Σ1

g �−Σ2
g. We take a diffeomorphism F : ∂M1

∼= −∂M2 as follows.
F = identity on Σ1

g and F = ϕ on Σ2
g, where ϕ is a certain orientation

preserving diffeomorphism. Then

M = M1 ∪F M2

is a mapping cylinder of ϕ and is an Σg bundle over S1. The bundle EΣg

induces EM on M .
The diffeomorphism ϕ induces a symplectic diffeomorphism

ϕ∗ : R(Σg; EΣg) → R(Σg; EΣg).

We consider two Lagrangian submanifolds of −R(Σg; EΣg)×R(Σg; EΣg): one
is the diagonal

Δ = {(x, x) | x ∈ R(Σg; EΣg)}
the other is

Gra(ϕ∗) = {(x, ϕ∗(x)) | x ∈ R(Σg; EΣg)}.
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Since π2(−R(Σg; EΣg) × R(Σg; EΣg),Δ) and π2(−R(Σg; EΣg) × R(Σg; EΣg),
Gra(ϕ∗)) are 0, Lagrangian Floer homology

HF (Δ,Gra(ϕ∗))

is defined. (It is a Z4 graded Z module.)

Theorem 3.3 ([DS]). I(M ; EM ) ∼= HF (Δ,Gra(ϕ∗)).

This theorem can be regarded as a special case of (TF7).

Remark 3.4. Note that, in [DS], Theorem 3.3 is stated in a different
way. For a symplectic diffeomorphism ϕ : X → X one can define an analogue
HF (X;ϕ) of the Floer homology of periodic Hamiltonian system. Namely
HF (X;ϕ) is a cohomology group of a chain complex CF (X;ϕ) whose gener-
ator is a fixed point of ϕ. In the case when X is a monotone symplectic mani-
fold and c1(X) is divisible by N the Floer homology HF (X;ϕ) is a Z module
with period 2N . Dostoglou and Salamon proved I(M ; EM ) ∼= HF (X;ϕ∗).

In the case Σ = T 2 the next result written in Braam-Donaldson [BD]14

is regarded as another special case of (TF.7). We consider a nontrivial SO(3)
bundle ET 2 on the two-dimensional torus T 2. It is easy to see that R(T 2; ET 2)
the space of flat connections on T 2 consists of a single point. Let M be a
3-dimensional manifold whose boundary is a disjoint union of T 2’s. Suppose
that EM is an SO(3) bundle on M such that its second Stiefel–Whitney class
w2(EM ) restricts to the fundamental class of ∂M . It implies that the number
of boundary components of ∂M is even. We take an orientation reversing
involution τ of ∂M which induces a free Z2 action on π0(∂M). Then we glue
T 2 ⊂ ∂M with τ(T 2) ⊂ ∂M for each connected component and obtain a
closed 3 manifold, which we denote by Mτ . The SO(3) bundle EM induces
an SO(3) bundle EMτ on Mτ in an obvious way.

Theorem 3.5 (Floer, Braam-Donaldson). The instanton Floer homology
I(Mτ ; EMτ ) is independent of the choice of τ .

We may regard this result as a special case of (TF7) as follows. The space
R(∂M ; E∂M ) is one point. ‘Relative invariant’ in this case is a chain homo-
topy type of a chain complex, CF (M ; E∂M ). The gluing axiom (TF7) claims
that for any τ , the instanton Floer homology I(Mτ ; EMτ ), is isomorphic to
the cohomology of CF (M ; E∂M ).

There are two other results which are the cases when the bundle EΣ on
a 2-dimensional submanifold is trivial. One is the case when Σ = S2. This
case corresponds to the study of the Floer homology of the connected sum
M1#M2, and is studied in [Fu3, Lie], where it is proved that there exists
a spectral sequence which relates I(M1), I(M2) and I(M1#M2). Note that
R(S2, trivial) is one point and the isotropy group of the action of the gauge
transformation group on this point is SU(2) or SO(3).

14Braam-Donaldson attributes it to Floer [Fl6].
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The other is the case when Σ = T 2 and EΣ is trivial. Floer studies this
case and obtained an exact triangle which relate three instanton Floer ho-
mologies corresponding three different ways to identify T 2 with ∂(D2×S1).
It is called a Floer’s exact triangle. See [Fl7, BD]. Note that R(T 2; trivial)
is T 2/Z2 and the isotropy group of the action of the gauge transformation
group at the generic point is U(1).

From those three cases where Σ = S2 or T 2, we find that for gluing
axiom (TF7) to hold we need to modify Donaldson’s proposal and include
more general objects than Lagrangian submanifolds of R(Σ; EΣ) as objects of
the category C (Σ; EΣ). In fact, in the situation of Theorem 3.5, the object
of C (T 2, nontrivial) is a chain complex. So we need a kind of mixture of
Lagrangian submanifold and chain complex. See Section 5 for a way to
obtain such a category. In the case when Σ = S2 or T 2 with trivial bundle,
the way to relate the connected sum formula or Floer’s triangle to (TF7) is
not yet understood. The difficulty is the fact that the isotropy group of the
generic point of R(Σ; trivial) has positive dimension in those cases.

4. Lagrangian Floer theory

Among various Floer theories, Lagrangian Floer theory is the first Floer
studied [Fl2]. However actually the foundation of Lagrangian Floer theory is
more delicate than other Floer theories such as Floer homologies of periodic
Hamiltonian systems which we explained in Section 2.

Let (X,ω) be a compact symplectic manifold and Li ⊂ X an embedded
Lagrangian submanifold for i = 0, 1. We consider the space

Ω(L0, L1) = {γ; [0, 1] → X | γ(0) ∈ L0, γ(1) ∈ L1}
of arcs joining L0 to L1. To each connected component Ω(L0, L1)o of Ω(L0, L1)
we fix a base point γo ∈ Ω(L0, L1)o. For γ ∈ Ω(L0, L1)o we take a path join-
ing γo to γ. Such a path may be regarded as a map u : R× [0, 1] → X such
that:
(path1) u(τ, 0) ∈ L0, u(τ, 1) ∈ L1.
(path2) limτ→−∞ u(τ, t) = γo(t).
(path3) limτ→+∞ u(τ, t) = γ(t).
We define the action functional A by

(4.1) A(γ) =

∫
R×[0,1]

u∗ω ∈ R.

Condition (path1) and Stokes’ theorem imply that A(γ) depends only on
the homotopy class of the path u joining γo to γ. It may depend on the
homotopy class of u. So A is a function on an appropriate covering space
of Ω(L0, L1). Its derivative however is well-defined. Floer homology of La-
grangian submanifolds uses the gradient vector field of A. We take an almost
complex structure J of X such that g(V,W ) = ω(V, JW ) becomes a Rie-
mannian metric. We use it to define an L2 norm of the section of γ∗TX
for γ ∈ Ω(L0, L1). The space of sections of γ∗TX is the tangent space
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TγΩ(L0, L1) so g defines a Riemannian metric on Ω(L0, L1). The gradient
vector field of A with respect to this metric is described as follows. We con-
sider an arc � : (a, b) → Ω(L0, L1)o, which can be identified with a map
u� : (a, b) × [0, 1] → X satisfying (path1). Then one can show that � is a
gradient line of A if and only if it satisfies (2.6) for H = 0, that is,

(4.2) ∂u�
∂τ

= J

(
∂u�
∂t

)
.

It implies that the critical point set of A is identified with the intersection
L0∩L1. Thus a naive idea to define Lagrangian Floer homology is as follows.
We define:
(4.3) CF (L0, L1;F) :=

⊕
p∈L0∩L1

F[p].

For p, q ∈ L0∩L1, the matrix coefficient 〈dp, q〉 of the boundary operator d :
CF (L0, L1;F) → CF (L0, L1;F) is the number (up to the shift of R-direction)
of solutions of the equation (4.2) such that (path1) and the following two
more conditions are satisfied.15

(path2)’ limτ→−∞ u(τ, t) = p.
(path3)’ limτ→+∞ u(τ, t) = q.
Floer established this theory under a rather restrictive assumption. Let H :
X × [0, 1] → R be a smooth function. We define ϕt

H by (2.10). A map ϕ :
X → X is said to be a Hamiltonian diffeomorphism if ϕ = ϕ1

H for a certain
H. A Hamiltonian diffeomorphism preserves the symplectic structure.

Theorem 4.1 (Floer [Fl2]). Suppose that X = T ∗M (a cotangent bun-
dle of a compact manifold M), L0 ⊂ X is the zero section, and L1 = ϕ(L0)
for a certain Hamiltonian diffeomorphism ϕ.

Then we can define d : CF (L0, L1;Z2) → CF (L0, L1;Z2) such that
d◦d = 0. Moreover the Floer homology HF (L0, L1;Z2) :=

Kerd
Imd is isomorphic

to the ordinary homology of M .

The well-defined-ness of Floer homology can be proved in the so called
exact case in the same way as [Fl2]. Here a Lagrangian submanifold L is
said to be exact if for any u : (D2, ∂D2) → (X,L) the equality

∫
D2 u

∗ω = 0
holds.

Oh [Oh] generalized Floer’s result to monotone Lagrangian submanifolds
as follows. Let L ⊂ X be a Lagrangian submanifold and u : (D2, ∂D2) →
(X,L) a continuous map. Since D2 is contractible u determines a trivializa-
tion of u|∗S1TX. (Here S1 = ∂D2.) For z ∈ S1 the tangent space Tu(z)L is a
Lagrangian linear subspace of Tu(z)X. By the trivialization u determines a
loop of the space of Lagrangian linear subspaces of a fixed symplectic vector
space. The fundamental group of the Lagrangian Grassmannian is known to
be Z and so the above construction defines a map μ : π2(X;L) → Z, which

15More precisely we count only the component whose virtual dimension is 0.
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is called the Maslov index. Maslov index controls the (virtual) dimension of
the moduli space of pseudo-holomorphic disks.

A Lagrangian submanifold L ⊂ X is said to be monotone if there exists
a positive number c such that

(4.4) c

∫
S2

u∗ω = μ([u])

for all the maps u : (D2, ∂D2) → (X,L). Note that this condition is similar
to (2.8). In fact Maslov index can be regarded as a relative version of Chern
number. Moreover if there exists a monotone Lagrangian submanifold in X
then X is known to be monotone.

The minimal Maslov number is the smallest positive number which is
μ(β) for some β ∈ π2(X;L). (If μ(β) is never positive and L is monotone,
minimal Maslov number is ∞ by definition.)

Theorem 4.2 (Oh [Oh]). Let L0, L1 ⊂ X be monotone Lagrangian
submanifolds.

Then we can define d : CF (L0, L1;Z2) → CF (L0, L1;Z2) such that
d ◦ d = 0 in one of the following two cases:

(i) The minimal Maslov numbers of L0 and L1 are not strictly greater
than 2.

(ii) L1 = ϕ(L0) for a certain Hamiltonian diffeomorphism ϕ, and the
minimal Maslov numbers of Li are not smaller that 2.

Moreover the Floer homology HF (L0, L1;Z2) :=
Kerd
Imd has the following

properties.
(1) If ϕ : X → X is a Hamiltonian diffeomorphism then

HF (L0, L1;Z2) ∼= HF (ϕ(L0), L1;Z2).

(2) If L0 = L1 = L, there exists a spectral sequence whose E2 page is
H(L;Z2) and which converges to HF (L,L;Z2).

In the case when Li are (relatively) spin, we can work over Z coefficient
instead of Z2 coefficient in Theorem 4.2. This fact is established in [FOOO1,
Chapter 2], [FOOO2, Chapter 8].

It was known already to Floer that beyond monotone case Floer homol-
ogy of Lagrangian submanifolds may not be defined. Namely d ◦ d = 0 may
not hold.

The way to define and study Lagrangian Floer theory in the general
case is established in [FOOO1, FOOO2]. A Lagrangian submanifold L is
said to be relatively spin if there exists st ∈ H2(X;Z2) which restricts to
the second Stiefel-Whitney class of L. We call st a background class and
say L is st-relatively spin if the back ground class is st. We consider the
universal Novikov ring Λ0 with R = Q (or R = R) as the ground ring of
Floer homology. Let Λ+ be its ideal consisting of (2.9) with λi > 0.
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Theorem 4.3 ([FOOO1, FOOO2]). Let st ∈ H2(X;Z2). For any st-
relatively spin Lagrangian submanifold we can define a subset M̃C(L) ⊆
Hodd(L; Λ+) with the following properties.

(1) There is a map Q : Hodd(L; Λ+) → Heven(L; Λ+) of the form

Q(b) =
∑

T λiQi(b)

where Qi is a formal power series with R coefficient and λi > 0,
limi→∞ λi = ∞. M̃C(L) is the zero set of Q. The image of Q is in
the kernel of the Gysin homomorphism i! : H

∗(L) → H∗(X).
(2) Let Li be st-relatively spin and bi ∈ M̃C(Li) for i = 0, 1. We assume

that L0 is transversal to L1. Then we can define a boundary operator

db0,b1 : CF (L0, L1; Λ0) → CF (L0, L1; Λ0),

where CF (L0, L1; Λ0) is as in (4.3). It satisfies db0,b1 ◦ db0,b1 = 0.
Hence Floer homology

HF ((L0, b0), (L1, b1); Λ0) :=
Kerdb0,b1

Imdb0,b1

is defined.
(3) If ϕ : X → X is a symplectic diffeomorphism then there exists a

map ϕ∗ : Hodd(L; Λ+) → Hodd(ϕ(L); Λ+) such that ϕ∗(M̃C(L)) =
M̃C(ϕ(L)). Moreover

HF ((ϕ(L0), ϕ∗(b0)), (ϕ(L1), ϕ∗(b1); Λ0) ∼= HF ((L0, b0), (L1, b1); Λ0).

The map ϕ∗ is written as

ϕ∗ = ϕ# +
∑
i

T λiϕi

where ϕ# = Hodd(L;R) → Hodd(ϕ(L);R) is a linear map induced
by the diffeomorphism ϕ. The map ϕi is a formal power series16

Hodd(L;R) → Hodd(ϕ(L);R) and λi ∈ R+ with limλi = +∞.
(4) If ϕ : X → X is a Hamiltonian diffeomorphism then

HF ((ϕ(L0), ϕ∗(b0)), (L1, b1; Λ0)⊗ Λ ∼= HF ((L0, b0), (L1, b1); Λ0)⊗ Λ.

Here Λ is the field of fractions of Λ0.
(5) Suppose L0 = L1 = L, b0 = b1 = b. Then there exists a spectral

sequence whose E2 page is the ordinary cohomology H(L; Λ0) and
which converges to HF ((L, b), (L, b); Λ0). The image of the differ-
ential is contained in the subquotient of the kernel of the Gysin
homomorphism i! : H

∗(L) → H∗(X).17

16Namely it becomes a formal power series with R coefficient when we fix a ba-
sis of Hodd(L;R) and of Hodd(ϕ(L);R). Therefore it induces a map Hodd(L; Λ+) →
Hodd(ϕ(L); Λ+).

17In particular if i! : H∗(L) → H∗(X) is injective then E2
∼= E∞.
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Remark 4.4. We may consider b ∈ Hodd(L; Λ0) actually. Since Qi(b)
does not make sense in this generality for a formal power series Qi we need
to state it in a bit more careful way as follows. We consider

H1(L; Λ0)

2πiH1(L;Z)
×

∏
k>0

H2k+1(L; Λ0).

Taking a basis of the free parts of H1(L;Z) and of H2k+1(L;Z), its element
is written by coordinates y1j = exp(x1j ) and x2k+1

j . Here x1j and x2k+1
j are

coordinates of Hodd(L; Λ0) corresponding to the j-th basis of H1(L;Z) and
of H2k+1(L;Z), respectively. Then we can write Q as

Q(b) =
∑
i

T λiQi((y
1
j ), (x

2k+1
j )).

Here Qi is a polynomial of y1j = exp(x1j ) and x2k+1
j and limi→∞ λi =

+∞.18 Therefore, the equation Q(b) = 0 makes sense for b ∈ H1(L;Λ0)
2πiH1(L;Z)

×∏
k>0H

2k+1(L; Λ0).

An element of M̃C(L) is called a bounding cochain or a Maurer-Cartan
element of L and plays an important role. The equation Q(b) = 0 is actually
a Maurer-Cartan equation. See the next section.

At first sight the existence of an extra parameter b is unsatisfactory.
However actually it expands the applicability of Lagrangian Floer theory. In
fact the Floer homology HF ((L, b), (L, b); Λ) becomes trivial very frequently
and, in various examples, it becomes non-zero only at a very special value
of b. So this extra freedom allows us wider possibility to obtain a non-trivial
Floer homology. (See for example [FOOO3].)

Theorem 4.3 is generalized by Akaho-Joyce [AJ] to the case of immersed
Lagrangian submanifolds as follows. Let L = (L̃, iL) be an immersed La-
grangian submanifold of X. Namely L̃ is an n = dimX/2 dimensional closed
manifold and iL : L̃ → X is an immersion such that i∗Lω = 0. We assume
that self-intersection is transversal. So

SW(L) := {(p, q) ∈ L̃× L̃ | p �= q, iL(p) = iL(q)}
is a finite set. (Note that #SW (L) is twice of the number of self-intersections.)

(4.5) CF (L;R) = H(L;R)⊕
⊕

(p,q)∈SW(L)

R[p, q].

We can define the degree d(p, q) of (p, q) ∈ SW(L) such that d(p, q) +
d(q, p) = n.

Theorem 4.5 ([AJ]). Theorem 4.3 (1)(2)(3)(4) hold for immersed La-
grangian submanifolds Li when we replace H(L;R) by CF (L;R).

18We can prove this fact by using a ‘disk analogue of divisor axiom’. See [Fu11,
Lemma 13.1] and [Yu].
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5. A∞ algebras and A∞ categories

The language of A∞ algebras and categories is inevitable to understand
Lagrangian Floer theory appearing in Theorems 4.3, 4.5.

The notions of A∞ spaces and algebras were invented by Stasheff in his
study [St] of loop spaces. The product operation of loops γ : S1 → X is
not strictly associative because of the parametrization problem. (Here the
product γ1 ◦ γ2 of loops is defined by

(γ1 ◦ γ2)(t) =
{
γ1(2t) if t ∈ [0, 1/2]

γ2(2t− 1) if t ∈ [1/2, 1].)

However there is a canonical homotopy between two compositions (γ1◦γ2)◦γ3
and γ1 ◦ (γ2 ◦ γ3). Namely there is a [0, 1] parametrized family of loops
m3(γ1, γ2, γ3) : S

1 × [0, 1] → X such that

m3(γ1, γ2, γ3)(t; 0) = ((γ1◦γ2)◦γ3)(t), m3(γ1, γ2, γ3)(t; 1) = (γ1◦(γ2◦γ3))(t).

The ‘homotopy associativity’ of the product of loops is actually stronger.
There is a two parameter family of loops m4(γ1, γ2, γ3, γ4) which bounds the
union of

m3(m2(γ1, γ2), γ3, γ4), m2(m3(γ1, γ2, γ3), γ4), m3(γ1,m2(γ2, γ3), γ4)

m2(γ1,m3(γ2, γ3, γ4)), m3(γ1, γ2,m2(γ3, γ4)).

Here we write m2(γ, γ
′) in place of γ ◦γ′. See Figure 1. We can continue and

obtain a (k − 2)-parameter family of loops mk(γ1, . . . , γk) whose boundary
parametrizes the union of the compositions of mk1 and mk2 with k1 + k2 =
k+1. This is the definition of an A∞ space. Its algebraic analogue is an A∞
algebra, which is defined as follows.

Figure 1. Stasheff 2-gon.
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Definition 5.1 (Stasheff). An A∞ algebra is a graded F module C
together with operations

mk : C ⊗ · · · ⊗ C︸ ︷︷ ︸
k

→ C

of degree 2− k for k = 1, 2, . . . which satisfies the following A∞ relation.

(5.1) 0 =
∑

k1+k2=k+1

k+1−k2∑
i=1

(−1)∗mk1(x1, . . . ,mk2(xi, . . . , xi+k2−1) . . . , xk).

Here ∗ = deg x1 + · · ·+ deg xi−1 + i− 1.19

In Lagrangian Floer theory, we use curved and filtered A∞ algebra (and
category) which is different from Definition 5.1 at the following points.

(1) The operation m0 : F → C can be non-zero.
(2) The coefficient ring F is the universal Novikov ring Λ0 and the

operations are assumed to preserve the filtration. Moreover m0(1)
is assumed to be in C ⊗Λ0 Λ+.

Let us elaborate on those points. In the case when m0 = 0, (5.1) implies
m1 ◦m1 = 0. However in the case when m0 �= 0 it implies

(m1 ◦m1)(x) = (−1)deg xm2(x,m0(1))−m2(m0(1), x).

Therefore m0 is an obstruction for Lagrangian Floer homology to be well-
defined.

The universal Novikov ring has a filtration FλΛ0 which consists of ele-
ments

∑∞
i=0 aiT

λi such that λi ≥ λ for all i with ai �= 0. The module C over
Λ0 is assumed to be a completion of the free Λ0 module C ⊗R Λ0. In other
words it consists of (infinite) sums

∑∞
i=0 ciT

λi with limi→∞ λi = +∞, where
ci ∈ C and C is a free R module. Then we can define a filtration on C in a
similar way as the filtration on Λ0. We call such C a completed free filtered
Λ0 module. We then require the operations to preserve the filtration. We
call such (C, {mk}) a (curved) filtered A∞ algebra. The topology induced by
the filtration is called the T -adic topology.

The relation of an A∞ structure to a perturbation of the structure and to
mathematical physics had been known before early 1990’s. (See for example
[GS].) We can use it in Lagrangian Floer theory as follows. Let (C, {mk})
be a (curved) filtered A∞ algebra. For b ∈ Codd with b ∈ FλC, λ > 0, we
consider the Maurer-Cartan equation:

(5.2)
∞∑
k=0

mk(b, . . . , b) = 0.

Note that the term for k = 0 of left hand side is m0(1). Since mk(b, . . . , b) ∈
FkλC the left hand side converges in T -adic topology.

19This is the sign convention of [FOOO1] which is slightly different from [St].
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Suppose b solves (5.2). We define the operations mb
k by the following

formula:

(5.3) mb
k(x1, . . . , xk) =

∞∑
�0,...,�k=0

mk+
∑

�i(b
�0 , x1, b

�1 , . . . , b�k−1 , xk, b
�k).

The right hand side converges in T -adic topology. It is easy to show that
{mb

k} satisfies the A∞-relation (5.1). Moreover the Maurer-Cartan equation
(5.2) implies mb

0 = 0. In particular we have
mb

1 ◦mb
1 = 0.

Thus we can eliminate the ‘curvature’ m0 by using the solution of Maurer-
Cartan equation (5.2).

Filtered A∞ algebras appear in Lagrangian Floer theory as follows.

Theorem 5.2 ([FOOO1, FOOO2, AJ]). Let L be a relatively spin
Lagrangian submanifold of a symplectic manifold. Then we can associate a
structure of a filtered A∞ algebra to H(L; Λ0).

The same holds for an immersed Lagrangian submanifold if we replace
H(L; Λ0) by C(L; Λ0).

We can define a map Hodd(L; Λ+) → Hev(L; Λ+) by

b �→
∞∑
k=0

mk(b, . . . , b).

This is the map Q in Theorem 4.3.
Bondal-Kapranov [BK] defined the notion of a DG-category. We can

modify it to define a filtered A∞ category as follows.

Definition 5.3. A curved filtered A∞ category C is the following:
(1) The set of objects OB(C ) is given.
(2) For c, c′ ∈ OB(C ) a graded completed free Λ0 module C (c, c′) is

given. This is the set of morphisms.
(3) We put

BkC (c, c′) =
⊕

c0,...,ck

k⊗
i=1

C (ci−1, ci),

where the direct sum is taken over c0, . . . , ck ∈ OB(C ) such that
c0 = c, ck = c′. We also put

B0C (c, c′) =

{
0 c �= c′,

Λ0 c = c′.

The Λ0 module homomorphisms
mk : BkC (c, c′) → C (c, c′)

are given for k = 0, 1, 2, . . . . It is called the structure operations.
The structure operations are required to preserve filtrations.
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(4) The A∞ relation (5.1) is satisfied.

A filtered A∞ category is said to be strict if m0 = 0. To a curved filtered
A∞ category C we can associate a strict filtered A∞ category Cs as follows.
We remark that for c ∈ OB(C ) the restriction of mk defines a structure
of a curved filtered A∞ algebra on C (c, c). A bounding cochain of c is by
definition an element b of C odd(c, c) such that b ∈ FλC (c, c) for λ > 0 and b
satisfies (5.2).

An object of Cs is a pair (c, b) where c ∈ OB(C ) and b is its bounding
cochain. The module of morphisms Cs((c, b), (c

′, b′)) is C (c, c′). The structure
operations of Cs is defined by modifying the structure operations of C in
the same way as (5.3).

A strict A∞ category such that mk = 0 for k �= 1, 2 is called a DG-
category.

We can define a notion of a (filtered) A∞ functor between two (filtered)
A∞ categories. (See [Fu6, Section 7].)

In Lagrangian Floer theory a filtered A∞ category appears in the fol-
lowing way. Let (X,ω) be a symplectic manifold. We fix a background class
st ∈ H2(X;Z2). We consider a finite set L of st-relatively spin (immersed)
Lagrangian submanifolds such that for L,L′ ∈ L, L is transversal to L′.

Theorem 5.4. There exists a curved filtered A∞ category Fuk(X;L)
the set of whose objects is L. For L ∈ L the curved filtered A∞ algebra
Fuk(X;L)(L,L) is one in Theorem 5.2.

We can prove Theorem 5.4 from Theorem 5.2 as follows. We consider
the disjoint union of the elements of L and regard it as a single immersed
Lagrangian submanifold L̂. We apply Theorem 5.2 (Akaho-Joyce’s immersed
case) to L̂ to obtain a curved filtered A∞ algebra. The structure operations
of this curved filtered A∞ algebra induce structure operations of Fuk(X;L).
See also [AFOOO, Fu13]. We denote by Fukst(X;L) the strict category
associated to Fuk(X;L). Its object is a pair (L, b) where L ∈ L and b is its
bounding cochain.

Let (Li, bi) be an object of Fukst(X;L) for i = 0, 1. The m1 operator of
Fukst(X;L) on Fukst(X;L)((L0, b0), (L1, b1)) is by definition

x �→
∞∑

k,�=0

mk+�+1(b
k
0, x, b

�
1).

(See (5.3).) Here mk+�+1 in the right hand side is the structure operation of
Fuk(X;L). This is the boundary operator db0,b1 in Theorem 4.3.

As was mentioned at the end of Section 3, we need a bit more general
object than those of Fukst(X;L) for various purposes. One is establishing
topological field theory picture in Donaldson-Floer theory. The others are
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for homological mirror symmetry (Section 6) and for Lagrangian correspon-
dence (Section 7). One way to do so is to use the notion of an A∞ module
over an A∞ category20 and to use Yoneda embedding.

Definition 5.5. Let C be a filtered A∞ category. A right A∞ module
D over C associates a chain complex D(c) to each c ∈ OB(C ) and a map
(5.4) nk : D(c)⊗Λ0 BkC (c, c′) → D(c′)

for k = 0, 1, . . . and c, c′ ∈ OB(C ) with the following properties.
(1) n0 is the boundary operator of D(c).
(2) The following A∞ relation is satisfied.

(5.5)

0 =
∑

k1+k2=k

nk2(nk1(y;x1, . . . , xk1);xx1+1, . . . , xk)

+
∑

k1+k2=k+1

k1∑
i=1

(−1)∗nk1(y;x1, . . . ,mk2(xi, . . . , xi+k2−1), . . . , xk)

where ∗ = deg y + deg x1 + · · ·+ deg xi−1 + i.21

We can define the notion of a right A∞ module homomorphism between
two right A∞ modules and obtain a DG-category whose object is a right
A∞ module over C . We denote it by RMOD(C ).

We can define the notion of an A∞ functor. There exists an A∞ functor
from C to RMOD(C ) which is an A∞ analogue of the Yoneda embedding,
as follows.

Let c ∈ OB(C ). We associate a right A∞ module Dc by
Dc(c

′) = C (c, c′)

and
nk(y;x1, . . . , xk) = mk+1(y, x1, . . . , xk)

Here the left hand side is the right module structure and the right hand side
is the structure operation of C . The equality (5.5) is a consequence of (5.1).

This is the way how the objects are sent by the Yoneda functor. We
can define the morphism part by using the structure operations m of C . See
[Fu6, Section 9].

An A∞ analogue of Yoneda’s lemma is Theorem 5.7.

Definition 5.6. A strict unit of an A∞ category C assigns ec ∈ C (c, c)
(of degree 0) to each object c such that:

(1) mk(. . . , ec, . . . ) = 0 unless k = 2.
(2) m2(ec, x) = (−1)∗m2(x, ec) = x, where ∗ = deg x.

20In [Fu4] etc. the author used an A∞ functor from an A∞ category C to the DG cat-
egory CH whose objects are chain complexes. These two notions are the same as explained
in [Fu13, Subsection 5.1].

21There is an alternative sign convention where +i is replaced by +i− 1. See [Fu13,
Subsection 5.1].



196 K. FUKAYA

An A∞ category is said to be unital if it has a strict unit.

Theorem 5.7. If C is a strict and unital filtered A∞ category, then the
Yoneda embedding C → RMOD(C ) is a homotopy equivalence to a full
subcategory.

See [Fu6, Fu13] for the homotopy equivalence of filtered A∞ category.
See [Fu6, Section 9] for the proof of Theorem 5.7.

By Theorem 5.7 we may regard an object of C as a right C module.
In other words a right C module is regarded as an ‘extended’ object of C .
Based on this observation the following is proposed in [Fu2, Fu4].

Conjecture 5.8 ([Fu2, Fu4]). Let M be a 3-dimensional manifold with
boundary Σ and EM an SO(3) bundle such that w2(EΣ) = [Σ]. (Here EΣ is
the restriction of EM to Σ.)

Then we can associate a right filtered A∞ module HFM on

Fukst(R(Σ; EΣ);L)

for any finite set L of Lagrangian submanifolds of R(Σ; EΣ).
Furthermore the following holds. Let Mi be a 3-dimensional manifold for

i = 1, 2 with ∂Mi = Σ and EMi an SO(3) bundle such that w2(EΣ) = [Σ]
where EΣ is the restriction of EMi to Σ. Let M be a closed 3-dimensional
manifold obtained by gluing −M1 and M2 along Σ. An SO(3) bundle EM on
M is obtained by gluing EM1 and EM2. Then we can choose L such that the
isomorphism

I(M ; EM ) ∼= H(Hom(HFM1 , HFM2))

holds. Here the left hand side is the instanton Floer homology and the right
hand side is the cohomology of the morphism complex in the DG-category of
right filtered A∞ modules.

Together with A. Daemi and M. Lipyanskiy the author is on the way of
proving this conjecture. (We will discuss it more in Section 7.)

Note that the right A∞ module HFM is supposed to associate a cohomol-
ogy to an object (L, b) of Fukst(R(Σ; EΣ);L), that is, a pair of a Lagrangian
submanifold L ∈ L of R(Σ; EΣ) and its bounding cochain b. Let us write it as
HR(M ; (L, b)). An idea in [Fu2, Fu4] for the construction of such cohomol-
ogy theory HR(M ; (L, b)) is to study gauge theory of M × R, which has a
boundary Σ×R and ends M×{±∞}, use L to set an appropriate boundary
condition on Σ × R, and try to imitate the construction of instanton Floer
homology, which is the case ∂M = ∅.

This part of the idea is later realized in the case when L is monotone
and b = 0 by Salamon-Wehrheim in [SW]. Namely they construct such a
Floer homology HR(M ;L) of M with coefficient L, a monotone Lagrangian
submanifold of R(Σ; EΣ).

To prove the first part of Conjecture 5.8 we also need to define a right
module structure, the structure map (5.4). See [Fu12] on this point.
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6. Homological mirror symmetry

Kontsevich [Ko1] used A∞ categories to formulate his famous homolog-
ical mirror symmetry conjecture. Actually he used derived category of A∞
categories which we review below.

Let C be a strict (filtered) A∞ category. We assume for simplicity that
for an object c of C its degree shift22 c[k] is also exists as an object of C . We
consider a finite sequence c1, . . . , cn of objects of C and let xij ∈ C (ci, cj)
for i < j. We call C = ({ci}, {xij}) a twisted complex if for all i < j the next
equation is satisfied.

(6.1)
∑

mk(x�0�1 , . . . , x�k−1�k) = 0

where the sum is taken over the set of all �0, . . . , �k with k = 1, 2, . . . ,
�0 = i, �k = j, �0 < · · · < �k. Generalizing a similar notion in the case
of DG category (which is due to Bondal-Kapranov) Kontsevich introduced
the notion of a twisted complex and showed that there is a triangulated
category D(C ) whose object is a twisted complex. A triangulated category
is an additive category (that is, the category the set of whose morphisms
forms an abelian group) so that for each morphism f : c → c′ there is a
mapping cone which satisfies appropriate axioms. (See [Ha].)

A morphism between two twisted complexes C(m) = ({c(m)
i }, {x(m)

ij })
m = 1, 2 is a tuple (yij) such that yij ∈ C (c

(1)
i , c

(2)
j ). The differential is

defined by d(yij) = (zij) where

zij =
∑

mk+n+1(x
(1)
�0�1

, . . . , x
(1)
�k−1�k

, y�km0 , x
(2)
m0m1

, . . . , x(2)mn−1mn
).

Here the sum is taken over all �0, . . . , �k, m0, . . . ,mn with �0 = i, mn = j.
The equation (6.1) and the A∞ relation imply that d ◦ d = 0. A closed

morphism from C(1) to C(2) is an element (yij) such that d(yij) = 0. For
a closed morphism we can define its mapping cone. See [Fu6, Section 6].
We can then define a triangulated category D(C ) as the localization of this
category so that a closed morphism which induces an isomorphism on coho-
mologies becomes an isomorphism.

For a complex manifold X we can define an abelian category S H (X)
of its coherent sheaves. Its derived category D(S H (X)) is defined roughly
as follows. (See [Ha].) We consider the additive category whose object is
a chain complex of coherent sheaves. We can define mapping cone of such
chain complex and also define the notion of a weak equivalence and take the
localization. We thus obtain D(S H (X)).

The homological mirror symmetry conjecture by Kontsevich is stated as:

(6.2) D(Fukst(X)) ∼= D(S H (X∨)),

where X∨ is a mirror of X.

22See the beginning of Subsection 6.3.
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We can formulate the homological mirror symmetry conjecture using
the terminology of filtered A∞ category rather than using that of derived
category as follows. Note that the filtered A∞ category Fukst(X) is linear
over the universal Novikov ring Λ0, which is similar to the formal power
series ring C[[T ]]. The ring C[[T ]] is regarded as ‘the set of functions’ of a
formal neighborhood of 0 in C. We regard the mirror of X as a scheme23

over C[[T ]], that is a formal deformation X∨ → Sp(C[[T ]]). We require that
it is a formalization of a maximal degenerate family π : X∨

ε → D2(ε) of, say,
Calabi-Yau manifolds. Namely we require:

(md1) For q ∈ D2(ε)\{0} the fiber Mq := π−1(q) is a Calabi-Yau manifold.
(A Kähler manifold whose canonical bundle is trivial.)

(md2) The fiber M0 := π−1(0) of 0 is a normal crossing divisor.
(md3) There exists a point p in M0 where the intersection of a neighbor-

hood U of p in X∨ with M0 is bi-holomorphic to

{(z0, . . . , zn+1) | zi ∈ D2, z0 . . . zn+1 = 0}.

Remark 6.1. It seems that the third condition is equivalent to the
following condition.

(*) Let qi ∈ D2\{0} be a sequence converging to 0 and we use a metric
on Mqi = π−1(q) which is Ricci-flat and has diameter 1. Then the
topological dimension of the Gromov-Hausdorff limit limi→∞Mqi

is n, the complex dimension of Mqi .
In fact when (md3) is satisfied, it is expected that the Riemannian mani-
fold Mqi is mostly occupied in a small neighborhood of the points p in X∨

as in (md3). (Namely the complement of such a neighborhood has small
diameter.)

On the other hand, other than the case of dimension 2 ([GW]) or
tori, the relation between (*) and (md3) is not established yet. (See [LiY]
for a related recent result.) Gross-Wilson [GW] and Kontsevich-Soibelman
[KS1] conjectured that condition (*) is equivalent to a definition of the
maximal degenerate point in complex geometry, that is, the monodromy
ρ : HN (Mq) → HN (Mq) satisfies (ρ − id)n−1 �= 0 and (ρ − id)n = 0. The
author does not know the present status of this conjecture.

We consider the n-fold (branched) covering Sp(C[[T 1/n]]) → Sp(C[[T ]]),
which induces X∨

n → Sp(C[[T 1/n]]) via pull back. We consider the category of
coherent sheaves on S H (X∨

n ) which is C[[T 1/n]] linear. Take the inductive
limit

S H (X∨
∞) := lim−→S H (X∨

n )

which is linear over

ΛC
0,Q :=

{∑
aiT

λi ∈ ΛC
0 | λi ∈ Q≥0

}
.

23or a formal scheme or a rigid analytic space, etc.
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We then obtain a DG-category (linear over ΛC
0,Q) whose object is a chain

complex of objects of S H (X∨
∞). We denote it by DG(S H (X∨

∞)).
In the symplectic side we modify Fukst(X) slightly so that it becomes

ΛC
0,Q linear in place of being ΛC

0 linear as follows.
Definition 6.2. Let (X,ω) be a symplectic manifold. We assume that

the cohomology class [ω] is in H2(X;Z) and take a complex line bundle L

such that c1(L) = [ω]. We take a Hermitian connection ∇ of L such that
F∇ = 2πi ω. A pair (L,∇) is called a pre-quantum bundle.

Let L be a Lagrangian submanifold of X. Since ω|L = 0, the restriction of
(L,∇) to L is flat. Let Hol∇ : π1(L) → U(1) be the holonomy representation
of this flat bundle. We say L is rational if the image of Hol∇ is a finite group.

By modifying the construction of Fukst(X) we can define a filtered A∞
category FukstQ(X) such that:

(1) An object of FukstQ(X) is a pair of a rational Lagrangian subman-
ifold L of X and its bounding cochain b defined over ΛC

0,Q (see the
explanation below).

(2) FukstQ(X) is ΛC
0,Q linear.

Suppose that L is a rational Lagrangian submanifold. We consider the fil-
tered A∞ algebra CF (L,L). The exponent λ in the weight T λ appearing in
the structure operations of the A∞ structure of CF (L,L) is the symplectic
area of a disk (D2, ∂D2) → (X,L). Using the rationality it is easy to see
that λ ∈ Q>0. Therefore the Maurer-Cartan equation (5.2) is defined over
ΛC
0,Q. Thus the notion of bounding cochain b defined over ΛC

0,Q makes sense.
We can then modify the definition of A∞ operations slightly so that (2)

is satisfied. See [Fu9, Proposition 2.2].
Conjecture 6.3. There exists a filtered A∞ functor FukstQ(X) →

DG(S H (X∨
∞)) which induces an isomorphism of their derived categories

in certain cases.
6.1. Elliptic curves and tori. The first example of homological mir-

ror symmetry is the case of elliptic curves and is discovered by Kontsevich
[Ko1]. He considered three Lagrangian submanifolds L0, L1, L2 in T 2 (Fig-
ure 2).

Figure 2. Universal cover of an elliptic curve and its three Lagrangians.

In the mirror, L0, L1 and L2 correspond to the structure sheaf, the ample
line bundle O(1) and a point (sky scraper sheaf) p ∈ T 2, respectively.
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Kontsevich calculated the operation

(6.3) m2 : HF (L0;L1)⊗HF (L1;L2) → HF (L0;L2).

In our situation HF (L0;L1), HF (L1;L2), HF (L0;L2) are all rank one and
so (6.3) is a number. We move L2 without changing its direction. We also
put a flat U(1) connection. These two operations give a family parametrized
by one complex number, which becomes a coordinate of the (universal cover
of the) mirror elliptic curve.

By definition, the map (6.3) is obtained by counting holomorphic tri-
angles bounding L0, L1, L2 together with an appropriate weight. In our
1-dimensional case, we can calculate it explicitely and there is exactly one
such a triangle in each homotopy class, which corresponds one to one to the
natural numbers k. The symplectic area of the triangle is

(k + c)2

2

where c is a parameter of L2. Thus Kontsevich obtained the theta series:∑
k

exp

(
−(k + z)2

2

)
where z is the coordinate which parametrizes a pair of L2 and a flat U(1)
connection on it.

In the mirror (6.3) should be

H∂(T
2;O(1))⊗C C → O(1)p

where p is the point corresponding to z. Moving p, the family of the above
operations should be the value of a global section of O(1) at p, which is ex-
actly the theta function. This interesting calculation provides a nice evidence
of homological mirror symmetry.

Later Polishchuk and Zaslow [PZ] studied the case of an elliptic curve in
more detail and proved the homological mirror symmetry (in the cohomology
level) in that case. Their results are partially generalized in [Fu7] to higher
dimension, using the idea of family Floer homology (See Section 6.4).

Abouzaid-Smith [ASm] uses the fact that Fukst(T 2 × T 2) is related to
the category of filtered A∞ functors Fukst(T 2) → Fukst(T 2) (See Section 7)
to prove the homological mirror symmetry for a certain T 4.

6.2. Generator of the category 1: decomposition of the mon-
odromy. One difficulty in studying homological mirror symmetry is that
categories are not easy to study or describe. In fact, usually category is too
huge to ‘calculate’. A way to ‘calculate’ an A∞ category is to find its genera-
tor and to compute the Floer homology groups between generators together
with the structure operations. This is the way how homological mirror sym-
metry have been proved in many cases. We will discuss two of the methods
to find a generator of an A∞ category Fukst(X) of symplectic side.
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The first one is used in [Se5].24 Seidel’s paper [Se5] studies the case of
the quartic surface. However his method is applied in greater generality. Let
us consider a family of Calabi-Yau manifolds:

(6.4) π : X → S2.

We consider its restriction

π : π−1(D2(ε)) → D2(ε)

to a neighborhood of 0 and assume that it is a maximal degeneration family,
that is, it satisfies (md1), (md2), (md3) above. Take q ∈ D2(ε) \ {0}. The
monodromy around the singular fiber M0 = π−1(0) defines a symplectic
diffeomorphism Φ : Mq → Mq, where Mq = π−1(q). Seidel’s work is based
on the following three points.

(Sei1) One can define a Z-grading on the Floer homology for a certain
class of Lagrangian submanifolds in Mq.

(Sei2) For L in such a class and d ∈ Z the elements of Floer homology
HF (L; Φk(L)) have degree < d for sufficiently large k.

(Sei3) Φ is Hamiltonian isotopic to a composition of finitely many Dehn
twists around Lagrangian spheres in Mq.

A brief explanation of them are in order. We first explain (Sei3). For a
2-dimensional manifold Σ and a closed loop γ ⊂ Σ we can associate a diffeo-
morphism, the Dehn twist, Dγ : Σ → Σ, which is [C] �→ [C]−([γ]∩ [C])[γ] in
homology. (Figure 3.) Its higher dimensional analogue is a symplectic diffeo-
morphism, the Dehn twist, ϕS : X → X associated to a Lagrangian sphere
Sn in 2n-dimensional symplectic manifold X. In (n-dimensional) homology,
it is again [C] �→ [C] − ([Sn] ∩ [C])[Sn]. Seidel used the fact that the mon-
odromy of Mq is decomposed into a composition of Dehn twists obtained by
various Lagrangian spheres in Mq. The reason of this decomposition is as
follows.

We consider a fibration (6.4), which we call a Lefschetz fibration. We
study the critical value of π. One critical value is 0 ∈ S2. By Assumption
(md3), the fiber M0 is much degenerate. On the contrary, we can require
that the other singular fibers Mqi are mildly degenerate. Namely we assume
Mqi is an immersed submanifold with one transversal self-intersection point.
It is a consequence of classical Picard-Lefschetz theory that in such a case
there exists a Lagrangian sphere Sn

i and the monodromy around qi (that is
Mq → Mq where q is close to qi) is a Dehn twist ϕSn

i
. Thus the monodromy

ϕ around 0 is decomposed into the composition of Dehn twists ϕSn
i
.

In [Se3] Seidel calculated how the Dehn twist ϕS acts on the A∞ cate-
gory Fukst(X). It is described by the following long exact sequence:

(6.5) → HF (ϕS(L), L
′) → HF (L,L′) → HF (L, S)⊗HF (S,L′) →

24This paper is published rather recently. However it appeared in the arXive in the
year 2003, which is much earlier than its publication.
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Figure 3. Dehn twist.

We consider the ‘difference’ between two objects L and ϕS(L). Via Yoneda
embedding we regard them as right modules over Fukst(X). To a Lagrangian
submanifold L′ (which plays the role of a ‘test function’) the difference
becomes

L′ �→ HF (L, S)⊗HF (S,L′).

So it is contained in the subcategory generated by L′ → HF (S,L′), that is,
S itself. In this way, together with (Sei2) (Sei3), the exact sequence (6.5)
shows that the set of Lagrangian spheres Sn

qi generates Fukst(X).

Remark 6.4. We remark that (6.5) is related to Floer’s Dehn surgery
triangle [Fl7] via Atiyah-Floer conjecture.

Remark 6.5. We also remark that the above mentioned method is a
part of the important project25 to calculate Floer homology of Lagrangian
submanifolds based on symplectic Lefschetz fibration [D5].

Note that in (Sei2) Z-grading of Lagrangian Floer homology plays an
essential role. We can define such Z-grading in the case of a Lagrangian
submanifold with vanishing Maslov index as follows ([Se1]). For a positive
integer n we consider Cn with standard symplectic form

∑
dxi ∧ dyi (where

zi = xi +
√
−1yi is the standard coordinate.) We denote by LAG(Cn) the

set of all oriented n-dimensional real linear subspaces V of Cn such that∑
dxi ∧ dyi is 0 on V . The manifold LAG(Cn) is called the oriented La-

grangian Grassmannian. Let X be a symplectic manifold. For each p ∈ X
the tangent space TpX is identified with Cn. (The identification respects
the symplectic forms.) We collect LAG(TpX) for all p ∈ X and denote it
by LAG(TX). The space LAG(TX) has a structure of a smooth manifold.
There is a smooth map LAG(TX) → X which sends LAG(TpX) to p. This
map gives a structure of a smooth fiber bundle on LAG(TX) over X. It is
well known that π1(LAG(TpX)) = Z. Let KX be the complex line bundle,

25which is on going and developing for a long time.



HOMOLOGICAL ALGEBRA AND MODULI SPACES 203

the n-th exterior power of the tangent bundle and SKX its unit circle bun-
dle. There is a bundle map LAG(TX) → SKX which associates [v∗1∧· · ·∧v∗n]
to V ∈ LAG(TX), where (v1, . . . , vn) is an oriented basis of V and v∗i is its
dual basis. The next diagram commutes.

(6.6)

π1(LAG(TpX)) −−−−→ π1(LAG(TX)) −−−−→ π1(X)⏐⏐� ⏐⏐� ⏐⏐�
π1(S

1) −−−−→ π1(SKX) −−−−→ π1(X)

Moreover the left vertical arrow is an isomorphism.
We assume that X is Calabi-Yau. Therefore KX is the trivial bundle.

It follows from the diagram that there exists π1(LAG(TX)) → Z which
is an isomorphism on π1(LAG(TpX)). Therefore there exists a Z fold cover
˜LAG(TX) of LAG(TX) which restricts to the universal cover on each

LAG(TpX).
Let L be an oriented Lagrangian submanifold of X. The association

p �→ TpL defines a section of LAG(TX)|L, which we denote by sL. We can
show that there exists a section s̃L of ˜LAG(TX)|L which lifts sL if and only
if the Maslov index of L is zero. We call the lift s̃L the grading of L. The
graded Lagrangian submanifold is a pair (L, s̃L). See [Se1]. It is proved there
that for a pair of graded Lagrangian submanifolds (Li, s̃Li), i = 1, 2, we can
define a Z grading of elements p ∈ L1 ∩ L2 which induces a Z grading of
Floer homology.

We do not discuss the proof of (Se2) here.
The method of [Se5] is expanded by various authors and produced vari-

ous examples where homological mirror symmetry is proved. One important
recent development is [She1].26

6.3. Generator of the category 2: open-closed map. Before ex-
plaining the second method, we recall the notion of a split generation of an
A∞ category. Let C be an A∞ category. We enhance the set of objects of C
in the following three ways.

(spg1) If c is an object of C and k ∈ Z we include an object c[k], its degree
shift, such that

C d(c[k], c′) = C d−k(c, c′) C d(c′, c[k]) = C d+k(c′, c).

The (higher) composition of morphisms between shifted objects
is the same as those before shifted except the sign. The sign is
determined for example if xs ∈ C (c[1], c′) which is identified with
x ∈ C (c, c′) then m2(xs, y) = (−1)deg y+1m2(x, y)s. Here s is an
operator which shifts the degree by 1.

26In fact [She1] uses the argument we will explain in the next subsection rather than
the one in this subsection to find a generator. However [She1]’s argument can be regarded
as a generalization of [Se5].
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(spg2) If c, c′ are objects and x ∈ C (c, c′) is a closed morphism, we include
the mapping cone of x : c → c′ as an object. (We can do so in the
A∞ category of twisted complexes.)

(spg3) We include ‘direct summand’ of an object as a new object. We can
do so by using the notion of an idempotent. See [Se4, Section 4].

For any A∞ category C we can repeatedly add objects by one of the
above three operations. We denote by C+ the A∞ category obtained in this
way.

Definition 6.6. Let X be a symplectic manifold and L a finite set of
relatively spin Lagrangian submanifolds. We say L is a split generator if the
following holds.

Let L′ be an arbitrary relatively spin Lagrangian submanifold. We put
L′ = L ∪ {L′}. We obtain a filtered A∞ category Fukst(L) (resp. Fukst(L′))
whose objects are pairs (L, b) such that L ∈ L (resp. L ∈ L′) and b is a
bounding cochain of L (resp. L′).

We change the coefficient ring from Λ0 to Λ to obtain filtered A∞ cate-
gories Fukst(L)Λ and Fukst(L′)Λ.

Then by adding objects as in (spg1), (spg2), (spg3) we obtain fitered
A∞ categories Fukst(L)+Λ and Fukst(L′)+Λ .

Now we require that the canonical embedding

(6.7) Fukst(L)+Λ → Fukst(L′)+Λ

is a homotopy equivalence of categories.

The second method to find a generator has an origin in the following
proposal (due to Kontsevich27). Let (X,ω) be a symplectic manifold. We
consider the product X ×X together with its symplectic form −π∗

1ω+π∗
2ω,

which we denote by −X × X. The diagonal Δ = {(x, x) ∈ −X × X |
x ∈ X} is a Lagrangian submanifold of −X ×X and (Δ, 0) is an object of
Fukst(−X ×X).

Suppose that L is a finite set of relatively spin Lagrangian submanifolds
of X. We put

L× L = {L× L′ ⊂ −X ×X | L,L′ ∈ L}.
We also put (L× L)′ = (L× L) ∪ {Δ}. We define:

(6.8) Fukst(L× L)+Λ → Fukst((L× L)′)+Λ

in the same way as (6.7).
The proposal claims that if (6.8) is a homotopy equivalence then L is a

split generator.
One can justify this proposal by using Lagrangian correspondence as

follows. As we will explain in Section 7, a Lagrangian submanifold L of

27The author heard this idea in early 2000’s from Kontsevich in his E-mail, as an idea
to prove the homological mirror symmetry for torus.
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−X ×X together with its bounding cochain b defines a filtered A∞ functor
W(L,b) : Fukst(X) → Fukst(X).

In the case (L, b) = (Δ, 0) the functor W(Δ,0) is the identity functor. On
the other hand, it is easy to see that, if L ∈ L × L and b is obtained from
a pair of bounding cochains of elements of L (see [Fu13, Section 16]), then
the image of the functor W(L,b) is contained in Fukst(L). Therefore if (6.8)
is a homotopy equivalence then (6.7) is a homotopy equivalence.

The condition that (6.8) is a homotopy equivalence could be rewritten
by using the open-closed map p as follows. For an A∞ category C we can
define its Hochshild (co)homology HH(C ) and cyclic homology HC(C ). In
the case when X is compact28 there are maps
qL : HQ∗(X; Λ0) → HH∗(Fukst(L)), pL : HC∗(Fukst(L)) → H∗(X; Λ0).

(See [Fl5, Ko1, Se2, Al, FOOO1, BC].) The map qL is a ring homo-
morphism from the quantum cohomology HQ∗(X; Λ0) to the Hochshild co-
homology. The domain of pL can be taken also as the Hochshild homology
HH∗(Fukst(L)). Then it is dual to qL. (See [AFOOO, Ga].) There is a
heuristic argument that the condition (6.8) being a homotopy equivalence
becomes the following:

(�) The unit 1X ∈ H∗(X; Λ) is contained in the image of pL ⊗ Λ.
Let us explain the relation between the condition (�) on the open-closed map
pL and the condition that (6.8) is a homotopy equivalence. Let (L×L, b× b)
be an object of Fukst(L× L). Here L ∈ L and b is a bounding cochain of L.
It induces a bounding cochain b × b of L × L.29 We simplify the situation
and assume that there exist closed morphisms

x : (L× L, b× b) → (Δ, 0), y : (Δ, 0) → (L× L, b× b)

such that
(6.9) m

−X×X
2 (x, y) = 1Δ.

Here m
−X×X
2 is the structure operations of Fukst(−X ×X; (L× L) ∪ {Δ})

and 1Δ = HF (Δ) ∼= H(X) is the unit.
The equality (6.9) is a simplified version of the condition that (6.8)

becomes a homotopy equivalence of categories.
We assume furthermore that x (resp. y) is represented as x = PD[p] ∈

Hn(L) ∼= H0(L), (resp. y = PD[L] ∈ H0(L) ∼= Hn(L)). Here p ∈ L =
(L×L)∩Δ. In this (over)simplified case, the product in the left hand side is
defined by the moduli space as in Figure 4 below. We (conformally) identify
the semi-circle in the figure with a triangle. Three vertices of the triangle
are identified with the points z0, z1, z2 in the figure, respectively, and z0 is
the vertex corresponding to the output. The direct product u× u′ is a map

28When X is non-compact the quantum cohomology HQ∗(X; Λ0) should be replaced
by the symplectic homology. See [Se2, Ga].

29See [Fu13, Section 16].



206 K. FUKAYA

Figure 4. A pseudo-holomorphic map to −X ×X.

from the semi-circle to −X×X which is required to be pseudo-holomorphic.
The part of the boundary of the semi-circle which is the intersection of the
semi-circle with S1, is required to be mapped to L × L. The other part of
the boundary is required to be mapped to the diagonal. The points z1, z2
are required to be mapped to (p, p) and L = (L × L) ∩ Δ, respectively.
(The condition for z2 is actually automatic in this case.) We consider the
moduli spaces of such maps and use the evaluation map at z0. The sum of
such output (with appropriate weight) is m

−X×X
2 (x, y) by definition.30 It is

a chain of the diagonal ∼= X.
Now using the fact that the almost complex structure we use on −X×X

is −JX⊕JX and u×u′ is pseudo-holomorphic, we can use reflexion principle
to obtain the map in the Figure 5. Here u is defined by u(z) = u(z). The
moduli space of pseudo-holomorphic curves as in Figure 5 is the one we use to
define the open-closed map pL([p]). Thus (6.9) is equivalent to pL([p]) = 1X .
It implies (�).

Figure 5. A pseudo-holomorphic map to X.

In the more general case where∑
i

pL([pi,1]⊗ · · · ⊗ [pi,k(i)]) = 1X

the left hand side is obtained from the moduli space depicted by Figure 6.
It corresponds to the polygon in Figure 7 (b) on −X ×X. This polygon is
obtained from the map (6) by reflexion at the dotted line of Figure 7 (a).

30This is the case when the bounding cochain b is zero. If b is nonzero we need to
consider more marked points on the circle part of the boundary.
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Figure 6. A pseudo-holomorphic map to define the open-
closed map.

Figure 7. A pseudo-holomorphic polygon obtained by a reflexion.

Abouzaid [Ab2] proved that under the condition (�) (where H∗(X; Λ)
is replaced by the symplectic homology [FH, BO]) L is a split generator,
in a certain non-compact situation. The compact case is on the way being
written ([AFOOO]). The proof is based on the Cardy relation [CL] which
identifies inner products of cyclic (or Hochshild) homology (See [FOOO6,
Shk, AFOOO].) and the Poincaré duality via the open-closed map p.31 It
does not directly use the above explained idea to relate the condition (�) to
(6.8).32

As we mentioned already one of the origins of this generating criteria
is Kontsevich’s proposal which seems to be related to a similar idea in the
study of algebraic cycles in algebraic geometry (via mirror symmetry).

31In the non-compact case, which Abouzaid established in [Ab2], there is no Poincaré
duality on the ambient space. Abouzaid avoid using Poincaré duality by a skillful argument
which we do not discuss here.

32The author believes that there is an alternative proof using the idea to relate open-
closed map to (6.8), directly. Such a proof is not worked out yet.
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Another origin is in symplectic geometry, such as those in [Al, BC]. It
can be stated as follows. Let L,L′ be two Lagrangian submanifolds of X.
Suppose

(6.10) 〈p(1L), p(1L′)〉 �= 0,

where 〈·〉 : H∗(X)⊗H∗(X) → Λ is the Poincaré pairing, p is the open-closed
map and 1L, 1L′ are the fundamental classes of L and L′. Then, for any
Hamiltonian diffeomorphism ϕ : X → X, we have

(6.11) ϕ(L) ∩ L′ �= ∅.

Note that the leading order term of the left hand side of (6.10) (that is, the
term which does not contain T ) is the intersection number L · L′. So (6.11)
is an enhancement of the obvious fact that L ·L′ �= 0 implies ϕ(L)∩L′ �= ∅.

6.4. Family Floer homology. Another approach to homological mir-
ror symmetry is by using family Floer homology. This approach is related to
Strominger-Yau-Zaslow’s proposal [SYZ] to construct the mirror manifold
via a dual torus fibration. We first briefly review their proposal.

We consider a symplectic manifold X together with a map π : X → B,
such that for a ‘generic’ point b of B the fiber Lb := π−1(b) is a La-
grangian torus. Let B0 ⊂ B be the set of such ‘generic’ points and put
X0 = π−1(B0). The tangent space TbB0 is identified with the first cohomol-
ogy group H1(Lb;R) of the fiber. The group H1(Lb;R) contains a lattice
H1(Lb;Z). The cotangent fiber T ∗

bB0 is identified with H1(Lb;R) which con-
tains H1(Lb;Z). Frequently it is also assumed that π : X → B has a section
s : B → X such that its image is a Lagrangian submanifold. In that case X0

is identified with the quotient of T ∗
bB0 by the lattice Γ := ∪b∈B0H

1(Lb;Z).
(Here s(b) becomes 0 ∈ H1(Lb;R)/H

1(Lb;Z) by this identification.) Note
that the total space of the cotangent bundle has a symplectic structure and
the above identification respects the symplectic structures. We consider the
fiber-wise dual TB0 and its dual lattice Γ∨. One can show that the symplec-
tic structure on T ∗B0/Γ induces a complex structure on TB0/Γ

∨. We put
X∨

0 := TB0/Γ
∨. The complex manifold X∨

0 is called a semi-flat mirror to
X0.

The symplectic structure on X0 extends to X (by definition). However
the complex structure on X∨

0 in general does not extend to its compactifi-
cation. It is conjectured that there is a ‘quantum correction’ to the complex
structure of X∨

0 (which is determined by a certain ‘count’ of holomorphic
disks bounding a Lagrangian fibers Lb) so that, after correction, the complex
manifold X∨

0 is compactified to a compact Calabi-Yau manifold X∨ and the
map X∨

0 → B0 extends to X∨ → B. See [Fu10, KS2, GrS] for example.
When a mirror manifold is obtained in this way, π : X → B is called a
SYZ-fibration.

The family Floer homology program is a proposal to use SYZ picture
of mirror symmetry to produce homological mirror functor Fukst(X) →
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DG(S H (X∨)).33 We consider a Calabi-Yau manifold X together with an
SYZ fibration π : X → B. We consider a symplectic structure of X only,
forgetting its complex structure. (We need an almost complex structure J
of X to define the notion of a pseudo-holomorphic curve. However J may
not be integrable.) Suppose that we obtain its (SYZ) mirror X∨ → B. X∨

is a Calabi-Yau manifold. We regard it as a complex manifold, forgetting its
symplectic structure (that is, the Kähler form).

We consider a Lagrangian submanifold L of X. We assume, for simplicity,
that L is transversal to the fibers Lb := π−1(b).

A point of X∨
0 is a pair of an element b ∈ B0 and a cohomology class

a ∈ H1(Tb;R)/H
1(Tb;Z). The class a determines uniquely a flat U(1) bundle

La on Lb. Let EL be a vector bundle of X∨ which is the homological mirror to
L. In this situation, the homological mirror symmetry conjecture ‘implies’:

(6.12) (EL)(b,a) = HF ((Lb, a);L).

Here the left hand side is the fiber of the vector bundle and is a C-vector
space. The right hand side is the Floer homology of L and Lb. The role of a
can be explained in two different ways.
(rega1) We regard the right hand side of (6.12) as the Floer homology with

local coefficient. Note that the boundary operator of Lagrangian
Floer homology is by definition a signed and weighted count of holo-
morphic strips u with an appropriate boundary condition. (See (4.2)
and (path2)’ (path3)’ in Section 4.) We put the weight T

∫
u∗ω usu-

ally. (The variable T is a formal parameter, the Novikov parameter).
Here we take the weight e−

∫
u∗ωHola(∂u) instead, where e is the

Napier’s number and Hola(∂u) is the holonomy of the flat line bun-
dle La along the loop u|∂D2 . (Hola(∂u) ∈ U(1) = {z ∈ C | |z| = 1}.)

(rega2) We regard a ∈ H1(Lb;R) ⊂ H1(Lb; Λ0) and regard it as a bounding
cochain as explained in Remark 4.4. Note that H1(Lb;R)/H

1(Lb;Z)
which appears in Remark 4.4 is the moduli space of flat U(1) bundle
on L.

We can then try to use (6.12) as the definition of the vector bundle EL.
Namely we conjecture that the (b, a) ∈ X∨

0 -parametrized family of vector
spaces HF ((Lb, a);L) has a structure of a holomorphic vector bundle on X∨

0

that can be extended to X∨.
Note that the Lagrangian submanifold S = s(B) (the image of the La-

grangian section s) has the property HF ((Lb, a);S) = C. So we conjecture
that it becomes the trivial line bundle (that is, the structure sheaf) of X∨.

The product structure m2 defines a map

HF ((Lb, a);S)⊗HF (S;L) → HF ((Lb, a);L).

33This idea was first communicated by M. Kontsevich to the author in 1997 during
the author’s stay in IHES.
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Since HF ((Lb, a);S) ∼= C we find that an element of HF (S;L) determines
a section of EL. A way to define a holomorphic structure on the family
HF ((Lb, a);L) is requiring this section to be holomorphic.

The isomorphism HF 0(S;L) ∼= H0
∂
(EL) is a part of the claim that L �→

EL defines a fully faithful embedding of A∞ categories.
In [Fu8], the homological mirror symmetry of symplectic and complex

tori are proved by this method, in the case when Lagrangian submanifolds
L are flat and are transversal to the fibers. A certain discussion in the case
when there is a singular fiber and non-flat L can be found in [Fu10].

A few years after [Fu8], Kontsevich-Soibelman [KS1] proposed to use
rigid analytic geometry to study homological mirror symmetry and family
Floer homology. Note that when we use the weight e−

∫
u∗ωHola(∂u) to define

Floer’s boundary operator (and also a similar weight for the structure oper-
ations of an A∞ category), it is in general difficult to prove that the series
defining the boundary operator etc. converges. In the case of flat Lagrangian
submanifolds in symplectic tori, the series defining structure operations are
certain variants of the theta series and actually converges very rapidly.34

However beyond the case of tori and flat Lagrangian submanifolds, there
is no method known to obtain an estimate of the number of holomor-
phic strips or disks and to show the convergence of the series with weight
e−

∫
u∗ωHola(∂u).
In symplectic Floer theory, the usual method is introducing the universal

Novikov ring and defining the boundary operator and the structure opera-
tions as a ‘formal power series’. Kontsevich-Soibelman [KS1] observed that
using the universal Novikov ring in the mirror (complex) side corresponds to
studying the mirror manifold as a rigid analytic space. In a series of papers
[FOOO3, FOOO4, FOOO6] we worked out the idea using rigid analytic
family of Floer homologies to study the case of toric manifolds. Abouzaid
[Ab3, Ab4, Ab5] realized this program and proved a version of homological
mirror symmetry in the case when the SYZ-fibration X → B has no singular
fiber and the fibers never bound holomorphic disks. J. Tu [Tu] and H. Yuan
[Yu] partially relax these conditions and include the case where there exist
singular fibers. J. Solomon [So] showed that for the fibers of SYZ-fibration,
any b ∈ Hodd(T 2n; Λ0) satisfies the Maurer-Cartan equation (5.2).

6.5. Matrix factorizations and weak bounding cochains. Mirror
symmetry is generalized to a manifold M which is not necessary Calabi-Yau.
In such a case the mirror of M is not a manifold but is a pair (M∨,W ) of
a manifold M∨ and a function W on it. Such a mirror symmetry is studied
both in the case when M is a symplectic manifold and the case when M is
a complex manifold.

34As mentioned in Subsection 6.1, the fact that theta series appears in the structure
operations defining Fukst(X) was first observed by Kontsevich in the case when X is an
elliptic curve.
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We discuss in this subsection the case when M is a symplectic manifold.
The other case is discussed in the next subsection. In this case (M∨,W ) is a
pair of a manifold M∨, and a function W on it. There are cases both W is a
holomorphic function and W is a rigid analytic function. For simplicity we
explain the case when M∨ is a complex manifold and W is a holomorphic
function on it. The function W is called a Landau-Ginzburg potential.

In the Calabi-Yau case, the mirror to the quantum cohomology HQ(M)
is the ∂-cohomology H∂(M

∨,Λ∗TM∨). Here Λ∗TM∨ is an exterior power
of the (complex) tangent bundle of M∨. This cohomology controls the ‘ex-
tended’ deformation of the complex structure. In fact, Kodaira-Spencer the-
ory says H1

∂
(M∨, TM∨) controls the deformation of complex structures of

M∨.
In the case when M is not Calabi-Yau, its mirror is a pair (M∨,W ). In

this case the mirror to the quantum cohomology ring HQ(M) is a vector
space which controls the deformation of the pair (M∨,W ). In many cases,
W has isolated critical points. In such a case, only a neighborhood of the
critical point set is used to study the mirror symmetry. So M∨ is a local
object (a neighborhood of finitely many points) and has no deformation.
The deformation of W is controlled by the Jacobi ring. Let p ∈ M∨ be a
point such that dpW = 0. We take a complex coordinate z1, . . . , zn of M∨

in a neighborhood of p. The Jacobi ring Jacp(W ) is the quotient:

(6.13) Jacp(W ) :=
Op(

∂W
∂zi

: i = 1, . . . , n
) .

Here Op is the ring of germs of holomorphic functions of M∨ at p. The
denominator is its ideal generated by the germs of partial derivatives ∂W

∂zi
.

In fact the deformation of W (in its first order approximation) can be written
as the form

t �→ Wt := W + tF

where F ∈ Op. Two such deformations Wt and W ′
t are regarded as equivalent

if there is a family of bi-holomorphic maps ϕt with ϕt(0) = 0 such that
W ′

t ∼ W ′
t ◦ ϕt. It is easy to see that W + tF is equivalent to W + tF ′ if

F − F ′ is in the ideal (∂W∂zi : i = 1, . . . , n) in its first order approximation.
In the case when p is an isolated critical point, the Jacobi ring Jacp(W ) is
finite dimensional.

K. Saito [Sa] defined an inner-product (higher residue pairing) and var-
ious other structures on the (family of) Jacobi rings35 which is very close to
the structure found (by Dubrovin [Dub]) on quantum cohomologies. Such
a structure is called a Frobenius manifold structure. These two structures
are expected to be identified via mirror symmetry. It seems that among the
mathematicians, Givental [Gi] first mentioned this conjecture. The author
does not know how this story was developed among physicists.

35Saito’s work is much earlier than the discovery of quantum cohomology.
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The homological mirror symmetry between a symplectic manifold M
and a pair (M∨,W ) is expected to be a relation between a filtered A∞
category Fukst(M) and a category of matrix factorizations of (M∨,W ). Let
us briefly review the notion of a matrix factorization. The notion of a matrix
factorization is introduced by Eisenbud [Ei] a long time ago. It is a Z2 graded
module C = C0⊕C1 over Op with degree one operator d : C → C such that

(6.14) d ◦ d = W · Id.

When (C, d), (C ′, d′) are matrix factorizations we consider the set of Op

module homomorphisms C → C ′ and denote it by Hom(C,C ′). It is a Z2

graded Op module. We define δ : Hom(C,C ′) → Hom(C,C ′) by

(6.15) δ(ϕ) = d′ ◦ ϕ− (−1)degϕϕ ◦ d.

It is easy to show δ ◦ δ = 0. Therefore there exists a DG-categry Mat(W ; p)
whose object is a matrix factorization and the module of morphisms from
(C, d) to (C ′, d′) is Hom(C,C ′), with boundary operator δ and the obvious
composition.

The fact that the matrix factorizations define the D-brane category of
the pair (M∨,W ) is pointed out by physicists ([KL, HW]) and also in [Or]
in early 2000’s.

In Lagrangian Floer theory a similar structure was know by Floer and
Oh [Oh] in 1990’s. Let us consider a pair L1, L2 of monotone Lagrangian
submanifolds intersecting transversally.36 Theorem 4.2 by Oh says if the
minimal Maslov number of L1 and L2 are strictly larger than 2 then Floer’s
boundary operator d : CF (L1, L2) → CF (L1, L2) satisfies d ◦ d = 0. Here
CF (L1, L2) is the free abelian group whose basis is identified with the in-
tersection points.

In the case when the minimal maslov number is 2, the equality d ◦ d = 0
may not hold. Suppose that the minimal maslov number of a monotone
Lagrangian submanifold L is 2. We consider β ∈ π2(X;L) whose Maslov
index μ(β) is 2. Let M1(β) is the moduli space of pseudo-holomorphic maps
u : (D2, ∂D2) → (X,L) whose homotopy classes are β. We identify u and u′

if there exists a biholomorphic map v : D2 → D2 such that u ◦ v = u′ and
v(1) = 1. Using the fact that there exists no holomorphic disk whose Maslov
index is strictly smaller than 2, we can show that M1(β) is an n-dimensional
smooth manifold without boundary for a generic compatible almost complex
structure. The map which sends [u] ∈ M1(β) to u(1) ∈ L is a smooth map
: M1(β) → L between n-dimensional oriented manifolds without boundary
and so its mapping degree nβ is well-defined. We define

(6.16) cL :=
∑

β∈π2(X;L), μ(β)=2

nβ .

36Hereafter we assume all the Lagrangian submanifolds involved are oriented and
relatively spin.
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In the case when (L1, L2) is a pair of monotone Lagrangian submanifolds
intersecting transversally and with the minimal Maslov number 2, Oh [Oh]
proved the following equality:

(6.17) d ◦ d = (cL2 − cL1) · Id.

The equality (6.17) is the same as (6.14) except cL2 − cL1 is not a function
but is a number (integer).

We can generalize this story without assuming monotonicity as fol-
lows. Let L be a relatively spin Lagrangian submanifold of X. We obtain
a structure of a unital, curved filtered A∞ algebra on H(L; Λ0).37 We say
b ∈ H1(L; Λ0) is a weak bounding cochain if it satisfies:

(6.18)
∞∑
k=0

mk(b, . . . , b) = c eL

for some constant c ∈ Λ0.38 Let M̃weak(L) be the set of all weak bounding
cochains of L.39 We define a potential function PO : M̃weak(L) → Λ0 by

(6.19)
∞∑
k=0

mk(b, . . . , b) = PO(b) · eL.

Let (L1, L2) be a transversal pair of relatively spin Lagrangian submani-
folds and bi a weak bounding cochain of Li for i = 1, 2. We define db1,b2 :
CF (L1, L2; Λ0) → CF (L1, L2; Λ0)

40 by

(6.20) db1,b2(x) :=

∞∑
k=0

∞∑
�=0

mk+1+�(b
k
1, x, b

�
2).

Here m∗ are the restrictions of the structure operations of the curved A∞
category whose objects are L1 and L2. Using the A∞ relation and (6.19) we
can show ([FOOO1, Proposition 3.7.17]):

(6.21) db1,b2 ◦ db1,b2 = (PO(b2)−PO(b1)) · Id.

37In case L is immersed we can use CF (L; Λ0) as in (4.5) and the story goes in the
same way.

38In the case when b /∈ H(L; Λ+) but b ∈ H(L; Λ0) there is an issue of convergence
of the right hand side. However we can still define the notion of weak bounding cochain
in the same way as Remark 4.4.

39Actually it is more natural to introduce an equivalence relation, gauge equivalence
(See [FOOO1, Section 4.3].), between weak bounding cochains, and introduce a space
Mweak(L) consisting of gauge equivalence classes of weak bounding cochains. The potential
function then becomes a function on Mweak(L). It seems likely that Mweak(L) becomes a
certain version of an (Artin) stack in the rigid analytic category and PO is a rigid analytic
function on it. (This statement is not proved in the general case in the literature.)

40CF (L1, L2; Λ0) is the free Λ0 module whose basis is the set of intersection points
L1 ∩ L2.
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This equality shows that PO can be regarded as a Landau-Ginzburg po-
tential and (CF (L1, L2; Λ0), d

b1,b2) is identified with the morphism spaces
between two matrix factorizations.

Remark 6.7. Let (C, d), (C ′, d′) be matrix factorizations with respect
to the Landau-Ginzburg potentials W , W ′, respectively. We consider
Hom(C,C ′) and define the boundary operator δ by the same formula as
(6.15). Then we have δ ◦ δ = (W ′ − W ) · Id. This formula coincides with
(6.21).

Remark 6.8. In 1990’s Givental gave a comment to a talk by the author
that the Landau-Ginzburg potential of the mirror may be obtained as a
FOOO’s obstruction class m0. The author does not know how this story was
developed among physicists. It seems that one of its origin is [Wi4]. See also
[HIV]. This fact is used in an important paper by Hori-Vafa [HV]. In [HV]
this fact is used in the case of certain toric manifolds. Cho-Oh [CO] studied
that case and calculated (6.16) in several important toric manifolds. After an
important work by Cho [Ch], FOOO [FOOO3, FOOO4, FOOO6] further
studied the case of toric manifolds. See also [Au].

The formula (6.21) implies that if PO(b1) = PO(b2) the Floer homol-
ogy group HF ((L1, b1), (L2, b2); Λ0) is defined as the homology group of the
boundary operator db1,b2 . The Floer homology HF ((L1, b1), (L2, b2); Λ) is
expected to be the mirror to the cohomology of the morphism complex of
the category of matrix factorizations of W = PO.41 We remark that the
matrix factorization category of W at p is trivial unless p is a critical point
of W .

Thus HF ((L1, b1), (L2, b2); Λ) is expected to be zero unless b1, b2 are
critical points of PO.42 We may also expect that the set of critical values of
PO is a finite set.43 We define:
C := {c ∈ Λ0 | ∃(L, b), b ∈ M̃weak(L), PO(b) = c, HF ((L, b), (L, b); Λ) �= 0}.
Then, for each c ∈ C, we can define a strict and unital filtered A∞ category
Fukst(X; c) so that its object is a pair (L, b) of a Lagrangian submanifold L
and its weak bounding cochain b with PO(b) = c. The structure operations
of Fukst(X; c) can be defined in the same way as the case of Fukst(X), except
m0. Note that mb

0(1) = PO(b)e(L,b) �= 0. However we redefine mb
0 by putting

mb
0(1) = 0. In the same way as mb

1 ◦ mb
1 = 0 (which follows from (6.21)) we

can check A∞ formula when we redefine mb
0(1) to be 0.

41We remark that PO is not a holomorphic function but is a rigid analytic function.
So we need to use a rigid analytic analogue of the theory of a matrix factorization. Such
a theory is not developed much yet.

42This fact is rigorously proved in many cases. However the author does not know the
proof which works in complete generality. One issue is since M̃weak(L) the domain of PO

is not a usual smooth complex manifold, it is not so obvious what we mean by a critical
point of PO.

43This fact is rigorously proved also in many cases but not in complete generality.
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Thus, in non-Calabi-Yau cases, we have several strict filtered A∞ cate-
gories associated to X. In the case of Landau-Ginzburg B-model (M∨,W ),
there are several matrix factorization categories. Namely for each critical
value of W we can associate a category of matrix factorizations. The mirror
symmetry is expected to identify them together with decompositions.

Other than the toric case ([FOOO6])44, homological mirror symmetry
of this type is proved for a certain toric degeneration [NNU1, NNU2] and
monotone hypersurfaces of CPn [She2] and etc.

The decompositions of the category are expected to correspond to the
decompositions of the quantum cohomology as follows.

Conjecture 6.9. The quantum cohomology ring HQ(M,Λ) is decom-
posed into the direct product of the rings

(6.22) HQ(M,Λ) :=
∏
c∈C

HQ(M,Λ; c).

The closed open map q : HQ(M,Λ) → HH(Fukst(X)) is decomposed into a
direct product of the ring homomorphisms:
(6.23) qc : HQ(M,Λ; c) → HH(Fukst(X); c).

We have an equality
(6.24) c1 ∪q x = cx

for x ∈ HQ(M,Λ; c). Here c1 is the first Chern class and ∪q is the quantum
cup product.

This conjecture is known to be true in many cases including the case of
toric manifolds. It seems unlikely that it is proved in complete generality at
the stage when this article is written.

The author heard this conjecture in a lecture by Kontsevich in the year
2006. The author does not know how the story developed among physicists.

Note that in Landau-Ginzburg B-model (M∨,W ) the Jacobi ring
Jac(M∨,W ) is decomposed as:

(6.25) Jac(W ) =
∏

c∈Crit(W )

Jacc(W ).

Here Crit(W ) is the set of critical values of W . If the set of critical points
is isolated Jc(W ) is the direct product of Jp(W ) for critical points p with
W (p) = c. If the critical point set is not isolated the story seems to be more
involved.

It is expected that the two decompositions (6.22) and (6.25) coincide via
mirror symmetry.

44To show that the result of [FOOO6] implies this conjecture we need to show that
the finitely many Lagrangian tori which are Tn orbit and have nontrivial Floer homology,
generates the Fukaya category of the toric manifold. This is a consequence of the result
discussed in Subsection 6.3, but is still on the way being written. In the case when the
toric manifold this follows from [EL].
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6.6. Seidel’s directed A∞ category. In this subsection, we discuss
the mirror symmetry between a complex manifold M and a pair (M∨,W ).
Here M is not Calabi-Yau. Since the present author is not an expert of
this part of homological mirror symmetry, this subsection is rather brief
compared to the importance of the topic. When Fi, i = 1, 2 are coherent
sheaves of M , the Serre duality says
(6.26) Hk(Hom(F1,F2)) ∼= Hn−k(Hom(F2,F1)⊗KM ),

where n is the complex dimension of M and KM is the canonical bundle, that
is, the n-th exterior power of complex cotangent bundle of M . In the Calabi-
Yau case KM is trivial so Hk(Hom(F1,F2)) ∼= Hn−k(Hom(F2,F1)). Note
that the Lagrangian Floer homology of compact Lagrangian submanifolds
Li satisfies HF ((L1, b1), (L2, b2))) ∼= HF ((L2, b2), (L1, b1)), which is a part
of cyclic symmetry and is induced by the Poincaré duality. In the Calabi-Yau
case, this is consistent with homological mirror symmetry. However in non-
Calabi-Yau case this means that we need to study non-compact Lagrangian
submanifolds. Seidel [Se4] defined a directed A∞ category from the pair
(M∨,W ) (in the exact situation) using a certain set of non-compact La-
grangian submanifolds.45

Definition 6.10. A directed A∞ category C over R is an A∞ category
which is strict, unital and linear over R and such that:

(1) The set of its objects consist of finitely many elements c1, . . . , cn,
indexed by a totally ordered set i = 1, . . . , n.

(2) If i < j the set of morphisms C (cj , ci) is {0}.
(3) The set of endmorphisms C (ci, ci) is R whose basis is the unit.
(4) If i < j the set of morphisms C (ci, cj) is a finite dimensional free

R module.
In complex geometry, an origin of such a directed category is Beilinson’s

paper [Be], where the category of coherent sheaves on the projective space
Pn is studied. In that case ci = O(i) for i = 0, . . . , n satisfies this condition
for C (ci, cj) := H∂(Hom(ci, cj)). (Here O(i) is a line bundle of degree i.)
This set is also a generator of the derived category of coherent sheaves. Such
a generator is called a full (strong) exceptional collection (of the category of
coherent sheaves). This notion is defined in [GR].

Seidel’s construction is the case when the symplectic manifold M∨ is ex-
act and W : M∨ → C has a mild singularity, that is, for each critical value
q, the fiber M∨

q = W−1(q) is an immersed symplectic submanifold with one
transversal self-intersection point.46 The non-compact Lagrangian subman-
ifold Seidel studied is a kind of unstable manifold of W which is called a
Lefschetz thimble. For p ∈ M∨ such that DpW �= 0, decompose the tangent

45Seidel mentioned that such a theory is proposed by Kontsevich. See [Ko2]. The
work [HIV] by physicists is also an origin of this construction.

46In the case of quartic surface Seidel studied, this situation appears after removing
a certain divisor.
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space TpM
∨ as TpM

∨ = T v
pM

∨⊕T h
p M

∨ where T v
pM

∨ = TpW
−1(W (p)) and

T h
p M

∨ is its orthogonal complement with respect to the symplectic form.
Using this decomposition we can define a horizontal lift of a path in C. For
each critical value qi ∈ C take a path γi : [0,∞) → C such that γi(0) = qi
and that, if t is sufficiently large, then γi(t) = t +

√
−1Ci for a certain

Ci ∈ R, such that it does not intersect with critical values for t �= 0. For
x ∈ W−1(γi(t0)) we take a horizontal lift γ̃x : [0, t0] → M∨ of γi such that
γ̃x(t0) = x. We consider the set Li of all x ∈ W−1(γi([0,∞)) such that γ̃x(0)
is a critical point of Mqi = W−1(qi). It is known that Li is a Lagrangian sub-
manifold of M∨ and is called a Lefschetz thimble. For each γi(t0), t0 �= 0 the
fiber W−1(γi(t0))∩Li is known to be a Lagrangian sphere of the symplectic
manifold W−1(γi(t0)) and is called a vanishing cycle.

We assume that the path γi and γj do not intersect each other for i �= j
and that Ci < Cj for i < j. The Lefschetz thimbles Li i = 1, . . . , n do not
intersect each other. We will perturb it slightly near the infinity so that
they intersect as follows. We take a Hamiltonian H : M∨ → R such that
H(x) = ε‖W (x)‖2. We consider the time one map ϕH of the Hamiltonian
vector field XH . The map ϕH rotates the image of γi slightly to the counter
clockwise direction so that ϕH(Li) ∩ Lj �= ∅ if and only if i < j. We put

S (Li, Lj) = CF (ϕH(Li), Lj),

where the right hand side is the usual Floer complex. This is zero if j < i and
so (6.10) is satisfied. For i = j we define S (Li, Li) = R, the ground ring.
Under a certain exactness assumption on the symplectic form and a certain
condition on the behavior of W near infinity, Seidel defined a directed A∞
category47 S (M∨,W ) the set of whose objects are {Li | i = 1, . . . , n} and
the morphism complex is S (Li, Lj).

It is possible to increase objects by requiring the Lagrangian submanifold
to have an asymptotic behavior similar to Li’s. Namely we can consider L
such that outside a compact set L is obtained by a parallel transport along
an arc t �→ t+C

√
−1. (The case of a compact Lagrangian submanifold L is

included.)
Remark 6.11. In place of rotating Lagrangian submanifolds a bit one

can take a Hamiltonian such as ‖W (x)‖4 so that the rotation angle goes
∞ as one goes to the infinity of C. Abouzaid-Seidel [ASe] defined such
an A∞ category which is called a wrapped (Fukaya) category. A wrapped
category is related to the symplectic homology in the same way as Fukst(X)
is related to the quantum cohomology of X.48 Auroux proposed to generalize
the notion of a wrapping to a partial wrapping. Ganatra-Pardon-Shande
[GPS1, GPS2, GPS3] realized this program successfully.

The homological mirror symmetry conjectures that a fully exceptional
collection of a, say, Fano manifold M is isomorphic to a version of S (M∨,W ).

47Sometime called Fukaya-Seidel category.
48Namely the latter is the Hochshild cohomology of the former.
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Seidel first proved it in the case when M = CP 2. It then is generalized
to the case of 2-dimensional weighted projective space (Auroux-Kazarkov-
Orlov [AKO2]) and blow up of CP 2 at k point (k ≤ 3 by Ueda [Ue] and
then k ≤ 8 by Auroux-Kazarkov-Orlov [AKO1]). It is also proved when M
is a toric Fano manifold (Abouzaid [Ab1] and Fang-Liu-Treumann-Zaslov
[FLTZ]49).

Compared to the story when M is the symplectic side, an issue is that
it is not clear how to obtain the function W in a conceptional way. The
approach by [AAK] (See also [CLL]) may give a way to do so.

7. Lagrangian correspondence and Gauge theory

Before discussing further the topological field theory of 2-3-4 dimen-
sional manifolds based on Yang-Mills theory, we describe its ‘finite dimen-
sional analogue’, that is, a Lagrangian correspondence and its relation to
Lagrangian Floer theory.

Let (X,ωX), (Y, ωY ) be symplectic manifolds. We consider the prod-
uct X × Y together with the symplectic form −π∗

1ωX + π∗
2ωY . We write

−X × Y := (X × Y,−π∗
1ωX + π∗

2ωY ). Weinstein [We] proposed to regard
a Lagrangian submanifold of the product −X × Y as a morphism X → Y
between symplectic manifolds. We call a Lagrangian submanifold of −X×Y
a Lagrangian correspondence.

There are several reasons behind this proposal.
(Wei1) We consider a symplectic diffeomorphism ϕ : X → Y (that is, a dif-

feomorphism ϕ such that ϕ∗ωY = ωX .) Then its graph {(x, ϕ(x)) |
x ∈ X} is a Lagrangian submanifold of −X × Y .

(Wei2) Let Xi be a symplectic manifold for i = 1, 2, 3 and Li(i+1) ⊂ −Xi×
Xi+1 be a Lagrangian submanifold for i = 1, 2. We consider the
fiber product:

L13 = {(x, y) ∈ L12 × L23 | π2(x) = π1(y)},
where for z = (a, b) ∈ −Xi ×Xi+1 we denote π1(z) = a, π2(z) = b.
In the generic case, that is, the case when the fiber product is
transversal, it is easy to see that L13 is a smooth manifold and
L13 → −X1 × X3, (x, y) �→ (π1(x), π2(y)) is a Lagrangian im-
mersion. Thus we can ‘generically’ compose Lagrangian correspon-
dences.

(Wei3) Another example of a Lagrangian correspondence is obtained from
the symplectic quotient. Suppose X is a symplectic manifold on
which a compact Lie group G acts preserving the symplectic struc-
ture. We assume that there exists a moment map μ : X → g∗, where
g∗ is the Lie algebra of G.50 The symplectic quotient X//G is by

49The latter research uses D-module rather than Floer homology.
50This means that for V ∈ g the vector field V∗ on X obtained by G action satisfies

ω(V∗(p),W ) = 〈Dpμ(W ), V 〉. Here W ∈ Tp(X) and Dpμ : Tp(X) → g
∗ is the derivative of

μ.
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definition μ−1(0)/G ([MWe]). If X//G is smooth, it is known that
it carries a symplectic form ω whose pullback to μ−1(0) coincides
with the restriction of the symplectic form of X.

Now we consider
L = {(x, y) ∈ X ×X//G | μ(x) = 0, [x] = y}.

This is a Lagrangian submanifold of −X ×X//G.
Since this proposal by Weinstein looks so natural, there has been at-

tempts to associate a functor FL : Fukst(X) → Fukst(Y ) to a Lagrangian
correspondence L. A possible naive idea to do so is the following. Let L be a
Lagrangian submanifold of X. Instead of associating an object of Fukst(Y )
to L, we try to define a right Fukst(Y )-module FL(L). In the cohomology
level, FL(L) can be defined by associating the Floer homology HF (L;L×L′)
in the product −X × Y to a Lagrangian submanifold L′ of Y . Actually we
can construct an A∞ functor:
(7.1) FL : Fukst(X) → RMOD(Fukst(Y ))

in this way. (See [Fu13, Section 5] for its rigorous construction.) As we
explained in Section 5 of this article, an object of RMOD(Fukst(Y )) can be
regarded as an ‘extended object’ of Fukst(Y ) (via Yoneda embedding). Thus
(7.1) could be regarded as a version of FL : Fukst(X) → Fukst(Y ). However
the problem is in this formulation it is difficult to compose FL12 and FL23

where Li(i+1) is a Lagrangian submanifold of −Xi ×Xi+1.51 This situation
is somewhat similar to the following: If we are given a current S (that is, a
Schwartz kernel) on M ×N and a smooth differential form u on M then we
obtain a current S∗(u) on N by the equality
(7.2) S∗(u)(v) = S(u× π∗

2(v)).

In other words, an object of Fukst is an analogy of a smooth differential
form and an object of RMOD(Fukst(Y )) is an analogy of a distributional
form. We use a ‘test Lagrangian’ in place of a ‘test function’. It is difficult to
compose two operators of the form (7.2). In this sense, Theorem 7.1 could
be regarded as a kind of ‘regularity theorem’.

In [MWW, WW1, WW2, WW4, WW3], Wehrheim-Woodward-
Ma’u used the following idea to go around this problem. For a given sym-
plectic manifold X, they consider a series of Lagrangian correspondences
Li ⊂ −Xi ×Xi+1 such that X0 is a point and Xn = X. They regard such
a system (L0, . . . , Ln) as an object of expanded category Fuk(X)+. Then, if
L ⊂ −X × Y is a Lagrangian correspondence, one can define

(WL)ob : OB(Fuk(X)+) → OB(Fuk(Y )+),

by (L0, . . . , Ln) �→ (L0, . . . , Ln,L).
To define the category Fuk(X)+, one needs to define the Floer homology

between extended objects (L0, . . . , Ln), (L′
0, . . . , L

′
n′), where Li ⊂ −Xi ×

51This point is mentioned also in the first page of [MWW].
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Xi+1 and L′
i ⊂ −X ′

i×X ′
i+1, X0, X

′
0 are points and Xn = X ′

n′ = X. They de-
note this Floer homology by HF (L0, . . . , Ln, L

′
n′ , . . . , L′

0). Wehrheim-
Woodward-Ma’u used the notion of a pseudo-holomorphic quilt to define
it. Actually their definition is equivalent to the following:

(7.3) HF (L0, . . . , Ln, L
′
n′ , . . . , L′

0) := HF (L0×· · ·×Ln×L′
0×· · ·×L′

n′ ; Δ).

Here

(7.4) Δ ⊂
(

n−1∏
i=1

(−Xi ×Xi)

)
×
(

n′−1∏
i=1

(−X ′
i′ ×X ′

i′)

)
× (−X ×X)

is the product of diagonals. The right hand side of (7.3) is the Floer homology
of two Lagrangian submanifolds in the symplectic manifold given in (7.4).

In the simplest case, a pseudo-holomorphic quilt used to define
HF (L0, L1, L

′
0) is a map u = (u1, u2) from the domain depicted in Fig-

ure 8 below. Here the domain is divided into two parts. The map u1 (resp.
u2) is defined on the left (resp. right) part of the domain and is a pseudo-
holomorphic map to −X1 (resp. X). The boundary conditions are required
on the three lines, the left most, the right most and the middle (dotted)
lines. The boundary condition for the left most line is u1(z) ∈ L0, one for
the right most line is u2(z) ∈ L′

0. The boundary condition for the middle
line is (u1(z), u2(z)) ∈ L1. We remark that L1 is a Lagrangian submanifold
of −X1 ×X. The middle line is called a seam.

Figure 8. A simplest pseudo-holomorphic quilt.

By reflexion principle, (u1, u2) : [0, 1] → −X1 × X is a pseudo-holo-
morphic map which satisfies the boundary condition given by Lagrangian
submanifolds L1 and L0×L′

0. The moduli space of such pseudo-holomorphic
maps is used to define HF (L1, L0 × L′

0).
The pseudo-holomorphic quilt used to define HF (L0, . . . , Ln, L

′
n′ , . . . , L′

0)
is as in Figure 9 below. Here ui (resp. u′i) is a pseudo-holomorphic map to
−Xi (resp. X ′

i) and u is a pseudo-holomorphic map to X.
Wehrheim-Woodward-Ma’u studied the case when all the Lagrangian

submanifolds Li, L′
i are monotone. So we can use Oh’s work [Oh] to define

it.
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Figure 9. A pseudo-holomorphic quilt.

In this way [MWW] defined a version of an A∞ bi-functor52

(7.5) MWW : Fukst(−X × Y )× Fukst(X) → Fukst(Y )

where all the Lagrangian submanifolds involved are assumed to be monotone
and embedded and Fukst(. . . ) is replaced by Fukst(. . . )+.

The advantage to use pseudo-holomorphic quilt rather than Floer ho-
mology in the direct product (as in (7.3)) lies in the fact that, then, one can
use ‘strip shrinking’ to prove the next isomorphism

(7.6)
HF (L0, . . . , Ln, L

′
n′ , . . . , L′

0)

∼= HF (L0, . . . , Ln−1, Ln ×X L′
n′ , L′

n′−1, . . . , L
′
0).

The strip shrinking is a process to change the width between two seams
until it becomes 0. (See Figure 10.) Note that the method of using reflexion
principle to replace Wehrheim-Woodward’s definition by (7.3) works only
in the case when all the strips have the same width. Therefore it is not
consistent with strip shrinking.

Figure 10. Strip shrinking.

[WW1, WW2, WW4, WW3] proved the isomorphism (7.6) under
the assumption that all the Lagrangian submanifolds involved (including
the fiber product Ln ×X L′

n′) are embedded and monotone.53 The isomor-
phism (7.6) is a version of composability of filtered A∞ functors associated to
the composition of Lagrangian correspondences. Later Lekili and Lipyanskiy
[LL] found an alternative method, using cobordism argument instead of strip
shrinking.54 For example Lekili-Lipyanskiy’s proof of HF (L0, L1, L

′
1, L

′
0)

∼=
52See [Fu13, Subsection 5.1] for the definition of A∞ bi-functor.
53See [BW] for an attempt to remove this condition.
54Using the virtual fundamental chain technique together with Lekili-Lipyanskiy’s

method we can prove (7.6) without assuming monotonicity or embedded-ness of La-
grangian submanifolds.
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HF (L0, L1 ×X L′
1, L

′
0) uses the moduli space of pseudo-holomorphic curves

with the domain depicted by Figure 11 below. The three dotted lines (seams)
are required to be mapped to L1, L′

1, L1×X L′
1, respectively. The other two

curves are required to be mapped to L0 and L′
0. The three domains are

required to be mapped to −X1, X ′
1, X as depicted. The maps on those

domains are required to be pseudo-holomorphic. In the left end the pseudo-
holomorphic quilt used to define HF (L0, L1, L

′
1, L

′
0) appears. In the right

end the pseudo-holomorphic quilt used to define HF (L0, L1 ×X L′
1, L

′
0) ap-

pears. Lekili and Lipyanskiy called Figure 11 the Y-diagram.

Figure 11. Y Diagram.

After those works had been done, the author found that the naive idea
in 1990’s which we described at the beginning of this section, can be real-
ized using the technology developed in these 20 years and the cobordism
argument due to Lekili and Lipyanskiy, as follows.

We consider the filtered A∞ functor (7.1) and also the Yoneda functor:

(7.7) YON : Fukst(Y ) → RMOD(Fukst(Y )).

Theorem 7.1 ([Fu13]). Let (L, b) ∈ OB(Fukst(−X × Y )) and (L, b) ∈
OB(Fukst(X)) be objects such that the fiber product L×X L is transversal.
Then there exists a bounding cochain b′ of the immersed Lagrangian subman-
ifold L′ := L ×X L of Y such that (YON)ob(L

′, b′) is homotopy equivalent
to (FL)ob(L, b).

Theorem 7.1 enables us to obtain a filtered A∞ functor

W(L,b) : Fukst(X) → Fukst(Y )

such that its composition with the Yoneda functor is homotopy equivalent
to the functor FL in (7.1). It is also proved in [Fu13] that W(L,b) is induced
from a filtered A∞ bi-functor (7.5), where objects of the categories involved
are immersed and unobstructed. (It is unnecessary to assume them to be
monotone or embedded.)



HOMOLOGICAL ALGEBRA AND MODULI SPACES 223

The association (L, b) �→ W(L,b) is functorial. Namely the following is
proved in [Fu13]. Let (Li(i+1), bi(i+1)) ∈ OB(Fukst(−Xi×Xi+1)) for i = 1, 2.
We assume that the fiber product L12 ×X2 L23 is transversal and put L13 =
L12 ×X2 L23, which is an immersed Lagrangian submanifold of −X1 ×X3.
Then there exists a bounding cochain b13 of L13 such that:

W(L13,b13) ∼ W(L23,b23) ◦W(L12,b12)

where ∼ means homotopy equivalent.
In the situation of (Wei3) the Lagrangian correspondence from X to

X//G is expected to induce a functor from an equivariant version of Fukst(X)
to Fukst(X//G). Such a functor is studied by Woodward and Xu in [WX].
It is an ‘open string analogue’ of [Wo], based on gauged sigma model (See
[CGRS]).

An infinite dimensional version of the situation of (Wei3) appears in
gauge theory as follows. Let Σ be a Riemann surface and EΣ an SO(3) or
SU(2) principal bundle on it. We define A(Σ; EΣ) to be the set of all SO(3)
or SU(2) connections of EΣ.55 The space A(Σ; EΣ) is an affine space and the
tangent space of each point is the vector space Γ(Σ,Λ1 ⊗ adEΣ) of sections.
Here Λ1 is the bundle of 1-forms and adEΣ is the adjoint bundle associated
to EΣ. For V,W ∈ Γ(Σ,Λ1 ⊗ adEΣ) we put

Ω(V,W ) = − 1

8π2

∫
Σ
Tr(V ∧W ),

which defines a symplectic structure on A(Σ; EΣ).
Let G(Σ; EΣ) be the gauge transformation group. It is easy to see that

the G(Σ; EΣ) action on Γ(Σ,Λ1 ⊗ adEΣ) preserves the symplectic structure.
Moreover there is a moment map of this action, which is nothing but the
curvature, in the following way. The Lie algebra of the gauge transformation
group is Γ(Σ, adEΣ). We identify its dual with Γ(Σ,Λ2 ⊗ adEΣ) by

V (W ) = − 1

8π2

∫
Σ
Tr(V ∧W )

where W ∈ Γ(Σ, adEΣ) and V ∈ Γ(Σ,Λ2 ⊗ adEΣ) in the right hand side and
V is a linear map Γ(Σ, adEΣ) → R in the left hand side. Thus the moment
map is a map μ : A(Σ; EΣ) → Γ(Σ,Λ2 ⊗ adEΣ). One can check that

μ(A) = − 1

8π2
FA.

It implies that the symplectic quotient of the G(Σ; EΣ) action on A(Σ; EΣ)
is the set of gauge equivalence classes of the flat connections.

One can also observe that a pseudo-holomorphic map u from a domain
D of C to A(Σ; EΣ) is related to a solution of the ASD-equation on D×Σ as

55The discussion here is formal or heuristic. So we do not specify how much regularity
we require for an element of A(Σ; EΣ).
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follows. Let z = s +
√
−1t be the standard coordinate of D ⊂ C. We write

a connection of ED×Σ := D × EΣ as
A = A(s, t) + Φ(s, t)ds+Ψ(s, t)dt.

Here A(s, t) is a connection of EΣ and Φ(s, t), Ψ(s, t) are sections of Λ1
Σ ⊗

adEΣ, for each (s, t). The ASD-equation (1.1) for A can be written as

(7.8)

∂A

∂t
+ ∗Σ

∂A

∂s
= dA(s,t)Ψ(s, t)− ∗ΣdA(s,t)Φ(s, t),

FA(s,t) = ∗Σ
(
∂Φ

∂t
− ∂Ψ

∂s
− [Φ,Ψ]

)
.

(See [DS].) Here we use the product metric on D × Σ. Note that ∗Σ :
Γ(Σ,Λ1 ⊗ adEΣ) → Γ(Σ,Λ1 ⊗ adEΣ) is a complex structure of A(Σ; EΣ). So
if we define u : D2 → A(Σ; EΣ) by u(s, t) = A(s, t), then the first equation
of (7.8) can be regarded as

(7.9) ∂u

∂s
≡ J

∂u

∂t
mod ImdA(s,t) + ∗ΣImdA(s,t).

We consider the metric gD ⊕ εgΣ. Then the first equation does not change
but the second equation becomes

FA(s,t) = ε ∗Σ
(
∂Φ

∂t
− ∂Ψ

∂s
− [Φ,Ψ]

)
.

Thus, in the limit ε → 0, this equation becomes FA(s,t) ≡ 0, that is to say,
A(s, t) is flat. Therefore (s, t) �→ [u(s, t)] defines a map D → R(Σ, EΣ), which
we write u. Then, the equation (7.9) says that u is a (pseudo)holomorphic
map. Thus in the limit ε → 0 the equation (7.8) becomes the (non-linear)
Cauchy-Riemann equation of a map u : D → R(Σ, EΣ). This fact is the main
motivation of Conjecture 3.2.

In this infinite dimensional version, the space corresponding to the La-
grangian correspondence is a subspace of A(Σ; EΣ)×R(Σ, EΣ) consisting of
(a, x) such that:
(mat1) a is a flat connection of EΣ.
(mat2) x is a point of R(Σ, EΣ) which is represented by the connection a.

This condition is called the matching condition and is introduced by Lipyan-
skiy [Lip].56 The set of such (a, x) is a Lagrangian submanifold of A(Σ; EΣ)×
R(Σ, EΣ).

Let us try to define a moduli space similar to that of simple pseudo-
holomorphic quilts depicted in Figure 8, in our infinite dimensional situation.
The correspondence L1 is the set of (A, x) defined above. L′

0 is a Lagrangian
submanifold of R(Σ, EΣ). L0 is supposed to be a ‘Lagrangian submanifold’ of
the infinite dimensional symplectic manifold A(Σ; EΣ). Here however the idea
is to regard a pair (M, EM ) of a 3-dimensional manifold M with boundary

56A related moduli space was introduced in [Fu5]. We remark that the line where the
equation changes from the ASD-equation to the non-linear Cauchy-Riemann equation in
[Fu5, Lip] plays a similar role as the seams appearing in the pseudo-holomorphic quilt.
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Σ and a bundle EM such that its restriction to Σ is EΣ as a ‘Lagrangian
submanifold’ of A(Σ; EΣ).

More precisely, we consider the following moduli space. We first put a
Riemannian metric of M such that the neighborhood of its boundary is
isometric to (and is identified with) Σ × [−1, 0], where ∂M = Σ × {0}. We
then consider a pair (A, u) such that:
(mix1) A is a connection on M ×R. We require that A satisfies the ASD-

equation (1.1).
(mix2) u : [0, 1] × R → R(Σ, EΣ) is a map. We require that u satisfies the

non-linear Cauchy-Riemann equation (1.3).
(mix3) Let τ ∈ R. We consider the restriction A(0, τ) of A to Σ×{(0, τ)}.

We then require that (A(0, τ), u(0, τ)) satisfies Conditions (mat1),
(mat2).

(mix4) We require that u(1, τ) is contained in the given Lagrangian sub-
manifold L of R(Σ, EΣ).

Figure 12. Mixed equation.

Using the moduli space of such pairs (A, u) satisfying appropriate as-
ymptotic boundary conditions, for τ → ±∞, we can define HF (M ; (L, b))
the Floer homology with boundary condition (L, b). (Here b is a bounding
cochain of L.) Note that we assume that w2(EΣ) = [Σ]. The basic analytic
package to study such moduli spaces is established in [Lip, DFL1, DFL2].

Moreover using several Lagrangian submanifolds in place of a single L in
(mix4), we can extend (L, b) �→ HF (M ; (L, b)) to a right filtered A∞ module
over the filtered A∞ category Fukst(R(Σ, EΣ)).

Furthermore, the proof of Theorem 7.1 can be generalized in this gauge
theoretical situation, and we can show that there is a bounding cochain bM of
the immersed Lagrangian submanifold R(K; EM ) such that (R(M ; EM ), bM )
via Yoneda embedding is sent to the right filtered A∞ module, (L, b) �→
HF (M ; (L, b)).

Finally by a cobordism argument as in [Fu2, LL, DFL2] we can show
(7.10) HF ((R(M1; EM1), bM1), (R(M2; EM2), bM2))

∼= I(M, EM )
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where ∂M1 = Σ = −∂M2 and M is obtained from M1 and M2 by gluing
them along Σ.

In the case when R(Mi; EMi) is an embedded Lagrangian submanifold
for i = 1, 2, (7.10) is proved in [DFL2], where bMi = 0. The general case is
on the way being written.

The author emphasizes that the reference below is far from being complete.
The references in the symplectic geometry are more emphasized than those in the
complex or algebraic geometry.
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