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Regularized (bridge) logistic regression for
variable selection based on ROC criterion
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∗
, Hong-Bin Fang, Zhenqiu Liu and Ming T. Tan

It is well known that the bridge regression (with tuning
parameter less or equal to 1) gives asymptotically unbiased
estimates of the nonzero regression parameters while shrink-
ing smaller regression parameters to zero to achieve variable
selection. Despite advances in the last several decades in de-
veloping such regularized regression models, issues regard-
ing the choice of penalty parameter and the computational
methods for models fitting with parameter constraints even
for bridge linear regression are still not resolved. In this ar-
ticle, we first propose a new criterion based on an area un-
der the receiver operating characteristic (ROC) curve (AUC)
to choose the appropriate penalty parameter as opposed to
the conventional generalized cross–validation criterion. The
model selected by the AUC criterion is shown to have better
predictive accuracy while achieving sparsity simultaneously.
We then approach the problem from a constrained param-
eter model and develop a fast minorization-maximization
(MM) algorithm for non-linear optimization with positivity
constraints for model fitting. This algorithm is further ap-
plied to bridge regression where the regression coefficients
are constrained with �p-norm with the level of p selected by
data for binary responses. Examples of prognostic factors
and gene selection are presented to illustrate the proposed
method.

Keywords and phrases: AUC, EM algorithm, Lasso re-
gression, Logistic regression, MM algorithm, ROC, Vari-
able/feature selection.

1. INTRODUCTION

Variable/feature selection is one of the most pervasive
problems in statistical applications. Classic methods for
model/variable selection have not had much success in
biomedical application, especially in high-dimensional data
analysis including gene or protein expression data analysis.
For example, subset selection using the Cp criterion (Mal-
lows, 1973) becomes computationally prohibitive when the
number of variables is greater than 50. The forward selection
(or forward stepwise regression) is too aggressive (greedy) a
fitting technique in that it eliminates at the second step
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any useful predictors that are correlated with the first se-
lected predictor. A major drawback of the classic methods
is that they are numerically unstable in that small changes
in data may result in one variable (e.g., a gene) to be se-
lected instead of another due to collinearity. In high dimen-
sional data, the common problem is overfitting. It has been
recognized that an effective method to mitigate overfitting
and numerical instability is to constrain model parameters,
namely, using a regularized regression model such as the
lasso regression (Tibshirani, 1996). In spite of advances in
developing such regularized regression models, issues regard-
ing the choice of penalty parameter and the computational
methods for model fitting with parameter constraints even
for bridge linear regression are still not resolved (Wahba,
2007). This article proposes a new criterion for selection of
the penalty parameter and an algorithm to fit a special class
of regularized regression, i.e., the bridge logistic regression.

Let Yi denote true disease status of subject i (Yi = 1
if subject i is diseased and Yi = 0 if non-diseased) for
i = 1, 2, . . . , m. Let x(i) denote the q-dimensional vector of
covariates associated with subject i and θ be a q-dimensional
vector of unknown coefficients. We consider the following lo-
gistic model,

(1.1) πi = Pr{Yi = 1} =
exp(x�(i)θ)

1 + exp(x�(i)θ)
, 1 ≤ i ≤ m.

Let Yi follow the Bernoulli distribution with parameter πi

and yi denote the realized value of Yi, then the log-likelihood
function is given by

(1.2) L(θ) =
m∑

i=1

{yi(x�(i)θ) − log[1 + exp(x�(i)θ)]}.

To formulate the problem, consider the bridge logistic re-
gression with �p-norm constraint (Frank & Friedman, 1993)
which maximizes

(1.3) L(θ) subject to
∑q

j=1 |θj |p ≤ s,

where s (> 0) is a tuning parameter and p (> 0) is a power
parameter, with p = 2 being the ridge logistic regression,
and p = 1 being the lasso logistic regression. To maximize
(1.3) is equivalent to maximize L(θ)−λ

∑q
j=1 |θj |p for λ ≥ 0.

That is, for a given λ ∈ [0, +∞) there exists a s ≥ 0, such
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Figure 1. One- and two-dimensional plots for �p-norm with p = 0.1, 0.5, 1, 2.

that the two procedures share the same solution, and vice
versa. The goal is to find the penalized maximum likelihood
estimate (MLE)

(1.4)

θ̂bridge = arg max Lλ,p(θ) = arg max {L(θ) − λ
∑q

j=1 |θj |p},

where λ > 0 is a penalty parameter. Figure 1 gives one- and
two-dimensional plots of �p-norm for various p values.

Bridge linear regressions with different values of p have
very different properties for prediction and classification and
have been studied theoretically by Knight & Fu (2000).
When p > 2, it is shown that the amount of shrinking to-
wards 0 increases with the magnitude of the parameter be-
ing estimated and thus for parameters with large values the
bias of their estimators may be unacceptably large. When
p ≤ 1, both θ̂lasso and θ̂bridge regression share the same at-
tractive feature of sparsity, resulting in smaller regression
coefficients being 0 (thus selecting variables) if λ is suffi-
ciently large. Thus, the method combines parameter esti-
mation and variable selection. However, the applications of
lasso (p = 1) and its variant with smoothly clipped absolute
deviation (SCAD) (Fan & Li, 2001, 2002) regression have
been limited for several reasons. First, the original lasso al-
gorithm involves an iterative step within each reweighted
least square and may converge slowly or not converging at
all (Tibshirani, 1996). The method becomes highly ineffi-
cient when the number of covariates q is large. As pointed
out by Madigan & Ridgeway (2004), the relative inefficiency
of the original lasso algorithm and the relative complexity
of more recent lasso algorithms (e.g., Osborne et al., 2000)
may be to blame.

Motivated in part by improving the slow convergence of
lasso, Efron et al. (2004) proposed the least angle regressions
(LARS) as a new variable selection procedure, which, in fact,
leads to lasso. However, the method requires a search stop-
ping rule, which is currently available only for linear regres-
sion, and LARS may also lead to overfitting (Stine, 2004).
In addition, an extension of LARS-type strategies to gener-
alized linear models encounters greater computational chal-
lenges such as nonlinear optimization (Madigan & Ridge-
way, 2004), in particular, the �1-constrained solution in logis-
tic regression is not piecewise linear and hence the pathwise
optimization is more difficult (Efron et al., 2004, p. 497). In
contrast, lasso/bridge regression requires no stopping rule
as in stepwise regression, and it builds on the simple idea
of regression with the �p-penalty. However, when p < 1, the
bridge regression gives asymptotically unbiased estimates of
the nonzero regression parameters consistently while shrink-
ing the estimates of zero (or small) regression parameters
to zero (Knight & Fu, 2000), implying potentially better
predictive performance (Malioutov et al., 2005). Unfortu-
nately, Frank & Friedman (1993) do not provide compu-
tational method for bridge linear regression for any given
λ and p and the method proposed by Fu (1998) is avail-
able only for p > 1. Recently, we proposed an approximate
solution by using a smoothed penalty function (θ2

i + ε)p/2

which approaches to �p-penalty (p < 1) when ε → 0 (Liu
et al., 2007). This approximate approach employed another
parameter ε whose value has to be pre-specified and its ac-
curacy is not yet quantified. Therefore, the major hurdle in
bridge regression continues to be computational.

The EM-type algorithms have emerged as a powerful tool
for optimization with linear inequality constraints (LICs)
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(Liu, 2000; Tan, Tian & Fang, 2003). Recently, Tan et
al. (2007) developed a fast EM algorithm for quadratic op-
timization subject to box constraints and LICs, which pro-
vides a promising algorithm to bridge linear regression with
p < 1. In addition, in the most existing methods, penalty
parameters are selected by minimizing the approximate gen-
eralized cross-validation (GCV) statistic (Craven & Wahba,
1979). The GCV in this case is based on both sensitivity and
specificity of the predictive model. This method is not op-
timal in biomedical applications since often the numbers of
normal and cancer specimens are different and the sensitiv-
ity and the specificity depend on the cutoff point chosen to
derive the predictive (cancer or non-cancer) rule. The area
under the receiver operating characteristic (ROC) is known
to be a better measure for predictive power. Thus, an op-
timal penalty parameter selected via maximizing the area
under the ROC curve (AUC) statistic is more desirable.

Therefore, the purpose of this article is to introduce an
efficient alternative model fitting method and to utilize the
AUC to choose the appropriate penalty parameter in the
bridge regression model as opposed to the conventional GCV
criterion. §2 provides automatic selection of the penalty
and power parameters λ̂opt and p̂opt via maximizing the
AUC statistic instead of minimizing an approximate GCV
statistic. We then develop a fast minorization–maximization
(MM) algorithm for non-linear optimization with positivity
constraints for model fitting in §3. This algorithm is then
applied to bridge logistic regression with p ≤ 1. As in the
lasso linear regression, the unconstrained MLEs of regression
coefficients are used as the initial values, thus the proposed
algorithm can only deal with the problems where the num-
ber of covariates is less than the sample size (i.e., q < m).
Examples of prognostic factors and micro–array analysis are
presented in §4. We conclude with a discussion.

2. DATA-DRIVEN CHOICE OF THE
PENALTY AND POWER PARAMETERS

VIA THE AUC CRITERION

2.1 The ROC curve

For given λ > 0 and 0 < p ≤ 1, we calculate the bridge
estimate from (1.4) and denote it by θ̂bridge

λ,p , which depends
on both λ and p. Therefore, for a given covariate x, the
prediction probability is given by

(2.1) π̂λ,p = P̂r{Y = 1} =
exp(x�θ̂bridge

λ,p )

1 + exp(x�θ̂bridge
λ,p )

.

With a threshold c ∈ (0, 1), we define a binary test T as
follows:

T = + if π̂λ,p ≥ c,

T = − if π̂λ,p < c.

Figure 2. ROC curves for a useless test/prediction and a
perfect test/prediction.

Furthermore, let

FPFλ,p(c) = Pr{T = +|Y = 0} and
TPFλ,p(c) = Pr{T = +|Y = 1}(2.2)

denote false and true positive fractions at the threshold c,
respectively, then, the ROC is defined as (e.g., see, Pepe,
2003, p. 67–68)

(2.3)
ROCλ,p(·) = {(FPFλ,p(c), TPFλ,p(c)), c ∈ (0, 1)}

= {(t, ROCλ,p(t)), t ∈ (0, 1)}.

It has been shown that the ROC curve is a monotone
increasing function mapping (0, 1) onto (0, 1). A useless
test/prediction (corresponding to a poor choice of λ and p) is
one such that the distribution functions for T are the same in
the diseased and non-diseased populations. The ROC curve
for a useless test/prediction is then ROCλ,p(t) = t. On the
other hand, a perfect test/prediction (corresponding to a
good choice of λ and p) entirely separates diseased and non-
diseased subjects. Its ROC curve is along the left and upper
borders of the first unit quadrant. Better tests/predictions
have ROC curves closer to the upper left corner. These are
illustrated in Figure 2.

In literature, several numerical indices are proposed to
summarize ROC curves. The most commonly used summary
measure is the AUC, which is defined as

(2.4) AUC(λ, p) =
∫ 1

0

ROCλ,p(t) dt.
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We determine the optimal (λ̂opt, p̂opt) by maximizing
AUC(λ, p) over a grid of λ > 0 and 0 < p ≤ 1.

2.2 Empirical estimation of the AUC

Let Yobs = {(x(1), y1), . . . , (x(m), ym)} denote m observa-
tion data, where x(i) is the q-dimensional covariate vector
for subject i and yi ∈ {0, 1}. For a given pair of (λ, p), we
optimize (1.4) and obtain θ̂bridge

λ,p . For each subject, based on
(2.1), we then calculate the m prediction probabilities:

(2.5)

π̂i(λ,p) = P̂r{Yi = 1} =
exp(x�(i)θ̂

bridge
λ,p )

1 + exp(x�(i)θ̂
bridge
λ,p )

, i = 1, . . . , m.

Without loss of the generality, we assume that the first m0

subjects are non-diseased (or controls) and the rest m1 =
m−m0 subjects are diseased (or cases). Thus, for each cut–
point c ∈ (0, 1), the false and true positive fractions in (2.2)
are estimated by

F̂PFλ,p(c) =
1

m0

m0∑
j=1

I(π̂j(λ,p) ≥ c) and

T̂PFλ,p(c) =
1

m1

m∑
i=m0+1

I(π̂i(λ,p) ≥ c),(2.6)

respectively, where I(·) denotes the indicator function. The
estimated ROC curve, denoted by R̂OCλ,p(t), is a plot of
T̂PFλ,p(c) versus F̂PFλ,p(c) for all c ∈ (0, 1). In addition, it
has been shown that the estimated AUC is given by (e.g.,
see, Pepe, 2003, p.103–104)

(2.7)

ÂUC(λ, p) =
∫ 1

0

R̂OCλ,p(t) dt =
1

m0m1

m0∑
j=1

m∑
i=m0+1

×
{
I(π̂i(λ,p) > π̂j(λ,p)) +

1
2
I(π̂i(λ,p) = π̂j(λ,p))

}
,

which is exactly the Wilcoxon or Mann–Whitney U-statistic.

3. AN MM ALGORITHM WITH
MONOTONIC CONVERGENCE

3.1 Formulation of the algorithm

Let θ(t) denote the current approximation of θ̂bridge de-
fined in (1.4). For a given θ(t), Qλ,p(θ|θ(t)) is a real–valued
function depending on both (λ, p). The function Qλ,p(θ|θ(t))
is said to minorize Lλ,p(θ) at θ(t) if

Qλ,p(θ|θ(t)) ≤ Lλ,p(θ) for all θ,(3.1)

Qλ,p(θ(t)|θ(t)) = Lλ,p(θ(t)).(3.2)

With the MM algorithm (Lange et al., 2000), we maximize
the minorizing function Qλ,p(θ|θ(t)) instead of the target
function Lλ,p(θ). If θ(t+1) is the maximizer of Qλ,p(θ|θ(t)),
i.e.,

(3.3) θ(t+1) = arg maxQλ,p(θ|θ(t)),

then, from (3.1) and (3.2), we have

(3.4)
Lλ,p(θ(t+1)) ≥ Qλ,p(θ(t+1)|θ(t)) ≥ Qλ,p(θ(t)|θ(t)) = Lλ,p(θ(t)).

Under appropriate additional compactness and continuity
conditions, the ascent property (3.4) guarantees the mono-
tone convergence of the MM algorithm (De Leeuw, 2006).
From (3.4) we can see that it is not necessary to actually
maximize the minorizing function, it suffices to find θ(t+1)

such that Qλ,p(θ(t+1)|θ(t)) ≥ Qλ,p(θ(t)|θ(t)).

3.2 The sharpest quadratic minorizing
function

Let ∇ denote the derivative operator. From (1.2), the
score vector and the observed information matrix are given
by

∇L(θ) =
∑m

i=1(yi − πi)x(i) = X�(y − π),

−∇2L(θ) =
∑m

i=1 πi(1 − πi)x(i)x
�
(i) = X�DX,

respectively, where X� = (x(1), . . . , x(m)), y =
(y1, . . . , ym)�, π = (π1, . . . , πm)�, and

(3.5) D = diag(π1(1 − π1), . . . , πm(1 − πm)).

Since πi(1 − πi) ≤ 1/4 for πi ∈ [0, 1], B =̂ (1/4)X�X is a
positive definite matrix and globally majorizes the observed
information, i.e., B ≥ −∇2L(θ) for all θ. Therefore,

(3.6)
QB

λ,p(θ|θ(t)) = L(θ(t)) + (θ − θ(t))�∇L(θ(t))

− 0.5(θ − θ(t))�B(θ − θ(t)) − λ
∑q

j=1 |θj |p

minorizes Lλ,p(θ) at θ(t) (Böhning & Lindsay, 1988). How-
ever, this minorizing function is not very sharp. The
sharpest minorizing function, discovered independently by
Jaakkola & Jordan (2000) and Groenen et al. (2003), is given
by

(3.7) QS
λ,p(θ|θ(t)) = QS(θ|θ(t)) − λ

q∑
j=1

|θj |p,

where

QS(θ|θ(t)) =̂ L(θ(t)) + (θ − θ(t))�∇L(θ(t))
− 0.5(θ − θ(t))�S(θ(t))(θ − θ(t)),

S(θ) =̂ X�W (θ)X,

W (θ) = diag((π1 − 0.5)/x�(1)θ, . . . , (πm − 0.5)/x�(m)θ).
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Furthermore, we have

QB
λ,p(θ|θ(t)) ≤ QS

λ,p(θ|θ(t)) ≤ Lλ,p(θ) for all θ,

QB
λ,p(θ

(t)|θ(t)) = QS
λ,p(θ

(t)|θ(t)) = Lλ,p(θ(t)).

3.3 Quadratic optimization with positivity
constraints

The MM algorithm can be applied to obtain θ̂bridge by
iteratively computing

(3.8) θ(t+1) = arg min{−QS(θ|θ(t)) + λ
∑q

j=1 |θj |p}.

For m > q, let θ̂U denote the unconstrained MLE of θ in
the logistic model (1.2) and v = (v1, . . . , vq)� be its sign
vector (i.e., vj = sign(θ̂U

j ) = +1, 0, or −1 corresponding to
positive, zero, or negative values of θ̂U

j ). We first show that
both θ̂U and θ̂bridge have the same signs.

For the normal linear regression where the likelihood L(θ)
is a quadratic function of θ, Lemma 7 and Lemma 8 of Efron
et al. (2004) proved that both the unconstrained MLE θ̂U

and θ̂lasso share signs. The geometric shape of the second
plot of Figure 1 (or see Figure 2 of Tibshirani, 1996) further
shows that θ̂U, θ̂ridge, θ̂lasso, and θ̂bridge have the same signs
for the case of normal linear regression.

For the logistic regression, although the likelihood L(θ)
specified by (1.2) is a non-linear function of θ, the MM
algorithm (3.8) implies that finding θ̂bridge is equivalent
to iteratively finding the maximizer of the quadratic func-
tion QS(θ|θ(t)) with �p-penalty. In addition, from §3.2, θ̂U

is also the solution of maximizing QS(θ|θ(t)) as t → ∞.
Thus, both θ̂bridge and θ̂U share signs for the case of logis-
tic regression. This implies the bridge estimator θ̂bridge ∈
{(v1β1, . . . , vqβq)� = diag(v)β : β ∈ R

q
+}. Given θ(t) and

from (3.8), we have

θ(t+1) = diag(v) · β(t+1),(3.9)
β(t+1) = arg min

β∈R
q
+

{−QS(diag(v)β|θ(t)) + λ
∑q

j=1 βp
j }.(3.10)

The built-in S-Plus function nlminb (nonlinear minimiza-
tion subject to box constraints) can applied to (3.10). Es-
pecially, when p = 1, the target function in (3.10) is a
quadratic function, thus, we can utilize the built-in S-PLUS
function nnls.fit (linear least-squares with nonnegative
constraints) to solve (3.10) iteratively.

3.4 Standard errors

With the efficient algorithm developed in §3.3 for com-
puting θ̂bridge, calculating the standard errors of θ̂bridge via
bootstrapping (Efron & Tibshirani, 1993) becomes compu-
tationally feasible. Having obtained the θ̂bridge based on
(3.9) and (3.10), we can directly generate a bootstrap sam-
ple {y∗

i }m
i=1 with

y∗
i

ind∼ Bernoulli
(

exp{x�(i)θ̂bridge}/[1 + exp{x�(i)θ̂bridge}]
)

and compute the corresponding bootstrap replication θ̂∗.
Independently repeating this process G times, we ob-
tain G bootstrap replications {θ̂∗(g)}G

g=1, where θ̂∗(g) =
(θ̂∗1(g), . . . , θ̂∗q (g))�. Therefore, the standard error se (θ̂bridge

j )
of θ̂bridge

j can be estimated by the sample standard deviation
of the G replications.

4. TWO DATA ANALYSIS EXAMPLES

4.1 Kyphosis data

This data set consists of retrospective measurements
on 83 laminectomy patients (Hastie & Tibshirani, 1990,
p. 282). The outcome is the status of kyphosis (1 = present,
0 = absent). The predictors include: x1 = age in months at
time of the operation, x2 = number of vertebrae levels, and
x3 = starting vertebrae level. The goal is to identify risk
factors for kyphosis. To explore possible non-linear effects
of the risk factors, we include three quadratic terms in the
model after centering each of the three variables. For com-
parison purposes, we did not include the interaction terms.
Since all the covariates are continuous, they are standard-
ized individually in our analysis. The full logistic regression
model is

logit {Pr(Y = 1)} = θ0 + Σ3
j=1θjxj + Σ3

j=1θ3+jx
2
j .

The SAS proc logistic with backward stepwise selection
removed the x2

2-term and the resulting estimates of the re-
gression coefficients are listed in the 4-th column of Table 1.

To apply the proposed MM algorithm (3.9) and (3.10) to
obtain the bridge solution θ̂bridge, we first need to calculate
the unconstrained MLE. We have

θ̂U = (−2.6422, 0.8270, 0.7673,−2.2688,−1.5406,

0.0321,−1.1582)�

and its sign vector v = (−1, 1, 1, −1, −1, 1, −1)�. The AUC
criterion is used to select the optimal penalty and power
parameters. We obtain λ̂opt = 5.41 and p̂opt = 0.1 (see
Figure 3(b)). The resulting θ̂bridge and AUC are displayed
in the 9-th column of Table 1. The corresponding standard
errors with 1,000 bootstrap replications are 0.5181, 0.4287,
0.3934, 0.7612, 0.5623, (−), and 0.4076, respectively. When
we fix p = 1 and repeat the above process, we obtain λ̂opt =
0.704 (see Figure 3(a)). The corresponding lasso solution
θ̂lasso is given in the 8-th column of Table 1. As expected,
the AUC induced by θ̂lasso is less than the AUC induced by
θ̂bridge.

To compare the proposed AUC criterion with the existing
GCV criterion, for any given λ > 0 and 0 < p ≤ 1, we
calculate the bridge estimate from (1.4) and denote it by
θ̂bridge

λ,p . The GCV statistic is defined as

GCV(λ, p) = −L(θ̂bridge
λ,p )/{m[1 − e(λ)/m]2},
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Table 1. Comparisons of the bridge and lasso regressions under the GCV and AUC criteria

Variable Parameter MLE† Backward Tibshirani’s GCV AUC

stepwise lasso‡ lasso bridge lasso bridge

Intercept θ0 −2.6422 −2.6451 −1.42 −2.1802 −2.0723 −1.8814 −1.9093
x1 θ1 0.8270 0.8310 0.03 0.7749 0.6830 0.5452 0.5581
x2 θ2 0.7673 0.7955 0.31 0.5690 0.5109 0.4429 0.4460
x3 θ3 −2.2688 −2.2670 −0.48 −1.8320 −1.6910 −1.4466 −1.4631
x2

1 θ4 −1.5406 −1.5320 −0.28 −1.1462 −1.0636 −0.9158 −0.9406
x2

2 θ5 0.0321 0.0000 0.00 0.0000 0.0000 0.0000 0.0000
x2

3 θ6 −1.1582 −1.1533 0.00 −0.9054 −0.7971 −0.6205 −0.6153

λ̂opt – – – – 0.085 50.13 0.704 5.41
p̂opt – – – 1 1 0.005 1 0.1
AUC – 0.9162 0.9170 0.8692 0.9179 0.9171 0.9205 0.9214

†Unconstrained MLE.
‡The results obtained by Tibshirani (1996) and it is not clear which criterion (CV, GCV and Stein unbiased estimate of risk)
was used in his paper.

Figure 3. Plot of AUC versus λ for the kyphosis data. (a) Lasso regression with p = 1 and λ̂opt = 0.704; (b) Bridge regression

with p̂opt = 0.1 and λ̂opt = 5.41.

where e(λ) = tr[X(X�DX + λW−)−1X�D] is the effective
number of parameters, W− enotes the Moore-Penrose gen-
eralized inverse of W = diag(|θ̂bridge

λ,p |), and D is defined by
(3.5). We determine the optimal (λ̂opt, p̂opt) by minimizing
GCV(λ, p) over a grid of λ > 0 and 0 < p ≤ 1. Figure 4
shows that the optimal λ̂opt = 0.085 for the lasso regres-
sion, while the optimal p̂opt = 0.005 and λ̂opt = 50.13 for
the bridge regression.

Based on the GCV criterion, we obtain the corresponding
bridge and lasso estimates (see Table 1). However, the lasso
estimates obtained by Tibshirani (1996) are

−1.42 + 0.03x1 + 0.31x2 − 0.48x3 − 0.28x2
1,

which differ from ours. To some extent, this is expected.
Tibshirani (1996) showed that different criteria (e.g., CV,

GCV and Stein unbiased estimate of risk) could result
in different choices of the tuning parameter s. It is not
clear which one was actually used in the computation from
the paper. Figure 5 shows the comparison of ROC curves
between the bridge regression under AUC criterion and
backward stepwise, Tibshirani’s lasso regression, lasso re-
gression under GCV criterion, and bridge regression under
GCV criterion. The corresponding AUC values are given
in the last row of the Table 1. As expected, the AUC
for the bridge regression under AUC criterion is the high-
est.

4.2 Colon microarray data

The colon microarray data set is composed of 2,000 genes
per sample in 22 normal colon tissue samples and 40 tu-
mor colon samples (Alon et al., 1999). The outcome is bi-
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Figure 4. Plot of GCV versus λ for the kyphosis data. (a) Lasso regression with p = 1 and λ̂opt = 0.085; (b) Bridge regression

with p̂opt = 0.005 and λ̂opt = 50.13.

Table 2. Computational results for the colon microarray data

Gene ID Variable Parameter θ̂U v θ̂bridge

AUC = 0.98 AUC = 0.852

Intercept θ0 −9.908 −1 −2.052 −4.185
493 x1 θ1 3.795 1 0.938 0
1423 x2 θ2 18.414 1 2.196 0.408
249 x3 θ3 5.191 1 0.517 0
377 x4 θ4 −3.800 −1 0 0
765 x5 θ5 13.509 1 1.891 0.123
245 x6 θ6 −33.823 −1 −2.229 −1.604
267 x7 θ7 −3.371 −1 −2.681 −2.376
1635 x8 θ8 0.182 1 0 0
66 x9 θ9 6.184 1 0.529 0
625 x10 θ10 −9.619 −1 −1.827 −1.533
14 x11 θ11 7.296 1 1.674 0.692
822 x12 θ12 9.060 1 1.056 0
1892 x13 θ13 4.765 1 0.459 0
1494 x14 θ14 −27.769 −1 −2.710 −0.662
137 x15 θ15 4.486 1 0.963 0
897 x16 θ16 −3.973 −1 −0.853 0
111 x17 θ17 10.797 1 0.833 0
513 x18 θ18 −4.303 −1 −1.106 0
1843 x19 θ19 16.403 1 1.792 0
812 x20 θ20 5.354 1 0.990 0
739 x21 θ21 5.136 1 0.459 0
780 x22 θ22 1.811 1 0.932 0
286 x23 θ23 −2.696 −1 −0.700 0
1060 x24 θ24 −1.708 −1 −0.681 −0.483
415 x25 θ25 −17.991 −1 −1.642 −0.435

nary (1 = tumor colon, 0 = normal colon). The data set
was first normalized for each gene to have a zero mean
and unit variance. For s = 1, . . . , 2,000, we fit marginal lo-
gistic models with the expression levels for the s-th gene
as a one-dimensional covariate. All genes with marginal p-

values less than 0.001 are included in the second step logis-
tic model fittinig. Only 25 out of 2,000 genes are identified
to be marginally significant at the 0.001 level and the cor-
responding gene IDs are displayed in the first column of
Table 2.
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Figure 5. Comparisons of ROC curves for the kyphosis data. (a) Bridge regression under AUC criterion vs. backward stepwise;
(b) Bridge regression under AUC criterion vs. Tibshirani’s lasso regression; (c) Bridge regression under AUC criterion vs. lasso

regression under GCV criterion; (d) Bridge regression under AUC criterion vs. bridge regression under GCV criterion.

We first compute the unconstrained MLE θ̂U (4-th col-
umn of Table 2). The corresponding sign vector v is given
in the 5-th column of Table 2. Under the AUC criterion, the
optimal λ̂opt = 0.95 and the optimal p̂opt = 0.009. Using
θ(0) = v as the initial values, the proposed MM algorithm
(3.9) and (3.10) converged to the bridge estimator θ̂bridge

(6-th column of Table 2). That is, 23 out of the 25 genes
are identified under the AUC criterion. The corresponding
AUC is 0.98. Apparently, the larger the AUC is, the more
genes selected. If the number of selected genes is less than
10, then λ = 98.3724 and p = 0.009, resulting in 9 genes
being selected from the 25 genes. The resulting regression
coefficients are given in the last column of Table 2 and the
corresponding AUC is 0.852.

5. DISCUSSION

We proposed an alternative regularized (bridge) logistic
regression using the AUC criterion instead of the GCV to
select the optimal penalty parameter λ and power param-
eter p because the AUC considers both the sensitivity and
specificity. The proposed MM algorithm transfers the origi-
nal bridge optimization problem (1.4) into a series of simple
optimization problems (3.8) by replacing the likelihood func-
tion with a quadratic surrogate function. A key step of the
fast MM algorithm is to utilize the property that parameter
estimates from lasso, bridge, ridge regressions and the un-
constrained MLE share signs so that the absolute-value in
the penalty function in (3.8) can be removed, resulting in
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a series of much simpler optimizations with positivity con-
straints where the target function in (3.10) is continuous
and differentiable everywhere.

Note that the bridge penalty with 0 < p < 1 in (3.10)
is not convex and is singular at zero, its behavior around
zero (i.e., small estimated coefficients) may be erratic if the
whole target function

(5.1) − QS(diag(v)β|θ(t)) + λ
∑q

j=1 βp
j

in (3.10) is not convex. In practice, this could be a common
issue with any algorithms for the regularized (bridge) logistic
regression. However, once (5.1) is convex for some p, the MM
algorithm can guarantee monotone convergence. In fact, we
did not encounter this kind of unstable phenomenon at least
in our two data-analysis examples.

The MM algorithm is preferable when the number of vari-
ables is not too large because its stable convergence. Other-
wise, we can directly use the Newton–Raphson method by
using the built-in S-plus function nonlinear minimization
subject to box constraints to speed up the convergence
of the algorithm. We showed that the method provides an
alternative for variable selection when the diseased and non-
diseased groups are unbalanced in the dataset. In using this
method for data analysis, a common cross-validation or in-
dependent validation is needed to be performed as usual.
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