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Boundedness and moduli of algebraic varieties

Caucher Birkar

Abstract. In this short note we give a survey of some of the recent
developments in moduli theory from the point of view of birational ge-
ometry.

1. Introduction

This text is based on a talk given at a conference celebrating the 110th
anniversary of the birth of Shing-Shen Chern, held at Tsinghua University
in October 2021.

We will work over an algebraically closed field k of characteristic zero. We
will aim to explain some of the recent advances on boundedness of various
families of algebraic varieties and related results in moduli theory from the
point of view of birational geometry. We do not attempt to go too much into
the history of the subject.

Boundedness of a class of varieties roughly means that the varieties
in the class are parametrised, not necessarily in a one-to-one way, by points
of a scheme of finite type. There are many reasons for trying to show that
certain classes of algebraic varieties form bounded families. We list a few:

• Boundedness is often one of the first steps towards construction of
finite type moduli spaces.

• Boundedness is used in the proof of certain fundamental results
which are not primarily concerned with boundedness of varieties,
e.g. construction of complements on Fano varieties.

• Numerical data of varieties in a bounded family are usually finite,
hence one is reduced to checking questions against a finite set of
data.

Moduli spaces on the other hand parametrise collections of algebraic
varieties in a more precise form. Roughly speaking, this means that each
point of the moduli space corresponds to exactly one member of the given
collection. These spaces are not viewed just as sets but with their own alge-
braic geometric structure.
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374 C. BIRKAR

There are many reasons for studying moduli spaces. Here we list a few:

• Constructing moduli spaces is a natural step towards classification
of the varieties under consideration.

• Moduli theory provides highly non-trivial examples of varieties and
schemes.

• Moduli spaces are used to solve other fundamental problems in
algebraic geometry, other areas of mathematics, and mathematical
physics.

Moduli theory has a long history going back at least as far as 19th cen-
tury. For example, Riemann studied moduli spaces of curves of fixed genus.
But moduli was given a new meaning in the Grothendieck school of alge-
braic geometry where the emphasis was not only on constructing a space
that parametrises a given class of objects but also that the moduli space
should give information about families of such objects. Equipped with tools
developed by Grothendieck, Mumford elevated the theory to a new level via
the introduction of the concept of stability and the development of Geomet-
ric Invariant Theory (GIT) which is a general approach to construction of
moduli spaces. He successfully constructed moduli spaces of stable curves
and abelian varieties and paved the way for the development of the theory
for other classes of varieties. GIT has also been successfully applied to the
moduli theory of sheaves on algebraic varieties.

As long as one is concerned with moduli of smooth varieties, GIT often
works well. Indeed, Gieseker constructed moduli of surfaces of general type
and Viehweg constructed moduli of good minimal models X; good means
KX is semi-ample. In general these moduli spaces are only quasi-projective
and not compact. To obtain compact moduli spaces, it is usually necessary
to incorporate singular varieties in the family.

It is strongly desirable to construct projective moduli spaces. One reason
is that it is easier to study the geometry of compact spaces. Another reason
is that projective schemes are of finite type, hence one deals with finitely
many numerical data. Yet another reason is that projectivity ensures that
one does not encounter weird properties exhibited by some non-projective
schemes. To construct projective moduli spaces, one is forced to work with
families that are bounded. It turns out that ensuring this boundedness is
often one of the hardest steps in the process.

Deligne and Mumford already compactified moduli spaces of smooth
projective curves of fixed genus by adding nodal stable curves. Construction
of moduli spaces of singular varieties on the one hand and compactification
of moduli spaces of smooth varieties on the other hand motivated the search
for alternatives to GIT. In the 80’s, Kollár and Shepherd-Barron [20] initi-
ated the KSBA moduli theory for surfaces of general type which was later
completed by Alexeev [2]. This approach was also applied by Alexeev to con-
struct compact moduli of abelian varieties [1]. After four decades and with
contributions by many people, the KSBA theory was recently completed
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resulting in the construction of compactified moduli spaces of varieties of
general type, see Kollár [21]. More recently, Birkar [4] has applied tools from
the KSBA theory to construct compactified moduli spaces of good minimal
models. On the other hand, a large number of people have contributed to
the construction of moduli spaces for K-stable Fano varieties.

The construction of the moduli spaces in the last paragraph rely heavily
on fundamental developments in birational geometry, in particular, on the
machinery of the minimal model program [12] [19] [11] and on various
boundedness results and related topics proved in [16] [17] [18] [9] [8] [5] [7]
[6] [13] [4].

Acknowledgements. I would like to thank the referee for the correc-
tions.

2. Moduli problems and Hilbert schemes

So what is a moduli space? Suppose we are given a family P of pro-
jective varieties or schemes. We can think of a moduli space for P as a
space parametrising elements of P and giving information about families of
such elements. To define a moduli problem, we need to keep in mind two
important points:

• How we consider the elements of P , e.g. up to isomorphism.
• Which families are allowed.

For example, one might try to construct a moduli space for smooth projective
curves X of genus g in P2. We may count two such X as one only if they
are the same as subsets of P2; so if X,X ′ are isomorphic in the abstract
sense but sit in different places in P2, then we count them as different. On
the other hand, one may want to take a different approach and count X,X ′

as one if there is an isomorphism P2 → P2 mapping X onto X ′. The two
different approaches lead to different moduli problems. So it is important to
make it clear how we differentiate between the elements of P .

Allowing arbitrary families of the elements of P usually runs into trouble.
So one is forced to put some restrictions on the kind of families allowed.

Before going further, let’s consider some examples of moduli problems
and moduli spaces. We start with a classical example.

Example 2.1 (Hypersurfaces). Fix natural numbers n, r and consider
P = {degree r hypersurfaces X ⊂ Pn}

= {closed subschemes X ⊂ Pn defined by a degree r polynomial}.
This is in 1-1 correspondence with

{degree r homog. polynomials 0 �= F ∈ k[t0, . . . , tn] up to scaling}.
This is in turn in 1-1 correspondence with closed points of PN where N =(
n+r
r

)
− 1. So we see that the closed points of PN parametrise the elements

of P in a natural way.
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Example 2.2 (Hilbert schemes). Pick a polynomial Φ ∈ Q[t] so that
Φ(Z) ⊂ Z. Each closed subscheme X ⊂ Pn has a so-called Hilbert polynomial
ΦX satisfying ΦX(m) = X (OX(m)) for m ∈ Z. Consider

P = {closed subschemes X ⊂ Pn with ΦX = Φ}.
Grothendieck proved that

• there is a projective scheme H such that

P 1−1←→ closed points of H,

• there is a universal family H → H such that for each scheme S/k
and for each closed subscheme Z ⊂ Pn×S flat over S with ΦZs = Φ
for fibres Zs, there is a morphism S → H so that Z → S is the
pullback of H → H via S → H.

The Hilbert scheme H is the moduli space of P in the nicest possible
sense, that is, it is a fine moduli space. Being a fine moduli space essentially
means that there is a universal family as in the example so that all allowable
families are pullbacks of the universal family. Moduli spaces of varieties are
often not fine.

In modern terms, defining a moduli problem for a class of varieties
or schemes P means defining a contravariant functor F : C → S from a
category of schemes C to the category of sets S where F(C) consists of
certain morphisms over C whose fibres are elements of P and such that for
a morphism of schemes C → D in C, F(D) → F(C) is given by pullback of
families.

If there is a scheme M in C representing the functor, then we say M
is a fine moduli space for P or more precisely for F. On the other hand, a
scheme M with the following properties is called a coarse moduli space:

• we have a natural transformation of functors: F → HomC(−,M),
• F(Spec k) → HomC(Spec k,M) is one-to-one,
• for any scheme N in C, any natural transformation F → HomC(−, N)

is factored as F → HomC(−,M) composed with a unique natural
transformation HomC(−,M) → HomC(−, N).

Giving precise descriptions of functors of the moduli spaces considered
below will be too technical and take much space. We will then often suppress
this in the following sections and usually focus on the given class of the
varieties and schemes.

3. General strategy for construction of moduli spaces

Let P be a set of projective varieties or schemes and F be a moduli
problem for P . Assume P is bounded which by definition means that there
is a projective morphism V → T of schemes of finite type so that each
X ∈ P is isomorphic to the fibre of V → T over some closed point t. Then
there exists n such that each X ∈ P has a embedding X ⊆ Pn with bounded
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degree (in practice, one puts some stronger assumptions on this embedding).
In particular,

{Hilbert polynomial ΦX | X ∈ P}
is finite. We can partition P so that we can assume ΦX = Φ is fixed. Each
X ∈ P determines a point [X] ∈ H in the Hilbert scheme H for Pn,Φ, but
not in a unique way because X ↪→ Pn is not unique.

Assume there exists a locally closed subscheme R ⊆ H such that
closed points of R = {[X] ∈ H | X ↪→ Pn, X ∈ P}

where X ↪→ Pn runs through the possible embeddings mentioned above.
Then

M = R/Aut(Pn) (if it exists)
gives a coarse moduli space for P .

The basic idea is this: if X ↪→ Pn and if α ∈ Aut(Pn), then α induces
another embedding

X ↪→ Pn α−→ Pn.

But taking the quotient means that the two embeddings correspond to the
same point in the quotient M . Thus if we can ensure that all the embeddings
of X are given by the above automorphisms, then taking the quotient tackles
the non-uniqueness issue of the embeddings.

This discussion makes it clear that Hilbert schemes are an important
tool in the story of moduli spaces.

4. Moduli of curves

Fix g ≥ 0. Consider
Pg = {smooth projective curves of genus g, up to isomorphism}.

Riemann showed that there is a variety Mg so that

Pg
1−1←→ closed points of Mg.

For example, M0 is just a point as P0 = {P1}. But M1 = A1 via

P1 = {elliptic curves} 1−1←→ closed points of A1

which sends an elliptic curve to its j-invariant.
Mumford proved that Mg is a moduli space in the modern sense. Deligne-

Mumford showed that for g ≥ 2, there is a meaningful compactification Mg:

Pg = {stable curves of genus g} 1−1←→ closed points of Mg

by enlarging the class Pg to that of stable curves of genus g. Knudsen showed
that Mg is projective.

A stable curve is a connected projective curve X with
• at worst nodal singularities,
• genus g, i.e. h1(OX) = g,
• KX ample.
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If C is a rational irreducible component of X, then the last condition ensures
that Cν contains at least 3 points of ν−1Xsing where ν : Xν → X denotes
normalisation.

We said that Mg is a meaningful compactification of Mg. That is because
it is not an arbitrary compactification but rather itself is a moduli space for
an enlarged class of curves. On the other hand, both Mg,M g are not fine
moduli spaces, i.e. there is no universal family.

It is not difficult to see that M0 is not a fine moduli space. Indeed, assume
otherwise, say M0 has a universal family M0 → M0. Then M0 = P1. But
then consider a P1-bundle X → S such that X �	 S × P1. The moduli map
S → M0 is constant but X → S cannot be pullback of M0 → M0. Similar
considerations show that Mg,Mg are not fine moduli spaces.

Moduli of elliptic curves behaves better when one fixes an identity ele-
ment of the elliptic curve, that is, by marking a point on the curve. More
generally, it is very fruitful to construct moduli of marked curves as markings
often naturally appear in applications.

An n-marked stable curve of genus g is a projective connected curve
X with n marked points x1, . . . , xn on Xsmooth such that

• X has at worst nodal singularities,
• genus g, i.e. h1(OX) = g,
• KX +

∑
xi is ample.

Knudsen and Mumford proved that there is a projective coarse moduli space
Mg,n for n-marked stable curves of genus g.

How about moduli of higher dimensional varieties? We will discuss this
in detail in the following sections.

5. Birational geometry of pairs

Moduli of varieties is perhaps best understood in the context of bira-
tional geometry. Indeed, we will see below that many advances in moduli
theory rely on techniques and results of birational geometry. In this section,
we recall some very basic notions of birational geometry.

A pair (X,B) consists of a normal variety X and a boundary divisor B
with rational coefficients in [0, 1] so that KX +B is Q-Cartier. Singularities
of (X,B) are defined by taking a log resolution φ : W → X and writing

KW +BW = φ∗(KX +B).

We say (X,B) is lc (resp. klt) if every coefficient of BW is ≤ 1 (resp. < 1).
Given a projective lc pair (X,B), standard conjectures of birational ge-

ometry predict that there is a birational transformation

(X,B) ��� (X ′, B′)

such that either
• (X ′, B′) admits a Mori-Fano fibration, or
• (X ′, B′) is a good minimal model.



BOUNDEDNESS AND MODULI OF ALGEBRAIC VARIETIES 379

The latter means m(KX′ + B′) is generated by global sections for some
m ∈ N, defining a contraction X ′ → Z. In particular, this gives a Calabi-
Yau fibration (X ′, B′) → Z (note that it is possible for X ′ → Z to be
birational or even the identity).

To construct moduli spaces one usually restricts attention to good mini-
mal models. Because presence of negativity, say for KX+B, usually prevents
having a good moduli theory. It is then not surprising that much of the lit-
erature on moduli theory is focused on construction of moduli spaces for
certain classes of good minimal models, e.g. curves, K3 surfaces, abelian va-
rieties, canonical models. From now on then we will mainly work with good
minimal models.

Given a good minimal model (X,B), its Kodaira dimension κ(X,B)
is the dimension of the base Z of the corresponding contraction X → Z
associated to KX +B. Obviously,

κ(X,B) ∈ {0, 1, . . . , dimX}.

In dimension one, (X,B) being a good minimal model means deg(KX +
B) ≥ 0. Then

• κ(X,B) = 0 iff deg(KX +B) = 0,
• κ(X,B) = 1 iff deg(KX +B) > 0.

In dimension two, for a good minimal model (X,B) → Z we have:
• κ(X,B) = 0 iff KX +B ≡ 0 iff (X,B) is Calabi-Yau,
• κ(X,B) = 1 iff X → Z is a fibration over a curve,
• κ(X,B) = 2 iff X → Z is birational.

For the purposes of moduli theory one needs to consider a more general
kind of pair in which the underlying scheme may not be irreducible. This is
necessary for compactification of moduli spaces because limits of varieties
are often not normal. We have already seen such pairs in dimension one:
nodal curves.

A semi-log canonical (slc) pair (X,B) consists of a reduced quasi-
projective scheme X of pure dimension and a divisor B ≥ 0 on X with
rational coefficients in [0, 1] satisfying the following conditions:

• X is S2 with nodal codimension one singularities,
• no component of SuppB is contained in the singular locus of X,
• KX +B is Q-Cartier,
• if π : Xν → X is the normalisation of X and Bν is the sum of

the birational transform of B and the conductor divisor of π, then
(Xν , Bν) is lc.

6. Moduli of KSBA stable pairs of general type

Until recently, compact moduli theory was mainly focused on lower di-
mensional varieties (dimensions one and two) and very special varieties in
higher dimension, e.g. abelian varieties. But this has changed in recent years
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thanks to advances in birational geometry. Already in the 90’s Viehweg con-
structed moduli spaces of smooth good minimal models. But these moduli
spaces are only quasi-projective. One can of course compactify them in an
arbitrary sense but such compactifications are not interesting. One would
really like to get a “meaningful” compactification in the sense that the com-
pactified space is also a moduli space for an enlarged class of algebraic
varieties or schemes.

During the last four decades, Kollár, Alexeev, Shepherd-Barron, and
others have developed a theory of moduli of varieties and pairs of general
type, i.e. of maximal Kodaira dimension, which can handle schemes with slc
singularities leading to projective moduli spaces.

To get finite type moduli spaces, one needs to fix certain invariants. In
the case of curves, it is enough to fix the genus to get a finite type moduli
space but in higher dimensions one fixes the volume rather than genus.

Fix d ∈ N and c, v ∈ Q>0. A (d, c, v)-KSBA-stable pair is a connected
projective pure dimensional pair (X,B) such that

• (X,B) is slc of dimension d,
• B = cD for some integral divisor D,
• KX +B is ample with volume vol(KX +B) := (KX +B)d = v.

When X is normal, then (X,B) is a good minimal model with the corre-
sponding contraction X → Z being the identity morphism.

It takes more work to define (d, c, v)-stable families (X,B) → S. We do
not recall the definition as it is quite technical. It suffices to say that very
roughly speaking, such a family is a flat projective family with (d, c, v)-stable
log fibres.

Example 6.1. Assume (X,B =
∑

xi) is an n-marked stable curve of
genus g. Then (X,B) is a (1, 1, v)-stable pair with v = deg(KX +B).

Example 6.2. Assume X ⊂ Pd+1 is a hypersurface of degree r and
B ⊂ X be a general hyperplane section. Then (X,B) is a (d, 1, v)-stable
pair with v = (r − d− 1)dr.

The next result is an important step in the construction of projective
moduli. Its proof relies on many other results in birational geometry, in
particular, [12] [18] [17].

Theorem 6.3 (Hacon, McKernan, Xu [16]). Fix d ∈ N and c, v ∈ Q>0.
Then (d, c, v)-KSBA stable pairs form a bounded family.

Next is the higher dimensional version of Deligne-Mumford theorem for
curves, which is proved in [21].

Theorem 6.4 (Kollár, Alexeev, et al). Fix d ∈ N and c, v ∈ Q>0. There
is a projective coarse moduli space for (d, c, v)-KSBA-stable pairs.

Besides moduli considerations such as definition of stable families and
the boundedness result mentioned above, the theorem relies on many other
results and techniques of birational geometry.
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7. Moduli of stable Calabi-Yau pairs

Next we treat moduli of Calabi-Yau varieties and more generally pairs.
In birational geometry, a projective lc (or slc) pair (X,B) is Calabi-Yau if
KX+B ∼Q 0. In particular, this class includes K3 surfaces, abelian varieties,
and smooth Calabi-Yau varieties that appear in other contexts. Moduli of
Calabi-Yau varieties also has a long history.

Unlike varieties and pairs of general type, in general Calabi-Yau pairs do
not carry any natural polarisation that is, ample divisor, so we need to pick
one. Moduli spaces of smooth Calabi-Yau varieties have been successfully
constructed and well-studied. However, one of the main issues has been to
construct meaningful compactifications of these moduli spaces, and to treat
the corresponding singular cases. This requires to establish boundedness of
certain classes of Calabi-Yau pairs which is by now resolved and discussed
below.

We start with the definition of stable Calabi-Yau pairs which was grad-
ually defined in work of Alexeev, Hacking, Kollár-Xu, and others.

Fix d ∈ N and c, u ∈ Q>0. A (d, c, u)-stable Calabi-Yau pair (X,B), A
is defined by the data:

• (X,B) is projective slc of dimension d with KX +B ∼Q 0,
• B = cD for some integral divisor D ≥ 0,
• A ≥ 0 is an ample integral divisor with volume vol(A) = u,
• (X,B + tA) is slc for some t ∈ Q>0,

Again it takes more work to define stable families and the corresponding
moduli functor but this is done similarly to the KSBA stable case.

Example 7.1. Assume X is an elliptic curve, B = 0, and A ∈ X is a
point. Then (X,B), A is a (1, 1, 1)-stable Calabi-Yau pair.

Example 7.2. Assume X = P2, B ⊂ X an elliptic curve, and A ⊂ X is
a conic. Then (X,B), A is a (2, 1, 4)-stable Calabi-Yau pair.

Example 7.3. Consider a smooth projective curve C ⊂ P2 of degree
r ≥ 4. Let B = 3

rC and A = C. Then (X,B), A is a stable Calabi-Yau
pair. Hacking [15] constructed compactification of the moduli space of such
curves C by compactifying the moduli space of the corresponding (X,B), A.

By definition, for each (d, c, u)-stable Calabi-Yau pair (X,B), A, there
is t > 0 so that (X,B+ tA) is KSBA stable. However, t is a priori not fixed,
so it is not clear how it may depend on the initial data d, c, u. Therefore, we
cannot apply boundedness of KSBA stable pairs (6.3). The desired bound-
edness of stable Calabi-Yau pairs takes a lot more work and this is done
in [7]. In addition to work already mentioned, the proof crucially relies on
boundedness of Fano varieties [8] [9] [5] and the techniques of its proof.

Theorem 7.4 (Birkar [7]). Fix d ∈ N and c, u ∈ Q>0. Then the (d, c, u)-
stable Calabi-Yau pairs form a bounded family.
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Given a (d, c, u)-stable Calabi-Yau pair (X,B), A, the boundedness im-
plies (X,B + tA) is a KSBA stable pair, for some fixed t ∈ Q>0 depending
only on d, c, u. From this then one derives the next result which was first
published in the first arxiv version of [7] but then incorporated into the more
general framework of [4].

Theorem 7.5 (Birkar). Fix d ∈ N and c, u ∈ Q>0. There is a projective
coarse moduli space for (d, c, u)-stable Calabi-Yau pairs.

Restricting the family of (d, c, u)-stable Calabi-Yau pairs to special situ-
ations gives many interesting examples of moduli spaces, e.g. Fano varieties
polarised by certain anti-pluricanonical divisors, or K3 surfaces polarised by
effective ample divisors.

8. Moduli of stable minimal models

We discussed moduli of good minimal models (X,B) of maximal Kodaira
dimension (KSBA stable) and minimal Kodaira dimension (stable Calabi-
Yau). How about other Kodaira dimensions? Recall that the Kodaira di-
mension ranges from 0 to dimX, so large classes of pairs of intermediate
Kodaira dimension, that is, Kodaira dimension 1, . . . , dimX − 1 remain to
be treated (for example, in dimension two, the remaining case is Kodaira
dimension 1; such a minimal model comes with an elliptic fibration or conic
bundle structure X → Z). There seems to be few results in the literature
regarding compact moduli of such varieties and pairs. Strictly speaking one
should also consider models (X,B) with maximal Kodaira dimension dimX
where KX + B is not necessarily ample because this is not covered by the
KSBA stable case.

In [4], we have developed a moduli theory of stable minimal models of
arbitrary Kodaira dimension. First we recall the definition of stable mini-
mal models without fixing invariants. A stable minimal model (X,B), A
consists of a connected projective pair (X,B) and a divisor A ≥ 0 such that

• (X,B) is slc,
• KX +B is semi-ample defining a contraction f : X → Z,
• KX +B + tA is ample for some t > 0, and
• (X,B + tA) is slc for some t > 0.

The first and second conditions say that (X,B) is a good minimal model.
The third condition just says that A is ample over Z. The fourth condition
says that A should not contain any component of the locus where (X,B) is
not klt, e.g. in dimension one this means A should not contain any node nor
any component of B with coefficient one.

Example 8.1. Any KSBA stable pair (X,B) is a stable minimal model
with A = 0 and X → Z the identity morphism.

Example 8.2. Any stable Calabi-Yau (X,B), A is a stable minimal
model with X → Z the constant morphism.
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Example 8.3. If (X,B) → Z is a klt good minimal model and A ≥ 0 is
an ample over Z divisor, then (X,B), A is a stable minimal model.

Example 8.4. Suppose X → Z is a smooth good minimal model of
dimension 2, κ(X) = 1, and A ≥ 0 is a multi-section. Then (X,B), A is a
stable minimal model.

Many more examples can be constructed either as limits of families of
normal stable minimal models or as structures associated to singularities,
see [4].

To get a good moduli theory we need to fix more invariants compared
to the KSBA and Calabi-Yau cases. This is not surprising as the minimal
model case in general is more complex.

Let d ∈ N and c, u ∈ Q>0, and σ ∈ Q[t]. A (d, c, u, σ)-stable minimal
model is a stable minimal model (X,B), A such that

• dimX = d,
• 1

cB and 1
cA are integral,

• vol(A|F ) = u where F is a general fibre of f : X → Z over any
component of Z, and

• vol(KX +B + tA) = σ(t) for sufficiently small t > 0.
A more general setup is presented in [4] where one can fix finitely many

values for u. This is important for applications because on some stable min-
imal models, the volumes vol(A|F ) take different values over different irre-
ducible components of Z.

Example 8.5. Assume X is a smooth Calabi-Yau variety of dimension
d, f : X → Z is an elliptic fibration, B = f∗H for a general hyperplane
section H on Z, and A ≥ 0 is a multi-section of degree u. Then (X,B), A is
a (d, 1, u, σ)-stable minimal model where σ is the polynomial determined by

σ(t) := (KX +B + tA)d

for sufficiently small t.

Example 8.6. A (d, c, u, σ)-stable minimal model (X,B), A is a KSBA-
stable pair iff σ = vol(KX +B) is constant.

Example 8.7. A (d, c, u, σ)-stable minimal model (X,B), A is a stable
Calabi-Yau pair iff σ(t) = vol(A)td is a monomial of degree d = dimX.

As before, to get a projective moduli space we first need to deal with
the boundedness problem which is settled by the next result. Indeed, similar
to the Calabi-Yau case, the number t in the definition of a (d, c, u, σ)-stable
minimal model is a priori not fixed and the hardest part of the process is
to show that we can choose t universally depending only on d, c, u, σ. The
proof of this heavily relies, among other things, on the theory of generalised
pairs [14] [6] [13] as well as all the previous boundedness results mentioned
above (for general type, Fano, and Calabi-Yau pairs).
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Theorem 8.8 (Birkar [4]). Let d ∈ N and c, u ∈ Q>0, and σ ∈ Q[t].
Then the (d, c, u, σ)-stable minimal models form a bounded family.

Theorem 8.9 (Birkar [4]). Let d ∈ N and c, u ∈ Q>0, and σ ∈ Q[t].
Then there is a projective coarse moduli space for the (d, c, u, σ)-stable min-
imal models.

The theorem expands compact moduli theory to settings that have pre-
viously been largely unexplored, e.g. intermediate Kodaira dimension case.
Little is known about the geometry of these moduli spaces Md,c,u,σ. One can
ask many questions in this direction, for example:

• Under what conditions is Md,c,u,σ non-empty?
• What kind of singularities does Md,c,u,σ have? In general, singular-

ities can be arbitrarily bad but in specific settings, one might get
reasonable singularities.

• What is the Kodaira dimension of the components of Md,c,u,σ?
• For explicit choices of d, c, u, σ, describe the (d, c, u, σ)-stable min-

imal models and then describe the moduli space Md,c,u,σ. For ex-
ample, consider d = 3, c = 1, u = 1, σ = 3t2 + t3.

9. Fano varieties

Fano varieties do not behave as well as minimal models with respect to
moduli spaces. This is in particular due to the fact that in general Fano
varieties and Fano fibrations tend to have too many regular and birational
automorphisms.

One way to remedy the situation is to consider polarised Fano varieties
and then use ideas in the construction of moduli of stable minimal models.
A stable Fano pair is of the form (X,Λ), A where (X,Λ+A), A is a stable
Calabi-Yau pair and Λ ≥ 0. Since −(KX + Λ) ∼Q A, the pair (X,Λ) is
indeed Fano (with slc singularities) which is polarised by A.

Let d ∈ N, c, u ∈ Q>0, and σ ∈ Q[t] be a polynomial. A (d, c, u, σ)-
stable Fano pair is a stable Fano pair (X,Λ), A where (X,Λ + A), A is a
(d, c, u, σ)-stable Calabi-Yau pair.

Theorem 9.1 (Birkar [4]). There is a projective coarse moduli space for
the (d, c, u, σ)-stable Fano pairs.

A nice aspect of this approach is that it also works for Fano fibrations. A
stable log Fano fibration is of the form (X,Λ), A → Z where (X,Λ+A), A
is a stable minimal model and Λ ≥ 0, and X → Z is the contraction defined
by KX +Λ+A. Then −(KX +Λ) ∼Q A/Z, so we can see that (X,Λ) → Z is
indeed a log Fano fibration (with slc singularities) which is polarised by A.

Let d ∈ N, c, u ∈ Q>0, and σ ∈ Q[t] be a polynomial. A (d, c, u, σ)-
stable log Fano fibration is a stable log Fano fibration (X,Λ), A → Z where
(X,Λ +A), A is a (d, c, u, σ)-stable minimal model.

Theorem 9.2 (Birkar [4]). There is a projective coarse moduli space for
the (d, c, u, σ)-stable log Fano fibrations.
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On the other hand, the geometry of log Fano fibrations is treated in [10]
[5] [3] from the point of view of boundedness, singularities, etc. These works
go much beyond moduli considerations.

A different approach to moduli of Fano varieties is motivated by the
existence of special metrics and originates in differential geometry. In this
approach, one restricts attention to the class of so-called K-stable Fano vari-
eties (and its variants) rather than treating all Fano varieties. This approach
has been taken up by a large number of people that is too long to list here.
The singular case also heavily relies on results of birational geometry includ-
ing [8] [9].

10. Polarisation by non-effective divisors

In the above definition of stable Calabi-Yau and stable minimal models,
the polarisation was given by an effective divisor A ≥ 0. The reason for tak-
ing effective divisors is that one can then construct projective moduli spaces
although it usually leads to larger moduli spaces. Another possibility that
has often been used traditionally is to take a line bundle or a Cartier divisor
class for the polarisation. For example, Viehweg takes such a polarisation to
treat moduli of smooth good minimal models [23].

One may define a traditional stable minimal model (X,B), A to
consist of a projective pair (X,B) and a Cartier divisor A (not necessarily
effective) such that

• (X,B) is klt,
• KX +B is semi-ample defining a contraction f : X → Z, and
• KX +B + tA is ample for some t > 0.

Fixing appropriate numerical invariants, one can show that the correspond-
ing models form a bounded family, using the results of [7] [4] (one can even
consider not necessarily Cartier divisor classes for the polarisation). Note
that the singularities are klt by assumption. Allowing lc or slc singularities
is problematic.

One can then perhaps construct the moduli space of such minimal mod-
els. But the problem is that such a moduli space will usually be only quasi-
projective. It is difficult to “meaningfully” compactify these moduli spaces
without putting some further strong assumptions. One could try to enlarge
these moduli spaces as much as possible without insisting on getting a pro-
jective moduli space, that is, to construct a partial meaningful compactifi-
cation. For example, see [22] and the references therein for the Calabi-Yau
case. What is clear is that no matter what approach is taken (effective or
not necessarily effective polarisations), the above boundedness results and
relevant results play an important role in order to compactify or partially
compactify the moduli spaces.



386 C. BIRKAR

References
[1] V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of

Math. (2), 155 (2002), no. 3, 611–708. MR 1923963
[2] V. Alexeev, Moduli spaces Mg,n(W ) for surfaces, Higher-dimensional complex vari-

eties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 1–22. MR 1463171
[3] C. Birkar, Singularities on Fano fibrations and beyond, arXiv.2305.18770.
[4] C. Birkar, Moduli of algebraic varieties, arXiv:2211.11237.
[5] C. Birkar, Boundedness of Fano type fibrations, To appear in Ann. Sci. ENS,

arXiv:2209.08797.
[6] C. Birkar, Boundedness and volume of generalised pairs, arXiv:2103.14935v2.
[7] C. Birkar, Geometry of polarised varieties, Pub. Math. IHES, 137 (2023), 47–105.

MR 4588595
[8] C. Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of

Math., 193 (2021), no. 2, 347–405. MR 4224714
[9] C. Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math., 190 (2019),

no. 2, 345–463. MR 3997127
[10] C. Birkar, Singularities on the base of a Fano type fibration, J. Reine Angew Math.,

715 (2016), 125–142. MR 3507921
[11] C. Birkar, Existence of log canonical flips and a special LMMP, Pub. Math. IHES.,

115 (2012), 325–368. MR 2929730
[12] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, Existence of minimal models for

varieties of log general type, J. Amer. Math. Soc., 23 (2010), 405–468. MR 2601039
[13] C. Birkar, C. D. Hacon, Variations of generalised pairs. arxiv:2204.10456v1.
[14] C. Birkar, D-Q. Zhang, Effectivity of Iitaka fibrations and pluricanonical systems of

polarized pairs, Pub. Math. IHES., 123 (2016), 283–331. MR 3502099
[15] P. Hacking, Compact moduli of plane curves, Duke Math. J., 124 (2004), no. 2,

213–257. MR 2078368
[16] C. D. Hacon, J. McKernan, C. Xu, Boundedness of moduli of varieties of general type,

J. Eur. Math. Soc. (JEMS), 20 (2018), no. 4, 865–901. MR 3779687
[17] C. D. Hacon, J. McKernan, C. Xu, ACC for log canonical thresholds, Ann. of Math.

(2), 180 (2014), no. 2, 523–571. MR 3224718
[18] C. D. Hacon, J. McKernan, C. Xu, On the birational automorphisms of varieties of

general type, Ann. of Math. (2), 177 (2013), no. 3, 1077–1111. MR 3034294
[19] C. D. Hacon, C. Xu, Existence of log canonical closures, Invent. Math., 192 (2013),

no. 1, 161–195. MR 3032329
[20] J. Kollár, N. I. Shepherd-Barron, Threefolds and deformations of surface singularities,

Invent. Math., 91 (1988), no. 2, 299–338. MR 0922803
[21] J. Kollár, Families of varieties of general type, Cambridge University Press, 2023.

MR 4566297
[22] Y. Odaka, On log minimality of weak K-moduli compactifications of Calabi-Yau va-

rieties, arXiv:2108.03832. MR 4498830
[23] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathe-

matik und ihrer Grenzgebiete (3), vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632

Yau Mathematical Sciences Center, JingZhai, Tsinghua University, Hai

Dian District, Beijing, China 100084

Email address: birkar@tsinghua.edu.cn


	1. Introduction
	2. Moduli problems and Hilbert schemes
	3. General strategy for construction of moduli spaces
	4. Moduli of curves
	5. Birational geometry of pairs
	6. Moduli of KSBA stable pairs of general type
	7. Moduli of stable Calabi-Yau pairs
	8. Moduli of stable minimal models
	9. Fano varieties
	10. Polarisation by non-effective divisors
	. References

