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Spatial analysis linking landscape features
and genetic population structure in cougars
(Puma concolor) in the northern Rocky

Mountains

DaAviD C. WHEELER AND LANCE A. WALLER*

Landscape genetics is a field of research that seeks to
understand the drivers of the observed spatial distribution
of genetic variation in a species of plant or animal using
methods from population genetics, landscape ecology, geog-
raphy, and spatial statistics. One of the important research
areas in landscape genetics is to identify landscape barriers
to genetic flow. Barriers can limit interaction of organisms
and hence lead to genetic structure (i.e. frequency of geno-
types) in a population that becomes increasingly spatially
structured over time. Here, we investigate model-based spa-
tial methods to assess the relationship between landscape
and genotype distributions of cougars (Puma concolor) in
Western North America. Previous research has assessed ge-
netic differentiation in cougars in North America using a
non-spatial Bayesian clustering model and found evidence
of genetic population structure in cougars, with suggestive
but indistinct spatial boundaries between subpopulations.
To determine if including spatial information on samples
in a classification model would refine the observed spatial
signal within the genetic population structure, we applied
Bayesian classification models to microsatellite loci data
with associated spatial locations. The spatial model revealed
two clearly differentiated cougar subpopulations, in contrast
to the two overlapping subpopulations suggested by meth-
ods not accounting for space. We also explored through ge-
ographic information systems and generalized linear models
whether resulting genetic population structure boundaries
aligned with landscape features. The spatial correspondence
of genetic subpopulations and a major river and road is sug-
gestive of possible landscape barriers to cougar movement.
This study demonstrates that the use of explicit spatial in-
formation and Bayesian classification models adds novel in-
sight when investigating genetic population structure in a
species.
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1. INTRODUCTION

Landscape genetics is a field of research seeking to under-
stand the spatial distribution of genetic variation in species
of plants or animals using methods and data from popu-
lation genetics, landscape ecology, geography, and spatial
statistics (Storfer et al. 2010). The main distinction between
traditional population genetics and the more recently devel-
oped field of landscape genetics is the integration of tests of
landscape heterogeneity on gene flow and the genetic varia-
tion between and within populations (Holderegger and Wag-
ner 2008). In a recent survey of the landscape genetics lit-
erature, Storfer et al. (2010) found that while interest in
using landscape genetic approaches to understand how ge-
netic variation is affected by landscape processes has grown
markedly in recent years, very few analyses make use of
spatial analytic methods to address what is, at its heart, a
spatial problem. A few recent works describe the (limited)
use of spatial statistics within landscape genetics (Storfer et
al. 2007; Guillot et al. 2009). The continuing improvements
in technology to generate molecular data and the increas-
ing availability of high-resolution spatial data ensure that
the number of landscape genetics studies will continue to
increase (Storfer et al. 2010). The growing need for more
explicitly spatial methods in the field of landscape genetics
should leave spatial statisticians poised to make significant
contributions to the field.

One recurring research question in landscape genetics is
how to accurately identify and quantify barriers to genetic
flow. Landscape barriers can limit interaction of organisms
and therefore lead to spatially explicit genetic structure (i.e.
frequency of genotypes) in a population. The idea of such
structure among genetic subpopulations has been the sub-
ject of work in population genetics (Hartl 2000; Hedrick
2004; Rousset 2004), ecological genetics (Conner and Hartl
2004), and phylogeography (Avise 2000). Early work by
Wright (1943; 1946) linked genetic structure to spatial dis-
tance between populations. Recent efforts attempt to ex-
pand empirical methods to use spatial pattern to describe
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population genetics (Epperson 2003; Guillot et al. 2009).
Understanding the role that landscape has on species differ-
entiation is particularly important for conservation ecology,
where the preservation of particular habitats is of interest
(Allendorf and Luikart 2006; Frankham et al. 2010). Iden-
tification of barriers to gene flow can also assist in the pre-
diction of the spatial spread of disease within a host popu-
lation and can be used for disease management (Storfer et
al. 2010). For example, in the case of rabies in raccoon pop-
ulations, the knowledge that rivers act as barriers has been
useful for targeting vaccinated baits as a control measure
in areas where landscape features have facilitated gene flow
(Real and Biek 2007).

There are many examples in the ecology literature of re-
searchers investigating genetic population structure in ani-
mals or plant species that align with landscape barriers or
habitat divisions, both natural and anthropogenic. Guillot
et al. (2009) provide a recent review of some of this litera-
ture. Coulon et al. (2006) found that two genetically differ-
entiated subpopulations of roe deer in southwestern France
aligned with a linear area containing several barriers, includ-
ing a highway, a river, and several canals. Frantz et al. (2006)
identified the Moselle river valley as a barrier for dispersal
of red deer in Europe. Riley et al. (2006) found that genetic
population structure in bobcats and coyotes corresponded
to a major roadway. Keyghobadi et al. (1999) discovered
that forests were barriers to gene flow for alpine butter-
flies in Canada. Castric et al. (2001) found that waterfalls
were associated with more genetic isolation in brook charr in
Maine. Funk et al. (2005) determined that mountain ridges
and elevation differences were associated with genetic differ-
entiation in Columbia spotted frogs in western Montana and
Idaho. Epps et al. (2005) discovered that genetic diversity
in desert bighorn sheep in California was limited by the an-
thropogenic barriers of highways, canals, and urban areas.
Sacks et al. (2004; 2008) found genetic structure in coyotes in
California associated with habitat divisions. Piertney et al.
(1998) uncovered evidence suggesting that unsuitable habi-
tat along a river inhibited gene flow between populations of
red grouse in Scotland and Cegelski et al. (2003) suggested
that limited gene flow in Montana wolverines was related
to human development. Storfer et al. (2010) also provide
an extensive summary of these and other studies that have
focused on understanding landscape barriers to gene flow.
While linear features, such as roads, rivers, and mountain
ranges have been found to be barriers to gene flow, the ef-
fects of putative barriers on gene flow also appear to vary
by species.

Our work seeks to identify landscape barriers to gene flow
by assessing spatial genetic population structure in a sample
of cougars (Puma concolor) in North America. The cougar is
a large predatory feline distributed throughout the Ameri-
cas. Cougars are solitary predators that usually avoid human
contact and prefer to hunt by stalking behind vegetation and
land cover (Cougar Discussion Group 2009). Home ranges
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for male cougars have been estimated to be between 25 and
380 square miles (Cougar Discussion Group 2009). Cougar
movement is thought to be influenced by both natural and
manmade landscape barriers, which over time could lead
to spatially structured genetic population structure. Previ-
ous studies have investigated genetic population structure
in cougars in various areas of North America (Sinclair et al.
2001; Ernest et al. 2003; Anderson et al. 2004; McRae et
al. 2005; Biek et al. 2006). This present study builds upon
previous research of a sample of cougars in the northern
Rocky Mountain region of North America by Biek et al.
(2006). The northern Rocky Mountains experienced rapid
declines in cougar populations during the early 20th cen-
tury due to human persecution and depleted prey popula-
tions, but populations have rebounded following legislation
limiting the take by hunters of cougars and their ungulate
prey (Biek et al. 2006). In an analysis of genetic popula-
tion structure in this sample of cougars, Biek et al. (2006)
identified two cougar subpopulations based on genetic data
using a (non-spatial) Bayesian clustering model in the soft-
ware program structure (Pritchard et al. 2000). While genet-
ically distinct, the two subpopulations exhibit considerable
spatial overlap when mapped. A possible explanation for
the indistinct boundary observed between subpopulations
is that there was no consideration of spatial correlation of
cougar genetic data in the model and, if spatial autocorrela-
tion is present, this omission could reduce the power of the
approach to clearly identify genetic differentiation that may
be caused by the effect of local landscape barriers on host
movement. The latent structure in the results of Biek et al.
(2006) raises the question whether the spatial locations of
individual cougars can be used to refine inference on possible
links between subpopulation membership and location.

To investigate the hypothesis that gene flow in the North
American cougar population (analyzed by Biek et al. 2006)
is affected across space by the landscape, we used spa-
tial Bayesian clustering models implemented in the soft-
ware Geneland (Guillot 2008; Guillot et al. 2008) to de-
termine the number and composition of genetically distin-
guishable cougar subpopulations. These models extend the
basic structure model to explicitly account for the spatial lo-
cation of sampled observations and include a priori spatial
correlation in the genetic data. The subpopulation compo-
sition provided by the models includes the posterior prob-
abilities of subpopulation membership for each individual.
We then quantified associations between modeled genetic
population structure and certain relevant landscape features
using generalized linear models (GLMs) and generalized ad-
ditive models (GAMs) and landscape data accessed via a
geographic information system (GIS).

2. MATERIALS AND METHODS
2.1 Data

Our data contain information for 273 cougars caught for
research purposes or killed by hunters in the northern Rocky



Mountain regions of Montana and Idaho and extending into
Canada during 1990-2004. The dataset included geographic
coordinates for the sample location of each cougar, or the
hunting area centroid for some hunter-killed cougars. The
dataset also contained genetic information in the form of
microsatellite data containing 11 loci where variation is ex-
pressed in cougars. Microsatellites are repeating sequences
of base pairs of DNA used as molecular markers in genet-
ics, and a locus is the specific location of a gene or DNA
sequence on a chromosome. Ideally, for each cougar there is
an allele pair for each of the 11 loci, although some cougars
were missing allele data, where an allele denotes the partic-
ular form of the DNA sequence of a specific gene. The geno-
type for each cougar then consists of 11 loci with two alleles
per locus. Each observed allele is the result of the assumed
process of random mating. Specifically, the 11 microsatel-
lite loci under analysis include Fca30, Fca3h, Fcab7, Fea’7,
Fca90, Fca96, Fcal32, Fcal76, Fcad91, Fcab59, and Lc109
(see Biek et al. 2006 for more information). The genetic data
came from previous lab analysis of DNA from either blood
or tissue samples taken from the salivary glands or lymph
nodes using standard techniques and protocols (e.g. poly-
merase chain reaction (PCR)). The following loci had null
alleles due to problems with PCR amplification for a number
(n) of subjects: Fca30 (4), Fcab7 (2), Fca90 (7), Fca96 (1),
Fcal32 (2), Fcal76 (2), Fcab59 (3). All cougar genetic data
used in this project were previously analyzed (aspatially) by
Biek et al. (2006).

2.2 Bayesian clustering models for genetic
data

We used Bayesian classification models for microsatel-
lite loci data to investigate genetic population structure.
Bayesian clustering models have become a popular tool
in population genetics to detect and quantify the factors
affecting genetic structure and gene flow (see, for exam-
ple, Frantz et al. 2009; McCairns and Bernatchez 2008).
The Bayesian clustering models used in population genet-
ics are more appropriate for quantifying genetic structure
than the traditional clustering methods found in the data
mining and unsupervised learning literature (see Hastie et
al. 2001; Berk 2008) because they are designed for genetic
data that are categorical and multivariate, as a genotype
is defined by multiple loci (with potentially many alle-
les). In addition, these Bayesian clustering models can ac-
count for the complexities of spatial correlation in geno-
types and correlation in allele frequencies when determin-
ing genetic population structure. Moreover, the Bayesian
framework is quite flexible and provides a convenient ap-
proach to model a variety of potential structures in genetic
data.

Several of these Bayesian classification models for genetic
data have been implemented in the widely-used software
packages structure and Geneland. There are similarities in
the model in structure and the models available in Geneland,

but the main important difference is in the assumption or
not of spatial correlation in genotypic data taken from dif-
ferent geographic locations. The model in structure assumes
population membership is defined by a set of exchange-
able (conditionally independent given hyperparameter val-
ues) random intercepts implemented through i.i.d. prior dis-
tributions on population membership. In fact, the model
in structure does not include spatial information associated
with genotypes in the model at all; it is an aspatial model.
From the perspective of exploring landscape barriers that
may affect genetic flow this is a disadvantage, as any spatial
signal in the data may be obscured. Therefore, the aspatial
model found in structure is of interest here only for compar-
ative purposes (with earlier research by Biek et al. 2006). In-
stead, we focus our attention on the spatial Bayesian model
in Geneland when exploring genetic population structure of
cougars.

The key assumption in the spatial model in Geneland
is that genotypes are spatially correlated, i.e. that proxi-
mate observations are more similar than distant ones. This
assumption of spatially correlated genotypes is useful for ex-
ploring possible spatial patterns that may arise when popu-
lation differentiation occurs by limited gene flow influenced
by the occurrence of landscape barriers, such as major rivers,
major roads, mountain ranges, and human activity. The as-
sumption allows spatial breaks in genotypic data due to spa-
tial features to be expressed in population subgroups more
readily than in a model with an assumption of indepen-
dence in population membership. The model naturally in-
corporates the spatial locations of sampled organisms for its
assumption of spatial correlation.

The spatial Bayesian classification models in Geneland
are detailed in Guillot et al. (2005a; 2005b) and we pro-
vide a brief overview of key model details here. There are
several different models in Geneland, with options for mod-
eling allele frequencies that are either correlated or uncor-
related across populations (not to be confused with spatial
dependence in genotypes); null alleles; and uncertainly in
sampling locations. The Bayesian clustering models avail-
able in Geneland, and also in structure, assume that for
each subpopulation, allele frequencies are approximately at
Hardy-Weinberg (HW) equilibrium, and that there is link-
age equilibrium (LE) between loci across subpopulations.
Hardy-Weinberg equilibrium refers to situations where sev-
eral conditions are met: mating is random within popula-
tions, population size is large, migration and mutation ef-
fects are insignificant, alleles studied are not under selection,
and the alleles separate by Mendelian inheritance (Freeland
2006). Linkage equilibrium occurs when the association be-
tween alleles both within each locus and between loci is ran-
dom; alleles will not be more likely to occur together than
expected based on their separate frequencies in the popula-
tion with LE (Freeland 2006). Linkage disequilibrium occurs
when there is non-random association between alleles at dif-
ferent loci.
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The data are defined as s = (s1,...,s,) for the n sam-
pling locations, where s; is a two-dimensional vector of co-
ordinates (s;1,8;2), and the genotypes for n cougars z =
(#1,...,2n), where z; is a vector of L = 11 allele pairs (for
diploid organisms) for each of { = 1, ..., L loci and with indi-
vidual pairs denoted z;; = {1, 8i.1}. The genotypes z com-
prise K subpopulations, where K is either fixed or estimated
in the model. When K is estimated, it is a priori assumed
to follow a uniform distribution, K ~ Uniform (K min, Kmax),
between a user-specified minimum and maximum. The al-
lele frequency of allele j in locus [ in subpopulation k& is
denoted fi;. Allele frequencies in the subpopulations being
sought are unknown. For each subpopulation k& and locus
[, the allele frequencies in the vector fiii,..., frrs, sum to
one, where J; is the number of alleles per locus. The allele
frequencies are considered multinomial probabilities and a
conjugate prior probability distribution, with the unit sum-
mation condition, is the Dirichlet distribution (Guillot et al.
2005a).

The allele frequencies may be assumed to be either un-
correlated or correlated across subpopulations, yielding two
types of models in Geneland. In the simpler uncorrelated
allele frequency model, the allele frequencies are assumed
to follow independent Dirichlet prior distributions, fr;. ~
Dirichlet(y, . ..,7). The uncorrelated allele frequency model,
however, does not account for the situation where some allele
frequencies are correlated across subpopulations. The corre-
lated allele frequency model adds correlation between allele
frequencies from different subpopulations by introducing a
theoretical ancestral population from which current subpop-
ulations have drifted with drift factors dj, which quantify
the level of genetic differentiation for each subpopulation
from the ancestral population and may be interpreted as
Fgr values (Guillot 2008), a commonly used measure in ge-
netics for population differentiation. The allele frequencies
for each locus from the ancestral population are denoted
fai; and assumed to follow a Dirichlet distribution, fa;. ~
Dirichlet(1,...,1). The allele frequencies in the current sub-
populations are fy. ~ Dirichlet(fan 5%, ..., fars, 15%),
and are conditionally independent across subpopulations
given f4 and d. Given the partitioning of the observations
to subpopulations and the allele frequencies fy;;, the geno-
types in each subpopulation are assumed to be independent
draws from the discrete multivariate distribution specified
by the fi;, which is equivalent to the assumption of HW
equilibrium within loci and linkage equilibrium between loci
(Guillot et al. 2005a).

As previously mentioned, the primary distinguishing fac-
tor between the spatial model and the non-spatial model
in Geneland is the assumption of spatial correlation of
genotypes in the spatial model. This assumption is im-
plemented through a marked Poisson-Voronoi tessellation
process which yields a spatially correlated prior structure
for the individual population membership (p;’s) as follows.
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The spatial model assumes that the K subpopulations par-
tition the study area, each occupying non-overlapping ar-
eas Aq,...,Ax. In the Poisson-Voronoi tessellation, there
are m Voronoi polygons that are aggregated to form the

K subpopulations. The polygons have nuclei (u1,...,unm)
that are random and uniformly distributed, (u1, ..., um) i

Uniform(D). The number of polygons follows a Poisson
distribution, m ~ Poisson(A). The “mark” (ci,...,cm)
for each polygon defines subpopulation membership (defin-
ing the p;’s) and is sampled from a uniform distribution,

(c1y.- yCm) i~ Uniform(1, ..., K). The amount of spatial
organization in the process is controlled by the parameter
A, which has a uniform distribution with its maximum taken
as the number of sampled individuals, A ~ Uniform(0,n). A
small A (and hence m) results in strong spatial organization,
and clearer spatial boundaries between groups. With a very
large A, each Voronoi polygon would contain at most one
observation and the tessellation model would behave similar
to an i.i.d. mixture model. Such a mixture model is similar
to the prior used in the non-spatial model in structure. In
the non-spatial model in Geneland, the prior for the vector
of individual subpopulation membership, p = (¢1,...,¢,), is
an i.i.d. prior, 7(p|K) = 1/K™. This non-spatial model with
the assumption of uncorrelated allele frequencies is the same
as the model in structure with an additional assumption of
no admixture (Guillot et al. 2005a; Guillot et al. 2005b),
where admixture occurs with interbreeding between multi-
ple populations of a species that were previously isolated
geographically.

Regardless of the assumption used for correlation of the
allele frequencies, the likelihood of the data can be written
as

n L
(1) w(s,2l0) = n(s|0)n(zls, 0) = = (s]0) [ [ [[ ~(z:.16).

i=11=1

where the terms of the product are given by the allelic fre-
quencies,

if o # 3,
if a = 3.

2 fria frip
2
fkla

Inference on the model parameters is made through
the posterior distribution w(f|s, z). Reversible-jump Markov
chain Monte Carlo (MCMC) simulation is used to obtain the
joint posterior distribution of the parameters. The MCMC
algorithm samples from the joint posterior distribution of
the parameters, where the parameter vector § depends on
the model selected; § = (K, m,u,c,f,d,fs) for the spatial
model assuming correlated allele frequencies, and f4 and d
are omitted when assuming uncorrelated allele frequencies.

For the genetic population structure analysis, we used the
package Geneland in R. For comparison, we used the spatial
and non-spatial models in Geneland to determine the num-
ber and composition of genetically differentiated cougar sub-
populations under the two different modeling assumptions.

@ e = (0 B)0) = {



We followed the suggestion of Guillot et al. (2009) and first
estimated K assuming uncorrelated allele frequencies with
both the spatial and non-spatial models and then estimated
the other parameters in models with K fixed at the previ-
ously estimated value. There are some null allele values in
the data; hence we used the option for estimating null allele
frequencies with the uncorrelated frequency model. In sam-
pling from the joint posterior distribution of the parameters,
we used (for every model) 500,000 MCMC iterations of the
algorithm, thinning every 100th iteration, with a burn-in of
100,000 iterations. In our application, the results of particu-
lar interest include the posterior distributions of m, u, and
c yielding posterior inference for local subpopulation assign-
ment and the areas associated with each subpopulation.

2.3 Comparision of genetic subpopulations
with landscape features

After estimating the genetic subpopulations with
Geneland, we sought to evaluate the relationship of the sub-
populations to particular landscape features to determine
plausibility of a landscape barrier effect on genetic flow in
this sample of cougars. There are several examples in the
literature of landscape barriers found to be associated with
cougar genetic diversity. Ernest et al. (2003) found that ge-
netic subdivision in cougars in California was related to sev-
eral landscape barriers, including water bodies and human
developments. Walker et al. (2000) concluded that genetic
spatial structure in cougars in Texas was related to habitat
contiguity. McRae et al. (2005) discovered genetic structure
in cougars in Arizona, Colorado, New Mexico, and Utah
that was related to the habitat barriers of open grassland
and desert. Loxterman (2001) found increased genetic popu-
lation structuring in cougars in Idaho where there was agri-
cultural development.

It is not currently possible in the Bayesian clustering
models implemented in Geneland to adjust subpopulation
membership probabilities for any covariates, such as land-
scape features. Instead, we first overlaid predicted subpop-
ulation membership from the spatial model on landscape
layers showing major roads, major rivers, and average an-
nual precipitation. We selected in advance those landscape
variables thought to impact the movement of cougars over
space, notably large highways, large rivers, and a proxy for
poor (cougar) habitat. We used ArcGIS (ESRI 2005) to map
genetic population structure in terms of estimated subpop-
ulations and landscape thematic layers together to assess
their spatial alignment. The landscape thematic layers for
major rivers and major roads were supplied by ESRI. A the-
matic layer for average annual precipitation from 1961-1990
came from the Spatial Climate Analysis Service at Oregon
State University.

To better quantify the relationship between landscape
features and the genetic subpopulations, we used a GAM
(Wood 2006) approach to model the probability of belong-
ing to a particular Geneland subpopulation. We considered

a binary response variable Y for membership in a partic-
ular group with associated P(Y = 1) = p(s,z) depending
on landscape variables  and the cougar spatial sampling
location s. We modeled the log odds of being in a particular
group generally as

(3)

where the left-hand side of the equation is the log of the par-
ticular group odds for cougar i, § is a vector of regression
coefficients that may contain an intercept depending on the
model specification, x; is a vector of covariates for the ith
observation with the first element being a 1 if an intercept is
included in the model, and s; contains the two spatial coor-
dinates for the ith observation. Z(s;7) is a smooth function
of the locations and includes the parameters n needed for
the smoothing function. For covariates, we considered the
mean annual precipitation in the area of the sampled loca-
tion; an indicator variable for the relation of the location to
a major river relevant in the area; and an indicator variable
for the relation of the location to a major highway relevant
in the area. The smoothing function models spatial varia-
tion not explained by the covariates. We used thin plate
regression splines as the basis for the smooth term with the
mgcv package in R. The modeling approach is flexible, and
without the smooth term this GAM simplifies to a GLM,
specifically it simplifies to a logistic regression model in the
case of two groups and to a multinomial logit model in the
case of more than two groups. In our analysis, we compare
models with and without the smooth term.

To explore the validity of the Geneland results, we applied
popular landscape genetics tests to the estimated subpopu-
lations. We tested genotypic differentiation in the Geneland
subpopulations with a log-likelihood ratio G-statistic test
(Goudet et al. 1996; Goudet 2005) in the Genepop software.
The G-statistic tests the null hypothesis that genotypes are
drawn from the same distribution in all subpopulations. We
tested the amount of gene flow between the Geneland sub-
populations with an Fsr test (Weir and Cockerham 1984) in
Genepop and an Fgr test in the SPAGeDi software package
(Hardy and Vekemans 2002) with jackknifing over loci to
approximately estimate the standard error of the statistic.
Fsr is a common measure of population differentiation and
is a type of kinship coefficient based on allele identity.

logit [pi(xi,8:5 8,m] = B'xi + Z(s;n),

3. RESULTS

The spatial and non-spatial models with uncorrelated
allele frequencies both found two genetically differentiated
subpopulations of cougars (Fig. 1). The subpopulation mem-
bership assignments, 1 or 2 in the figure, for each cougar
are based on the posterior probabilities of population mem-
bership. A finding of one genetic population would indicate
a lack of genetic differentiation among cougars, and would
suggest no barriers to gene flow in the population. Apparent
in the mapped subpopulation membership assignments from
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Figure 1. Posterior mode subpopulation assignments from the
non-spatial model and spatial model in Geneland for cougars
sampled in the study area of the Rocky Mountain region of

North America.

the non-spatial model is some spatial overlap in the two sub-
populations. There is no clear spatial boundary between the
two subpopulations. Rather, the transition between groups
appears to occur in the general area of the continental di-
vide, an identifiable landscape feature, with subpopulation 1
generally west of the divide and subpopulation 2 generally
east of the divide. In contrast to the non-spatial model, the
spatial model finds two spatially distinct genetically differ-
entiated cougar subpopulations. There is effectively no spa-
tial overlap in the subpopulations determined by the spa-
tial model. Viewed this way, the subpopulation membership
assignments from the spatial model may be considered a
refinement of those from the non-spatial model, where a
potentially sharp linear landscape boundary becomes more
apparent.

The contrast between the two models in the delineation of
cougar subpopulations is more striking when exploring the
individual posterior probabilities of subpopulation member-
ship. The contours of posterior probabilities of membership
in cougar subpopulation 2 from the spatial model show a
steep decline in the probability of belonging to subpopula-
tion 2 (Fig. 2), with a decrease from a probability of 1 to
effectively 0 over a very short distance. The spatial model
yields stronger spatial organization of the subpopulation ar-
eas, effectively separating the study area into two subre-
gions. As a result of reducing the overlap between the sub-
populations through increased spatial structure, the bound-
ary between the two subpopulations is more focused and
shifted to the east with the spatial model.

In addition to the uncorrelated frequency spatial model
fitted above, we also fitted a spatial model with correlated
allele frequencies in Geneland and a spatial model with un-
correlated allele frequencies, but with uncertainty in the spa-
tial coordinates for each cougar. The uncertainty is included
in the model by treating each true coordinate ¢; as a sum
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Figure 2. Posterior probabilities of belonging to
subpopulation 2 from the non-spatial model and the spatial
model.

of the sampled location and the random noise, t; = s; + §;
(with an additive noise term §; sampled uniformly from a
square with 25 mile sides and centered on (0,0)). This in-
troduces a plausible representation of a home range for a
typical cougar (Cougar Discussion Group 2009).

In both cases, the resulting subpopulation assignments
from the correlated allele frequency model were exactly the
same as with the uncorrelated allele frequency spatial model.
The adjustment for cougar home ranges in the uncorrelated
allele frequency spatial model changed the subpopulation as-
signment for three cougars along the area of division between
the two subpopulations found earlier (results not shown).
Three cougars in subpopulation 2 were switched to subpop-
ulation 1 when adjusting for spatial uncertainty. This result
is intuitive if the location of these cougars was moved from
the east of a barrier to west of the barrier when adding spa-
tial uncertainty, while the rest of the data still suggested
the same location of the barrier. While the location of the
barrier may be viewed as spatially fuzzier when adding spa-
tial uncertainty to the sampling locations, the location of
the barrier is determined endogenously from the data and
will be determined from the majority of the data. The over-
all similarity in the composition of the subpopulations from
the different models shows there is consistency in the results
of the spatial Bayesian cluster models, even under different
prior assumptions.

We next mapped the genetic subpopulations from the
spatial model with the landscape features of interest. The
overlap of genetic subpopulations and key landscape vari-
ables suggests that one or more landscape features may
have influenced genetic structure in this cougar population
(Fig. 3). Interstate Highway 15 aligns well with the subpop-
ulations, as west of the highway is generally group 1 and east
of the highway is group 2, where the interstate visually de-
termines the membership for all but two cougars. This inter-
state highway has existed for decades, and was constructed



along the route of another major road, US Route 91. The
Missouri River also separates the two subpopulations, for
most cougars, in the northeast quadrant where the river is
plotted on the map. There are six cougars from subpopula-
tion 2 located on the west of the river and no cougars from
subpopulation 1 located east of the river. Both the interstate
highway and river are plausible physical barriers to cougar
movement and gene flow. There is also a swath of low annual
precipitation west of the Missouri River, east of Interstate
15, which could also be a barrier to genetic flow. It is appar-
ent that very few sampled cougars are located in areas with
relatively low average annual precipitation. Average annual
precipitation could be considered a direct measure of suit-

Spatial Model
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—rterstates
— Rivers
[ states
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Figure 3. Posterior mode subpopulation membership
assignments from the spatial model and major rivers,
interstate highways, and average annual precipitation.

able cougar habitat, as cougars favor forested areas, which
require a certain minimum amount of precipitation. In sum-
mary, the boundary area separating genetic subpopulations
of cougars corresponds to the spatial coincidence of three
plausible landscape barriers: an area of relatively low an-
nual precipitation, a major interstate highway, and a large
river.

We next quantified the association between the landscape
features and the genetic subpopulations using GLMs, specif-
ically logistic regression since there are only two groups.
Based on the map of genetic subpopulations and landscape
features, we created an indicator variable for being located
east of the Missouri River and an indicator variable for be-
ing east of the Interstate Highway 15. We first fitted models
separately for each indicator variable to determine the rel-
ative importance of each landscape variable. A model with
an intercept and the highway term was unstable and regres-
sion coefficients had large standard errors, so we compared
models without intercepts. The Akaike information criterion
(AIC) (Akaike, 1973) for the model with the Missouri River
term was 232.52 and the AIC for the model with the I-15
term was 238.15 (Table 1). Both estimated regression co-
efficients were highly statistically significant and positively
associated with the log-odds of being in subpopulation 2:
B8 = 474 (p < 0.001) for the major river and 5 = 3.69
(p < 0.001) for the major highway. The AIC for a model with
both landscape barrier variables was 232.42, with regression
coefficients 8 = 3.64 (p = 0.005) for the river and § = 1.10
(p = 0.180) for the highway. Because the AIC was mean-
ingfully lower for the river model than the highway model
and only the river variable was statistically significant at the
0.05 level when both terms were included in the model, we
excluded the highway term in subsequent models. We next
fitted models with an intercept, river term, and with and
without the mean annual precipitation variable. The AIC

Table 1. Estimated logistic regression model parameters (on linear predictor scale), standard errors, profile likelihood-based
confidence intervals, p-values, and percent deviance explained and AIC for each model

Model Beta Standard Lower Upper p-value Deviance AIC
Error Conf. Int. Conf. Int. Explained

Model 1 36.90% 238.15
Highway 15 3.689 0.585 2.716 5.090 <0.001

Model 2 38.40% 232.52
River 4.736 1.004 3.240 7.605 <0.001

Model 3 39.00% 232.42
Highway 15 1.099 0.817 —0.369 3.019 0.178
River 3.638 1.294 1.170 6.792 0.005

Model 4 83.30% 66.50
Intercept —3.232 0.416 —4.167 —2.506 <0.001
River 7.968 1.087 6.247 10.922 <0.001

Model 5 83.60% 67.33
Intercept —3.937 0.845 —5.864 —2.517 <0.001
River 7.926 1.090 6.199 10.883 <0.001
Precipitation 0.031 0.029 —0.025 0.088 0.280
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Figure 4. Bivariate smooth over geographic coordinates on
the linear predictor scale (thin black contours) in a
generalized additive model to explain Geneland subpopulation
assignments, along with the Missouri River (starting in
Wyoming and curving around to the northeast), Interstate
highway I-15 (running roughly north-to-south), and sampled
cougar locations.

was 66.50 for the model without the precipitation variable
and 67.33 for the model with the precipitation term. The
estimated regression coefficient for the river was § = 7.93
(p < 0.001) and the coefficient for mean annual precipitation
was 3 = 0.03 (p = 0.280). The results show that being lo-
cated east of the Missouri River was significantly associated
with an increased log-odds of being in subpopulation 2, and
mean annual precipitation had a positive association with
the log-odds of being in this group, although not a signifi-
cant one.

To construct a map of the modeled probability of belong-
ing to subpopulation 2 and the Missouri River and Inter-
state Highway 15, we also fitted a GAM with an intercept
and spatial smooth term and plotted the smoothed term
and landscape features (Fig. 4). The contour line where the
probability of belonging to subpopulation 2 is neutral (0
on linear predictor scale) lies primarily between the major
river and highway, reinforcing the other model results that
showed that both landscape features were associated with
genetic population structure.

For validity of the subpopulation assignments, the highly
significant G test (p < 0.001) for genotypic differentiation in
the Geneland clusters showed that the genotypes were not
drawn from the same distribution for all subpopulations.
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The Fsr was 0.076 for the two subpopulations, indicating
moderate gene flow between the two clusters. The standard
error of Fgr was 0.018, for an approximate 95% confidence
interval of (0.039, 0.112).

4. DISCUSSION

In this analysis, we found two spatially distinct genetic
subpopulations of cougars using spatially explicit genetic
models. These models allow a clearer picture of the ge-
ographic extent of each subpopulation than do the non-
spatial models used previously by other researchers (Biek
et al. 2006). We found that the genetic subpopulations spa-
tially aligned with a confluence of landscape features, in-
cluding a major highway, a major river, and low average
annual precipitation. Our regression analyses confirmed the
visual impression that there were several landscape barriers
to genetic flow, and therefore, to movement and interaction
of cougars. Our finding of genetic population structure that
aligns with landscape features is consistent with findings
from studies of cougars in other geographic areas (Ernest
et al. 2003; McRae et al. 2005; Walker et al. 2000), and
our study also provides evaluation of competing models and
quantification of the impact of physical barriers that coin-
cide with the detected boundary between genetic subpop-
ulations. The landscape barriers of a major highway and a
major river, and the low permeability area of low annual
precipitation are all plausible barriers to cougar movement.

A natural question regarding our genetic population
structure findings is how influential the spatial dependence
prior is in the spatial model within Geneland. In other
words, how confident should we be in our results of two spa-
tially separated genetic subpopulations of cougars (in com-
parison to results from the non-spatial model)? While ge-
netic population structure may be explained by the presence
of certain limiting landscape features, there are other expla-
nations for observed genetic structure, including Wright’s
(1943; 1946) seminal hypothesis of isolation by distance
(IBD), where a geographic pattern in genetic sequences is
due to the expansion of the population and variation in se-
quences over time, i.e. a regular increase in population differ-
entiation with increasing distance due to limited dispersal.
The effect of a potential landscape barrier could be con-
founded by the presence of IBD. Overlapping spatial struc-
ture could also result from divergent populations with ad-
mixture (Falush et al. 2003) or from repopulation from two
distinct subpopulations followed by population mixture in
an area with historically suppressed population sizes, as ar-
gued by Biek et al. (2006) in the case of cougars.

Other researchers have performed simulation studies to
assess the accuracy of the spatial model in Geneland, and we
draw on their results. In a simulation study with datasets of
varying levels of spatial organization, where the level of spa-
tial organization was controlled by the number of Voronoi
polygons (parameter m), Guillot et al. (2005a) found that



the spatial model had lower false classification rates than
the non-spatial model for highly (m < 12) and moderately
(m < 25) spatially organized populations and performed as
well as the non-spatial model when there was loose spatial
organization (m > 80) in the simulated populations. Guillot
et al. (2005a) also found through a simulation study that the
spatial model did not force a spatial structure in genetic pop-
ulations when it did not exist. Frantz et al. (2009) found in a
simulation study that the spatial model in Geneland could
correctly detect simulated barriers in data generated with
true isolation by distance. Frantz et al. (2009) did find that
the spatial model could overestimate the true number of sub-
populations when a true pattern of strong IBD existed, but
in our situation, with only two subpopulations and agree-
ment in subpopulation number with the non-spatial model,
this is not a concern. Manlove (2009) showed that the spa-
tial model with correlated alleles had the overall lowest error
rate in assignment of individuals to subpopulations when
compared to the non-spatial model for simulated datasets
with a range of population differentiation, as measured by
the statistic Figp. Given the previous simulation study find-
ings and that the results from both the non-spatial model
and the spatial model applied to the cougar data imply
strong spatial organization, it is likely that in our case the
spatial model is more accurate and captures latent spatial
correlation in genotypes better than the non-spatial model.

Although our results are interesting and worthy of ex-
tending future research efforts, there are limitations to this
study. One limitation is that while we find a correspondence
in cougar genetic population structure and certain landscape
features, we have not determined precisely which landscape
barrier has affected genetic differentiation. There may be
one influential landscape barrier or several coincident ones.
We cannot formally infer covariate associations with the
boundary within the existing Bayesian cluster model. Ide-
ally, one would include relevant landscape covariates within
the cluster model, such as suspected landscape barriers to
animal movement and interaction, and quantify the impact
of these landscape variables on the pattern of genetic dif-
ferentiation. A challenge remains to separate the effects of
several nearly coincident landscape features.

Another limitation is that we analyzed a sample of
cougars that may not be representative of the cougar pop-
ulation in this area of North America. Most of the cougar
samples were collected by hunters, and if there are areas
with cougars where cougar hunting is restricted, the pop-
ulation will be likely underrepresented in these areas. This
could potentially distort the pattern of genetic population
structure we found if genetic population structure is related
to landscape features in areas with no observations. Another
drawback of this study is not having temporal data to corre-
spond with the spatial data. Given the lack of sample time
information available for each cougar, our spatial analysis
does not capture variation in genetic structure over time.

While this paper focused on genetic population structure,
there are implications of the work for disease ecology and

landscape epidemiology. Disease ecology and landscape epi-
demiology involve studying the complex interactions in how
a disease spreads over space, whether looking at the move-
ment of the disease host or virus, often with the hope of
curtailing or preventing future disease spread. Understand-
ing genetic population structure of a species can lead to in-
sight about animal movement and interaction and what role
the landscape plays in the distribution of a host species. An
improved understanding of the impact of landscape on host
distribution and interaction could be used to more accu-
rately predict the direction of disease spread in a popula-
tion and allocate usually scarce resources accordingly. One
important infectious disease in cougars is feline immunod-
eficiency virus (FIV), a fast-evolving virus found in several
wild feline species (Biek et al. 2003). It may be reasonable to
expect spatial pattern in the distribution of FIV in cougars,
and also spatial structure in the feline immunodeficiency
virus itself that is related to landscape due to the influence
of landscape barriers. Previous work suggests that reduced
genetic diversity was associated with reductions in disease
immunity in several feline species, including cougars (Barone
et al. 1994; Heeney et al. 1990; Wildt et al. 1987). Results
of this study suggest that researchers should consider in-
creasing usage of spatial information and spatial priors in
Bayesian classification models when investigating genetic
population structure to get a clearer picture of subpopula-
tion definitions. By extension, results also suggest that one
should consider the potential influence of landscape features
on the spread of disease over space.

Our initial results are motivating, but there remain op-
portunities to continue and extend this line of research. One
possibility is with a more formal evaluation of landscape ef-
fects in genetic population structure. One approach to the
evaluation of landscape barriers in the role of species differ-
entiation and disease transmission is an area of landscape
ecology called wombling (Womble 1954), named for the first
author to publish this idea. Approaches to wombling in
the geography literature have been algorithmic (Monmonier
1979; Mu and Radke 2009), while approaches in the statis-
tics literature have been model-based. Lu and Carlin (2005)
first used a Bayesian hierarchical model-based framework
for wombling and Lu et al. (2007) also considered covari-
ates when performing Bayesian areal wombling. Wheeler
and Waller (2008) used a Bayesian wombling model with
spatially varying coefficients for particular landscape fea-
tures to model disease spread over space. A similar model,
with some modifications for multivariate genetic outcome
data, could potentially be used with the cougar sample to
estimate the influence of the discussed landscape features
as barriers to gene flow. Accounting for spatial structure in
genetic population structure appears important, and quan-
tifying the landscape effects that influence spatial structure
is necessary. This situation provides opportunity for further
methodological research developments.
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