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Jackknife empirical likelihood method for
case-control studies with gene-environment
independence on controls
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In this paper, we propose a jackknife empirical likeli-
hood method to do inference for the interested parameters
of the multiplicative-intercept risk models by taking into
account the gene-environment independence on controls in
case-control studies. It is shown that the proposed statistic
is asymptotically chi-squared distributed. Simulation stud-
ies investigate the small-sample properties. A real example
is also given.
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1. INTRODUCTION

The case-control study, where sampling is conditioned on
the presence (cases) and absence (controls) of a disease, is an
efficient way of studying the effect of risk factors to rare dis-
eases. As the regression coefficients have a desired interpre-
tation in terms of log-odds ratios which are estimable based
on case-control samples, logistic regression models have been
widely applied to analyze binary data arising from case-
control studies in epidemiology (see, e.g., Breslow, 1996).

To be precise, suppose that D is a binary response vari-
able of presence (D = 1), or absence (D = 0) of a dis-
ease, and X is the associated explanatory variables. We
consider the general logistic regression model, also known
as the multiplicative-intercept risk model:

(1) P (D = 1|X = x) =
exp{α∗ +m(x, β)}

1 + exp{α∗ +m(x, β)} ,

where m(x, β) is a given function, α∗ is a scale parameter,
β = (β1, . . . , βp)

T is a p-vector parameter, and the marginal
distribution of X is unspecified. As in Prentice and Pyke
(1979), the case-control samples are two independent groups
of samples based on model (1), i.e., X1, . . . , Xn0 are a ran-
dom sample (controls) from P (x|D = 0) and Xn0+1, . . . , Xn

are another random sample (cases) from P (x|D = 1).

∗Corresponding author.

Let f(x|D = 0) and f(x|D = 1) be the conditional den-
sity functions of the controls and cases. Under the logistic
assumptions, it can be shown that

f(x|D = 1) = f(x|D = 0) exp{α+m(x, β)},

where α = α∗+log{P (D = 0)/P (D = 1)}. Therefore, model
(1) is equivalent to the following two-sample semiparametric
density ratio model:

X1, . . . , Xn0 are independent with density f(x|D = 0),(2)

Xn0+1, . . . , Xn are independent with density

exp{α+m(x, β)}f(x|D = 0).

Notice that model (2) is considerably flexible. For example,
it is a biased sampling model with weight function exp{α+
m(x, β)}, where α and β are unknown (see, e.g., Vardi, 1982;
Gill et al., 1988; Qin, 1993). If m(x, β) = βTx with x being
a p × 1 random vector, model (2) reduces to the standard
logistic model (see, e.g., Anderson, 1979; Breslow and Day,
1980). Model (2) is also related to the Cox proportional
hazards model (see, Qin, 1998).

There is extensive literature on model (2) under the case-
control sampling plans. For example, O’Neill (1980) studied
the discrimination problem in (2); Cox and Ferry (1991)
and Weinberg and Wacholder (1993) investigated this model
mainly for discrete data; Qin (1998) employed empirical
likelihood to model (2), derived the asymptotic normality
and further showed the optimality in the sense of Godambe
(1960). Related work also has been done for the standard
logistic regression model, references include Prentice and
Pyke (1979), Anderson and Blair (1982), Wang and Carroll
(1993), Qin and Zhang (1997), and Brelsow et al. (2000)
among others.

Our research is motivated by epidemiological studies on
gene-environment interaction problems. As the genetic sus-
ceptibility and environmental (or non-genetic) exposures
play an interactive role in aetiology of many diseases, epi-
demiologists often seek to examine how these two risk factors
affect a disease through case-control studies. Intuitively, an
individual’s genetic susceptibility is determined since birth,
and may not relate to his/her environmental exposures. Re-
cent studies showed that the assumption of independence
between gene and environmental exposures may be reason-
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able; see Hwang et al. (1994) for example. This has attracted
some researchers’ attention, and they have developed new
methods for analyzing case-control data in these occasions;
see Piegorsch et al. (1994), Umbach and Weinberg (1997),
Modan et al. (2001). However, all these methods have their
own drawbacks, see Chatterjee and Carroll (2005) for more
discussion. For instance, Chatterjee and Carroll (2005) con-
sidered the case-control problem when the underlying pop-
ulations satisfy gene-environment independence but assume
that the populations contain only finite values. Thus, seek-
ing a novel method to this case becomes important.

As pointed out by Piegorsch et al. (1994), assumptions
that genotype and exposure are independent in the popula-
tion and that the disease is rare, in fact, imply that genotype
and exposure are (approximately) independent in the non-
diseased population. Naturally, a method that could make
full use of such information will invariably increase efficiency.
It is well-known that empirical likelihood approach of Owen
(1988, 1990, 2001) can easily incorporate such information
in the model, in addition to its many other nice properties.
In fact, the empirical likelihood to case-control studies has
been investigated by Qin (1998) when there is no auxiliary
information. When applying the procedure of Qin (1998)
to profile out the nuisance parameters, unfortunately, this
method does not produce a closed form for this problem.

To overcome the difficulties encountered by Owen’s di-
rect application of empirical likelihood, we consider the jack-
knife empirical likelihood (JEL) method, proposed recently
by Jing, Yuan and Zhou (2009). The idea of the JEL is to
construct a jackknife pseudo-values first, and then treat this
jackknife pseudo-sample as a sample of i.i.d. observations
and apply the standard empirical likelihood method for the
mean of the jackknife pseudo-sample to obtain the empirical
likelihood ratio statistic. In this paper, we study the possibil-
ity of extending the jackknife empirical likelihood method to
the case-control studies taking into consideration the gene-
environment independence on controls.

We organize this paper as follows. Section 2 gives the
detailed methodology and main results. A simulation study
is presented in Section 3. All proofs are put in Section 4.

2. MAIN RESULTS

2.1 Formulation

Suppose that one has auxiliary information of the gene-
environment independence on controls, i.e., for xi = (xi,1,
xi,2), we have

f(xi,1, xi,2|D = 0) = f(xi,1|D = 0)f(xi,2|D = 0).

Define

pi,1 = dF (xi,1|D = 0), i = 1, . . . , n0,

pi,2 = dF (xi,2|D = 0), i = 1, . . . , n0,

qk = dF (xk,1, xk,2|D = 1), k = n0 + 1, . . . , n.

The log-empirical likelihood function is defined as

L(α, β) = log

(
n0∏
i=1

(pi,1pi,2)

n∏
k=n0+1

qk

)
(3)

=
2∑

j=1

n0∑
i=1

log pi,j +
n∑

k=n0+1

log qk

subject to the constraints

(4)
n0∑
i=1

pi,j = 1 and

n∑
k=n0+1

qk = 1, pi,j , qk ≥ 0, j = 1, 2,

and

(5)

n0∑
i1=1

n0∑
i2=1

pi1,1pi2,2[exp{α+m(Xi1,1, Xi2,2, β)}−1] = 0,

(6)

n∑
k=n0+1

qk[exp{−α−m(Xk,1, Xk,2, β)} − 1] = 0.

The constraints (5) and (6) come respectively from

1 =

∫
f(xi|D=1)dxi =

∫
exp{α+m(xi, β)}dF (xi|D=0)

=

∫
exp{α+m(xi, β)}dF (xi,1|D=0)dF (xi,2|D=0),

and

1 =

∫
f(xi|D=0)dxi =

∫
exp{−α−m(xi, β)}dF (xi|D=1).

2.2 Jackknife empirical likelihood

Due to its highly nonlinear nature of the (5) and (6),
direct application of Owen’s empirical likelihood will en-
counter some serious computational difficulties. To overcome
this, we consider using the jackknife empirical likelihood
method, proposed by Jing, Yuan and Zhou (2009). To do
this, we define n1 = n− n0,

U1(α, β) =
1

n2
0

n0∑
i=1

n0∑
j=1

h1(Xi,1, Xj,2;α, β),

U2(α, β) =
1

n1

n1∑
k=1

h2(Xn0+k;α, β)

with respective kernels

h1(Xi,1, Xj,2;α, β) = exp{α+m(Xi,1, Xj,2, β)} − 1,

h2(Xk;α, β) = exp{−α−m(Xk,1, Xk,2, β)} − 1.

Note that U1(α, β) is a two-sample U -statistic while U2(α, β)
is a one-sample U -statistic.
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However, U1(α, β) can be rewritten expressed as a one-
sample U -statistic:

U1(α, β) =

(
2n0

2

)−1 ∑
1≤i<j≤2n0

H1(Z1,i, Z1,j ;α, β),

where

Z1,i =

{
Xi,1, i = 1, . . . , n0,

Xi−n0,2, i = n0 + 1, . . . , 2n0,

H1(Z1,i, Z1,j ;α, β)

=

⎧⎪⎨⎪⎩
(2n0 − 1)h1(Z1,i, Z1,j ;α, β)/n0,

1 ≤ i ≤ n0 < j ≤ 2n0,

0, otherwise.

Define the jackknife pseudo-values by

V̂1i(α, β) = 2n0U1(α, β)− (2n0 − 1)U
(−i)
1 (α, β),(7)

i = 1, . . . , 2n0,

V̂2k(α, β) = n1U2(α, β)− (n1 − 1)U
(−k)
2 (α, β),(8)

k = 1, . . . , n1,

where U
(−i)
1 is calculated from U1 using Z1,1, . . . , Z1,i−1,

Z1,i+1, . . . , Z1,2n0 after deleting the ith data value Z1,i

while U
(−k)
2 is computed from Xn0+1, . . . , Xn0+k−1,

Xn0+k+1, . . . , Xn after deleting the kth data value Xn0+k.
It can be seen that

U1(α, β) =
1

2n0

2n0∑
i=1

V̂1i(α, β),

U2(α, β) =
1

n1

n1∑
j=1

V̂2j(α, β).

Since jackknife pseudo-values are asymptotically inde-

pendent (see, Shi, 1984), we can treat {V̂1i(α, β), i = 1, . . . ,

2n0} as one sample, while {V̂2i(α, β), i = 1, . . . , n1} (i.e.,
h2(Z2,i;α, β), i = 1, . . . , n1) is another i.i.d. sample. Define

pi = dF (V̂1i(α, β)|D=0), and qj = dF (V̂2j(α, β)|D=1).

Then the empirical log-likelihood of those pseudo-values can
be re-defined as

L(α, β) =

2n0∑
i=1

log pi +

n1∑
j=1

log qj ,

subject to the constraints⎧⎪⎨⎪⎩
∑2n0

i=1 pi = 1,
∑n1

j=1 qj = 1, pi, qj ≥ 0,∑2n0

i=1 piV̂1i(α, β) = 0,∑n1

j=1 qj V̂2j(α, β) = 0.

Using the Lagrange multiplier method, we have that L(α, β)
attains its maximum at

pi =
1

2n0
· 1

1 + λ1V̂1i(α, β)
, and qj =

1

n1
· 1

1 + λ2V̂2j(α, β)
.

This, in turn, gives the −2× log-likelihood ratio as

l(α, β)

= 2

2n0∑
i=1

log{1 + λ1V̂1i(α, β)}+ 2

n1∑
j=1

log{1 + λ2V̂2j(α, β)},

where λ1 and λ2 satisfy

Q1n0n1(α, λ1, λ2) :=
1

2n0

2n0∑
i=1

V̂1i(α, β)

1 + λ1V̂1i(α, β)
= 0,(9)

Q2n0n1(α, λ1, λ2) :=
1

n1

n1∑
j=1

V̂2j(α, β)

1 + λ2V̂2j(α, β)
= 0.(10)

Since we are interested in β, we minimize l(α, β) with
respect to α and obtain the profile likelihood ratio

(11)

l(β) = 2

2n0∑
i=1

log{1+λ1V̂1i(α̂, β)}+2

n1∑
j=1

log{1+λ2V̂2j(α̂, β)},

where α̂ = argminα l(α, β).

2.3 Main results

Before stating the main results, we list two assumptions:

Assumption 1. limn0,n1→∞ n1/2n0 = ρ < ∞, and denote
α0 and β0 as the true values of α and β, respectively.

Assumption 2. h1(X1, X2;α, β0) and h2(X;α, β0) are
bounded by some integrable function G(X1, X2) for |α −
α0| ≤ n

−1/3
0 .

Our main results are as follows:

Proposition 1. Assume that Assumptions 1–2 hold. Then,
with probability tending to one, l(α, β0) attains its minimum

at some point α̂ in the interior of |α − α0| ≤ n
−1/3
0 . More-

over, α̂, λ1 and λ2 in (11) satisfy (9), (10) and

Q3n0n1(α, λ1, λ2)

(12)

:=
1

2n0

2n0∑
i=1

λ1∂V̂1i(α, β0)/∂α

1 + λ1V̂1i(α, β0)
+

1

2n0

n1∑
j=1

λ2∂V̂2j(α, β0)/∂α

1 + λ2V̂2j(α, β0)

= 0.

Theorem 1. Assume that Assumptions 1–2 hold. We have

l(α̂, β0)
d→ χ2

1, as n → ∞, where α̂ is given in Proposition 1.
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From Theorem 1, a confidence interval of β0 with level γ
can be obtained as

Iγ(r) = {β : l(α̂, β) ≤ χ2
1,γ},

where χ2
1,γ is the γth quantile of χ2

1.

3. SIMULATIONS

In this section, we conduct a simulation study to evalu-
ate the finite sample performances of the proposed jackknife
empirical likelihood confidence interval for the interested pa-
rameters. We consider the following experiment, the compo-
nents of the controls are independent withX1,1 ∼ N(μ1, (1−
ρ2)σ2

1) and X1,2 ∼ N(μ2, (1 − ρ2)σ2
2), while two compo-

nents of the cases are not independent and follow a bivariate
normal distribution, i.e., (Y1,1, Y1,2) ∼ BN(μ1, μ2, σ

2
1 , σ

2
2 , ρ).

That is,

f(x1, x2|D = 0) =
1√

2πσ1

√
1− ρ2

exp

{
− (x1 − μ1)

2

2(1− ρ2)σ2
1

}
× 1√

2πσ2

√
1− ρ2

exp

{
− (x2 − μ2)

2

2(1− ρ2)σ2
2

}
,

f(x1, x2|D = 1) = exp{α+m(x, β)}f(x1, x2|D = 0),

where

α = log
√
1− ρ2 +

ρμ1μ2

(1− ρ2)σ1σ2
,

m(x1, x2, β) = β1x1 + β2x2 + β3x1x2

= − ρμ2

(1− ρ2)σ1σ2
x1 −

ρμ1

(1− ρ2)σ1σ2
x2

+
ρ

(1− ρ2)σ1σ2
x1x2.

In our simulation, we consider ρ = 0.2 and 0.5. For each
setup, we put μ1 = 1, μ2 = 0.5, σ1 = σ2 = 1, and generate
1,000 cases and 1,000 controls with sample sizes n0 = n1 =
20, 40, 70, respectively. We employ the package ‘emplik’ in
the software R to compute the coverage probabilities of the
proposed jackknife empirical likelihood method.

For comparisons, we also computed the coverage proba-
bilities of the logistic regression method not using the in-
dependent information in controls while they actually have,
i.e., all of the setup are the same as before, and the cases
and controls are corresponding to 1 and 0, respectively, we
employ the R package “glm” to do the logistic regression.
Thus, the confidence region for β = (β1, β2, β3) with confi-
dence level γ is given by

{β̂ : (β̂ − β0)
T Σ̂−1(β̂ − β0) ≤ χ2

3,γ},

where χ2
3,γ is the γth quantile of χ2

3. β̂ = (β̂1, β̂2, β̂3) and the

variance-covariance matrix Σ̂ for β̂ can be obtained through
the package simultaneously.

In Table 1, we report the coverage probabilities of the 90%
and 95% confidence regions for β0 using JEL and logistic

Table 1. Coverage probabilities of the 90% and 95%
confidence intervals for (β1, β2, β3)

(n0, n1, ρ) JEL Logistic
γ = 0.90 γ = 0.95 γ = 0.90 γ = 0.95

(20, 20, 0.2) 0.863 0.927 0.965 0.991
(20, 20, 0.5) 0.865 0.914 0.957 0.989
(40, 40, 0.2) 0.877 0.937 0.934 0.977
(40, 40, 0.5) 0.865 0.927 0.919 0.967
(70, 70, 0.2) 0.882 0.938 0.912 0.968
(70, 70, 0.5) 0.901 0.952 0.889 0.954

regression. From these simulation results, we observe:

• As sample size increases, the coverage probabilities in
both cases converge to the nominal levels.

• The JEL method performs better than logistic regres-
sion method which does not use the independence
among controls in most cases.

• The JEL tends to have under-coverage probabilities
while the logistic regression tend to have over-coverage
probabilities. However, over-coverage probabilities are
usually achieved by too wide confidence regions, which
are less desirable.

4. A REAL EXAMPLE

We apply our method to the data set of Cameron and
Pauling (1978). See Table 33.1 in Andrew and Herzberg
(1985). The survival times of 100 terminal cancer patients
(cases) and 1, 000 matched controls were recorded. To be
specific, the treated group of 100 patients with terminal can-
cer of various kinds began ascorbate treatment, while the
controls received the same treatment as the treated group
except for the ascorbate. This data set comprises the sur-
vival times of the ascorbate-treated patients after the date
of first hospital attendance for the cancer that became un-
treatable, their survival times measured from the dates of
untreatability, and the corresponding mean values for the
matched controls. We are interested in whether supplemen-
tal ascorbate prolongs the survival times of patients with
terminal cancer, and we use JEL to estimate the param-
eters involved. We consider m(x, β) = m(x1, x2, β) in (1)
as

m(x, β) = β1x1 + β2x2 + β3x1x2 + β4x
2
1.

References on density ratio model selection include Qin
and Zhang (1997), Fokianos (2007), among others. The
survival times of patients of stomach cancer and breast
cancer (Table 33.1) were selected for illustrating purposes.
Here we transform the survival times in days to years,
i.e., ·/365, and exclude two patients who were alive on 15
May 1978.

From Table 2, we observe that the confidence intervals
of β3 do not include 0. Then, the supplemental ascorbate
impacts the survival times of patients with terminal human
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Table 2. 90% and 95% confidence intervals for
(β1, β2, β3, β4)

I

β Stomach
γ = 0.90 γ = 0.95

β1 (−59.24426, −58.34373) (−59.28645, −57.86839)
β2 (70.54456, 71.44511) (70.50234, 71.92042)
β3 (−14.94648, −14.04593) (−14.98869, −13.57061)
β4 (17.56186, 18.46241) (17.51964, 18.93772)

II

β Breast
γ = 0.90 γ = 0.95

β1 (−4.0041133, −3.9136229) (−4.0065935, −3.9077849)
β2 (13.1403123, 13.2308033) (13.1378322, 13.2366412)
β3 (−1.6815360, −1.5910451) (−1.6840162, −1.5852071)
β4 (0.6463878, 0.7368786) (0.6439076, 0.7427167)

cancer. So, the proposed method is helpful for practical data
analysis in case control studies.

5. PROOFS

For simplicity, we give some notations. Put⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ul(α) = Ul(α, β0), l = 1, 2

Ū2
1 (α) =

1
2n0

∑2n0

i=1 V̂
2
1i(α, β0)

Ū2
2 (α) =

1
n1

∑n1

j=1 V̂
2
2j(α, β0)

U0
1 (α) : the original statistics based on X1, . . . , Xn0

For i = 1, . . . , n0,

U−i,0
1 (α) : the statistics after deleting Xi,1

V1,i0(α) = n0U
0
1 (α)− (n0 − 1)U−i,0

1 (α)

For j = 1, . . . , n0,

U0,−j
1 (α) : the statistics after deleting Xj,2,

V1,0j(α) = n0U
0
1 (α)− (n0 − 1)U0,−j

1 (α)

g1,10(x;α, β0) = Eh1(x,X1,2;α, β0)

σ2
1,10(α) = V ar(g1,10(X1,1;α, β0))

g1,01(y;α, β0) = Eh1(X1,1, y;α, β0)

σ2
1,01(α) = V ar(g1,01(X1,2;α, β0)).

It is known that the consistent estimator of Var(U1(α))
is (see Arvesen, 1969)

V̂arJack (U1(α)) =
1

n0(n0 − 1)

n0∑
i=1

(V1,i0(α)− V̄1,•0(α))
2

+
1

n0(n0 − 1)

n0∑
j=1

(V1,0j(α)− V̄1,0•(α))
2

where V̄1,•0(α) and V̄1,0•(α) are the averages of V1,i0(α)
and V1,0i(α), respectively. From Schechtman and Schecht-

man (2002), we have

V̄1,•0(α) = U1(α), V̄1,0•(α) = U1(α).

For i = 1, . . . , 2n0, j = 1, . . . , n1, it can be verified that

(13)
∂V̂1i(α)

∂α
= V̂1i(α) + 1,

∂V̂2j(α)

∂α
= −V̂2j(α)− 1.

First we list some lemmas.

Lemma 1. Under the conditions of Proposition 1, and if

σ2
1,10(α), σ

2
1,01(α) > 0, for each α such that |α−α0| ≤ n

−1/3
0 .

Then as n0, n1 → ∞, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n
1/2
0 U1(α0)

d→ N(0, S2
1)

n
1/2
1 U2(α0)

d→ N(0, S2
2)

Ū2
1 (α0) = S2

1 + op(1)

Ū2
2 (α0) = S2

2 + op(1),

where S2
1 = 2(σ2

1,10(α0) + σ2
1,01(α0)), S2

2 = Eh2
2(Xn0+1;

α0, β0).

Proof. The first one is from Arvesen (1969), while the sec-
ond one comes from the central limit theorem. Now, we
prove that Ū2

1 (α0) = S2
1 + op(1). For i = 1, . . . , n0, it can be

checked that

1

n0

n0∑
i=1

V̂ 2
1i(α0)

=
1

n0

n0∑
i=1

[
2n0 − 1

n0 − 1
V1,i0(α0)−

n0

n0 − 1
U1(α0)

]2
=

(
2n0 − 1

n0 − 1

)2
1

n0

n0∑
i=1

[V1,i0(α0)− U1(α0)]
2 + U2

1 (α0),

when i = n0 + 1, . . . , 2n0,

1

n0

2n0∑
i=n0+1

V̂ 2
1(i−n0)

(α0)

=
1

n0

2n0∑
i=n0+1

[
2n0 − 1

n0 − 1
V1,0(i−n0)(α0)−

n0

n0 − 1
U1(α0)

]2

=

(
2n0 − 1

n0 − 1

)2
1

n0

2n0∑
i=n0+1

[V1,0(i−n0)(α0)− U1(α0)]
2

+ U2
1 (α0).

Thus,

Ū2
1 (α) =

1

2

(2n0 − 1)2

n0 − 1

{
1

n0(n0 − 1)

n0∑
i=1

[V1,i0(α0)− U1(α0)]
2

+
1

n0(n0 − 1)

2n0∑
i=n0+1

[V1,0(i−n0)(α0)− U1(α0)]
2

}
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+ U2
1 (α0)

= 2(n0 − 1)V̂arJack (U1(α0)) + op(1)

= S2
1 + op(1),

where the last equality comes from the fact that
V̂arJack (U1(α0)) − n−1

0 (σ2
1,10(α0) + σ2

1,01(α0)) = op(n
−1
0 ).

Finally,

Ū2
2 (α0) =

1

n1

n1∑
j=1

V̂ 2
2j(α0) =

1

n1

n1∑
j=1

h2
2(Xn0+j ;α0, β0)

p→ Eh2
2(Xn0+1;α0, β0).

Hence, we complete the proof.

Lemma 2. Under conditions of Proposition 1, if σ2
1,10(α),

σ2
1,01(α) > 0, for each α ∈ Θ(α0), then as n → ∞, we have

P
(

min
1≤i≤2n0

V̂1i(α) < 0 < max
1≤i≤2n0

V̂1i(α)
)
→ 1,

P
(

min
1≤j≤n1

V̂2j(α) < 0 < max
1≤j≤n1

V̂2j(α)
)
→ 1.

Proof. Note that

V̂1i(α)=
2n0 − 1

n0 − 1
{V1,i0(α)I(1 ≤ i ≤ n0)

+V1,0(i−n)(α)I(n0 +1≤ i≤ 2n0)}−
n0

n0 − 1
U1(α),

V̂2j(α)=h2(Xn0+j ;α0, β0)

= exp{−α0 −m(Xn0+j , β)} − 1.

Following similar arguments to those of Jing et al. (2009),
we can reach the conclusion.

Lemma 3. Under the conditions of Proposition 1, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
U1(α) = Op(n

−1/3
0 )

U2(α) = Op(n
−1/3
0 )

Ū2
1 (α) = S2

1 + op(1)

Ū2
2 (α) = S2

2 + op(1),

where Op(·) and op(·) hold uniformly for α ∈ {α : |α−α0| ≤
n
−1/3
0 }.

Proof. We only prove the cases of U1(α) and Ū1(α). Apply-
ing Taylor expansion, and noting the fact (13), we have

(14)

U1(α) =
1

2n0

2n0∑
i=1

V̂1i(α0) +
1

2n0

2n0∑
i=1

[V̂1i(α
∗) + 1](α− α0),

where α∗ is between α and α0. As

1

2n0

2n0∑
i=1

V̂1i(α
∗) =

1

n2
0

n0∑
i=1

n0∑
j=1

h1(Xi,1, Xj,2;α
∗, β0)

≤ 1

n2
0

n0∑
i=1

n0∑
j=1

G(Xi,1, Xj,2)

p→ E[G(X1,1, X1,2)] < ∞,

this together with Lemma 1 leads to U1(α) = Op(n
−1/3
0 ).

Next, let’s look at Ū2
1 (α). Notice that

|Ū2
1 (α)− Ū2

1 (α0)|

=

∣∣∣∣∣ 1n0

2n0∑
i=1

V̂1i(α
∗)[V̂1i(α

∗) + 1](α− α0)

∣∣∣∣∣
≤
∣∣∣∣∣ 1n0

n0∑
i=1

V̂1i(α
∗)[V̂1i(α

∗) + 1](α− α0)

∣∣∣∣∣
+

∣∣∣∣∣ 1n0

2n0∑
i=n0+1

V̂1i(α
∗)[V̂1i(α

∗) + 1](α− α0)

∣∣∣∣∣
:= A1 +A2.

Now,

A1 =

∣∣∣∣∣ 1n0

n0∑
i=1

V̂1i(α
∗)[V̂1i(α

∗) + 1](α− α0)

∣∣∣∣∣
≤
∣∣∣∣∣ 1n0

n0∑
i=1

V̂ 2
1i(α

∗)(α− α0)

∣∣∣∣∣+
∣∣∣∣∣ 1n0

n0∑
i=1

V̂1i(α
∗)(α− α0)

∣∣∣∣∣
=

∣∣∣∣∣ 1n0

n0∑
i=1

V̂ 2
1i(α

∗)

∣∣∣∣∣Op(n
−1/3
0 ) +Op(1)Op(n

−1/3
0 ),

while ∣∣∣∣∣ 1n0

n0∑
i=1

V̂ 2
1i(α

∗)

∣∣∣∣∣
=

∣∣∣∣∣ 1n0

n0∑
i=1

{
1

n2
0(n0 − 1)2

×
[

n0∑
i1=1

n0∑
i2=1

h1(Xi1,1, Xi2,2;α
∗, β0)

]2

+
(2n0 − 1)2

n2
0(n0 − 1)2

[
n0∑

i2=1

h1(Xi,1, Xi2,2;α
∗, β0)

]2

− 2(2n0 − 1)

n2
0(n0 − 1)2

n0∑
i2=1

h1(Xi,1, Xi2,2;α
∗, β0)

×
n0∑

i1=1

n0∑
i2=1

h1(Xi1,1, Xi2,2;α
∗, β0)

}∣∣∣∣∣
≤ 4

[
1

n2
0

n0∑
i1=1

n0∑
i2=1

h1(Xi1,1, Xi2,2;α
∗, β0)

]2

+
9

n0

n0∑
i=1

[
1

n0

n0∑
i2=1

h1(Xi,1, Xi2,2;α
∗, β0)

]2
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≤ 4

n2
0

n0∑
i1=1

n0∑
i2=1

h2
1(Xi1,1, Xi2,2;α

∗, β0)

+
9

n0

n0∑
i=1

1

n0

n0∑
i2=1

h2
1(Xi,1, Xi2,2;α

∗, β0)

≤ C
1

n2
0

n0∑
i1=1

n0∑
i2=1

G(Xi1,1, Xi2,2)

p→ CE(G(Xi1,1, Xi2,2)) < ∞.

Here, just use (a+b)2 ≤ 2(a2+b2). Hence, A1 = Op(n
−1/3
0 ).

Similarly, we can prove that A2 = Op(n
−1/3
0 ), which in turn

implies Ū2
1 (α) = Ū2

1 (α0) +Op(n
−1/3
0 ).

Lemma 4. Let J1(α) = max1≤i �=j≤2n0 |h1(Xi, Xj ;α, β0)|,
and J2(α) = max1≤i≤n1 |h2(Xn0+i;α, β0)|. Then, under the

conditions of Proposition 1, we have Jl = op(n
1/3
0 ), uni-

formly in α ∈ {α : |α− α0| ≤ n
−1/3
0 }.

Proof. We only prove that J1(α) = op(n
1/3
0 ). By

the chain argument, it suffices to prove that 3−n0/3 ×
max1≤j<3n0 |h1(Xj,1, X3n0 ,2;α, β0)|

p→ 0. For each ε > 0,
we have

∞∑
n0=1

P
(
max
α

max
1≤j<3n0

|h1(Xj,1, X3n0 ,2;α, β0)| ≥ ε3n0/3
)

≤
∞∑

n0=1

3n0P
(
max
α

|h1(Xj,1, X3n0 ,2;α, β0)| ≥ ε3n0/3
)

=

∞∑
n0=1

∞∑
m=n0

3n0P (3(m+1)/3 > ε−1

×max
α

|h1(Xj,1, X3n0 ,2;α, β0)| ≥ 3m/3)

=

∞∑
m=1

m∑
n0=1

3n0P
(
3(m+1)/3 > ε−1

×max
α

|h1(Xj,1, X3n0 ,2;α, β0)| ≥ 3m/3
)

≤
∞∑

m=1

3m+1P
(
3(m+1)/3 > ε−1

×max
α

|h1(Xj,1, X3n0 ,2;α, β0)| ≥ 3m/3
)

≤ 3ε−3Emax
α

|h1(Xj,1, X3n0 ,2;α, β0)|3

≤ 3ε−3EG(X1,1, X1,2) < ∞.

Now, by the Borel-Cantelli lemma, with probability one, we
have

3−n0/3 max
1≤j<3n0

|h1(Xj,1, X3n0 ,2;α, β0)| → 0,

uniformly holds in α.

Combining Lemmas 3 and 4, we have

(15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max1≤i≤2n0 |V̂1i(α, β0)| = op(n

1/3
0 )

max1≤j≤n1 |V̂2j(α, β0)| = op(n
1/3
0 )

1
2n0

∑2n0

i=1 |V̂1i(α, β0)|3 = op(n
1/3
0 )

1
n1

∑n1

j=1 |V̂2j(α, β0)|3 = op(n
1/3
0 ),

all hold uniformly in α.

Lemma 5. For λ1 = λ1(α) and λ2 = λ2(α) satisfying (9)
and (10), under conditions of Proposition 1, we have

λl = Op(n
−1/3
0 ), l = 1, 2,

uniformly for {α : |α− α0| ≤ n
−1/3
0 }.

Proof. From (9), we have

0 =

∣∣∣∣∣ 1

2n0

2n0∑
i=1

V̂1i(α, β0)

1 + λ1V̂1i(α, β0)

∣∣∣∣∣
≥ 1

2n0

∣∣∣∣∣
2n0∑
i=1

λ1V̂
2
1i(α, β0)

1 + λ1V̂1i(α, β0)

∣∣∣∣∣−
∣∣∣∣∣ 1

2n0

2n0∑
i=1

V̂1i(α, β0)

∣∣∣∣∣
≥ |λ1|Ū2

1 (α)

1 + |λ1|max1≤i≤2n0 |V̂1i(α, β0)|
− U1(α),

combining this with Lemma 3 and (15), we have λ1 =

Op(n
−1/3
0 ). Similarly, we can show λ2 = Op(n

−1/3
0 ).

Proof of Proposition 1. By Lemma 5, we have

λ1V̂1i(α, β0) = op(1), λ2V̂2j(α, β0) = op(1).

Since (9) is equal to

U1(α)− λ1Ū
2
1 (α) +

1

2n0
λ2
1

2n0∑
i=1

V̂ 3
1i(α, β0)

1 + λ1V̂1i(α, β0)
= 0,

we have

(16) λ1 = [Ū2
1 (α)]

−1U1(α) + op(n
−1/3
0 ).

Similarly,

(17) λ2 = [Ū2
2 (α)]

−1U2(α) + op(n
−1/3
0 ).

Denote l1(α, β0) = 2
∑2n0

i=1 log{1+λ1V̂1i(α, β0)}, l2(α, β0) =

2
∑n1

j=1 log{1 + λ2V̂2j(α, β0)}, and set α = α0 + n
−1/3
0 . Ap-

plying Taylor expansion to l1(α, β0),

l1(α, β0) = 2

2n0∑
i=1

log{1 + λ1V̂1i(α, β0)}

= 2λ1

2n0∑
i=1

V̂1i(α, β0)− λ2
1

2n0∑
i=1

V̂ 2
1i(α, β0) + op(n

1/3
0 )

Case-control studies with gene-environment independence on controls 299



= 2n0{Ū2
1 (α)}−1U2

1 (α) + op(n
1/3
0 )

= 2n0{Ū2
1 (α0) + op(1)}−1

× {U1(α0) + (U1(α
∗) + 1)(α− α0)}2 + op(n

1/3
0 ).

By Lemma 3 and the fact that U1(α) → 0 uniformly in

{α : |α− α0| ≤ n
−1/3
0 }, we obtain

l1(α, β0) ≥ Cn
1/3
0

with probability tending to one. On the other hand,

l1(α0, β0) = 2n0{Ū2
1 (α0)}−1U2

1 (α0) + op(1) = Op(1).

Thus, as n0 → ∞, with probability tending to one, it holds

that l1(α0 + n
−1/3
0 , β0) > l1(α0, β0). Similarly, we can show

that l1(α0 − n
−1/3
0 , β0) > l1(α0, β0). Also, we can prove

l2(α0 ± n
−1/3
0 , β0) > l2(α0, β0) in the same manner.

Since l1(α, β0) and l2(α, β0) are continuous in [α0 −
n
−1/3
0 , α0 +n

−1/3
0 ], l(α, β0) attains its minimum in the inte-

rior of [α0 − n
−1/3
0 , α0 + n

−1/3
0 ], denoted by α̂.

Proof of Theorem 1. Put λ̂i = λi(α̂), i = 1, 2. Then

Qjn0n1(α̂, λ̂1, λ̂2) = 0, j = 1, 2, 3.

By Taylor expansion, we have

0 = Qjn0n1(α0, 0, 0)

(18)

+
∂

∂λ1
Qjn0n1(α

∗, λ∗
1, λ

∗
2)λ̂1 +

∂

∂λ2
Qjn0n1(α

∗, λ∗
1, λ

∗
2)λ̂2

+
∂

∂α
Qjn0n1(α

∗, λ∗
1, λ

∗
2)(α̂− α0),

where α∗ lies between α̂ and α0, λ
∗
l lies between λ̂l and λl.

Using Lemma 5, it can be checked that

lim
n0→∞

∂

∂λ1
Q1n0n1(α, λ1, λ2)

= lim
n0→∞

1

2n0

2n0∑
i=1

−V̂ 2
1i(α, β0)

(1 + λ1V̂1i(α, β0))2

= lim
n0→∞

−1

2n0

2n0∑
i=1

V̂ 2
1i(α, β0)

= −S2
1 ,

lim
n0→∞

∂

∂λ2
Q1n0n1(α, λ1, λ2) = 0,

lim
n0→∞

∂

∂α
Q1n0n1(α, λ1, λ2)

= lim
n0→∞

1

2n0

2n0∑
i=1

V̂1i(α, β0) + 1

(1 + λ1V̂1i(α, β0))2

= 1,

lim
n1→∞

∂

∂λ1
Q2n0n1(α, λ1, λ2) = 0,

lim
n1→∞

∂

∂λ2
Q2n0n1(α, λ1, λ2)

= lim
n1→∞

1

n1

n1∑
j=1

−V̂ 2
2j(α, β0)

(1 + λ2V̂2j(α, β0))2

= −S2
2 ,

lim
n1→∞

∂

∂α
Q2n0n1(α, λ1, λ2)

= lim
n1→∞

1

n1

n1∑
j=1

−V̂2j(α, β0)− 1

(1 + λ2V̂2j(α, β0))2

= −1,

lim
n0→∞

∂

∂λ1
Q3n0n1(α, λ1, λ2) = 1,

lim
n0→∞

∂

∂λ2
Q3n0n1(α, λ1, λ2) = −ρ,

lim
n0→∞

∂

∂α
Q3n0n1(α, λ1, λ2) = 0.

All limits hold uniformly in {α : |α − α0| ≤ n
−1/3
0 }. There-

fore, solving the equation (18), we have⎛⎜⎝ λ̂1

λ̂2

α̂− α0

⎞⎟⎠ = −S−1
n (α∗, λ∗

1, λ
∗
2)

⎛⎝Q1n0n1(α0, 0, 0)

Q2n0n1(α0, 0, 0)

0

⎞⎠
= −S−1

⎛⎝Q1n0n1(α0, 0, 0)

Q2n0n1(α0, 0, 0)

0

⎞⎠+ op(1),

where

Sn(α, λ1, λ2)

=

⎛⎜⎜⎝
∂Q1n0n1 (α,λ1,λ2)

∂λ1

∂Q1n0n1 (α,λ1,λ2)

∂λ2

∂Q1n0n1 (α,λ1,λ2)

∂α
∂Q2n0n1 (α,λ1,λ2)

∂λ1

∂Q2n0n1 (α,λ1,λ2)

∂λ2

∂Q2n0n1 (α,λ1,λ2)

∂α
∂Q3n0n1 (α,λ1,λ2)

∂λ1

∂Q3n0n1 (α,λ1,λ2)

∂λ2

∂Q3n0n1 (α,λ1,λ2)

∂α

⎞⎟⎟⎠
p→ S :=

⎛⎝−S2
1 0 1

0 −S2
2 −1

1 −ρ 0

⎞⎠
and thus

S−1 :=
1

|S|

⎛⎝−ρ −ρ S2
2

−1 −1 −S2
1

S2
2 −ρS2

1 S2
1S

2
2

⎞⎠ ,

where |S| = S2
1ρ+ S2

2 . So,

λ̂1 =
ρ

|S| {Q1n0n1(α0, 0, 0) +Q2n0n1(α0, 0, 0)}+ op(1),

λ̂2 =
1

|S| {Q1n0n1(α0, 0, 0) +Q2n0n1(α0, 0, 0)}+ op(1),
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α̂− α0 =
−1

|S| {S
2
2Q1n0n1(α0, 0, 0)− ρS2

1Q2n0n1(α0, 0, 0)}

+ op(1).

The above gives that λ̂1 = ρλ̂2 + op(1). Furthermore,

√
n1

(
Q1n0n1(α0, 0, 0)

Q2n0n1(α0, 0, 0)

)
d→ N

((
0

0

)
,

(
ρS2

1 0

0 S2
2

))
,

which implies that

(19)
√
n1λ̂2

d→ N(0, |S|−1),

l(β0)= 2

{
2n0∑
i=1

log(1 + λ1V̂1i(α̂, β0))

+

n1∑
j=1

log(1 + λ2V̂2j(α̂, β0))

}

=2

2n0∑
i=1

λ1(α̂)V̂1i(α̂, β0)−
2n0∑
i=1

λ2
1(α̂)V̂

2
1i(α̂, β0) + op(1)

+ 2

n1∑
j=1

λ2(α̂)V̂2j(α̂, β0)−
n1∑
j=1

λ2
2(α̂)V̂

2
2j(α̂, β0)+ op(1)

= 2n0λ̂
2
1Ū

2
1 (α̂) + n1λ̂

2
2Ū

2
2 (α̂) + op(1)

= {(ρ−1 + o(1))ρ2Ū2
1 (α) + Ū2

2 (α)}(
√
n1λ̂2)

2 + op(1)

= {(ρ+ o(1))S2
1 + S2

2}(
√
n1λ̂2)

2 + op(1)

d→ χ2
1.
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